xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution expander,
10 // which is used to generate the code corresponding to a given scalar evolution
11 // expression.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Transforms/Utils/LoopUtils.h"
30 
31 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
32 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X)
33 #else
34 #define SCEV_DEBUG_WITH_TYPE(TYPE, X)
35 #endif
36 
37 using namespace llvm;
38 
39 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget(
40     "scev-cheap-expansion-budget", cl::Hidden, cl::init(4),
41     cl::desc("When performing SCEV expansion only if it is cheap to do, this "
42              "controls the budget that is considered cheap (default = 4)"));
43 
44 using namespace PatternMatch;
45 
PoisonFlags(const Instruction * I)46 PoisonFlags::PoisonFlags(const Instruction *I) {
47   NUW = false;
48   NSW = false;
49   Exact = false;
50   Disjoint = false;
51   NNeg = false;
52   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) {
53     NUW = OBO->hasNoUnsignedWrap();
54     NSW = OBO->hasNoSignedWrap();
55   }
56   if (auto *PEO = dyn_cast<PossiblyExactOperator>(I))
57     Exact = PEO->isExact();
58   if (auto *PDI = dyn_cast<PossiblyDisjointInst>(I))
59     Disjoint = PDI->isDisjoint();
60   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(I))
61     NNeg = PNI->hasNonNeg();
62   if (auto *TI = dyn_cast<TruncInst>(I)) {
63     NUW = TI->hasNoUnsignedWrap();
64     NSW = TI->hasNoSignedWrap();
65   }
66 }
67 
apply(Instruction * I)68 void PoisonFlags::apply(Instruction *I) {
69   if (isa<OverflowingBinaryOperator>(I)) {
70     I->setHasNoUnsignedWrap(NUW);
71     I->setHasNoSignedWrap(NSW);
72   }
73   if (isa<PossiblyExactOperator>(I))
74     I->setIsExact(Exact);
75   if (auto *PDI = dyn_cast<PossiblyDisjointInst>(I))
76     PDI->setIsDisjoint(Disjoint);
77   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(I))
78     PNI->setNonNeg(NNeg);
79   if (isa<TruncInst>(I)) {
80     I->setHasNoUnsignedWrap(NUW);
81     I->setHasNoSignedWrap(NSW);
82   }
83 }
84 
85 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
86 /// reusing an existing cast if a suitable one (= dominating IP) exists, or
87 /// creating a new one.
ReuseOrCreateCast(Value * V,Type * Ty,Instruction::CastOps Op,BasicBlock::iterator IP)88 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
89                                        Instruction::CastOps Op,
90                                        BasicBlock::iterator IP) {
91   // This function must be called with the builder having a valid insertion
92   // point. It doesn't need to be the actual IP where the uses of the returned
93   // cast will be added, but it must dominate such IP.
94   // We use this precondition to produce a cast that will dominate all its
95   // uses. In particular, this is crucial for the case where the builder's
96   // insertion point *is* the point where we were asked to put the cast.
97   // Since we don't know the builder's insertion point is actually
98   // where the uses will be added (only that it dominates it), we are
99   // not allowed to move it.
100   BasicBlock::iterator BIP = Builder.GetInsertPoint();
101 
102   Value *Ret = nullptr;
103 
104   // Check to see if there is already a cast!
105   for (User *U : V->users()) {
106     if (U->getType() != Ty)
107       continue;
108     CastInst *CI = dyn_cast<CastInst>(U);
109     if (!CI || CI->getOpcode() != Op)
110       continue;
111 
112     // Found a suitable cast that is at IP or comes before IP. Use it. Note that
113     // the cast must also properly dominate the Builder's insertion point.
114     if (IP->getParent() == CI->getParent() && &*BIP != CI &&
115         (&*IP == CI || CI->comesBefore(&*IP))) {
116       Ret = CI;
117       break;
118     }
119   }
120 
121   // Create a new cast.
122   if (!Ret) {
123     SCEVInsertPointGuard Guard(Builder, this);
124     Builder.SetInsertPoint(&*IP);
125     Ret = Builder.CreateCast(Op, V, Ty, V->getName());
126   }
127 
128   // We assert at the end of the function since IP might point to an
129   // instruction with different dominance properties than a cast
130   // (an invoke for example) and not dominate BIP (but the cast does).
131   assert(!isa<Instruction>(Ret) ||
132          SE.DT.dominates(cast<Instruction>(Ret), &*BIP));
133 
134   return Ret;
135 }
136 
137 BasicBlock::iterator
findInsertPointAfter(Instruction * I,Instruction * MustDominate) const138 SCEVExpander::findInsertPointAfter(Instruction *I,
139                                    Instruction *MustDominate) const {
140   BasicBlock::iterator IP = ++I->getIterator();
141   if (auto *II = dyn_cast<InvokeInst>(I))
142     IP = II->getNormalDest()->begin();
143 
144   while (isa<PHINode>(IP))
145     ++IP;
146 
147   if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
148     ++IP;
149   } else if (isa<CatchSwitchInst>(IP)) {
150     IP = MustDominate->getParent()->getFirstInsertionPt();
151   } else {
152     assert(!IP->isEHPad() && "unexpected eh pad!");
153   }
154 
155   // Adjust insert point to be after instructions inserted by the expander, so
156   // we can re-use already inserted instructions. Avoid skipping past the
157   // original \p MustDominate, in case it is an inserted instruction.
158   while (isInsertedInstruction(&*IP) && &*IP != MustDominate)
159     ++IP;
160 
161   return IP;
162 }
163 
164 BasicBlock::iterator
GetOptimalInsertionPointForCastOf(Value * V) const165 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const {
166   // Cast the argument at the beginning of the entry block, after
167   // any bitcasts of other arguments.
168   if (Argument *A = dyn_cast<Argument>(V)) {
169     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
170     while ((isa<BitCastInst>(IP) &&
171             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
172             cast<BitCastInst>(IP)->getOperand(0) != A) ||
173            isa<DbgInfoIntrinsic>(IP))
174       ++IP;
175     return IP;
176   }
177 
178   // Cast the instruction immediately after the instruction.
179   if (Instruction *I = dyn_cast<Instruction>(V))
180     return findInsertPointAfter(I, &*Builder.GetInsertPoint());
181 
182   // Otherwise, this must be some kind of a constant,
183   // so let's plop this cast into the function's entry block.
184   assert(isa<Constant>(V) &&
185          "Expected the cast argument to be a global/constant");
186   return Builder.GetInsertBlock()
187       ->getParent()
188       ->getEntryBlock()
189       .getFirstInsertionPt();
190 }
191 
192 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
193 /// which must be possible with a noop cast, doing what we can to share
194 /// the casts.
InsertNoopCastOfTo(Value * V,Type * Ty)195 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
196   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
197   assert((Op == Instruction::BitCast ||
198           Op == Instruction::PtrToInt ||
199           Op == Instruction::IntToPtr) &&
200          "InsertNoopCastOfTo cannot perform non-noop casts!");
201   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
202          "InsertNoopCastOfTo cannot change sizes!");
203 
204   // inttoptr only works for integral pointers. For non-integral pointers, we
205   // can create a GEP on null with the integral value as index. Note that
206   // it is safe to use GEP of null instead of inttoptr here, because only
207   // expressions already based on a GEP of null should be converted to pointers
208   // during expansion.
209   if (Op == Instruction::IntToPtr) {
210     auto *PtrTy = cast<PointerType>(Ty);
211     if (DL.isNonIntegralPointerType(PtrTy))
212       return Builder.CreatePtrAdd(Constant::getNullValue(PtrTy), V, "scevgep");
213   }
214   // Short-circuit unnecessary bitcasts.
215   if (Op == Instruction::BitCast) {
216     if (V->getType() == Ty)
217       return V;
218     if (CastInst *CI = dyn_cast<CastInst>(V)) {
219       if (CI->getOperand(0)->getType() == Ty)
220         return CI->getOperand(0);
221     }
222   }
223   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
224   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
225       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
226     if (CastInst *CI = dyn_cast<CastInst>(V))
227       if ((CI->getOpcode() == Instruction::PtrToInt ||
228            CI->getOpcode() == Instruction::IntToPtr) &&
229           SE.getTypeSizeInBits(CI->getType()) ==
230           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
231         return CI->getOperand(0);
232     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
233       if ((CE->getOpcode() == Instruction::PtrToInt ||
234            CE->getOpcode() == Instruction::IntToPtr) &&
235           SE.getTypeSizeInBits(CE->getType()) ==
236           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
237         return CE->getOperand(0);
238   }
239 
240   // Fold a cast of a constant.
241   if (Constant *C = dyn_cast<Constant>(V))
242     return ConstantExpr::getCast(Op, C, Ty);
243 
244   // Try to reuse existing cast, or insert one.
245   return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V));
246 }
247 
248 /// InsertBinop - Insert the specified binary operator, doing a small amount
249 /// of work to avoid inserting an obviously redundant operation, and hoisting
250 /// to an outer loop when the opportunity is there and it is safe.
InsertBinop(Instruction::BinaryOps Opcode,Value * LHS,Value * RHS,SCEV::NoWrapFlags Flags,bool IsSafeToHoist)251 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
252                                  Value *LHS, Value *RHS,
253                                  SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
254   // Fold a binop with constant operands.
255   if (Constant *CLHS = dyn_cast<Constant>(LHS))
256     if (Constant *CRHS = dyn_cast<Constant>(RHS))
257       if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL))
258         return Res;
259 
260   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
261   unsigned ScanLimit = 6;
262   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
263   // Scanning starts from the last instruction before the insertion point.
264   BasicBlock::iterator IP = Builder.GetInsertPoint();
265   if (IP != BlockBegin) {
266     --IP;
267     for (; ScanLimit; --IP, --ScanLimit) {
268       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
269       // generated code.
270       if (isa<DbgInfoIntrinsic>(IP))
271         ScanLimit++;
272 
273       auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
274         // Ensure that no-wrap flags match.
275         if (isa<OverflowingBinaryOperator>(I)) {
276           if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
277             return true;
278           if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
279             return true;
280         }
281         // Conservatively, do not use any instruction which has any of exact
282         // flags installed.
283         if (isa<PossiblyExactOperator>(I) && I->isExact())
284           return true;
285         return false;
286       };
287       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
288           IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
289         return &*IP;
290       if (IP == BlockBegin) break;
291     }
292   }
293 
294   // Save the original insertion point so we can restore it when we're done.
295   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
296   SCEVInsertPointGuard Guard(Builder, this);
297 
298   if (IsSafeToHoist) {
299     // Move the insertion point out of as many loops as we can.
300     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
301       if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
302       BasicBlock *Preheader = L->getLoopPreheader();
303       if (!Preheader) break;
304 
305       // Ok, move up a level.
306       Builder.SetInsertPoint(Preheader->getTerminator());
307     }
308   }
309 
310   // If we haven't found this binop, insert it.
311   // TODO: Use the Builder, which will make CreateBinOp below fold with
312   // InstSimplifyFolder.
313   Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS));
314   BO->setDebugLoc(Loc);
315   if (Flags & SCEV::FlagNUW)
316     BO->setHasNoUnsignedWrap();
317   if (Flags & SCEV::FlagNSW)
318     BO->setHasNoSignedWrap();
319 
320   return BO;
321 }
322 
323 /// expandAddToGEP - Expand an addition expression with a pointer type into
324 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
325 /// BasicAliasAnalysis and other passes analyze the result. See the rules
326 /// for getelementptr vs. inttoptr in
327 /// http://llvm.org/docs/LangRef.html#pointeraliasing
328 /// for details.
329 ///
330 /// Design note: The correctness of using getelementptr here depends on
331 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
332 /// they may introduce pointer arithmetic which may not be safely converted
333 /// into getelementptr.
334 ///
335 /// Design note: It might seem desirable for this function to be more
336 /// loop-aware. If some of the indices are loop-invariant while others
337 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
338 /// loop-invariant portions of the overall computation outside the loop.
339 /// However, there are a few reasons this is not done here. Hoisting simple
340 /// arithmetic is a low-level optimization that often isn't very
341 /// important until late in the optimization process. In fact, passes
342 /// like InstructionCombining will combine GEPs, even if it means
343 /// pushing loop-invariant computation down into loops, so even if the
344 /// GEPs were split here, the work would quickly be undone. The
345 /// LoopStrengthReduction pass, which is usually run quite late (and
346 /// after the last InstructionCombining pass), takes care of hoisting
347 /// loop-invariant portions of expressions, after considering what
348 /// can be folded using target addressing modes.
349 ///
expandAddToGEP(const SCEV * Offset,Value * V)350 Value *SCEVExpander::expandAddToGEP(const SCEV *Offset, Value *V) {
351   assert(!isa<Instruction>(V) ||
352          SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
353 
354   Value *Idx = expand(Offset);
355 
356   // Fold a GEP with constant operands.
357   if (Constant *CLHS = dyn_cast<Constant>(V))
358     if (Constant *CRHS = dyn_cast<Constant>(Idx))
359       return Builder.CreatePtrAdd(CLHS, CRHS);
360 
361   // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
362   unsigned ScanLimit = 6;
363   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
364   // Scanning starts from the last instruction before the insertion point.
365   BasicBlock::iterator IP = Builder.GetInsertPoint();
366   if (IP != BlockBegin) {
367     --IP;
368     for (; ScanLimit; --IP, --ScanLimit) {
369       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
370       // generated code.
371       if (isa<DbgInfoIntrinsic>(IP))
372         ScanLimit++;
373       if (IP->getOpcode() == Instruction::GetElementPtr &&
374           IP->getOperand(0) == V && IP->getOperand(1) == Idx &&
375           cast<GEPOperator>(&*IP)->getSourceElementType() ==
376               Builder.getInt8Ty())
377         return &*IP;
378       if (IP == BlockBegin) break;
379     }
380   }
381 
382   // Save the original insertion point so we can restore it when we're done.
383   SCEVInsertPointGuard Guard(Builder, this);
384 
385   // Move the insertion point out of as many loops as we can.
386   while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
387     if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
388     BasicBlock *Preheader = L->getLoopPreheader();
389     if (!Preheader) break;
390 
391     // Ok, move up a level.
392     Builder.SetInsertPoint(Preheader->getTerminator());
393   }
394 
395   // Emit a GEP.
396   return Builder.CreatePtrAdd(V, Idx, "scevgep");
397 }
398 
399 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
400 /// SCEV expansion. If they are nested, this is the most nested. If they are
401 /// neighboring, pick the later.
PickMostRelevantLoop(const Loop * A,const Loop * B,DominatorTree & DT)402 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
403                                         DominatorTree &DT) {
404   if (!A) return B;
405   if (!B) return A;
406   if (A->contains(B)) return B;
407   if (B->contains(A)) return A;
408   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
409   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
410   return A; // Arbitrarily break the tie.
411 }
412 
413 /// getRelevantLoop - Get the most relevant loop associated with the given
414 /// expression, according to PickMostRelevantLoop.
getRelevantLoop(const SCEV * S)415 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
416   // Test whether we've already computed the most relevant loop for this SCEV.
417   auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
418   if (!Pair.second)
419     return Pair.first->second;
420 
421   switch (S->getSCEVType()) {
422   case scConstant:
423   case scVScale:
424     return nullptr; // A constant has no relevant loops.
425   case scTruncate:
426   case scZeroExtend:
427   case scSignExtend:
428   case scPtrToInt:
429   case scAddExpr:
430   case scMulExpr:
431   case scUDivExpr:
432   case scAddRecExpr:
433   case scUMaxExpr:
434   case scSMaxExpr:
435   case scUMinExpr:
436   case scSMinExpr:
437   case scSequentialUMinExpr: {
438     const Loop *L = nullptr;
439     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
440       L = AR->getLoop();
441     for (const SCEV *Op : S->operands())
442       L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
443     return RelevantLoops[S] = L;
444   }
445   case scUnknown: {
446     const SCEVUnknown *U = cast<SCEVUnknown>(S);
447     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
448       return Pair.first->second = SE.LI.getLoopFor(I->getParent());
449     // A non-instruction has no relevant loops.
450     return nullptr;
451   }
452   case scCouldNotCompute:
453     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
454   }
455   llvm_unreachable("Unexpected SCEV type!");
456 }
457 
458 namespace {
459 
460 /// LoopCompare - Compare loops by PickMostRelevantLoop.
461 class LoopCompare {
462   DominatorTree &DT;
463 public:
LoopCompare(DominatorTree & dt)464   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
465 
operator ()(std::pair<const Loop *,const SCEV * > LHS,std::pair<const Loop *,const SCEV * > RHS) const466   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
467                   std::pair<const Loop *, const SCEV *> RHS) const {
468     // Keep pointer operands sorted at the end.
469     if (LHS.second->getType()->isPointerTy() !=
470         RHS.second->getType()->isPointerTy())
471       return LHS.second->getType()->isPointerTy();
472 
473     // Compare loops with PickMostRelevantLoop.
474     if (LHS.first != RHS.first)
475       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
476 
477     // If one operand is a non-constant negative and the other is not,
478     // put the non-constant negative on the right so that a sub can
479     // be used instead of a negate and add.
480     if (LHS.second->isNonConstantNegative()) {
481       if (!RHS.second->isNonConstantNegative())
482         return false;
483     } else if (RHS.second->isNonConstantNegative())
484       return true;
485 
486     // Otherwise they are equivalent according to this comparison.
487     return false;
488   }
489 };
490 
491 }
492 
visitAddExpr(const SCEVAddExpr * S)493 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
494   // Recognize the canonical representation of an unsimplifed urem.
495   const SCEV *URemLHS = nullptr;
496   const SCEV *URemRHS = nullptr;
497   if (SE.matchURem(S, URemLHS, URemRHS)) {
498     Value *LHS = expand(URemLHS);
499     Value *RHS = expand(URemRHS);
500     return InsertBinop(Instruction::URem, LHS, RHS, SCEV::FlagAnyWrap,
501                       /*IsSafeToHoist*/ false);
502   }
503 
504   // Collect all the add operands in a loop, along with their associated loops.
505   // Iterate in reverse so that constants are emitted last, all else equal, and
506   // so that pointer operands are inserted first, which the code below relies on
507   // to form more involved GEPs.
508   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
509   for (const SCEV *Op : reverse(S->operands()))
510     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
511 
512   // Sort by loop. Use a stable sort so that constants follow non-constants and
513   // pointer operands precede non-pointer operands.
514   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
515 
516   // Emit instructions to add all the operands. Hoist as much as possible
517   // out of loops, and form meaningful getelementptrs where possible.
518   Value *Sum = nullptr;
519   for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
520     const Loop *CurLoop = I->first;
521     const SCEV *Op = I->second;
522     if (!Sum) {
523       // This is the first operand. Just expand it.
524       Sum = expand(Op);
525       ++I;
526       continue;
527     }
528 
529     assert(!Op->getType()->isPointerTy() && "Only first op can be pointer");
530     if (isa<PointerType>(Sum->getType())) {
531       // The running sum expression is a pointer. Try to form a getelementptr
532       // at this level with that as the base.
533       SmallVector<const SCEV *, 4> NewOps;
534       for (; I != E && I->first == CurLoop; ++I) {
535         // If the operand is SCEVUnknown and not instructions, peek through
536         // it, to enable more of it to be folded into the GEP.
537         const SCEV *X = I->second;
538         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
539           if (!isa<Instruction>(U->getValue()))
540             X = SE.getSCEV(U->getValue());
541         NewOps.push_back(X);
542       }
543       Sum = expandAddToGEP(SE.getAddExpr(NewOps), Sum);
544     } else if (Op->isNonConstantNegative()) {
545       // Instead of doing a negate and add, just do a subtract.
546       Value *W = expand(SE.getNegativeSCEV(Op));
547       Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
548                         /*IsSafeToHoist*/ true);
549       ++I;
550     } else {
551       // A simple add.
552       Value *W = expand(Op);
553       // Canonicalize a constant to the RHS.
554       if (isa<Constant>(Sum))
555         std::swap(Sum, W);
556       Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
557                         /*IsSafeToHoist*/ true);
558       ++I;
559     }
560   }
561 
562   return Sum;
563 }
564 
visitMulExpr(const SCEVMulExpr * S)565 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
566   Type *Ty = S->getType();
567 
568   // Collect all the mul operands in a loop, along with their associated loops.
569   // Iterate in reverse so that constants are emitted last, all else equal.
570   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
571   for (const SCEV *Op : reverse(S->operands()))
572     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
573 
574   // Sort by loop. Use a stable sort so that constants follow non-constants.
575   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
576 
577   // Emit instructions to mul all the operands. Hoist as much as possible
578   // out of loops.
579   Value *Prod = nullptr;
580   auto I = OpsAndLoops.begin();
581 
582   // Expand the calculation of X pow N in the following manner:
583   // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
584   // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
585   const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops]() {
586     auto E = I;
587     // Calculate how many times the same operand from the same loop is included
588     // into this power.
589     uint64_t Exponent = 0;
590     const uint64_t MaxExponent = UINT64_MAX >> 1;
591     // No one sane will ever try to calculate such huge exponents, but if we
592     // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
593     // below when the power of 2 exceeds our Exponent, and we want it to be
594     // 1u << 31 at most to not deal with unsigned overflow.
595     while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
596       ++Exponent;
597       ++E;
598     }
599     assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
600 
601     // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
602     // that are needed into the result.
603     Value *P = expand(I->second);
604     Value *Result = nullptr;
605     if (Exponent & 1)
606       Result = P;
607     for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
608       P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
609                       /*IsSafeToHoist*/ true);
610       if (Exponent & BinExp)
611         Result = Result ? InsertBinop(Instruction::Mul, Result, P,
612                                       SCEV::FlagAnyWrap,
613                                       /*IsSafeToHoist*/ true)
614                         : P;
615     }
616 
617     I = E;
618     assert(Result && "Nothing was expanded?");
619     return Result;
620   };
621 
622   while (I != OpsAndLoops.end()) {
623     if (!Prod) {
624       // This is the first operand. Just expand it.
625       Prod = ExpandOpBinPowN();
626     } else if (I->second->isAllOnesValue()) {
627       // Instead of doing a multiply by negative one, just do a negate.
628       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
629                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
630       ++I;
631     } else {
632       // A simple mul.
633       Value *W = ExpandOpBinPowN();
634       // Canonicalize a constant to the RHS.
635       if (isa<Constant>(Prod)) std::swap(Prod, W);
636       const APInt *RHS;
637       if (match(W, m_Power2(RHS))) {
638         // Canonicalize Prod*(1<<C) to Prod<<C.
639         assert(!Ty->isVectorTy() && "vector types are not SCEVable");
640         auto NWFlags = S->getNoWrapFlags();
641         // clear nsw flag if shl will produce poison value.
642         if (RHS->logBase2() == RHS->getBitWidth() - 1)
643           NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
644         Prod = InsertBinop(Instruction::Shl, Prod,
645                            ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
646                            /*IsSafeToHoist*/ true);
647       } else {
648         Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
649                            /*IsSafeToHoist*/ true);
650       }
651     }
652   }
653 
654   return Prod;
655 }
656 
visitUDivExpr(const SCEVUDivExpr * S)657 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
658   Value *LHS = expand(S->getLHS());
659   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
660     const APInt &RHS = SC->getAPInt();
661     if (RHS.isPowerOf2())
662       return InsertBinop(Instruction::LShr, LHS,
663                          ConstantInt::get(SC->getType(), RHS.logBase2()),
664                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
665   }
666 
667   Value *RHS = expand(S->getRHS());
668   return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
669                      /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
670 }
671 
672 /// Determine if this is a well-behaved chain of instructions leading back to
673 /// the PHI. If so, it may be reused by expanded expressions.
isNormalAddRecExprPHI(PHINode * PN,Instruction * IncV,const Loop * L)674 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
675                                          const Loop *L) {
676   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
677       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
678     return false;
679   // If any of the operands don't dominate the insert position, bail.
680   // Addrec operands are always loop-invariant, so this can only happen
681   // if there are instructions which haven't been hoisted.
682   if (L == IVIncInsertLoop) {
683     for (Use &Op : llvm::drop_begin(IncV->operands()))
684       if (Instruction *OInst = dyn_cast<Instruction>(Op))
685         if (!SE.DT.dominates(OInst, IVIncInsertPos))
686           return false;
687   }
688   // Advance to the next instruction.
689   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
690   if (!IncV)
691     return false;
692 
693   if (IncV->mayHaveSideEffects())
694     return false;
695 
696   if (IncV == PN)
697     return true;
698 
699   return isNormalAddRecExprPHI(PN, IncV, L);
700 }
701 
702 /// getIVIncOperand returns an induction variable increment's induction
703 /// variable operand.
704 ///
705 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
706 /// operands dominate InsertPos.
707 ///
708 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
709 /// simple patterns generated by getAddRecExprPHILiterally and
710 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
getIVIncOperand(Instruction * IncV,Instruction * InsertPos,bool allowScale)711 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
712                                            Instruction *InsertPos,
713                                            bool allowScale) {
714   if (IncV == InsertPos)
715     return nullptr;
716 
717   switch (IncV->getOpcode()) {
718   default:
719     return nullptr;
720   // Check for a simple Add/Sub or GEP of a loop invariant step.
721   case Instruction::Add:
722   case Instruction::Sub: {
723     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
724     if (!OInst || SE.DT.dominates(OInst, InsertPos))
725       return dyn_cast<Instruction>(IncV->getOperand(0));
726     return nullptr;
727   }
728   case Instruction::BitCast:
729     return dyn_cast<Instruction>(IncV->getOperand(0));
730   case Instruction::GetElementPtr:
731     for (Use &U : llvm::drop_begin(IncV->operands())) {
732       if (isa<Constant>(U))
733         continue;
734       if (Instruction *OInst = dyn_cast<Instruction>(U)) {
735         if (!SE.DT.dominates(OInst, InsertPos))
736           return nullptr;
737       }
738       if (allowScale) {
739         // allow any kind of GEP as long as it can be hoisted.
740         continue;
741       }
742       // GEPs produced by SCEVExpander use i8 element type.
743       if (!cast<GEPOperator>(IncV)->getSourceElementType()->isIntegerTy(8))
744         return nullptr;
745       break;
746     }
747     return dyn_cast<Instruction>(IncV->getOperand(0));
748   }
749 }
750 
751 /// If the insert point of the current builder or any of the builders on the
752 /// stack of saved builders has 'I' as its insert point, update it to point to
753 /// the instruction after 'I'.  This is intended to be used when the instruction
754 /// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
755 /// different block, the inconsistent insert point (with a mismatched
756 /// Instruction and Block) can lead to an instruction being inserted in a block
757 /// other than its parent.
fixupInsertPoints(Instruction * I)758 void SCEVExpander::fixupInsertPoints(Instruction *I) {
759   BasicBlock::iterator It(*I);
760   BasicBlock::iterator NewInsertPt = std::next(It);
761   if (Builder.GetInsertPoint() == It)
762     Builder.SetInsertPoint(&*NewInsertPt);
763   for (auto *InsertPtGuard : InsertPointGuards)
764     if (InsertPtGuard->GetInsertPoint() == It)
765       InsertPtGuard->SetInsertPoint(NewInsertPt);
766 }
767 
768 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
769 /// it available to other uses in this loop. Recursively hoist any operands,
770 /// until we reach a value that dominates InsertPos.
hoistIVInc(Instruction * IncV,Instruction * InsertPos,bool RecomputePoisonFlags)771 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos,
772                               bool RecomputePoisonFlags) {
773   auto FixupPoisonFlags = [this](Instruction *I) {
774     // Drop flags that are potentially inferred from old context and infer flags
775     // in new context.
776     rememberFlags(I);
777     I->dropPoisonGeneratingFlags();
778     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I))
779       if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) {
780         auto *BO = cast<BinaryOperator>(I);
781         BO->setHasNoUnsignedWrap(
782             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW);
783         BO->setHasNoSignedWrap(
784             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW);
785       }
786   };
787 
788   if (SE.DT.dominates(IncV, InsertPos)) {
789     if (RecomputePoisonFlags)
790       FixupPoisonFlags(IncV);
791     return true;
792   }
793 
794   // InsertPos must itself dominate IncV so that IncV's new position satisfies
795   // its existing users.
796   if (isa<PHINode>(InsertPos) ||
797       !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
798     return false;
799 
800   if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
801     return false;
802 
803   // Check that the chain of IV operands leading back to Phi can be hoisted.
804   SmallVector<Instruction*, 4> IVIncs;
805   for(;;) {
806     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
807     if (!Oper)
808       return false;
809     // IncV is safe to hoist.
810     IVIncs.push_back(IncV);
811     IncV = Oper;
812     if (SE.DT.dominates(IncV, InsertPos))
813       break;
814   }
815   for (Instruction *I : llvm::reverse(IVIncs)) {
816     fixupInsertPoints(I);
817     I->moveBefore(InsertPos);
818     if (RecomputePoisonFlags)
819       FixupPoisonFlags(I);
820   }
821   return true;
822 }
823 
canReuseFlagsFromOriginalIVInc(PHINode * OrigPhi,PHINode * WidePhi,Instruction * OrigInc,Instruction * WideInc)824 bool SCEVExpander::canReuseFlagsFromOriginalIVInc(PHINode *OrigPhi,
825                                                   PHINode *WidePhi,
826                                                   Instruction *OrigInc,
827                                                   Instruction *WideInc) {
828   return match(OrigInc, m_c_BinOp(m_Specific(OrigPhi), m_Value())) &&
829          match(WideInc, m_c_BinOp(m_Specific(WidePhi), m_Value())) &&
830          OrigInc->getOpcode() == WideInc->getOpcode();
831 }
832 
833 /// Determine if this cyclic phi is in a form that would have been generated by
834 /// LSR. We don't care if the phi was actually expanded in this pass, as long
835 /// as it is in a low-cost form, for example, no implied multiplication. This
836 /// should match any patterns generated by getAddRecExprPHILiterally and
837 /// expandAddtoGEP.
isExpandedAddRecExprPHI(PHINode * PN,Instruction * IncV,const Loop * L)838 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
839                                            const Loop *L) {
840   for(Instruction *IVOper = IncV;
841       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
842                                 /*allowScale=*/false));) {
843     if (IVOper == PN)
844       return true;
845   }
846   return false;
847 }
848 
849 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
850 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
851 /// need to materialize IV increments elsewhere to handle difficult situations.
expandIVInc(PHINode * PN,Value * StepV,const Loop * L,bool useSubtract)852 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
853                                  bool useSubtract) {
854   Value *IncV;
855   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
856   if (PN->getType()->isPointerTy()) {
857     // TODO: Change name to IVName.iv.next.
858     IncV = Builder.CreatePtrAdd(PN, StepV, "scevgep");
859   } else {
860     IncV = useSubtract ?
861       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
862       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
863   }
864   return IncV;
865 }
866 
867 /// Check whether we can cheaply express the requested SCEV in terms of
868 /// the available PHI SCEV by truncation and/or inversion of the step.
canBeCheaplyTransformed(ScalarEvolution & SE,const SCEVAddRecExpr * Phi,const SCEVAddRecExpr * Requested,bool & InvertStep)869 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
870                                     const SCEVAddRecExpr *Phi,
871                                     const SCEVAddRecExpr *Requested,
872                                     bool &InvertStep) {
873   // We can't transform to match a pointer PHI.
874   Type *PhiTy = Phi->getType();
875   Type *RequestedTy = Requested->getType();
876   if (PhiTy->isPointerTy() || RequestedTy->isPointerTy())
877     return false;
878 
879   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
880     return false;
881 
882   // Try truncate it if necessary.
883   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
884   if (!Phi)
885     return false;
886 
887   // Check whether truncation will help.
888   if (Phi == Requested) {
889     InvertStep = false;
890     return true;
891   }
892 
893   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
894   if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) {
895     InvertStep = true;
896     return true;
897   }
898 
899   return false;
900 }
901 
IsIncrementNSW(ScalarEvolution & SE,const SCEVAddRecExpr * AR)902 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
903   if (!isa<IntegerType>(AR->getType()))
904     return false;
905 
906   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
907   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
908   const SCEV *Step = AR->getStepRecurrence(SE);
909   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
910                                             SE.getSignExtendExpr(AR, WideTy));
911   const SCEV *ExtendAfterOp =
912     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
913   return ExtendAfterOp == OpAfterExtend;
914 }
915 
IsIncrementNUW(ScalarEvolution & SE,const SCEVAddRecExpr * AR)916 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
917   if (!isa<IntegerType>(AR->getType()))
918     return false;
919 
920   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
921   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
922   const SCEV *Step = AR->getStepRecurrence(SE);
923   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
924                                             SE.getZeroExtendExpr(AR, WideTy));
925   const SCEV *ExtendAfterOp =
926     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
927   return ExtendAfterOp == OpAfterExtend;
928 }
929 
930 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
931 /// the base addrec, which is the addrec without any non-loop-dominating
932 /// values, and return the PHI.
933 PHINode *
getAddRecExprPHILiterally(const SCEVAddRecExpr * Normalized,const Loop * L,Type * & TruncTy,bool & InvertStep)934 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
935                                         const Loop *L, Type *&TruncTy,
936                                         bool &InvertStep) {
937   assert((!IVIncInsertLoop || IVIncInsertPos) &&
938          "Uninitialized insert position");
939 
940   // Reuse a previously-inserted PHI, if present.
941   BasicBlock *LatchBlock = L->getLoopLatch();
942   if (LatchBlock) {
943     PHINode *AddRecPhiMatch = nullptr;
944     Instruction *IncV = nullptr;
945     TruncTy = nullptr;
946     InvertStep = false;
947 
948     // Only try partially matching scevs that need truncation and/or
949     // step-inversion if we know this loop is outside the current loop.
950     bool TryNonMatchingSCEV =
951         IVIncInsertLoop &&
952         SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
953 
954     for (PHINode &PN : L->getHeader()->phis()) {
955       if (!SE.isSCEVable(PN.getType()))
956         continue;
957 
958       // We should not look for a incomplete PHI. Getting SCEV for a incomplete
959       // PHI has no meaning at all.
960       if (!PN.isComplete()) {
961         SCEV_DEBUG_WITH_TYPE(
962             DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n");
963         continue;
964       }
965 
966       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
967       if (!PhiSCEV)
968         continue;
969 
970       bool IsMatchingSCEV = PhiSCEV == Normalized;
971       // We only handle truncation and inversion of phi recurrences for the
972       // expanded expression if the expanded expression's loop dominates the
973       // loop we insert to. Check now, so we can bail out early.
974       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
975           continue;
976 
977       // TODO: this possibly can be reworked to avoid this cast at all.
978       Instruction *TempIncV =
979           dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
980       if (!TempIncV)
981         continue;
982 
983       // Check whether we can reuse this PHI node.
984       if (LSRMode) {
985         if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
986           continue;
987       } else {
988         if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
989           continue;
990       }
991 
992       // Stop if we have found an exact match SCEV.
993       if (IsMatchingSCEV) {
994         IncV = TempIncV;
995         TruncTy = nullptr;
996         InvertStep = false;
997         AddRecPhiMatch = &PN;
998         break;
999       }
1000 
1001       // Try whether the phi can be translated into the requested form
1002       // (truncated and/or offset by a constant).
1003       if ((!TruncTy || InvertStep) &&
1004           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
1005         // Record the phi node. But don't stop we might find an exact match
1006         // later.
1007         AddRecPhiMatch = &PN;
1008         IncV = TempIncV;
1009         TruncTy = Normalized->getType();
1010       }
1011     }
1012 
1013     if (AddRecPhiMatch) {
1014       // Ok, the add recurrence looks usable.
1015       // Remember this PHI, even in post-inc mode.
1016       InsertedValues.insert(AddRecPhiMatch);
1017       // Remember the increment.
1018       rememberInstruction(IncV);
1019       // Those values were not actually inserted but re-used.
1020       ReusedValues.insert(AddRecPhiMatch);
1021       ReusedValues.insert(IncV);
1022       return AddRecPhiMatch;
1023     }
1024   }
1025 
1026   // Save the original insertion point so we can restore it when we're done.
1027   SCEVInsertPointGuard Guard(Builder, this);
1028 
1029   // Another AddRec may need to be recursively expanded below. For example, if
1030   // this AddRec is quadratic, the StepV may itself be an AddRec in this
1031   // loop. Remove this loop from the PostIncLoops set before expanding such
1032   // AddRecs. Otherwise, we cannot find a valid position for the step
1033   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
1034   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1035   // so it's not worth implementing SmallPtrSet::swap.
1036   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1037   PostIncLoops.clear();
1038 
1039   // Expand code for the start value into the loop preheader.
1040   assert(L->getLoopPreheader() &&
1041          "Can't expand add recurrences without a loop preheader!");
1042   Value *StartV =
1043       expand(Normalized->getStart(), L->getLoopPreheader()->getTerminator());
1044 
1045   // StartV must have been be inserted into L's preheader to dominate the new
1046   // phi.
1047   assert(!isa<Instruction>(StartV) ||
1048          SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1049                                  L->getHeader()));
1050 
1051   // Expand code for the step value. Do this before creating the PHI so that PHI
1052   // reuse code doesn't see an incomplete PHI.
1053   const SCEV *Step = Normalized->getStepRecurrence(SE);
1054   Type *ExpandTy = Normalized->getType();
1055   // If the stride is negative, insert a sub instead of an add for the increment
1056   // (unless it's a constant, because subtracts of constants are canonicalized
1057   // to adds).
1058   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1059   if (useSubtract)
1060     Step = SE.getNegativeSCEV(Step);
1061   // Expand the step somewhere that dominates the loop header.
1062   Value *StepV = expand(Step, L->getHeader()->getFirstInsertionPt());
1063 
1064   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1065   // we actually do emit an addition.  It does not apply if we emit a
1066   // subtraction.
1067   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1068   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1069 
1070   // Create the PHI.
1071   BasicBlock *Header = L->getHeader();
1072   Builder.SetInsertPoint(Header, Header->begin());
1073   PHINode *PN =
1074       Builder.CreatePHI(ExpandTy, pred_size(Header), Twine(IVName) + ".iv");
1075 
1076   // Create the step instructions and populate the PHI.
1077   for (BasicBlock *Pred : predecessors(Header)) {
1078     // Add a start value.
1079     if (!L->contains(Pred)) {
1080       PN->addIncoming(StartV, Pred);
1081       continue;
1082     }
1083 
1084     // Create a step value and add it to the PHI.
1085     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1086     // instructions at IVIncInsertPos.
1087     Instruction *InsertPos = L == IVIncInsertLoop ?
1088       IVIncInsertPos : Pred->getTerminator();
1089     Builder.SetInsertPoint(InsertPos);
1090     Value *IncV = expandIVInc(PN, StepV, L, useSubtract);
1091 
1092     if (isa<OverflowingBinaryOperator>(IncV)) {
1093       if (IncrementIsNUW)
1094         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1095       if (IncrementIsNSW)
1096         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1097     }
1098     PN->addIncoming(IncV, Pred);
1099   }
1100 
1101   // After expanding subexpressions, restore the PostIncLoops set so the caller
1102   // can ensure that IVIncrement dominates the current uses.
1103   PostIncLoops = SavedPostIncLoops;
1104 
1105   // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most
1106   // effective when we are able to use an IV inserted here, so record it.
1107   InsertedValues.insert(PN);
1108   InsertedIVs.push_back(PN);
1109   return PN;
1110 }
1111 
expandAddRecExprLiterally(const SCEVAddRecExpr * S)1112 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1113   const Loop *L = S->getLoop();
1114 
1115   // Determine a normalized form of this expression, which is the expression
1116   // before any post-inc adjustment is made.
1117   const SCEVAddRecExpr *Normalized = S;
1118   if (PostIncLoops.count(L)) {
1119     PostIncLoopSet Loops;
1120     Loops.insert(L);
1121     Normalized = cast<SCEVAddRecExpr>(
1122         normalizeForPostIncUse(S, Loops, SE, /*CheckInvertible=*/false));
1123   }
1124 
1125   [[maybe_unused]] const SCEV *Start = Normalized->getStart();
1126   const SCEV *Step = Normalized->getStepRecurrence(SE);
1127   assert(SE.properlyDominates(Start, L->getHeader()) &&
1128          "Start does not properly dominate loop header");
1129   assert(SE.dominates(Step, L->getHeader()) && "Step not dominate loop header");
1130 
1131   // In some cases, we decide to reuse an existing phi node but need to truncate
1132   // it and/or invert the step.
1133   Type *TruncTy = nullptr;
1134   bool InvertStep = false;
1135   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, TruncTy, InvertStep);
1136 
1137   // Accommodate post-inc mode, if necessary.
1138   Value *Result;
1139   if (!PostIncLoops.count(L))
1140     Result = PN;
1141   else {
1142     // In PostInc mode, use the post-incremented value.
1143     BasicBlock *LatchBlock = L->getLoopLatch();
1144     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1145     Result = PN->getIncomingValueForBlock(LatchBlock);
1146 
1147     // We might be introducing a new use of the post-inc IV that is not poison
1148     // safe, in which case we should drop poison generating flags. Only keep
1149     // those flags for which SCEV has proven that they always hold.
1150     if (isa<OverflowingBinaryOperator>(Result)) {
1151       auto *I = cast<Instruction>(Result);
1152       if (!S->hasNoUnsignedWrap())
1153         I->setHasNoUnsignedWrap(false);
1154       if (!S->hasNoSignedWrap())
1155         I->setHasNoSignedWrap(false);
1156     }
1157 
1158     // For an expansion to use the postinc form, the client must call
1159     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1160     // or dominated by IVIncInsertPos.
1161     if (isa<Instruction>(Result) &&
1162         !SE.DT.dominates(cast<Instruction>(Result),
1163                          &*Builder.GetInsertPoint())) {
1164       // The induction variable's postinc expansion does not dominate this use.
1165       // IVUsers tries to prevent this case, so it is rare. However, it can
1166       // happen when an IVUser outside the loop is not dominated by the latch
1167       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1168       // all cases. Consider a phi outside whose operand is replaced during
1169       // expansion with the value of the postinc user. Without fundamentally
1170       // changing the way postinc users are tracked, the only remedy is
1171       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1172       // but hopefully expandCodeFor handles that.
1173       bool useSubtract =
1174           !S->getType()->isPointerTy() && Step->isNonConstantNegative();
1175       if (useSubtract)
1176         Step = SE.getNegativeSCEV(Step);
1177       Value *StepV;
1178       {
1179         // Expand the step somewhere that dominates the loop header.
1180         SCEVInsertPointGuard Guard(Builder, this);
1181         StepV = expand(Step, L->getHeader()->getFirstInsertionPt());
1182       }
1183       Result = expandIVInc(PN, StepV, L, useSubtract);
1184     }
1185   }
1186 
1187   // We have decided to reuse an induction variable of a dominating loop. Apply
1188   // truncation and/or inversion of the step.
1189   if (TruncTy) {
1190     // Truncate the result.
1191     if (TruncTy != Result->getType())
1192       Result = Builder.CreateTrunc(Result, TruncTy);
1193 
1194     // Invert the result.
1195     if (InvertStep)
1196       Result = Builder.CreateSub(expand(Normalized->getStart()), Result);
1197   }
1198 
1199   return Result;
1200 }
1201 
visitAddRecExpr(const SCEVAddRecExpr * S)1202 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1203   // In canonical mode we compute the addrec as an expression of a canonical IV
1204   // using evaluateAtIteration and expand the resulting SCEV expression. This
1205   // way we avoid introducing new IVs to carry on the computation of the addrec
1206   // throughout the loop.
1207   //
1208   // For nested addrecs evaluateAtIteration might need a canonical IV of a
1209   // type wider than the addrec itself. Emitting a canonical IV of the
1210   // proper type might produce non-legal types, for example expanding an i64
1211   // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
1212   // back to non-canonical mode for nested addrecs.
1213   if (!CanonicalMode || (S->getNumOperands() > 2))
1214     return expandAddRecExprLiterally(S);
1215 
1216   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1217   const Loop *L = S->getLoop();
1218 
1219   // First check for an existing canonical IV in a suitable type.
1220   PHINode *CanonicalIV = nullptr;
1221   if (PHINode *PN = L->getCanonicalInductionVariable())
1222     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1223       CanonicalIV = PN;
1224 
1225   // Rewrite an AddRec in terms of the canonical induction variable, if
1226   // its type is more narrow.
1227   if (CanonicalIV &&
1228       SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) &&
1229       !S->getType()->isPointerTy()) {
1230     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1231     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1232       NewOps[i] = SE.getAnyExtendExpr(S->getOperand(i), CanonicalIV->getType());
1233     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1234                                        S->getNoWrapFlags(SCEV::FlagNW)));
1235     BasicBlock::iterator NewInsertPt =
1236         findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint());
1237     V = expand(SE.getTruncateExpr(SE.getUnknown(V), Ty), NewInsertPt);
1238     return V;
1239   }
1240 
1241   // {X,+,F} --> X + {0,+,F}
1242   if (!S->getStart()->isZero()) {
1243     if (isa<PointerType>(S->getType())) {
1244       Value *StartV = expand(SE.getPointerBase(S));
1245       return expandAddToGEP(SE.removePointerBase(S), StartV);
1246     }
1247 
1248     SmallVector<const SCEV *, 4> NewOps(S->operands());
1249     NewOps[0] = SE.getConstant(Ty, 0);
1250     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1251                                         S->getNoWrapFlags(SCEV::FlagNW));
1252 
1253     // Just do a normal add. Pre-expand the operands to suppress folding.
1254     //
1255     // The LHS and RHS values are factored out of the expand call to make the
1256     // output independent of the argument evaluation order.
1257     const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1258     const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1259     return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1260   }
1261 
1262   // If we don't yet have a canonical IV, create one.
1263   if (!CanonicalIV) {
1264     // Create and insert the PHI node for the induction variable in the
1265     // specified loop.
1266     BasicBlock *Header = L->getHeader();
1267     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1268     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar");
1269     CanonicalIV->insertBefore(Header->begin());
1270     rememberInstruction(CanonicalIV);
1271 
1272     SmallSet<BasicBlock *, 4> PredSeen;
1273     Constant *One = ConstantInt::get(Ty, 1);
1274     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1275       BasicBlock *HP = *HPI;
1276       if (!PredSeen.insert(HP).second) {
1277         // There must be an incoming value for each predecessor, even the
1278         // duplicates!
1279         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1280         continue;
1281       }
1282 
1283       if (L->contains(HP)) {
1284         // Insert a unit add instruction right before the terminator
1285         // corresponding to the back-edge.
1286         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1287                                                      "indvar.next",
1288                                                      HP->getTerminator()->getIterator());
1289         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1290         rememberInstruction(Add);
1291         CanonicalIV->addIncoming(Add, HP);
1292       } else {
1293         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1294       }
1295     }
1296   }
1297 
1298   // {0,+,1} --> Insert a canonical induction variable into the loop!
1299   if (S->isAffine() && S->getOperand(1)->isOne()) {
1300     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1301            "IVs with types different from the canonical IV should "
1302            "already have been handled!");
1303     return CanonicalIV;
1304   }
1305 
1306   // {0,+,F} --> {0,+,1} * F
1307 
1308   // If this is a simple linear addrec, emit it now as a special case.
1309   if (S->isAffine())    // {0,+,F} --> i*F
1310     return
1311       expand(SE.getTruncateOrNoop(
1312         SE.getMulExpr(SE.getUnknown(CanonicalIV),
1313                       SE.getNoopOrAnyExtend(S->getOperand(1),
1314                                             CanonicalIV->getType())),
1315         Ty));
1316 
1317   // If this is a chain of recurrences, turn it into a closed form, using the
1318   // folders, then expandCodeFor the closed form.  This allows the folders to
1319   // simplify the expression without having to build a bunch of special code
1320   // into this folder.
1321   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1322 
1323   // Promote S up to the canonical IV type, if the cast is foldable.
1324   const SCEV *NewS = S;
1325   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1326   if (isa<SCEVAddRecExpr>(Ext))
1327     NewS = Ext;
1328 
1329   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1330 
1331   // Truncate the result down to the original type, if needed.
1332   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1333   return expand(T);
1334 }
1335 
visitPtrToIntExpr(const SCEVPtrToIntExpr * S)1336 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) {
1337   Value *V = expand(S->getOperand());
1338   return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt,
1339                            GetOptimalInsertionPointForCastOf(V));
1340 }
1341 
visitTruncateExpr(const SCEVTruncateExpr * S)1342 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1343   Value *V = expand(S->getOperand());
1344   return Builder.CreateTrunc(V, S->getType());
1345 }
1346 
visitZeroExtendExpr(const SCEVZeroExtendExpr * S)1347 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1348   Value *V = expand(S->getOperand());
1349   return Builder.CreateZExt(V, S->getType(), "",
1350                             SE.isKnownNonNegative(S->getOperand()));
1351 }
1352 
visitSignExtendExpr(const SCEVSignExtendExpr * S)1353 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1354   Value *V = expand(S->getOperand());
1355   return Builder.CreateSExt(V, S->getType());
1356 }
1357 
expandMinMaxExpr(const SCEVNAryExpr * S,Intrinsic::ID IntrinID,Twine Name,bool IsSequential)1358 Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S,
1359                                       Intrinsic::ID IntrinID, Twine Name,
1360                                       bool IsSequential) {
1361   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1362   Type *Ty = LHS->getType();
1363   if (IsSequential)
1364     LHS = Builder.CreateFreeze(LHS);
1365   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1366     Value *RHS = expand(S->getOperand(i));
1367     if (IsSequential && i != 0)
1368       RHS = Builder.CreateFreeze(RHS);
1369     Value *Sel;
1370     if (Ty->isIntegerTy())
1371       Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS},
1372                                     /*FMFSource=*/nullptr, Name);
1373     else {
1374       Value *ICmp =
1375           Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS);
1376       Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name);
1377     }
1378     LHS = Sel;
1379   }
1380   return LHS;
1381 }
1382 
visitSMaxExpr(const SCEVSMaxExpr * S)1383 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1384   return expandMinMaxExpr(S, Intrinsic::smax, "smax");
1385 }
1386 
visitUMaxExpr(const SCEVUMaxExpr * S)1387 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1388   return expandMinMaxExpr(S, Intrinsic::umax, "umax");
1389 }
1390 
visitSMinExpr(const SCEVSMinExpr * S)1391 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
1392   return expandMinMaxExpr(S, Intrinsic::smin, "smin");
1393 }
1394 
visitUMinExpr(const SCEVUMinExpr * S)1395 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
1396   return expandMinMaxExpr(S, Intrinsic::umin, "umin");
1397 }
1398 
visitSequentialUMinExpr(const SCEVSequentialUMinExpr * S)1399 Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) {
1400   return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true);
1401 }
1402 
visitVScale(const SCEVVScale * S)1403 Value *SCEVExpander::visitVScale(const SCEVVScale *S) {
1404   return Builder.CreateVScale(ConstantInt::get(S->getType(), 1));
1405 }
1406 
expandCodeFor(const SCEV * SH,Type * Ty,BasicBlock::iterator IP)1407 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
1408                                    BasicBlock::iterator IP) {
1409   setInsertPoint(IP);
1410   Value *V = expandCodeFor(SH, Ty);
1411   return V;
1412 }
1413 
expandCodeFor(const SCEV * SH,Type * Ty)1414 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
1415   // Expand the code for this SCEV.
1416   Value *V = expand(SH);
1417 
1418   if (Ty) {
1419     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1420            "non-trivial casts should be done with the SCEVs directly!");
1421     V = InsertNoopCastOfTo(V, Ty);
1422   }
1423   return V;
1424 }
1425 
FindValueInExprValueMap(const SCEV * S,const Instruction * InsertPt,SmallVectorImpl<Instruction * > & DropPoisonGeneratingInsts)1426 Value *SCEVExpander::FindValueInExprValueMap(
1427     const SCEV *S, const Instruction *InsertPt,
1428     SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) {
1429   // If the expansion is not in CanonicalMode, and the SCEV contains any
1430   // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1431   if (!CanonicalMode && SE.containsAddRecurrence(S))
1432     return nullptr;
1433 
1434   // If S is a constant, it may be worse to reuse an existing Value.
1435   if (isa<SCEVConstant>(S))
1436     return nullptr;
1437 
1438   for (Value *V : SE.getSCEVValues(S)) {
1439     Instruction *EntInst = dyn_cast<Instruction>(V);
1440     if (!EntInst)
1441       continue;
1442 
1443     // Choose a Value from the set which dominates the InsertPt.
1444     // InsertPt should be inside the Value's parent loop so as not to break
1445     // the LCSSA form.
1446     assert(EntInst->getFunction() == InsertPt->getFunction());
1447     if (S->getType() != V->getType() || !SE.DT.dominates(EntInst, InsertPt) ||
1448         !(SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1449           SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
1450       continue;
1451 
1452     // Make sure reusing the instruction is poison-safe.
1453     if (SE.canReuseInstruction(S, EntInst, DropPoisonGeneratingInsts))
1454       return V;
1455     DropPoisonGeneratingInsts.clear();
1456   }
1457   return nullptr;
1458 }
1459 
1460 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1461 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1462 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1463 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1464 // the expansion will try to reuse Value from ExprValueMap, and only when it
1465 // fails, expand the SCEV literally.
expand(const SCEV * S)1466 Value *SCEVExpander::expand(const SCEV *S) {
1467   // Compute an insertion point for this SCEV object. Hoist the instructions
1468   // as far out in the loop nest as possible.
1469   BasicBlock::iterator InsertPt = Builder.GetInsertPoint();
1470 
1471   // We can move insertion point only if there is no div or rem operations
1472   // otherwise we are risky to move it over the check for zero denominator.
1473   auto SafeToHoist = [](const SCEV *S) {
1474     return !SCEVExprContains(S, [](const SCEV *S) {
1475               if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
1476                 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
1477                   // Division by non-zero constants can be hoisted.
1478                   return SC->getValue()->isZero();
1479                 // All other divisions should not be moved as they may be
1480                 // divisions by zero and should be kept within the
1481                 // conditions of the surrounding loops that guard their
1482                 // execution (see PR35406).
1483                 return true;
1484               }
1485               return false;
1486             });
1487   };
1488   if (SafeToHoist(S)) {
1489     for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1490          L = L->getParentLoop()) {
1491       if (SE.isLoopInvariant(S, L)) {
1492         if (!L) break;
1493         if (BasicBlock *Preheader = L->getLoopPreheader()) {
1494           InsertPt = Preheader->getTerminator()->getIterator();
1495         } else {
1496           // LSR sets the insertion point for AddRec start/step values to the
1497           // block start to simplify value reuse, even though it's an invalid
1498           // position. SCEVExpander must correct for this in all cases.
1499           InsertPt = L->getHeader()->getFirstInsertionPt();
1500         }
1501       } else {
1502         // If the SCEV is computable at this level, insert it into the header
1503         // after the PHIs (and after any other instructions that we've inserted
1504         // there) so that it is guaranteed to dominate any user inside the loop.
1505         if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1506           InsertPt = L->getHeader()->getFirstInsertionPt();
1507 
1508         while (InsertPt != Builder.GetInsertPoint() &&
1509                (isInsertedInstruction(&*InsertPt) ||
1510                 isa<DbgInfoIntrinsic>(&*InsertPt))) {
1511           InsertPt = std::next(InsertPt);
1512         }
1513         break;
1514       }
1515     }
1516   }
1517 
1518   // Check to see if we already expanded this here.
1519   auto I = InsertedExpressions.find(std::make_pair(S, &*InsertPt));
1520   if (I != InsertedExpressions.end())
1521     return I->second;
1522 
1523   SCEVInsertPointGuard Guard(Builder, this);
1524   Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
1525 
1526   // Expand the expression into instructions.
1527   SmallVector<Instruction *> DropPoisonGeneratingInsts;
1528   Value *V = FindValueInExprValueMap(S, &*InsertPt, DropPoisonGeneratingInsts);
1529   if (!V) {
1530     V = visit(S);
1531     V = fixupLCSSAFormFor(V);
1532   } else {
1533     for (Instruction *I : DropPoisonGeneratingInsts) {
1534       rememberFlags(I);
1535       I->dropPoisonGeneratingAnnotations();
1536       // See if we can re-infer from first principles any of the flags we just
1537       // dropped.
1538       if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I))
1539         if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) {
1540           auto *BO = cast<BinaryOperator>(I);
1541           BO->setHasNoUnsignedWrap(
1542             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW);
1543           BO->setHasNoSignedWrap(
1544             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW);
1545         }
1546       if (auto *NNI = dyn_cast<PossiblyNonNegInst>(I)) {
1547         auto *Src = NNI->getOperand(0);
1548         if (isImpliedByDomCondition(ICmpInst::ICMP_SGE, Src,
1549                                     Constant::getNullValue(Src->getType()), I,
1550                                     DL).value_or(false))
1551           NNI->setNonNeg(true);
1552       }
1553     }
1554   }
1555   // Remember the expanded value for this SCEV at this location.
1556   //
1557   // This is independent of PostIncLoops. The mapped value simply materializes
1558   // the expression at this insertion point. If the mapped value happened to be
1559   // a postinc expansion, it could be reused by a non-postinc user, but only if
1560   // its insertion point was already at the head of the loop.
1561   InsertedExpressions[std::make_pair(S, &*InsertPt)] = V;
1562   return V;
1563 }
1564 
rememberInstruction(Value * I)1565 void SCEVExpander::rememberInstruction(Value *I) {
1566   auto DoInsert = [this](Value *V) {
1567     if (!PostIncLoops.empty())
1568       InsertedPostIncValues.insert(V);
1569     else
1570       InsertedValues.insert(V);
1571   };
1572   DoInsert(I);
1573 }
1574 
rememberFlags(Instruction * I)1575 void SCEVExpander::rememberFlags(Instruction *I) {
1576   // If we already have flags for the instruction, keep the existing ones.
1577   OrigFlags.try_emplace(I, PoisonFlags(I));
1578 }
1579 
replaceCongruentIVInc(PHINode * & Phi,PHINode * & OrigPhi,Loop * L,const DominatorTree * DT,SmallVectorImpl<WeakTrackingVH> & DeadInsts)1580 void SCEVExpander::replaceCongruentIVInc(
1581     PHINode *&Phi, PHINode *&OrigPhi, Loop *L, const DominatorTree *DT,
1582     SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1583   BasicBlock *LatchBlock = L->getLoopLatch();
1584   if (!LatchBlock)
1585     return;
1586 
1587   Instruction *OrigInc =
1588       dyn_cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1589   Instruction *IsomorphicInc =
1590       dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1591   if (!OrigInc || !IsomorphicInc)
1592     return;
1593 
1594   // If this phi has the same width but is more canonical, replace the
1595   // original with it. As part of the "more canonical" determination,
1596   // respect a prior decision to use an IV chain.
1597   if (OrigPhi->getType() == Phi->getType() &&
1598       !(ChainedPhis.count(Phi) ||
1599         isExpandedAddRecExprPHI(OrigPhi, OrigInc, L)) &&
1600       (ChainedPhis.count(Phi) ||
1601        isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
1602     std::swap(OrigPhi, Phi);
1603     std::swap(OrigInc, IsomorphicInc);
1604   }
1605 
1606   // Replacing the congruent phi is sufficient because acyclic
1607   // redundancy elimination, CSE/GVN, should handle the
1608   // rest. However, once SCEV proves that a phi is congruent,
1609   // it's often the head of an IV user cycle that is isomorphic
1610   // with the original phi. It's worth eagerly cleaning up the
1611   // common case of a single IV increment so that DeleteDeadPHIs
1612   // can remove cycles that had postinc uses.
1613   // Because we may potentially introduce a new use of OrigIV that didn't
1614   // exist before at this point, its poison flags need readjustment.
1615   const SCEV *TruncExpr =
1616       SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
1617   if (OrigInc == IsomorphicInc || TruncExpr != SE.getSCEV(IsomorphicInc) ||
1618       !SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc))
1619     return;
1620 
1621   bool BothHaveNUW = false;
1622   bool BothHaveNSW = false;
1623   auto *OBOIncV = dyn_cast<OverflowingBinaryOperator>(OrigInc);
1624   auto *OBOIsomorphic = dyn_cast<OverflowingBinaryOperator>(IsomorphicInc);
1625   if (OBOIncV && OBOIsomorphic) {
1626     BothHaveNUW =
1627         OBOIncV->hasNoUnsignedWrap() && OBOIsomorphic->hasNoUnsignedWrap();
1628     BothHaveNSW =
1629         OBOIncV->hasNoSignedWrap() && OBOIsomorphic->hasNoSignedWrap();
1630   }
1631 
1632   if (!hoistIVInc(OrigInc, IsomorphicInc,
1633                   /*RecomputePoisonFlags*/ true))
1634     return;
1635 
1636   // We are replacing with a wider increment. If both OrigInc and IsomorphicInc
1637   // are NUW/NSW, then we can preserve them on the wider increment; the narrower
1638   // IsomorphicInc would wrap before the wider OrigInc, so the replacement won't
1639   // make IsomorphicInc's uses more poisonous.
1640   assert(OrigInc->getType()->getScalarSizeInBits() >=
1641              IsomorphicInc->getType()->getScalarSizeInBits() &&
1642          "Should only replace an increment with a wider one.");
1643   if (BothHaveNUW || BothHaveNSW) {
1644     OrigInc->setHasNoUnsignedWrap(OBOIncV->hasNoUnsignedWrap() || BothHaveNUW);
1645     OrigInc->setHasNoSignedWrap(OBOIncV->hasNoSignedWrap() || BothHaveNSW);
1646   }
1647 
1648   SCEV_DEBUG_WITH_TYPE(DebugType,
1649                        dbgs() << "INDVARS: Eliminated congruent iv.inc: "
1650                               << *IsomorphicInc << '\n');
1651   Value *NewInc = OrigInc;
1652   if (OrigInc->getType() != IsomorphicInc->getType()) {
1653     BasicBlock::iterator IP;
1654     if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
1655       IP = PN->getParent()->getFirstInsertionPt();
1656     else
1657       IP = OrigInc->getNextNonDebugInstruction()->getIterator();
1658 
1659     IRBuilder<> Builder(IP->getParent(), IP);
1660     Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
1661     NewInc =
1662         Builder.CreateTruncOrBitCast(OrigInc, IsomorphicInc->getType(), IVName);
1663   }
1664   IsomorphicInc->replaceAllUsesWith(NewInc);
1665   DeadInsts.emplace_back(IsomorphicInc);
1666 }
1667 
1668 /// replaceCongruentIVs - Check for congruent phis in this loop header and
1669 /// replace them with their most canonical representative. Return the number of
1670 /// phis eliminated.
1671 ///
1672 /// This does not depend on any SCEVExpander state but should be used in
1673 /// the same context that SCEVExpander is used.
1674 unsigned
replaceCongruentIVs(Loop * L,const DominatorTree * DT,SmallVectorImpl<WeakTrackingVH> & DeadInsts,const TargetTransformInfo * TTI)1675 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1676                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts,
1677                                   const TargetTransformInfo *TTI) {
1678   // Find integer phis in order of increasing width.
1679   SmallVector<PHINode*, 8> Phis;
1680   for (PHINode &PN : L->getHeader()->phis())
1681     Phis.push_back(&PN);
1682 
1683   if (TTI)
1684     // Use stable_sort to preserve order of equivalent PHIs, so the order
1685     // of the sorted Phis is the same from run to run on the same loop.
1686     llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) {
1687       // Put pointers at the back and make sure pointer < pointer = false.
1688       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
1689         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
1690       return RHS->getType()->getPrimitiveSizeInBits().getFixedValue() <
1691              LHS->getType()->getPrimitiveSizeInBits().getFixedValue();
1692     });
1693 
1694   unsigned NumElim = 0;
1695   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1696   // Process phis from wide to narrow. Map wide phis to their truncation
1697   // so narrow phis can reuse them.
1698   for (PHINode *Phi : Phis) {
1699     auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
1700       if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
1701         return V;
1702       if (!SE.isSCEVable(PN->getType()))
1703         return nullptr;
1704       auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
1705       if (!Const)
1706         return nullptr;
1707       return Const->getValue();
1708     };
1709 
1710     // Fold constant phis. They may be congruent to other constant phis and
1711     // would confuse the logic below that expects proper IVs.
1712     if (Value *V = SimplifyPHINode(Phi)) {
1713       if (V->getType() != Phi->getType())
1714         continue;
1715       SE.forgetValue(Phi);
1716       Phi->replaceAllUsesWith(V);
1717       DeadInsts.emplace_back(Phi);
1718       ++NumElim;
1719       SCEV_DEBUG_WITH_TYPE(DebugType,
1720                            dbgs() << "INDVARS: Eliminated constant iv: " << *Phi
1721                                   << '\n');
1722       continue;
1723     }
1724 
1725     if (!SE.isSCEVable(Phi->getType()))
1726       continue;
1727 
1728     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1729     if (!OrigPhiRef) {
1730       OrigPhiRef = Phi;
1731       if (Phi->getType()->isIntegerTy() && TTI &&
1732           TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
1733         // Make sure we only rewrite using simple induction variables;
1734         // otherwise, we can make the trip count of a loop unanalyzable
1735         // to SCEV.
1736         const SCEV *PhiExpr = SE.getSCEV(Phi);
1737         if (isa<SCEVAddRecExpr>(PhiExpr)) {
1738           // This phi can be freely truncated to the narrowest phi type. Map the
1739           // truncated expression to it so it will be reused for narrow types.
1740           const SCEV *TruncExpr =
1741               SE.getTruncateExpr(PhiExpr, Phis.back()->getType());
1742           ExprToIVMap[TruncExpr] = Phi;
1743         }
1744       }
1745       continue;
1746     }
1747 
1748     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
1749     // sense.
1750     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
1751       continue;
1752 
1753     replaceCongruentIVInc(Phi, OrigPhiRef, L, DT, DeadInsts);
1754     SCEV_DEBUG_WITH_TYPE(DebugType,
1755                          dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi
1756                                 << '\n');
1757     SCEV_DEBUG_WITH_TYPE(
1758         DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n');
1759     ++NumElim;
1760     Value *NewIV = OrigPhiRef;
1761     if (OrigPhiRef->getType() != Phi->getType()) {
1762       IRBuilder<> Builder(L->getHeader(),
1763                           L->getHeader()->getFirstInsertionPt());
1764       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
1765       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
1766     }
1767     Phi->replaceAllUsesWith(NewIV);
1768     DeadInsts.emplace_back(Phi);
1769   }
1770   return NumElim;
1771 }
1772 
hasRelatedExistingExpansion(const SCEV * S,const Instruction * At,Loop * L)1773 bool SCEVExpander::hasRelatedExistingExpansion(const SCEV *S,
1774                                                const Instruction *At,
1775                                                Loop *L) {
1776   using namespace llvm::PatternMatch;
1777 
1778   SmallVector<BasicBlock *, 4> ExitingBlocks;
1779   L->getExitingBlocks(ExitingBlocks);
1780 
1781   // Look for suitable value in simple conditions at the loop exits.
1782   for (BasicBlock *BB : ExitingBlocks) {
1783     ICmpInst::Predicate Pred;
1784     Instruction *LHS, *RHS;
1785 
1786     if (!match(BB->getTerminator(),
1787                m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
1788                     m_BasicBlock(), m_BasicBlock())))
1789       continue;
1790 
1791     if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
1792       return true;
1793 
1794     if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
1795       return true;
1796   }
1797 
1798   // Use expand's logic which is used for reusing a previous Value in
1799   // ExprValueMap.  Note that we don't currently model the cost of
1800   // needing to drop poison generating flags on the instruction if we
1801   // want to reuse it.  We effectively assume that has zero cost.
1802   SmallVector<Instruction *> DropPoisonGeneratingInsts;
1803   return FindValueInExprValueMap(S, At, DropPoisonGeneratingInsts) != nullptr;
1804 }
1805 
costAndCollectOperands(const SCEVOperand & WorkItem,const TargetTransformInfo & TTI,TargetTransformInfo::TargetCostKind CostKind,SmallVectorImpl<SCEVOperand> & Worklist)1806 template<typename T> static InstructionCost costAndCollectOperands(
1807   const SCEVOperand &WorkItem, const TargetTransformInfo &TTI,
1808   TargetTransformInfo::TargetCostKind CostKind,
1809   SmallVectorImpl<SCEVOperand> &Worklist) {
1810 
1811   const T *S = cast<T>(WorkItem.S);
1812   InstructionCost Cost = 0;
1813   // Object to help map SCEV operands to expanded IR instructions.
1814   struct OperationIndices {
1815     OperationIndices(unsigned Opc, size_t min, size_t max) :
1816       Opcode(Opc), MinIdx(min), MaxIdx(max) { }
1817     unsigned Opcode;
1818     size_t MinIdx;
1819     size_t MaxIdx;
1820   };
1821 
1822   // Collect the operations of all the instructions that will be needed to
1823   // expand the SCEVExpr. This is so that when we come to cost the operands,
1824   // we know what the generated user(s) will be.
1825   SmallVector<OperationIndices, 2> Operations;
1826 
1827   auto CastCost = [&](unsigned Opcode) -> InstructionCost {
1828     Operations.emplace_back(Opcode, 0, 0);
1829     return TTI.getCastInstrCost(Opcode, S->getType(),
1830                                 S->getOperand(0)->getType(),
1831                                 TTI::CastContextHint::None, CostKind);
1832   };
1833 
1834   auto ArithCost = [&](unsigned Opcode, unsigned NumRequired,
1835                        unsigned MinIdx = 0,
1836                        unsigned MaxIdx = 1) -> InstructionCost {
1837     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
1838     return NumRequired *
1839       TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind);
1840   };
1841 
1842   auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx,
1843                         unsigned MaxIdx) -> InstructionCost {
1844     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
1845     Type *OpType = S->getType();
1846     return NumRequired * TTI.getCmpSelInstrCost(
1847                              Opcode, OpType, CmpInst::makeCmpResultType(OpType),
1848                              CmpInst::BAD_ICMP_PREDICATE, CostKind);
1849   };
1850 
1851   switch (S->getSCEVType()) {
1852   case scCouldNotCompute:
1853     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
1854   case scUnknown:
1855   case scConstant:
1856   case scVScale:
1857     return 0;
1858   case scPtrToInt:
1859     Cost = CastCost(Instruction::PtrToInt);
1860     break;
1861   case scTruncate:
1862     Cost = CastCost(Instruction::Trunc);
1863     break;
1864   case scZeroExtend:
1865     Cost = CastCost(Instruction::ZExt);
1866     break;
1867   case scSignExtend:
1868     Cost = CastCost(Instruction::SExt);
1869     break;
1870   case scUDivExpr: {
1871     unsigned Opcode = Instruction::UDiv;
1872     if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
1873       if (SC->getAPInt().isPowerOf2())
1874         Opcode = Instruction::LShr;
1875     Cost = ArithCost(Opcode, 1);
1876     break;
1877   }
1878   case scAddExpr:
1879     Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1);
1880     break;
1881   case scMulExpr:
1882     // TODO: this is a very pessimistic cost modelling for Mul,
1883     // because of Bin Pow algorithm actually used by the expander,
1884     // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN().
1885     Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1);
1886     break;
1887   case scSMaxExpr:
1888   case scUMaxExpr:
1889   case scSMinExpr:
1890   case scUMinExpr:
1891   case scSequentialUMinExpr: {
1892     // FIXME: should this ask the cost for Intrinsic's?
1893     // The reduction tree.
1894     Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1);
1895     Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2);
1896     switch (S->getSCEVType()) {
1897     case scSequentialUMinExpr: {
1898       // The safety net against poison.
1899       // FIXME: this is broken.
1900       Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0);
1901       Cost += ArithCost(Instruction::Or,
1902                         S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0);
1903       Cost += CmpSelCost(Instruction::Select, 1, 0, 1);
1904       break;
1905     }
1906     default:
1907       assert(!isa<SCEVSequentialMinMaxExpr>(S) &&
1908              "Unhandled SCEV expression type?");
1909       break;
1910     }
1911     break;
1912   }
1913   case scAddRecExpr: {
1914     // In this polynominal, we may have some zero operands, and we shouldn't
1915     // really charge for those. So how many non-zero coefficients are there?
1916     int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) {
1917                                     return !Op->isZero();
1918                                   });
1919 
1920     assert(NumTerms >= 1 && "Polynominal should have at least one term.");
1921     assert(!(*std::prev(S->operands().end()))->isZero() &&
1922            "Last operand should not be zero");
1923 
1924     // Ignoring constant term (operand 0), how many of the coefficients are u> 1?
1925     int NumNonZeroDegreeNonOneTerms =
1926       llvm::count_if(S->operands(), [](const SCEV *Op) {
1927                       auto *SConst = dyn_cast<SCEVConstant>(Op);
1928                       return !SConst || SConst->getAPInt().ugt(1);
1929                     });
1930 
1931     // Much like with normal add expr, the polynominal will require
1932     // one less addition than the number of it's terms.
1933     InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1,
1934                                         /*MinIdx*/ 1, /*MaxIdx*/ 1);
1935     // Here, *each* one of those will require a multiplication.
1936     InstructionCost MulCost =
1937         ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms);
1938     Cost = AddCost + MulCost;
1939 
1940     // What is the degree of this polynominal?
1941     int PolyDegree = S->getNumOperands() - 1;
1942     assert(PolyDegree >= 1 && "Should be at least affine.");
1943 
1944     // The final term will be:
1945     //   Op_{PolyDegree} * x ^ {PolyDegree}
1946     // Where  x ^ {PolyDegree}  will again require PolyDegree-1 mul operations.
1947     // Note that  x ^ {PolyDegree} = x * x ^ {PolyDegree-1}  so charging for
1948     // x ^ {PolyDegree}  will give us  x ^ {2} .. x ^ {PolyDegree-1}  for free.
1949     // FIXME: this is conservatively correct, but might be overly pessimistic.
1950     Cost += MulCost * (PolyDegree - 1);
1951     break;
1952   }
1953   }
1954 
1955   for (auto &CostOp : Operations) {
1956     for (auto SCEVOp : enumerate(S->operands())) {
1957       // Clamp the index to account for multiple IR operations being chained.
1958       size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx);
1959       size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx);
1960       Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value());
1961     }
1962   }
1963   return Cost;
1964 }
1965 
isHighCostExpansionHelper(const SCEVOperand & WorkItem,Loop * L,const Instruction & At,InstructionCost & Cost,unsigned Budget,const TargetTransformInfo & TTI,SmallPtrSetImpl<const SCEV * > & Processed,SmallVectorImpl<SCEVOperand> & Worklist)1966 bool SCEVExpander::isHighCostExpansionHelper(
1967     const SCEVOperand &WorkItem, Loop *L, const Instruction &At,
1968     InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI,
1969     SmallPtrSetImpl<const SCEV *> &Processed,
1970     SmallVectorImpl<SCEVOperand> &Worklist) {
1971   if (Cost > Budget)
1972     return true; // Already run out of budget, give up.
1973 
1974   const SCEV *S = WorkItem.S;
1975   // Was the cost of expansion of this expression already accounted for?
1976   if (!isa<SCEVConstant>(S) && !Processed.insert(S).second)
1977     return false; // We have already accounted for this expression.
1978 
1979   // If we can find an existing value for this scev available at the point "At"
1980   // then consider the expression cheap.
1981   if (hasRelatedExistingExpansion(S, &At, L))
1982     return false; // Consider the expression to be free.
1983 
1984   TargetTransformInfo::TargetCostKind CostKind =
1985       L->getHeader()->getParent()->hasMinSize()
1986           ? TargetTransformInfo::TCK_CodeSize
1987           : TargetTransformInfo::TCK_RecipThroughput;
1988 
1989   switch (S->getSCEVType()) {
1990   case scCouldNotCompute:
1991     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
1992   case scUnknown:
1993   case scVScale:
1994     // Assume to be zero-cost.
1995     return false;
1996   case scConstant: {
1997     // Only evalulate the costs of constants when optimizing for size.
1998     if (CostKind != TargetTransformInfo::TCK_CodeSize)
1999       return false;
2000     const APInt &Imm = cast<SCEVConstant>(S)->getAPInt();
2001     Type *Ty = S->getType();
2002     Cost += TTI.getIntImmCostInst(
2003         WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind);
2004     return Cost > Budget;
2005   }
2006   case scTruncate:
2007   case scPtrToInt:
2008   case scZeroExtend:
2009   case scSignExtend: {
2010     Cost +=
2011         costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist);
2012     return false; // Will answer upon next entry into this function.
2013   }
2014   case scUDivExpr: {
2015     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
2016     // HowManyLessThans produced to compute a precise expression, rather than a
2017     // UDiv from the user's code. If we can't find a UDiv in the code with some
2018     // simple searching, we need to account for it's cost.
2019 
2020     // At the beginning of this function we already tried to find existing
2021     // value for plain 'S'. Now try to lookup 'S + 1' since it is common
2022     // pattern involving division. This is just a simple search heuristic.
2023     if (hasRelatedExistingExpansion(
2024             SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L))
2025       return false; // Consider it to be free.
2026 
2027     Cost +=
2028         costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist);
2029     return false; // Will answer upon next entry into this function.
2030   }
2031   case scAddExpr:
2032   case scMulExpr:
2033   case scUMaxExpr:
2034   case scSMaxExpr:
2035   case scUMinExpr:
2036   case scSMinExpr:
2037   case scSequentialUMinExpr: {
2038     assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 &&
2039            "Nary expr should have more than 1 operand.");
2040     // The simple nary expr will require one less op (or pair of ops)
2041     // than the number of it's terms.
2042     Cost +=
2043         costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist);
2044     return Cost > Budget;
2045   }
2046   case scAddRecExpr: {
2047     assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 &&
2048            "Polynomial should be at least linear");
2049     Cost += costAndCollectOperands<SCEVAddRecExpr>(
2050         WorkItem, TTI, CostKind, Worklist);
2051     return Cost > Budget;
2052   }
2053   }
2054   llvm_unreachable("Unknown SCEV kind!");
2055 }
2056 
expandCodeForPredicate(const SCEVPredicate * Pred,Instruction * IP)2057 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
2058                                             Instruction *IP) {
2059   assert(IP);
2060   switch (Pred->getKind()) {
2061   case SCEVPredicate::P_Union:
2062     return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2063   case SCEVPredicate::P_Compare:
2064     return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP);
2065   case SCEVPredicate::P_Wrap: {
2066     auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2067     return expandWrapPredicate(AddRecPred, IP);
2068   }
2069   }
2070   llvm_unreachable("Unknown SCEV predicate type");
2071 }
2072 
expandComparePredicate(const SCEVComparePredicate * Pred,Instruction * IP)2073 Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred,
2074                                             Instruction *IP) {
2075   Value *Expr0 = expand(Pred->getLHS(), IP);
2076   Value *Expr1 = expand(Pred->getRHS(), IP);
2077 
2078   Builder.SetInsertPoint(IP);
2079   auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate());
2080   auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check");
2081   return I;
2082 }
2083 
generateOverflowCheck(const SCEVAddRecExpr * AR,Instruction * Loc,bool Signed)2084 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
2085                                            Instruction *Loc, bool Signed) {
2086   assert(AR->isAffine() && "Cannot generate RT check for "
2087                            "non-affine expression");
2088 
2089   // FIXME: It is highly suspicious that we're ignoring the predicates here.
2090   SmallVector<const SCEVPredicate *, 4> Pred;
2091   const SCEV *ExitCount =
2092       SE.getPredicatedSymbolicMaxBackedgeTakenCount(AR->getLoop(), Pred);
2093 
2094   assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count");
2095 
2096   const SCEV *Step = AR->getStepRecurrence(SE);
2097   const SCEV *Start = AR->getStart();
2098 
2099   Type *ARTy = AR->getType();
2100   unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2101   unsigned DstBits = SE.getTypeSizeInBits(ARTy);
2102 
2103   // The expression {Start,+,Step} has nusw/nssw if
2104   //   Step < 0, Start - |Step| * Backedge <= Start
2105   //   Step >= 0, Start + |Step| * Backedge > Start
2106   // and |Step| * Backedge doesn't unsigned overflow.
2107 
2108   Builder.SetInsertPoint(Loc);
2109   Value *TripCountVal = expand(ExitCount, Loc);
2110 
2111   IntegerType *Ty =
2112       IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
2113 
2114   Value *StepValue = expand(Step, Loc);
2115   Value *NegStepValue = expand(SE.getNegativeSCEV(Step), Loc);
2116   Value *StartValue = expand(Start, Loc);
2117 
2118   ConstantInt *Zero =
2119       ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits));
2120 
2121   Builder.SetInsertPoint(Loc);
2122   // Compute |Step|
2123   Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2124   Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2125 
2126   // Compute |Step| * Backedge
2127   // Compute:
2128   //   1. Start + |Step| * Backedge < Start
2129   //   2. Start - |Step| * Backedge > Start
2130   //
2131   // And select either 1. or 2. depending on whether step is positive or
2132   // negative. If Step is known to be positive or negative, only create
2133   // either 1. or 2.
2134   auto ComputeEndCheck = [&]() -> Value * {
2135     // Checking <u 0 is always false.
2136     if (!Signed && Start->isZero() && SE.isKnownPositive(Step))
2137       return ConstantInt::getFalse(Loc->getContext());
2138 
2139     // Get the backedge taken count and truncate or extended to the AR type.
2140     Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2141 
2142     Value *MulV, *OfMul;
2143     if (Step->isOne()) {
2144       // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't
2145       // needed, there is never an overflow, so to avoid artificially inflating
2146       // the cost of the check, directly emit the optimized IR.
2147       MulV = TruncTripCount;
2148       OfMul = ConstantInt::getFalse(MulV->getContext());
2149     } else {
2150       auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2151                                              Intrinsic::umul_with_overflow, Ty);
2152       CallInst *Mul =
2153           Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2154       MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2155       OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2156     }
2157 
2158     Value *Add = nullptr, *Sub = nullptr;
2159     bool NeedPosCheck = !SE.isKnownNegative(Step);
2160     bool NeedNegCheck = !SE.isKnownPositive(Step);
2161 
2162     if (isa<PointerType>(ARTy)) {
2163       Value *NegMulV = Builder.CreateNeg(MulV);
2164       if (NeedPosCheck)
2165         Add = Builder.CreatePtrAdd(StartValue, MulV);
2166       if (NeedNegCheck)
2167         Sub = Builder.CreatePtrAdd(StartValue, NegMulV);
2168     } else {
2169       if (NeedPosCheck)
2170         Add = Builder.CreateAdd(StartValue, MulV);
2171       if (NeedNegCheck)
2172         Sub = Builder.CreateSub(StartValue, MulV);
2173     }
2174 
2175     Value *EndCompareLT = nullptr;
2176     Value *EndCompareGT = nullptr;
2177     Value *EndCheck = nullptr;
2178     if (NeedPosCheck)
2179       EndCheck = EndCompareLT = Builder.CreateICmp(
2180           Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2181     if (NeedNegCheck)
2182       EndCheck = EndCompareGT = Builder.CreateICmp(
2183           Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2184     if (NeedPosCheck && NeedNegCheck) {
2185       // Select the answer based on the sign of Step.
2186       EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2187     }
2188     return Builder.CreateOr(EndCheck, OfMul);
2189   };
2190   Value *EndCheck = ComputeEndCheck();
2191 
2192   // If the backedge taken count type is larger than the AR type,
2193   // check that we don't drop any bits by truncating it. If we are
2194   // dropping bits, then we have overflow (unless the step is zero).
2195   if (SrcBits > DstBits) {
2196     auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2197     auto *BackedgeCheck =
2198         Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2199                            ConstantInt::get(Loc->getContext(), MaxVal));
2200     BackedgeCheck = Builder.CreateAnd(
2201         BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2202 
2203     EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2204   }
2205 
2206   return EndCheck;
2207 }
2208 
expandWrapPredicate(const SCEVWrapPredicate * Pred,Instruction * IP)2209 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2210                                          Instruction *IP) {
2211   const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2212   Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2213 
2214   // Add a check for NUSW
2215   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2216     NUSWCheck = generateOverflowCheck(A, IP, false);
2217 
2218   // Add a check for NSSW
2219   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2220     NSSWCheck = generateOverflowCheck(A, IP, true);
2221 
2222   if (NUSWCheck && NSSWCheck)
2223     return Builder.CreateOr(NUSWCheck, NSSWCheck);
2224 
2225   if (NUSWCheck)
2226     return NUSWCheck;
2227 
2228   if (NSSWCheck)
2229     return NSSWCheck;
2230 
2231   return ConstantInt::getFalse(IP->getContext());
2232 }
2233 
expandUnionPredicate(const SCEVUnionPredicate * Union,Instruction * IP)2234 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2235                                           Instruction *IP) {
2236   // Loop over all checks in this set.
2237   SmallVector<Value *> Checks;
2238   for (const auto *Pred : Union->getPredicates()) {
2239     Checks.push_back(expandCodeForPredicate(Pred, IP));
2240     Builder.SetInsertPoint(IP);
2241   }
2242 
2243   if (Checks.empty())
2244     return ConstantInt::getFalse(IP->getContext());
2245   return Builder.CreateOr(Checks);
2246 }
2247 
fixupLCSSAFormFor(Value * V)2248 Value *SCEVExpander::fixupLCSSAFormFor(Value *V) {
2249   auto *DefI = dyn_cast<Instruction>(V);
2250   if (!PreserveLCSSA || !DefI)
2251     return V;
2252 
2253   BasicBlock::iterator InsertPt = Builder.GetInsertPoint();
2254   Loop *DefLoop = SE.LI.getLoopFor(DefI->getParent());
2255   Loop *UseLoop = SE.LI.getLoopFor(InsertPt->getParent());
2256   if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop))
2257     return V;
2258 
2259   // Create a temporary instruction to at the current insertion point, so we
2260   // can hand it off to the helper to create LCSSA PHIs if required for the
2261   // new use.
2262   // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor)
2263   // would accept a insertion point and return an LCSSA phi for that
2264   // insertion point, so there is no need to insert & remove the temporary
2265   // instruction.
2266   Type *ToTy;
2267   if (DefI->getType()->isIntegerTy())
2268     ToTy = PointerType::get(DefI->getContext(), 0);
2269   else
2270     ToTy = Type::getInt32Ty(DefI->getContext());
2271   Instruction *User =
2272       CastInst::CreateBitOrPointerCast(DefI, ToTy, "tmp.lcssa.user", InsertPt);
2273   auto RemoveUserOnExit =
2274       make_scope_exit([User]() { User->eraseFromParent(); });
2275 
2276   SmallVector<Instruction *, 1> ToUpdate;
2277   ToUpdate.push_back(DefI);
2278   SmallVector<PHINode *, 16> PHIsToRemove;
2279   SmallVector<PHINode *, 16> InsertedPHIs;
2280   formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, &PHIsToRemove,
2281                            &InsertedPHIs);
2282   for (PHINode *PN : InsertedPHIs)
2283     rememberInstruction(PN);
2284   for (PHINode *PN : PHIsToRemove) {
2285     if (!PN->use_empty())
2286       continue;
2287     InsertedValues.erase(PN);
2288     InsertedPostIncValues.erase(PN);
2289     PN->eraseFromParent();
2290   }
2291 
2292   return User->getOperand(0);
2293 }
2294 
2295 namespace {
2296 // Search for a SCEV subexpression that is not safe to expand.  Any expression
2297 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2298 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2299 // instruction, but the important thing is that we prove the denominator is
2300 // nonzero before expansion.
2301 //
2302 // IVUsers already checks that IV-derived expressions are safe. So this check is
2303 // only needed when the expression includes some subexpression that is not IV
2304 // derived.
2305 //
2306 // Currently, we only allow division by a value provably non-zero here.
2307 //
2308 // We cannot generally expand recurrences unless the step dominates the loop
2309 // header. The expander handles the special case of affine recurrences by
2310 // scaling the recurrence outside the loop, but this technique isn't generally
2311 // applicable. Expanding a nested recurrence outside a loop requires computing
2312 // binomial coefficients. This could be done, but the recurrence has to be in a
2313 // perfectly reduced form, which can't be guaranteed.
2314 struct SCEVFindUnsafe {
2315   ScalarEvolution &SE;
2316   bool CanonicalMode;
2317   bool IsUnsafe = false;
2318 
SCEVFindUnsafe__anonf6b479601111::SCEVFindUnsafe2319   SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode)
2320       : SE(SE), CanonicalMode(CanonicalMode) {}
2321 
follow__anonf6b479601111::SCEVFindUnsafe2322   bool follow(const SCEV *S) {
2323     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2324       if (!SE.isKnownNonZero(D->getRHS())) {
2325         IsUnsafe = true;
2326         return false;
2327       }
2328     }
2329     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2330       // For non-affine addrecs or in non-canonical mode we need a preheader
2331       // to insert into.
2332       if (!AR->getLoop()->getLoopPreheader() &&
2333           (!CanonicalMode || !AR->isAffine())) {
2334         IsUnsafe = true;
2335         return false;
2336       }
2337     }
2338     return true;
2339   }
isDone__anonf6b479601111::SCEVFindUnsafe2340   bool isDone() const { return IsUnsafe; }
2341 };
2342 } // namespace
2343 
isSafeToExpand(const SCEV * S) const2344 bool SCEVExpander::isSafeToExpand(const SCEV *S) const {
2345   SCEVFindUnsafe Search(SE, CanonicalMode);
2346   visitAll(S, Search);
2347   return !Search.IsUnsafe;
2348 }
2349 
isSafeToExpandAt(const SCEV * S,const Instruction * InsertionPoint) const2350 bool SCEVExpander::isSafeToExpandAt(const SCEV *S,
2351                                     const Instruction *InsertionPoint) const {
2352   if (!isSafeToExpand(S))
2353     return false;
2354   // We have to prove that the expanded site of S dominates InsertionPoint.
2355   // This is easy when not in the same block, but hard when S is an instruction
2356   // to be expanded somewhere inside the same block as our insertion point.
2357   // What we really need here is something analogous to an OrderedBasicBlock,
2358   // but for the moment, we paper over the problem by handling two common and
2359   // cheap to check cases.
2360   if (SE.properlyDominates(S, InsertionPoint->getParent()))
2361     return true;
2362   if (SE.dominates(S, InsertionPoint->getParent())) {
2363     if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
2364       return true;
2365     if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
2366       if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue()))
2367         return true;
2368   }
2369   return false;
2370 }
2371 
cleanup()2372 void SCEVExpanderCleaner::cleanup() {
2373   // Result is used, nothing to remove.
2374   if (ResultUsed)
2375     return;
2376 
2377   // Restore original poison flags.
2378   for (auto [I, Flags] : Expander.OrigFlags)
2379     Flags.apply(I);
2380 
2381   auto InsertedInstructions = Expander.getAllInsertedInstructions();
2382 #ifndef NDEBUG
2383   SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(),
2384                                             InsertedInstructions.end());
2385   (void)InsertedSet;
2386 #endif
2387   // Remove sets with value handles.
2388   Expander.clear();
2389 
2390   // Remove all inserted instructions.
2391   for (Instruction *I : reverse(InsertedInstructions)) {
2392 #ifndef NDEBUG
2393     assert(all_of(I->users(),
2394                   [&InsertedSet](Value *U) {
2395                     return InsertedSet.contains(cast<Instruction>(U));
2396                   }) &&
2397            "removed instruction should only be used by instructions inserted "
2398            "during expansion");
2399 #endif
2400     assert(!I->getType()->isVoidTy() &&
2401            "inserted instruction should have non-void types");
2402     I->replaceAllUsesWith(PoisonValue::get(I->getType()));
2403     I->eraseFromParent();
2404   }
2405 }
2406