xref: /freebsd/contrib/llvm-project/llvm/include/llvm/Analysis/LoopInfo.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares a GenericLoopInfo instantiation for LLVM IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_ANALYSIS_LOOPINFO_H
14 #define LLVM_ANALYSIS_LOOPINFO_H
15 
16 #include "llvm/ADT/GraphTraits.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/IR/CFG.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/IR/PassManager.h"
21 #include "llvm/Pass.h"
22 #include "llvm/Support/GenericLoopInfo.h"
23 #include <algorithm>
24 #include <optional>
25 #include <utility>
26 
27 namespace llvm {
28 
29 class DominatorTree;
30 class InductionDescriptor;
31 class Instruction;
32 class LoopInfo;
33 class Loop;
34 class MDNode;
35 class MemorySSAUpdater;
36 class ScalarEvolution;
37 class raw_ostream;
38 
39 // Implementation in Support/GenericLoopInfoImpl.h
40 extern template class LoopBase<BasicBlock, Loop>;
41 
42 /// Represents a single loop in the control flow graph.  Note that not all SCCs
43 /// in the CFG are necessarily loops.
44 class LLVM_EXTERNAL_VISIBILITY Loop : public LoopBase<BasicBlock, Loop> {
45 public:
46   /// A range representing the start and end location of a loop.
47   class LocRange {
48     DebugLoc Start;
49     DebugLoc End;
50 
51   public:
52     LocRange() = default;
LocRange(DebugLoc Start)53     LocRange(DebugLoc Start) : Start(Start), End(Start) {}
LocRange(DebugLoc Start,DebugLoc End)54     LocRange(DebugLoc Start, DebugLoc End)
55         : Start(std::move(Start)), End(std::move(End)) {}
56 
getStart()57     const DebugLoc &getStart() const { return Start; }
getEnd()58     const DebugLoc &getEnd() const { return End; }
59 
60     /// Check for null.
61     ///
62     explicit operator bool() const { return Start && End; }
63   };
64 
65   /// Return true if the specified value is loop invariant.
66   bool isLoopInvariant(const Value *V) const;
67 
68   /// Return true if all the operands of the specified instruction are loop
69   /// invariant.
70   bool hasLoopInvariantOperands(const Instruction *I) const;
71 
72   /// If the given value is an instruction inside of the loop and it can be
73   /// hoisted, do so to make it trivially loop-invariant.
74   /// Return true if \c V is already loop-invariant, and false if \c V can't
75   /// be made loop-invariant. If \c V is made loop-invariant, \c Changed is
76   /// set to true. This function can be used as a slightly more aggressive
77   /// replacement for isLoopInvariant.
78   ///
79   /// If InsertPt is specified, it is the point to hoist instructions to.
80   /// If null, the terminator of the loop preheader is used.
81   ///
82   bool makeLoopInvariant(Value *V, bool &Changed,
83                          Instruction *InsertPt = nullptr,
84                          MemorySSAUpdater *MSSAU = nullptr,
85                          ScalarEvolution *SE = nullptr) const;
86 
87   /// If the given instruction is inside of the loop and it can be hoisted, do
88   /// so to make it trivially loop-invariant.
89   /// Return true if \c I is already loop-invariant, and false if \c I can't
90   /// be made loop-invariant. If \c I is made loop-invariant, \c Changed is
91   /// set to true. This function can be used as a slightly more aggressive
92   /// replacement for isLoopInvariant.
93   ///
94   /// If InsertPt is specified, it is the point to hoist instructions to.
95   /// If null, the terminator of the loop preheader is used.
96   ///
97   bool makeLoopInvariant(Instruction *I, bool &Changed,
98                          Instruction *InsertPt = nullptr,
99                          MemorySSAUpdater *MSSAU = nullptr,
100                          ScalarEvolution *SE = nullptr) const;
101 
102   /// Check to see if the loop has a canonical induction variable: an integer
103   /// recurrence that starts at 0 and increments by one each time through the
104   /// loop. If so, return the phi node that corresponds to it.
105   ///
106   /// The IndVarSimplify pass transforms loops to have a canonical induction
107   /// variable.
108   ///
109   PHINode *getCanonicalInductionVariable() const;
110 
111   /// Get the latch condition instruction.
112   ICmpInst *getLatchCmpInst() const;
113 
114   /// Obtain the unique incoming and back edge. Return false if they are
115   /// non-unique or the loop is dead; otherwise, return true.
116   bool getIncomingAndBackEdge(BasicBlock *&Incoming,
117                               BasicBlock *&Backedge) const;
118 
119   /// Below are some utilities to get the loop guard, loop bounds and induction
120   /// variable, and to check if a given phinode is an auxiliary induction
121   /// variable, if the loop is guarded, and if the loop is canonical.
122   ///
123   /// Here is an example:
124   /// \code
125   /// for (int i = lb; i < ub; i+=step)
126   ///   <loop body>
127   /// --- pseudo LLVMIR ---
128   /// beforeloop:
129   ///   guardcmp = (lb < ub)
130   ///   if (guardcmp) goto preheader; else goto afterloop
131   /// preheader:
132   /// loop:
133   ///   i_1 = phi[{lb, preheader}, {i_2, latch}]
134   ///   <loop body>
135   ///   i_2 = i_1 + step
136   /// latch:
137   ///   cmp = (i_2 < ub)
138   ///   if (cmp) goto loop
139   /// exit:
140   /// afterloop:
141   /// \endcode
142   ///
143   /// - getBounds
144   ///   - getInitialIVValue      --> lb
145   ///   - getStepInst            --> i_2 = i_1 + step
146   ///   - getStepValue           --> step
147   ///   - getFinalIVValue        --> ub
148   ///   - getCanonicalPredicate  --> '<'
149   ///   - getDirection           --> Increasing
150   ///
151   /// - getInductionVariable            --> i_1
152   /// - isAuxiliaryInductionVariable(x) --> true if x == i_1
153   /// - getLoopGuardBranch()
154   ///                 --> `if (guardcmp) goto preheader; else goto afterloop`
155   /// - isGuarded()                     --> true
156   /// - isCanonical                     --> false
157   struct LoopBounds {
158     /// Return the LoopBounds object if
159     /// - the given \p IndVar is an induction variable
160     /// - the initial value of the induction variable can be found
161     /// - the step instruction of the induction variable can be found
162     /// - the final value of the induction variable can be found
163     ///
164     /// Else std::nullopt.
165     static std::optional<Loop::LoopBounds>
166     getBounds(const Loop &L, PHINode &IndVar, ScalarEvolution &SE);
167 
168     /// Get the initial value of the loop induction variable.
getInitialIVValueLoopBounds169     Value &getInitialIVValue() const { return InitialIVValue; }
170 
171     /// Get the instruction that updates the loop induction variable.
getStepInstLoopBounds172     Instruction &getStepInst() const { return StepInst; }
173 
174     /// Get the step that the loop induction variable gets updated by in each
175     /// loop iteration. Return nullptr if not found.
getStepValueLoopBounds176     Value *getStepValue() const { return StepValue; }
177 
178     /// Get the final value of the loop induction variable.
getFinalIVValueLoopBounds179     Value &getFinalIVValue() const { return FinalIVValue; }
180 
181     /// Return the canonical predicate for the latch compare instruction, if
182     /// able to be calcuated. Else BAD_ICMP_PREDICATE.
183     ///
184     /// A predicate is considered as canonical if requirements below are all
185     /// satisfied:
186     /// 1. The first successor of the latch branch is the loop header
187     ///    If not, inverse the predicate.
188     /// 2. One of the operands of the latch comparison is StepInst
189     ///    If not, and
190     ///    - if the current calcuated predicate is not ne or eq, flip the
191     ///      predicate.
192     ///    - else if the loop is increasing, return slt
193     ///      (notice that it is safe to change from ne or eq to sign compare)
194     ///    - else if the loop is decreasing, return sgt
195     ///      (notice that it is safe to change from ne or eq to sign compare)
196     ///
197     /// Here is an example when both (1) and (2) are not satisfied:
198     /// \code
199     /// loop.header:
200     ///  %iv = phi [%initialiv, %loop.preheader], [%inc, %loop.header]
201     ///  %inc = add %iv, %step
202     ///  %cmp = slt %iv, %finaliv
203     ///  br %cmp, %loop.exit, %loop.header
204     /// loop.exit:
205     /// \endcode
206     /// - The second successor of the latch branch is the loop header instead
207     ///   of the first successor (slt -> sge)
208     /// - The first operand of the latch comparison (%cmp) is the IndVar (%iv)
209     ///   instead of the StepInst (%inc) (sge -> sgt)
210     ///
211     /// The predicate would be sgt if both (1) and (2) are satisfied.
212     /// getCanonicalPredicate() returns sgt for this example.
213     /// Note: The IR is not changed.
214     ICmpInst::Predicate getCanonicalPredicate() const;
215 
216     /// An enum for the direction of the loop
217     /// - for (int i = 0; i < ub; ++i)  --> Increasing
218     /// - for (int i = ub; i > 0; --i)  --> Descresing
219     /// - for (int i = x; i != y; i+=z) --> Unknown
220     enum class Direction { Increasing, Decreasing, Unknown };
221 
222     /// Get the direction of the loop.
223     Direction getDirection() const;
224 
225   private:
LoopBoundsLoopBounds226     LoopBounds(const Loop &Loop, Value &I, Instruction &SI, Value *SV, Value &F,
227                ScalarEvolution &SE)
228         : L(Loop), InitialIVValue(I), StepInst(SI), StepValue(SV),
229           FinalIVValue(F), SE(SE) {}
230 
231     const Loop &L;
232 
233     // The initial value of the loop induction variable
234     Value &InitialIVValue;
235 
236     // The instruction that updates the loop induction variable
237     Instruction &StepInst;
238 
239     // The value that the loop induction variable gets updated by in each loop
240     // iteration
241     Value *StepValue;
242 
243     // The final value of the loop induction variable
244     Value &FinalIVValue;
245 
246     ScalarEvolution &SE;
247   };
248 
249   /// Return the struct LoopBounds collected if all struct members are found,
250   /// else std::nullopt.
251   std::optional<LoopBounds> getBounds(ScalarEvolution &SE) const;
252 
253   /// Return the loop induction variable if found, else return nullptr.
254   /// An instruction is considered as the loop induction variable if
255   /// - it is an induction variable of the loop; and
256   /// - it is used to determine the condition of the branch in the loop latch
257   ///
258   /// Note: the induction variable doesn't need to be canonical, i.e. starts at
259   /// zero and increments by one each time through the loop (but it can be).
260   PHINode *getInductionVariable(ScalarEvolution &SE) const;
261 
262   /// Get the loop induction descriptor for the loop induction variable. Return
263   /// true if the loop induction variable is found.
264   bool getInductionDescriptor(ScalarEvolution &SE,
265                               InductionDescriptor &IndDesc) const;
266 
267   /// Return true if the given PHINode \p AuxIndVar is
268   /// - in the loop header
269   /// - not used outside of the loop
270   /// - incremented by a loop invariant step for each loop iteration
271   /// - step instruction opcode should be add or sub
272   /// Note: auxiliary induction variable is not required to be used in the
273   ///       conditional branch in the loop latch. (but it can be)
274   bool isAuxiliaryInductionVariable(PHINode &AuxIndVar,
275                                     ScalarEvolution &SE) const;
276 
277   /// Return the loop guard branch, if it exists.
278   ///
279   /// This currently only works on simplified loop, as it requires a preheader
280   /// and a latch to identify the guard. It will work on loops of the form:
281   /// \code
282   /// GuardBB:
283   ///   br cond1, Preheader, ExitSucc <== GuardBranch
284   /// Preheader:
285   ///   br Header
286   /// Header:
287   ///  ...
288   ///   br Latch
289   /// Latch:
290   ///   br cond2, Header, ExitBlock
291   /// ExitBlock:
292   ///   br ExitSucc
293   /// ExitSucc:
294   /// \endcode
295   BranchInst *getLoopGuardBranch() const;
296 
297   /// Return true iff the loop is
298   /// - in simplify rotated form, and
299   /// - guarded by a loop guard branch.
isGuarded()300   bool isGuarded() const { return (getLoopGuardBranch() != nullptr); }
301 
302   /// Return true if the loop is in rotated form.
303   ///
304   /// This does not check if the loop was rotated by loop rotation, instead it
305   /// only checks if the loop is in rotated form (has a valid latch that exists
306   /// the loop).
isRotatedForm()307   bool isRotatedForm() const {
308     assert(!isInvalid() && "Loop not in a valid state!");
309     BasicBlock *Latch = getLoopLatch();
310     return Latch && isLoopExiting(Latch);
311   }
312 
313   /// Return true if the loop induction variable starts at zero and increments
314   /// by one each time through the loop.
315   bool isCanonical(ScalarEvolution &SE) const;
316 
317   /// Return true if the Loop is in LCSSA form. If \p IgnoreTokens is set to
318   /// true, token values defined inside loop are allowed to violate LCSSA form.
319   bool isLCSSAForm(const DominatorTree &DT, bool IgnoreTokens = true) const;
320 
321   /// Return true if this Loop and all inner subloops are in LCSSA form. If \p
322   /// IgnoreTokens is set to true, token values defined inside loop are allowed
323   /// to violate LCSSA form.
324   bool isRecursivelyLCSSAForm(const DominatorTree &DT, const LoopInfo &LI,
325                               bool IgnoreTokens = true) const;
326 
327   /// Return true if the Loop is in the form that the LoopSimplify form
328   /// transforms loops to, which is sometimes called normal form.
329   bool isLoopSimplifyForm() const;
330 
331   /// Return true if the loop body is safe to clone in practice.
332   bool isSafeToClone() const;
333 
334   /// Returns true if the loop is annotated parallel.
335   ///
336   /// A parallel loop can be assumed to not contain any dependencies between
337   /// iterations by the compiler. That is, any loop-carried dependency checking
338   /// can be skipped completely when parallelizing the loop on the target
339   /// machine. Thus, if the parallel loop information originates from the
340   /// programmer, e.g. via the OpenMP parallel for pragma, it is the
341   /// programmer's responsibility to ensure there are no loop-carried
342   /// dependencies. The final execution order of the instructions across
343   /// iterations is not guaranteed, thus, the end result might or might not
344   /// implement actual concurrent execution of instructions across multiple
345   /// iterations.
346   bool isAnnotatedParallel() const;
347 
348   /// Return the llvm.loop loop id metadata node for this loop if it is present.
349   ///
350   /// If this loop contains the same llvm.loop metadata on each branch to the
351   /// header then the node is returned. If any latch instruction does not
352   /// contain llvm.loop or if multiple latches contain different nodes then
353   /// 0 is returned.
354   MDNode *getLoopID() const;
355   /// Set the llvm.loop loop id metadata for this loop.
356   ///
357   /// The LoopID metadata node will be added to each terminator instruction in
358   /// the loop that branches to the loop header.
359   ///
360   /// The LoopID metadata node should have one or more operands and the first
361   /// operand should be the node itself.
362   void setLoopID(MDNode *LoopID) const;
363 
364   /// Add llvm.loop.unroll.disable to this loop's loop id metadata.
365   ///
366   /// Remove existing unroll metadata and add unroll disable metadata to
367   /// indicate the loop has already been unrolled.  This prevents a loop
368   /// from being unrolled more than is directed by a pragma if the loop
369   /// unrolling pass is run more than once (which it generally is).
370   void setLoopAlreadyUnrolled();
371 
372   /// Add llvm.loop.mustprogress to this loop's loop id metadata.
373   void setLoopMustProgress();
374 
375   void dump() const;
376   void dumpVerbose() const;
377 
378   /// Return the debug location of the start of this loop.
379   /// This looks for a BB terminating instruction with a known debug
380   /// location by looking at the preheader and header blocks. If it
381   /// cannot find a terminating instruction with location information,
382   /// it returns an unknown location.
383   DebugLoc getStartLoc() const;
384 
385   /// Return the source code span of the loop.
386   LocRange getLocRange() const;
387 
388   /// Return a string containing the debug location of the loop (file name +
389   /// line number if present, otherwise module name). Meant to be used for debug
390   /// printing within LLVM_DEBUG.
391   std::string getLocStr() const;
392 
getName()393   StringRef getName() const {
394     if (BasicBlock *Header = getHeader())
395       if (Header->hasName())
396         return Header->getName();
397     return "<unnamed loop>";
398   }
399 
400 private:
401   Loop() = default;
402 
403   friend class LoopInfoBase<BasicBlock, Loop>;
404   friend class LoopBase<BasicBlock, Loop>;
Loop(BasicBlock * BB)405   explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
406   ~Loop() = default;
407 };
408 
409 // Implementation in Support/GenericLoopInfoImpl.h
410 extern template class LoopInfoBase<BasicBlock, Loop>;
411 
412 class LoopInfo : public LoopInfoBase<BasicBlock, Loop> {
413   typedef LoopInfoBase<BasicBlock, Loop> BaseT;
414 
415   friend class LoopBase<BasicBlock, Loop>;
416 
417   void operator=(const LoopInfo &) = delete;
418   LoopInfo(const LoopInfo &) = delete;
419 
420 public:
421   LoopInfo() = default;
422   explicit LoopInfo(const DominatorTreeBase<BasicBlock, false> &DomTree);
423 
LoopInfo(LoopInfo && Arg)424   LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast<BaseT &>(Arg))) {}
425   LoopInfo &operator=(LoopInfo &&RHS) {
426     BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
427     return *this;
428   }
429 
430   /// Handle invalidation explicitly.
431   bool invalidate(Function &F, const PreservedAnalyses &PA,
432                   FunctionAnalysisManager::Invalidator &);
433 
434   // Most of the public interface is provided via LoopInfoBase.
435 
436   /// Update LoopInfo after removing the last backedge from a loop. This updates
437   /// the loop forest and parent loops for each block so that \c L is no longer
438   /// referenced, but does not actually delete \c L immediately. The pointer
439   /// will remain valid until this LoopInfo's memory is released.
440   void erase(Loop *L);
441 
442   /// Returns true if replacing From with To everywhere is guaranteed to
443   /// preserve LCSSA form.
replacementPreservesLCSSAForm(Instruction * From,Value * To)444   bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
445     // Preserving LCSSA form is only problematic if the replacing value is an
446     // instruction.
447     Instruction *I = dyn_cast<Instruction>(To);
448     if (!I)
449       return true;
450     // If both instructions are defined in the same basic block then replacement
451     // cannot break LCSSA form.
452     if (I->getParent() == From->getParent())
453       return true;
454     // If the instruction is not defined in a loop then it can safely replace
455     // anything.
456     Loop *ToLoop = getLoopFor(I->getParent());
457     if (!ToLoop)
458       return true;
459     // If the replacing instruction is defined in the same loop as the original
460     // instruction, or in a loop that contains it as an inner loop, then using
461     // it as a replacement will not break LCSSA form.
462     return ToLoop->contains(getLoopFor(From->getParent()));
463   }
464 
465   /// Checks if moving a specific instruction can break LCSSA in any loop.
466   ///
467   /// Return true if moving \p Inst to before \p NewLoc will break LCSSA,
468   /// assuming that the function containing \p Inst and \p NewLoc is currently
469   /// in LCSSA form.
movementPreservesLCSSAForm(Instruction * Inst,Instruction * NewLoc)470   bool movementPreservesLCSSAForm(Instruction *Inst, Instruction *NewLoc) {
471     assert(Inst->getFunction() == NewLoc->getFunction() &&
472            "Can't reason about IPO!");
473 
474     auto *OldBB = Inst->getParent();
475     auto *NewBB = NewLoc->getParent();
476 
477     // Movement within the same loop does not break LCSSA (the equality check is
478     // to avoid doing a hashtable lookup in case of intra-block movement).
479     if (OldBB == NewBB)
480       return true;
481 
482     auto *OldLoop = getLoopFor(OldBB);
483     auto *NewLoop = getLoopFor(NewBB);
484 
485     if (OldLoop == NewLoop)
486       return true;
487 
488     // Check if Outer contains Inner; with the null loop counting as the
489     // "outermost" loop.
490     auto Contains = [](const Loop *Outer, const Loop *Inner) {
491       return !Outer || Outer->contains(Inner);
492     };
493 
494     // To check that the movement of Inst to before NewLoc does not break LCSSA,
495     // we need to check two sets of uses for possible LCSSA violations at
496     // NewLoc: the users of NewInst, and the operands of NewInst.
497 
498     // If we know we're hoisting Inst out of an inner loop to an outer loop,
499     // then the uses *of* Inst don't need to be checked.
500 
501     if (!Contains(NewLoop, OldLoop)) {
502       for (Use &U : Inst->uses()) {
503         auto *UI = cast<Instruction>(U.getUser());
504         auto *UBB = isa<PHINode>(UI) ? cast<PHINode>(UI)->getIncomingBlock(U)
505                                      : UI->getParent();
506         if (UBB != NewBB && getLoopFor(UBB) != NewLoop)
507           return false;
508       }
509     }
510 
511     // If we know we're sinking Inst from an outer loop into an inner loop, then
512     // the *operands* of Inst don't need to be checked.
513 
514     if (!Contains(OldLoop, NewLoop)) {
515       // See below on why we can't handle phi nodes here.
516       if (isa<PHINode>(Inst))
517         return false;
518 
519       for (Use &U : Inst->operands()) {
520         auto *DefI = dyn_cast<Instruction>(U.get());
521         if (!DefI)
522           return false;
523 
524         // This would need adjustment if we allow Inst to be a phi node -- the
525         // new use block won't simply be NewBB.
526 
527         auto *DefBlock = DefI->getParent();
528         if (DefBlock != NewBB && getLoopFor(DefBlock) != NewLoop)
529           return false;
530       }
531     }
532 
533     return true;
534   }
535 
536   // Return true if a new use of V added in ExitBB would require an LCSSA PHI
537   // to be inserted at the begining of the block.  Note that V is assumed to
538   // dominate ExitBB, and ExitBB must be the exit block of some loop.  The
539   // IR is assumed to be in LCSSA form before the planned insertion.
540   bool wouldBeOutOfLoopUseRequiringLCSSA(const Value *V,
541                                          const BasicBlock *ExitBB) const;
542 };
543 
544 /// Enable verification of loop info.
545 ///
546 /// The flag enables checks which are expensive and are disabled by default
547 /// unless the `EXPENSIVE_CHECKS` macro is defined.  The `-verify-loop-info`
548 /// flag allows the checks to be enabled selectively without re-compilation.
549 extern bool VerifyLoopInfo;
550 
551 // Allow clients to walk the list of nested loops...
552 template <> struct GraphTraits<const Loop *> {
553   typedef const Loop *NodeRef;
554   typedef LoopInfo::iterator ChildIteratorType;
555 
556   static NodeRef getEntryNode(const Loop *L) { return L; }
557   static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
558   static ChildIteratorType child_end(NodeRef N) { return N->end(); }
559 };
560 
561 template <> struct GraphTraits<Loop *> {
562   typedef Loop *NodeRef;
563   typedef LoopInfo::iterator ChildIteratorType;
564 
565   static NodeRef getEntryNode(Loop *L) { return L; }
566   static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
567   static ChildIteratorType child_end(NodeRef N) { return N->end(); }
568 };
569 
570 /// Analysis pass that exposes the \c LoopInfo for a function.
571 class LoopAnalysis : public AnalysisInfoMixin<LoopAnalysis> {
572   friend AnalysisInfoMixin<LoopAnalysis>;
573   static AnalysisKey Key;
574 
575 public:
576   typedef LoopInfo Result;
577 
578   LoopInfo run(Function &F, FunctionAnalysisManager &AM);
579 };
580 
581 /// Printer pass for the \c LoopAnalysis results.
582 class LoopPrinterPass : public PassInfoMixin<LoopPrinterPass> {
583   raw_ostream &OS;
584 
585 public:
586   explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {}
587   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
588   static bool isRequired() { return true; }
589 };
590 
591 /// Verifier pass for the \c LoopAnalysis results.
592 struct LoopVerifierPass : public PassInfoMixin<LoopVerifierPass> {
593   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
594   static bool isRequired() { return true; }
595 };
596 
597 /// The legacy pass manager's analysis pass to compute loop information.
598 class LoopInfoWrapperPass : public FunctionPass {
599   LoopInfo LI;
600 
601 public:
602   static char ID; // Pass identification, replacement for typeid
603 
604   LoopInfoWrapperPass();
605 
606   LoopInfo &getLoopInfo() { return LI; }
607   const LoopInfo &getLoopInfo() const { return LI; }
608 
609   /// Calculate the natural loop information for a given function.
610   bool runOnFunction(Function &F) override;
611 
612   void verifyAnalysis() const override;
613 
614   void releaseMemory() override { LI.releaseMemory(); }
615 
616   void print(raw_ostream &O, const Module *M = nullptr) const override;
617 
618   void getAnalysisUsage(AnalysisUsage &AU) const override;
619 };
620 
621 /// Function to print a loop's contents as LLVM's text IR assembly.
622 void printLoop(Loop &L, raw_ostream &OS, const std::string &Banner = "");
623 
624 /// Find and return the loop attribute node for the attribute @p Name in
625 /// @p LoopID. Return nullptr if there is no such attribute.
626 MDNode *findOptionMDForLoopID(MDNode *LoopID, StringRef Name);
627 
628 /// Find string metadata for a loop.
629 ///
630 /// Returns the MDNode where the first operand is the metadata's name. The
631 /// following operands are the metadata's values. If no metadata with @p Name is
632 /// found, return nullptr.
633 MDNode *findOptionMDForLoop(const Loop *TheLoop, StringRef Name);
634 
635 std::optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
636                                                  StringRef Name);
637 
638 /// Returns true if Name is applied to TheLoop and enabled.
639 bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name);
640 
641 /// Find named metadata for a loop with an integer value.
642 std::optional<int> getOptionalIntLoopAttribute(const Loop *TheLoop,
643                                                StringRef Name);
644 
645 /// Find named metadata for a loop with an integer value. Return \p Default if
646 /// not set.
647 int getIntLoopAttribute(const Loop *TheLoop, StringRef Name, int Default = 0);
648 
649 /// Find string metadata for loop
650 ///
651 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
652 /// operand or null otherwise.  If the string metadata is not found return
653 /// Optional's not-a-value.
654 std::optional<const MDOperand *> findStringMetadataForLoop(const Loop *TheLoop,
655                                                            StringRef Name);
656 
657 /// Find the convergence heart of the loop.
658 CallBase *getLoopConvergenceHeart(const Loop *TheLoop);
659 
660 /// Look for the loop attribute that requires progress within the loop.
661 /// Note: Most consumers probably want "isMustProgress" which checks
662 /// the containing function attribute too.
663 bool hasMustProgress(const Loop *L);
664 
665 /// Return true if this loop can be assumed to make progress.  (i.e. can't
666 /// be infinite without side effects without also being undefined)
667 bool isMustProgress(const Loop *L);
668 
669 /// Return true if this loop can be assumed to run for a finite number of
670 /// iterations.
671 bool isFinite(const Loop *L);
672 
673 /// Return whether an MDNode might represent an access group.
674 ///
675 /// Access group metadata nodes have to be distinct and empty. Being
676 /// always-empty ensures that it never needs to be changed (which -- because
677 /// MDNodes are designed immutable -- would require creating a new MDNode). Note
678 /// that this is not a sufficient condition: not every distinct and empty NDNode
679 /// is representing an access group.
680 bool isValidAsAccessGroup(MDNode *AccGroup);
681 
682 /// Create a new LoopID after the loop has been transformed.
683 ///
684 /// This can be used when no follow-up loop attributes are defined
685 /// (llvm::makeFollowupLoopID returning None) to stop transformations to be
686 /// applied again.
687 ///
688 /// @param Context        The LLVMContext in which to create the new LoopID.
689 /// @param OrigLoopID     The original LoopID; can be nullptr if the original
690 ///                       loop has no LoopID.
691 /// @param RemovePrefixes Remove all loop attributes that have these prefixes.
692 ///                       Use to remove metadata of the transformation that has
693 ///                       been applied.
694 /// @param AddAttrs       Add these loop attributes to the new LoopID.
695 ///
696 /// @return A new LoopID that can be applied using Loop::setLoopID().
697 llvm::MDNode *
698 makePostTransformationMetadata(llvm::LLVMContext &Context, MDNode *OrigLoopID,
699                                llvm::ArrayRef<llvm::StringRef> RemovePrefixes,
700                                llvm::ArrayRef<llvm::MDNode *> AddAttrs);
701 } // namespace llvm
702 
703 #endif
704