1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The LoopPredication pass tries to convert loop variant range checks to loop 10 // invariant by widening checks across loop iterations. For example, it will 11 // convert 12 // 13 // for (i = 0; i < n; i++) { 14 // guard(i < len); 15 // ... 16 // } 17 // 18 // to 19 // 20 // for (i = 0; i < n; i++) { 21 // guard(n - 1 < len); 22 // ... 23 // } 24 // 25 // After this transformation the condition of the guard is loop invariant, so 26 // loop-unswitch can later unswitch the loop by this condition which basically 27 // predicates the loop by the widened condition: 28 // 29 // if (n - 1 < len) 30 // for (i = 0; i < n; i++) { 31 // ... 32 // } 33 // else 34 // deoptimize 35 // 36 // It's tempting to rely on SCEV here, but it has proven to be problematic. 37 // Generally the facts SCEV provides about the increment step of add 38 // recurrences are true if the backedge of the loop is taken, which implicitly 39 // assumes that the guard doesn't fail. Using these facts to optimize the 40 // guard results in a circular logic where the guard is optimized under the 41 // assumption that it never fails. 42 // 43 // For example, in the loop below the induction variable will be marked as nuw 44 // basing on the guard. Basing on nuw the guard predicate will be considered 45 // monotonic. Given a monotonic condition it's tempting to replace the induction 46 // variable in the condition with its value on the last iteration. But this 47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop. 48 // 49 // for (int i = b; i != e; i++) 50 // guard(i u< len) 51 // 52 // One of the ways to reason about this problem is to use an inductive proof 53 // approach. Given the loop: 54 // 55 // if (B(0)) { 56 // do { 57 // I = PHI(0, I.INC) 58 // I.INC = I + Step 59 // guard(G(I)); 60 // } while (B(I)); 61 // } 62 // 63 // where B(x) and G(x) are predicates that map integers to booleans, we want a 64 // loop invariant expression M such the following program has the same semantics 65 // as the above: 66 // 67 // if (B(0)) { 68 // do { 69 // I = PHI(0, I.INC) 70 // I.INC = I + Step 71 // guard(G(0) && M); 72 // } while (B(I)); 73 // } 74 // 75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step) 76 // 77 // Informal proof that the transformation above is correct: 78 // 79 // By the definition of guards we can rewrite the guard condition to: 80 // G(I) && G(0) && M 81 // 82 // Let's prove that for each iteration of the loop: 83 // G(0) && M => G(I) 84 // And the condition above can be simplified to G(Start) && M. 85 // 86 // Induction base. 87 // G(0) && M => G(0) 88 // 89 // Induction step. Assuming G(0) && M => G(I) on the subsequent 90 // iteration: 91 // 92 // B(I) is true because it's the backedge condition. 93 // G(I) is true because the backedge is guarded by this condition. 94 // 95 // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step). 96 // 97 // Note that we can use anything stronger than M, i.e. any condition which 98 // implies M. 99 // 100 // When S = 1 (i.e. forward iterating loop), the transformation is supported 101 // when: 102 // * The loop has a single latch with the condition of the form: 103 // B(X) = latchStart + X <pred> latchLimit, 104 // where <pred> is u<, u<=, s<, or s<=. 105 // * The guard condition is of the form 106 // G(X) = guardStart + X u< guardLimit 107 // 108 // For the ult latch comparison case M is: 109 // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit => 110 // guardStart + X + 1 u< guardLimit 111 // 112 // The only way the antecedent can be true and the consequent can be false is 113 // if 114 // X == guardLimit - 1 - guardStart 115 // (and guardLimit is non-zero, but we won't use this latter fact). 116 // If X == guardLimit - 1 - guardStart then the second half of the antecedent is 117 // latchStart + guardLimit - 1 - guardStart u< latchLimit 118 // and its negation is 119 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 120 // 121 // In other words, if 122 // latchLimit u<= latchStart + guardLimit - 1 - guardStart 123 // then: 124 // (the ranges below are written in ConstantRange notation, where [A, B) is the 125 // set for (I = A; I != B; I++ /*maywrap*/) yield(I);) 126 // 127 // forall X . guardStart + X u< guardLimit && 128 // latchStart + X u< latchLimit => 129 // guardStart + X + 1 u< guardLimit 130 // == forall X . guardStart + X u< guardLimit && 131 // latchStart + X u< latchStart + guardLimit - 1 - guardStart => 132 // guardStart + X + 1 u< guardLimit 133 // == forall X . (guardStart + X) in [0, guardLimit) && 134 // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) => 135 // (guardStart + X + 1) in [0, guardLimit) 136 // == forall X . X in [-guardStart, guardLimit - guardStart) && 137 // X in [-latchStart, guardLimit - 1 - guardStart) => 138 // X in [-guardStart - 1, guardLimit - guardStart - 1) 139 // == true 140 // 141 // So the widened condition is: 142 // guardStart u< guardLimit && 143 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 144 // Similarly for ule condition the widened condition is: 145 // guardStart u< guardLimit && 146 // latchStart + guardLimit - 1 - guardStart u> latchLimit 147 // For slt condition the widened condition is: 148 // guardStart u< guardLimit && 149 // latchStart + guardLimit - 1 - guardStart s>= latchLimit 150 // For sle condition the widened condition is: 151 // guardStart u< guardLimit && 152 // latchStart + guardLimit - 1 - guardStart s> latchLimit 153 // 154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported 155 // when: 156 // * The loop has a single latch with the condition of the form: 157 // B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=. 158 // * The guard condition is of the form 159 // G(X) = X - 1 u< guardLimit 160 // 161 // For the ugt latch comparison case M is: 162 // forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit 163 // 164 // The only way the antecedent can be true and the consequent can be false is if 165 // X == 1. 166 // If X == 1 then the second half of the antecedent is 167 // 1 u> latchLimit, and its negation is latchLimit u>= 1. 168 // 169 // So the widened condition is: 170 // guardStart u< guardLimit && latchLimit u>= 1. 171 // Similarly for sgt condition the widened condition is: 172 // guardStart u< guardLimit && latchLimit s>= 1. 173 // For uge condition the widened condition is: 174 // guardStart u< guardLimit && latchLimit u> 1. 175 // For sge condition the widened condition is: 176 // guardStart u< guardLimit && latchLimit s> 1. 177 //===----------------------------------------------------------------------===// 178 179 #include "llvm/Transforms/Scalar/LoopPredication.h" 180 #include "llvm/ADT/Statistic.h" 181 #include "llvm/Analysis/AliasAnalysis.h" 182 #include "llvm/Analysis/BranchProbabilityInfo.h" 183 #include "llvm/Analysis/GuardUtils.h" 184 #include "llvm/Analysis/LoopInfo.h" 185 #include "llvm/Analysis/LoopPass.h" 186 #include "llvm/Analysis/MemorySSA.h" 187 #include "llvm/Analysis/MemorySSAUpdater.h" 188 #include "llvm/Analysis/ScalarEvolution.h" 189 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 190 #include "llvm/IR/Function.h" 191 #include "llvm/IR/IntrinsicInst.h" 192 #include "llvm/IR/Module.h" 193 #include "llvm/IR/PatternMatch.h" 194 #include "llvm/IR/ProfDataUtils.h" 195 #include "llvm/InitializePasses.h" 196 #include "llvm/Pass.h" 197 #include "llvm/Support/CommandLine.h" 198 #include "llvm/Support/Debug.h" 199 #include "llvm/Transforms/Scalar.h" 200 #include "llvm/Transforms/Utils/GuardUtils.h" 201 #include "llvm/Transforms/Utils/Local.h" 202 #include "llvm/Transforms/Utils/LoopUtils.h" 203 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 204 #include <optional> 205 206 #define DEBUG_TYPE "loop-predication" 207 208 STATISTIC(TotalConsidered, "Number of guards considered"); 209 STATISTIC(TotalWidened, "Number of checks widened"); 210 211 using namespace llvm; 212 213 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation", 214 cl::Hidden, cl::init(true)); 215 216 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop", 217 cl::Hidden, cl::init(true)); 218 219 static cl::opt<bool> 220 SkipProfitabilityChecks("loop-predication-skip-profitability-checks", 221 cl::Hidden, cl::init(false)); 222 223 // This is the scale factor for the latch probability. We use this during 224 // profitability analysis to find other exiting blocks that have a much higher 225 // probability of exiting the loop instead of loop exiting via latch. 226 // This value should be greater than 1 for a sane profitability check. 227 static cl::opt<float> LatchExitProbabilityScale( 228 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0), 229 cl::desc("scale factor for the latch probability. Value should be greater " 230 "than 1. Lower values are ignored")); 231 232 static cl::opt<bool> PredicateWidenableBranchGuards( 233 "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden, 234 cl::desc("Whether or not we should predicate guards " 235 "expressed as widenable branches to deoptimize blocks"), 236 cl::init(true)); 237 238 static cl::opt<bool> InsertAssumesOfPredicatedGuardsConditions( 239 "loop-predication-insert-assumes-of-predicated-guards-conditions", 240 cl::Hidden, 241 cl::desc("Whether or not we should insert assumes of conditions of " 242 "predicated guards"), 243 cl::init(true)); 244 245 namespace { 246 /// Represents an induction variable check: 247 /// icmp Pred, <induction variable>, <loop invariant limit> 248 struct LoopICmp { 249 ICmpInst::Predicate Pred; 250 const SCEVAddRecExpr *IV; 251 const SCEV *Limit; 252 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV, 253 const SCEV *Limit) 254 : Pred(Pred), IV(IV), Limit(Limit) {} 255 LoopICmp() = default; 256 void dump() { 257 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV 258 << ", Limit = " << *Limit << "\n"; 259 } 260 }; 261 262 class LoopPredication { 263 AliasAnalysis *AA; 264 DominatorTree *DT; 265 ScalarEvolution *SE; 266 LoopInfo *LI; 267 MemorySSAUpdater *MSSAU; 268 269 Loop *L; 270 const DataLayout *DL; 271 BasicBlock *Preheader; 272 LoopICmp LatchCheck; 273 274 bool isSupportedStep(const SCEV* Step); 275 std::optional<LoopICmp> parseLoopICmp(ICmpInst *ICI); 276 std::optional<LoopICmp> parseLoopLatchICmp(); 277 278 /// Return an insertion point suitable for inserting a safe to speculate 279 /// instruction whose only user will be 'User' which has operands 'Ops'. A 280 /// trivial result would be the at the User itself, but we try to return a 281 /// loop invariant location if possible. 282 Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops); 283 /// Same as above, *except* that this uses the SCEV definition of invariant 284 /// which is that an expression *can be made* invariant via SCEVExpander. 285 /// Thus, this version is only suitable for finding an insert point to be 286 /// passed to SCEVExpander! 287 Instruction *findInsertPt(const SCEVExpander &Expander, Instruction *User, 288 ArrayRef<const SCEV *> Ops); 289 290 /// Return true if the value is known to produce a single fixed value across 291 /// all iterations on which it executes. Note that this does not imply 292 /// speculation safety. That must be established separately. 293 bool isLoopInvariantValue(const SCEV* S); 294 295 Value *expandCheck(SCEVExpander &Expander, Instruction *Guard, 296 ICmpInst::Predicate Pred, const SCEV *LHS, 297 const SCEV *RHS); 298 299 std::optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, 300 SCEVExpander &Expander, 301 Instruction *Guard); 302 std::optional<Value *> 303 widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, LoopICmp RangeCheck, 304 SCEVExpander &Expander, 305 Instruction *Guard); 306 std::optional<Value *> 307 widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, LoopICmp RangeCheck, 308 SCEVExpander &Expander, 309 Instruction *Guard); 310 void widenChecks(SmallVectorImpl<Value *> &Checks, 311 SmallVectorImpl<Value *> &WidenedChecks, 312 SCEVExpander &Expander, Instruction *Guard); 313 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander); 314 bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander); 315 // If the loop always exits through another block in the loop, we should not 316 // predicate based on the latch check. For example, the latch check can be a 317 // very coarse grained check and there can be more fine grained exit checks 318 // within the loop. 319 bool isLoopProfitableToPredicate(); 320 321 bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter); 322 323 public: 324 LoopPredication(AliasAnalysis *AA, DominatorTree *DT, ScalarEvolution *SE, 325 LoopInfo *LI, MemorySSAUpdater *MSSAU) 326 : AA(AA), DT(DT), SE(SE), LI(LI), MSSAU(MSSAU){}; 327 bool runOnLoop(Loop *L); 328 }; 329 330 } // end namespace 331 332 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM, 333 LoopStandardAnalysisResults &AR, 334 LPMUpdater &U) { 335 std::unique_ptr<MemorySSAUpdater> MSSAU; 336 if (AR.MSSA) 337 MSSAU = std::make_unique<MemorySSAUpdater>(AR.MSSA); 338 LoopPredication LP(&AR.AA, &AR.DT, &AR.SE, &AR.LI, 339 MSSAU ? MSSAU.get() : nullptr); 340 if (!LP.runOnLoop(&L)) 341 return PreservedAnalyses::all(); 342 343 auto PA = getLoopPassPreservedAnalyses(); 344 if (AR.MSSA) 345 PA.preserve<MemorySSAAnalysis>(); 346 return PA; 347 } 348 349 std::optional<LoopICmp> LoopPredication::parseLoopICmp(ICmpInst *ICI) { 350 auto Pred = ICI->getPredicate(); 351 auto *LHS = ICI->getOperand(0); 352 auto *RHS = ICI->getOperand(1); 353 354 const SCEV *LHSS = SE->getSCEV(LHS); 355 if (isa<SCEVCouldNotCompute>(LHSS)) 356 return std::nullopt; 357 const SCEV *RHSS = SE->getSCEV(RHS); 358 if (isa<SCEVCouldNotCompute>(RHSS)) 359 return std::nullopt; 360 361 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV 362 if (SE->isLoopInvariant(LHSS, L)) { 363 std::swap(LHS, RHS); 364 std::swap(LHSS, RHSS); 365 Pred = ICmpInst::getSwappedPredicate(Pred); 366 } 367 368 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS); 369 if (!AR || AR->getLoop() != L) 370 return std::nullopt; 371 372 return LoopICmp(Pred, AR, RHSS); 373 } 374 375 Value *LoopPredication::expandCheck(SCEVExpander &Expander, 376 Instruction *Guard, 377 ICmpInst::Predicate Pred, const SCEV *LHS, 378 const SCEV *RHS) { 379 Type *Ty = LHS->getType(); 380 assert(Ty == RHS->getType() && "expandCheck operands have different types?"); 381 382 if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) { 383 IRBuilder<> Builder(Guard); 384 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS)) 385 return Builder.getTrue(); 386 if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred), 387 LHS, RHS)) 388 return Builder.getFalse(); 389 } 390 391 Value *LHSV = 392 Expander.expandCodeFor(LHS, Ty, findInsertPt(Expander, Guard, {LHS})); 393 Value *RHSV = 394 Expander.expandCodeFor(RHS, Ty, findInsertPt(Expander, Guard, {RHS})); 395 IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV})); 396 return Builder.CreateICmp(Pred, LHSV, RHSV); 397 } 398 399 // Returns true if its safe to truncate the IV to RangeCheckType. 400 // When the IV type is wider than the range operand type, we can still do loop 401 // predication, by generating SCEVs for the range and latch that are of the 402 // same type. We achieve this by generating a SCEV truncate expression for the 403 // latch IV. This is done iff truncation of the IV is a safe operation, 404 // without loss of information. 405 // Another way to achieve this is by generating a wider type SCEV for the 406 // range check operand, however, this needs a more involved check that 407 // operands do not overflow. This can lead to loss of information when the 408 // range operand is of the form: add i32 %offset, %iv. We need to prove that 409 // sext(x + y) is same as sext(x) + sext(y). 410 // This function returns true if we can safely represent the IV type in 411 // the RangeCheckType without loss of information. 412 static bool isSafeToTruncateWideIVType(const DataLayout &DL, 413 ScalarEvolution &SE, 414 const LoopICmp LatchCheck, 415 Type *RangeCheckType) { 416 if (!EnableIVTruncation) 417 return false; 418 assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()).getFixedValue() > 419 DL.getTypeSizeInBits(RangeCheckType).getFixedValue() && 420 "Expected latch check IV type to be larger than range check operand " 421 "type!"); 422 // The start and end values of the IV should be known. This is to guarantee 423 // that truncating the wide type will not lose information. 424 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit); 425 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart()); 426 if (!Limit || !Start) 427 return false; 428 // This check makes sure that the IV does not change sign during loop 429 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE, 430 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the 431 // IV wraps around, and the truncation of the IV would lose the range of 432 // iterations between 2^32 and 2^64. 433 if (!SE.getMonotonicPredicateType(LatchCheck.IV, LatchCheck.Pred)) 434 return false; 435 // The active bits should be less than the bits in the RangeCheckType. This 436 // guarantees that truncating the latch check to RangeCheckType is a safe 437 // operation. 438 auto RangeCheckTypeBitSize = 439 DL.getTypeSizeInBits(RangeCheckType).getFixedValue(); 440 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize && 441 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize; 442 } 443 444 445 // Return an LoopICmp describing a latch check equivlent to LatchCheck but with 446 // the requested type if safe to do so. May involve the use of a new IV. 447 static std::optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL, 448 ScalarEvolution &SE, 449 const LoopICmp LatchCheck, 450 Type *RangeCheckType) { 451 452 auto *LatchType = LatchCheck.IV->getType(); 453 if (RangeCheckType == LatchType) 454 return LatchCheck; 455 // For now, bail out if latch type is narrower than range type. 456 if (DL.getTypeSizeInBits(LatchType).getFixedValue() < 457 DL.getTypeSizeInBits(RangeCheckType).getFixedValue()) 458 return std::nullopt; 459 if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType)) 460 return std::nullopt; 461 // We can now safely identify the truncated version of the IV and limit for 462 // RangeCheckType. 463 LoopICmp NewLatchCheck; 464 NewLatchCheck.Pred = LatchCheck.Pred; 465 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>( 466 SE.getTruncateExpr(LatchCheck.IV, RangeCheckType)); 467 if (!NewLatchCheck.IV) 468 return std::nullopt; 469 NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType); 470 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType 471 << "can be represented as range check type:" 472 << *RangeCheckType << "\n"); 473 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n"); 474 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n"); 475 return NewLatchCheck; 476 } 477 478 bool LoopPredication::isSupportedStep(const SCEV* Step) { 479 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop); 480 } 481 482 Instruction *LoopPredication::findInsertPt(Instruction *Use, 483 ArrayRef<Value*> Ops) { 484 for (Value *Op : Ops) 485 if (!L->isLoopInvariant(Op)) 486 return Use; 487 return Preheader->getTerminator(); 488 } 489 490 Instruction *LoopPredication::findInsertPt(const SCEVExpander &Expander, 491 Instruction *Use, 492 ArrayRef<const SCEV *> Ops) { 493 // Subtlety: SCEV considers things to be invariant if the value produced is 494 // the same across iterations. This is not the same as being able to 495 // evaluate outside the loop, which is what we actually need here. 496 for (const SCEV *Op : Ops) 497 if (!SE->isLoopInvariant(Op, L) || 498 !Expander.isSafeToExpandAt(Op, Preheader->getTerminator())) 499 return Use; 500 return Preheader->getTerminator(); 501 } 502 503 bool LoopPredication::isLoopInvariantValue(const SCEV* S) { 504 // Handling expressions which produce invariant results, but *haven't* yet 505 // been removed from the loop serves two important purposes. 506 // 1) Most importantly, it resolves a pass ordering cycle which would 507 // otherwise need us to iteration licm, loop-predication, and either 508 // loop-unswitch or loop-peeling to make progress on examples with lots of 509 // predicable range checks in a row. (Since, in the general case, we can't 510 // hoist the length checks until the dominating checks have been discharged 511 // as we can't prove doing so is safe.) 512 // 2) As a nice side effect, this exposes the value of peeling or unswitching 513 // much more obviously in the IR. Otherwise, the cost modeling for other 514 // transforms would end up needing to duplicate all of this logic to model a 515 // check which becomes predictable based on a modeled peel or unswitch. 516 // 517 // The cost of doing so in the worst case is an extra fill from the stack in 518 // the loop to materialize the loop invariant test value instead of checking 519 // against the original IV which is presumable in a register inside the loop. 520 // Such cases are presumably rare, and hint at missing oppurtunities for 521 // other passes. 522 523 if (SE->isLoopInvariant(S, L)) 524 // Note: This the SCEV variant, so the original Value* may be within the 525 // loop even though SCEV has proven it is loop invariant. 526 return true; 527 528 // Handle a particular important case which SCEV doesn't yet know about which 529 // shows up in range checks on arrays with immutable lengths. 530 // TODO: This should be sunk inside SCEV. 531 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 532 if (const auto *LI = dyn_cast<LoadInst>(U->getValue())) 533 if (LI->isUnordered() && L->hasLoopInvariantOperands(LI)) 534 if (!isModSet(AA->getModRefInfoMask(LI->getOperand(0))) || 535 LI->hasMetadata(LLVMContext::MD_invariant_load)) 536 return true; 537 return false; 538 } 539 540 std::optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop( 541 LoopICmp LatchCheck, LoopICmp RangeCheck, SCEVExpander &Expander, 542 Instruction *Guard) { 543 auto *Ty = RangeCheck.IV->getType(); 544 // Generate the widened condition for the forward loop: 545 // guardStart u< guardLimit && 546 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart 547 // where <pred> depends on the latch condition predicate. See the file 548 // header comment for the reasoning. 549 // guardLimit - guardStart + latchStart - 1 550 const SCEV *GuardStart = RangeCheck.IV->getStart(); 551 const SCEV *GuardLimit = RangeCheck.Limit; 552 const SCEV *LatchStart = LatchCheck.IV->getStart(); 553 const SCEV *LatchLimit = LatchCheck.Limit; 554 // Subtlety: We need all the values to be *invariant* across all iterations, 555 // but we only need to check expansion safety for those which *aren't* 556 // already guaranteed to dominate the guard. 557 if (!isLoopInvariantValue(GuardStart) || 558 !isLoopInvariantValue(GuardLimit) || 559 !isLoopInvariantValue(LatchStart) || 560 !isLoopInvariantValue(LatchLimit)) { 561 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 562 return std::nullopt; 563 } 564 if (!Expander.isSafeToExpandAt(LatchStart, Guard) || 565 !Expander.isSafeToExpandAt(LatchLimit, Guard)) { 566 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 567 return std::nullopt; 568 } 569 570 // guardLimit - guardStart + latchStart - 1 571 const SCEV *RHS = 572 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart), 573 SE->getMinusSCEV(LatchStart, SE->getOne(Ty))); 574 auto LimitCheckPred = 575 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 576 577 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n"); 578 LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n"); 579 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n"); 580 581 auto *LimitCheck = 582 expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS); 583 auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred, 584 GuardStart, GuardLimit); 585 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck})); 586 return Builder.CreateFreeze( 587 Builder.CreateAnd(FirstIterationCheck, LimitCheck)); 588 } 589 590 std::optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop( 591 LoopICmp LatchCheck, LoopICmp RangeCheck, SCEVExpander &Expander, 592 Instruction *Guard) { 593 auto *Ty = RangeCheck.IV->getType(); 594 const SCEV *GuardStart = RangeCheck.IV->getStart(); 595 const SCEV *GuardLimit = RangeCheck.Limit; 596 const SCEV *LatchStart = LatchCheck.IV->getStart(); 597 const SCEV *LatchLimit = LatchCheck.Limit; 598 // Subtlety: We need all the values to be *invariant* across all iterations, 599 // but we only need to check expansion safety for those which *aren't* 600 // already guaranteed to dominate the guard. 601 if (!isLoopInvariantValue(GuardStart) || 602 !isLoopInvariantValue(GuardLimit) || 603 !isLoopInvariantValue(LatchStart) || 604 !isLoopInvariantValue(LatchLimit)) { 605 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 606 return std::nullopt; 607 } 608 if (!Expander.isSafeToExpandAt(LatchStart, Guard) || 609 !Expander.isSafeToExpandAt(LatchLimit, Guard)) { 610 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 611 return std::nullopt; 612 } 613 // The decrement of the latch check IV should be the same as the 614 // rangeCheckIV. 615 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE); 616 if (RangeCheck.IV != PostDecLatchCheckIV) { 617 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: " 618 << *PostDecLatchCheckIV 619 << " and RangeCheckIV: " << *RangeCheck.IV << "\n"); 620 return std::nullopt; 621 } 622 623 // Generate the widened condition for CountDownLoop: 624 // guardStart u< guardLimit && 625 // latchLimit <pred> 1. 626 // See the header comment for reasoning of the checks. 627 auto LimitCheckPred = 628 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 629 auto *FirstIterationCheck = expandCheck(Expander, Guard, 630 ICmpInst::ICMP_ULT, 631 GuardStart, GuardLimit); 632 auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, 633 SE->getOne(Ty)); 634 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck})); 635 return Builder.CreateFreeze( 636 Builder.CreateAnd(FirstIterationCheck, LimitCheck)); 637 } 638 639 static void normalizePredicate(ScalarEvolution *SE, Loop *L, 640 LoopICmp& RC) { 641 // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the 642 // ULT/UGE form for ease of handling by our caller. 643 if (ICmpInst::isEquality(RC.Pred) && 644 RC.IV->getStepRecurrence(*SE)->isOne() && 645 SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit)) 646 RC.Pred = RC.Pred == ICmpInst::ICMP_NE ? 647 ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE; 648 } 649 650 /// If ICI can be widened to a loop invariant condition emits the loop 651 /// invariant condition in the loop preheader and return it, otherwise 652 /// returns std::nullopt. 653 std::optional<Value *> 654 LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander, 655 Instruction *Guard) { 656 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n"); 657 LLVM_DEBUG(ICI->dump()); 658 659 // parseLoopStructure guarantees that the latch condition is: 660 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=. 661 // We are looking for the range checks of the form: 662 // i u< guardLimit 663 auto RangeCheck = parseLoopICmp(ICI); 664 if (!RangeCheck) { 665 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 666 return std::nullopt; 667 } 668 LLVM_DEBUG(dbgs() << "Guard check:\n"); 669 LLVM_DEBUG(RangeCheck->dump()); 670 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) { 671 LLVM_DEBUG(dbgs() << "Unsupported range check predicate(" 672 << RangeCheck->Pred << ")!\n"); 673 return std::nullopt; 674 } 675 auto *RangeCheckIV = RangeCheck->IV; 676 if (!RangeCheckIV->isAffine()) { 677 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n"); 678 return std::nullopt; 679 } 680 auto *Step = RangeCheckIV->getStepRecurrence(*SE); 681 // We cannot just compare with latch IV step because the latch and range IVs 682 // may have different types. 683 if (!isSupportedStep(Step)) { 684 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n"); 685 return std::nullopt; 686 } 687 auto *Ty = RangeCheckIV->getType(); 688 auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty); 689 if (!CurrLatchCheckOpt) { 690 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check " 691 "corresponding to range type: " 692 << *Ty << "\n"); 693 return std::nullopt; 694 } 695 696 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt; 697 // At this point, the range and latch step should have the same type, but need 698 // not have the same value (we support both 1 and -1 steps). 699 assert(Step->getType() == 700 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() && 701 "Range and latch steps should be of same type!"); 702 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) { 703 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n"); 704 return std::nullopt; 705 } 706 707 if (Step->isOne()) 708 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck, 709 Expander, Guard); 710 else { 711 assert(Step->isAllOnesValue() && "Step should be -1!"); 712 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck, 713 Expander, Guard); 714 } 715 } 716 717 void LoopPredication::widenChecks(SmallVectorImpl<Value *> &Checks, 718 SmallVectorImpl<Value *> &WidenedChecks, 719 SCEVExpander &Expander, Instruction *Guard) { 720 for (auto &Check : Checks) 721 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Check)) 722 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Guard)) { 723 WidenedChecks.push_back(Check); 724 Check = *NewRangeCheck; 725 } 726 } 727 728 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, 729 SCEVExpander &Expander) { 730 LLVM_DEBUG(dbgs() << "Processing guard:\n"); 731 LLVM_DEBUG(Guard->dump()); 732 733 TotalConsidered++; 734 SmallVector<Value *, 4> Checks; 735 SmallVector<Value *> WidenedChecks; 736 parseWidenableGuard(Guard, Checks); 737 widenChecks(Checks, WidenedChecks, Expander, Guard); 738 if (WidenedChecks.empty()) 739 return false; 740 741 TotalWidened += WidenedChecks.size(); 742 743 // Emit the new guard condition 744 IRBuilder<> Builder(findInsertPt(Guard, Checks)); 745 Value *AllChecks = Builder.CreateAnd(Checks); 746 auto *OldCond = Guard->getOperand(0); 747 Guard->setOperand(0, AllChecks); 748 if (InsertAssumesOfPredicatedGuardsConditions) { 749 Builder.SetInsertPoint(&*++BasicBlock::iterator(Guard)); 750 Builder.CreateAssumption(OldCond); 751 } 752 RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU); 753 754 LLVM_DEBUG(dbgs() << "Widened checks = " << WidenedChecks.size() << "\n"); 755 return true; 756 } 757 758 bool LoopPredication::widenWidenableBranchGuardConditions( 759 BranchInst *BI, SCEVExpander &Expander) { 760 assert(isGuardAsWidenableBranch(BI) && "Must be!"); 761 LLVM_DEBUG(dbgs() << "Processing guard:\n"); 762 LLVM_DEBUG(BI->dump()); 763 764 TotalConsidered++; 765 SmallVector<Value *, 4> Checks; 766 SmallVector<Value *> WidenedChecks; 767 parseWidenableGuard(BI, Checks); 768 // At the moment, our matching logic for wideable conditions implicitly 769 // assumes we preserve the form: (br (and Cond, WC())). FIXME 770 auto WC = extractWidenableCondition(BI); 771 Checks.push_back(WC); 772 widenChecks(Checks, WidenedChecks, Expander, BI); 773 if (WidenedChecks.empty()) 774 return false; 775 776 TotalWidened += WidenedChecks.size(); 777 778 // Emit the new guard condition 779 IRBuilder<> Builder(findInsertPt(BI, Checks)); 780 Value *AllChecks = Builder.CreateAnd(Checks); 781 auto *OldCond = BI->getCondition(); 782 BI->setCondition(AllChecks); 783 if (InsertAssumesOfPredicatedGuardsConditions) { 784 BasicBlock *IfTrueBB = BI->getSuccessor(0); 785 Builder.SetInsertPoint(IfTrueBB, IfTrueBB->getFirstInsertionPt()); 786 // If this block has other predecessors, we might not be able to use Cond. 787 // In this case, create a Phi where every other input is `true` and input 788 // from guard block is Cond. 789 Value *AssumeCond = Builder.CreateAnd(WidenedChecks); 790 if (!IfTrueBB->getUniquePredecessor()) { 791 auto *GuardBB = BI->getParent(); 792 auto *PN = Builder.CreatePHI(AssumeCond->getType(), pred_size(IfTrueBB), 793 "assume.cond"); 794 for (auto *Pred : predecessors(IfTrueBB)) 795 PN->addIncoming(Pred == GuardBB ? AssumeCond : Builder.getTrue(), Pred); 796 AssumeCond = PN; 797 } 798 Builder.CreateAssumption(AssumeCond); 799 } 800 RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU); 801 assert(isGuardAsWidenableBranch(BI) && 802 "Stopped being a guard after transform?"); 803 804 LLVM_DEBUG(dbgs() << "Widened checks = " << WidenedChecks.size() << "\n"); 805 return true; 806 } 807 808 std::optional<LoopICmp> LoopPredication::parseLoopLatchICmp() { 809 using namespace PatternMatch; 810 811 BasicBlock *LoopLatch = L->getLoopLatch(); 812 if (!LoopLatch) { 813 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n"); 814 return std::nullopt; 815 } 816 817 auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator()); 818 if (!BI || !BI->isConditional()) { 819 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n"); 820 return std::nullopt; 821 } 822 BasicBlock *TrueDest = BI->getSuccessor(0); 823 assert( 824 (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) && 825 "One of the latch's destinations must be the header"); 826 827 auto *ICI = dyn_cast<ICmpInst>(BI->getCondition()); 828 if (!ICI) { 829 LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n"); 830 return std::nullopt; 831 } 832 auto Result = parseLoopICmp(ICI); 833 if (!Result) { 834 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 835 return std::nullopt; 836 } 837 838 if (TrueDest != L->getHeader()) 839 Result->Pred = ICmpInst::getInversePredicate(Result->Pred); 840 841 // Check affine first, so if it's not we don't try to compute the step 842 // recurrence. 843 if (!Result->IV->isAffine()) { 844 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n"); 845 return std::nullopt; 846 } 847 848 auto *Step = Result->IV->getStepRecurrence(*SE); 849 if (!isSupportedStep(Step)) { 850 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n"); 851 return std::nullopt; 852 } 853 854 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) { 855 if (Step->isOne()) { 856 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT && 857 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE; 858 } else { 859 assert(Step->isAllOnesValue() && "Step should be -1!"); 860 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT && 861 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE; 862 } 863 }; 864 865 normalizePredicate(SE, L, *Result); 866 if (IsUnsupportedPredicate(Step, Result->Pred)) { 867 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred 868 << ")!\n"); 869 return std::nullopt; 870 } 871 872 return Result; 873 } 874 875 bool LoopPredication::isLoopProfitableToPredicate() { 876 if (SkipProfitabilityChecks) 877 return true; 878 879 SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges; 880 L->getExitEdges(ExitEdges); 881 // If there is only one exiting edge in the loop, it is always profitable to 882 // predicate the loop. 883 if (ExitEdges.size() == 1) 884 return true; 885 886 // Calculate the exiting probabilities of all exiting edges from the loop, 887 // starting with the LatchExitProbability. 888 // Heuristic for profitability: If any of the exiting blocks' probability of 889 // exiting the loop is larger than exiting through the latch block, it's not 890 // profitable to predicate the loop. 891 auto *LatchBlock = L->getLoopLatch(); 892 assert(LatchBlock && "Should have a single latch at this point!"); 893 auto *LatchTerm = LatchBlock->getTerminator(); 894 assert(LatchTerm->getNumSuccessors() == 2 && 895 "expected to be an exiting block with 2 succs!"); 896 unsigned LatchBrExitIdx = 897 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0; 898 // We compute branch probabilities without BPI. We do not rely on BPI since 899 // Loop predication is usually run in an LPM and BPI is only preserved 900 // lossily within loop pass managers, while BPI has an inherent notion of 901 // being complete for an entire function. 902 903 // If the latch exits into a deoptimize or an unreachable block, do not 904 // predicate on that latch check. 905 auto *LatchExitBlock = LatchTerm->getSuccessor(LatchBrExitIdx); 906 if (isa<UnreachableInst>(LatchTerm) || 907 LatchExitBlock->getTerminatingDeoptimizeCall()) 908 return false; 909 910 // Latch terminator has no valid profile data, so nothing to check 911 // profitability on. 912 if (!hasValidBranchWeightMD(*LatchTerm)) 913 return true; 914 915 auto ComputeBranchProbability = 916 [&](const BasicBlock *ExitingBlock, 917 const BasicBlock *ExitBlock) -> BranchProbability { 918 auto *Term = ExitingBlock->getTerminator(); 919 unsigned NumSucc = Term->getNumSuccessors(); 920 if (MDNode *ProfileData = getValidBranchWeightMDNode(*Term)) { 921 SmallVector<uint32_t> Weights; 922 extractBranchWeights(ProfileData, Weights); 923 uint64_t Numerator = 0, Denominator = 0; 924 for (auto [i, Weight] : llvm::enumerate(Weights)) { 925 if (Term->getSuccessor(i) == ExitBlock) 926 Numerator += Weight; 927 Denominator += Weight; 928 } 929 // If all weights are zero act as if there was no profile data 930 if (Denominator == 0) 931 return BranchProbability::getBranchProbability(1, NumSucc); 932 return BranchProbability::getBranchProbability(Numerator, Denominator); 933 } else { 934 assert(LatchBlock != ExitingBlock && 935 "Latch term should always have profile data!"); 936 // No profile data, so we choose the weight as 1/num_of_succ(Src) 937 return BranchProbability::getBranchProbability(1, NumSucc); 938 } 939 }; 940 941 BranchProbability LatchExitProbability = 942 ComputeBranchProbability(LatchBlock, LatchExitBlock); 943 944 // Protect against degenerate inputs provided by the user. Providing a value 945 // less than one, can invert the definition of profitable loop predication. 946 float ScaleFactor = LatchExitProbabilityScale; 947 if (ScaleFactor < 1) { 948 LLVM_DEBUG( 949 dbgs() 950 << "Ignored user setting for loop-predication-latch-probability-scale: " 951 << LatchExitProbabilityScale << "\n"); 952 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n"); 953 ScaleFactor = 1.0; 954 } 955 const auto LatchProbabilityThreshold = LatchExitProbability * ScaleFactor; 956 957 for (const auto &ExitEdge : ExitEdges) { 958 BranchProbability ExitingBlockProbability = 959 ComputeBranchProbability(ExitEdge.first, ExitEdge.second); 960 // Some exiting edge has higher probability than the latch exiting edge. 961 // No longer profitable to predicate. 962 if (ExitingBlockProbability > LatchProbabilityThreshold) 963 return false; 964 } 965 966 // We have concluded that the most probable way to exit from the 967 // loop is through the latch (or there's no profile information and all 968 // exits are equally likely). 969 return true; 970 } 971 972 /// If we can (cheaply) find a widenable branch which controls entry into the 973 /// loop, return it. 974 static BranchInst *FindWidenableTerminatorAboveLoop(Loop *L, LoopInfo &LI) { 975 // Walk back through any unconditional executed blocks and see if we can find 976 // a widenable condition which seems to control execution of this loop. Note 977 // that we predict that maythrow calls are likely untaken and thus that it's 978 // profitable to widen a branch before a maythrow call with a condition 979 // afterwards even though that may cause the slow path to run in a case where 980 // it wouldn't have otherwise. 981 BasicBlock *BB = L->getLoopPreheader(); 982 if (!BB) 983 return nullptr; 984 do { 985 if (BasicBlock *Pred = BB->getSinglePredecessor()) 986 if (BB == Pred->getSingleSuccessor()) { 987 BB = Pred; 988 continue; 989 } 990 break; 991 } while (true); 992 993 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 994 if (auto *BI = dyn_cast<BranchInst>(Pred->getTerminator())) 995 if (BI->getSuccessor(0) == BB && isWidenableBranch(BI)) 996 return BI; 997 } 998 return nullptr; 999 } 1000 1001 /// Return the minimum of all analyzeable exit counts. This is an upper bound 1002 /// on the actual exit count. If there are not at least two analyzeable exits, 1003 /// returns SCEVCouldNotCompute. 1004 static const SCEV *getMinAnalyzeableBackedgeTakenCount(ScalarEvolution &SE, 1005 DominatorTree &DT, 1006 Loop *L) { 1007 SmallVector<BasicBlock *, 16> ExitingBlocks; 1008 L->getExitingBlocks(ExitingBlocks); 1009 1010 SmallVector<const SCEV *, 4> ExitCounts; 1011 for (BasicBlock *ExitingBB : ExitingBlocks) { 1012 const SCEV *ExitCount = SE.getExitCount(L, ExitingBB); 1013 if (isa<SCEVCouldNotCompute>(ExitCount)) 1014 continue; 1015 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 1016 "We should only have known counts for exiting blocks that " 1017 "dominate latch!"); 1018 ExitCounts.push_back(ExitCount); 1019 } 1020 if (ExitCounts.size() < 2) 1021 return SE.getCouldNotCompute(); 1022 return SE.getUMinFromMismatchedTypes(ExitCounts); 1023 } 1024 1025 /// This implements an analogous, but entirely distinct transform from the main 1026 /// loop predication transform. This one is phrased in terms of using a 1027 /// widenable branch *outside* the loop to allow us to simplify loop exits in a 1028 /// following loop. This is close in spirit to the IndVarSimplify transform 1029 /// of the same name, but is materially different widening loosens legality 1030 /// sharply. 1031 bool LoopPredication::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) { 1032 // The transformation performed here aims to widen a widenable condition 1033 // above the loop such that all analyzeable exit leading to deopt are dead. 1034 // It assumes that the latch is the dominant exit for profitability and that 1035 // exits branching to deoptimizing blocks are rarely taken. It relies on the 1036 // semantics of widenable expressions for legality. (i.e. being able to fall 1037 // down the widenable path spuriously allows us to ignore exit order, 1038 // unanalyzeable exits, side effects, exceptional exits, and other challenges 1039 // which restrict the applicability of the non-WC based version of this 1040 // transform in IndVarSimplify.) 1041 // 1042 // NOTE ON POISON/UNDEF - We're hoisting an expression above guards which may 1043 // imply flags on the expression being hoisted and inserting new uses (flags 1044 // are only correct for current uses). The result is that we may be 1045 // inserting a branch on the value which can be either poison or undef. In 1046 // this case, the branch can legally go either way; we just need to avoid 1047 // introducing UB. This is achieved through the use of the freeze 1048 // instruction. 1049 1050 SmallVector<BasicBlock *, 16> ExitingBlocks; 1051 L->getExitingBlocks(ExitingBlocks); 1052 1053 if (ExitingBlocks.empty()) 1054 return false; // Nothing to do. 1055 1056 auto *Latch = L->getLoopLatch(); 1057 if (!Latch) 1058 return false; 1059 1060 auto *WidenableBR = FindWidenableTerminatorAboveLoop(L, *LI); 1061 if (!WidenableBR) 1062 return false; 1063 1064 const SCEV *LatchEC = SE->getExitCount(L, Latch); 1065 if (isa<SCEVCouldNotCompute>(LatchEC)) 1066 return false; // profitability - want hot exit in analyzeable set 1067 1068 // At this point, we have found an analyzeable latch, and a widenable 1069 // condition above the loop. If we have a widenable exit within the loop 1070 // (for which we can't compute exit counts), drop the ability to further 1071 // widen so that we gain ability to analyze it's exit count and perform this 1072 // transform. TODO: It'd be nice to know for sure the exit became 1073 // analyzeable after dropping widenability. 1074 bool ChangedLoop = false; 1075 1076 for (auto *ExitingBB : ExitingBlocks) { 1077 if (LI->getLoopFor(ExitingBB) != L) 1078 continue; 1079 1080 auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1081 if (!BI) 1082 continue; 1083 1084 if (auto WC = extractWidenableCondition(BI)) 1085 if (L->contains(BI->getSuccessor(0))) { 1086 assert(WC->hasOneUse() && "Not appropriate widenable branch!"); 1087 WC->user_back()->replaceUsesOfWith( 1088 WC, ConstantInt::getTrue(BI->getContext())); 1089 ChangedLoop = true; 1090 } 1091 } 1092 if (ChangedLoop) 1093 SE->forgetLoop(L); 1094 1095 // The insertion point for the widening should be at the widenably call, not 1096 // at the WidenableBR. If we do this at the widenableBR, we can incorrectly 1097 // change a loop-invariant condition to a loop-varying one. 1098 auto *IP = cast<Instruction>(WidenableBR->getCondition()); 1099 1100 // The use of umin(all analyzeable exits) instead of latch is subtle, but 1101 // important for profitability. We may have a loop which hasn't been fully 1102 // canonicalized just yet. If the exit we chose to widen is provably never 1103 // taken, we want the widened form to *also* be provably never taken. We 1104 // can't guarantee this as a current unanalyzeable exit may later become 1105 // analyzeable, but we can at least avoid the obvious cases. 1106 const SCEV *MinEC = getMinAnalyzeableBackedgeTakenCount(*SE, *DT, L); 1107 if (isa<SCEVCouldNotCompute>(MinEC) || MinEC->getType()->isPointerTy() || 1108 !SE->isLoopInvariant(MinEC, L) || 1109 !Rewriter.isSafeToExpandAt(MinEC, IP)) 1110 return ChangedLoop; 1111 1112 Rewriter.setInsertPoint(IP); 1113 IRBuilder<> B(IP); 1114 1115 bool InvalidateLoop = false; 1116 Value *MinECV = nullptr; // lazily generated if needed 1117 for (BasicBlock *ExitingBB : ExitingBlocks) { 1118 // If our exiting block exits multiple loops, we can only rewrite the 1119 // innermost one. Otherwise, we're changing how many times the innermost 1120 // loop runs before it exits. 1121 if (LI->getLoopFor(ExitingBB) != L) 1122 continue; 1123 1124 // Can't rewrite non-branch yet. 1125 auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1126 if (!BI) 1127 continue; 1128 1129 // If already constant, nothing to do. 1130 if (isa<Constant>(BI->getCondition())) 1131 continue; 1132 1133 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1134 if (isa<SCEVCouldNotCompute>(ExitCount) || 1135 ExitCount->getType()->isPointerTy() || 1136 !Rewriter.isSafeToExpandAt(ExitCount, WidenableBR)) 1137 continue; 1138 1139 const bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); 1140 BasicBlock *ExitBB = BI->getSuccessor(ExitIfTrue ? 0 : 1); 1141 if (!ExitBB->getPostdominatingDeoptimizeCall()) 1142 continue; 1143 1144 /// Here we can be fairly sure that executing this exit will most likely 1145 /// lead to executing llvm.experimental.deoptimize. 1146 /// This is a profitability heuristic, not a legality constraint. 1147 1148 // If we found a widenable exit condition, do two things: 1149 // 1) fold the widened exit test into the widenable condition 1150 // 2) fold the branch to untaken - avoids infinite looping 1151 1152 Value *ECV = Rewriter.expandCodeFor(ExitCount); 1153 if (!MinECV) 1154 MinECV = Rewriter.expandCodeFor(MinEC); 1155 Value *RHS = MinECV; 1156 if (ECV->getType() != RHS->getType()) { 1157 Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType()); 1158 ECV = B.CreateZExt(ECV, WiderTy); 1159 RHS = B.CreateZExt(RHS, WiderTy); 1160 } 1161 assert(!Latch || DT->dominates(ExitingBB, Latch)); 1162 Value *NewCond = B.CreateICmp(ICmpInst::ICMP_UGT, ECV, RHS); 1163 // Freeze poison or undef to an arbitrary bit pattern to ensure we can 1164 // branch without introducing UB. See NOTE ON POISON/UNDEF above for 1165 // context. 1166 NewCond = B.CreateFreeze(NewCond); 1167 1168 widenWidenableBranch(WidenableBR, NewCond); 1169 1170 Value *OldCond = BI->getCondition(); 1171 BI->setCondition(ConstantInt::get(OldCond->getType(), !ExitIfTrue)); 1172 InvalidateLoop = true; 1173 } 1174 1175 if (InvalidateLoop) 1176 // We just mutated a bunch of loop exits changing there exit counts 1177 // widely. We need to force recomputation of the exit counts given these 1178 // changes. Note that all of the inserted exits are never taken, and 1179 // should be removed next time the CFG is modified. 1180 SE->forgetLoop(L); 1181 1182 // Always return `true` since we have moved the WidenableBR's condition. 1183 return true; 1184 } 1185 1186 bool LoopPredication::runOnLoop(Loop *Loop) { 1187 L = Loop; 1188 1189 LLVM_DEBUG(dbgs() << "Analyzing "); 1190 LLVM_DEBUG(L->dump()); 1191 1192 Module *M = L->getHeader()->getModule(); 1193 1194 // There is nothing to do if the module doesn't use guards 1195 auto *GuardDecl = 1196 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); 1197 bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty(); 1198 auto *WCDecl = M->getFunction( 1199 Intrinsic::getName(Intrinsic::experimental_widenable_condition)); 1200 bool HasWidenableConditions = 1201 PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty(); 1202 if (!HasIntrinsicGuards && !HasWidenableConditions) 1203 return false; 1204 1205 DL = &M->getDataLayout(); 1206 1207 Preheader = L->getLoopPreheader(); 1208 if (!Preheader) 1209 return false; 1210 1211 auto LatchCheckOpt = parseLoopLatchICmp(); 1212 if (!LatchCheckOpt) 1213 return false; 1214 LatchCheck = *LatchCheckOpt; 1215 1216 LLVM_DEBUG(dbgs() << "Latch check:\n"); 1217 LLVM_DEBUG(LatchCheck.dump()); 1218 1219 if (!isLoopProfitableToPredicate()) { 1220 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n"); 1221 return false; 1222 } 1223 // Collect all the guards into a vector and process later, so as not 1224 // to invalidate the instruction iterator. 1225 SmallVector<IntrinsicInst *, 4> Guards; 1226 SmallVector<BranchInst *, 4> GuardsAsWidenableBranches; 1227 for (const auto BB : L->blocks()) { 1228 for (auto &I : *BB) 1229 if (isGuard(&I)) 1230 Guards.push_back(cast<IntrinsicInst>(&I)); 1231 if (PredicateWidenableBranchGuards && 1232 isGuardAsWidenableBranch(BB->getTerminator())) 1233 GuardsAsWidenableBranches.push_back( 1234 cast<BranchInst>(BB->getTerminator())); 1235 } 1236 1237 SCEVExpander Expander(*SE, *DL, "loop-predication"); 1238 bool Changed = false; 1239 for (auto *Guard : Guards) 1240 Changed |= widenGuardConditions(Guard, Expander); 1241 for (auto *Guard : GuardsAsWidenableBranches) 1242 Changed |= widenWidenableBranchGuardConditions(Guard, Expander); 1243 Changed |= predicateLoopExits(L, Expander); 1244 1245 if (MSSAU && VerifyMemorySSA) 1246 MSSAU->getMemorySSA()->verifyMemorySSA(); 1247 return Changed; 1248 } 1249