1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/StringExtras.h"
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/CodeGen/LivePhysRegs.h"
18 #include "llvm/CodeGen/LiveVariables.h"
19 #include "llvm/CodeGen/MachineDominators.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SlotIndexes.h"
26 #include "llvm/CodeGen/TargetInstrInfo.h"
27 #include "llvm/CodeGen/TargetLowering.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/Config/llvm-config.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/DebugInfoMetadata.h"
33 #include "llvm/IR/ModuleSlotTracker.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCContext.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include <algorithm>
40 #include <cmath>
41 using namespace llvm;
42
43 #define DEBUG_TYPE "codegen"
44
45 static cl::opt<bool> PrintSlotIndexes(
46 "print-slotindexes",
47 cl::desc("When printing machine IR, annotate instructions and blocks with "
48 "SlotIndexes when available"),
49 cl::init(true), cl::Hidden);
50
MachineBasicBlock(MachineFunction & MF,const BasicBlock * B)51 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
52 : BB(B), Number(-1), xParent(&MF) {
53 Insts.Parent = this;
54 if (B)
55 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
56 }
57
58 MachineBasicBlock::~MachineBasicBlock() = default;
59
60 /// Return the MCSymbol for this basic block.
getSymbol() const61 MCSymbol *MachineBasicBlock::getSymbol() const {
62 if (!CachedMCSymbol) {
63 const MachineFunction *MF = getParent();
64 MCContext &Ctx = MF->getContext();
65
66 // We emit a non-temporary symbol -- with a descriptive name -- if it begins
67 // a section (with basic block sections). Otherwise we fall back to use temp
68 // label.
69 if (MF->hasBBSections() && isBeginSection()) {
70 SmallString<5> Suffix;
71 if (SectionID == MBBSectionID::ColdSectionID) {
72 Suffix += ".cold";
73 } else if (SectionID == MBBSectionID::ExceptionSectionID) {
74 Suffix += ".eh";
75 } else {
76 // For symbols that represent basic block sections, we add ".__part." to
77 // allow tools like symbolizers to know that this represents a part of
78 // the original function.
79 Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str();
80 }
81 CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix);
82 } else {
83 // If the block occurs as label in inline assembly, parsing the assembly
84 // needs an actual label name => set AlwaysEmit in these cases.
85 CachedMCSymbol = Ctx.createBlockSymbol(
86 "BB" + Twine(MF->getFunctionNumber()) + "_" + Twine(getNumber()),
87 /*AlwaysEmit=*/hasLabelMustBeEmitted());
88 }
89 }
90 return CachedMCSymbol;
91 }
92
getEHCatchretSymbol() const93 MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const {
94 if (!CachedEHCatchretMCSymbol) {
95 const MachineFunction *MF = getParent();
96 SmallString<128> SymbolName;
97 raw_svector_ostream(SymbolName)
98 << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber();
99 CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName);
100 }
101 return CachedEHCatchretMCSymbol;
102 }
103
getEndSymbol() const104 MCSymbol *MachineBasicBlock::getEndSymbol() const {
105 if (!CachedEndMCSymbol) {
106 const MachineFunction *MF = getParent();
107 MCContext &Ctx = MF->getContext();
108 CachedEndMCSymbol = Ctx.createBlockSymbol(
109 "BB_END" + Twine(MF->getFunctionNumber()) + "_" + Twine(getNumber()),
110 /*AlwaysEmit=*/false);
111 }
112 return CachedEndMCSymbol;
113 }
114
operator <<(raw_ostream & OS,const MachineBasicBlock & MBB)115 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
116 MBB.print(OS);
117 return OS;
118 }
119
printMBBReference(const MachineBasicBlock & MBB)120 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
121 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
122 }
123
124 /// When an MBB is added to an MF, we need to update the parent pointer of the
125 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
126 /// operand list for registers.
127 ///
128 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
129 /// gets the next available unique MBB number. If it is removed from a
130 /// MachineFunction, it goes back to being #-1.
addNodeToList(MachineBasicBlock * N)131 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
132 MachineBasicBlock *N) {
133 MachineFunction &MF = *N->getParent();
134 N->Number = MF.addToMBBNumbering(N);
135
136 // Make sure the instructions have their operands in the reginfo lists.
137 MachineRegisterInfo &RegInfo = MF.getRegInfo();
138 for (MachineInstr &MI : N->instrs())
139 MI.addRegOperandsToUseLists(RegInfo);
140 }
141
removeNodeFromList(MachineBasicBlock * N)142 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
143 MachineBasicBlock *N) {
144 N->getParent()->removeFromMBBNumbering(N->Number);
145 N->Number = -1;
146 }
147
148 /// When we add an instruction to a basic block list, we update its parent
149 /// pointer and add its operands from reg use/def lists if appropriate.
addNodeToList(MachineInstr * N)150 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
151 assert(!N->getParent() && "machine instruction already in a basic block");
152 N->setParent(Parent);
153
154 // Add the instruction's register operands to their corresponding
155 // use/def lists.
156 MachineFunction *MF = Parent->getParent();
157 N->addRegOperandsToUseLists(MF->getRegInfo());
158 MF->handleInsertion(*N);
159 }
160
161 /// When we remove an instruction from a basic block list, we update its parent
162 /// pointer and remove its operands from reg use/def lists if appropriate.
removeNodeFromList(MachineInstr * N)163 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
164 assert(N->getParent() && "machine instruction not in a basic block");
165
166 // Remove from the use/def lists.
167 if (MachineFunction *MF = N->getMF()) {
168 MF->handleRemoval(*N);
169 N->removeRegOperandsFromUseLists(MF->getRegInfo());
170 }
171
172 N->setParent(nullptr);
173 }
174
175 /// When moving a range of instructions from one MBB list to another, we need to
176 /// update the parent pointers and the use/def lists.
transferNodesFromList(ilist_traits & FromList,instr_iterator First,instr_iterator Last)177 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
178 instr_iterator First,
179 instr_iterator Last) {
180 assert(Parent->getParent() == FromList.Parent->getParent() &&
181 "cannot transfer MachineInstrs between MachineFunctions");
182
183 // If it's within the same BB, there's nothing to do.
184 if (this == &FromList)
185 return;
186
187 assert(Parent != FromList.Parent && "Two lists have the same parent?");
188
189 // If splicing between two blocks within the same function, just update the
190 // parent pointers.
191 for (; First != Last; ++First)
192 First->setParent(Parent);
193 }
194
deleteNode(MachineInstr * MI)195 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
196 assert(!MI->getParent() && "MI is still in a block!");
197 Parent->getParent()->deleteMachineInstr(MI);
198 }
199
getFirstNonPHI()200 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
201 instr_iterator I = instr_begin(), E = instr_end();
202 while (I != E && I->isPHI())
203 ++I;
204 assert((I == E || !I->isInsideBundle()) &&
205 "First non-phi MI cannot be inside a bundle!");
206 return I;
207 }
208
209 MachineBasicBlock::iterator
SkipPHIsAndLabels(MachineBasicBlock::iterator I)210 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
211 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
212
213 iterator E = end();
214 while (I != E && (I->isPHI() || I->isPosition() ||
215 TII->isBasicBlockPrologue(*I)))
216 ++I;
217 // FIXME: This needs to change if we wish to bundle labels
218 // inside the bundle.
219 assert((I == E || !I->isInsideBundle()) &&
220 "First non-phi / non-label instruction is inside a bundle!");
221 return I;
222 }
223
224 MachineBasicBlock::iterator
SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I,Register Reg,bool SkipPseudoOp)225 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I,
226 Register Reg, bool SkipPseudoOp) {
227 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
228
229 iterator E = end();
230 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
231 (SkipPseudoOp && I->isPseudoProbe()) ||
232 TII->isBasicBlockPrologue(*I, Reg)))
233 ++I;
234 // FIXME: This needs to change if we wish to bundle labels / dbg_values
235 // inside the bundle.
236 assert((I == E || !I->isInsideBundle()) &&
237 "First non-phi / non-label / non-debug "
238 "instruction is inside a bundle!");
239 return I;
240 }
241
getFirstTerminator()242 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
243 iterator B = begin(), E = end(), I = E;
244 while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
245 ; /*noop */
246 while (I != E && !I->isTerminator())
247 ++I;
248 return I;
249 }
250
getFirstInstrTerminator()251 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
252 instr_iterator B = instr_begin(), E = instr_end(), I = E;
253 while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
254 ; /*noop */
255 while (I != E && !I->isTerminator())
256 ++I;
257 return I;
258 }
259
getFirstTerminatorForward()260 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminatorForward() {
261 return find_if(instrs(), [](auto &II) { return II.isTerminator(); });
262 }
263
264 MachineBasicBlock::iterator
getFirstNonDebugInstr(bool SkipPseudoOp)265 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) {
266 // Skip over begin-of-block dbg_value instructions.
267 return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp);
268 }
269
270 MachineBasicBlock::iterator
getLastNonDebugInstr(bool SkipPseudoOp)271 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) {
272 // Skip over end-of-block dbg_value instructions.
273 instr_iterator B = instr_begin(), I = instr_end();
274 while (I != B) {
275 --I;
276 // Return instruction that starts a bundle.
277 if (I->isDebugInstr() || I->isInsideBundle())
278 continue;
279 if (SkipPseudoOp && I->isPseudoProbe())
280 continue;
281 return I;
282 }
283 // The block is all debug values.
284 return end();
285 }
286
hasEHPadSuccessor() const287 bool MachineBasicBlock::hasEHPadSuccessor() const {
288 for (const MachineBasicBlock *Succ : successors())
289 if (Succ->isEHPad())
290 return true;
291 return false;
292 }
293
isEntryBlock() const294 bool MachineBasicBlock::isEntryBlock() const {
295 return getParent()->begin() == getIterator();
296 }
297
298 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const299 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
300 print(dbgs());
301 }
302 #endif
303
mayHaveInlineAsmBr() const304 bool MachineBasicBlock::mayHaveInlineAsmBr() const {
305 for (const MachineBasicBlock *Succ : successors()) {
306 if (Succ->isInlineAsmBrIndirectTarget())
307 return true;
308 }
309 return false;
310 }
311
isLegalToHoistInto() const312 bool MachineBasicBlock::isLegalToHoistInto() const {
313 if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr())
314 return false;
315 return true;
316 }
317
hasName() const318 bool MachineBasicBlock::hasName() const {
319 if (const BasicBlock *LBB = getBasicBlock())
320 return LBB->hasName();
321 return false;
322 }
323
getName() const324 StringRef MachineBasicBlock::getName() const {
325 if (const BasicBlock *LBB = getBasicBlock())
326 return LBB->getName();
327 else
328 return StringRef("", 0);
329 }
330
331 /// Return a hopefully unique identifier for this block.
getFullName() const332 std::string MachineBasicBlock::getFullName() const {
333 std::string Name;
334 if (getParent())
335 Name = (getParent()->getName() + ":").str();
336 if (getBasicBlock())
337 Name += getBasicBlock()->getName();
338 else
339 Name += ("BB" + Twine(getNumber())).str();
340 return Name;
341 }
342
print(raw_ostream & OS,const SlotIndexes * Indexes,bool IsStandalone) const343 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
344 bool IsStandalone) const {
345 const MachineFunction *MF = getParent();
346 if (!MF) {
347 OS << "Can't print out MachineBasicBlock because parent MachineFunction"
348 << " is null\n";
349 return;
350 }
351 const Function &F = MF->getFunction();
352 const Module *M = F.getParent();
353 ModuleSlotTracker MST(M);
354 MST.incorporateFunction(F);
355 print(OS, MST, Indexes, IsStandalone);
356 }
357
print(raw_ostream & OS,ModuleSlotTracker & MST,const SlotIndexes * Indexes,bool IsStandalone) const358 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
359 const SlotIndexes *Indexes,
360 bool IsStandalone) const {
361 const MachineFunction *MF = getParent();
362 if (!MF) {
363 OS << "Can't print out MachineBasicBlock because parent MachineFunction"
364 << " is null\n";
365 return;
366 }
367
368 if (Indexes && PrintSlotIndexes)
369 OS << Indexes->getMBBStartIdx(this) << '\t';
370
371 printName(OS, PrintNameIr | PrintNameAttributes, &MST);
372 OS << ":\n";
373
374 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
375 const MachineRegisterInfo &MRI = MF->getRegInfo();
376 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
377 bool HasLineAttributes = false;
378
379 // Print the preds of this block according to the CFG.
380 if (!pred_empty() && IsStandalone) {
381 if (Indexes) OS << '\t';
382 // Don't indent(2), align with previous line attributes.
383 OS << "; predecessors: ";
384 ListSeparator LS;
385 for (auto *Pred : predecessors())
386 OS << LS << printMBBReference(*Pred);
387 OS << '\n';
388 HasLineAttributes = true;
389 }
390
391 if (!succ_empty()) {
392 if (Indexes) OS << '\t';
393 // Print the successors
394 OS.indent(2) << "successors: ";
395 ListSeparator LS;
396 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
397 OS << LS << printMBBReference(**I);
398 if (!Probs.empty())
399 OS << '('
400 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
401 << ')';
402 }
403 if (!Probs.empty() && IsStandalone) {
404 // Print human readable probabilities as comments.
405 OS << "; ";
406 ListSeparator LS;
407 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
408 const BranchProbability &BP = getSuccProbability(I);
409 OS << LS << printMBBReference(**I) << '('
410 << format("%.2f%%",
411 rint(((double)BP.getNumerator() / BP.getDenominator()) *
412 100.0 * 100.0) /
413 100.0)
414 << ')';
415 }
416 }
417
418 OS << '\n';
419 HasLineAttributes = true;
420 }
421
422 if (!livein_empty() && MRI.tracksLiveness()) {
423 if (Indexes) OS << '\t';
424 OS.indent(2) << "liveins: ";
425
426 ListSeparator LS;
427 for (const auto &LI : liveins()) {
428 OS << LS << printReg(LI.PhysReg, TRI);
429 if (!LI.LaneMask.all())
430 OS << ":0x" << PrintLaneMask(LI.LaneMask);
431 }
432 HasLineAttributes = true;
433 }
434
435 if (HasLineAttributes)
436 OS << '\n';
437
438 bool IsInBundle = false;
439 for (const MachineInstr &MI : instrs()) {
440 if (Indexes && PrintSlotIndexes) {
441 if (Indexes->hasIndex(MI))
442 OS << Indexes->getInstructionIndex(MI);
443 OS << '\t';
444 }
445
446 if (IsInBundle && !MI.isInsideBundle()) {
447 OS.indent(2) << "}\n";
448 IsInBundle = false;
449 }
450
451 OS.indent(IsInBundle ? 4 : 2);
452 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
453 /*AddNewLine=*/false, &TII);
454
455 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
456 OS << " {";
457 IsInBundle = true;
458 }
459 OS << '\n';
460 }
461
462 if (IsInBundle)
463 OS.indent(2) << "}\n";
464
465 if (IrrLoopHeaderWeight && IsStandalone) {
466 if (Indexes) OS << '\t';
467 OS.indent(2) << "; Irreducible loop header weight: " << *IrrLoopHeaderWeight
468 << '\n';
469 }
470 }
471
472 /// Print the basic block's name as:
473 ///
474 /// bb.{number}[.{ir-name}] [(attributes...)]
475 ///
476 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed
477 /// (which is the default). If the IR block has no name, it is identified
478 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})".
479 ///
480 /// When the \ref PrintNameAttributes flag is passed, additional attributes
481 /// of the block are printed when set.
482 ///
483 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating
484 /// the parts to print.
485 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will
486 /// incorporate its own tracker when necessary to
487 /// determine the block's IR name.
printName(raw_ostream & os,unsigned printNameFlags,ModuleSlotTracker * moduleSlotTracker) const488 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags,
489 ModuleSlotTracker *moduleSlotTracker) const {
490 os << "bb." << getNumber();
491 bool hasAttributes = false;
492
493 auto PrintBBRef = [&](const BasicBlock *bb) {
494 os << "%ir-block.";
495 if (bb->hasName()) {
496 os << bb->getName();
497 } else {
498 int slot = -1;
499
500 if (moduleSlotTracker) {
501 slot = moduleSlotTracker->getLocalSlot(bb);
502 } else if (bb->getParent()) {
503 ModuleSlotTracker tmpTracker(bb->getModule(), false);
504 tmpTracker.incorporateFunction(*bb->getParent());
505 slot = tmpTracker.getLocalSlot(bb);
506 }
507
508 if (slot == -1)
509 os << "<ir-block badref>";
510 else
511 os << slot;
512 }
513 };
514
515 if (printNameFlags & PrintNameIr) {
516 if (const auto *bb = getBasicBlock()) {
517 if (bb->hasName()) {
518 os << '.' << bb->getName();
519 } else {
520 hasAttributes = true;
521 os << " (";
522 PrintBBRef(bb);
523 }
524 }
525 }
526
527 if (printNameFlags & PrintNameAttributes) {
528 if (isMachineBlockAddressTaken()) {
529 os << (hasAttributes ? ", " : " (");
530 os << "machine-block-address-taken";
531 hasAttributes = true;
532 }
533 if (isIRBlockAddressTaken()) {
534 os << (hasAttributes ? ", " : " (");
535 os << "ir-block-address-taken ";
536 PrintBBRef(getAddressTakenIRBlock());
537 hasAttributes = true;
538 }
539 if (isEHPad()) {
540 os << (hasAttributes ? ", " : " (");
541 os << "landing-pad";
542 hasAttributes = true;
543 }
544 if (isInlineAsmBrIndirectTarget()) {
545 os << (hasAttributes ? ", " : " (");
546 os << "inlineasm-br-indirect-target";
547 hasAttributes = true;
548 }
549 if (isEHFuncletEntry()) {
550 os << (hasAttributes ? ", " : " (");
551 os << "ehfunclet-entry";
552 hasAttributes = true;
553 }
554 if (getAlignment() != Align(1)) {
555 os << (hasAttributes ? ", " : " (");
556 os << "align " << getAlignment().value();
557 hasAttributes = true;
558 }
559 if (getSectionID() != MBBSectionID(0)) {
560 os << (hasAttributes ? ", " : " (");
561 os << "bbsections ";
562 switch (getSectionID().Type) {
563 case MBBSectionID::SectionType::Exception:
564 os << "Exception";
565 break;
566 case MBBSectionID::SectionType::Cold:
567 os << "Cold";
568 break;
569 default:
570 os << getSectionID().Number;
571 }
572 hasAttributes = true;
573 }
574 if (getBBID().has_value()) {
575 os << (hasAttributes ? ", " : " (");
576 os << "bb_id " << getBBID()->BaseID;
577 if (getBBID()->CloneID != 0)
578 os << " " << getBBID()->CloneID;
579 hasAttributes = true;
580 }
581 if (CallFrameSize != 0) {
582 os << (hasAttributes ? ", " : " (");
583 os << "call-frame-size " << CallFrameSize;
584 hasAttributes = true;
585 }
586 }
587
588 if (hasAttributes)
589 os << ')';
590 }
591
printAsOperand(raw_ostream & OS,bool) const592 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
593 bool /*PrintType*/) const {
594 OS << '%';
595 printName(OS, 0);
596 }
597
removeLiveIn(MCPhysReg Reg,LaneBitmask LaneMask)598 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
599 LiveInVector::iterator I = find_if(
600 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
601 if (I == LiveIns.end())
602 return;
603
604 I->LaneMask &= ~LaneMask;
605 if (I->LaneMask.none())
606 LiveIns.erase(I);
607 }
608
609 MachineBasicBlock::livein_iterator
removeLiveIn(MachineBasicBlock::livein_iterator I)610 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
611 // Get non-const version of iterator.
612 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
613 return LiveIns.erase(LI);
614 }
615
isLiveIn(MCPhysReg Reg,LaneBitmask LaneMask) const616 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
617 livein_iterator I = find_if(
618 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
619 return I != livein_end() && (I->LaneMask & LaneMask).any();
620 }
621
sortUniqueLiveIns()622 void MachineBasicBlock::sortUniqueLiveIns() {
623 llvm::sort(LiveIns,
624 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
625 return LI0.PhysReg < LI1.PhysReg;
626 });
627 // Liveins are sorted by physreg now we can merge their lanemasks.
628 LiveInVector::const_iterator I = LiveIns.begin();
629 LiveInVector::const_iterator J;
630 LiveInVector::iterator Out = LiveIns.begin();
631 for (; I != LiveIns.end(); ++Out, I = J) {
632 MCRegister PhysReg = I->PhysReg;
633 LaneBitmask LaneMask = I->LaneMask;
634 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
635 LaneMask |= J->LaneMask;
636 Out->PhysReg = PhysReg;
637 Out->LaneMask = LaneMask;
638 }
639 LiveIns.erase(Out, LiveIns.end());
640 }
641
642 Register
addLiveIn(MCRegister PhysReg,const TargetRegisterClass * RC)643 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) {
644 assert(getParent() && "MBB must be inserted in function");
645 assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg");
646 assert(RC && "Register class is required");
647 assert((isEHPad() || this == &getParent()->front()) &&
648 "Only the entry block and landing pads can have physreg live ins");
649
650 bool LiveIn = isLiveIn(PhysReg);
651 iterator I = SkipPHIsAndLabels(begin()), E = end();
652 MachineRegisterInfo &MRI = getParent()->getRegInfo();
653 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
654
655 // Look for an existing copy.
656 if (LiveIn)
657 for (;I != E && I->isCopy(); ++I)
658 if (I->getOperand(1).getReg() == PhysReg) {
659 Register VirtReg = I->getOperand(0).getReg();
660 if (!MRI.constrainRegClass(VirtReg, RC))
661 llvm_unreachable("Incompatible live-in register class.");
662 return VirtReg;
663 }
664
665 // No luck, create a virtual register.
666 Register VirtReg = MRI.createVirtualRegister(RC);
667 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
668 .addReg(PhysReg, RegState::Kill);
669 if (!LiveIn)
670 addLiveIn(PhysReg);
671 return VirtReg;
672 }
673
moveBefore(MachineBasicBlock * NewAfter)674 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
675 getParent()->splice(NewAfter->getIterator(), getIterator());
676 }
677
moveAfter(MachineBasicBlock * NewBefore)678 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
679 getParent()->splice(++NewBefore->getIterator(), getIterator());
680 }
681
findJumpTableIndex(const MachineBasicBlock & MBB)682 static int findJumpTableIndex(const MachineBasicBlock &MBB) {
683 MachineBasicBlock::const_iterator TerminatorI = MBB.getFirstTerminator();
684 if (TerminatorI == MBB.end())
685 return -1;
686 const MachineInstr &Terminator = *TerminatorI;
687 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
688 return TII->getJumpTableIndex(Terminator);
689 }
690
updateTerminator(MachineBasicBlock * PreviousLayoutSuccessor)691 void MachineBasicBlock::updateTerminator(
692 MachineBasicBlock *PreviousLayoutSuccessor) {
693 LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this)
694 << "\n");
695
696 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
697 // A block with no successors has no concerns with fall-through edges.
698 if (this->succ_empty())
699 return;
700
701 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
702 SmallVector<MachineOperand, 4> Cond;
703 DebugLoc DL = findBranchDebugLoc();
704 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
705 (void) B;
706 assert(!B && "UpdateTerminators requires analyzable predecessors!");
707 if (Cond.empty()) {
708 if (TBB) {
709 // The block has an unconditional branch. If its successor is now its
710 // layout successor, delete the branch.
711 if (isLayoutSuccessor(TBB))
712 TII->removeBranch(*this);
713 } else {
714 // The block has an unconditional fallthrough, or the end of the block is
715 // unreachable.
716
717 // Unfortunately, whether the end of the block is unreachable is not
718 // immediately obvious; we must fall back to checking the successor list,
719 // and assuming that if the passed in block is in the succesor list and
720 // not an EHPad, it must be the intended target.
721 if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) ||
722 PreviousLayoutSuccessor->isEHPad())
723 return;
724
725 // If the unconditional successor block is not the current layout
726 // successor, insert a branch to jump to it.
727 if (!isLayoutSuccessor(PreviousLayoutSuccessor))
728 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
729 }
730 return;
731 }
732
733 if (FBB) {
734 // The block has a non-fallthrough conditional branch. If one of its
735 // successors is its layout successor, rewrite it to a fallthrough
736 // conditional branch.
737 if (isLayoutSuccessor(TBB)) {
738 if (TII->reverseBranchCondition(Cond))
739 return;
740 TII->removeBranch(*this);
741 TII->insertBranch(*this, FBB, nullptr, Cond, DL);
742 } else if (isLayoutSuccessor(FBB)) {
743 TII->removeBranch(*this);
744 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
745 }
746 return;
747 }
748
749 // We now know we're going to fallthrough to PreviousLayoutSuccessor.
750 assert(PreviousLayoutSuccessor);
751 assert(!PreviousLayoutSuccessor->isEHPad());
752 assert(isSuccessor(PreviousLayoutSuccessor));
753
754 if (PreviousLayoutSuccessor == TBB) {
755 // We had a fallthrough to the same basic block as the conditional jump
756 // targets. Remove the conditional jump, leaving an unconditional
757 // fallthrough or an unconditional jump.
758 TII->removeBranch(*this);
759 if (!isLayoutSuccessor(TBB)) {
760 Cond.clear();
761 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
762 }
763 return;
764 }
765
766 // The block has a fallthrough conditional branch.
767 if (isLayoutSuccessor(TBB)) {
768 if (TII->reverseBranchCondition(Cond)) {
769 // We can't reverse the condition, add an unconditional branch.
770 Cond.clear();
771 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
772 return;
773 }
774 TII->removeBranch(*this);
775 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
776 } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) {
777 TII->removeBranch(*this);
778 TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL);
779 }
780 }
781
validateSuccProbs() const782 void MachineBasicBlock::validateSuccProbs() const {
783 #ifndef NDEBUG
784 int64_t Sum = 0;
785 for (auto Prob : Probs)
786 Sum += Prob.getNumerator();
787 // Due to precision issue, we assume that the sum of probabilities is one if
788 // the difference between the sum of their numerators and the denominator is
789 // no greater than the number of successors.
790 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
791 Probs.size() &&
792 "The sum of successors's probabilities exceeds one.");
793 #endif // NDEBUG
794 }
795
addSuccessor(MachineBasicBlock * Succ,BranchProbability Prob)796 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
797 BranchProbability Prob) {
798 // Probability list is either empty (if successor list isn't empty, this means
799 // disabled optimization) or has the same size as successor list.
800 if (!(Probs.empty() && !Successors.empty()))
801 Probs.push_back(Prob);
802 Successors.push_back(Succ);
803 Succ->addPredecessor(this);
804 }
805
addSuccessorWithoutProb(MachineBasicBlock * Succ)806 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
807 // We need to make sure probability list is either empty or has the same size
808 // of successor list. When this function is called, we can safely delete all
809 // probability in the list.
810 Probs.clear();
811 Successors.push_back(Succ);
812 Succ->addPredecessor(this);
813 }
814
splitSuccessor(MachineBasicBlock * Old,MachineBasicBlock * New,bool NormalizeSuccProbs)815 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
816 MachineBasicBlock *New,
817 bool NormalizeSuccProbs) {
818 succ_iterator OldI = llvm::find(successors(), Old);
819 assert(OldI != succ_end() && "Old is not a successor of this block!");
820 assert(!llvm::is_contained(successors(), New) &&
821 "New is already a successor of this block!");
822
823 // Add a new successor with equal probability as the original one. Note
824 // that we directly copy the probability using the iterator rather than
825 // getting a potentially synthetic probability computed when unknown. This
826 // preserves the probabilities as-is and then we can renormalize them and
827 // query them effectively afterward.
828 addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
829 : *getProbabilityIterator(OldI));
830 if (NormalizeSuccProbs)
831 normalizeSuccProbs();
832 }
833
removeSuccessor(MachineBasicBlock * Succ,bool NormalizeSuccProbs)834 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
835 bool NormalizeSuccProbs) {
836 succ_iterator I = find(Successors, Succ);
837 removeSuccessor(I, NormalizeSuccProbs);
838 }
839
840 MachineBasicBlock::succ_iterator
removeSuccessor(succ_iterator I,bool NormalizeSuccProbs)841 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
842 assert(I != Successors.end() && "Not a current successor!");
843
844 // If probability list is empty it means we don't use it (disabled
845 // optimization).
846 if (!Probs.empty()) {
847 probability_iterator WI = getProbabilityIterator(I);
848 Probs.erase(WI);
849 if (NormalizeSuccProbs)
850 normalizeSuccProbs();
851 }
852
853 (*I)->removePredecessor(this);
854 return Successors.erase(I);
855 }
856
replaceSuccessor(MachineBasicBlock * Old,MachineBasicBlock * New)857 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
858 MachineBasicBlock *New) {
859 if (Old == New)
860 return;
861
862 succ_iterator E = succ_end();
863 succ_iterator NewI = E;
864 succ_iterator OldI = E;
865 for (succ_iterator I = succ_begin(); I != E; ++I) {
866 if (*I == Old) {
867 OldI = I;
868 if (NewI != E)
869 break;
870 }
871 if (*I == New) {
872 NewI = I;
873 if (OldI != E)
874 break;
875 }
876 }
877 assert(OldI != E && "Old is not a successor of this block");
878
879 // If New isn't already a successor, let it take Old's place.
880 if (NewI == E) {
881 Old->removePredecessor(this);
882 New->addPredecessor(this);
883 *OldI = New;
884 return;
885 }
886
887 // New is already a successor.
888 // Update its probability instead of adding a duplicate edge.
889 if (!Probs.empty()) {
890 auto ProbIter = getProbabilityIterator(NewI);
891 if (!ProbIter->isUnknown())
892 *ProbIter += *getProbabilityIterator(OldI);
893 }
894 removeSuccessor(OldI);
895 }
896
copySuccessor(const MachineBasicBlock * Orig,succ_iterator I)897 void MachineBasicBlock::copySuccessor(const MachineBasicBlock *Orig,
898 succ_iterator I) {
899 if (!Orig->Probs.empty())
900 addSuccessor(*I, Orig->getSuccProbability(I));
901 else
902 addSuccessorWithoutProb(*I);
903 }
904
addPredecessor(MachineBasicBlock * Pred)905 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
906 Predecessors.push_back(Pred);
907 }
908
removePredecessor(MachineBasicBlock * Pred)909 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
910 pred_iterator I = find(Predecessors, Pred);
911 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
912 Predecessors.erase(I);
913 }
914
transferSuccessors(MachineBasicBlock * FromMBB)915 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
916 if (this == FromMBB)
917 return;
918
919 while (!FromMBB->succ_empty()) {
920 MachineBasicBlock *Succ = *FromMBB->succ_begin();
921
922 // If probability list is empty it means we don't use it (disabled
923 // optimization).
924 if (!FromMBB->Probs.empty()) {
925 auto Prob = *FromMBB->Probs.begin();
926 addSuccessor(Succ, Prob);
927 } else
928 addSuccessorWithoutProb(Succ);
929
930 FromMBB->removeSuccessor(Succ);
931 }
932 }
933
934 void
transferSuccessorsAndUpdatePHIs(MachineBasicBlock * FromMBB)935 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
936 if (this == FromMBB)
937 return;
938
939 while (!FromMBB->succ_empty()) {
940 MachineBasicBlock *Succ = *FromMBB->succ_begin();
941 if (!FromMBB->Probs.empty()) {
942 auto Prob = *FromMBB->Probs.begin();
943 addSuccessor(Succ, Prob);
944 } else
945 addSuccessorWithoutProb(Succ);
946 FromMBB->removeSuccessor(Succ);
947
948 // Fix up any PHI nodes in the successor.
949 Succ->replacePhiUsesWith(FromMBB, this);
950 }
951 normalizeSuccProbs();
952 }
953
isPredecessor(const MachineBasicBlock * MBB) const954 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
955 return is_contained(predecessors(), MBB);
956 }
957
isSuccessor(const MachineBasicBlock * MBB) const958 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
959 return is_contained(successors(), MBB);
960 }
961
isLayoutSuccessor(const MachineBasicBlock * MBB) const962 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
963 MachineFunction::const_iterator I(this);
964 return std::next(I) == MachineFunction::const_iterator(MBB);
965 }
966
getSingleSuccessor() const967 const MachineBasicBlock *MachineBasicBlock::getSingleSuccessor() const {
968 return Successors.size() == 1 ? Successors[0] : nullptr;
969 }
970
getSinglePredecessor() const971 const MachineBasicBlock *MachineBasicBlock::getSinglePredecessor() const {
972 return Predecessors.size() == 1 ? Predecessors[0] : nullptr;
973 }
974
getFallThrough(bool JumpToFallThrough)975 MachineBasicBlock *MachineBasicBlock::getFallThrough(bool JumpToFallThrough) {
976 MachineFunction::iterator Fallthrough = getIterator();
977 ++Fallthrough;
978 // If FallthroughBlock is off the end of the function, it can't fall through.
979 if (Fallthrough == getParent()->end())
980 return nullptr;
981
982 // If FallthroughBlock isn't a successor, no fallthrough is possible.
983 if (!isSuccessor(&*Fallthrough))
984 return nullptr;
985
986 // Analyze the branches, if any, at the end of the block.
987 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
988 SmallVector<MachineOperand, 4> Cond;
989 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
990 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
991 // If we couldn't analyze the branch, examine the last instruction.
992 // If the block doesn't end in a known control barrier, assume fallthrough
993 // is possible. The isPredicated check is needed because this code can be
994 // called during IfConversion, where an instruction which is normally a
995 // Barrier is predicated and thus no longer an actual control barrier.
996 return (empty() || !back().isBarrier() || TII->isPredicated(back()))
997 ? &*Fallthrough
998 : nullptr;
999 }
1000
1001 // If there is no branch, control always falls through.
1002 if (!TBB) return &*Fallthrough;
1003
1004 // If there is some explicit branch to the fallthrough block, it can obviously
1005 // reach, even though the branch should get folded to fall through implicitly.
1006 if (JumpToFallThrough && (MachineFunction::iterator(TBB) == Fallthrough ||
1007 MachineFunction::iterator(FBB) == Fallthrough))
1008 return &*Fallthrough;
1009
1010 // If it's an unconditional branch to some block not the fall through, it
1011 // doesn't fall through.
1012 if (Cond.empty()) return nullptr;
1013
1014 // Otherwise, if it is conditional and has no explicit false block, it falls
1015 // through.
1016 return (FBB == nullptr) ? &*Fallthrough : nullptr;
1017 }
1018
canFallThrough()1019 bool MachineBasicBlock::canFallThrough() {
1020 return getFallThrough() != nullptr;
1021 }
1022
splitAt(MachineInstr & MI,bool UpdateLiveIns,LiveIntervals * LIS)1023 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI,
1024 bool UpdateLiveIns,
1025 LiveIntervals *LIS) {
1026 MachineBasicBlock::iterator SplitPoint(&MI);
1027 ++SplitPoint;
1028
1029 if (SplitPoint == end()) {
1030 // Don't bother with a new block.
1031 return this;
1032 }
1033
1034 MachineFunction *MF = getParent();
1035
1036 LivePhysRegs LiveRegs;
1037 if (UpdateLiveIns) {
1038 // Make sure we add any physregs we define in the block as liveins to the
1039 // new block.
1040 MachineBasicBlock::iterator Prev(&MI);
1041 LiveRegs.init(*MF->getSubtarget().getRegisterInfo());
1042 LiveRegs.addLiveOuts(*this);
1043 for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I)
1044 LiveRegs.stepBackward(*I);
1045 }
1046
1047 MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock());
1048
1049 MF->insert(++MachineFunction::iterator(this), SplitBB);
1050 SplitBB->splice(SplitBB->begin(), this, SplitPoint, end());
1051
1052 SplitBB->transferSuccessorsAndUpdatePHIs(this);
1053 addSuccessor(SplitBB);
1054
1055 if (UpdateLiveIns)
1056 addLiveIns(*SplitBB, LiveRegs);
1057
1058 if (LIS)
1059 LIS->insertMBBInMaps(SplitBB);
1060
1061 return SplitBB;
1062 }
1063
1064 // Returns `true` if there are possibly other users of the jump table at
1065 // `JumpTableIndex` except for the ones in `IgnoreMBB`.
jumpTableHasOtherUses(const MachineFunction & MF,const MachineBasicBlock & IgnoreMBB,int JumpTableIndex)1066 static bool jumpTableHasOtherUses(const MachineFunction &MF,
1067 const MachineBasicBlock &IgnoreMBB,
1068 int JumpTableIndex) {
1069 assert(JumpTableIndex >= 0 && "need valid index");
1070 const MachineJumpTableInfo &MJTI = *MF.getJumpTableInfo();
1071 const MachineJumpTableEntry &MJTE = MJTI.getJumpTables()[JumpTableIndex];
1072 // Take any basic block from the table; every user of the jump table must
1073 // show up in the predecessor list.
1074 const MachineBasicBlock *MBB = nullptr;
1075 for (MachineBasicBlock *B : MJTE.MBBs) {
1076 if (B != nullptr) {
1077 MBB = B;
1078 break;
1079 }
1080 }
1081 if (MBB == nullptr)
1082 return true; // can't rule out other users if there isn't any block.
1083 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1084 SmallVector<MachineOperand, 4> Cond;
1085 for (MachineBasicBlock *Pred : MBB->predecessors()) {
1086 if (Pred == &IgnoreMBB)
1087 continue;
1088 MachineBasicBlock *DummyT = nullptr;
1089 MachineBasicBlock *DummyF = nullptr;
1090 Cond.clear();
1091 if (!TII.analyzeBranch(*Pred, DummyT, DummyF, Cond,
1092 /*AllowModify=*/false)) {
1093 // analyzable direct jump
1094 continue;
1095 }
1096 int PredJTI = findJumpTableIndex(*Pred);
1097 if (PredJTI >= 0) {
1098 if (PredJTI == JumpTableIndex)
1099 return true;
1100 continue;
1101 }
1102 // Be conservative for unanalyzable jumps.
1103 return true;
1104 }
1105 return false;
1106 }
1107
1108 class SlotIndexUpdateDelegate : public MachineFunction::Delegate {
1109 private:
1110 MachineFunction &MF;
1111 SlotIndexes *Indexes;
1112 SmallSetVector<MachineInstr *, 2> Insertions;
1113
1114 public:
SlotIndexUpdateDelegate(MachineFunction & MF,SlotIndexes * Indexes)1115 SlotIndexUpdateDelegate(MachineFunction &MF, SlotIndexes *Indexes)
1116 : MF(MF), Indexes(Indexes) {
1117 MF.setDelegate(this);
1118 }
1119
~SlotIndexUpdateDelegate()1120 ~SlotIndexUpdateDelegate() {
1121 MF.resetDelegate(this);
1122 for (auto MI : Insertions)
1123 Indexes->insertMachineInstrInMaps(*MI);
1124 }
1125
MF_HandleInsertion(MachineInstr & MI)1126 void MF_HandleInsertion(MachineInstr &MI) override {
1127 // This is called before MI is inserted into block so defer index update.
1128 if (Indexes)
1129 Insertions.insert(&MI);
1130 }
1131
MF_HandleRemoval(MachineInstr & MI)1132 void MF_HandleRemoval(MachineInstr &MI) override {
1133 if (Indexes && !Insertions.remove(&MI))
1134 Indexes->removeMachineInstrFromMaps(MI);
1135 }
1136 };
1137
1138 #define GET_RESULT(RESULT, GETTER, INFIX) \
1139 [MF, P, MFAM]() { \
1140 if (P) { \
1141 auto *Wrapper = P->getAnalysisIfAvailable<RESULT##INFIX##WrapperPass>(); \
1142 return Wrapper ? &Wrapper->GETTER() : nullptr; \
1143 } \
1144 return MFAM->getCachedResult<RESULT##Analysis>(*MF); \
1145 }()
1146
SplitCriticalEdge(MachineBasicBlock * Succ,Pass * P,MachineFunctionAnalysisManager * MFAM,std::vector<SparseBitVector<>> * LiveInSets)1147 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(
1148 MachineBasicBlock *Succ, Pass *P, MachineFunctionAnalysisManager *MFAM,
1149 std::vector<SparseBitVector<>> *LiveInSets) {
1150 assert((P || MFAM) && "Need a way to get analysis results!");
1151 if (!canSplitCriticalEdge(Succ))
1152 return nullptr;
1153
1154 MachineFunction *MF = getParent();
1155 MachineBasicBlock *PrevFallthrough = getNextNode();
1156
1157 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
1158 NMBB->setCallFrameSize(Succ->getCallFrameSize());
1159
1160 // Is there an indirect jump with jump table?
1161 bool ChangedIndirectJump = false;
1162 int JTI = findJumpTableIndex(*this);
1163 if (JTI >= 0) {
1164 MachineJumpTableInfo &MJTI = *MF->getJumpTableInfo();
1165 MJTI.ReplaceMBBInJumpTable(JTI, Succ, NMBB);
1166 ChangedIndirectJump = true;
1167 }
1168
1169 MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
1170 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
1171 << " -- " << printMBBReference(*NMBB) << " -- "
1172 << printMBBReference(*Succ) << '\n');
1173
1174 LiveIntervals *LIS = GET_RESULT(LiveIntervals, getLIS, );
1175 SlotIndexes *Indexes = GET_RESULT(SlotIndexes, getSI, );
1176 if (LIS)
1177 LIS->insertMBBInMaps(NMBB);
1178 else if (Indexes)
1179 Indexes->insertMBBInMaps(NMBB);
1180
1181 // On some targets like Mips, branches may kill virtual registers. Make sure
1182 // that LiveVariables is properly updated after updateTerminator replaces the
1183 // terminators.
1184 LiveVariables *LV = GET_RESULT(LiveVariables, getLV, );
1185
1186 // Collect a list of virtual registers killed by the terminators.
1187 SmallVector<Register, 4> KilledRegs;
1188 if (LV)
1189 for (MachineInstr &MI :
1190 llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1191 for (MachineOperand &MO : MI.all_uses()) {
1192 if (MO.getReg() == 0 || !MO.isKill() || MO.isUndef())
1193 continue;
1194 Register Reg = MO.getReg();
1195 if (Reg.isPhysical() || LV->getVarInfo(Reg).removeKill(MI)) {
1196 KilledRegs.push_back(Reg);
1197 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << MI);
1198 MO.setIsKill(false);
1199 }
1200 }
1201 }
1202
1203 SmallVector<Register, 4> UsedRegs;
1204 if (LIS) {
1205 for (MachineInstr &MI :
1206 llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1207 for (const MachineOperand &MO : MI.operands()) {
1208 if (!MO.isReg() || MO.getReg() == 0)
1209 continue;
1210
1211 Register Reg = MO.getReg();
1212 if (!is_contained(UsedRegs, Reg))
1213 UsedRegs.push_back(Reg);
1214 }
1215 }
1216 }
1217
1218 ReplaceUsesOfBlockWith(Succ, NMBB);
1219
1220 // Since we replaced all uses of Succ with NMBB, that should also be treated
1221 // as the fallthrough successor
1222 if (Succ == PrevFallthrough)
1223 PrevFallthrough = NMBB;
1224
1225 if (!ChangedIndirectJump) {
1226 SlotIndexUpdateDelegate SlotUpdater(*MF, Indexes);
1227 updateTerminator(PrevFallthrough);
1228 }
1229
1230 // Insert unconditional "jump Succ" instruction in NMBB if necessary.
1231 NMBB->addSuccessor(Succ);
1232 if (!NMBB->isLayoutSuccessor(Succ)) {
1233 SlotIndexUpdateDelegate SlotUpdater(*MF, Indexes);
1234 SmallVector<MachineOperand, 4> Cond;
1235 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
1236
1237 // In original 'this' BB, there must be a branch instruction targeting at
1238 // Succ. We can not find it out since currently getBranchDestBlock was not
1239 // implemented for all targets. However, if the merged DL has column or line
1240 // number, the scope and non-zero column and line number is same with that
1241 // branch instruction so we can safely use it.
1242 DebugLoc DL, MergedDL = findBranchDebugLoc();
1243 if (MergedDL && (MergedDL.getLine() || MergedDL.getCol()))
1244 DL = MergedDL;
1245 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
1246 }
1247
1248 // Fix PHI nodes in Succ so they refer to NMBB instead of this.
1249 Succ->replacePhiUsesWith(this, NMBB);
1250
1251 // Inherit live-ins from the successor
1252 for (const auto &LI : Succ->liveins())
1253 NMBB->addLiveIn(LI);
1254
1255 // Update LiveVariables.
1256 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1257 if (LV) {
1258 // Restore kills of virtual registers that were killed by the terminators.
1259 while (!KilledRegs.empty()) {
1260 Register Reg = KilledRegs.pop_back_val();
1261 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
1262 if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
1263 continue;
1264 if (Reg.isVirtual())
1265 LV->getVarInfo(Reg).Kills.push_back(&*I);
1266 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1267 break;
1268 }
1269 }
1270 // Update relevant live-through information.
1271 if (LiveInSets != nullptr)
1272 LV->addNewBlock(NMBB, this, Succ, *LiveInSets);
1273 else
1274 LV->addNewBlock(NMBB, this, Succ);
1275 }
1276
1277 if (LIS) {
1278 // After splitting the edge and updating SlotIndexes, live intervals may be
1279 // in one of two situations, depending on whether this block was the last in
1280 // the function. If the original block was the last in the function, all
1281 // live intervals will end prior to the beginning of the new split block. If
1282 // the original block was not at the end of the function, all live intervals
1283 // will extend to the end of the new split block.
1284
1285 bool isLastMBB =
1286 std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1287
1288 SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1289 SlotIndex PrevIndex = StartIndex.getPrevSlot();
1290 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1291
1292 // Find the registers used from NMBB in PHIs in Succ.
1293 SmallSet<Register, 8> PHISrcRegs;
1294 for (MachineBasicBlock::instr_iterator
1295 I = Succ->instr_begin(), E = Succ->instr_end();
1296 I != E && I->isPHI(); ++I) {
1297 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1298 if (I->getOperand(ni+1).getMBB() == NMBB) {
1299 MachineOperand &MO = I->getOperand(ni);
1300 Register Reg = MO.getReg();
1301 PHISrcRegs.insert(Reg);
1302 if (MO.isUndef())
1303 continue;
1304
1305 LiveInterval &LI = LIS->getInterval(Reg);
1306 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1307 assert(VNI &&
1308 "PHI sources should be live out of their predecessors.");
1309 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1310 for (auto &SR : LI.subranges())
1311 SR.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1312 }
1313 }
1314 }
1315
1316 MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1317 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1318 Register Reg = Register::index2VirtReg(i);
1319 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1320 continue;
1321
1322 LiveInterval &LI = LIS->getInterval(Reg);
1323 if (!LI.liveAt(PrevIndex))
1324 continue;
1325
1326 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1327 if (isLiveOut && isLastMBB) {
1328 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1329 assert(VNI && "LiveInterval should have VNInfo where it is live.");
1330 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1331 // Update subranges with live values
1332 for (auto &SR : LI.subranges()) {
1333 VNInfo *VNI = SR.getVNInfoAt(PrevIndex);
1334 if (VNI)
1335 SR.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1336 }
1337 } else if (!isLiveOut && !isLastMBB) {
1338 LI.removeSegment(StartIndex, EndIndex);
1339 for (auto &SR : LI.subranges())
1340 SR.removeSegment(StartIndex, EndIndex);
1341 }
1342 }
1343
1344 // Update all intervals for registers whose uses may have been modified by
1345 // updateTerminator().
1346 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1347 }
1348
1349 if (auto *MDT = GET_RESULT(MachineDominatorTree, getDomTree, ))
1350 MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1351
1352 if (MachineLoopInfo *MLI = GET_RESULT(MachineLoop, getLI, Info))
1353 if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1354 // If one or the other blocks were not in a loop, the new block is not
1355 // either, and thus LI doesn't need to be updated.
1356 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1357 if (TIL == DestLoop) {
1358 // Both in the same loop, the NMBB joins loop.
1359 DestLoop->addBasicBlockToLoop(NMBB, *MLI);
1360 } else if (TIL->contains(DestLoop)) {
1361 // Edge from an outer loop to an inner loop. Add to the outer loop.
1362 TIL->addBasicBlockToLoop(NMBB, *MLI);
1363 } else if (DestLoop->contains(TIL)) {
1364 // Edge from an inner loop to an outer loop. Add to the outer loop.
1365 DestLoop->addBasicBlockToLoop(NMBB, *MLI);
1366 } else {
1367 // Edge from two loops with no containment relation. Because these
1368 // are natural loops, we know that the destination block must be the
1369 // header of its loop (adding a branch into a loop elsewhere would
1370 // create an irreducible loop).
1371 assert(DestLoop->getHeader() == Succ &&
1372 "Should not create irreducible loops!");
1373 if (MachineLoop *P = DestLoop->getParentLoop())
1374 P->addBasicBlockToLoop(NMBB, *MLI);
1375 }
1376 }
1377 }
1378
1379 return NMBB;
1380 }
1381
canSplitCriticalEdge(const MachineBasicBlock * Succ) const1382 bool MachineBasicBlock::canSplitCriticalEdge(
1383 const MachineBasicBlock *Succ) const {
1384 // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1385 // it in this generic function.
1386 if (Succ->isEHPad())
1387 return false;
1388
1389 // Splitting the critical edge to a callbr's indirect block isn't advised.
1390 // Don't do it in this generic function.
1391 if (Succ->isInlineAsmBrIndirectTarget())
1392 return false;
1393
1394 const MachineFunction *MF = getParent();
1395 // Performance might be harmed on HW that implements branching using exec mask
1396 // where both sides of the branches are always executed.
1397 if (MF->getTarget().requiresStructuredCFG())
1398 return false;
1399
1400 // Do we have an Indirect jump with a jumptable that we can rewrite?
1401 int JTI = findJumpTableIndex(*this);
1402 if (JTI >= 0 && !jumpTableHasOtherUses(*MF, *this, JTI))
1403 return true;
1404
1405 // We may need to update this's terminator, but we can't do that if
1406 // analyzeBranch fails.
1407 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1408 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1409 SmallVector<MachineOperand, 4> Cond;
1410 // AnalyzeBanch should modify this, since we did not allow modification.
1411 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1412 /*AllowModify*/ false))
1413 return false;
1414
1415 // Avoid bugpoint weirdness: A block may end with a conditional branch but
1416 // jumps to the same MBB is either case. We have duplicate CFG edges in that
1417 // case that we can't handle. Since this never happens in properly optimized
1418 // code, just skip those edges.
1419 if (TBB && TBB == FBB) {
1420 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1421 << printMBBReference(*this) << '\n');
1422 return false;
1423 }
1424 return true;
1425 }
1426
1427 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1428 /// neighboring instructions so the bundle won't be broken by removing MI.
unbundleSingleMI(MachineInstr * MI)1429 static void unbundleSingleMI(MachineInstr *MI) {
1430 // Removing the first instruction in a bundle.
1431 if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1432 MI->unbundleFromSucc();
1433 // Removing the last instruction in a bundle.
1434 if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1435 MI->unbundleFromPred();
1436 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1437 // are already fine.
1438 }
1439
1440 MachineBasicBlock::instr_iterator
erase(MachineBasicBlock::instr_iterator I)1441 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1442 unbundleSingleMI(&*I);
1443 return Insts.erase(I);
1444 }
1445
remove_instr(MachineInstr * MI)1446 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1447 unbundleSingleMI(MI);
1448 MI->clearFlag(MachineInstr::BundledPred);
1449 MI->clearFlag(MachineInstr::BundledSucc);
1450 return Insts.remove(MI);
1451 }
1452
1453 MachineBasicBlock::instr_iterator
insert(instr_iterator I,MachineInstr * MI)1454 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1455 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1456 "Cannot insert instruction with bundle flags");
1457 // Set the bundle flags when inserting inside a bundle.
1458 if (I != instr_end() && I->isBundledWithPred()) {
1459 MI->setFlag(MachineInstr::BundledPred);
1460 MI->setFlag(MachineInstr::BundledSucc);
1461 }
1462 return Insts.insert(I, MI);
1463 }
1464
1465 /// This method unlinks 'this' from the containing function, and returns it, but
1466 /// does not delete it.
removeFromParent()1467 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1468 assert(getParent() && "Not embedded in a function!");
1469 getParent()->remove(this);
1470 return this;
1471 }
1472
1473 /// This method unlinks 'this' from the containing function, and deletes it.
eraseFromParent()1474 void MachineBasicBlock::eraseFromParent() {
1475 assert(getParent() && "Not embedded in a function!");
1476 getParent()->erase(this);
1477 }
1478
1479 /// Given a machine basic block that branched to 'Old', change the code and CFG
1480 /// so that it branches to 'New' instead.
ReplaceUsesOfBlockWith(MachineBasicBlock * Old,MachineBasicBlock * New)1481 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1482 MachineBasicBlock *New) {
1483 assert(Old != New && "Cannot replace self with self!");
1484
1485 MachineBasicBlock::instr_iterator I = instr_end();
1486 while (I != instr_begin()) {
1487 --I;
1488 if (!I->isTerminator()) break;
1489
1490 // Scan the operands of this machine instruction, replacing any uses of Old
1491 // with New.
1492 for (MachineOperand &MO : I->operands())
1493 if (MO.isMBB() && MO.getMBB() == Old)
1494 MO.setMBB(New);
1495 }
1496
1497 // Update the successor information.
1498 replaceSuccessor(Old, New);
1499 }
1500
replacePhiUsesWith(MachineBasicBlock * Old,MachineBasicBlock * New)1501 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old,
1502 MachineBasicBlock *New) {
1503 for (MachineInstr &MI : phis())
1504 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
1505 MachineOperand &MO = MI.getOperand(i);
1506 if (MO.getMBB() == Old)
1507 MO.setMBB(New);
1508 }
1509 }
1510
1511 /// Find the next valid DebugLoc starting at MBBI, skipping any debug
1512 /// instructions. Return UnknownLoc if there is none.
1513 DebugLoc
findDebugLoc(instr_iterator MBBI)1514 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1515 // Skip debug declarations, we don't want a DebugLoc from them.
1516 MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1517 if (MBBI != instr_end())
1518 return MBBI->getDebugLoc();
1519 return {};
1520 }
1521
rfindDebugLoc(reverse_instr_iterator MBBI)1522 DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) {
1523 if (MBBI == instr_rend())
1524 return findDebugLoc(instr_begin());
1525 // Skip debug declarations, we don't want a DebugLoc from them.
1526 MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin());
1527 if (!MBBI->isDebugInstr())
1528 return MBBI->getDebugLoc();
1529 return {};
1530 }
1531
1532 /// Find the previous valid DebugLoc preceding MBBI, skipping any debug
1533 /// instructions. Return UnknownLoc if there is none.
findPrevDebugLoc(instr_iterator MBBI)1534 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1535 if (MBBI == instr_begin())
1536 return {};
1537 // Skip debug instructions, we don't want a DebugLoc from them.
1538 MBBI = prev_nodbg(MBBI, instr_begin());
1539 if (!MBBI->isDebugInstr())
1540 return MBBI->getDebugLoc();
1541 return {};
1542 }
1543
rfindPrevDebugLoc(reverse_instr_iterator MBBI)1544 DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) {
1545 if (MBBI == instr_rend())
1546 return {};
1547 // Skip debug declarations, we don't want a DebugLoc from them.
1548 MBBI = next_nodbg(MBBI, instr_rend());
1549 if (MBBI != instr_rend())
1550 return MBBI->getDebugLoc();
1551 return {};
1552 }
1553
1554 /// Find and return the merged DebugLoc of the branch instructions of the block.
1555 /// Return UnknownLoc if there is none.
1556 DebugLoc
findBranchDebugLoc()1557 MachineBasicBlock::findBranchDebugLoc() {
1558 DebugLoc DL;
1559 auto TI = getFirstTerminator();
1560 while (TI != end() && !TI->isBranch())
1561 ++TI;
1562
1563 if (TI != end()) {
1564 DL = TI->getDebugLoc();
1565 for (++TI ; TI != end() ; ++TI)
1566 if (TI->isBranch())
1567 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1568 }
1569 return DL;
1570 }
1571
1572 /// Return probability of the edge from this block to MBB.
1573 BranchProbability
getSuccProbability(const_succ_iterator Succ) const1574 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1575 if (Probs.empty())
1576 return BranchProbability(1, succ_size());
1577
1578 const auto &Prob = *getProbabilityIterator(Succ);
1579 if (Prob.isUnknown()) {
1580 // For unknown probabilities, collect the sum of all known ones, and evenly
1581 // ditribute the complemental of the sum to each unknown probability.
1582 unsigned KnownProbNum = 0;
1583 auto Sum = BranchProbability::getZero();
1584 for (const auto &P : Probs) {
1585 if (!P.isUnknown()) {
1586 Sum += P;
1587 KnownProbNum++;
1588 }
1589 }
1590 return Sum.getCompl() / (Probs.size() - KnownProbNum);
1591 } else
1592 return Prob;
1593 }
1594
1595 /// Set successor probability of a given iterator.
setSuccProbability(succ_iterator I,BranchProbability Prob)1596 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1597 BranchProbability Prob) {
1598 assert(!Prob.isUnknown());
1599 if (Probs.empty())
1600 return;
1601 *getProbabilityIterator(I) = Prob;
1602 }
1603
1604 /// Return probability iterator corresonding to the I successor iterator
1605 MachineBasicBlock::const_probability_iterator
getProbabilityIterator(MachineBasicBlock::const_succ_iterator I) const1606 MachineBasicBlock::getProbabilityIterator(
1607 MachineBasicBlock::const_succ_iterator I) const {
1608 assert(Probs.size() == Successors.size() && "Async probability list!");
1609 const size_t index = std::distance(Successors.begin(), I);
1610 assert(index < Probs.size() && "Not a current successor!");
1611 return Probs.begin() + index;
1612 }
1613
1614 /// Return probability iterator corresonding to the I successor iterator.
1615 MachineBasicBlock::probability_iterator
getProbabilityIterator(MachineBasicBlock::succ_iterator I)1616 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1617 assert(Probs.size() == Successors.size() && "Async probability list!");
1618 const size_t index = std::distance(Successors.begin(), I);
1619 assert(index < Probs.size() && "Not a current successor!");
1620 return Probs.begin() + index;
1621 }
1622
1623 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1624 /// as of just before "MI".
1625 ///
1626 /// Search is localised to a neighborhood of
1627 /// Neighborhood instructions before (searching for defs or kills) and N
1628 /// instructions after (searching just for defs) MI.
1629 MachineBasicBlock::LivenessQueryResult
computeRegisterLiveness(const TargetRegisterInfo * TRI,MCRegister Reg,const_iterator Before,unsigned Neighborhood) const1630 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1631 MCRegister Reg, const_iterator Before,
1632 unsigned Neighborhood) const {
1633 unsigned N = Neighborhood;
1634
1635 // Try searching forwards from Before, looking for reads or defs.
1636 const_iterator I(Before);
1637 for (; I != end() && N > 0; ++I) {
1638 if (I->isDebugOrPseudoInstr())
1639 continue;
1640
1641 --N;
1642
1643 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1644
1645 // Register is live when we read it here.
1646 if (Info.Read)
1647 return LQR_Live;
1648 // Register is dead if we can fully overwrite or clobber it here.
1649 if (Info.FullyDefined || Info.Clobbered)
1650 return LQR_Dead;
1651 }
1652
1653 // If we reached the end, it is safe to clobber Reg at the end of a block of
1654 // no successor has it live in.
1655 if (I == end()) {
1656 for (MachineBasicBlock *S : successors()) {
1657 for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1658 if (TRI->regsOverlap(LI.PhysReg, Reg))
1659 return LQR_Live;
1660 }
1661 }
1662
1663 return LQR_Dead;
1664 }
1665
1666
1667 N = Neighborhood;
1668
1669 // Start by searching backwards from Before, looking for kills, reads or defs.
1670 I = const_iterator(Before);
1671 // If this is the first insn in the block, don't search backwards.
1672 if (I != begin()) {
1673 do {
1674 --I;
1675
1676 if (I->isDebugOrPseudoInstr())
1677 continue;
1678
1679 --N;
1680
1681 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1682
1683 // Defs happen after uses so they take precedence if both are present.
1684
1685 // Register is dead after a dead def of the full register.
1686 if (Info.DeadDef)
1687 return LQR_Dead;
1688 // Register is (at least partially) live after a def.
1689 if (Info.Defined) {
1690 if (!Info.PartialDeadDef)
1691 return LQR_Live;
1692 // As soon as we saw a partial definition (dead or not),
1693 // we cannot tell if the value is partial live without
1694 // tracking the lanemasks. We are not going to do this,
1695 // so fall back on the remaining of the analysis.
1696 break;
1697 }
1698 // Register is dead after a full kill or clobber and no def.
1699 if (Info.Killed || Info.Clobbered)
1700 return LQR_Dead;
1701 // Register must be live if we read it.
1702 if (Info.Read)
1703 return LQR_Live;
1704
1705 } while (I != begin() && N > 0);
1706 }
1707
1708 // If all the instructions before this in the block are debug instructions,
1709 // skip over them.
1710 while (I != begin() && std::prev(I)->isDebugOrPseudoInstr())
1711 --I;
1712
1713 // Did we get to the start of the block?
1714 if (I == begin()) {
1715 // If so, the register's state is definitely defined by the live-in state.
1716 for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1717 if (TRI->regsOverlap(LI.PhysReg, Reg))
1718 return LQR_Live;
1719
1720 return LQR_Dead;
1721 }
1722
1723 // At this point we have no idea of the liveness of the register.
1724 return LQR_Unknown;
1725 }
1726
1727 const uint32_t *
getBeginClobberMask(const TargetRegisterInfo * TRI) const1728 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1729 // EH funclet entry does not preserve any registers.
1730 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1731 }
1732
1733 const uint32_t *
getEndClobberMask(const TargetRegisterInfo * TRI) const1734 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1735 // If we see a return block with successors, this must be a funclet return,
1736 // which does not preserve any registers. If there are no successors, we don't
1737 // care what kind of return it is, putting a mask after it is a no-op.
1738 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1739 }
1740
clearLiveIns()1741 void MachineBasicBlock::clearLiveIns() {
1742 LiveIns.clear();
1743 }
1744
clearLiveIns(std::vector<RegisterMaskPair> & OldLiveIns)1745 void MachineBasicBlock::clearLiveIns(
1746 std::vector<RegisterMaskPair> &OldLiveIns) {
1747 assert(OldLiveIns.empty() && "Vector must be empty");
1748 std::swap(LiveIns, OldLiveIns);
1749 }
1750
livein_begin() const1751 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1752 assert(getParent()->getProperties().hasProperty(
1753 MachineFunctionProperties::Property::TracksLiveness) &&
1754 "Liveness information is accurate");
1755 return LiveIns.begin();
1756 }
1757
liveout_begin() const1758 MachineBasicBlock::liveout_iterator MachineBasicBlock::liveout_begin() const {
1759 const MachineFunction &MF = *getParent();
1760 assert(MF.getProperties().hasProperty(
1761 MachineFunctionProperties::Property::TracksLiveness) &&
1762 "Liveness information is accurate");
1763
1764 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
1765 MCPhysReg ExceptionPointer = 0, ExceptionSelector = 0;
1766 if (MF.getFunction().hasPersonalityFn()) {
1767 auto PersonalityFn = MF.getFunction().getPersonalityFn();
1768 ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn);
1769 ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn);
1770 }
1771
1772 return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false);
1773 }
1774
sizeWithoutDebugLargerThan(unsigned Limit) const1775 bool MachineBasicBlock::sizeWithoutDebugLargerThan(unsigned Limit) const {
1776 unsigned Cntr = 0;
1777 auto R = instructionsWithoutDebug(begin(), end());
1778 for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1779 if (++Cntr > Limit)
1780 return true;
1781 }
1782 return false;
1783 }
1784
1785 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold);
1786 const MBBSectionID
1787 MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception);
1788