xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision 71ac745d76c3ba442e753daff1870893f272b29d)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/IR/Verifier.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/DebugCounter.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Transforms/Utils/Cloning.h"
41 #include "llvm/Transforms/Utils/ValueMapper.h"
42 
43 #include <cmath>
44 #include <optional>
45 #include <string>
46 
47 using namespace llvm;
48 using namespace PatternMatch;
49 
50 #define DEBUG_TYPE "constraint-elimination"
51 
52 STATISTIC(NumCondsRemoved, "Number of instructions removed");
53 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
54               "Controls which conditions are eliminated");
55 
56 static cl::opt<unsigned>
57     MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden,
58             cl::desc("Maximum number of rows to keep in constraint system"));
59 
60 static cl::opt<bool> DumpReproducers(
61     "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden,
62     cl::desc("Dump IR to reproduce successful transformations."));
63 
64 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
65 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
66 
67 // A helper to multiply 2 signed integers where overflowing is allowed.
multiplyWithOverflow(int64_t A,int64_t B)68 static int64_t multiplyWithOverflow(int64_t A, int64_t B) {
69   int64_t Result;
70   MulOverflow(A, B, Result);
71   return Result;
72 }
73 
74 // A helper to add 2 signed integers where overflowing is allowed.
addWithOverflow(int64_t A,int64_t B)75 static int64_t addWithOverflow(int64_t A, int64_t B) {
76   int64_t Result;
77   AddOverflow(A, B, Result);
78   return Result;
79 }
80 
getContextInstForUse(Use & U)81 static Instruction *getContextInstForUse(Use &U) {
82   Instruction *UserI = cast<Instruction>(U.getUser());
83   if (auto *Phi = dyn_cast<PHINode>(UserI))
84     UserI = Phi->getIncomingBlock(U)->getTerminator();
85   return UserI;
86 }
87 
88 namespace {
89 /// Struct to express a condition of the form %Op0 Pred %Op1.
90 struct ConditionTy {
91   CmpInst::Predicate Pred;
92   Value *Op0;
93   Value *Op1;
94 
ConditionTy__anon050fee910111::ConditionTy95   ConditionTy()
96       : Pred(CmpInst::BAD_ICMP_PREDICATE), Op0(nullptr), Op1(nullptr) {}
ConditionTy__anon050fee910111::ConditionTy97   ConditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
98       : Pred(Pred), Op0(Op0), Op1(Op1) {}
99 };
100 
101 /// Represents either
102 ///  * a condition that holds on entry to a block (=condition fact)
103 ///  * an assume (=assume fact)
104 ///  * a use of a compare instruction to simplify.
105 /// It also tracks the Dominator DFS in and out numbers for each entry.
106 struct FactOrCheck {
107   enum class EntryTy {
108     ConditionFact, /// A condition that holds on entry to a block.
109     InstFact,      /// A fact that holds after Inst executed (e.g. an assume or
110                    /// min/mix intrinsic.
111     InstCheck,     /// An instruction to simplify (e.g. an overflow math
112                    /// intrinsics).
113     UseCheck       /// An use of a compare instruction to simplify.
114   };
115 
116   union {
117     Instruction *Inst;
118     Use *U;
119     ConditionTy Cond;
120   };
121 
122   /// A pre-condition that must hold for the current fact to be added to the
123   /// system.
124   ConditionTy DoesHold;
125 
126   unsigned NumIn;
127   unsigned NumOut;
128   EntryTy Ty;
129 
FactOrCheck__anon050fee910111::FactOrCheck130   FactOrCheck(EntryTy Ty, DomTreeNode *DTN, Instruction *Inst)
131       : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
132         Ty(Ty) {}
133 
FactOrCheck__anon050fee910111::FactOrCheck134   FactOrCheck(DomTreeNode *DTN, Use *U)
135       : U(U), DoesHold(CmpInst::BAD_ICMP_PREDICATE, nullptr, nullptr),
136         NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
137         Ty(EntryTy::UseCheck) {}
138 
FactOrCheck__anon050fee910111::FactOrCheck139   FactOrCheck(DomTreeNode *DTN, CmpInst::Predicate Pred, Value *Op0, Value *Op1,
140               ConditionTy Precond = ConditionTy())
141       : Cond(Pred, Op0, Op1), DoesHold(Precond), NumIn(DTN->getDFSNumIn()),
142         NumOut(DTN->getDFSNumOut()), Ty(EntryTy::ConditionFact) {}
143 
getConditionFact__anon050fee910111::FactOrCheck144   static FactOrCheck getConditionFact(DomTreeNode *DTN, CmpInst::Predicate Pred,
145                                       Value *Op0, Value *Op1,
146                                       ConditionTy Precond = ConditionTy()) {
147     return FactOrCheck(DTN, Pred, Op0, Op1, Precond);
148   }
149 
getInstFact__anon050fee910111::FactOrCheck150   static FactOrCheck getInstFact(DomTreeNode *DTN, Instruction *Inst) {
151     return FactOrCheck(EntryTy::InstFact, DTN, Inst);
152   }
153 
getCheck__anon050fee910111::FactOrCheck154   static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) {
155     return FactOrCheck(DTN, U);
156   }
157 
getCheck__anon050fee910111::FactOrCheck158   static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) {
159     return FactOrCheck(EntryTy::InstCheck, DTN, CI);
160   }
161 
isCheck__anon050fee910111::FactOrCheck162   bool isCheck() const {
163     return Ty == EntryTy::InstCheck || Ty == EntryTy::UseCheck;
164   }
165 
getContextInst__anon050fee910111::FactOrCheck166   Instruction *getContextInst() const {
167     if (Ty == EntryTy::UseCheck)
168       return getContextInstForUse(*U);
169     return Inst;
170   }
171 
getInstructionToSimplify__anon050fee910111::FactOrCheck172   Instruction *getInstructionToSimplify() const {
173     assert(isCheck());
174     if (Ty == EntryTy::InstCheck)
175       return Inst;
176     // The use may have been simplified to a constant already.
177     return dyn_cast<Instruction>(*U);
178   }
179 
isConditionFact__anon050fee910111::FactOrCheck180   bool isConditionFact() const { return Ty == EntryTy::ConditionFact; }
181 };
182 
183 /// Keep state required to build worklist.
184 struct State {
185   DominatorTree &DT;
186   LoopInfo &LI;
187   ScalarEvolution &SE;
188   SmallVector<FactOrCheck, 64> WorkList;
189 
State__anon050fee910111::State190   State(DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE)
191       : DT(DT), LI(LI), SE(SE) {}
192 
193   /// Process block \p BB and add known facts to work-list.
194   void addInfoFor(BasicBlock &BB);
195 
196   /// Try to add facts for loop inductions (AddRecs) in EQ/NE compares
197   /// controlling the loop header.
198   void addInfoForInductions(BasicBlock &BB);
199 
200   /// Returns true if we can add a known condition from BB to its successor
201   /// block Succ.
canAddSuccessor__anon050fee910111::State202   bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
203     return DT.dominates(BasicBlockEdge(&BB, Succ), Succ);
204   }
205 };
206 
207 class ConstraintInfo;
208 
209 struct StackEntry {
210   unsigned NumIn;
211   unsigned NumOut;
212   bool IsSigned = false;
213   /// Variables that can be removed from the system once the stack entry gets
214   /// removed.
215   SmallVector<Value *, 2> ValuesToRelease;
216 
StackEntry__anon050fee910111::StackEntry217   StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned,
218              SmallVector<Value *, 2> ValuesToRelease)
219       : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned),
220         ValuesToRelease(ValuesToRelease) {}
221 };
222 
223 struct ConstraintTy {
224   SmallVector<int64_t, 8> Coefficients;
225   SmallVector<ConditionTy, 2> Preconditions;
226 
227   SmallVector<SmallVector<int64_t, 8>> ExtraInfo;
228 
229   bool IsSigned = false;
230 
231   ConstraintTy() = default;
232 
ConstraintTy__anon050fee910111::ConstraintTy233   ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq,
234                bool IsNe)
235       : Coefficients(std::move(Coefficients)), IsSigned(IsSigned), IsEq(IsEq),
236         IsNe(IsNe) {}
237 
size__anon050fee910111::ConstraintTy238   unsigned size() const { return Coefficients.size(); }
239 
empty__anon050fee910111::ConstraintTy240   unsigned empty() const { return Coefficients.empty(); }
241 
242   /// Returns true if all preconditions for this list of constraints are
243   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
244   bool isValid(const ConstraintInfo &Info) const;
245 
isEq__anon050fee910111::ConstraintTy246   bool isEq() const { return IsEq; }
247 
isNe__anon050fee910111::ConstraintTy248   bool isNe() const { return IsNe; }
249 
250   /// Check if the current constraint is implied by the given ConstraintSystem.
251   ///
252   /// \return true or false if the constraint is proven to be respectively true,
253   /// or false. When the constraint cannot be proven to be either true or false,
254   /// std::nullopt is returned.
255   std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const;
256 
257 private:
258   bool IsEq = false;
259   bool IsNe = false;
260 };
261 
262 /// Wrapper encapsulating separate constraint systems and corresponding value
263 /// mappings for both unsigned and signed information. Facts are added to and
264 /// conditions are checked against the corresponding system depending on the
265 /// signed-ness of their predicates. While the information is kept separate
266 /// based on signed-ness, certain conditions can be transferred between the two
267 /// systems.
268 class ConstraintInfo {
269 
270   ConstraintSystem UnsignedCS;
271   ConstraintSystem SignedCS;
272 
273   const DataLayout &DL;
274 
275 public:
ConstraintInfo(const DataLayout & DL,ArrayRef<Value * > FunctionArgs)276   ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs)
277       : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {
278     auto &Value2Index = getValue2Index(false);
279     // Add Arg > -1 constraints to unsigned system for all function arguments.
280     for (Value *Arg : FunctionArgs) {
281       ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0),
282                           false, false, false);
283       VarPos.Coefficients[Value2Index[Arg]] = -1;
284       UnsignedCS.addVariableRow(VarPos.Coefficients);
285     }
286   }
287 
getValue2Index(bool Signed)288   DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
289     return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
290   }
getValue2Index(bool Signed) const291   const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
292     return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
293   }
294 
getCS(bool Signed)295   ConstraintSystem &getCS(bool Signed) {
296     return Signed ? SignedCS : UnsignedCS;
297   }
getCS(bool Signed) const298   const ConstraintSystem &getCS(bool Signed) const {
299     return Signed ? SignedCS : UnsignedCS;
300   }
301 
popLastConstraint(bool Signed)302   void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
popLastNVariables(bool Signed,unsigned N)303   void popLastNVariables(bool Signed, unsigned N) {
304     getCS(Signed).popLastNVariables(N);
305   }
306 
307   bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
308 
309   void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
310                unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
311 
312   /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
313   /// constraints, using indices from the corresponding constraint system.
314   /// New variables that need to be added to the system are collected in
315   /// \p NewVariables.
316   ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
317                              SmallVectorImpl<Value *> &NewVariables) const;
318 
319   /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
320   /// constraints using getConstraint. Returns an empty constraint if the result
321   /// cannot be used to query the existing constraint system, e.g. because it
322   /// would require adding new variables. Also tries to convert signed
323   /// predicates to unsigned ones if possible to allow using the unsigned system
324   /// which increases the effectiveness of the signed <-> unsigned transfer
325   /// logic.
326   ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0,
327                                        Value *Op1) const;
328 
329   /// Try to add information from \p A \p Pred \p B to the unsigned/signed
330   /// system if \p Pred is signed/unsigned.
331   void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
332                              unsigned NumIn, unsigned NumOut,
333                              SmallVectorImpl<StackEntry> &DFSInStack);
334 };
335 
336 /// Represents a (Coefficient * Variable) entry after IR decomposition.
337 struct DecompEntry {
338   int64_t Coefficient;
339   Value *Variable;
340   /// True if the variable is known positive in the current constraint.
341   bool IsKnownNonNegative;
342 
DecompEntry__anon050fee910111::DecompEntry343   DecompEntry(int64_t Coefficient, Value *Variable,
344               bool IsKnownNonNegative = false)
345       : Coefficient(Coefficient), Variable(Variable),
346         IsKnownNonNegative(IsKnownNonNegative) {}
347 };
348 
349 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition.
350 struct Decomposition {
351   int64_t Offset = 0;
352   SmallVector<DecompEntry, 3> Vars;
353 
Decomposition__anon050fee910111::Decomposition354   Decomposition(int64_t Offset) : Offset(Offset) {}
Decomposition__anon050fee910111::Decomposition355   Decomposition(Value *V, bool IsKnownNonNegative = false) {
356     Vars.emplace_back(1, V, IsKnownNonNegative);
357   }
Decomposition__anon050fee910111::Decomposition358   Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars)
359       : Offset(Offset), Vars(Vars) {}
360 
add__anon050fee910111::Decomposition361   void add(int64_t OtherOffset) {
362     Offset = addWithOverflow(Offset, OtherOffset);
363   }
364 
add__anon050fee910111::Decomposition365   void add(const Decomposition &Other) {
366     add(Other.Offset);
367     append_range(Vars, Other.Vars);
368   }
369 
sub__anon050fee910111::Decomposition370   void sub(const Decomposition &Other) {
371     Decomposition Tmp = Other;
372     Tmp.mul(-1);
373     add(Tmp.Offset);
374     append_range(Vars, Tmp.Vars);
375   }
376 
mul__anon050fee910111::Decomposition377   void mul(int64_t Factor) {
378     Offset = multiplyWithOverflow(Offset, Factor);
379     for (auto &Var : Vars)
380       Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor);
381   }
382 };
383 
384 // Variable and constant offsets for a chain of GEPs, with base pointer BasePtr.
385 struct OffsetResult {
386   Value *BasePtr;
387   APInt ConstantOffset;
388   MapVector<Value *, APInt> VariableOffsets;
389   bool AllInbounds;
390 
OffsetResult__anon050fee910111::OffsetResult391   OffsetResult() : BasePtr(nullptr), ConstantOffset(0, uint64_t(0)) {}
392 
OffsetResult__anon050fee910111::OffsetResult393   OffsetResult(GEPOperator &GEP, const DataLayout &DL)
394       : BasePtr(GEP.getPointerOperand()), AllInbounds(GEP.isInBounds()) {
395     ConstantOffset = APInt(DL.getIndexTypeSizeInBits(BasePtr->getType()), 0);
396   }
397 };
398 } // namespace
399 
400 // Try to collect variable and constant offsets for \p GEP, partly traversing
401 // nested GEPs. Returns an OffsetResult with nullptr as BasePtr of collecting
402 // the offset fails.
collectOffsets(GEPOperator & GEP,const DataLayout & DL)403 static OffsetResult collectOffsets(GEPOperator &GEP, const DataLayout &DL) {
404   OffsetResult Result(GEP, DL);
405   unsigned BitWidth = Result.ConstantOffset.getBitWidth();
406   if (!GEP.collectOffset(DL, BitWidth, Result.VariableOffsets,
407                          Result.ConstantOffset))
408     return {};
409 
410   // If we have a nested GEP, check if we can combine the constant offset of the
411   // inner GEP with the outer GEP.
412   if (auto *InnerGEP = dyn_cast<GetElementPtrInst>(Result.BasePtr)) {
413     MapVector<Value *, APInt> VariableOffsets2;
414     APInt ConstantOffset2(BitWidth, 0);
415     bool CanCollectInner = InnerGEP->collectOffset(
416         DL, BitWidth, VariableOffsets2, ConstantOffset2);
417     // TODO: Support cases with more than 1 variable offset.
418     if (!CanCollectInner || Result.VariableOffsets.size() > 1 ||
419         VariableOffsets2.size() > 1 ||
420         (Result.VariableOffsets.size() >= 1 && VariableOffsets2.size() >= 1)) {
421       // More than 1 variable index, use outer result.
422       return Result;
423     }
424     Result.BasePtr = InnerGEP->getPointerOperand();
425     Result.ConstantOffset += ConstantOffset2;
426     if (Result.VariableOffsets.size() == 0 && VariableOffsets2.size() == 1)
427       Result.VariableOffsets = VariableOffsets2;
428     Result.AllInbounds &= InnerGEP->isInBounds();
429   }
430   return Result;
431 }
432 
433 static Decomposition decompose(Value *V,
434                                SmallVectorImpl<ConditionTy> &Preconditions,
435                                bool IsSigned, const DataLayout &DL);
436 
canUseSExt(ConstantInt * CI)437 static bool canUseSExt(ConstantInt *CI) {
438   const APInt &Val = CI->getValue();
439   return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
440 }
441 
decomposeGEP(GEPOperator & GEP,SmallVectorImpl<ConditionTy> & Preconditions,bool IsSigned,const DataLayout & DL)442 static Decomposition decomposeGEP(GEPOperator &GEP,
443                                   SmallVectorImpl<ConditionTy> &Preconditions,
444                                   bool IsSigned, const DataLayout &DL) {
445   // Do not reason about pointers where the index size is larger than 64 bits,
446   // as the coefficients used to encode constraints are 64 bit integers.
447   if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64)
448     return &GEP;
449 
450   assert(!IsSigned && "The logic below only supports decomposition for "
451                       "unsigned predicates at the moment.");
452   const auto &[BasePtr, ConstantOffset, VariableOffsets, AllInbounds] =
453       collectOffsets(GEP, DL);
454   if (!BasePtr || !AllInbounds)
455     return &GEP;
456 
457   Decomposition Result(ConstantOffset.getSExtValue(), DecompEntry(1, BasePtr));
458   for (auto [Index, Scale] : VariableOffsets) {
459     auto IdxResult = decompose(Index, Preconditions, IsSigned, DL);
460     IdxResult.mul(Scale.getSExtValue());
461     Result.add(IdxResult);
462 
463     // If Op0 is signed non-negative, the GEP is increasing monotonically and
464     // can be de-composed.
465     if (!isKnownNonNegative(Index, DL))
466       Preconditions.emplace_back(CmpInst::ICMP_SGE, Index,
467                                  ConstantInt::get(Index->getType(), 0));
468   }
469   return Result;
470 }
471 
472 // Decomposes \p V into a constant offset + list of pairs { Coefficient,
473 // Variable } where Coefficient * Variable. The sum of the constant offset and
474 // pairs equals \p V.
decompose(Value * V,SmallVectorImpl<ConditionTy> & Preconditions,bool IsSigned,const DataLayout & DL)475 static Decomposition decompose(Value *V,
476                                SmallVectorImpl<ConditionTy> &Preconditions,
477                                bool IsSigned, const DataLayout &DL) {
478 
479   auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B,
480                                                       bool IsSignedB) {
481     auto ResA = decompose(A, Preconditions, IsSigned, DL);
482     auto ResB = decompose(B, Preconditions, IsSignedB, DL);
483     ResA.add(ResB);
484     return ResA;
485   };
486 
487   Type *Ty = V->getType()->getScalarType();
488   if (Ty->isPointerTy() && !IsSigned) {
489     if (auto *GEP = dyn_cast<GEPOperator>(V))
490       return decomposeGEP(*GEP, Preconditions, IsSigned, DL);
491     if (isa<ConstantPointerNull>(V))
492       return int64_t(0);
493 
494     return V;
495   }
496 
497   // Don't handle integers > 64 bit. Our coefficients are 64-bit large, so
498   // coefficient add/mul may wrap, while the operation in the full bit width
499   // would not.
500   if (!Ty->isIntegerTy() || Ty->getIntegerBitWidth() > 64)
501     return V;
502 
503   bool IsKnownNonNegative = false;
504 
505   // Decompose \p V used with a signed predicate.
506   if (IsSigned) {
507     if (auto *CI = dyn_cast<ConstantInt>(V)) {
508       if (canUseSExt(CI))
509         return CI->getSExtValue();
510     }
511     Value *Op0;
512     Value *Op1;
513 
514     if (match(V, m_SExt(m_Value(Op0))))
515       V = Op0;
516     else if (match(V, m_NNegZExt(m_Value(Op0)))) {
517       V = Op0;
518       IsKnownNonNegative = true;
519     }
520 
521     if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1))))
522       return MergeResults(Op0, Op1, IsSigned);
523 
524     ConstantInt *CI;
525     if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) {
526       auto Result = decompose(Op0, Preconditions, IsSigned, DL);
527       Result.mul(CI->getSExtValue());
528       return Result;
529     }
530 
531     // (shl nsw x, shift) is (mul nsw x, (1<<shift)), with the exception of
532     // shift == bw-1.
533     if (match(V, m_NSWShl(m_Value(Op0), m_ConstantInt(CI)))) {
534       uint64_t Shift = CI->getValue().getLimitedValue();
535       if (Shift < Ty->getIntegerBitWidth() - 1) {
536         assert(Shift < 64 && "Would overflow");
537         auto Result = decompose(Op0, Preconditions, IsSigned, DL);
538         Result.mul(int64_t(1) << Shift);
539         return Result;
540       }
541     }
542 
543     return {V, IsKnownNonNegative};
544   }
545 
546   if (auto *CI = dyn_cast<ConstantInt>(V)) {
547     if (CI->uge(MaxConstraintValue))
548       return V;
549     return int64_t(CI->getZExtValue());
550   }
551 
552   Value *Op0;
553   if (match(V, m_ZExt(m_Value(Op0)))) {
554     IsKnownNonNegative = true;
555     V = Op0;
556   }
557 
558   if (match(V, m_SExt(m_Value(Op0)))) {
559     V = Op0;
560     Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
561                                ConstantInt::get(Op0->getType(), 0));
562   }
563 
564   Value *Op1;
565   ConstantInt *CI;
566   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) {
567     return MergeResults(Op0, Op1, IsSigned);
568   }
569   if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) {
570     if (!isKnownNonNegative(Op0, DL))
571       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
572                                  ConstantInt::get(Op0->getType(), 0));
573     if (!isKnownNonNegative(Op1, DL))
574       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1,
575                                  ConstantInt::get(Op1->getType(), 0));
576 
577     return MergeResults(Op0, Op1, IsSigned);
578   }
579 
580   if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
581       canUseSExt(CI)) {
582     Preconditions.emplace_back(
583         CmpInst::ICMP_UGE, Op0,
584         ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
585     return MergeResults(Op0, CI, true);
586   }
587 
588   // Decompose or as an add if there are no common bits between the operands.
589   if (match(V, m_DisjointOr(m_Value(Op0), m_ConstantInt(CI))))
590     return MergeResults(Op0, CI, IsSigned);
591 
592   if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) {
593     if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64)
594       return {V, IsKnownNonNegative};
595     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
596     Result.mul(int64_t{1} << CI->getSExtValue());
597     return Result;
598   }
599 
600   if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) &&
601       (!CI->isNegative())) {
602     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
603     Result.mul(CI->getSExtValue());
604     return Result;
605   }
606 
607   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) {
608     auto ResA = decompose(Op0, Preconditions, IsSigned, DL);
609     auto ResB = decompose(Op1, Preconditions, IsSigned, DL);
610     ResA.sub(ResB);
611     return ResA;
612   }
613 
614   return {V, IsKnownNonNegative};
615 }
616 
617 ConstraintTy
getConstraint(CmpInst::Predicate Pred,Value * Op0,Value * Op1,SmallVectorImpl<Value * > & NewVariables) const618 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
619                               SmallVectorImpl<Value *> &NewVariables) const {
620   assert(NewVariables.empty() && "NewVariables must be empty when passed in");
621   bool IsEq = false;
622   bool IsNe = false;
623 
624   // Try to convert Pred to one of ULE/SLT/SLE/SLT.
625   switch (Pred) {
626   case CmpInst::ICMP_UGT:
627   case CmpInst::ICMP_UGE:
628   case CmpInst::ICMP_SGT:
629   case CmpInst::ICMP_SGE: {
630     Pred = CmpInst::getSwappedPredicate(Pred);
631     std::swap(Op0, Op1);
632     break;
633   }
634   case CmpInst::ICMP_EQ:
635     if (match(Op1, m_Zero())) {
636       Pred = CmpInst::ICMP_ULE;
637     } else {
638       IsEq = true;
639       Pred = CmpInst::ICMP_ULE;
640     }
641     break;
642   case CmpInst::ICMP_NE:
643     if (match(Op1, m_Zero())) {
644       Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
645       std::swap(Op0, Op1);
646     } else {
647       IsNe = true;
648       Pred = CmpInst::ICMP_ULE;
649     }
650     break;
651   default:
652     break;
653   }
654 
655   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
656       Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
657     return {};
658 
659   SmallVector<ConditionTy, 4> Preconditions;
660   bool IsSigned = CmpInst::isSigned(Pred);
661   auto &Value2Index = getValue2Index(IsSigned);
662   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
663                         Preconditions, IsSigned, DL);
664   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
665                         Preconditions, IsSigned, DL);
666   int64_t Offset1 = ADec.Offset;
667   int64_t Offset2 = BDec.Offset;
668   Offset1 *= -1;
669 
670   auto &VariablesA = ADec.Vars;
671   auto &VariablesB = BDec.Vars;
672 
673   // First try to look up \p V in Value2Index and NewVariables. Otherwise add a
674   // new entry to NewVariables.
675   SmallDenseMap<Value *, unsigned> NewIndexMap;
676   auto GetOrAddIndex = [&Value2Index, &NewVariables,
677                         &NewIndexMap](Value *V) -> unsigned {
678     auto V2I = Value2Index.find(V);
679     if (V2I != Value2Index.end())
680       return V2I->second;
681     auto Insert =
682         NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1});
683     if (Insert.second)
684       NewVariables.push_back(V);
685     return Insert.first->second;
686   };
687 
688   // Make sure all variables have entries in Value2Index or NewVariables.
689   for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB))
690     GetOrAddIndex(KV.Variable);
691 
692   // Build result constraint, by first adding all coefficients from A and then
693   // subtracting all coefficients from B.
694   ConstraintTy Res(
695       SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0),
696       IsSigned, IsEq, IsNe);
697   // Collect variables that are known to be positive in all uses in the
698   // constraint.
699   SmallDenseMap<Value *, bool> KnownNonNegativeVariables;
700   auto &R = Res.Coefficients;
701   for (const auto &KV : VariablesA) {
702     R[GetOrAddIndex(KV.Variable)] += KV.Coefficient;
703     auto I =
704         KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
705     I.first->second &= KV.IsKnownNonNegative;
706   }
707 
708   for (const auto &KV : VariablesB) {
709     if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient,
710                     R[GetOrAddIndex(KV.Variable)]))
711       return {};
712     auto I =
713         KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
714     I.first->second &= KV.IsKnownNonNegative;
715   }
716 
717   int64_t OffsetSum;
718   if (AddOverflow(Offset1, Offset2, OffsetSum))
719     return {};
720   if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
721     if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
722       return {};
723   R[0] = OffsetSum;
724   Res.Preconditions = std::move(Preconditions);
725 
726   // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new
727   // variables.
728   while (!NewVariables.empty()) {
729     int64_t Last = R.back();
730     if (Last != 0)
731       break;
732     R.pop_back();
733     Value *RemovedV = NewVariables.pop_back_val();
734     NewIndexMap.erase(RemovedV);
735   }
736 
737   // Add extra constraints for variables that are known positive.
738   for (auto &KV : KnownNonNegativeVariables) {
739     if (!KV.second ||
740         (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first)))
741       continue;
742     SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0);
743     C[GetOrAddIndex(KV.first)] = -1;
744     Res.ExtraInfo.push_back(C);
745   }
746   return Res;
747 }
748 
getConstraintForSolving(CmpInst::Predicate Pred,Value * Op0,Value * Op1) const749 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred,
750                                                      Value *Op0,
751                                                      Value *Op1) const {
752   Constant *NullC = Constant::getNullValue(Op0->getType());
753   // Handle trivially true compares directly to avoid adding V UGE 0 constraints
754   // for all variables in the unsigned system.
755   if ((Pred == CmpInst::ICMP_ULE && Op0 == NullC) ||
756       (Pred == CmpInst::ICMP_UGE && Op1 == NullC)) {
757     auto &Value2Index = getValue2Index(false);
758     // Return constraint that's trivially true.
759     return ConstraintTy(SmallVector<int64_t, 8>(Value2Index.size(), 0), false,
760                         false, false);
761   }
762 
763   // If both operands are known to be non-negative, change signed predicates to
764   // unsigned ones. This increases the reasoning effectiveness in combination
765   // with the signed <-> unsigned transfer logic.
766   if (CmpInst::isSigned(Pred) &&
767       isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) &&
768       isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
769     Pred = CmpInst::getUnsignedPredicate(Pred);
770 
771   SmallVector<Value *> NewVariables;
772   ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables);
773   if (!NewVariables.empty())
774     return {};
775   return R;
776 }
777 
isValid(const ConstraintInfo & Info) const778 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
779   return Coefficients.size() > 0 &&
780          all_of(Preconditions, [&Info](const ConditionTy &C) {
781            return Info.doesHold(C.Pred, C.Op0, C.Op1);
782          });
783 }
784 
785 std::optional<bool>
isImpliedBy(const ConstraintSystem & CS) const786 ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const {
787   bool IsConditionImplied = CS.isConditionImplied(Coefficients);
788 
789   if (IsEq || IsNe) {
790     auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients);
791     bool IsNegatedOrEqualImplied =
792         !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual);
793 
794     // In order to check that `%a == %b` is true (equality), both conditions `%a
795     // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq`
796     // is true), we return true if they both hold, false in the other cases.
797     if (IsConditionImplied && IsNegatedOrEqualImplied)
798       return IsEq;
799 
800     auto Negated = ConstraintSystem::negate(Coefficients);
801     bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
802 
803     auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients);
804     bool IsStrictLessThanImplied =
805         !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan);
806 
807     // In order to check that `%a != %b` is true (non-equality), either
808     // condition `%a > %b` or `%a < %b` must hold true. When checking for
809     // non-equality (`IsNe` is true), we return true if one of the two holds,
810     // false in the other cases.
811     if (IsNegatedImplied || IsStrictLessThanImplied)
812       return IsNe;
813 
814     return std::nullopt;
815   }
816 
817   if (IsConditionImplied)
818     return true;
819 
820   auto Negated = ConstraintSystem::negate(Coefficients);
821   auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
822   if (IsNegatedImplied)
823     return false;
824 
825   // Neither the condition nor its negated holds, did not prove anything.
826   return std::nullopt;
827 }
828 
doesHold(CmpInst::Predicate Pred,Value * A,Value * B) const829 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
830                               Value *B) const {
831   auto R = getConstraintForSolving(Pred, A, B);
832   return R.isValid(*this) &&
833          getCS(R.IsSigned).isConditionImplied(R.Coefficients);
834 }
835 
transferToOtherSystem(CmpInst::Predicate Pred,Value * A,Value * B,unsigned NumIn,unsigned NumOut,SmallVectorImpl<StackEntry> & DFSInStack)836 void ConstraintInfo::transferToOtherSystem(
837     CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
838     unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
839   auto IsKnownNonNegative = [this](Value *V) {
840     return doesHold(CmpInst::ICMP_SGE, V, ConstantInt::get(V->getType(), 0)) ||
841            isKnownNonNegative(V, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1);
842   };
843   // Check if we can combine facts from the signed and unsigned systems to
844   // derive additional facts.
845   if (!A->getType()->isIntegerTy())
846     return;
847   // FIXME: This currently depends on the order we add facts. Ideally we
848   // would first add all known facts and only then try to add additional
849   // facts.
850   switch (Pred) {
851   default:
852     break;
853   case CmpInst::ICMP_ULT:
854   case CmpInst::ICMP_ULE:
855     //  If B is a signed positive constant, then A >=s 0 and A <s (or <=s) B.
856     if (IsKnownNonNegative(B)) {
857       addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn,
858               NumOut, DFSInStack);
859       addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut,
860               DFSInStack);
861     }
862     break;
863   case CmpInst::ICMP_UGE:
864   case CmpInst::ICMP_UGT:
865     //  If A is a signed positive constant, then B >=s 0 and A >s (or >=s) B.
866     if (IsKnownNonNegative(A)) {
867       addFact(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0), NumIn,
868               NumOut, DFSInStack);
869       addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut,
870               DFSInStack);
871     }
872     break;
873   case CmpInst::ICMP_SLT:
874     if (IsKnownNonNegative(A))
875       addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack);
876     break;
877   case CmpInst::ICMP_SGT: {
878     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1)))
879       addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn,
880               NumOut, DFSInStack);
881     if (IsKnownNonNegative(B))
882       addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack);
883 
884     break;
885   }
886   case CmpInst::ICMP_SGE:
887     if (IsKnownNonNegative(B))
888       addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack);
889     break;
890   }
891 }
892 
893 #ifndef NDEBUG
894 
dumpConstraint(ArrayRef<int64_t> C,const DenseMap<Value *,unsigned> & Value2Index)895 static void dumpConstraint(ArrayRef<int64_t> C,
896                            const DenseMap<Value *, unsigned> &Value2Index) {
897   ConstraintSystem CS(Value2Index);
898   CS.addVariableRowFill(C);
899   CS.dump();
900 }
901 #endif
902 
addInfoForInductions(BasicBlock & BB)903 void State::addInfoForInductions(BasicBlock &BB) {
904   auto *L = LI.getLoopFor(&BB);
905   if (!L || L->getHeader() != &BB)
906     return;
907 
908   Value *A;
909   Value *B;
910   CmpInst::Predicate Pred;
911 
912   if (!match(BB.getTerminator(),
913              m_Br(m_ICmp(Pred, m_Value(A), m_Value(B)), m_Value(), m_Value())))
914     return;
915   PHINode *PN = dyn_cast<PHINode>(A);
916   if (!PN) {
917     Pred = CmpInst::getSwappedPredicate(Pred);
918     std::swap(A, B);
919     PN = dyn_cast<PHINode>(A);
920   }
921 
922   if (!PN || PN->getParent() != &BB || PN->getNumIncomingValues() != 2 ||
923       !SE.isSCEVable(PN->getType()))
924     return;
925 
926   BasicBlock *InLoopSucc = nullptr;
927   if (Pred == CmpInst::ICMP_NE)
928     InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(0);
929   else if (Pred == CmpInst::ICMP_EQ)
930     InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(1);
931   else
932     return;
933 
934   if (!L->contains(InLoopSucc) || !L->isLoopExiting(&BB) || InLoopSucc == &BB)
935     return;
936 
937   auto *AR = dyn_cast_or_null<SCEVAddRecExpr>(SE.getSCEV(PN));
938   BasicBlock *LoopPred = L->getLoopPredecessor();
939   if (!AR || AR->getLoop() != L || !LoopPred)
940     return;
941 
942   const SCEV *StartSCEV = AR->getStart();
943   Value *StartValue = nullptr;
944   if (auto *C = dyn_cast<SCEVConstant>(StartSCEV)) {
945     StartValue = C->getValue();
946   } else {
947     StartValue = PN->getIncomingValueForBlock(LoopPred);
948     assert(SE.getSCEV(StartValue) == StartSCEV && "inconsistent start value");
949   }
950 
951   DomTreeNode *DTN = DT.getNode(InLoopSucc);
952   auto IncUnsigned = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_UGT);
953   auto IncSigned = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_SGT);
954   bool MonotonicallyIncreasingUnsigned =
955       IncUnsigned && *IncUnsigned == ScalarEvolution::MonotonicallyIncreasing;
956   bool MonotonicallyIncreasingSigned =
957       IncSigned && *IncSigned == ScalarEvolution::MonotonicallyIncreasing;
958   // If SCEV guarantees that AR does not wrap, PN >= StartValue can be added
959   // unconditionally.
960   if (MonotonicallyIncreasingUnsigned)
961     WorkList.push_back(
962         FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_UGE, PN, StartValue));
963   if (MonotonicallyIncreasingSigned)
964     WorkList.push_back(
965         FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_SGE, PN, StartValue));
966 
967   APInt StepOffset;
968   if (auto *C = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
969     StepOffset = C->getAPInt();
970   else
971     return;
972 
973   // Make sure the bound B is loop-invariant.
974   if (!L->isLoopInvariant(B))
975     return;
976 
977   // Handle negative steps.
978   if (StepOffset.isNegative()) {
979     // TODO: Extend to allow steps > -1.
980     if (!(-StepOffset).isOne())
981       return;
982 
983     // AR may wrap.
984     // Add StartValue >= PN conditional on B <= StartValue which guarantees that
985     // the loop exits before wrapping with a step of -1.
986     WorkList.push_back(FactOrCheck::getConditionFact(
987         DTN, CmpInst::ICMP_UGE, StartValue, PN,
988         ConditionTy(CmpInst::ICMP_ULE, B, StartValue)));
989     WorkList.push_back(FactOrCheck::getConditionFact(
990         DTN, CmpInst::ICMP_SGE, StartValue, PN,
991         ConditionTy(CmpInst::ICMP_SLE, B, StartValue)));
992     // Add PN > B conditional on B <= StartValue which guarantees that the loop
993     // exits when reaching B with a step of -1.
994     WorkList.push_back(FactOrCheck::getConditionFact(
995         DTN, CmpInst::ICMP_UGT, PN, B,
996         ConditionTy(CmpInst::ICMP_ULE, B, StartValue)));
997     WorkList.push_back(FactOrCheck::getConditionFact(
998         DTN, CmpInst::ICMP_SGT, PN, B,
999         ConditionTy(CmpInst::ICMP_SLE, B, StartValue)));
1000     return;
1001   }
1002 
1003   // Make sure AR either steps by 1 or that the value we compare against is a
1004   // GEP based on the same start value and all offsets are a multiple of the
1005   // step size, to guarantee that the induction will reach the value.
1006   if (StepOffset.isZero() || StepOffset.isNegative())
1007     return;
1008 
1009   if (!StepOffset.isOne()) {
1010     // Check whether B-Start is known to be a multiple of StepOffset.
1011     const SCEV *BMinusStart = SE.getMinusSCEV(SE.getSCEV(B), StartSCEV);
1012     if (isa<SCEVCouldNotCompute>(BMinusStart) ||
1013         !SE.getConstantMultiple(BMinusStart).urem(StepOffset).isZero())
1014       return;
1015   }
1016 
1017   // AR may wrap. Add PN >= StartValue conditional on StartValue <= B which
1018   // guarantees that the loop exits before wrapping in combination with the
1019   // restrictions on B and the step above.
1020   if (!MonotonicallyIncreasingUnsigned)
1021     WorkList.push_back(FactOrCheck::getConditionFact(
1022         DTN, CmpInst::ICMP_UGE, PN, StartValue,
1023         ConditionTy(CmpInst::ICMP_ULE, StartValue, B)));
1024   if (!MonotonicallyIncreasingSigned)
1025     WorkList.push_back(FactOrCheck::getConditionFact(
1026         DTN, CmpInst::ICMP_SGE, PN, StartValue,
1027         ConditionTy(CmpInst::ICMP_SLE, StartValue, B)));
1028 
1029   WorkList.push_back(FactOrCheck::getConditionFact(
1030       DTN, CmpInst::ICMP_ULT, PN, B,
1031       ConditionTy(CmpInst::ICMP_ULE, StartValue, B)));
1032   WorkList.push_back(FactOrCheck::getConditionFact(
1033       DTN, CmpInst::ICMP_SLT, PN, B,
1034       ConditionTy(CmpInst::ICMP_SLE, StartValue, B)));
1035 
1036   // Try to add condition from header to the dedicated exit blocks. When exiting
1037   // either with EQ or NE in the header, we know that the induction value must
1038   // be u<= B, as other exits may only exit earlier.
1039   assert(!StepOffset.isNegative() && "induction must be increasing");
1040   assert((Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) &&
1041          "unsupported predicate");
1042   ConditionTy Precond = {CmpInst::ICMP_ULE, StartValue, B};
1043   SmallVector<BasicBlock *> ExitBBs;
1044   L->getExitBlocks(ExitBBs);
1045   for (BasicBlock *EB : ExitBBs) {
1046     // Bail out on non-dedicated exits.
1047     if (DT.dominates(&BB, EB)) {
1048       WorkList.emplace_back(FactOrCheck::getConditionFact(
1049           DT.getNode(EB), CmpInst::ICMP_ULE, A, B, Precond));
1050     }
1051   }
1052 }
1053 
addInfoFor(BasicBlock & BB)1054 void State::addInfoFor(BasicBlock &BB) {
1055   addInfoForInductions(BB);
1056 
1057   // True as long as long as the current instruction is guaranteed to execute.
1058   bool GuaranteedToExecute = true;
1059   // Queue conditions and assumes.
1060   for (Instruction &I : BB) {
1061     if (auto Cmp = dyn_cast<ICmpInst>(&I)) {
1062       for (Use &U : Cmp->uses()) {
1063         auto *UserI = getContextInstForUse(U);
1064         auto *DTN = DT.getNode(UserI->getParent());
1065         if (!DTN)
1066           continue;
1067         WorkList.push_back(FactOrCheck::getCheck(DTN, &U));
1068       }
1069       continue;
1070     }
1071 
1072     auto *II = dyn_cast<IntrinsicInst>(&I);
1073     Intrinsic::ID ID = II ? II->getIntrinsicID() : Intrinsic::not_intrinsic;
1074     switch (ID) {
1075     case Intrinsic::assume: {
1076       Value *A, *B;
1077       CmpInst::Predicate Pred;
1078       if (!match(I.getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B))))
1079         break;
1080       if (GuaranteedToExecute) {
1081         // The assume is guaranteed to execute when BB is entered, hence Cond
1082         // holds on entry to BB.
1083         WorkList.emplace_back(FactOrCheck::getConditionFact(
1084             DT.getNode(I.getParent()), Pred, A, B));
1085       } else {
1086         WorkList.emplace_back(
1087             FactOrCheck::getInstFact(DT.getNode(I.getParent()), &I));
1088       }
1089       break;
1090     }
1091     // Enqueue ssub_with_overflow for simplification.
1092     case Intrinsic::ssub_with_overflow:
1093     case Intrinsic::ucmp:
1094     case Intrinsic::scmp:
1095       WorkList.push_back(
1096           FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I)));
1097       break;
1098     // Enqueue the intrinsics to add extra info.
1099     case Intrinsic::umin:
1100     case Intrinsic::umax:
1101     case Intrinsic::smin:
1102     case Intrinsic::smax:
1103       // TODO: handle llvm.abs as well
1104       WorkList.push_back(
1105           FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I)));
1106       // TODO: Check if it is possible to instead only added the min/max facts
1107       // when simplifying uses of the min/max intrinsics.
1108       if (!isGuaranteedNotToBePoison(&I))
1109         break;
1110       [[fallthrough]];
1111     case Intrinsic::abs:
1112       WorkList.push_back(FactOrCheck::getInstFact(DT.getNode(&BB), &I));
1113       break;
1114     }
1115 
1116     GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
1117   }
1118 
1119   if (auto *Switch = dyn_cast<SwitchInst>(BB.getTerminator())) {
1120     for (auto &Case : Switch->cases()) {
1121       BasicBlock *Succ = Case.getCaseSuccessor();
1122       Value *V = Case.getCaseValue();
1123       if (!canAddSuccessor(BB, Succ))
1124         continue;
1125       WorkList.emplace_back(FactOrCheck::getConditionFact(
1126           DT.getNode(Succ), CmpInst::ICMP_EQ, Switch->getCondition(), V));
1127     }
1128     return;
1129   }
1130 
1131   auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
1132   if (!Br || !Br->isConditional())
1133     return;
1134 
1135   Value *Cond = Br->getCondition();
1136 
1137   // If the condition is a chain of ORs/AND and the successor only has the
1138   // current block as predecessor, queue conditions for the successor.
1139   Value *Op0, *Op1;
1140   if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
1141       match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
1142     bool IsOr = match(Cond, m_LogicalOr());
1143     bool IsAnd = match(Cond, m_LogicalAnd());
1144     // If there's a select that matches both AND and OR, we need to commit to
1145     // one of the options. Arbitrarily pick OR.
1146     if (IsOr && IsAnd)
1147       IsAnd = false;
1148 
1149     BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0);
1150     if (canAddSuccessor(BB, Successor)) {
1151       SmallVector<Value *> CondWorkList;
1152       SmallPtrSet<Value *, 8> SeenCond;
1153       auto QueueValue = [&CondWorkList, &SeenCond](Value *V) {
1154         if (SeenCond.insert(V).second)
1155           CondWorkList.push_back(V);
1156       };
1157       QueueValue(Op1);
1158       QueueValue(Op0);
1159       while (!CondWorkList.empty()) {
1160         Value *Cur = CondWorkList.pop_back_val();
1161         if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) {
1162           WorkList.emplace_back(FactOrCheck::getConditionFact(
1163               DT.getNode(Successor),
1164               IsOr ? CmpInst::getInversePredicate(Cmp->getPredicate())
1165                    : Cmp->getPredicate(),
1166               Cmp->getOperand(0), Cmp->getOperand(1)));
1167           continue;
1168         }
1169         if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
1170           QueueValue(Op1);
1171           QueueValue(Op0);
1172           continue;
1173         }
1174         if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
1175           QueueValue(Op1);
1176           QueueValue(Op0);
1177           continue;
1178         }
1179       }
1180     }
1181     return;
1182   }
1183 
1184   auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
1185   if (!CmpI)
1186     return;
1187   if (canAddSuccessor(BB, Br->getSuccessor(0)))
1188     WorkList.emplace_back(FactOrCheck::getConditionFact(
1189         DT.getNode(Br->getSuccessor(0)), CmpI->getPredicate(),
1190         CmpI->getOperand(0), CmpI->getOperand(1)));
1191   if (canAddSuccessor(BB, Br->getSuccessor(1)))
1192     WorkList.emplace_back(FactOrCheck::getConditionFact(
1193         DT.getNode(Br->getSuccessor(1)),
1194         CmpInst::getInversePredicate(CmpI->getPredicate()), CmpI->getOperand(0),
1195         CmpI->getOperand(1)));
1196 }
1197 
1198 #ifndef NDEBUG
dumpUnpackedICmp(raw_ostream & OS,ICmpInst::Predicate Pred,Value * LHS,Value * RHS)1199 static void dumpUnpackedICmp(raw_ostream &OS, ICmpInst::Predicate Pred,
1200                              Value *LHS, Value *RHS) {
1201   OS << "icmp " << Pred << ' ';
1202   LHS->printAsOperand(OS, /*PrintType=*/true);
1203   OS << ", ";
1204   RHS->printAsOperand(OS, /*PrintType=*/false);
1205 }
1206 #endif
1207 
1208 namespace {
1209 /// Helper to keep track of a condition and if it should be treated as negated
1210 /// for reproducer construction.
1211 /// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a
1212 /// placeholder to keep the ReproducerCondStack in sync with DFSInStack.
1213 struct ReproducerEntry {
1214   ICmpInst::Predicate Pred;
1215   Value *LHS;
1216   Value *RHS;
1217 
ReproducerEntry__anon050fee910811::ReproducerEntry1218   ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS)
1219       : Pred(Pred), LHS(LHS), RHS(RHS) {}
1220 };
1221 } // namespace
1222 
1223 /// Helper function to generate a reproducer function for simplifying \p Cond.
1224 /// The reproducer function contains a series of @llvm.assume calls, one for
1225 /// each condition in \p Stack. For each condition, the operand instruction are
1226 /// cloned until we reach operands that have an entry in \p Value2Index. Those
1227 /// will then be added as function arguments. \p DT is used to order cloned
1228 /// instructions. The reproducer function will get added to \p M, if it is
1229 /// non-null. Otherwise no reproducer function is generated.
generateReproducer(CmpInst * Cond,Module * M,ArrayRef<ReproducerEntry> Stack,ConstraintInfo & Info,DominatorTree & DT)1230 static void generateReproducer(CmpInst *Cond, Module *M,
1231                                ArrayRef<ReproducerEntry> Stack,
1232                                ConstraintInfo &Info, DominatorTree &DT) {
1233   if (!M)
1234     return;
1235 
1236   LLVMContext &Ctx = Cond->getContext();
1237 
1238   LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n");
1239 
1240   ValueToValueMapTy Old2New;
1241   SmallVector<Value *> Args;
1242   SmallPtrSet<Value *, 8> Seen;
1243   // Traverse Cond and its operands recursively until we reach a value that's in
1244   // Value2Index or not an instruction, or not a operation that
1245   // ConstraintElimination can decompose. Such values will be considered as
1246   // external inputs to the reproducer, they are collected and added as function
1247   // arguments later.
1248   auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) {
1249     auto &Value2Index = Info.getValue2Index(IsSigned);
1250     SmallVector<Value *, 4> WorkList(Ops);
1251     while (!WorkList.empty()) {
1252       Value *V = WorkList.pop_back_val();
1253       if (!Seen.insert(V).second)
1254         continue;
1255       if (Old2New.find(V) != Old2New.end())
1256         continue;
1257       if (isa<Constant>(V))
1258         continue;
1259 
1260       auto *I = dyn_cast<Instruction>(V);
1261       if (Value2Index.contains(V) || !I ||
1262           !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) {
1263         Old2New[V] = V;
1264         Args.push_back(V);
1265         LLVM_DEBUG(dbgs() << "  found external input " << *V << "\n");
1266       } else {
1267         append_range(WorkList, I->operands());
1268       }
1269     }
1270   };
1271 
1272   for (auto &Entry : Stack)
1273     if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE)
1274       CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred));
1275   CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate()));
1276 
1277   SmallVector<Type *> ParamTys;
1278   for (auto *P : Args)
1279     ParamTys.push_back(P->getType());
1280 
1281   FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys,
1282                                         /*isVarArg=*/false);
1283   Function *F = Function::Create(FTy, Function::ExternalLinkage,
1284                                  Cond->getModule()->getName() +
1285                                      Cond->getFunction()->getName() + "repro",
1286                                  M);
1287   // Add arguments to the reproducer function for each external value collected.
1288   for (unsigned I = 0; I < Args.size(); ++I) {
1289     F->getArg(I)->setName(Args[I]->getName());
1290     Old2New[Args[I]] = F->getArg(I);
1291   }
1292 
1293   BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F);
1294   IRBuilder<> Builder(Entry);
1295   Builder.CreateRet(Builder.getTrue());
1296   Builder.SetInsertPoint(Entry->getTerminator());
1297 
1298   // Clone instructions in \p Ops and their operands recursively until reaching
1299   // an value in Value2Index (external input to the reproducer). Update Old2New
1300   // mapping for the original and cloned instructions. Sort instructions to
1301   // clone by dominance, then insert the cloned instructions in the function.
1302   auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) {
1303     SmallVector<Value *, 4> WorkList(Ops);
1304     SmallVector<Instruction *> ToClone;
1305     auto &Value2Index = Info.getValue2Index(IsSigned);
1306     while (!WorkList.empty()) {
1307       Value *V = WorkList.pop_back_val();
1308       if (Old2New.find(V) != Old2New.end())
1309         continue;
1310 
1311       auto *I = dyn_cast<Instruction>(V);
1312       if (!Value2Index.contains(V) && I) {
1313         Old2New[V] = nullptr;
1314         ToClone.push_back(I);
1315         append_range(WorkList, I->operands());
1316       }
1317     }
1318 
1319     sort(ToClone,
1320          [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); });
1321     for (Instruction *I : ToClone) {
1322       Instruction *Cloned = I->clone();
1323       Old2New[I] = Cloned;
1324       Old2New[I]->setName(I->getName());
1325       Cloned->insertBefore(&*Builder.GetInsertPoint());
1326       Cloned->dropUnknownNonDebugMetadata();
1327       Cloned->setDebugLoc({});
1328     }
1329   };
1330 
1331   // Materialize the assumptions for the reproducer using the entries in Stack.
1332   // That is, first clone the operands of the condition recursively until we
1333   // reach an external input to the reproducer and add them to the reproducer
1334   // function. Then add an ICmp for the condition (with the inverse predicate if
1335   // the entry is negated) and an assert using the ICmp.
1336   for (auto &Entry : Stack) {
1337     if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE)
1338       continue;
1339 
1340     LLVM_DEBUG(dbgs() << "  Materializing assumption ";
1341                dumpUnpackedICmp(dbgs(), Entry.Pred, Entry.LHS, Entry.RHS);
1342                dbgs() << "\n");
1343     CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred));
1344 
1345     auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS);
1346     Builder.CreateAssumption(Cmp);
1347   }
1348 
1349   // Finally, clone the condition to reproduce and remap instruction operands in
1350   // the reproducer using Old2New.
1351   CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate()));
1352   Entry->getTerminator()->setOperand(0, Cond);
1353   remapInstructionsInBlocks({Entry}, Old2New);
1354 
1355   assert(!verifyFunction(*F, &dbgs()));
1356 }
1357 
checkCondition(CmpInst::Predicate Pred,Value * A,Value * B,Instruction * CheckInst,ConstraintInfo & Info)1358 static std::optional<bool> checkCondition(CmpInst::Predicate Pred, Value *A,
1359                                           Value *B, Instruction *CheckInst,
1360                                           ConstraintInfo &Info) {
1361   LLVM_DEBUG(dbgs() << "Checking " << *CheckInst << "\n");
1362 
1363   auto R = Info.getConstraintForSolving(Pred, A, B);
1364   if (R.empty() || !R.isValid(Info)){
1365     LLVM_DEBUG(dbgs() << "   failed to decompose condition\n");
1366     return std::nullopt;
1367   }
1368 
1369   auto &CSToUse = Info.getCS(R.IsSigned);
1370 
1371   // If there was extra information collected during decomposition, apply
1372   // it now and remove it immediately once we are done with reasoning
1373   // about the constraint.
1374   for (auto &Row : R.ExtraInfo)
1375     CSToUse.addVariableRow(Row);
1376   auto InfoRestorer = make_scope_exit([&]() {
1377     for (unsigned I = 0; I < R.ExtraInfo.size(); ++I)
1378       CSToUse.popLastConstraint();
1379   });
1380 
1381   if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) {
1382     if (!DebugCounter::shouldExecute(EliminatedCounter))
1383       return std::nullopt;
1384 
1385     LLVM_DEBUG({
1386       dbgs() << "Condition ";
1387       dumpUnpackedICmp(
1388           dbgs(), *ImpliedCondition ? Pred : CmpInst::getInversePredicate(Pred),
1389           A, B);
1390       dbgs() << " implied by dominating constraints\n";
1391       CSToUse.dump();
1392     });
1393     return ImpliedCondition;
1394   }
1395 
1396   return std::nullopt;
1397 }
1398 
checkAndReplaceCondition(CmpInst * Cmp,ConstraintInfo & Info,unsigned NumIn,unsigned NumOut,Instruction * ContextInst,Module * ReproducerModule,ArrayRef<ReproducerEntry> ReproducerCondStack,DominatorTree & DT,SmallVectorImpl<Instruction * > & ToRemove)1399 static bool checkAndReplaceCondition(
1400     CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut,
1401     Instruction *ContextInst, Module *ReproducerModule,
1402     ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT,
1403     SmallVectorImpl<Instruction *> &ToRemove) {
1404   auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) {
1405     generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT);
1406     Constant *ConstantC = ConstantInt::getBool(
1407         CmpInst::makeCmpResultType(Cmp->getType()), IsTrue);
1408     Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut,
1409                                        ContextInst](Use &U) {
1410       auto *UserI = getContextInstForUse(U);
1411       auto *DTN = DT.getNode(UserI->getParent());
1412       if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut)
1413         return false;
1414       if (UserI->getParent() == ContextInst->getParent() &&
1415           UserI->comesBefore(ContextInst))
1416         return false;
1417 
1418       // Conditions in an assume trivially simplify to true. Skip uses
1419       // in assume calls to not destroy the available information.
1420       auto *II = dyn_cast<IntrinsicInst>(U.getUser());
1421       return !II || II->getIntrinsicID() != Intrinsic::assume;
1422     });
1423     NumCondsRemoved++;
1424     if (Cmp->use_empty())
1425       ToRemove.push_back(Cmp);
1426     return true;
1427   };
1428 
1429   if (auto ImpliedCondition =
1430           checkCondition(Cmp->getPredicate(), Cmp->getOperand(0),
1431                          Cmp->getOperand(1), Cmp, Info))
1432     return ReplaceCmpWithConstant(Cmp, *ImpliedCondition);
1433   return false;
1434 }
1435 
checkAndReplaceMinMax(MinMaxIntrinsic * MinMax,ConstraintInfo & Info,SmallVectorImpl<Instruction * > & ToRemove)1436 static bool checkAndReplaceMinMax(MinMaxIntrinsic *MinMax, ConstraintInfo &Info,
1437                                   SmallVectorImpl<Instruction *> &ToRemove) {
1438   auto ReplaceMinMaxWithOperand = [&](MinMaxIntrinsic *MinMax, bool UseLHS) {
1439     // TODO: generate reproducer for min/max.
1440     MinMax->replaceAllUsesWith(MinMax->getOperand(UseLHS ? 0 : 1));
1441     ToRemove.push_back(MinMax);
1442     return true;
1443   };
1444 
1445   ICmpInst::Predicate Pred =
1446       ICmpInst::getNonStrictPredicate(MinMax->getPredicate());
1447   if (auto ImpliedCondition = checkCondition(
1448           Pred, MinMax->getOperand(0), MinMax->getOperand(1), MinMax, Info))
1449     return ReplaceMinMaxWithOperand(MinMax, *ImpliedCondition);
1450   if (auto ImpliedCondition = checkCondition(
1451           Pred, MinMax->getOperand(1), MinMax->getOperand(0), MinMax, Info))
1452     return ReplaceMinMaxWithOperand(MinMax, !*ImpliedCondition);
1453   return false;
1454 }
1455 
checkAndReplaceCmp(CmpIntrinsic * I,ConstraintInfo & Info,SmallVectorImpl<Instruction * > & ToRemove)1456 static bool checkAndReplaceCmp(CmpIntrinsic *I, ConstraintInfo &Info,
1457                                SmallVectorImpl<Instruction *> &ToRemove) {
1458   Value *LHS = I->getOperand(0);
1459   Value *RHS = I->getOperand(1);
1460   if (checkCondition(I->getGTPredicate(), LHS, RHS, I, Info).value_or(false)) {
1461     I->replaceAllUsesWith(ConstantInt::get(I->getType(), 1));
1462     ToRemove.push_back(I);
1463     return true;
1464   }
1465   if (checkCondition(I->getLTPredicate(), LHS, RHS, I, Info).value_or(false)) {
1466     I->replaceAllUsesWith(ConstantInt::getSigned(I->getType(), -1));
1467     ToRemove.push_back(I);
1468     return true;
1469   }
1470   if (checkCondition(ICmpInst::ICMP_EQ, LHS, RHS, I, Info).value_or(false)) {
1471     I->replaceAllUsesWith(ConstantInt::get(I->getType(), 0));
1472     ToRemove.push_back(I);
1473     return true;
1474   }
1475   return false;
1476 }
1477 
1478 static void
removeEntryFromStack(const StackEntry & E,ConstraintInfo & Info,Module * ReproducerModule,SmallVectorImpl<ReproducerEntry> & ReproducerCondStack,SmallVectorImpl<StackEntry> & DFSInStack)1479 removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info,
1480                      Module *ReproducerModule,
1481                      SmallVectorImpl<ReproducerEntry> &ReproducerCondStack,
1482                      SmallVectorImpl<StackEntry> &DFSInStack) {
1483   Info.popLastConstraint(E.IsSigned);
1484   // Remove variables in the system that went out of scope.
1485   auto &Mapping = Info.getValue2Index(E.IsSigned);
1486   for (Value *V : E.ValuesToRelease)
1487     Mapping.erase(V);
1488   Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
1489   DFSInStack.pop_back();
1490   if (ReproducerModule)
1491     ReproducerCondStack.pop_back();
1492 }
1493 
1494 /// Check if either the first condition of an AND or OR is implied by the
1495 /// (negated in case of OR) second condition or vice versa.
checkOrAndOpImpliedByOther(FactOrCheck & CB,ConstraintInfo & Info,Module * ReproducerModule,SmallVectorImpl<ReproducerEntry> & ReproducerCondStack,SmallVectorImpl<StackEntry> & DFSInStack)1496 static bool checkOrAndOpImpliedByOther(
1497     FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule,
1498     SmallVectorImpl<ReproducerEntry> &ReproducerCondStack,
1499     SmallVectorImpl<StackEntry> &DFSInStack) {
1500 
1501   CmpInst::Predicate Pred;
1502   Value *A, *B;
1503   Instruction *JoinOp = CB.getContextInst();
1504   CmpInst *CmpToCheck = cast<CmpInst>(CB.getInstructionToSimplify());
1505   unsigned OtherOpIdx = JoinOp->getOperand(0) == CmpToCheck ? 1 : 0;
1506 
1507   // Don't try to simplify the first condition of a select by the second, as
1508   // this may make the select more poisonous than the original one.
1509   // TODO: check if the first operand may be poison.
1510   if (OtherOpIdx != 0 && isa<SelectInst>(JoinOp))
1511     return false;
1512 
1513   if (!match(JoinOp->getOperand(OtherOpIdx),
1514              m_ICmp(Pred, m_Value(A), m_Value(B))))
1515     return false;
1516 
1517   // For OR, check if the negated condition implies CmpToCheck.
1518   bool IsOr = match(JoinOp, m_LogicalOr());
1519   if (IsOr)
1520     Pred = CmpInst::getInversePredicate(Pred);
1521 
1522   // Optimistically add fact from first condition.
1523   unsigned OldSize = DFSInStack.size();
1524   Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1525   if (OldSize == DFSInStack.size())
1526     return false;
1527 
1528   bool Changed = false;
1529   // Check if the second condition can be simplified now.
1530   if (auto ImpliedCondition =
1531           checkCondition(CmpToCheck->getPredicate(), CmpToCheck->getOperand(0),
1532                          CmpToCheck->getOperand(1), CmpToCheck, Info)) {
1533     if (IsOr && isa<SelectInst>(JoinOp)) {
1534       JoinOp->setOperand(
1535           OtherOpIdx == 0 ? 2 : 0,
1536           ConstantInt::getBool(JoinOp->getType(), *ImpliedCondition));
1537     } else
1538       JoinOp->setOperand(
1539           1 - OtherOpIdx,
1540           ConstantInt::getBool(JoinOp->getType(), *ImpliedCondition));
1541 
1542     Changed = true;
1543   }
1544 
1545   // Remove entries again.
1546   while (OldSize < DFSInStack.size()) {
1547     StackEntry E = DFSInStack.back();
1548     removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack,
1549                          DFSInStack);
1550   }
1551   return Changed;
1552 }
1553 
addFact(CmpInst::Predicate Pred,Value * A,Value * B,unsigned NumIn,unsigned NumOut,SmallVectorImpl<StackEntry> & DFSInStack)1554 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
1555                              unsigned NumIn, unsigned NumOut,
1556                              SmallVectorImpl<StackEntry> &DFSInStack) {
1557   // If the constraint has a pre-condition, skip the constraint if it does not
1558   // hold.
1559   SmallVector<Value *> NewVariables;
1560   auto R = getConstraint(Pred, A, B, NewVariables);
1561 
1562   // TODO: Support non-equality for facts as well.
1563   if (!R.isValid(*this) || R.isNe())
1564     return;
1565 
1566   LLVM_DEBUG(dbgs() << "Adding '"; dumpUnpackedICmp(dbgs(), Pred, A, B);
1567              dbgs() << "'\n");
1568   bool Added = false;
1569   auto &CSToUse = getCS(R.IsSigned);
1570   if (R.Coefficients.empty())
1571     return;
1572 
1573   Added |= CSToUse.addVariableRowFill(R.Coefficients);
1574 
1575   // If R has been added to the system, add the new variables and queue it for
1576   // removal once it goes out-of-scope.
1577   if (Added) {
1578     SmallVector<Value *, 2> ValuesToRelease;
1579     auto &Value2Index = getValue2Index(R.IsSigned);
1580     for (Value *V : NewVariables) {
1581       Value2Index.insert({V, Value2Index.size() + 1});
1582       ValuesToRelease.push_back(V);
1583     }
1584 
1585     LLVM_DEBUG({
1586       dbgs() << "  constraint: ";
1587       dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned));
1588       dbgs() << "\n";
1589     });
1590 
1591     DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1592                             std::move(ValuesToRelease));
1593 
1594     if (!R.IsSigned) {
1595       for (Value *V : NewVariables) {
1596         ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0),
1597                             false, false, false);
1598         VarPos.Coefficients[Value2Index[V]] = -1;
1599         CSToUse.addVariableRow(VarPos.Coefficients);
1600         DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1601                                 SmallVector<Value *, 2>());
1602       }
1603     }
1604 
1605     if (R.isEq()) {
1606       // Also add the inverted constraint for equality constraints.
1607       for (auto &Coeff : R.Coefficients)
1608         Coeff *= -1;
1609       CSToUse.addVariableRowFill(R.Coefficients);
1610 
1611       DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1612                               SmallVector<Value *, 2>());
1613     }
1614   }
1615 }
1616 
replaceSubOverflowUses(IntrinsicInst * II,Value * A,Value * B,SmallVectorImpl<Instruction * > & ToRemove)1617 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B,
1618                                    SmallVectorImpl<Instruction *> &ToRemove) {
1619   bool Changed = false;
1620   IRBuilder<> Builder(II->getParent(), II->getIterator());
1621   Value *Sub = nullptr;
1622   for (User *U : make_early_inc_range(II->users())) {
1623     if (match(U, m_ExtractValue<0>(m_Value()))) {
1624       if (!Sub)
1625         Sub = Builder.CreateSub(A, B);
1626       U->replaceAllUsesWith(Sub);
1627       Changed = true;
1628     } else if (match(U, m_ExtractValue<1>(m_Value()))) {
1629       U->replaceAllUsesWith(Builder.getFalse());
1630       Changed = true;
1631     } else
1632       continue;
1633 
1634     if (U->use_empty()) {
1635       auto *I = cast<Instruction>(U);
1636       ToRemove.push_back(I);
1637       I->setOperand(0, PoisonValue::get(II->getType()));
1638       Changed = true;
1639     }
1640   }
1641 
1642   if (II->use_empty()) {
1643     II->eraseFromParent();
1644     Changed = true;
1645   }
1646   return Changed;
1647 }
1648 
1649 static bool
tryToSimplifyOverflowMath(IntrinsicInst * II,ConstraintInfo & Info,SmallVectorImpl<Instruction * > & ToRemove)1650 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
1651                           SmallVectorImpl<Instruction *> &ToRemove) {
1652   auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
1653                               ConstraintInfo &Info) {
1654     auto R = Info.getConstraintForSolving(Pred, A, B);
1655     if (R.size() < 2 || !R.isValid(Info))
1656       return false;
1657 
1658     auto &CSToUse = Info.getCS(R.IsSigned);
1659     return CSToUse.isConditionImplied(R.Coefficients);
1660   };
1661 
1662   bool Changed = false;
1663   if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
1664     // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
1665     // can be simplified to a regular sub.
1666     Value *A = II->getArgOperand(0);
1667     Value *B = II->getArgOperand(1);
1668     if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
1669         !DoesConditionHold(CmpInst::ICMP_SGE, B,
1670                            ConstantInt::get(A->getType(), 0), Info))
1671       return false;
1672     Changed = replaceSubOverflowUses(II, A, B, ToRemove);
1673   }
1674   return Changed;
1675 }
1676 
eliminateConstraints(Function & F,DominatorTree & DT,LoopInfo & LI,ScalarEvolution & SE,OptimizationRemarkEmitter & ORE)1677 static bool eliminateConstraints(Function &F, DominatorTree &DT, LoopInfo &LI,
1678                                  ScalarEvolution &SE,
1679                                  OptimizationRemarkEmitter &ORE) {
1680   bool Changed = false;
1681   DT.updateDFSNumbers();
1682   SmallVector<Value *> FunctionArgs;
1683   for (Value &Arg : F.args())
1684     FunctionArgs.push_back(&Arg);
1685   ConstraintInfo Info(F.getDataLayout(), FunctionArgs);
1686   State S(DT, LI, SE);
1687   std::unique_ptr<Module> ReproducerModule(
1688       DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr);
1689 
1690   // First, collect conditions implied by branches and blocks with their
1691   // Dominator DFS in and out numbers.
1692   for (BasicBlock &BB : F) {
1693     if (!DT.getNode(&BB))
1694       continue;
1695     S.addInfoFor(BB);
1696   }
1697 
1698   // Next, sort worklist by dominance, so that dominating conditions to check
1699   // and facts come before conditions and facts dominated by them. If a
1700   // condition to check and a fact have the same numbers, conditional facts come
1701   // first. Assume facts and checks are ordered according to their relative
1702   // order in the containing basic block. Also make sure conditions with
1703   // constant operands come before conditions without constant operands. This
1704   // increases the effectiveness of the current signed <-> unsigned fact
1705   // transfer logic.
1706   stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) {
1707     auto HasNoConstOp = [](const FactOrCheck &B) {
1708       Value *V0 = B.isConditionFact() ? B.Cond.Op0 : B.Inst->getOperand(0);
1709       Value *V1 = B.isConditionFact() ? B.Cond.Op1 : B.Inst->getOperand(1);
1710       return !isa<ConstantInt>(V0) && !isa<ConstantInt>(V1);
1711     };
1712     // If both entries have the same In numbers, conditional facts come first.
1713     // Otherwise use the relative order in the basic block.
1714     if (A.NumIn == B.NumIn) {
1715       if (A.isConditionFact() && B.isConditionFact()) {
1716         bool NoConstOpA = HasNoConstOp(A);
1717         bool NoConstOpB = HasNoConstOp(B);
1718         return NoConstOpA < NoConstOpB;
1719       }
1720       if (A.isConditionFact())
1721         return true;
1722       if (B.isConditionFact())
1723         return false;
1724       auto *InstA = A.getContextInst();
1725       auto *InstB = B.getContextInst();
1726       return InstA->comesBefore(InstB);
1727     }
1728     return A.NumIn < B.NumIn;
1729   });
1730 
1731   SmallVector<Instruction *> ToRemove;
1732 
1733   // Finally, process ordered worklist and eliminate implied conditions.
1734   SmallVector<StackEntry, 16> DFSInStack;
1735   SmallVector<ReproducerEntry> ReproducerCondStack;
1736   for (FactOrCheck &CB : S.WorkList) {
1737     // First, pop entries from the stack that are out-of-scope for CB. Remove
1738     // the corresponding entry from the constraint system.
1739     while (!DFSInStack.empty()) {
1740       auto &E = DFSInStack.back();
1741       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
1742                         << "\n");
1743       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
1744       assert(E.NumIn <= CB.NumIn);
1745       if (CB.NumOut <= E.NumOut)
1746         break;
1747       LLVM_DEBUG({
1748         dbgs() << "Removing ";
1749         dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(),
1750                        Info.getValue2Index(E.IsSigned));
1751         dbgs() << "\n";
1752       });
1753       removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack,
1754                            DFSInStack);
1755     }
1756 
1757     // For a block, check if any CmpInsts become known based on the current set
1758     // of constraints.
1759     if (CB.isCheck()) {
1760       Instruction *Inst = CB.getInstructionToSimplify();
1761       if (!Inst)
1762         continue;
1763       LLVM_DEBUG(dbgs() << "Processing condition to simplify: " << *Inst
1764                         << "\n");
1765       if (auto *II = dyn_cast<WithOverflowInst>(Inst)) {
1766         Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove);
1767       } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) {
1768         bool Simplified = checkAndReplaceCondition(
1769             Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(),
1770             ReproducerModule.get(), ReproducerCondStack, S.DT, ToRemove);
1771         if (!Simplified &&
1772             match(CB.getContextInst(), m_LogicalOp(m_Value(), m_Value()))) {
1773           Simplified =
1774               checkOrAndOpImpliedByOther(CB, Info, ReproducerModule.get(),
1775                                          ReproducerCondStack, DFSInStack);
1776         }
1777         Changed |= Simplified;
1778       } else if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(Inst)) {
1779         Changed |= checkAndReplaceMinMax(MinMax, Info, ToRemove);
1780       } else if (auto *CmpIntr = dyn_cast<CmpIntrinsic>(Inst)) {
1781         Changed |= checkAndReplaceCmp(CmpIntr, Info, ToRemove);
1782       }
1783       continue;
1784     }
1785 
1786     auto AddFact = [&](CmpInst::Predicate Pred, Value *A, Value *B) {
1787       LLVM_DEBUG(dbgs() << "Processing fact to add to the system: ";
1788                  dumpUnpackedICmp(dbgs(), Pred, A, B); dbgs() << "\n");
1789       if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) {
1790         LLVM_DEBUG(
1791             dbgs()
1792             << "Skip adding constraint because system has too many rows.\n");
1793         return;
1794       }
1795 
1796       Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1797       if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size())
1798         ReproducerCondStack.emplace_back(Pred, A, B);
1799 
1800       Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1801       if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) {
1802         // Add dummy entries to ReproducerCondStack to keep it in sync with
1803         // DFSInStack.
1804         for (unsigned I = 0,
1805                       E = (DFSInStack.size() - ReproducerCondStack.size());
1806              I < E; ++I) {
1807           ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE,
1808                                            nullptr, nullptr);
1809         }
1810       }
1811     };
1812 
1813     ICmpInst::Predicate Pred;
1814     if (!CB.isConditionFact()) {
1815       Value *X;
1816       if (match(CB.Inst, m_Intrinsic<Intrinsic::abs>(m_Value(X)))) {
1817         // If is_int_min_poison is true then we may assume llvm.abs >= 0.
1818         if (cast<ConstantInt>(CB.Inst->getOperand(1))->isOne())
1819           AddFact(CmpInst::ICMP_SGE, CB.Inst,
1820                   ConstantInt::get(CB.Inst->getType(), 0));
1821         AddFact(CmpInst::ICMP_SGE, CB.Inst, X);
1822         continue;
1823       }
1824 
1825       if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) {
1826         Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate());
1827         AddFact(Pred, MinMax, MinMax->getLHS());
1828         AddFact(Pred, MinMax, MinMax->getRHS());
1829         continue;
1830       }
1831     }
1832 
1833     Value *A = nullptr, *B = nullptr;
1834     if (CB.isConditionFact()) {
1835       Pred = CB.Cond.Pred;
1836       A = CB.Cond.Op0;
1837       B = CB.Cond.Op1;
1838       if (CB.DoesHold.Pred != CmpInst::BAD_ICMP_PREDICATE &&
1839           !Info.doesHold(CB.DoesHold.Pred, CB.DoesHold.Op0, CB.DoesHold.Op1)) {
1840         LLVM_DEBUG({
1841           dbgs() << "Not adding fact ";
1842           dumpUnpackedICmp(dbgs(), Pred, A, B);
1843           dbgs() << " because precondition ";
1844           dumpUnpackedICmp(dbgs(), CB.DoesHold.Pred, CB.DoesHold.Op0,
1845                            CB.DoesHold.Op1);
1846           dbgs() << " does not hold.\n";
1847         });
1848         continue;
1849       }
1850     } else {
1851       bool Matched = match(CB.Inst, m_Intrinsic<Intrinsic::assume>(
1852                                         m_ICmp(Pred, m_Value(A), m_Value(B))));
1853       (void)Matched;
1854       assert(Matched && "Must have an assume intrinsic with a icmp operand");
1855     }
1856     AddFact(Pred, A, B);
1857   }
1858 
1859   if (ReproducerModule && !ReproducerModule->functions().empty()) {
1860     std::string S;
1861     raw_string_ostream StringS(S);
1862     ReproducerModule->print(StringS, nullptr);
1863     StringS.flush();
1864     OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F);
1865     Rem << ore::NV("module") << S;
1866     ORE.emit(Rem);
1867   }
1868 
1869 #ifndef NDEBUG
1870   unsigned SignedEntries =
1871       count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
1872   assert(Info.getCS(false).size() - FunctionArgs.size() ==
1873              DFSInStack.size() - SignedEntries &&
1874          "updates to CS and DFSInStack are out of sync");
1875   assert(Info.getCS(true).size() == SignedEntries &&
1876          "updates to CS and DFSInStack are out of sync");
1877 #endif
1878 
1879   for (Instruction *I : ToRemove)
1880     I->eraseFromParent();
1881   return Changed;
1882 }
1883 
run(Function & F,FunctionAnalysisManager & AM)1884 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
1885                                                  FunctionAnalysisManager &AM) {
1886   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1887   auto &LI = AM.getResult<LoopAnalysis>(F);
1888   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1889   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1890   if (!eliminateConstraints(F, DT, LI, SE, ORE))
1891     return PreservedAnalyses::all();
1892 
1893   PreservedAnalyses PA;
1894   PA.preserve<DominatorTreeAnalysis>();
1895   PA.preserve<LoopAnalysis>();
1896   PA.preserve<ScalarEvolutionAnalysis>();
1897   PA.preserveSet<CFGAnalyses>();
1898   return PA;
1899 }
1900