1 //===- IndirectCallPromotion.cpp - Optimizations based on value profiling -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the transformation that promotes indirect calls to
10 // conditional direct calls when the indirect-call value profile metadata is
11 // available.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
20 #include "llvm/Analysis/IndirectCallVisitor.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/Analysis/TypeMetadataUtils.h"
24 #include "llvm/IR/DiagnosticInfo.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/PassManager.h"
32 #include "llvm/IR/ProfDataUtils.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/ProfileData/InstrProf.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/Error.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Transforms/Instrumentation.h"
41 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
42 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
43 #include <cassert>
44 #include <cstdint>
45 #include <memory>
46 #include <set>
47 #include <string>
48 #include <unordered_map>
49 #include <utility>
50 #include <vector>
51
52 using namespace llvm;
53
54 #define DEBUG_TYPE "pgo-icall-prom"
55
56 STATISTIC(NumOfPGOICallPromotion, "Number of indirect call promotions.");
57 STATISTIC(NumOfPGOICallsites, "Number of indirect call candidate sites.");
58
59 extern cl::opt<unsigned> MaxNumVTableAnnotations;
60
61 namespace llvm {
62 extern cl::opt<bool> EnableVTableProfileUse;
63 }
64
65 // Command line option to disable indirect-call promotion with the default as
66 // false. This is for debug purpose.
67 static cl::opt<bool> DisableICP("disable-icp", cl::init(false), cl::Hidden,
68 cl::desc("Disable indirect call promotion"));
69
70 // Set the cutoff value for the promotion. If the value is other than 0, we
71 // stop the transformation once the total number of promotions equals the cutoff
72 // value.
73 // For debug use only.
74 static cl::opt<unsigned>
75 ICPCutOff("icp-cutoff", cl::init(0), cl::Hidden,
76 cl::desc("Max number of promotions for this compilation"));
77
78 // If ICPCSSkip is non zero, the first ICPCSSkip callsites will be skipped.
79 // For debug use only.
80 static cl::opt<unsigned>
81 ICPCSSkip("icp-csskip", cl::init(0), cl::Hidden,
82 cl::desc("Skip Callsite up to this number for this compilation"));
83
84 // Set if the pass is called in LTO optimization. The difference for LTO mode
85 // is the pass won't prefix the source module name to the internal linkage
86 // symbols.
87 static cl::opt<bool> ICPLTOMode("icp-lto", cl::init(false), cl::Hidden,
88 cl::desc("Run indirect-call promotion in LTO "
89 "mode"));
90
91 // Set if the pass is called in SamplePGO mode. The difference for SamplePGO
92 // mode is it will add prof metadatato the created direct call.
93 static cl::opt<bool>
94 ICPSamplePGOMode("icp-samplepgo", cl::init(false), cl::Hidden,
95 cl::desc("Run indirect-call promotion in SamplePGO mode"));
96
97 // If the option is set to true, only call instructions will be considered for
98 // transformation -- invoke instructions will be ignored.
99 static cl::opt<bool>
100 ICPCallOnly("icp-call-only", cl::init(false), cl::Hidden,
101 cl::desc("Run indirect-call promotion for call instructions "
102 "only"));
103
104 // If the option is set to true, only invoke instructions will be considered for
105 // transformation -- call instructions will be ignored.
106 static cl::opt<bool> ICPInvokeOnly("icp-invoke-only", cl::init(false),
107 cl::Hidden,
108 cl::desc("Run indirect-call promotion for "
109 "invoke instruction only"));
110
111 // Dump the function level IR if the transformation happened in this
112 // function. For debug use only.
113 static cl::opt<bool>
114 ICPDUMPAFTER("icp-dumpafter", cl::init(false), cl::Hidden,
115 cl::desc("Dump IR after transformation happens"));
116
117 // Indirect call promotion pass will fall back to function-based comparison if
118 // vtable-count / function-count is smaller than this threshold.
119 static cl::opt<float> ICPVTablePercentageThreshold(
120 "icp-vtable-percentage-threshold", cl::init(0.99), cl::Hidden,
121 cl::desc("The percentage threshold of vtable-count / function-count for "
122 "cost-benefit analysis."));
123
124 // Although comparing vtables can save a vtable load, we may need to compare
125 // vtable pointer with multiple vtable address points due to class inheritance.
126 // Comparing with multiple vtables inserts additional instructions on hot code
127 // path, and doing so for an earlier candidate delays the comparisons for later
128 // candidates. For the last candidate, only the fallback path is affected.
129 // We allow multiple vtable comparison for the last function candidate and use
130 // the option below to cap the number of vtables.
131 static cl::opt<int> ICPMaxNumVTableLastCandidate(
132 "icp-max-num-vtable-last-candidate", cl::init(1), cl::Hidden,
133 cl::desc("The maximum number of vtable for the last candidate."));
134
135 namespace {
136
137 // The key is a vtable global variable, and the value is a map.
138 // In the inner map, the key represents address point offsets and the value is a
139 // constant for this address point.
140 using VTableAddressPointOffsetValMap =
141 SmallDenseMap<const GlobalVariable *, std::unordered_map<int, Constant *>>;
142
143 // A struct to collect type information for a virtual call site.
144 struct VirtualCallSiteInfo {
145 // The offset from the address point to virtual function in the vtable.
146 uint64_t FunctionOffset;
147 // The instruction that computes the address point of vtable.
148 Instruction *VPtr;
149 // The compatible type used in LLVM type intrinsics.
150 StringRef CompatibleTypeStr;
151 };
152
153 // The key is a virtual call, and value is its type information.
154 using VirtualCallSiteTypeInfoMap =
155 SmallDenseMap<const CallBase *, VirtualCallSiteInfo>;
156
157 // The key is vtable GUID, and value is its value profile count.
158 using VTableGUIDCountsMap = SmallDenseMap<uint64_t, uint64_t, 16>;
159
160 // Return the address point offset of the given compatible type.
161 //
162 // Type metadata of a vtable specifies the types that can contain a pointer to
163 // this vtable, for example, `Base*` can be a pointer to an derived type
164 // but not vice versa. See also https://llvm.org/docs/TypeMetadata.html
165 static std::optional<uint64_t>
getAddressPointOffset(const GlobalVariable & VTableVar,StringRef CompatibleType)166 getAddressPointOffset(const GlobalVariable &VTableVar,
167 StringRef CompatibleType) {
168 SmallVector<MDNode *> Types;
169 VTableVar.getMetadata(LLVMContext::MD_type, Types);
170
171 for (MDNode *Type : Types)
172 if (auto *TypeId = dyn_cast<MDString>(Type->getOperand(1).get());
173 TypeId && TypeId->getString() == CompatibleType)
174 return cast<ConstantInt>(
175 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
176 ->getZExtValue();
177
178 return std::nullopt;
179 }
180
181 // Return a constant representing the vtable's address point specified by the
182 // offset.
getVTableAddressPointOffset(GlobalVariable * VTable,uint32_t AddressPointOffset)183 static Constant *getVTableAddressPointOffset(GlobalVariable *VTable,
184 uint32_t AddressPointOffset) {
185 Module &M = *VTable->getParent();
186 LLVMContext &Context = M.getContext();
187 assert(AddressPointOffset <
188 M.getDataLayout().getTypeAllocSize(VTable->getValueType()) &&
189 "Out-of-bound access");
190
191 return ConstantExpr::getInBoundsGetElementPtr(
192 Type::getInt8Ty(Context), VTable,
193 llvm::ConstantInt::get(Type::getInt32Ty(Context), AddressPointOffset));
194 }
195
196 // Return the basic block in which Use `U` is used via its `UserInst`.
getUserBasicBlock(Use & U,Instruction * UserInst)197 static BasicBlock *getUserBasicBlock(Use &U, Instruction *UserInst) {
198 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
199 return PN->getIncomingBlock(U);
200
201 return UserInst->getParent();
202 }
203
204 // `DestBB` is a suitable basic block to sink `Inst` into when `Inst` have users
205 // and all users are in `DestBB`. The caller guarantees that `Inst->getParent()`
206 // is the sole predecessor of `DestBB` and `DestBB` is dominated by
207 // `Inst->getParent()`.
isDestBBSuitableForSink(Instruction * Inst,BasicBlock * DestBB)208 static bool isDestBBSuitableForSink(Instruction *Inst, BasicBlock *DestBB) {
209 // 'BB' is used only by assert.
210 [[maybe_unused]] BasicBlock *BB = Inst->getParent();
211
212 assert(BB != DestBB && BB->getTerminator()->getNumSuccessors() == 2 &&
213 DestBB->getUniquePredecessor() == BB &&
214 "Guaranteed by ICP transformation");
215
216 BasicBlock *UserBB = nullptr;
217 for (Use &Use : Inst->uses()) {
218 User *User = Use.getUser();
219 // Do checked cast since IR verifier guarantees that the user of an
220 // instruction must be an instruction. See `Verifier::visitInstruction`.
221 Instruction *UserInst = cast<Instruction>(User);
222 // We can sink debug or pseudo instructions together with Inst.
223 if (UserInst->isDebugOrPseudoInst())
224 continue;
225 UserBB = getUserBasicBlock(Use, UserInst);
226 // Do not sink if Inst is used in a basic block that is not DestBB.
227 // TODO: Sink to the common dominator of all user blocks.
228 if (UserBB != DestBB)
229 return false;
230 }
231 return UserBB != nullptr;
232 }
233
234 // For the virtual call dispatch sequence, try to sink vtable load instructions
235 // to the cold indirect call fallback.
236 // FIXME: Move the sink eligibility check below to a utility function in
237 // Transforms/Utils/ directory.
tryToSinkInstruction(Instruction * I,BasicBlock * DestBlock)238 static bool tryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
239 if (!isDestBBSuitableForSink(I, DestBlock))
240 return false;
241
242 // Do not move control-flow-involving, volatile loads, vaarg, alloca
243 // instructions, etc.
244 if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() ||
245 isa<AllocaInst>(I))
246 return false;
247
248 // Do not sink convergent call instructions.
249 if (const auto *C = dyn_cast<CallBase>(I))
250 if (C->isInlineAsm() || C->cannotMerge() || C->isConvergent())
251 return false;
252
253 // Do not move an instruction that may write to memory.
254 if (I->mayWriteToMemory())
255 return false;
256
257 // We can only sink load instructions if there is nothing between the load and
258 // the end of block that could change the value.
259 if (I->mayReadFromMemory()) {
260 // We already know that SrcBlock is the unique predecessor of DestBlock.
261 for (BasicBlock::iterator Scan = std::next(I->getIterator()),
262 E = I->getParent()->end();
263 Scan != E; ++Scan) {
264 // Note analysis analysis can tell whether two pointers can point to the
265 // same object in memory or not thereby find further opportunities to
266 // sink.
267 if (Scan->mayWriteToMemory())
268 return false;
269 }
270 }
271
272 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
273 I->moveBefore(*DestBlock, InsertPos);
274
275 // TODO: Sink debug intrinsic users of I to 'DestBlock'.
276 // 'InstCombinerImpl::tryToSinkInstructionDbgValues' and
277 // 'InstCombinerImpl::tryToSinkInstructionDbgVariableRecords' already have
278 // the core logic to do this.
279 return true;
280 }
281
282 // Try to sink instructions after VPtr to the indirect call fallback.
283 // Return the number of sunk IR instructions.
tryToSinkInstructions(BasicBlock * OriginalBB,BasicBlock * IndirectCallBB)284 static int tryToSinkInstructions(BasicBlock *OriginalBB,
285 BasicBlock *IndirectCallBB) {
286 int SinkCount = 0;
287 // Do not sink across a critical edge for simplicity.
288 if (IndirectCallBB->getUniquePredecessor() != OriginalBB)
289 return SinkCount;
290 // Sink all eligible instructions in OriginalBB in reverse order.
291 for (Instruction &I :
292 llvm::make_early_inc_range(llvm::drop_begin(llvm::reverse(*OriginalBB))))
293 if (tryToSinkInstruction(&I, IndirectCallBB))
294 SinkCount++;
295
296 return SinkCount;
297 }
298
299 // Promote indirect calls to conditional direct calls, keeping track of
300 // thresholds.
301 class IndirectCallPromoter {
302 private:
303 Function &F;
304 Module &M;
305
306 ProfileSummaryInfo *PSI = nullptr;
307
308 // Symtab that maps indirect call profile values to function names and
309 // defines.
310 InstrProfSymtab *const Symtab;
311
312 const bool SamplePGO;
313
314 // A map from a virtual call to its type information.
315 const VirtualCallSiteTypeInfoMap &VirtualCSInfo;
316
317 VTableAddressPointOffsetValMap &VTableAddressPointOffsetVal;
318
319 OptimizationRemarkEmitter &ORE;
320
321 // A struct that records the direct target and it's call count.
322 struct PromotionCandidate {
323 Function *const TargetFunction;
324 const uint64_t Count;
325
326 // The following fields only exists for promotion candidates with vtable
327 // information.
328 //
329 // Due to class inheritance, one virtual call candidate can come from
330 // multiple vtables. `VTableGUIDAndCounts` tracks the vtable GUIDs and
331 // counts for 'TargetFunction'. `AddressPoints` stores the vtable address
332 // points for comparison.
333 VTableGUIDCountsMap VTableGUIDAndCounts;
334 SmallVector<Constant *> AddressPoints;
335
PromotionCandidate__anon5ae95e860111::IndirectCallPromoter::PromotionCandidate336 PromotionCandidate(Function *F, uint64_t C) : TargetFunction(F), Count(C) {}
337 };
338
339 // Check if the indirect-call call site should be promoted. Return the number
340 // of promotions. Inst is the candidate indirect call, ValueDataRef
341 // contains the array of value profile data for profiled targets,
342 // TotalCount is the total profiled count of call executions, and
343 // NumCandidates is the number of candidate entries in ValueDataRef.
344 std::vector<PromotionCandidate> getPromotionCandidatesForCallSite(
345 const CallBase &CB, ArrayRef<InstrProfValueData> ValueDataRef,
346 uint64_t TotalCount, uint32_t NumCandidates);
347
348 // Promote a list of targets for one indirect-call callsite by comparing
349 // indirect callee with functions. Return true if there are IR
350 // transformations and false otherwise.
351 bool tryToPromoteWithFuncCmp(CallBase &CB, Instruction *VPtr,
352 ArrayRef<PromotionCandidate> Candidates,
353 uint64_t TotalCount,
354 ArrayRef<InstrProfValueData> ICallProfDataRef,
355 uint32_t NumCandidates,
356 VTableGUIDCountsMap &VTableGUIDCounts);
357
358 // Promote a list of targets for one indirect call by comparing vtables with
359 // functions. Return true if there are IR transformations and false
360 // otherwise.
361 bool tryToPromoteWithVTableCmp(
362 CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates,
363 uint64_t TotalFuncCount, uint32_t NumCandidates,
364 MutableArrayRef<InstrProfValueData> ICallProfDataRef,
365 VTableGUIDCountsMap &VTableGUIDCounts);
366
367 // Return true if it's profitable to compare vtables for the callsite.
368 bool isProfitableToCompareVTables(const CallBase &CB,
369 ArrayRef<PromotionCandidate> Candidates,
370 uint64_t TotalCount);
371
372 // Given an indirect callsite and the list of function candidates, compute
373 // the following vtable information in output parameters and return vtable
374 // pointer if type profiles exist.
375 // - Populate `VTableGUIDCounts` with <vtable-guid, count> using !prof
376 // metadata attached on the vtable pointer.
377 // - For each function candidate, finds out the vtables from which it gets
378 // called and stores the <vtable-guid, count> in promotion candidate.
379 Instruction *computeVTableInfos(const CallBase *CB,
380 VTableGUIDCountsMap &VTableGUIDCounts,
381 std::vector<PromotionCandidate> &Candidates);
382
383 Constant *getOrCreateVTableAddressPointVar(GlobalVariable *GV,
384 uint64_t AddressPointOffset);
385
386 void updateFuncValueProfiles(CallBase &CB, ArrayRef<InstrProfValueData> VDs,
387 uint64_t Sum, uint32_t MaxMDCount);
388
389 void updateVPtrValueProfiles(Instruction *VPtr,
390 VTableGUIDCountsMap &VTableGUIDCounts);
391
392 public:
IndirectCallPromoter(Function & Func,Module & M,ProfileSummaryInfo * PSI,InstrProfSymtab * Symtab,bool SamplePGO,const VirtualCallSiteTypeInfoMap & VirtualCSInfo,VTableAddressPointOffsetValMap & VTableAddressPointOffsetVal,OptimizationRemarkEmitter & ORE)393 IndirectCallPromoter(
394 Function &Func, Module &M, ProfileSummaryInfo *PSI,
395 InstrProfSymtab *Symtab, bool SamplePGO,
396 const VirtualCallSiteTypeInfoMap &VirtualCSInfo,
397 VTableAddressPointOffsetValMap &VTableAddressPointOffsetVal,
398 OptimizationRemarkEmitter &ORE)
399 : F(Func), M(M), PSI(PSI), Symtab(Symtab), SamplePGO(SamplePGO),
400 VirtualCSInfo(VirtualCSInfo),
401 VTableAddressPointOffsetVal(VTableAddressPointOffsetVal), ORE(ORE) {}
402 IndirectCallPromoter(const IndirectCallPromoter &) = delete;
403 IndirectCallPromoter &operator=(const IndirectCallPromoter &) = delete;
404
405 bool processFunction(ProfileSummaryInfo *PSI);
406 };
407
408 } // end anonymous namespace
409
410 // Indirect-call promotion heuristic. The direct targets are sorted based on
411 // the count. Stop at the first target that is not promoted.
412 std::vector<IndirectCallPromoter::PromotionCandidate>
getPromotionCandidatesForCallSite(const CallBase & CB,ArrayRef<InstrProfValueData> ValueDataRef,uint64_t TotalCount,uint32_t NumCandidates)413 IndirectCallPromoter::getPromotionCandidatesForCallSite(
414 const CallBase &CB, ArrayRef<InstrProfValueData> ValueDataRef,
415 uint64_t TotalCount, uint32_t NumCandidates) {
416 std::vector<PromotionCandidate> Ret;
417
418 LLVM_DEBUG(dbgs() << " \nWork on callsite #" << NumOfPGOICallsites << CB
419 << " Num_targets: " << ValueDataRef.size()
420 << " Num_candidates: " << NumCandidates << "\n");
421 NumOfPGOICallsites++;
422 if (ICPCSSkip != 0 && NumOfPGOICallsites <= ICPCSSkip) {
423 LLVM_DEBUG(dbgs() << " Skip: User options.\n");
424 return Ret;
425 }
426
427 for (uint32_t I = 0; I < NumCandidates; I++) {
428 uint64_t Count = ValueDataRef[I].Count;
429 assert(Count <= TotalCount);
430 (void)TotalCount;
431 uint64_t Target = ValueDataRef[I].Value;
432 LLVM_DEBUG(dbgs() << " Candidate " << I << " Count=" << Count
433 << " Target_func: " << Target << "\n");
434
435 if (ICPInvokeOnly && isa<CallInst>(CB)) {
436 LLVM_DEBUG(dbgs() << " Not promote: User options.\n");
437 ORE.emit([&]() {
438 return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions", &CB)
439 << " Not promote: User options";
440 });
441 break;
442 }
443 if (ICPCallOnly && isa<InvokeInst>(CB)) {
444 LLVM_DEBUG(dbgs() << " Not promote: User option.\n");
445 ORE.emit([&]() {
446 return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions", &CB)
447 << " Not promote: User options";
448 });
449 break;
450 }
451 if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) {
452 LLVM_DEBUG(dbgs() << " Not promote: Cutoff reached.\n");
453 ORE.emit([&]() {
454 return OptimizationRemarkMissed(DEBUG_TYPE, "CutOffReached", &CB)
455 << " Not promote: Cutoff reached";
456 });
457 break;
458 }
459
460 // Don't promote if the symbol is not defined in the module. This avoids
461 // creating a reference to a symbol that doesn't exist in the module
462 // This can happen when we compile with a sample profile collected from
463 // one binary but used for another, which may have profiled targets that
464 // aren't used in the new binary. We might have a declaration initially in
465 // the case where the symbol is globally dead in the binary and removed by
466 // ThinLTO.
467 Function *TargetFunction = Symtab->getFunction(Target);
468 if (TargetFunction == nullptr || TargetFunction->isDeclaration()) {
469 LLVM_DEBUG(dbgs() << " Not promote: Cannot find the target\n");
470 ORE.emit([&]() {
471 return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToFindTarget", &CB)
472 << "Cannot promote indirect call: target with md5sum "
473 << ore::NV("target md5sum", Target) << " not found";
474 });
475 break;
476 }
477
478 const char *Reason = nullptr;
479 if (!isLegalToPromote(CB, TargetFunction, &Reason)) {
480 using namespace ore;
481
482 ORE.emit([&]() {
483 return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToPromote", &CB)
484 << "Cannot promote indirect call to "
485 << NV("TargetFunction", TargetFunction) << " with count of "
486 << NV("Count", Count) << ": " << Reason;
487 });
488 break;
489 }
490
491 Ret.push_back(PromotionCandidate(TargetFunction, Count));
492 TotalCount -= Count;
493 }
494 return Ret;
495 }
496
getOrCreateVTableAddressPointVar(GlobalVariable * GV,uint64_t AddressPointOffset)497 Constant *IndirectCallPromoter::getOrCreateVTableAddressPointVar(
498 GlobalVariable *GV, uint64_t AddressPointOffset) {
499 auto [Iter, Inserted] =
500 VTableAddressPointOffsetVal[GV].try_emplace(AddressPointOffset, nullptr);
501 if (Inserted)
502 Iter->second = getVTableAddressPointOffset(GV, AddressPointOffset);
503 return Iter->second;
504 }
505
computeVTableInfos(const CallBase * CB,VTableGUIDCountsMap & GUIDCountsMap,std::vector<PromotionCandidate> & Candidates)506 Instruction *IndirectCallPromoter::computeVTableInfos(
507 const CallBase *CB, VTableGUIDCountsMap &GUIDCountsMap,
508 std::vector<PromotionCandidate> &Candidates) {
509 if (!EnableVTableProfileUse)
510 return nullptr;
511
512 // Take the following code sequence as an example, here is how the code works
513 // @vtable1 = {[n x ptr] [... ptr @func1]}
514 // @vtable2 = {[m x ptr] [... ptr @func2]}
515 //
516 // %vptr = load ptr, ptr %d, !prof !0
517 // %0 = tail call i1 @llvm.type.test(ptr %vptr, metadata !"vtable1")
518 // tail call void @llvm.assume(i1 %0)
519 // %vfn = getelementptr inbounds ptr, ptr %vptr, i64 1
520 // %1 = load ptr, ptr %vfn
521 // call void %1(ptr %d), !prof !1
522 //
523 // !0 = !{!"VP", i32 2, i64 100, i64 123, i64 50, i64 456, i64 50}
524 // !1 = !{!"VP", i32 0, i64 100, i64 789, i64 50, i64 579, i64 50}
525 //
526 // Step 1. Find out the %vptr instruction for indirect call and use its !prof
527 // to populate `GUIDCountsMap`.
528 // Step 2. For each vtable-guid, look up its definition from symtab. LTO can
529 // make vtable definitions visible across modules.
530 // Step 3. Compute the byte offset of the virtual call, by adding vtable
531 // address point offset and function's offset relative to vtable address
532 // point. For each function candidate, this step tells us the vtable from
533 // which it comes from, and the vtable address point to compare %vptr with.
534
535 // Only virtual calls have virtual call site info.
536 auto Iter = VirtualCSInfo.find(CB);
537 if (Iter == VirtualCSInfo.end())
538 return nullptr;
539
540 LLVM_DEBUG(dbgs() << "\nComputing vtable infos for callsite #"
541 << NumOfPGOICallsites << "\n");
542
543 const auto &VirtualCallInfo = Iter->second;
544 Instruction *VPtr = VirtualCallInfo.VPtr;
545
546 SmallDenseMap<Function *, int, 4> CalleeIndexMap;
547 for (size_t I = 0; I < Candidates.size(); I++)
548 CalleeIndexMap[Candidates[I].TargetFunction] = I;
549
550 uint64_t TotalVTableCount = 0;
551 auto VTableValueDataArray =
552 getValueProfDataFromInst(*VirtualCallInfo.VPtr, IPVK_VTableTarget,
553 MaxNumVTableAnnotations, TotalVTableCount);
554 if (VTableValueDataArray.empty())
555 return VPtr;
556
557 // Compute the functions and counts from by each vtable.
558 for (const auto &V : VTableValueDataArray) {
559 uint64_t VTableVal = V.Value;
560 GUIDCountsMap[VTableVal] = V.Count;
561 GlobalVariable *VTableVar = Symtab->getGlobalVariable(VTableVal);
562 if (!VTableVar) {
563 LLVM_DEBUG(dbgs() << " Cannot find vtable definition for " << VTableVal
564 << "; maybe the vtable isn't imported\n");
565 continue;
566 }
567
568 std::optional<uint64_t> MaybeAddressPointOffset =
569 getAddressPointOffset(*VTableVar, VirtualCallInfo.CompatibleTypeStr);
570 if (!MaybeAddressPointOffset)
571 continue;
572
573 const uint64_t AddressPointOffset = *MaybeAddressPointOffset;
574
575 Function *Callee = nullptr;
576 std::tie(Callee, std::ignore) = getFunctionAtVTableOffset(
577 VTableVar, AddressPointOffset + VirtualCallInfo.FunctionOffset, M);
578 if (!Callee)
579 continue;
580 auto CalleeIndexIter = CalleeIndexMap.find(Callee);
581 if (CalleeIndexIter == CalleeIndexMap.end())
582 continue;
583
584 auto &Candidate = Candidates[CalleeIndexIter->second];
585 // There shouldn't be duplicate GUIDs in one !prof metadata (except
586 // duplicated zeros), so assign counters directly won't cause overwrite or
587 // counter loss.
588 Candidate.VTableGUIDAndCounts[VTableVal] = V.Count;
589 Candidate.AddressPoints.push_back(
590 getOrCreateVTableAddressPointVar(VTableVar, AddressPointOffset));
591 }
592
593 return VPtr;
594 }
595
596 // Creates 'branch_weights' prof metadata using TrueWeight and FalseWeight.
597 // Scales uint64_t counters down to uint32_t if necessary to prevent overflow.
createBranchWeights(LLVMContext & Context,uint64_t TrueWeight,uint64_t FalseWeight)598 static MDNode *createBranchWeights(LLVMContext &Context, uint64_t TrueWeight,
599 uint64_t FalseWeight) {
600 MDBuilder MDB(Context);
601 uint64_t Scale = calculateCountScale(std::max(TrueWeight, FalseWeight));
602 return MDB.createBranchWeights(scaleBranchCount(TrueWeight, Scale),
603 scaleBranchCount(FalseWeight, Scale));
604 }
605
promoteIndirectCall(CallBase & CB,Function * DirectCallee,uint64_t Count,uint64_t TotalCount,bool AttachProfToDirectCall,OptimizationRemarkEmitter * ORE)606 CallBase &llvm::pgo::promoteIndirectCall(CallBase &CB, Function *DirectCallee,
607 uint64_t Count, uint64_t TotalCount,
608 bool AttachProfToDirectCall,
609 OptimizationRemarkEmitter *ORE) {
610 CallBase &NewInst = promoteCallWithIfThenElse(
611 CB, DirectCallee,
612 createBranchWeights(CB.getContext(), Count, TotalCount - Count));
613
614 if (AttachProfToDirectCall)
615 setBranchWeights(NewInst, {static_cast<uint32_t>(Count)},
616 /*IsExpected=*/false);
617
618 using namespace ore;
619
620 if (ORE)
621 ORE->emit([&]() {
622 return OptimizationRemark(DEBUG_TYPE, "Promoted", &CB)
623 << "Promote indirect call to " << NV("DirectCallee", DirectCallee)
624 << " with count " << NV("Count", Count) << " out of "
625 << NV("TotalCount", TotalCount);
626 });
627 return NewInst;
628 }
629
630 // Promote indirect-call to conditional direct-call for one callsite.
tryToPromoteWithFuncCmp(CallBase & CB,Instruction * VPtr,ArrayRef<PromotionCandidate> Candidates,uint64_t TotalCount,ArrayRef<InstrProfValueData> ICallProfDataRef,uint32_t NumCandidates,VTableGUIDCountsMap & VTableGUIDCounts)631 bool IndirectCallPromoter::tryToPromoteWithFuncCmp(
632 CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates,
633 uint64_t TotalCount, ArrayRef<InstrProfValueData> ICallProfDataRef,
634 uint32_t NumCandidates, VTableGUIDCountsMap &VTableGUIDCounts) {
635 uint32_t NumPromoted = 0;
636
637 for (const auto &C : Candidates) {
638 uint64_t FuncCount = C.Count;
639 pgo::promoteIndirectCall(CB, C.TargetFunction, FuncCount, TotalCount,
640 SamplePGO, &ORE);
641 assert(TotalCount >= FuncCount);
642 TotalCount -= FuncCount;
643 NumOfPGOICallPromotion++;
644 NumPromoted++;
645
646 if (!EnableVTableProfileUse || C.VTableGUIDAndCounts.empty())
647 continue;
648
649 // After a virtual call candidate gets promoted, update the vtable's counts
650 // proportionally. Each vtable-guid in `C.VTableGUIDAndCounts` represents
651 // a vtable from which the virtual call is loaded. Compute the sum and use
652 // 128-bit APInt to improve accuracy.
653 uint64_t SumVTableCount = 0;
654 for (const auto &[GUID, VTableCount] : C.VTableGUIDAndCounts)
655 SumVTableCount += VTableCount;
656
657 for (const auto &[GUID, VTableCount] : C.VTableGUIDAndCounts) {
658 APInt APFuncCount((unsigned)128, FuncCount, false /*signed*/);
659 APFuncCount *= VTableCount;
660 VTableGUIDCounts[GUID] -= APFuncCount.udiv(SumVTableCount).getZExtValue();
661 }
662 }
663 if (NumPromoted == 0)
664 return false;
665
666 assert(NumPromoted <= ICallProfDataRef.size() &&
667 "Number of promoted functions should not be greater than the number "
668 "of values in profile metadata");
669
670 // Update value profiles on the indirect call.
671 updateFuncValueProfiles(CB, ICallProfDataRef.slice(NumPromoted), TotalCount,
672 NumCandidates);
673 updateVPtrValueProfiles(VPtr, VTableGUIDCounts);
674 return true;
675 }
676
updateFuncValueProfiles(CallBase & CB,ArrayRef<InstrProfValueData> CallVDs,uint64_t TotalCount,uint32_t MaxMDCount)677 void IndirectCallPromoter::updateFuncValueProfiles(
678 CallBase &CB, ArrayRef<InstrProfValueData> CallVDs, uint64_t TotalCount,
679 uint32_t MaxMDCount) {
680 // First clear the existing !prof.
681 CB.setMetadata(LLVMContext::MD_prof, nullptr);
682 // Annotate the remaining value profiles if counter is not zero.
683 if (TotalCount != 0)
684 annotateValueSite(M, CB, CallVDs, TotalCount, IPVK_IndirectCallTarget,
685 MaxMDCount);
686 }
687
updateVPtrValueProfiles(Instruction * VPtr,VTableGUIDCountsMap & VTableGUIDCounts)688 void IndirectCallPromoter::updateVPtrValueProfiles(
689 Instruction *VPtr, VTableGUIDCountsMap &VTableGUIDCounts) {
690 if (!EnableVTableProfileUse || VPtr == nullptr ||
691 !VPtr->getMetadata(LLVMContext::MD_prof))
692 return;
693 VPtr->setMetadata(LLVMContext::MD_prof, nullptr);
694 std::vector<InstrProfValueData> VTableValueProfiles;
695 uint64_t TotalVTableCount = 0;
696 for (auto [GUID, Count] : VTableGUIDCounts) {
697 if (Count == 0)
698 continue;
699
700 VTableValueProfiles.push_back({GUID, Count});
701 TotalVTableCount += Count;
702 }
703 llvm::sort(VTableValueProfiles,
704 [](const InstrProfValueData &LHS, const InstrProfValueData &RHS) {
705 return LHS.Count > RHS.Count;
706 });
707
708 annotateValueSite(M, *VPtr, VTableValueProfiles, TotalVTableCount,
709 IPVK_VTableTarget, VTableValueProfiles.size());
710 }
711
tryToPromoteWithVTableCmp(CallBase & CB,Instruction * VPtr,ArrayRef<PromotionCandidate> Candidates,uint64_t TotalFuncCount,uint32_t NumCandidates,MutableArrayRef<InstrProfValueData> ICallProfDataRef,VTableGUIDCountsMap & VTableGUIDCounts)712 bool IndirectCallPromoter::tryToPromoteWithVTableCmp(
713 CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates,
714 uint64_t TotalFuncCount, uint32_t NumCandidates,
715 MutableArrayRef<InstrProfValueData> ICallProfDataRef,
716 VTableGUIDCountsMap &VTableGUIDCounts) {
717 SmallVector<uint64_t, 4> PromotedFuncCount;
718
719 for (const auto &Candidate : Candidates) {
720 for (auto &[GUID, Count] : Candidate.VTableGUIDAndCounts)
721 VTableGUIDCounts[GUID] -= Count;
722
723 // 'OriginalBB' is the basic block of indirect call. After each candidate
724 // is promoted, a new basic block is created for the indirect fallback basic
725 // block and indirect call `CB` is moved into this new BB.
726 BasicBlock *OriginalBB = CB.getParent();
727 promoteCallWithVTableCmp(
728 CB, VPtr, Candidate.TargetFunction, Candidate.AddressPoints,
729 createBranchWeights(CB.getContext(), Candidate.Count,
730 TotalFuncCount - Candidate.Count));
731
732 int SinkCount = tryToSinkInstructions(OriginalBB, CB.getParent());
733
734 ORE.emit([&]() {
735 OptimizationRemark Remark(DEBUG_TYPE, "Promoted", &CB);
736
737 const auto &VTableGUIDAndCounts = Candidate.VTableGUIDAndCounts;
738 Remark << "Promote indirect call to "
739 << ore::NV("DirectCallee", Candidate.TargetFunction)
740 << " with count " << ore::NV("Count", Candidate.Count)
741 << " out of " << ore::NV("TotalCount", TotalFuncCount) << ", sink "
742 << ore::NV("SinkCount", SinkCount)
743 << " instruction(s) and compare "
744 << ore::NV("VTable", VTableGUIDAndCounts.size())
745 << " vtable(s): {";
746
747 // Sort GUIDs so remark message is deterministic.
748 std::set<uint64_t> GUIDSet;
749 for (auto [GUID, Count] : VTableGUIDAndCounts)
750 GUIDSet.insert(GUID);
751 for (auto Iter = GUIDSet.begin(); Iter != GUIDSet.end(); Iter++) {
752 if (Iter != GUIDSet.begin())
753 Remark << ", ";
754 Remark << ore::NV("VTable", Symtab->getGlobalVariable(*Iter));
755 }
756
757 Remark << "}";
758
759 return Remark;
760 });
761
762 PromotedFuncCount.push_back(Candidate.Count);
763
764 assert(TotalFuncCount >= Candidate.Count &&
765 "Within one prof metadata, total count is the sum of counts from "
766 "individual <target, count> pairs");
767 // Use std::min since 'TotalFuncCount' is the saturated sum of individual
768 // counts, see
769 // https://github.com/llvm/llvm-project/blob/abedb3b8356d5d56f1c575c4f7682fba2cb19787/llvm/lib/ProfileData/InstrProf.cpp#L1281-L1288
770 TotalFuncCount -= std::min(TotalFuncCount, Candidate.Count);
771 NumOfPGOICallPromotion++;
772 }
773
774 if (PromotedFuncCount.empty())
775 return false;
776
777 // Update value profiles for 'CB' and 'VPtr', assuming that each 'CB' has a
778 // a distinct 'VPtr'.
779 // FIXME: When Clang `-fstrict-vtable-pointers` is enabled, a vtable might be
780 // used to load multiple virtual functions. The vtable profiles needs to be
781 // updated properly in that case (e.g, for each indirect call annotate both
782 // type profiles and function profiles in one !prof).
783 for (size_t I = 0; I < PromotedFuncCount.size(); I++)
784 ICallProfDataRef[I].Count -=
785 std::max(PromotedFuncCount[I], ICallProfDataRef[I].Count);
786 // Sort value profiles by count in descending order.
787 llvm::stable_sort(ICallProfDataRef, [](const InstrProfValueData &LHS,
788 const InstrProfValueData &RHS) {
789 return LHS.Count > RHS.Count;
790 });
791 // Drop the <target-value, count> pair if count is zero.
792 ArrayRef<InstrProfValueData> VDs(
793 ICallProfDataRef.begin(),
794 llvm::upper_bound(ICallProfDataRef, 0U,
795 [](uint64_t Count, const InstrProfValueData &ProfData) {
796 return ProfData.Count <= Count;
797 }));
798 updateFuncValueProfiles(CB, VDs, TotalFuncCount, NumCandidates);
799 updateVPtrValueProfiles(VPtr, VTableGUIDCounts);
800 return true;
801 }
802
803 // Traverse all the indirect-call callsite and get the value profile
804 // annotation to perform indirect-call promotion.
processFunction(ProfileSummaryInfo * PSI)805 bool IndirectCallPromoter::processFunction(ProfileSummaryInfo *PSI) {
806 bool Changed = false;
807 ICallPromotionAnalysis ICallAnalysis;
808 for (auto *CB : findIndirectCalls(F)) {
809 uint32_t NumCandidates;
810 uint64_t TotalCount;
811 auto ICallProfDataRef = ICallAnalysis.getPromotionCandidatesForInstruction(
812 CB, TotalCount, NumCandidates);
813 if (!NumCandidates ||
814 (PSI && PSI->hasProfileSummary() && !PSI->isHotCount(TotalCount)))
815 continue;
816
817 auto PromotionCandidates = getPromotionCandidatesForCallSite(
818 *CB, ICallProfDataRef, TotalCount, NumCandidates);
819
820 VTableGUIDCountsMap VTableGUIDCounts;
821 Instruction *VPtr =
822 computeVTableInfos(CB, VTableGUIDCounts, PromotionCandidates);
823
824 if (isProfitableToCompareVTables(*CB, PromotionCandidates, TotalCount))
825 Changed |= tryToPromoteWithVTableCmp(*CB, VPtr, PromotionCandidates,
826 TotalCount, NumCandidates,
827 ICallProfDataRef, VTableGUIDCounts);
828 else
829 Changed |= tryToPromoteWithFuncCmp(*CB, VPtr, PromotionCandidates,
830 TotalCount, ICallProfDataRef,
831 NumCandidates, VTableGUIDCounts);
832 }
833 return Changed;
834 }
835
836 // TODO: Return false if the function addressing and vtable load instructions
837 // cannot sink to indirect fallback.
isProfitableToCompareVTables(const CallBase & CB,ArrayRef<PromotionCandidate> Candidates,uint64_t TotalCount)838 bool IndirectCallPromoter::isProfitableToCompareVTables(
839 const CallBase &CB, ArrayRef<PromotionCandidate> Candidates,
840 uint64_t TotalCount) {
841 if (!EnableVTableProfileUse || Candidates.empty())
842 return false;
843 LLVM_DEBUG(dbgs() << "\nEvaluating vtable profitability for callsite #"
844 << NumOfPGOICallsites << CB << "\n");
845 uint64_t RemainingVTableCount = TotalCount;
846 const size_t CandidateSize = Candidates.size();
847 for (size_t I = 0; I < CandidateSize; I++) {
848 auto &Candidate = Candidates[I];
849 auto &VTableGUIDAndCounts = Candidate.VTableGUIDAndCounts;
850
851 LLVM_DEBUG(dbgs() << " Candidate " << I << " FunctionCount: "
852 << Candidate.Count << ", VTableCounts:");
853 // Add [[maybe_unused]] since <GUID, Count> are only used by LLVM_DEBUG.
854 for ([[maybe_unused]] auto &[GUID, Count] : VTableGUIDAndCounts)
855 LLVM_DEBUG(dbgs() << " {" << Symtab->getGlobalVariable(GUID)->getName()
856 << ", " << Count << "}");
857 LLVM_DEBUG(dbgs() << "\n");
858
859 uint64_t CandidateVTableCount = 0;
860 for (auto &[GUID, Count] : VTableGUIDAndCounts)
861 CandidateVTableCount += Count;
862
863 if (CandidateVTableCount < Candidate.Count * ICPVTablePercentageThreshold) {
864 LLVM_DEBUG(
865 dbgs() << " function count " << Candidate.Count
866 << " and its vtable sum count " << CandidateVTableCount
867 << " have discrepancies. Bail out vtable comparison.\n");
868 return false;
869 }
870
871 RemainingVTableCount -= Candidate.Count;
872
873 // 'MaxNumVTable' limits the number of vtables to make vtable comparison
874 // profitable. Comparing multiple vtables for one function candidate will
875 // insert additional instructions on the hot path, and allowing more than
876 // one vtable for non last candidates may or may not elongate the dependency
877 // chain for the subsequent candidates. Set its value to 1 for non-last
878 // candidate and allow option to override it for the last candidate.
879 int MaxNumVTable = 1;
880 if (I == CandidateSize - 1)
881 MaxNumVTable = ICPMaxNumVTableLastCandidate;
882
883 if ((int)Candidate.AddressPoints.size() > MaxNumVTable) {
884 LLVM_DEBUG(dbgs() << " allow at most " << MaxNumVTable << " and got "
885 << Candidate.AddressPoints.size()
886 << " vtables. Bail out for vtable comparison.\n");
887 return false;
888 }
889 }
890
891 // If the indirect fallback is not cold, don't compare vtables.
892 if (PSI && PSI->hasProfileSummary() &&
893 !PSI->isColdCount(RemainingVTableCount)) {
894 LLVM_DEBUG(dbgs() << " Indirect fallback basic block is not cold. Bail "
895 "out for vtable comparison.\n");
896 return false;
897 }
898
899 return true;
900 }
901
902 // For virtual calls in the module, collect per-callsite information which will
903 // be used to associate an ICP candidate with a vtable and a specific function
904 // in the vtable. With type intrinsics (llvm.type.test), we can find virtual
905 // calls in a compile-time efficient manner (by iterating its users) and more
906 // importantly use the compatible type later to figure out the function byte
907 // offset relative to the start of vtables.
908 static void
computeVirtualCallSiteTypeInfoMap(Module & M,ModuleAnalysisManager & MAM,VirtualCallSiteTypeInfoMap & VirtualCSInfo)909 computeVirtualCallSiteTypeInfoMap(Module &M, ModuleAnalysisManager &MAM,
910 VirtualCallSiteTypeInfoMap &VirtualCSInfo) {
911 // Right now only llvm.type.test is used to find out virtual call sites.
912 // With ThinLTO and whole-program-devirtualization, llvm.type.test and
913 // llvm.public.type.test are emitted, and llvm.public.type.test is either
914 // refined to llvm.type.test or dropped before indirect-call-promotion pass.
915 //
916 // FIXME: For fullLTO with VFE, `llvm.type.checked.load intrinsic` is emitted.
917 // Find out virtual calls by looking at users of llvm.type.checked.load in
918 // that case.
919 Function *TypeTestFunc =
920 M.getFunction(Intrinsic::getName(Intrinsic::type_test));
921 if (!TypeTestFunc || TypeTestFunc->use_empty())
922 return;
923
924 auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
925 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
926 return FAM.getResult<DominatorTreeAnalysis>(F);
927 };
928 // Iterate all type.test calls to find all indirect calls.
929 for (Use &U : llvm::make_early_inc_range(TypeTestFunc->uses())) {
930 auto *CI = dyn_cast<CallInst>(U.getUser());
931 if (!CI)
932 continue;
933 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
934 if (!TypeMDVal)
935 continue;
936 auto *CompatibleTypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
937 if (!CompatibleTypeId)
938 continue;
939
940 // Find out all devirtualizable call sites given a llvm.type.test
941 // intrinsic call.
942 SmallVector<DevirtCallSite, 1> DevirtCalls;
943 SmallVector<CallInst *, 1> Assumes;
944 auto &DT = LookupDomTree(*CI->getFunction());
945 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
946
947 for (auto &DevirtCall : DevirtCalls) {
948 CallBase &CB = DevirtCall.CB;
949 // Given an indirect call, try find the instruction which loads a
950 // pointer to virtual table.
951 Instruction *VTablePtr =
952 PGOIndirectCallVisitor::tryGetVTableInstruction(&CB);
953 if (!VTablePtr)
954 continue;
955 VirtualCSInfo[&CB] = {DevirtCall.Offset, VTablePtr,
956 CompatibleTypeId->getString()};
957 }
958 }
959 }
960
961 // A wrapper function that does the actual work.
promoteIndirectCalls(Module & M,ProfileSummaryInfo * PSI,bool InLTO,bool SamplePGO,ModuleAnalysisManager & MAM)962 static bool promoteIndirectCalls(Module &M, ProfileSummaryInfo *PSI, bool InLTO,
963 bool SamplePGO, ModuleAnalysisManager &MAM) {
964 if (DisableICP)
965 return false;
966 InstrProfSymtab Symtab;
967 if (Error E = Symtab.create(M, InLTO)) {
968 std::string SymtabFailure = toString(std::move(E));
969 M.getContext().emitError("Failed to create symtab: " + SymtabFailure);
970 return false;
971 }
972 bool Changed = false;
973 VirtualCallSiteTypeInfoMap VirtualCSInfo;
974
975 if (EnableVTableProfileUse)
976 computeVirtualCallSiteTypeInfoMap(M, MAM, VirtualCSInfo);
977
978 // VTableAddressPointOffsetVal stores the vtable address points. The vtable
979 // address point of a given <vtable, address point offset> is static (doesn't
980 // change after being computed once).
981 // IndirectCallPromoter::getOrCreateVTableAddressPointVar creates the map
982 // entry the first time a <vtable, offset> pair is seen, as
983 // promoteIndirectCalls processes an IR module and calls IndirectCallPromoter
984 // repeatedly on each function.
985 VTableAddressPointOffsetValMap VTableAddressPointOffsetVal;
986
987 for (auto &F : M) {
988 if (F.isDeclaration() || F.hasOptNone())
989 continue;
990
991 auto &FAM =
992 MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
993 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
994
995 IndirectCallPromoter CallPromoter(F, M, PSI, &Symtab, SamplePGO,
996 VirtualCSInfo,
997 VTableAddressPointOffsetVal, ORE);
998 bool FuncChanged = CallPromoter.processFunction(PSI);
999 if (ICPDUMPAFTER && FuncChanged) {
1000 LLVM_DEBUG(dbgs() << "\n== IR Dump After =="; F.print(dbgs()));
1001 LLVM_DEBUG(dbgs() << "\n");
1002 }
1003 Changed |= FuncChanged;
1004 if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) {
1005 LLVM_DEBUG(dbgs() << " Stop: Cutoff reached.\n");
1006 break;
1007 }
1008 }
1009 return Changed;
1010 }
1011
run(Module & M,ModuleAnalysisManager & MAM)1012 PreservedAnalyses PGOIndirectCallPromotion::run(Module &M,
1013 ModuleAnalysisManager &MAM) {
1014 ProfileSummaryInfo *PSI = &MAM.getResult<ProfileSummaryAnalysis>(M);
1015
1016 if (!promoteIndirectCalls(M, PSI, InLTO | ICPLTOMode,
1017 SamplePGO | ICPSamplePGOMode, MAM))
1018 return PreservedAnalyses::all();
1019
1020 return PreservedAnalyses::none();
1021 }
1022