1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2017-2025 Yandex LLC
5 * Copyright (c) 2017-2025 Andrey V. Elsukov <ae@FreeBSD.org>
6 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 #include "opt_ipfw.h"
34 #ifndef INET
35 #error IPFIREWALL requires INET.
36 #endif /* INET */
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/hash.h>
41 #include <sys/mbuf.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/pcpu.h>
45 #include <sys/queue.h>
46 #include <sys/rmlock.h>
47 #include <sys/smp.h>
48 #include <sys/socket.h>
49 #include <sys/sysctl.h>
50 #include <sys/syslog.h>
51 #include <net/ethernet.h>
52 #include <net/if.h>
53 #include <net/if_var.h>
54 #include <net/vnet.h>
55
56 #include <netinet/in.h>
57 #include <netinet/ip.h>
58 #include <netinet/ip_var.h>
59 #include <netinet/ip_fw.h>
60 #include <netinet/tcp.h>
61 #include <netinet/udp.h>
62
63 #include <netinet/ip6.h> /* IN6_ARE_ADDR_EQUAL */
64 #ifdef INET6
65 #include <netinet6/in6_var.h>
66 #include <netinet6/ip6_var.h>
67 #include <netinet6/scope6_var.h>
68 #endif
69
70 #include <netpfil/ipfw/ip_fw_private.h>
71
72 #include <machine/in_cksum.h> /* XXX for in_cksum */
73
74 #ifdef MAC
75 #include <security/mac/mac_framework.h>
76 #endif
77
78 /*
79 * Description of dynamic states.
80 *
81 * Dynamic states are stored in lists accessed through a hash tables
82 * whose size is curr_dyn_buckets. This value can be modified through
83 * the sysctl variable dyn_buckets.
84 *
85 * Currently there are four tables: dyn_ipv4, dyn_ipv6, dyn_ipv4_parent,
86 * and dyn_ipv6_parent.
87 *
88 * When a packet is received, its address fields hashed, then matched
89 * against the entries in the corresponding list by addr_type.
90 * Dynamic states can be used for different purposes:
91 * + stateful rules;
92 * + enforcing limits on the number of sessions;
93 * + in-kernel NAT (not implemented yet)
94 *
95 * The lifetime of dynamic states is regulated by dyn_*_lifetime,
96 * measured in seconds and depending on the flags.
97 *
98 * The total number of dynamic states is equal to UMA zone items count.
99 * The max number of dynamic states is dyn_max. When we reach
100 * the maximum number of rules we do not create anymore. This is
101 * done to avoid consuming too much memory, but also too much
102 * time when searching on each packet (ideally, we should try instead
103 * to put a limit on the length of the list on each bucket...).
104 *
105 * Each state holds a pointer to the parent ipfw rule so we know what
106 * action to perform. Dynamic rules are removed when the parent rule is
107 * deleted.
108 *
109 * There are some limitations with dynamic rules -- we do not
110 * obey the 'randomized match', and we do not do multiple
111 * passes through the firewall. XXX check the latter!!!
112 */
113
114 /* By default use jenkins hash function */
115 #define IPFIREWALL_JENKINSHASH
116
117 #define DYN_COUNTER_INC(d, dir, pktlen) do { \
118 (d)->pcnt_ ## dir++; \
119 (d)->bcnt_ ## dir += pktlen; \
120 } while (0)
121
122 #define DYN_REFERENCED 0x01
123 /*
124 * DYN_REFERENCED flag is used to show that state keeps reference to named
125 * object, and this reference should be released when state becomes expired.
126 */
127
128 struct dyn_data {
129 void *parent; /* pointer to parent rule */
130 uint32_t chain_id; /* cached ruleset id */
131 uint32_t f_pos; /* cached rule index */
132
133 uint32_t hashval; /* hash value used for hash resize */
134 uint16_t fibnum; /* fib used to send keepalives */
135 uint8_t _pad;
136 uint8_t flags; /* internal flags */
137 uint32_t rulenum; /* parent rule number */
138 uint32_t ruleid; /* parent rule id */
139
140 uint32_t state; /* TCP session state and flags */
141 uint32_t ack_fwd; /* most recent ACKs in forward */
142 uint32_t ack_rev; /* and reverse direction (used */
143 /* to generate keepalives) */
144 uint32_t sync; /* synchronization time */
145 uint32_t expire; /* expire time */
146
147 uint64_t pcnt_fwd; /* packets counter in forward */
148 uint64_t bcnt_fwd; /* bytes counter in forward */
149 uint64_t pcnt_rev; /* packets counter in reverse */
150 uint64_t bcnt_rev; /* bytes counter in reverse */
151 };
152
153 #define DPARENT_COUNT_DEC(p) do { \
154 MPASS(p->count > 0); \
155 ck_pr_dec_32(&(p)->count); \
156 } while (0)
157 #define DPARENT_COUNT_INC(p) ck_pr_inc_32(&(p)->count)
158 #define DPARENT_COUNT(p) ck_pr_load_32(&(p)->count)
159 struct dyn_parent {
160 void *parent; /* pointer to parent rule */
161 uint32_t count; /* number of linked states */
162 uint32_t rulenum; /* parent rule number */
163 uint32_t ruleid; /* parent rule id */
164 uint32_t hashval; /* hash value used for hash resize */
165 uint32_t expire; /* expire time */
166 };
167
168 struct dyn_ipv4_state {
169 uint8_t type; /* State type */
170 uint8_t proto; /* UL Protocol */
171 uint16_t spare;
172 uint32_t kidx; /* named object index */
173 uint16_t sport, dport; /* ULP source and destination ports */
174 in_addr_t src, dst; /* IPv4 source and destination */
175
176 union {
177 struct dyn_data *data;
178 struct dyn_parent *limit;
179 };
180 CK_SLIST_ENTRY(dyn_ipv4_state) entry;
181 SLIST_ENTRY(dyn_ipv4_state) expired;
182 };
183 CK_SLIST_HEAD(dyn_ipv4ck_slist, dyn_ipv4_state);
184 VNET_DEFINE_STATIC(struct dyn_ipv4ck_slist *, dyn_ipv4);
185 VNET_DEFINE_STATIC(struct dyn_ipv4ck_slist *, dyn_ipv4_parent);
186
187 SLIST_HEAD(dyn_ipv4_slist, dyn_ipv4_state);
188 VNET_DEFINE_STATIC(struct dyn_ipv4_slist, dyn_expired_ipv4);
189 #define V_dyn_ipv4 VNET(dyn_ipv4)
190 #define V_dyn_ipv4_parent VNET(dyn_ipv4_parent)
191 #define V_dyn_expired_ipv4 VNET(dyn_expired_ipv4)
192
193 #ifdef INET6
194 struct dyn_ipv6_state {
195 uint8_t type; /* State type */
196 uint8_t proto; /* UL Protocol */
197 uint16_t kidx; /* named object index */
198 uint16_t sport, dport; /* ULP source and destination ports */
199 struct in6_addr src, dst; /* IPv6 source and destination */
200 uint32_t zoneid; /* IPv6 scope zone id */
201 union {
202 struct dyn_data *data;
203 struct dyn_parent *limit;
204 };
205 CK_SLIST_ENTRY(dyn_ipv6_state) entry;
206 SLIST_ENTRY(dyn_ipv6_state) expired;
207 };
208 CK_SLIST_HEAD(dyn_ipv6ck_slist, dyn_ipv6_state);
209 VNET_DEFINE_STATIC(struct dyn_ipv6ck_slist *, dyn_ipv6);
210 VNET_DEFINE_STATIC(struct dyn_ipv6ck_slist *, dyn_ipv6_parent);
211
212 SLIST_HEAD(dyn_ipv6_slist, dyn_ipv6_state);
213 VNET_DEFINE_STATIC(struct dyn_ipv6_slist, dyn_expired_ipv6);
214 #define V_dyn_ipv6 VNET(dyn_ipv6)
215 #define V_dyn_ipv6_parent VNET(dyn_ipv6_parent)
216 #define V_dyn_expired_ipv6 VNET(dyn_expired_ipv6)
217 #endif /* INET6 */
218
219 /*
220 * Per-CPU pointer indicates that specified state is currently in use
221 * and must not be reclaimed by expiration callout.
222 */
223 static void **dyn_hp_cache;
224 DPCPU_DEFINE_STATIC(void *, dyn_hp);
225 #define DYNSTATE_GET(cpu) ck_pr_load_ptr(DPCPU_ID_PTR((cpu), dyn_hp))
226 #define DYNSTATE_PROTECT(v) ck_pr_store_ptr(DPCPU_PTR(dyn_hp), (v))
227 #define DYNSTATE_RELEASE() DYNSTATE_PROTECT(NULL)
228 #define DYNSTATE_CRITICAL_ENTER() critical_enter()
229 #define DYNSTATE_CRITICAL_EXIT() do { \
230 DYNSTATE_RELEASE(); \
231 critical_exit(); \
232 } while (0);
233
234 /*
235 * We keep two version numbers, one is updated when new entry added to
236 * the list. Second is updated when an entry deleted from the list.
237 * Versions are updated under bucket lock.
238 *
239 * Bucket "add" version number is used to know, that in the time between
240 * state lookup (i.e. ipfw_dyn_lookup_state()) and the followed state
241 * creation (i.e. ipfw_dyn_install_state()) another concurrent thread did
242 * not install some state in this bucket. Using this info we can avoid
243 * additional state lookup, because we are sure that we will not install
244 * the state twice.
245 *
246 * Also doing the tracking of bucket "del" version during lookup we can
247 * be sure, that state entry was not unlinked and freed in time between
248 * we read the state pointer and protect it with hazard pointer.
249 *
250 * An entry unlinked from CK list keeps unchanged until it is freed.
251 * Unlinked entries are linked into expired lists using "expired" field.
252 */
253
254 /*
255 * dyn_expire_lock is used to protect access to dyn_expired_xxx lists.
256 * dyn_bucket_lock is used to get write access to lists in specific bucket.
257 * Currently one dyn_bucket_lock is used for all ipv4, ipv4_parent, ipv6,
258 * and ipv6_parent lists.
259 */
260 VNET_DEFINE_STATIC(struct mtx, dyn_expire_lock);
261 VNET_DEFINE_STATIC(struct mtx *, dyn_bucket_lock);
262 #define V_dyn_expire_lock VNET(dyn_expire_lock)
263 #define V_dyn_bucket_lock VNET(dyn_bucket_lock)
264
265 /*
266 * Bucket's add/delete generation versions.
267 */
268 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_add);
269 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_del);
270 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_parent_add);
271 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_parent_del);
272 #define V_dyn_ipv4_add VNET(dyn_ipv4_add)
273 #define V_dyn_ipv4_del VNET(dyn_ipv4_del)
274 #define V_dyn_ipv4_parent_add VNET(dyn_ipv4_parent_add)
275 #define V_dyn_ipv4_parent_del VNET(dyn_ipv4_parent_del)
276
277 #ifdef INET6
278 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_add);
279 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_del);
280 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_parent_add);
281 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_parent_del);
282 #define V_dyn_ipv6_add VNET(dyn_ipv6_add)
283 #define V_dyn_ipv6_del VNET(dyn_ipv6_del)
284 #define V_dyn_ipv6_parent_add VNET(dyn_ipv6_parent_add)
285 #define V_dyn_ipv6_parent_del VNET(dyn_ipv6_parent_del)
286 #endif /* INET6 */
287
288 #define DYN_BUCKET(h, b) ((h) & (b - 1))
289 #define DYN_BUCKET_VERSION(b, v) ck_pr_load_32(&V_dyn_ ## v[(b)])
290 #define DYN_BUCKET_VERSION_BUMP(b, v) ck_pr_inc_32(&V_dyn_ ## v[(b)])
291
292 #define DYN_BUCKET_LOCK_INIT(lock, b) \
293 mtx_init(&lock[(b)], "IPFW dynamic bucket", NULL, MTX_DEF)
294 #define DYN_BUCKET_LOCK_DESTROY(lock, b) mtx_destroy(&lock[(b)])
295 #define DYN_BUCKET_LOCK(b) mtx_lock(&V_dyn_bucket_lock[(b)])
296 #define DYN_BUCKET_UNLOCK(b) mtx_unlock(&V_dyn_bucket_lock[(b)])
297 #define DYN_BUCKET_ASSERT(b) mtx_assert(&V_dyn_bucket_lock[(b)], MA_OWNED)
298
299 #define DYN_EXPIRED_LOCK_INIT() \
300 mtx_init(&V_dyn_expire_lock, "IPFW expired states list", NULL, MTX_DEF)
301 #define DYN_EXPIRED_LOCK_DESTROY() mtx_destroy(&V_dyn_expire_lock)
302 #define DYN_EXPIRED_LOCK() mtx_lock(&V_dyn_expire_lock)
303 #define DYN_EXPIRED_UNLOCK() mtx_unlock(&V_dyn_expire_lock)
304
305 VNET_DEFINE_STATIC(uint32_t, dyn_buckets_max);
306 VNET_DEFINE_STATIC(uint32_t, curr_dyn_buckets);
307 VNET_DEFINE_STATIC(struct callout, dyn_timeout);
308 #define V_dyn_buckets_max VNET(dyn_buckets_max)
309 #define V_curr_dyn_buckets VNET(curr_dyn_buckets)
310 #define V_dyn_timeout VNET(dyn_timeout)
311
312 /* Maximum length of states chain in a bucket */
313 VNET_DEFINE_STATIC(uint32_t, curr_max_length);
314 #define V_curr_max_length VNET(curr_max_length)
315
316 VNET_DEFINE_STATIC(uint32_t, dyn_keep_states);
317 #define V_dyn_keep_states VNET(dyn_keep_states)
318
319 VNET_DEFINE_STATIC(uma_zone_t, dyn_data_zone);
320 VNET_DEFINE_STATIC(uma_zone_t, dyn_parent_zone);
321 VNET_DEFINE_STATIC(uma_zone_t, dyn_ipv4_zone);
322 #ifdef INET6
323 VNET_DEFINE_STATIC(uma_zone_t, dyn_ipv6_zone);
324 #define V_dyn_ipv6_zone VNET(dyn_ipv6_zone)
325 #endif /* INET6 */
326 #define V_dyn_data_zone VNET(dyn_data_zone)
327 #define V_dyn_parent_zone VNET(dyn_parent_zone)
328 #define V_dyn_ipv4_zone VNET(dyn_ipv4_zone)
329
330 /*
331 * Timeouts for various events in handing dynamic rules.
332 */
333 VNET_DEFINE_STATIC(uint32_t, dyn_ack_lifetime);
334 VNET_DEFINE_STATIC(uint32_t, dyn_syn_lifetime);
335 VNET_DEFINE_STATIC(uint32_t, dyn_fin_lifetime);
336 VNET_DEFINE_STATIC(uint32_t, dyn_rst_lifetime);
337 VNET_DEFINE_STATIC(uint32_t, dyn_udp_lifetime);
338 VNET_DEFINE_STATIC(uint32_t, dyn_short_lifetime);
339
340 #define V_dyn_ack_lifetime VNET(dyn_ack_lifetime)
341 #define V_dyn_syn_lifetime VNET(dyn_syn_lifetime)
342 #define V_dyn_fin_lifetime VNET(dyn_fin_lifetime)
343 #define V_dyn_rst_lifetime VNET(dyn_rst_lifetime)
344 #define V_dyn_udp_lifetime VNET(dyn_udp_lifetime)
345 #define V_dyn_short_lifetime VNET(dyn_short_lifetime)
346
347 /*
348 * Keepalives are sent if dyn_keepalive is set. They are sent every
349 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
350 * seconds of lifetime of a rule.
351 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
352 * than dyn_keepalive_period.
353 */
354 VNET_DEFINE_STATIC(uint32_t, dyn_keepalive_interval);
355 VNET_DEFINE_STATIC(uint32_t, dyn_keepalive_period);
356 VNET_DEFINE_STATIC(uint32_t, dyn_keepalive);
357 VNET_DEFINE_STATIC(time_t, dyn_keepalive_last);
358
359 #define V_dyn_keepalive_interval VNET(dyn_keepalive_interval)
360 #define V_dyn_keepalive_period VNET(dyn_keepalive_period)
361 #define V_dyn_keepalive VNET(dyn_keepalive)
362 #define V_dyn_keepalive_last VNET(dyn_keepalive_last)
363
364 VNET_DEFINE_STATIC(uint32_t, dyn_max); /* max # of dynamic states */
365 VNET_DEFINE_STATIC(uint32_t, dyn_count); /* number of states */
366 VNET_DEFINE_STATIC(uint32_t, dyn_parent_max); /* max # of parent states */
367 VNET_DEFINE_STATIC(uint32_t, dyn_parent_count); /* number of parent states */
368
369 #define V_dyn_max VNET(dyn_max)
370 #define V_dyn_count VNET(dyn_count)
371 #define V_dyn_parent_max VNET(dyn_parent_max)
372 #define V_dyn_parent_count VNET(dyn_parent_count)
373
374 #define DYN_COUNT_DEC(name) do { \
375 MPASS((V_ ## name) > 0); \
376 ck_pr_dec_32(&(V_ ## name)); \
377 } while (0)
378 #define DYN_COUNT_INC(name) ck_pr_inc_32(&(V_ ## name))
379 #define DYN_COUNT(name) ck_pr_load_32(&(V_ ## name))
380
381 static time_t last_log; /* Log ratelimiting */
382
383 /*
384 * Get/set maximum number of dynamic states in given VNET instance.
385 */
386 static int
sysctl_dyn_max(SYSCTL_HANDLER_ARGS)387 sysctl_dyn_max(SYSCTL_HANDLER_ARGS)
388 {
389 uint32_t nstates;
390 int error;
391
392 nstates = V_dyn_max;
393 error = sysctl_handle_32(oidp, &nstates, 0, req);
394 /* Read operation or some error */
395 if ((error != 0) || (req->newptr == NULL))
396 return (error);
397
398 V_dyn_max = nstates;
399 uma_zone_set_max(V_dyn_data_zone, V_dyn_max);
400 return (0);
401 }
402
403 static int
sysctl_dyn_parent_max(SYSCTL_HANDLER_ARGS)404 sysctl_dyn_parent_max(SYSCTL_HANDLER_ARGS)
405 {
406 uint32_t nstates;
407 int error;
408
409 nstates = V_dyn_parent_max;
410 error = sysctl_handle_32(oidp, &nstates, 0, req);
411 /* Read operation or some error */
412 if ((error != 0) || (req->newptr == NULL))
413 return (error);
414
415 V_dyn_parent_max = nstates;
416 uma_zone_set_max(V_dyn_parent_zone, V_dyn_parent_max);
417 return (0);
418 }
419
420 static int
sysctl_dyn_buckets(SYSCTL_HANDLER_ARGS)421 sysctl_dyn_buckets(SYSCTL_HANDLER_ARGS)
422 {
423 uint32_t nbuckets;
424 int error;
425
426 nbuckets = V_dyn_buckets_max;
427 error = sysctl_handle_32(oidp, &nbuckets, 0, req);
428 /* Read operation or some error */
429 if ((error != 0) || (req->newptr == NULL))
430 return (error);
431
432 if (nbuckets > 256)
433 V_dyn_buckets_max = 1 << fls(nbuckets - 1);
434 else
435 return (EINVAL);
436 return (0);
437 }
438
439 SYSCTL_DECL(_net_inet_ip_fw);
440
441 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_count,
442 CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(dyn_count), 0,
443 "Current number of dynamic states.");
444 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_parent_count,
445 CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(dyn_parent_count), 0,
446 "Current number of parent states. ");
447 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
448 CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_dyn_buckets), 0,
449 "Current number of buckets for states hash table.");
450 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, curr_max_length,
451 CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_max_length), 0,
452 "Current maximum length of states chains in hash buckets.");
453 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_buckets,
454 CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
455 0, 0, sysctl_dyn_buckets, "IU",
456 "Max number of buckets for dynamic states hash table.");
457 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_max,
458 CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
459 0, 0, sysctl_dyn_max, "IU",
460 "Max number of dynamic states.");
461 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_parent_max,
462 CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
463 0, 0, sysctl_dyn_parent_max, "IU",
464 "Max number of parent dynamic states.");
465 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
466 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_ack_lifetime), 0,
467 "Lifetime of dynamic states for TCP ACK.");
468 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
469 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_syn_lifetime), 0,
470 "Lifetime of dynamic states for TCP SYN.");
471 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
472 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_fin_lifetime), 0,
473 "Lifetime of dynamic states for TCP FIN.");
474 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
475 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_rst_lifetime), 0,
476 "Lifetime of dynamic states for TCP RST.");
477 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
478 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_udp_lifetime), 0,
479 "Lifetime of dynamic states for UDP.");
480 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
481 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_short_lifetime), 0,
482 "Lifetime of dynamic states for other situations.");
483 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_keepalive,
484 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keepalive), 0,
485 "Enable keepalives for dynamic states.");
486 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_keep_states,
487 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keep_states), 0,
488 "Do not flush dynamic states on rule deletion");
489
490 #ifdef IPFIREWALL_DYNDEBUG
491 #define DYN_DEBUG(fmt, ...) do { \
492 printf("%s: " fmt "\n", __func__, __VA_ARGS__); \
493 } while (0)
494 #else
495 #define DYN_DEBUG(fmt, ...)
496 #endif /* !IPFIREWALL_DYNDEBUG */
497
498 #ifdef INET6
499 /* Functions to work with IPv6 states */
500 static struct dyn_ipv6_state *dyn_lookup_ipv6_state(
501 const struct ipfw_flow_id *, uint32_t, const void *,
502 struct ipfw_dyn_info *, int);
503 static int dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id *,
504 uint32_t, const void *, int, uint32_t, uint32_t);
505 static struct dyn_ipv6_state *dyn_alloc_ipv6_state(
506 const struct ipfw_flow_id *, uint32_t, uint32_t, uint8_t);
507 static int dyn_add_ipv6_state(void *, uint32_t, uint32_t,
508 const struct ipfw_flow_id *, uint32_t, const void *, int, uint32_t,
509 struct ipfw_dyn_info *, uint16_t, uint32_t, uint8_t);
510 static void dyn_export_ipv6_state(const struct dyn_ipv6_state *,
511 ipfw_dyn_rule *);
512
513 static uint32_t dyn_getscopeid(const struct ip_fw_args *);
514 static void dyn_make_keepalive_ipv6(struct mbuf *, const struct in6_addr *,
515 const struct in6_addr *, uint32_t, uint32_t, uint32_t, uint16_t,
516 uint16_t);
517 static void dyn_enqueue_keepalive_ipv6(struct mbufq *,
518 const struct dyn_ipv6_state *);
519 static void dyn_send_keepalive_ipv6(struct ip_fw_chain *);
520
521 static struct dyn_ipv6_state *dyn_lookup_ipv6_parent(
522 const struct ipfw_flow_id *, uint32_t, const void *, uint32_t, uint32_t,
523 uint32_t);
524 static struct dyn_ipv6_state *dyn_lookup_ipv6_parent_locked(
525 const struct ipfw_flow_id *, uint32_t, const void *, uint32_t, uint32_t,
526 uint32_t);
527 static struct dyn_ipv6_state *dyn_add_ipv6_parent(void *, uint32_t, uint32_t,
528 const struct ipfw_flow_id *, uint32_t, uint32_t, uint32_t, uint32_t);
529 #endif /* INET6 */
530
531 /* Functions to work with limit states */
532 static void *dyn_get_parent_state(const struct ipfw_flow_id *, uint32_t,
533 struct ip_fw *, uint32_t, uint32_t, uint32_t);
534 static struct dyn_ipv4_state *dyn_lookup_ipv4_parent(
535 const struct ipfw_flow_id *, const void *, uint32_t, uint32_t, uint32_t);
536 static struct dyn_ipv4_state *dyn_lookup_ipv4_parent_locked(
537 const struct ipfw_flow_id *, const void *, uint32_t, uint32_t, uint32_t);
538 static struct dyn_parent *dyn_alloc_parent(void *, uint32_t, uint32_t,
539 uint32_t);
540 static struct dyn_ipv4_state *dyn_add_ipv4_parent(void *, uint32_t, uint32_t,
541 const struct ipfw_flow_id *, uint32_t, uint32_t, uint32_t);
542
543 static void dyn_tick(void *);
544 static void dyn_expire_states(struct ip_fw_chain *, ipfw_range_tlv *);
545 static void dyn_free_states(struct ip_fw_chain *);
546 static void dyn_export_parent(const struct dyn_parent *, uint32_t, uint8_t,
547 ipfw_dyn_rule *);
548 static void dyn_export_data(const struct dyn_data *, uint32_t, uint8_t,
549 uint8_t, ipfw_dyn_rule *);
550 static uint32_t dyn_update_tcp_state(struct dyn_data *,
551 const struct ipfw_flow_id *, const struct tcphdr *, int);
552 static void dyn_update_proto_state(struct dyn_data *,
553 const struct ipfw_flow_id *, const void *, int, int);
554
555 /* Functions to work with IPv4 states */
556 struct dyn_ipv4_state *dyn_lookup_ipv4_state(const struct ipfw_flow_id *,
557 const void *, struct ipfw_dyn_info *, int);
558 static int dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id *,
559 const void *, int, uint32_t, uint32_t);
560 static struct dyn_ipv4_state *dyn_alloc_ipv4_state(
561 const struct ipfw_flow_id *, uint32_t, uint8_t);
562 static int dyn_add_ipv4_state(void *, uint32_t, uint32_t,
563 const struct ipfw_flow_id *, const void *, int, uint32_t,
564 struct ipfw_dyn_info *, uint16_t, uint32_t, uint8_t);
565 static void dyn_export_ipv4_state(const struct dyn_ipv4_state *,
566 ipfw_dyn_rule *);
567
568 /*
569 * Named states support.
570 */
571 static char *default_state_name = "default";
572 struct dyn_state_obj {
573 struct named_object no;
574 char name[64];
575 };
576
577 /*
578 * Classifier callback.
579 * Return 0 if opcode contains object that should be referenced
580 * or rewritten.
581 */
582 static int
dyn_classify(ipfw_insn * cmd0,uint32_t * puidx,uint8_t * ptype)583 dyn_classify(ipfw_insn *cmd0, uint32_t *puidx, uint8_t *ptype)
584 {
585 ipfw_insn_kidx *cmd;
586
587 if (F_LEN(cmd0) < 2)
588 return (EINVAL);
589
590 /*
591 * NOTE: ipfw_insn_kidx and ipfw_insn_limit has overlapped kidx
592 * field, so we can use one type to get access to kidx field.
593 */
594 cmd = insntod(cmd0, kidx);
595 DYN_DEBUG("opcode %u, kidx %u", cmd0->opcode, cmd->kidx);
596 /* Don't rewrite "check-state any" */
597 if (cmd->kidx == 0 &&
598 cmd0->opcode == O_CHECK_STATE)
599 return (1);
600
601 *puidx = cmd->kidx;
602 *ptype = 0;
603 return (0);
604 }
605
606 static void
dyn_update(ipfw_insn * cmd0,uint32_t idx)607 dyn_update(ipfw_insn *cmd0, uint32_t idx)
608 {
609
610 insntod(cmd0, kidx)->kidx = idx;
611 DYN_DEBUG("opcode %u, kidx %u", cmd0->opcode, idx);
612 }
613
614 static int
dyn_findbyname(struct ip_fw_chain * ch,struct tid_info * ti,struct named_object ** pno)615 dyn_findbyname(struct ip_fw_chain *ch, struct tid_info *ti,
616 struct named_object **pno)
617 {
618 ipfw_obj_ntlv *ntlv;
619 const char *name;
620
621 DYN_DEBUG("uidx %u", ti->uidx);
622 if (ti->uidx != 0) {
623 if (ti->tlvs == NULL)
624 return (EINVAL);
625 /* Search ntlv in the buffer provided by user */
626 ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
627 IPFW_TLV_STATE_NAME);
628 if (ntlv == NULL)
629 return (EINVAL);
630 name = ntlv->name;
631 } else
632 name = default_state_name;
633 /*
634 * Search named object with corresponding name.
635 * Since states objects are global - ignore the set value
636 * and use zero instead.
637 */
638 *pno = ipfw_objhash_lookup_name_type(CHAIN_TO_SRV(ch), 0,
639 IPFW_TLV_STATE_NAME, name);
640 /*
641 * We always return success here.
642 * The caller will check *pno and mark object as unresolved,
643 * then it will automatically create "default" object.
644 */
645 return (0);
646 }
647
648 static struct named_object *
dyn_findbykidx(struct ip_fw_chain * ch,uint32_t idx)649 dyn_findbykidx(struct ip_fw_chain *ch, uint32_t idx)
650 {
651
652 DYN_DEBUG("kidx %u", idx);
653 return (ipfw_objhash_lookup_kidx(CHAIN_TO_SRV(ch), idx));
654 }
655
656 static int
dyn_create(struct ip_fw_chain * ch,struct tid_info * ti,uint32_t * pkidx)657 dyn_create(struct ip_fw_chain *ch, struct tid_info *ti,
658 uint32_t *pkidx)
659 {
660 struct namedobj_instance *ni;
661 struct dyn_state_obj *obj;
662 struct named_object *no;
663 ipfw_obj_ntlv *ntlv;
664 char *name;
665
666 DYN_DEBUG("uidx %u", ti->uidx);
667 if (ti->uidx != 0) {
668 if (ti->tlvs == NULL)
669 return (EINVAL);
670 ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
671 IPFW_TLV_STATE_NAME);
672 if (ntlv == NULL)
673 return (EINVAL);
674 name = ntlv->name;
675 } else
676 name = default_state_name;
677
678 ni = CHAIN_TO_SRV(ch);
679 obj = malloc(sizeof(*obj), M_IPFW, M_WAITOK | M_ZERO);
680 obj->no.name = obj->name;
681 obj->no.etlv = IPFW_TLV_STATE_NAME;
682 strlcpy(obj->name, name, sizeof(obj->name));
683
684 IPFW_UH_WLOCK(ch);
685 no = ipfw_objhash_lookup_name_type(ni, 0,
686 IPFW_TLV_STATE_NAME, name);
687 if (no != NULL) {
688 /*
689 * Object is already created.
690 * Just return its kidx and bump refcount.
691 */
692 *pkidx = no->kidx;
693 no->refcnt++;
694 IPFW_UH_WUNLOCK(ch);
695 free(obj, M_IPFW);
696 DYN_DEBUG("\tfound kidx %u for name '%s'", *pkidx, no->name);
697 return (0);
698 }
699 if (ipfw_objhash_alloc_idx(ni, &obj->no.kidx) != 0) {
700 DYN_DEBUG("\talloc_idx failed for %s", name);
701 IPFW_UH_WUNLOCK(ch);
702 free(obj, M_IPFW);
703 return (ENOSPC);
704 }
705 ipfw_objhash_add(ni, &obj->no);
706 SRV_OBJECT(ch, obj->no.kidx) = obj;
707 obj->no.refcnt++;
708 *pkidx = obj->no.kidx;
709 IPFW_UH_WUNLOCK(ch);
710 DYN_DEBUG("\tcreated kidx %u for name '%s'", *pkidx, name);
711 return (0);
712 }
713
714 static void
dyn_destroy(struct ip_fw_chain * ch,struct named_object * no)715 dyn_destroy(struct ip_fw_chain *ch, struct named_object *no)
716 {
717 struct dyn_state_obj *obj;
718
719 IPFW_UH_WLOCK_ASSERT(ch);
720
721 KASSERT(no->etlv == IPFW_TLV_STATE_NAME,
722 ("%s: wrong object type %u", __func__, no->etlv));
723 KASSERT(no->refcnt == 1,
724 ("Destroying object '%s' (type %u, idx %u) with refcnt %u",
725 no->name, no->etlv, no->kidx, no->refcnt));
726 DYN_DEBUG("kidx %u", no->kidx);
727 obj = SRV_OBJECT(ch, no->kidx);
728 SRV_OBJECT(ch, no->kidx) = NULL;
729 ipfw_objhash_del(CHAIN_TO_SRV(ch), no);
730 ipfw_objhash_free_idx(CHAIN_TO_SRV(ch), no->kidx);
731
732 free(obj, M_IPFW);
733 }
734
735 static struct opcode_obj_rewrite dyn_opcodes[] = {
736 {
737 O_KEEP_STATE, IPFW_TLV_STATE_NAME,
738 dyn_classify, dyn_update,
739 dyn_findbyname, dyn_findbykidx,
740 dyn_create, dyn_destroy
741 },
742 {
743 O_CHECK_STATE, IPFW_TLV_STATE_NAME,
744 dyn_classify, dyn_update,
745 dyn_findbyname, dyn_findbykidx,
746 dyn_create, dyn_destroy
747 },
748 {
749 O_PROBE_STATE, IPFW_TLV_STATE_NAME,
750 dyn_classify, dyn_update,
751 dyn_findbyname, dyn_findbykidx,
752 dyn_create, dyn_destroy
753 },
754 {
755 O_LIMIT, IPFW_TLV_STATE_NAME,
756 dyn_classify, dyn_update,
757 dyn_findbyname, dyn_findbykidx,
758 dyn_create, dyn_destroy
759 },
760 };
761
762 /*
763 * IMPORTANT: the hash function for dynamic rules must be commutative
764 * in source and destination (ip,port), because rules are bidirectional
765 * and we want to find both in the same bucket.
766 */
767 #ifndef IPFIREWALL_JENKINSHASH
768 static __inline uint32_t
hash_packet(const struct ipfw_flow_id * id)769 hash_packet(const struct ipfw_flow_id *id)
770 {
771 uint32_t i;
772
773 #ifdef INET6
774 if (IS_IP6_FLOW_ID(id))
775 i = ntohl((id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
776 (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
777 (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
778 (id->src_ip6.__u6_addr.__u6_addr32[3]));
779 else
780 #endif /* INET6 */
781 i = (id->dst_ip) ^ (id->src_ip);
782 i ^= (id->dst_port) ^ (id->src_port);
783 return (i);
784 }
785
786 static __inline uint32_t
hash_parent(const struct ipfw_flow_id * id,const void * rule)787 hash_parent(const struct ipfw_flow_id *id, const void *rule)
788 {
789
790 return (hash_packet(id) ^ ((uintptr_t)rule));
791 }
792
793 #else /* IPFIREWALL_JENKINSHASH */
794
795 VNET_DEFINE_STATIC(uint32_t, dyn_hashseed);
796 #define V_dyn_hashseed VNET(dyn_hashseed)
797
798 static __inline int
addrcmp4(const struct ipfw_flow_id * id)799 addrcmp4(const struct ipfw_flow_id *id)
800 {
801
802 if (id->src_ip < id->dst_ip)
803 return (0);
804 if (id->src_ip > id->dst_ip)
805 return (1);
806 if (id->src_port <= id->dst_port)
807 return (0);
808 return (1);
809 }
810
811 #ifdef INET6
812 static __inline int
addrcmp6(const struct ipfw_flow_id * id)813 addrcmp6(const struct ipfw_flow_id *id)
814 {
815 int ret;
816
817 ret = memcmp(&id->src_ip6, &id->dst_ip6, sizeof(struct in6_addr));
818 if (ret < 0)
819 return (0);
820 if (ret > 0)
821 return (1);
822 if (id->src_port <= id->dst_port)
823 return (0);
824 return (1);
825 }
826
827 static __inline uint32_t
hash_packet6(const struct ipfw_flow_id * id)828 hash_packet6(const struct ipfw_flow_id *id)
829 {
830 struct tuple6 {
831 struct in6_addr addr[2];
832 uint16_t port[2];
833 } t6;
834
835 if (addrcmp6(id) == 0) {
836 t6.addr[0] = id->src_ip6;
837 t6.addr[1] = id->dst_ip6;
838 t6.port[0] = id->src_port;
839 t6.port[1] = id->dst_port;
840 } else {
841 t6.addr[0] = id->dst_ip6;
842 t6.addr[1] = id->src_ip6;
843 t6.port[0] = id->dst_port;
844 t6.port[1] = id->src_port;
845 }
846 return (jenkins_hash32((const uint32_t *)&t6,
847 sizeof(t6) / sizeof(uint32_t), V_dyn_hashseed));
848 }
849 #endif
850
851 static __inline uint32_t
hash_packet(const struct ipfw_flow_id * id)852 hash_packet(const struct ipfw_flow_id *id)
853 {
854 struct tuple4 {
855 in_addr_t addr[2];
856 uint16_t port[2];
857 } t4;
858
859 if (IS_IP4_FLOW_ID(id)) {
860 /* All fields are in host byte order */
861 if (addrcmp4(id) == 0) {
862 t4.addr[0] = id->src_ip;
863 t4.addr[1] = id->dst_ip;
864 t4.port[0] = id->src_port;
865 t4.port[1] = id->dst_port;
866 } else {
867 t4.addr[0] = id->dst_ip;
868 t4.addr[1] = id->src_ip;
869 t4.port[0] = id->dst_port;
870 t4.port[1] = id->src_port;
871 }
872 return (jenkins_hash32((const uint32_t *)&t4,
873 sizeof(t4) / sizeof(uint32_t), V_dyn_hashseed));
874 } else
875 #ifdef INET6
876 if (IS_IP6_FLOW_ID(id))
877 return (hash_packet6(id));
878 #endif
879 return (0);
880 }
881
882 static __inline uint32_t
hash_parent(const struct ipfw_flow_id * id,const void * rule)883 hash_parent(const struct ipfw_flow_id *id, const void *rule)
884 {
885
886 return (jenkins_hash32((const uint32_t *)&rule,
887 sizeof(rule) / sizeof(uint32_t), hash_packet(id)));
888 }
889 #endif /* IPFIREWALL_JENKINSHASH */
890
891 /*
892 * Print customizable flow id description via log(9) facility.
893 */
894 static void
print_dyn_rule_flags(const struct ipfw_flow_id * id,int dyn_type,int log_flags,char * prefix,char * postfix)895 print_dyn_rule_flags(const struct ipfw_flow_id *id, int dyn_type,
896 int log_flags, char *prefix, char *postfix)
897 {
898 struct in_addr da;
899 #ifdef INET6
900 char src[INET6_ADDRSTRLEN], dst[INET6_ADDRSTRLEN];
901 #else
902 char src[INET_ADDRSTRLEN], dst[INET_ADDRSTRLEN];
903 #endif
904
905 #ifdef INET6
906 if (IS_IP6_FLOW_ID(id)) {
907 ip6_sprintf(src, &id->src_ip6);
908 ip6_sprintf(dst, &id->dst_ip6);
909 } else
910 #endif
911 {
912 da.s_addr = htonl(id->src_ip);
913 inet_ntop(AF_INET, &da, src, sizeof(src));
914 da.s_addr = htonl(id->dst_ip);
915 inet_ntop(AF_INET, &da, dst, sizeof(dst));
916 }
917 log(log_flags, "ipfw: %s type %d %s %d -> %s %d, %d %s\n",
918 prefix, dyn_type, src, id->src_port, dst,
919 id->dst_port, V_dyn_count, postfix);
920 }
921
922 #define print_dyn_rule(id, dtype, prefix, postfix) \
923 print_dyn_rule_flags(id, dtype, LOG_DEBUG, prefix, postfix)
924
925 #define TIME_LEQ(a,b) ((int)((a)-(b)) <= 0)
926 #define TIME_LE(a,b) ((int)((a)-(b)) < 0)
927 #define _SEQ_GE(a,b) ((int)((a)-(b)) >= 0)
928 #define BOTH_SYN (TH_SYN | (TH_SYN << 8))
929 #define BOTH_FIN (TH_FIN | (TH_FIN << 8))
930 #define BOTH_RST (TH_RST | (TH_RST << 8))
931 #define TCP_FLAGS (BOTH_SYN | BOTH_FIN | BOTH_RST)
932 #define ACK_FWD 0x00010000 /* fwd ack seen */
933 #define ACK_REV 0x00020000 /* rev ack seen */
934 #define ACK_BOTH (ACK_FWD | ACK_REV)
935
936 static uint32_t
dyn_update_tcp_state(struct dyn_data * data,const struct ipfw_flow_id * pkt,const struct tcphdr * tcp,int dir)937 dyn_update_tcp_state(struct dyn_data *data, const struct ipfw_flow_id *pkt,
938 const struct tcphdr *tcp, int dir)
939 {
940 uint32_t ack, expire;
941 uint32_t state, old;
942 uint8_t th_flags;
943
944 expire = data->expire;
945 old = state = data->state;
946 th_flags = pkt->_flags & (TH_FIN | TH_SYN | TH_RST);
947 state |= (dir == MATCH_FORWARD) ? th_flags: (th_flags << 8);
948 switch (state & TCP_FLAGS) {
949 case TH_SYN: /* opening */
950 expire = time_uptime + V_dyn_syn_lifetime;
951 break;
952
953 case BOTH_SYN: /* move to established */
954 case BOTH_SYN | TH_FIN: /* one side tries to close */
955 case BOTH_SYN | (TH_FIN << 8):
956 if (tcp == NULL)
957 break;
958 ack = ntohl(tcp->th_ack);
959 if (dir == MATCH_FORWARD) {
960 if (data->ack_fwd == 0 ||
961 _SEQ_GE(ack, data->ack_fwd)) {
962 state |= ACK_FWD;
963 if (data->ack_fwd != ack)
964 ck_pr_store_32(&data->ack_fwd, ack);
965 }
966 } else {
967 if (data->ack_rev == 0 ||
968 _SEQ_GE(ack, data->ack_rev)) {
969 state |= ACK_REV;
970 if (data->ack_rev != ack)
971 ck_pr_store_32(&data->ack_rev, ack);
972 }
973 }
974 if ((state & ACK_BOTH) == ACK_BOTH) {
975 /*
976 * Set expire time to V_dyn_ack_lifetime only if
977 * we got ACKs for both directions.
978 * We use XOR here to avoid possible state
979 * overwriting in concurrent thread.
980 */
981 expire = time_uptime + V_dyn_ack_lifetime;
982 ck_pr_xor_32(&data->state, ACK_BOTH);
983 } else if ((data->state & ACK_BOTH) != (state & ACK_BOTH))
984 ck_pr_or_32(&data->state, state & ACK_BOTH);
985 break;
986
987 case BOTH_SYN | BOTH_FIN: /* both sides closed */
988 if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
989 V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
990 expire = time_uptime + V_dyn_fin_lifetime;
991 break;
992
993 default:
994 if (V_dyn_keepalive != 0 &&
995 V_dyn_rst_lifetime >= V_dyn_keepalive_period)
996 V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
997 expire = time_uptime + V_dyn_rst_lifetime;
998 }
999 /* Save TCP state if it was changed */
1000 if ((state & TCP_FLAGS) != (old & TCP_FLAGS))
1001 ck_pr_or_32(&data->state, state & TCP_FLAGS);
1002 return (expire);
1003 }
1004
1005 /*
1006 * Update ULP specific state.
1007 * For TCP we keep sequence numbers and flags. For other protocols
1008 * currently we update only expire time. Packets and bytes counters
1009 * are also updated here.
1010 */
1011 static void
dyn_update_proto_state(struct dyn_data * data,const struct ipfw_flow_id * pkt,const void * ulp,int pktlen,int dir)1012 dyn_update_proto_state(struct dyn_data *data, const struct ipfw_flow_id *pkt,
1013 const void *ulp, int pktlen, int dir)
1014 {
1015 uint32_t expire;
1016
1017 /* NOTE: we are in critical section here. */
1018 switch (pkt->proto) {
1019 case IPPROTO_UDP:
1020 case IPPROTO_UDPLITE:
1021 expire = time_uptime + V_dyn_udp_lifetime;
1022 break;
1023 case IPPROTO_TCP:
1024 expire = dyn_update_tcp_state(data, pkt, ulp, dir);
1025 break;
1026 default:
1027 expire = time_uptime + V_dyn_short_lifetime;
1028 }
1029 /*
1030 * Expiration timer has the per-second granularity, no need to update
1031 * it every time when state is matched.
1032 */
1033 if (data->expire != expire)
1034 ck_pr_store_32(&data->expire, expire);
1035
1036 if (dir == MATCH_FORWARD)
1037 DYN_COUNTER_INC(data, fwd, pktlen);
1038 else
1039 DYN_COUNTER_INC(data, rev, pktlen);
1040 }
1041
1042 /*
1043 * Lookup IPv4 state.
1044 * Must be called in critical section.
1045 */
1046 struct dyn_ipv4_state *
dyn_lookup_ipv4_state(const struct ipfw_flow_id * pkt,const void * ulp,struct ipfw_dyn_info * info,int pktlen)1047 dyn_lookup_ipv4_state(const struct ipfw_flow_id *pkt, const void *ulp,
1048 struct ipfw_dyn_info *info, int pktlen)
1049 {
1050 struct dyn_ipv4_state *s;
1051 uint32_t version, bucket;
1052
1053 bucket = DYN_BUCKET(info->hashval, V_curr_dyn_buckets);
1054 info->version = DYN_BUCKET_VERSION(bucket, ipv4_add);
1055 restart:
1056 version = DYN_BUCKET_VERSION(bucket, ipv4_del);
1057 CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
1058 DYNSTATE_PROTECT(s);
1059 if (version != DYN_BUCKET_VERSION(bucket, ipv4_del))
1060 goto restart;
1061 if (s->proto != pkt->proto)
1062 continue;
1063 if (info->kidx != 0 && s->kidx != info->kidx)
1064 continue;
1065 if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1066 s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1067 info->direction = MATCH_FORWARD;
1068 break;
1069 }
1070 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1071 s->src == pkt->dst_ip && s->dst == pkt->src_ip) {
1072 info->direction = MATCH_REVERSE;
1073 break;
1074 }
1075 }
1076
1077 if (s != NULL)
1078 dyn_update_proto_state(s->data, pkt, ulp, pktlen,
1079 info->direction);
1080 return (s);
1081 }
1082
1083 /*
1084 * Lookup IPv4 state.
1085 * Simplifed version is used to check that matching state doesn't exist.
1086 */
1087 static int
dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id * pkt,const void * ulp,int pktlen,uint32_t bucket,uint32_t kidx)1088 dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id *pkt,
1089 const void *ulp, int pktlen, uint32_t bucket, uint32_t kidx)
1090 {
1091 struct dyn_ipv4_state *s;
1092 int dir;
1093
1094 dir = MATCH_NONE;
1095 DYN_BUCKET_ASSERT(bucket);
1096 CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
1097 if (s->proto != pkt->proto ||
1098 s->kidx != kidx)
1099 continue;
1100 if (s->sport == pkt->src_port &&
1101 s->dport == pkt->dst_port &&
1102 s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1103 dir = MATCH_FORWARD;
1104 break;
1105 }
1106 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1107 s->src == pkt->dst_ip && s->dst == pkt->src_ip) {
1108 dir = MATCH_REVERSE;
1109 break;
1110 }
1111 }
1112 if (s != NULL)
1113 dyn_update_proto_state(s->data, pkt, ulp, pktlen, dir);
1114 return (s != NULL);
1115 }
1116
1117 struct dyn_ipv4_state *
dyn_lookup_ipv4_parent(const struct ipfw_flow_id * pkt,const void * rule,uint32_t ruleid,uint32_t rulenum,uint32_t hashval)1118 dyn_lookup_ipv4_parent(const struct ipfw_flow_id *pkt, const void *rule,
1119 uint32_t ruleid, uint32_t rulenum, uint32_t hashval)
1120 {
1121 struct dyn_ipv4_state *s;
1122 uint32_t version, bucket;
1123
1124 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1125 restart:
1126 version = DYN_BUCKET_VERSION(bucket, ipv4_parent_del);
1127 CK_SLIST_FOREACH(s, &V_dyn_ipv4_parent[bucket], entry) {
1128 DYNSTATE_PROTECT(s);
1129 if (version != DYN_BUCKET_VERSION(bucket, ipv4_parent_del))
1130 goto restart;
1131 /*
1132 * NOTE: we do not need to check kidx, because parent rule
1133 * can not create states with different kidx.
1134 * And parent rule always created for forward direction.
1135 */
1136 if (s->limit->parent == rule &&
1137 s->limit->ruleid == ruleid &&
1138 s->limit->rulenum == rulenum &&
1139 s->proto == pkt->proto &&
1140 s->sport == pkt->src_port &&
1141 s->dport == pkt->dst_port &&
1142 s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1143 if (s->limit->expire != time_uptime +
1144 V_dyn_short_lifetime)
1145 ck_pr_store_32(&s->limit->expire,
1146 time_uptime + V_dyn_short_lifetime);
1147 break;
1148 }
1149 }
1150 return (s);
1151 }
1152
1153 static struct dyn_ipv4_state *
dyn_lookup_ipv4_parent_locked(const struct ipfw_flow_id * pkt,const void * rule,uint32_t ruleid,uint32_t rulenum,uint32_t bucket)1154 dyn_lookup_ipv4_parent_locked(const struct ipfw_flow_id *pkt,
1155 const void *rule, uint32_t ruleid, uint32_t rulenum, uint32_t bucket)
1156 {
1157 struct dyn_ipv4_state *s;
1158
1159 DYN_BUCKET_ASSERT(bucket);
1160 CK_SLIST_FOREACH(s, &V_dyn_ipv4_parent[bucket], entry) {
1161 if (s->limit->parent == rule &&
1162 s->limit->ruleid == ruleid &&
1163 s->limit->rulenum == rulenum &&
1164 s->proto == pkt->proto &&
1165 s->sport == pkt->src_port &&
1166 s->dport == pkt->dst_port &&
1167 s->src == pkt->src_ip && s->dst == pkt->dst_ip)
1168 break;
1169 }
1170 return (s);
1171 }
1172
1173 #ifdef INET6
1174 static uint32_t
dyn_getscopeid(const struct ip_fw_args * args)1175 dyn_getscopeid(const struct ip_fw_args *args)
1176 {
1177
1178 /*
1179 * If source or destination address is an scopeid address, we need
1180 * determine the scope zone id to resolve address scope ambiguity.
1181 */
1182 if (IN6_IS_ADDR_LINKLOCAL(&args->f_id.src_ip6) ||
1183 IN6_IS_ADDR_LINKLOCAL(&args->f_id.dst_ip6))
1184 return (in6_getscopezone(args->ifp, IPV6_ADDR_SCOPE_LINKLOCAL));
1185
1186 return (0);
1187 }
1188
1189 /*
1190 * Lookup IPv6 state.
1191 * Must be called in critical section.
1192 */
1193 static struct dyn_ipv6_state *
dyn_lookup_ipv6_state(const struct ipfw_flow_id * pkt,uint32_t zoneid,const void * ulp,struct ipfw_dyn_info * info,int pktlen)1194 dyn_lookup_ipv6_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1195 const void *ulp, struct ipfw_dyn_info *info, int pktlen)
1196 {
1197 struct dyn_ipv6_state *s;
1198 uint32_t version, bucket;
1199
1200 bucket = DYN_BUCKET(info->hashval, V_curr_dyn_buckets);
1201 info->version = DYN_BUCKET_VERSION(bucket, ipv6_add);
1202 restart:
1203 version = DYN_BUCKET_VERSION(bucket, ipv6_del);
1204 CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
1205 DYNSTATE_PROTECT(s);
1206 if (version != DYN_BUCKET_VERSION(bucket, ipv6_del))
1207 goto restart;
1208 if (s->proto != pkt->proto || s->zoneid != zoneid)
1209 continue;
1210 if (info->kidx != 0 && s->kidx != info->kidx)
1211 continue;
1212 if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1213 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1214 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1215 info->direction = MATCH_FORWARD;
1216 break;
1217 }
1218 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1219 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->dst_ip6) &&
1220 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->src_ip6)) {
1221 info->direction = MATCH_REVERSE;
1222 break;
1223 }
1224 }
1225 if (s != NULL)
1226 dyn_update_proto_state(s->data, pkt, ulp, pktlen,
1227 info->direction);
1228 return (s);
1229 }
1230
1231 /*
1232 * Lookup IPv6 state.
1233 * Simplifed version is used to check that matching state doesn't exist.
1234 */
1235 static int
dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id * pkt,uint32_t zoneid,const void * ulp,int pktlen,uint32_t bucket,uint32_t kidx)1236 dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1237 const void *ulp, int pktlen, uint32_t bucket, uint32_t kidx)
1238 {
1239 struct dyn_ipv6_state *s;
1240 int dir;
1241
1242 dir = MATCH_NONE;
1243 DYN_BUCKET_ASSERT(bucket);
1244 CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
1245 if (s->proto != pkt->proto || s->kidx != kidx ||
1246 s->zoneid != zoneid)
1247 continue;
1248 if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1249 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1250 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1251 dir = MATCH_FORWARD;
1252 break;
1253 }
1254 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1255 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->dst_ip6) &&
1256 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->src_ip6)) {
1257 dir = MATCH_REVERSE;
1258 break;
1259 }
1260 }
1261 if (s != NULL)
1262 dyn_update_proto_state(s->data, pkt, ulp, pktlen, dir);
1263 return (s != NULL);
1264 }
1265
1266 static struct dyn_ipv6_state *
dyn_lookup_ipv6_parent(const struct ipfw_flow_id * pkt,uint32_t zoneid,const void * rule,uint32_t ruleid,uint32_t rulenum,uint32_t hashval)1267 dyn_lookup_ipv6_parent(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1268 const void *rule, uint32_t ruleid, uint32_t rulenum, uint32_t hashval)
1269 {
1270 struct dyn_ipv6_state *s;
1271 uint32_t version, bucket;
1272
1273 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1274 restart:
1275 version = DYN_BUCKET_VERSION(bucket, ipv6_parent_del);
1276 CK_SLIST_FOREACH(s, &V_dyn_ipv6_parent[bucket], entry) {
1277 DYNSTATE_PROTECT(s);
1278 if (version != DYN_BUCKET_VERSION(bucket, ipv6_parent_del))
1279 goto restart;
1280 /*
1281 * NOTE: we do not need to check kidx, because parent rule
1282 * can not create states with different kidx.
1283 * Also parent rule always created for forward direction.
1284 */
1285 if (s->limit->parent == rule &&
1286 s->limit->ruleid == ruleid &&
1287 s->limit->rulenum == rulenum &&
1288 s->proto == pkt->proto &&
1289 s->sport == pkt->src_port &&
1290 s->dport == pkt->dst_port && s->zoneid == zoneid &&
1291 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1292 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1293 if (s->limit->expire != time_uptime +
1294 V_dyn_short_lifetime)
1295 ck_pr_store_32(&s->limit->expire,
1296 time_uptime + V_dyn_short_lifetime);
1297 break;
1298 }
1299 }
1300 return (s);
1301 }
1302
1303 static struct dyn_ipv6_state *
dyn_lookup_ipv6_parent_locked(const struct ipfw_flow_id * pkt,uint32_t zoneid,const void * rule,uint32_t ruleid,uint32_t rulenum,uint32_t bucket)1304 dyn_lookup_ipv6_parent_locked(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1305 const void *rule, uint32_t ruleid, uint32_t rulenum, uint32_t bucket)
1306 {
1307 struct dyn_ipv6_state *s;
1308
1309 DYN_BUCKET_ASSERT(bucket);
1310 CK_SLIST_FOREACH(s, &V_dyn_ipv6_parent[bucket], entry) {
1311 if (s->limit->parent == rule &&
1312 s->limit->ruleid == ruleid &&
1313 s->limit->rulenum == rulenum &&
1314 s->proto == pkt->proto &&
1315 s->sport == pkt->src_port &&
1316 s->dport == pkt->dst_port && s->zoneid == zoneid &&
1317 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1318 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6))
1319 break;
1320 }
1321 return (s);
1322 }
1323
1324 #endif /* INET6 */
1325
1326 static int
dyn_handle_orphaned(struct ip_fw * old_rule,struct dyn_data * data)1327 dyn_handle_orphaned(struct ip_fw *old_rule, struct dyn_data *data)
1328 {
1329 struct ip_fw *rule;
1330 const ipfw_insn *cmd, *old_cmd;
1331
1332 old_cmd = ACTION_PTR(old_rule);
1333 switch (old_cmd->opcode) {
1334 case O_SETMARK:
1335 case O_SKIPTO:
1336 /*
1337 * Rule pointer was changed. For O_SKIPTO action it can be
1338 * dangerous to keep use old rule. If new rule has the same
1339 * action and the same destination number, then use this dynamic
1340 * state. Otherwise it is better to create new one.
1341 */
1342 rule = V_layer3_chain.map[data->f_pos];
1343 cmd = ACTION_PTR(rule);
1344 if (cmd->opcode != old_cmd->opcode ||
1345 cmd->len != old_cmd->len || cmd->arg1 != old_cmd->arg1 ||
1346 insntoc(cmd, u32)->d[0] != insntoc(old_cmd, u32)->d[0])
1347 return (-1);
1348 break;
1349 }
1350 return (0);
1351 }
1352
1353 /*
1354 * Lookup dynamic state.
1355 * pkt - filled by ipfw_chk() ipfw_flow_id;
1356 * ulp - determined by ipfw_chk() upper level protocol header;
1357 * dyn_info - info about matched state to return back;
1358 * Returns pointer to state's parent rule and dyn_info. If there is
1359 * no state, NULL is returned.
1360 * On match ipfw_dyn_lookup() updates state's counters.
1361 */
1362 struct ip_fw *
ipfw_dyn_lookup_state(const struct ip_fw_args * args,const void * ulp,int pktlen,const ipfw_insn * cmd,struct ipfw_dyn_info * info)1363 ipfw_dyn_lookup_state(const struct ip_fw_args *args, const void *ulp,
1364 int pktlen, const ipfw_insn *cmd, struct ipfw_dyn_info *info)
1365 {
1366 struct dyn_data *data;
1367 struct ip_fw *rule;
1368
1369 IPFW_RLOCK_ASSERT(&V_layer3_chain);
1370 MPASS(F_LEN(cmd) >= F_INSN_SIZE(ipfw_insn_kidx));
1371
1372 data = NULL;
1373 rule = NULL;
1374 info->kidx = insntoc(cmd, kidx)->kidx;
1375 info->direction = MATCH_NONE;
1376 info->hashval = hash_packet(&args->f_id);
1377
1378 DYNSTATE_CRITICAL_ENTER();
1379 if (IS_IP4_FLOW_ID(&args->f_id)) {
1380 struct dyn_ipv4_state *s;
1381
1382 s = dyn_lookup_ipv4_state(&args->f_id, ulp, info, pktlen);
1383 if (s != NULL) {
1384 /*
1385 * Dynamic states are created using the same 5-tuple,
1386 * so it is assumed, that parent rule for O_LIMIT
1387 * state has the same address family.
1388 */
1389 data = s->data;
1390 if (s->type == O_LIMIT) {
1391 s = data->parent;
1392 rule = s->limit->parent;
1393 } else
1394 rule = data->parent;
1395 }
1396 }
1397 #ifdef INET6
1398 else if (IS_IP6_FLOW_ID(&args->f_id)) {
1399 struct dyn_ipv6_state *s;
1400
1401 s = dyn_lookup_ipv6_state(&args->f_id, dyn_getscopeid(args),
1402 ulp, info, pktlen);
1403 if (s != NULL) {
1404 data = s->data;
1405 if (s->type == O_LIMIT) {
1406 s = data->parent;
1407 rule = s->limit->parent;
1408 } else
1409 rule = data->parent;
1410 }
1411 }
1412 #endif
1413 if (data != NULL) {
1414 /*
1415 * If cached chain id is the same, we can avoid rule index
1416 * lookup. Otherwise do lookup and update chain_id and f_pos.
1417 * It is safe even if there is concurrent thread that want
1418 * update the same state, because chain->id can be changed
1419 * only under IPFW_WLOCK().
1420 */
1421 if (data->chain_id != V_layer3_chain.id) {
1422 data->f_pos = ipfw_find_rule(&V_layer3_chain,
1423 data->rulenum, data->ruleid);
1424 /*
1425 * Check that found state has not orphaned.
1426 * When chain->id being changed the parent
1427 * rule can be deleted. If found rule doesn't
1428 * match the parent pointer, consider this
1429 * result as MATCH_NONE and return NULL.
1430 *
1431 * This will lead to creation of new similar state
1432 * that will be added into head of this bucket.
1433 * And the state that we currently have matched
1434 * should be deleted by dyn_expire_states().
1435 *
1436 * In case when dyn_keep_states is enabled, return
1437 * pointer to deleted rule and f_pos value
1438 * corresponding to penultimate rule.
1439 * When we have enabled V_dyn_keep_states, states
1440 * that become orphaned will get the DYN_REFERENCED
1441 * flag and rule will keep around. So we can return
1442 * it. But since it is not in the rules map, we need
1443 * return such f_pos value, so after the state
1444 * handling if the search will continue, the next rule
1445 * will be the last one - the default rule.
1446 */
1447 if (V_layer3_chain.map[data->f_pos] == rule) {
1448 data->chain_id = V_layer3_chain.id;
1449 } else if (V_dyn_keep_states != 0) {
1450 /*
1451 * The original rule pointer is still usable.
1452 * So, we return it, but f_pos need to be
1453 * changed to point to the penultimate rule.
1454 */
1455 MPASS(V_layer3_chain.n_rules > 1);
1456 if (dyn_handle_orphaned(rule, data) == 0) {
1457 data->chain_id = V_layer3_chain.id;
1458 data->f_pos = V_layer3_chain.n_rules - 2;
1459 } else {
1460 rule = NULL;
1461 info->direction = MATCH_NONE;
1462 }
1463 } else {
1464 rule = NULL;
1465 info->direction = MATCH_NONE;
1466 DYN_DEBUG("rule %p [%u, %u] is considered "
1467 "invalid in data %p", rule, data->ruleid,
1468 data->rulenum, data);
1469 /* info->f_pos doesn't matter here. */
1470 }
1471 }
1472 info->f_pos = data->f_pos;
1473 }
1474 DYNSTATE_CRITICAL_EXIT();
1475 #if 0
1476 /*
1477 * Return MATCH_NONE if parent rule is in disabled set.
1478 * This will lead to creation of new similar state that
1479 * will be added into head of this bucket.
1480 *
1481 * XXXAE: we need to be able update state's set when parent
1482 * rule set is changed.
1483 */
1484 if (rule != NULL && (V_set_disable & (1 << rule->set))) {
1485 rule = NULL;
1486 info->direction = MATCH_NONE;
1487 }
1488 #endif
1489 return (rule);
1490 }
1491
1492 static struct dyn_parent *
dyn_alloc_parent(void * parent,uint32_t ruleid,uint32_t rulenum,uint32_t hashval)1493 dyn_alloc_parent(void *parent, uint32_t ruleid, uint32_t rulenum,
1494 uint32_t hashval)
1495 {
1496 struct dyn_parent *limit;
1497
1498 limit = uma_zalloc(V_dyn_parent_zone, M_NOWAIT | M_ZERO);
1499 if (limit == NULL) {
1500 if (last_log != time_uptime) {
1501 last_log = time_uptime;
1502 log(LOG_DEBUG,
1503 "ipfw: Cannot allocate parent dynamic state, "
1504 "consider increasing "
1505 "net.inet.ip.fw.dyn_parent_max\n");
1506 }
1507 return (NULL);
1508 }
1509
1510 limit->parent = parent;
1511 limit->ruleid = ruleid;
1512 limit->rulenum = rulenum;
1513 limit->hashval = hashval;
1514 limit->expire = time_uptime + V_dyn_short_lifetime;
1515 return (limit);
1516 }
1517
1518 static struct dyn_data *
dyn_alloc_dyndata(void * parent,uint32_t ruleid,uint32_t rulenum,const struct ipfw_flow_id * pkt,const void * ulp,int pktlen,uint32_t hashval,uint16_t fibnum)1519 dyn_alloc_dyndata(void *parent, uint32_t ruleid, uint32_t rulenum,
1520 const struct ipfw_flow_id *pkt, const void *ulp, int pktlen,
1521 uint32_t hashval, uint16_t fibnum)
1522 {
1523 struct dyn_data *data;
1524
1525 data = uma_zalloc(V_dyn_data_zone, M_NOWAIT | M_ZERO);
1526 if (data == NULL) {
1527 if (last_log != time_uptime) {
1528 last_log = time_uptime;
1529 log(LOG_DEBUG,
1530 "ipfw: Cannot allocate dynamic state, "
1531 "consider increasing net.inet.ip.fw.dyn_max\n");
1532 }
1533 return (NULL);
1534 }
1535
1536 data->parent = parent;
1537 data->ruleid = ruleid;
1538 data->rulenum = rulenum;
1539 data->fibnum = fibnum;
1540 data->hashval = hashval;
1541 data->expire = time_uptime + V_dyn_syn_lifetime;
1542 dyn_update_proto_state(data, pkt, ulp, pktlen, MATCH_FORWARD);
1543 return (data);
1544 }
1545
1546 static struct dyn_ipv4_state *
dyn_alloc_ipv4_state(const struct ipfw_flow_id * pkt,uint32_t kidx,uint8_t type)1547 dyn_alloc_ipv4_state(const struct ipfw_flow_id *pkt, uint32_t kidx,
1548 uint8_t type)
1549 {
1550 struct dyn_ipv4_state *s;
1551
1552 s = uma_zalloc(V_dyn_ipv4_zone, M_NOWAIT | M_ZERO);
1553 if (s == NULL)
1554 return (NULL);
1555
1556 s->type = type;
1557 s->kidx = kidx;
1558 s->proto = pkt->proto;
1559 s->sport = pkt->src_port;
1560 s->dport = pkt->dst_port;
1561 s->src = pkt->src_ip;
1562 s->dst = pkt->dst_ip;
1563 return (s);
1564 }
1565
1566 /*
1567 * Add IPv4 parent state.
1568 * Returns pointer to parent state. When it is not NULL we are in
1569 * critical section and pointer protected by hazard pointer.
1570 * When some error occurs, it returns NULL and exit from critical section
1571 * is not needed.
1572 */
1573 static struct dyn_ipv4_state *
dyn_add_ipv4_parent(void * rule,uint32_t ruleid,uint32_t rulenum,const struct ipfw_flow_id * pkt,uint32_t hashval,uint32_t version,uint32_t kidx)1574 dyn_add_ipv4_parent(void *rule, uint32_t ruleid, uint32_t rulenum,
1575 const struct ipfw_flow_id *pkt, uint32_t hashval, uint32_t version,
1576 uint32_t kidx)
1577 {
1578 struct dyn_ipv4_state *s;
1579 struct dyn_parent *limit;
1580 uint32_t bucket;
1581
1582 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1583 DYN_BUCKET_LOCK(bucket);
1584 if (version != DYN_BUCKET_VERSION(bucket, ipv4_parent_add)) {
1585 /*
1586 * Bucket version has been changed since last lookup,
1587 * do lookup again to be sure that state does not exist.
1588 */
1589 s = dyn_lookup_ipv4_parent_locked(pkt, rule, ruleid,
1590 rulenum, bucket);
1591 if (s != NULL) {
1592 /*
1593 * Simultaneous thread has already created this
1594 * state. Just return it.
1595 */
1596 DYNSTATE_CRITICAL_ENTER();
1597 DYNSTATE_PROTECT(s);
1598 DYN_BUCKET_UNLOCK(bucket);
1599 return (s);
1600 }
1601 }
1602
1603 limit = dyn_alloc_parent(rule, ruleid, rulenum, hashval);
1604 if (limit == NULL) {
1605 DYN_BUCKET_UNLOCK(bucket);
1606 return (NULL);
1607 }
1608
1609 s = dyn_alloc_ipv4_state(pkt, kidx, O_LIMIT_PARENT);
1610 if (s == NULL) {
1611 DYN_BUCKET_UNLOCK(bucket);
1612 uma_zfree(V_dyn_parent_zone, limit);
1613 return (NULL);
1614 }
1615
1616 s->limit = limit;
1617 CK_SLIST_INSERT_HEAD(&V_dyn_ipv4_parent[bucket], s, entry);
1618 DYN_COUNT_INC(dyn_parent_count);
1619 DYN_BUCKET_VERSION_BUMP(bucket, ipv4_parent_add);
1620 DYNSTATE_CRITICAL_ENTER();
1621 DYNSTATE_PROTECT(s);
1622 DYN_BUCKET_UNLOCK(bucket);
1623 return (s);
1624 }
1625
1626 static int
dyn_add_ipv4_state(void * parent,uint32_t ruleid,uint32_t rulenum,const struct ipfw_flow_id * pkt,const void * ulp,int pktlen,uint32_t hashval,struct ipfw_dyn_info * info,uint16_t fibnum,uint32_t kidx,uint8_t type)1627 dyn_add_ipv4_state(void *parent, uint32_t ruleid, uint32_t rulenum,
1628 const struct ipfw_flow_id *pkt, const void *ulp, int pktlen,
1629 uint32_t hashval, struct ipfw_dyn_info *info, uint16_t fibnum,
1630 uint32_t kidx, uint8_t type)
1631 {
1632 struct dyn_ipv4_state *s;
1633 void *data;
1634 uint32_t bucket;
1635
1636 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1637 DYN_BUCKET_LOCK(bucket);
1638 if (info->direction == MATCH_UNKNOWN ||
1639 info->kidx != kidx ||
1640 info->hashval != hashval ||
1641 info->version != DYN_BUCKET_VERSION(bucket, ipv4_add)) {
1642 /*
1643 * Bucket version has been changed since last lookup,
1644 * do lookup again to be sure that state does not exist.
1645 */
1646 if (dyn_lookup_ipv4_state_locked(pkt, ulp, pktlen,
1647 bucket, kidx) != 0) {
1648 DYN_BUCKET_UNLOCK(bucket);
1649 return (EEXIST);
1650 }
1651 }
1652
1653 data = dyn_alloc_dyndata(parent, ruleid, rulenum, pkt, ulp,
1654 pktlen, hashval, fibnum);
1655 if (data == NULL) {
1656 DYN_BUCKET_UNLOCK(bucket);
1657 return (ENOMEM);
1658 }
1659
1660 s = dyn_alloc_ipv4_state(pkt, kidx, type);
1661 if (s == NULL) {
1662 DYN_BUCKET_UNLOCK(bucket);
1663 uma_zfree(V_dyn_data_zone, data);
1664 return (ENOMEM);
1665 }
1666
1667 s->data = data;
1668 CK_SLIST_INSERT_HEAD(&V_dyn_ipv4[bucket], s, entry);
1669 DYN_COUNT_INC(dyn_count);
1670 DYN_BUCKET_VERSION_BUMP(bucket, ipv4_add);
1671 DYN_BUCKET_UNLOCK(bucket);
1672 return (0);
1673 }
1674
1675 #ifdef INET6
1676 static struct dyn_ipv6_state *
dyn_alloc_ipv6_state(const struct ipfw_flow_id * pkt,uint32_t zoneid,uint32_t kidx,uint8_t type)1677 dyn_alloc_ipv6_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1678 uint32_t kidx, uint8_t type)
1679 {
1680 struct dyn_ipv6_state *s;
1681
1682 s = uma_zalloc(V_dyn_ipv6_zone, M_NOWAIT | M_ZERO);
1683 if (s == NULL)
1684 return (NULL);
1685
1686 s->type = type;
1687 s->kidx = kidx;
1688 s->zoneid = zoneid;
1689 s->proto = pkt->proto;
1690 s->sport = pkt->src_port;
1691 s->dport = pkt->dst_port;
1692 s->src = pkt->src_ip6;
1693 s->dst = pkt->dst_ip6;
1694 return (s);
1695 }
1696
1697 /*
1698 * Add IPv6 parent state.
1699 * Returns pointer to parent state. When it is not NULL we are in
1700 * critical section and pointer protected by hazard pointer.
1701 * When some error occurs, it return NULL and exit from critical section
1702 * is not needed.
1703 */
1704 static struct dyn_ipv6_state *
dyn_add_ipv6_parent(void * rule,uint32_t ruleid,uint32_t rulenum,const struct ipfw_flow_id * pkt,uint32_t zoneid,uint32_t hashval,uint32_t version,uint32_t kidx)1705 dyn_add_ipv6_parent(void *rule, uint32_t ruleid, uint32_t rulenum,
1706 const struct ipfw_flow_id *pkt, uint32_t zoneid, uint32_t hashval,
1707 uint32_t version, uint32_t kidx)
1708 {
1709 struct dyn_ipv6_state *s;
1710 struct dyn_parent *limit;
1711 uint32_t bucket;
1712
1713 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1714 DYN_BUCKET_LOCK(bucket);
1715 if (version != DYN_BUCKET_VERSION(bucket, ipv6_parent_add)) {
1716 /*
1717 * Bucket version has been changed since last lookup,
1718 * do lookup again to be sure that state does not exist.
1719 */
1720 s = dyn_lookup_ipv6_parent_locked(pkt, zoneid, rule, ruleid,
1721 rulenum, bucket);
1722 if (s != NULL) {
1723 /*
1724 * Simultaneous thread has already created this
1725 * state. Just return it.
1726 */
1727 DYNSTATE_CRITICAL_ENTER();
1728 DYNSTATE_PROTECT(s);
1729 DYN_BUCKET_UNLOCK(bucket);
1730 return (s);
1731 }
1732 }
1733
1734 limit = dyn_alloc_parent(rule, ruleid, rulenum, hashval);
1735 if (limit == NULL) {
1736 DYN_BUCKET_UNLOCK(bucket);
1737 return (NULL);
1738 }
1739
1740 s = dyn_alloc_ipv6_state(pkt, zoneid, kidx, O_LIMIT_PARENT);
1741 if (s == NULL) {
1742 DYN_BUCKET_UNLOCK(bucket);
1743 uma_zfree(V_dyn_parent_zone, limit);
1744 return (NULL);
1745 }
1746
1747 s->limit = limit;
1748 CK_SLIST_INSERT_HEAD(&V_dyn_ipv6_parent[bucket], s, entry);
1749 DYN_COUNT_INC(dyn_parent_count);
1750 DYN_BUCKET_VERSION_BUMP(bucket, ipv6_parent_add);
1751 DYNSTATE_CRITICAL_ENTER();
1752 DYNSTATE_PROTECT(s);
1753 DYN_BUCKET_UNLOCK(bucket);
1754 return (s);
1755 }
1756
1757 static int
dyn_add_ipv6_state(void * parent,uint32_t ruleid,uint32_t rulenum,const struct ipfw_flow_id * pkt,uint32_t zoneid,const void * ulp,int pktlen,uint32_t hashval,struct ipfw_dyn_info * info,uint16_t fibnum,uint32_t kidx,uint8_t type)1758 dyn_add_ipv6_state(void *parent, uint32_t ruleid, uint32_t rulenum,
1759 const struct ipfw_flow_id *pkt, uint32_t zoneid, const void *ulp,
1760 int pktlen, uint32_t hashval, struct ipfw_dyn_info *info,
1761 uint16_t fibnum, uint32_t kidx, uint8_t type)
1762 {
1763 struct dyn_ipv6_state *s;
1764 struct dyn_data *data;
1765 uint32_t bucket;
1766
1767 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1768 DYN_BUCKET_LOCK(bucket);
1769 if (info->direction == MATCH_UNKNOWN ||
1770 info->kidx != kidx ||
1771 info->hashval != hashval ||
1772 info->version != DYN_BUCKET_VERSION(bucket, ipv6_add)) {
1773 /*
1774 * Bucket version has been changed since last lookup,
1775 * do lookup again to be sure that state does not exist.
1776 */
1777 if (dyn_lookup_ipv6_state_locked(pkt, zoneid, ulp, pktlen,
1778 bucket, kidx) != 0) {
1779 DYN_BUCKET_UNLOCK(bucket);
1780 return (EEXIST);
1781 }
1782 }
1783
1784 data = dyn_alloc_dyndata(parent, ruleid, rulenum, pkt, ulp,
1785 pktlen, hashval, fibnum);
1786 if (data == NULL) {
1787 DYN_BUCKET_UNLOCK(bucket);
1788 return (ENOMEM);
1789 }
1790
1791 s = dyn_alloc_ipv6_state(pkt, zoneid, kidx, type);
1792 if (s == NULL) {
1793 DYN_BUCKET_UNLOCK(bucket);
1794 uma_zfree(V_dyn_data_zone, data);
1795 return (ENOMEM);
1796 }
1797
1798 s->data = data;
1799 CK_SLIST_INSERT_HEAD(&V_dyn_ipv6[bucket], s, entry);
1800 DYN_COUNT_INC(dyn_count);
1801 DYN_BUCKET_VERSION_BUMP(bucket, ipv6_add);
1802 DYN_BUCKET_UNLOCK(bucket);
1803 return (0);
1804 }
1805 #endif /* INET6 */
1806
1807 static void *
dyn_get_parent_state(const struct ipfw_flow_id * pkt,uint32_t zoneid,struct ip_fw * rule,uint32_t hashval,uint32_t limit,uint32_t kidx)1808 dyn_get_parent_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1809 struct ip_fw *rule, uint32_t hashval, uint32_t limit, uint32_t kidx)
1810 {
1811 char sbuf[24];
1812 struct dyn_parent *p;
1813 void *ret;
1814 uint32_t bucket, version;
1815
1816 p = NULL;
1817 ret = NULL;
1818 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1819 DYNSTATE_CRITICAL_ENTER();
1820 if (IS_IP4_FLOW_ID(pkt)) {
1821 struct dyn_ipv4_state *s;
1822
1823 version = DYN_BUCKET_VERSION(bucket, ipv4_parent_add);
1824 s = dyn_lookup_ipv4_parent(pkt, rule, rule->id,
1825 rule->rulenum, bucket);
1826 if (s == NULL) {
1827 /*
1828 * Exit from critical section because dyn_add_parent()
1829 * will acquire bucket lock.
1830 */
1831 DYNSTATE_CRITICAL_EXIT();
1832
1833 s = dyn_add_ipv4_parent(rule, rule->id,
1834 rule->rulenum, pkt, hashval, version, kidx);
1835 if (s == NULL)
1836 return (NULL);
1837 /* Now we are in critical section again. */
1838 }
1839 ret = s;
1840 p = s->limit;
1841 }
1842 #ifdef INET6
1843 else if (IS_IP6_FLOW_ID(pkt)) {
1844 struct dyn_ipv6_state *s;
1845
1846 version = DYN_BUCKET_VERSION(bucket, ipv6_parent_add);
1847 s = dyn_lookup_ipv6_parent(pkt, zoneid, rule, rule->id,
1848 rule->rulenum, bucket);
1849 if (s == NULL) {
1850 /*
1851 * Exit from critical section because dyn_add_parent()
1852 * can acquire bucket mutex.
1853 */
1854 DYNSTATE_CRITICAL_EXIT();
1855
1856 s = dyn_add_ipv6_parent(rule, rule->id,
1857 rule->rulenum, pkt, zoneid, hashval, version,
1858 kidx);
1859 if (s == NULL)
1860 return (NULL);
1861 /* Now we are in critical section again. */
1862 }
1863 ret = s;
1864 p = s->limit;
1865 }
1866 #endif
1867 else {
1868 DYNSTATE_CRITICAL_EXIT();
1869 return (NULL);
1870 }
1871
1872 /* Check the limit */
1873 if (DPARENT_COUNT(p) >= limit) {
1874 DYNSTATE_CRITICAL_EXIT();
1875 if (V_fw_verbose && last_log != time_uptime) {
1876 last_log = time_uptime;
1877 snprintf(sbuf, sizeof(sbuf), "%u drop session",
1878 rule->rulenum);
1879 print_dyn_rule_flags(pkt, O_LIMIT,
1880 LOG_SECURITY | LOG_DEBUG, sbuf,
1881 "too many entries");
1882 }
1883 return (NULL);
1884 }
1885
1886 /* Take new session into account. */
1887 DPARENT_COUNT_INC(p);
1888 /*
1889 * We must exit from critical section because the following code
1890 * can acquire bucket mutex.
1891 * We rely on the 'count' field. The state will not expire
1892 * until it has some child states, i.e. 'count' field is not zero.
1893 * Return state pointer, it will be used by child states as parent.
1894 */
1895 DYNSTATE_CRITICAL_EXIT();
1896 return (ret);
1897 }
1898
1899 static int
dyn_install_state(const struct ipfw_flow_id * pkt,uint32_t zoneid,uint16_t fibnum,const void * ulp,int pktlen,struct ip_fw * rule,struct ipfw_dyn_info * info,uint32_t limit,uint16_t limit_mask,uint32_t kidx,uint8_t type)1900 dyn_install_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1901 uint16_t fibnum, const void *ulp, int pktlen, struct ip_fw *rule,
1902 struct ipfw_dyn_info *info, uint32_t limit, uint16_t limit_mask,
1903 uint32_t kidx, uint8_t type)
1904 {
1905 struct ipfw_flow_id id;
1906 uint32_t hashval, parent_hashval, ruleid, rulenum;
1907 int ret;
1908
1909 MPASS(type == O_LIMIT || type == O_KEEP_STATE);
1910
1911 ruleid = rule->id;
1912 rulenum = rule->rulenum;
1913 if (type == O_LIMIT) {
1914 /* Create masked flow id and calculate bucket */
1915 id.addr_type = pkt->addr_type;
1916 id.proto = pkt->proto;
1917 id.fib = fibnum; /* unused */
1918 id.src_port = (limit_mask & DYN_SRC_PORT) ?
1919 pkt->src_port: 0;
1920 id.dst_port = (limit_mask & DYN_DST_PORT) ?
1921 pkt->dst_port: 0;
1922 if (IS_IP4_FLOW_ID(pkt)) {
1923 id.src_ip = (limit_mask & DYN_SRC_ADDR) ?
1924 pkt->src_ip: 0;
1925 id.dst_ip = (limit_mask & DYN_DST_ADDR) ?
1926 pkt->dst_ip: 0;
1927 }
1928 #ifdef INET6
1929 else if (IS_IP6_FLOW_ID(pkt)) {
1930 if (limit_mask & DYN_SRC_ADDR)
1931 id.src_ip6 = pkt->src_ip6;
1932 else
1933 memset(&id.src_ip6, 0, sizeof(id.src_ip6));
1934 if (limit_mask & DYN_DST_ADDR)
1935 id.dst_ip6 = pkt->dst_ip6;
1936 else
1937 memset(&id.dst_ip6, 0, sizeof(id.dst_ip6));
1938 }
1939 #endif
1940 else
1941 return (EAFNOSUPPORT);
1942
1943 parent_hashval = hash_parent(&id, rule);
1944 rule = dyn_get_parent_state(&id, zoneid, rule, parent_hashval,
1945 limit, kidx);
1946 if (rule == NULL) {
1947 #if 0
1948 if (V_fw_verbose && last_log != time_uptime) {
1949 last_log = time_uptime;
1950 snprintf(sbuf, sizeof(sbuf),
1951 "%u drop session", rule->rulenum);
1952 print_dyn_rule_flags(pkt, O_LIMIT,
1953 LOG_SECURITY | LOG_DEBUG, sbuf,
1954 "too many entries");
1955 }
1956 #endif
1957 return (EACCES);
1958 }
1959 /*
1960 * Limit is not reached, create new state.
1961 * Now rule points to parent state.
1962 */
1963 }
1964
1965 hashval = hash_packet(pkt);
1966 if (IS_IP4_FLOW_ID(pkt))
1967 ret = dyn_add_ipv4_state(rule, ruleid, rulenum, pkt,
1968 ulp, pktlen, hashval, info, fibnum, kidx, type);
1969 #ifdef INET6
1970 else if (IS_IP6_FLOW_ID(pkt))
1971 ret = dyn_add_ipv6_state(rule, ruleid, rulenum, pkt,
1972 zoneid, ulp, pktlen, hashval, info, fibnum, kidx, type);
1973 #endif /* INET6 */
1974 else
1975 ret = EAFNOSUPPORT;
1976
1977 if (type == O_LIMIT) {
1978 if (ret != 0) {
1979 /*
1980 * We failed to create child state for O_LIMIT
1981 * opcode. Since we already counted it in the parent,
1982 * we must revert counter back. The 'rule' points to
1983 * parent state, use it to get dyn_parent.
1984 *
1985 * XXXAE: it should be safe to use 'rule' pointer
1986 * without extra lookup, parent state is referenced
1987 * and should not be freed.
1988 */
1989 if (IS_IP4_FLOW_ID(&id))
1990 DPARENT_COUNT_DEC(
1991 ((struct dyn_ipv4_state *)rule)->limit);
1992 #ifdef INET6
1993 else if (IS_IP6_FLOW_ID(&id))
1994 DPARENT_COUNT_DEC(
1995 ((struct dyn_ipv6_state *)rule)->limit);
1996 #endif
1997 }
1998 }
1999 /*
2000 * EEXIST means that simultaneous thread has created this
2001 * state. Consider this as success.
2002 *
2003 * XXXAE: should we invalidate 'info' content here?
2004 */
2005 if (ret == EEXIST)
2006 return (0);
2007 return (ret);
2008 }
2009
2010 /*
2011 * Install dynamic state.
2012 * chain - ipfw's instance;
2013 * rule - the parent rule that installs the state;
2014 * cmd - opcode that installs the state;
2015 * args - ipfw arguments;
2016 * ulp - upper level protocol header;
2017 * pktlen - packet length;
2018 * info - dynamic state lookup info;
2019 * tablearg - tablearg id.
2020 *
2021 * Returns non-zero value (failure) if state is not installed because
2022 * of errors or because session limitations are enforced.
2023 */
2024 int
ipfw_dyn_install_state(struct ip_fw_chain * chain,struct ip_fw * rule,const ipfw_insn_limit * cmd,const struct ip_fw_args * args,const void * ulp,int pktlen,struct ipfw_dyn_info * info,uint32_t tablearg)2025 ipfw_dyn_install_state(struct ip_fw_chain *chain, struct ip_fw *rule,
2026 const ipfw_insn_limit *cmd, const struct ip_fw_args *args,
2027 const void *ulp, int pktlen, struct ipfw_dyn_info *info,
2028 uint32_t tablearg)
2029 {
2030 uint32_t limit;
2031 uint16_t limit_mask;
2032
2033 if (cmd->o.opcode == O_LIMIT) {
2034 limit = IP_FW_ARG_TABLEARG(chain, cmd->conn_limit, limit);
2035 limit_mask = cmd->limit_mask;
2036 } else {
2037 limit = 0;
2038 limit_mask = 0;
2039 }
2040 /*
2041 * NOTE: we assume that kidx field of struct ipfw_insn_kidx
2042 * located in the same place as kidx field of ipfw_insn_limit.
2043 */
2044 return (dyn_install_state(&args->f_id,
2045 #ifdef INET6
2046 IS_IP6_FLOW_ID(&args->f_id) ? dyn_getscopeid(args):
2047 #endif
2048 0, M_GETFIB(args->m), ulp, pktlen, rule, info, limit,
2049 limit_mask, cmd->kidx, cmd->o.opcode));
2050 }
2051
2052 /*
2053 * Free safe to remove state entries from expired lists.
2054 */
2055 static void
dyn_free_states(struct ip_fw_chain * chain)2056 dyn_free_states(struct ip_fw_chain *chain)
2057 {
2058 struct dyn_ipv4_state *s4, *s4n;
2059 #ifdef INET6
2060 struct dyn_ipv6_state *s6, *s6n;
2061 #endif
2062 int cached_count, i;
2063
2064 /*
2065 * We keep pointers to objects that are in use on each CPU
2066 * in the per-cpu dyn_hp pointer. When object is going to be
2067 * removed, first of it is unlinked from the corresponding
2068 * list. This leads to changing of dyn_bucket_xxx_delver version.
2069 * Unlinked objects is placed into corresponding dyn_expired_xxx
2070 * list. Reader that is going to dereference object pointer checks
2071 * dyn_bucket_xxx_delver version before and after storing pointer
2072 * into dyn_hp. If version is the same, the object is protected
2073 * from freeing and it is safe to dereference. Othervise reader
2074 * tries to iterate list again from the beginning, but this object
2075 * now unlinked and thus will not be accessible.
2076 *
2077 * Copy dyn_hp pointers for each CPU into dyn_hp_cache array.
2078 * It does not matter that some pointer can be changed in
2079 * time while we are copying. We need to check, that objects
2080 * removed in the previous pass are not in use. And if dyn_hp
2081 * pointer does not contain it in the time when we are copying,
2082 * it will not appear there, because it is already unlinked.
2083 * And for new pointers we will not free objects that will be
2084 * unlinked in this pass.
2085 */
2086 cached_count = 0;
2087 CPU_FOREACH(i) {
2088 dyn_hp_cache[cached_count] = DYNSTATE_GET(i);
2089 if (dyn_hp_cache[cached_count] != NULL)
2090 cached_count++;
2091 }
2092
2093 /*
2094 * Free expired states that are safe to free.
2095 * Check each entry from previous pass in the dyn_expired_xxx
2096 * list, if pointer to the object is in the dyn_hp_cache array,
2097 * keep it until next pass. Otherwise it is safe to free the
2098 * object.
2099 *
2100 * XXXAE: optimize this to use SLIST_REMOVE_AFTER.
2101 */
2102 #define DYN_FREE_STATES(s, next, name) do { \
2103 s = SLIST_FIRST(&V_dyn_expired_ ## name); \
2104 while (s != NULL) { \
2105 next = SLIST_NEXT(s, expired); \
2106 for (i = 0; i < cached_count; i++) \
2107 if (dyn_hp_cache[i] == s) \
2108 break; \
2109 if (i == cached_count) { \
2110 if (s->type == O_LIMIT_PARENT && \
2111 s->limit->count != 0) { \
2112 s = next; \
2113 continue; \
2114 } \
2115 SLIST_REMOVE(&V_dyn_expired_ ## name, \
2116 s, dyn_ ## name ## _state, expired); \
2117 if (s->type == O_LIMIT_PARENT) \
2118 uma_zfree(V_dyn_parent_zone, s->limit); \
2119 else \
2120 uma_zfree(V_dyn_data_zone, s->data); \
2121 uma_zfree(V_dyn_ ## name ## _zone, s); \
2122 } \
2123 s = next; \
2124 } \
2125 } while (0)
2126
2127 /*
2128 * Protect access to expired lists with DYN_EXPIRED_LOCK.
2129 * Userland can invoke ipfw_expire_dyn_states() to delete
2130 * specific states, this will lead to modification of expired
2131 * lists.
2132 *
2133 * XXXAE: do we need DYN_EXPIRED_LOCK? We can just use
2134 * IPFW_UH_WLOCK to protect access to these lists.
2135 */
2136 DYN_EXPIRED_LOCK();
2137 DYN_FREE_STATES(s4, s4n, ipv4);
2138 #ifdef INET6
2139 DYN_FREE_STATES(s6, s6n, ipv6);
2140 #endif
2141 DYN_EXPIRED_UNLOCK();
2142 #undef DYN_FREE_STATES
2143 }
2144
2145 /*
2146 * Returns:
2147 * 0 when state is not matched by specified range;
2148 * 1 when state is matched by specified range;
2149 * 2 when state is matched by specified range and requested deletion of
2150 * dynamic states.
2151 */
2152 static int
dyn_match_range(uint32_t rulenum,uint8_t set,const ipfw_range_tlv * rt)2153 dyn_match_range(uint32_t rulenum, uint8_t set, const ipfw_range_tlv *rt)
2154 {
2155
2156 MPASS(rt != NULL);
2157 /* flush all states */
2158 if (rt->flags & IPFW_RCFLAG_ALL) {
2159 if (rt->flags & IPFW_RCFLAG_DYNAMIC)
2160 return (2); /* forced */
2161 return (1);
2162 }
2163 if ((rt->flags & IPFW_RCFLAG_SET) != 0 && set != rt->set)
2164 return (0);
2165 if ((rt->flags & IPFW_RCFLAG_RANGE) != 0 &&
2166 (rulenum < rt->start_rule || rulenum > rt->end_rule))
2167 return (0);
2168 if (rt->flags & IPFW_RCFLAG_DYNAMIC)
2169 return (2);
2170 return (1);
2171 }
2172
2173 static void
dyn_acquire_rule(struct ip_fw_chain * ch,struct dyn_data * data,struct ip_fw * rule,uint32_t kidx)2174 dyn_acquire_rule(struct ip_fw_chain *ch, struct dyn_data *data,
2175 struct ip_fw *rule, uint32_t kidx)
2176 {
2177 struct dyn_state_obj *obj;
2178
2179 /*
2180 * Do not acquire reference twice.
2181 * This can happen when rule deletion executed for
2182 * the same range, but different ruleset id.
2183 */
2184 if (data->flags & DYN_REFERENCED)
2185 return;
2186
2187 IPFW_UH_WLOCK_ASSERT(ch);
2188 MPASS(kidx != 0);
2189
2190 data->flags |= DYN_REFERENCED;
2191 /* Reference the named object */
2192 obj = SRV_OBJECT(ch, kidx);
2193 obj->no.refcnt++;
2194 MPASS(obj->no.etlv == IPFW_TLV_STATE_NAME);
2195
2196 /* Reference the parent rule */
2197 rule->refcnt++;
2198 }
2199
2200 static void
dyn_release_rule(struct ip_fw_chain * ch,struct dyn_data * data,struct ip_fw * rule,uint32_t kidx)2201 dyn_release_rule(struct ip_fw_chain *ch, struct dyn_data *data,
2202 struct ip_fw *rule, uint32_t kidx)
2203 {
2204 struct dyn_state_obj *obj;
2205
2206 IPFW_UH_WLOCK_ASSERT(ch);
2207 MPASS(kidx != 0);
2208
2209 obj = SRV_OBJECT(ch, kidx);
2210 if (obj->no.refcnt == 1)
2211 dyn_destroy(ch, &obj->no);
2212 else
2213 obj->no.refcnt--;
2214
2215 if (--rule->refcnt == 1)
2216 ipfw_free_rule(rule);
2217 }
2218
2219 /*
2220 * We do not keep O_LIMIT_PARENT states when V_dyn_keep_states is enabled.
2221 * O_LIMIT state is created when new connection is going to be established
2222 * and there is no matching state. So, since the old parent rule was deleted
2223 * we can't create new states with old parent, and thus we can not account
2224 * new connections with already established connections, and can not do
2225 * proper limiting.
2226 */
2227 static int
dyn_match_ipv4_state(struct ip_fw_chain * ch,struct dyn_ipv4_state * s,const ipfw_range_tlv * rt)2228 dyn_match_ipv4_state(struct ip_fw_chain *ch, struct dyn_ipv4_state *s,
2229 const ipfw_range_tlv *rt)
2230 {
2231 struct ip_fw *rule;
2232 int ret;
2233
2234 if (s->type == O_LIMIT_PARENT) {
2235 rule = s->limit->parent;
2236 return (dyn_match_range(s->limit->rulenum, rule->set, rt));
2237 }
2238
2239 rule = s->data->parent;
2240 if (s->type == O_LIMIT)
2241 rule = ((struct dyn_ipv4_state *)rule)->limit->parent;
2242
2243 ret = dyn_match_range(s->data->rulenum, rule->set, rt);
2244 if (ret == 0 || V_dyn_keep_states == 0 || ret > 1)
2245 return (ret);
2246
2247 dyn_acquire_rule(ch, s->data, rule, s->kidx);
2248 return (0);
2249 }
2250
2251 #ifdef INET6
2252 static int
dyn_match_ipv6_state(struct ip_fw_chain * ch,struct dyn_ipv6_state * s,const ipfw_range_tlv * rt)2253 dyn_match_ipv6_state(struct ip_fw_chain *ch, struct dyn_ipv6_state *s,
2254 const ipfw_range_tlv *rt)
2255 {
2256 struct ip_fw *rule;
2257 int ret;
2258
2259 if (s->type == O_LIMIT_PARENT) {
2260 rule = s->limit->parent;
2261 return (dyn_match_range(s->limit->rulenum, rule->set, rt));
2262 }
2263
2264 rule = s->data->parent;
2265 if (s->type == O_LIMIT)
2266 rule = ((struct dyn_ipv6_state *)rule)->limit->parent;
2267
2268 ret = dyn_match_range(s->data->rulenum, rule->set, rt);
2269 if (ret == 0 || V_dyn_keep_states == 0 || ret > 1)
2270 return (ret);
2271
2272 dyn_acquire_rule(ch, s->data, rule, s->kidx);
2273 return (0);
2274 }
2275 #endif
2276
2277 /*
2278 * Unlink expired entries from states lists.
2279 * @rt can be used to specify the range of states for deletion.
2280 */
2281 static void
dyn_expire_states(struct ip_fw_chain * ch,ipfw_range_tlv * rt)2282 dyn_expire_states(struct ip_fw_chain *ch, ipfw_range_tlv *rt)
2283 {
2284 struct dyn_ipv4_slist expired_ipv4;
2285 #ifdef INET6
2286 struct dyn_ipv6_slist expired_ipv6;
2287 struct dyn_ipv6_state *s6, *s6n, *s6p;
2288 #endif
2289 struct dyn_ipv4_state *s4, *s4n, *s4p;
2290 void *rule;
2291 int bucket, removed, length, max_length;
2292
2293 IPFW_UH_WLOCK_ASSERT(ch);
2294
2295 /*
2296 * Unlink expired states from each bucket.
2297 * With acquired bucket lock iterate entries of each lists:
2298 * ipv4, ipv4_parent, ipv6, and ipv6_parent. Check expired time
2299 * and unlink entry from the list, link entry into temporary
2300 * expired_xxx lists then bump "del" bucket version.
2301 *
2302 * When an entry is removed, corresponding states counter is
2303 * decremented. If entry has O_LIMIT type, parent's reference
2304 * counter is decremented.
2305 *
2306 * NOTE: this function can be called from userspace context
2307 * when user deletes rules. In this case all matched states
2308 * will be forcedly unlinked. O_LIMIT_PARENT states will be kept
2309 * in the expired lists until reference counter become zero.
2310 */
2311 #define DYN_UNLINK_STATES(s, prev, next, exp, af, name, extra) do { \
2312 length = 0; \
2313 removed = 0; \
2314 prev = NULL; \
2315 s = CK_SLIST_FIRST(&V_dyn_ ## name [bucket]); \
2316 while (s != NULL) { \
2317 next = CK_SLIST_NEXT(s, entry); \
2318 if ((TIME_LEQ((s)->exp, time_uptime) && extra) || \
2319 (rt != NULL && \
2320 dyn_match_ ## af ## _state(ch, s, rt))) { \
2321 if (prev != NULL) \
2322 CK_SLIST_REMOVE_AFTER(prev, entry); \
2323 else \
2324 CK_SLIST_REMOVE_HEAD( \
2325 &V_dyn_ ## name [bucket], entry); \
2326 removed++; \
2327 SLIST_INSERT_HEAD(&expired_ ## af, s, expired); \
2328 if (s->type == O_LIMIT_PARENT) \
2329 DYN_COUNT_DEC(dyn_parent_count); \
2330 else { \
2331 DYN_COUNT_DEC(dyn_count); \
2332 if (s->data->flags & DYN_REFERENCED) { \
2333 rule = s->data->parent; \
2334 if (s->type == O_LIMIT) \
2335 rule = ((__typeof(s)) \
2336 rule)->limit->parent;\
2337 dyn_release_rule(ch, s->data, \
2338 rule, s->kidx); \
2339 } \
2340 if (s->type == O_LIMIT) { \
2341 s = s->data->parent; \
2342 DPARENT_COUNT_DEC(s->limit); \
2343 } \
2344 } \
2345 } else { \
2346 prev = s; \
2347 length++; \
2348 } \
2349 s = next; \
2350 } \
2351 if (removed != 0) \
2352 DYN_BUCKET_VERSION_BUMP(bucket, name ## _del); \
2353 if (length > max_length) \
2354 max_length = length; \
2355 } while (0)
2356
2357 SLIST_INIT(&expired_ipv4);
2358 #ifdef INET6
2359 SLIST_INIT(&expired_ipv6);
2360 #endif
2361 max_length = 0;
2362 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2363 DYN_BUCKET_LOCK(bucket);
2364 DYN_UNLINK_STATES(s4, s4p, s4n, data->expire, ipv4, ipv4, 1);
2365 DYN_UNLINK_STATES(s4, s4p, s4n, limit->expire, ipv4,
2366 ipv4_parent, (s4->limit->count == 0));
2367 #ifdef INET6
2368 DYN_UNLINK_STATES(s6, s6p, s6n, data->expire, ipv6, ipv6, 1);
2369 DYN_UNLINK_STATES(s6, s6p, s6n, limit->expire, ipv6,
2370 ipv6_parent, (s6->limit->count == 0));
2371 #endif
2372 DYN_BUCKET_UNLOCK(bucket);
2373 }
2374 /* Update curr_max_length for statistics. */
2375 V_curr_max_length = max_length;
2376 /*
2377 * Concatenate temporary lists with global expired lists.
2378 */
2379 DYN_EXPIRED_LOCK();
2380 SLIST_CONCAT(&V_dyn_expired_ipv4, &expired_ipv4,
2381 dyn_ipv4_state, expired);
2382 #ifdef INET6
2383 SLIST_CONCAT(&V_dyn_expired_ipv6, &expired_ipv6,
2384 dyn_ipv6_state, expired);
2385 #endif
2386 DYN_EXPIRED_UNLOCK();
2387 #undef DYN_UNLINK_STATES
2388 #undef DYN_UNREF_STATES
2389 }
2390
2391 static struct mbuf *
dyn_mgethdr(int len,uint16_t fibnum)2392 dyn_mgethdr(int len, uint16_t fibnum)
2393 {
2394 struct mbuf *m;
2395
2396 m = m_gethdr(M_NOWAIT, MT_DATA);
2397 if (m == NULL)
2398 return (NULL);
2399 #ifdef MAC
2400 mac_netinet_firewall_send(m);
2401 #endif
2402 M_SETFIB(m, fibnum);
2403 m->m_data += max_linkhdr;
2404 m->m_flags |= M_SKIP_FIREWALL;
2405 m->m_len = m->m_pkthdr.len = len;
2406 bzero(m->m_data, len);
2407 return (m);
2408 }
2409
2410 static void
dyn_make_keepalive_ipv4(struct mbuf * m,in_addr_t src,in_addr_t dst,uint32_t seq,uint32_t ack,uint16_t sport,uint16_t dport)2411 dyn_make_keepalive_ipv4(struct mbuf *m, in_addr_t src, in_addr_t dst,
2412 uint32_t seq, uint32_t ack, uint16_t sport, uint16_t dport)
2413 {
2414 struct tcphdr *tcp;
2415 struct ip *ip;
2416
2417 ip = mtod(m, struct ip *);
2418 ip->ip_v = 4;
2419 ip->ip_hl = sizeof(*ip) >> 2;
2420 ip->ip_tos = IPTOS_LOWDELAY;
2421 ip->ip_len = htons(m->m_len);
2422 ip->ip_off |= htons(IP_DF);
2423 ip->ip_ttl = V_ip_defttl;
2424 ip->ip_p = IPPROTO_TCP;
2425 ip->ip_src.s_addr = htonl(src);
2426 ip->ip_dst.s_addr = htonl(dst);
2427
2428 tcp = mtodo(m, sizeof(struct ip));
2429 tcp->th_sport = htons(sport);
2430 tcp->th_dport = htons(dport);
2431 tcp->th_off = sizeof(struct tcphdr) >> 2;
2432 tcp->th_seq = htonl(seq);
2433 tcp->th_ack = htonl(ack);
2434 tcp_set_flags(tcp, TH_ACK);
2435 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2436 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
2437
2438 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2439 m->m_pkthdr.csum_flags = CSUM_TCP;
2440 }
2441
2442 static void
dyn_enqueue_keepalive_ipv4(struct mbufq * q,const struct dyn_ipv4_state * s)2443 dyn_enqueue_keepalive_ipv4(struct mbufq *q, const struct dyn_ipv4_state *s)
2444 {
2445 struct mbuf *m;
2446
2447 if ((s->data->state & ACK_FWD) == 0 && s->data->ack_fwd > 0) {
2448 m = dyn_mgethdr(sizeof(struct ip) + sizeof(struct tcphdr),
2449 s->data->fibnum);
2450 if (m != NULL) {
2451 dyn_make_keepalive_ipv4(m, s->dst, s->src,
2452 s->data->ack_fwd - 1, s->data->ack_rev,
2453 s->dport, s->sport);
2454 if (mbufq_enqueue(q, m)) {
2455 m_freem(m);
2456 log(LOG_DEBUG, "ipfw: limit for IPv4 "
2457 "keepalive queue is reached.\n");
2458 return;
2459 }
2460 }
2461 }
2462
2463 if ((s->data->state & ACK_REV) == 0 && s->data->ack_rev > 0) {
2464 m = dyn_mgethdr(sizeof(struct ip) + sizeof(struct tcphdr),
2465 s->data->fibnum);
2466 if (m != NULL) {
2467 dyn_make_keepalive_ipv4(m, s->src, s->dst,
2468 s->data->ack_rev - 1, s->data->ack_fwd,
2469 s->sport, s->dport);
2470 if (mbufq_enqueue(q, m)) {
2471 m_freem(m);
2472 log(LOG_DEBUG, "ipfw: limit for IPv4 "
2473 "keepalive queue is reached.\n");
2474 return;
2475 }
2476 }
2477 }
2478 }
2479
2480 /*
2481 * Prepare and send keep-alive packets.
2482 */
2483 static void
dyn_send_keepalive_ipv4(struct ip_fw_chain * chain)2484 dyn_send_keepalive_ipv4(struct ip_fw_chain *chain)
2485 {
2486 struct mbufq q;
2487 struct mbuf *m;
2488 struct dyn_ipv4_state *s;
2489 uint32_t bucket;
2490
2491 mbufq_init(&q, INT_MAX);
2492 IPFW_UH_RLOCK(chain);
2493 /*
2494 * It is safe to not use hazard pointer and just do lockless
2495 * access to the lists, because states entries can not be deleted
2496 * while we hold IPFW_UH_RLOCK.
2497 */
2498 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2499 CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
2500 /*
2501 * Only established TCP connections that will
2502 * become expired within dyn_keepalive_interval.
2503 */
2504 if (s->proto != IPPROTO_TCP ||
2505 (s->data->state & BOTH_SYN) != BOTH_SYN ||
2506 TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
2507 s->data->expire))
2508 continue;
2509 dyn_enqueue_keepalive_ipv4(&q, s);
2510 }
2511 }
2512 IPFW_UH_RUNLOCK(chain);
2513 while ((m = mbufq_dequeue(&q)) != NULL)
2514 ip_output(m, NULL, NULL, 0, NULL, NULL);
2515 }
2516
2517 #ifdef INET6
2518 static void
dyn_make_keepalive_ipv6(struct mbuf * m,const struct in6_addr * src,const struct in6_addr * dst,uint32_t zoneid,uint32_t seq,uint32_t ack,uint16_t sport,uint16_t dport)2519 dyn_make_keepalive_ipv6(struct mbuf *m, const struct in6_addr *src,
2520 const struct in6_addr *dst, uint32_t zoneid, uint32_t seq, uint32_t ack,
2521 uint16_t sport, uint16_t dport)
2522 {
2523 struct tcphdr *tcp;
2524 struct ip6_hdr *ip6;
2525
2526 ip6 = mtod(m, struct ip6_hdr *);
2527 ip6->ip6_vfc |= IPV6_VERSION;
2528 ip6->ip6_plen = htons(sizeof(struct tcphdr));
2529 ip6->ip6_nxt = IPPROTO_TCP;
2530 ip6->ip6_hlim = IPV6_DEFHLIM;
2531 ip6->ip6_src = *src;
2532 if (IN6_IS_ADDR_LINKLOCAL(src))
2533 ip6->ip6_src.s6_addr16[1] = htons(zoneid & 0xffff);
2534 ip6->ip6_dst = *dst;
2535 if (IN6_IS_ADDR_LINKLOCAL(dst))
2536 ip6->ip6_dst.s6_addr16[1] = htons(zoneid & 0xffff);
2537
2538 tcp = mtodo(m, sizeof(struct ip6_hdr));
2539 tcp->th_sport = htons(sport);
2540 tcp->th_dport = htons(dport);
2541 tcp->th_off = sizeof(struct tcphdr) >> 2;
2542 tcp->th_seq = htonl(seq);
2543 tcp->th_ack = htonl(ack);
2544 tcp_set_flags(tcp, TH_ACK);
2545 tcp->th_sum = in6_cksum_pseudo(ip6, sizeof(struct tcphdr),
2546 IPPROTO_TCP, 0);
2547
2548 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2549 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
2550 }
2551
2552 static void
dyn_enqueue_keepalive_ipv6(struct mbufq * q,const struct dyn_ipv6_state * s)2553 dyn_enqueue_keepalive_ipv6(struct mbufq *q, const struct dyn_ipv6_state *s)
2554 {
2555 struct mbuf *m;
2556
2557 if ((s->data->state & ACK_FWD) == 0 && s->data->ack_fwd > 0) {
2558 m = dyn_mgethdr(sizeof(struct ip6_hdr) +
2559 sizeof(struct tcphdr), s->data->fibnum);
2560 if (m != NULL) {
2561 dyn_make_keepalive_ipv6(m, &s->dst, &s->src,
2562 s->zoneid, s->data->ack_fwd - 1, s->data->ack_rev,
2563 s->dport, s->sport);
2564 if (mbufq_enqueue(q, m)) {
2565 m_freem(m);
2566 log(LOG_DEBUG, "ipfw: limit for IPv6 "
2567 "keepalive queue is reached.\n");
2568 return;
2569 }
2570 }
2571 }
2572
2573 if ((s->data->state & ACK_REV) == 0 && s->data->ack_rev > 0) {
2574 m = dyn_mgethdr(sizeof(struct ip6_hdr) +
2575 sizeof(struct tcphdr), s->data->fibnum);
2576 if (m != NULL) {
2577 dyn_make_keepalive_ipv6(m, &s->src, &s->dst,
2578 s->zoneid, s->data->ack_rev - 1, s->data->ack_fwd,
2579 s->sport, s->dport);
2580 if (mbufq_enqueue(q, m)) {
2581 m_freem(m);
2582 log(LOG_DEBUG, "ipfw: limit for IPv6 "
2583 "keepalive queue is reached.\n");
2584 return;
2585 }
2586 }
2587 }
2588 }
2589
2590 static void
dyn_send_keepalive_ipv6(struct ip_fw_chain * chain)2591 dyn_send_keepalive_ipv6(struct ip_fw_chain *chain)
2592 {
2593 struct mbufq q;
2594 struct mbuf *m;
2595 struct dyn_ipv6_state *s;
2596 uint32_t bucket;
2597
2598 mbufq_init(&q, INT_MAX);
2599 IPFW_UH_RLOCK(chain);
2600 /*
2601 * It is safe to not use hazard pointer and just do lockless
2602 * access to the lists, because states entries can not be deleted
2603 * while we hold IPFW_UH_RLOCK.
2604 */
2605 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2606 CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
2607 /*
2608 * Only established TCP connections that will
2609 * become expired within dyn_keepalive_interval.
2610 */
2611 if (s->proto != IPPROTO_TCP ||
2612 (s->data->state & BOTH_SYN) != BOTH_SYN ||
2613 TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
2614 s->data->expire))
2615 continue;
2616 dyn_enqueue_keepalive_ipv6(&q, s);
2617 }
2618 }
2619 IPFW_UH_RUNLOCK(chain);
2620 while ((m = mbufq_dequeue(&q)) != NULL)
2621 ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
2622 }
2623 #endif /* INET6 */
2624
2625 static void
dyn_grow_hashtable(struct ip_fw_chain * chain,uint32_t new,int flags)2626 dyn_grow_hashtable(struct ip_fw_chain *chain, uint32_t new, int flags)
2627 {
2628 #ifdef INET6
2629 struct dyn_ipv6ck_slist *ipv6, *ipv6_parent;
2630 uint32_t *ipv6_add, *ipv6_del, *ipv6_parent_add, *ipv6_parent_del;
2631 struct dyn_ipv6_state *s6;
2632 #endif
2633 struct dyn_ipv4ck_slist *ipv4, *ipv4_parent;
2634 uint32_t *ipv4_add, *ipv4_del, *ipv4_parent_add, *ipv4_parent_del;
2635 struct dyn_ipv4_state *s4;
2636 struct mtx *bucket_lock;
2637 void *tmp;
2638 uint32_t bucket;
2639
2640 MPASS(powerof2(new));
2641 DYN_DEBUG("grow hash size %u -> %u", V_curr_dyn_buckets, new);
2642 /*
2643 * Allocate and initialize new lists.
2644 */
2645 bucket_lock = malloc(new * sizeof(struct mtx), M_IPFW,
2646 flags | M_ZERO);
2647 if (bucket_lock == NULL)
2648 return;
2649
2650 ipv4 = ipv4_parent = NULL;
2651 ipv4_add = ipv4_del = ipv4_parent_add = ipv4_parent_del = NULL;
2652 #ifdef INET6
2653 ipv6 = ipv6_parent = NULL;
2654 ipv6_add = ipv6_del = ipv6_parent_add = ipv6_parent_del = NULL;
2655 #endif
2656
2657 ipv4 = malloc(new * sizeof(struct dyn_ipv4ck_slist), M_IPFW,
2658 flags | M_ZERO);
2659 if (ipv4 == NULL)
2660 goto bad;
2661 ipv4_parent = malloc(new * sizeof(struct dyn_ipv4ck_slist), M_IPFW,
2662 flags | M_ZERO);
2663 if (ipv4_parent == NULL)
2664 goto bad;
2665 ipv4_add = malloc(new * sizeof(uint32_t), M_IPFW, flags | M_ZERO);
2666 if (ipv4_add == NULL)
2667 goto bad;
2668 ipv4_del = malloc(new * sizeof(uint32_t), M_IPFW, flags | M_ZERO);
2669 if (ipv4_del == NULL)
2670 goto bad;
2671 ipv4_parent_add = malloc(new * sizeof(uint32_t), M_IPFW,
2672 flags | M_ZERO);
2673 if (ipv4_parent_add == NULL)
2674 goto bad;
2675 ipv4_parent_del = malloc(new * sizeof(uint32_t), M_IPFW,
2676 flags | M_ZERO);
2677 if (ipv4_parent_del == NULL)
2678 goto bad;
2679 #ifdef INET6
2680 ipv6 = malloc(new * sizeof(struct dyn_ipv6ck_slist), M_IPFW,
2681 flags | M_ZERO);
2682 if (ipv6 == NULL)
2683 goto bad;
2684 ipv6_parent = malloc(new * sizeof(struct dyn_ipv6ck_slist), M_IPFW,
2685 flags | M_ZERO);
2686 if (ipv6_parent == NULL)
2687 goto bad;
2688 ipv6_add = malloc(new * sizeof(uint32_t), M_IPFW, flags | M_ZERO);
2689 if (ipv6_add == NULL)
2690 goto bad;
2691 ipv6_del = malloc(new * sizeof(uint32_t), M_IPFW, flags | M_ZERO);
2692 if (ipv6_del == NULL)
2693 goto bad;
2694 ipv6_parent_add = malloc(new * sizeof(uint32_t), M_IPFW,
2695 flags | M_ZERO);
2696 if (ipv6_parent_add == NULL)
2697 goto bad;
2698 ipv6_parent_del = malloc(new * sizeof(uint32_t), M_IPFW,
2699 flags | M_ZERO);
2700 if (ipv6_parent_del == NULL)
2701 goto bad;
2702 #endif
2703 for (bucket = 0; bucket < new; bucket++) {
2704 DYN_BUCKET_LOCK_INIT(bucket_lock, bucket);
2705 CK_SLIST_INIT(&ipv4[bucket]);
2706 CK_SLIST_INIT(&ipv4_parent[bucket]);
2707 #ifdef INET6
2708 CK_SLIST_INIT(&ipv6[bucket]);
2709 CK_SLIST_INIT(&ipv6_parent[bucket]);
2710 #endif
2711 }
2712
2713 #define DYN_RELINK_STATES(s, hval, i, head, ohead) do { \
2714 while ((s = CK_SLIST_FIRST(&V_dyn_ ## ohead[i])) != NULL) { \
2715 CK_SLIST_REMOVE_HEAD(&V_dyn_ ## ohead[i], entry); \
2716 CK_SLIST_INSERT_HEAD(&head[DYN_BUCKET(s->hval, new)], \
2717 s, entry); \
2718 } \
2719 } while (0)
2720 /*
2721 * Prevent rules changing from userland.
2722 */
2723 IPFW_UH_WLOCK(chain);
2724 /*
2725 * Hold traffic processing until we finish resize to
2726 * prevent access to states lists.
2727 */
2728 IPFW_WLOCK(chain);
2729 /* Re-link all dynamic states */
2730 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2731 DYN_RELINK_STATES(s4, data->hashval, bucket, ipv4, ipv4);
2732 DYN_RELINK_STATES(s4, limit->hashval, bucket, ipv4_parent,
2733 ipv4_parent);
2734 #ifdef INET6
2735 DYN_RELINK_STATES(s6, data->hashval, bucket, ipv6, ipv6);
2736 DYN_RELINK_STATES(s6, limit->hashval, bucket, ipv6_parent,
2737 ipv6_parent);
2738 #endif
2739 }
2740
2741 #define DYN_SWAP_PTR(old, new, tmp) do { \
2742 tmp = old; \
2743 old = new; \
2744 new = tmp; \
2745 } while (0)
2746 /* Swap pointers */
2747 DYN_SWAP_PTR(V_dyn_bucket_lock, bucket_lock, tmp);
2748 DYN_SWAP_PTR(V_dyn_ipv4, ipv4, tmp);
2749 DYN_SWAP_PTR(V_dyn_ipv4_parent, ipv4_parent, tmp);
2750 DYN_SWAP_PTR(V_dyn_ipv4_add, ipv4_add, tmp);
2751 DYN_SWAP_PTR(V_dyn_ipv4_parent_add, ipv4_parent_add, tmp);
2752 DYN_SWAP_PTR(V_dyn_ipv4_del, ipv4_del, tmp);
2753 DYN_SWAP_PTR(V_dyn_ipv4_parent_del, ipv4_parent_del, tmp);
2754
2755 #ifdef INET6
2756 DYN_SWAP_PTR(V_dyn_ipv6, ipv6, tmp);
2757 DYN_SWAP_PTR(V_dyn_ipv6_parent, ipv6_parent, tmp);
2758 DYN_SWAP_PTR(V_dyn_ipv6_add, ipv6_add, tmp);
2759 DYN_SWAP_PTR(V_dyn_ipv6_parent_add, ipv6_parent_add, tmp);
2760 DYN_SWAP_PTR(V_dyn_ipv6_del, ipv6_del, tmp);
2761 DYN_SWAP_PTR(V_dyn_ipv6_parent_del, ipv6_parent_del, tmp);
2762 #endif
2763 bucket = V_curr_dyn_buckets;
2764 V_curr_dyn_buckets = new;
2765
2766 IPFW_WUNLOCK(chain);
2767 IPFW_UH_WUNLOCK(chain);
2768
2769 /* Release old resources */
2770 while (bucket-- != 0)
2771 DYN_BUCKET_LOCK_DESTROY(bucket_lock, bucket);
2772 bad:
2773 free(bucket_lock, M_IPFW);
2774 free(ipv4, M_IPFW);
2775 free(ipv4_parent, M_IPFW);
2776 free(ipv4_add, M_IPFW);
2777 free(ipv4_parent_add, M_IPFW);
2778 free(ipv4_del, M_IPFW);
2779 free(ipv4_parent_del, M_IPFW);
2780 #ifdef INET6
2781 free(ipv6, M_IPFW);
2782 free(ipv6_parent, M_IPFW);
2783 free(ipv6_add, M_IPFW);
2784 free(ipv6_parent_add, M_IPFW);
2785 free(ipv6_del, M_IPFW);
2786 free(ipv6_parent_del, M_IPFW);
2787 #endif
2788 }
2789
2790 /*
2791 * This function is used to perform various maintenance
2792 * on dynamic hash lists. Currently it is called every second.
2793 */
2794 static void
dyn_tick(void * vnetx)2795 dyn_tick(void *vnetx)
2796 {
2797 struct epoch_tracker et;
2798 uint32_t buckets;
2799
2800 CURVNET_SET((struct vnet *)vnetx);
2801 /*
2802 * First free states unlinked in previous passes.
2803 */
2804 dyn_free_states(&V_layer3_chain);
2805 /*
2806 * Now unlink others expired states.
2807 * We use IPFW_UH_WLOCK to avoid concurrent call of
2808 * dyn_expire_states(). It is the only function that does
2809 * deletion of state entries from states lists.
2810 */
2811 IPFW_UH_WLOCK(&V_layer3_chain);
2812 dyn_expire_states(&V_layer3_chain, NULL);
2813 IPFW_UH_WUNLOCK(&V_layer3_chain);
2814 /*
2815 * Send keepalives if they are enabled and the time has come.
2816 */
2817 if (V_dyn_keepalive != 0 &&
2818 V_dyn_keepalive_last + V_dyn_keepalive_period <= time_uptime) {
2819 V_dyn_keepalive_last = time_uptime;
2820 NET_EPOCH_ENTER(et);
2821 dyn_send_keepalive_ipv4(&V_layer3_chain);
2822 #ifdef INET6
2823 dyn_send_keepalive_ipv6(&V_layer3_chain);
2824 #endif
2825 NET_EPOCH_EXIT(et);
2826 }
2827 /*
2828 * Check if we need to resize the hash:
2829 * if current number of states exceeds number of buckets in hash,
2830 * and dyn_buckets_max permits to grow the number of buckets, then
2831 * do it. Grow hash size to the minimum power of 2 which is bigger
2832 * than current states count.
2833 */
2834 if (V_curr_dyn_buckets < V_dyn_buckets_max &&
2835 (V_curr_dyn_buckets < V_dyn_count / 2 || (
2836 V_curr_dyn_buckets < V_dyn_count && V_curr_max_length > 8))) {
2837 buckets = 1 << fls(V_dyn_count);
2838 if (buckets > V_dyn_buckets_max)
2839 buckets = V_dyn_buckets_max;
2840 dyn_grow_hashtable(&V_layer3_chain, buckets, M_NOWAIT);
2841 }
2842
2843 callout_reset_on(&V_dyn_timeout, hz, dyn_tick, vnetx, 0);
2844 CURVNET_RESTORE();
2845 }
2846
2847 void
ipfw_expire_dyn_states(struct ip_fw_chain * chain,ipfw_range_tlv * rt)2848 ipfw_expire_dyn_states(struct ip_fw_chain *chain, ipfw_range_tlv *rt)
2849 {
2850 /*
2851 * Do not perform any checks if we currently have no dynamic states
2852 */
2853 if (V_dyn_count == 0)
2854 return;
2855
2856 IPFW_UH_WLOCK_ASSERT(chain);
2857 dyn_expire_states(chain, rt);
2858 }
2859
2860 /*
2861 * Pass through all states and reset eaction for orphaned rules.
2862 */
2863 void
ipfw_dyn_reset_eaction(struct ip_fw_chain * ch,uint32_t eaction_id,uint32_t default_id,uint32_t instance_id)2864 ipfw_dyn_reset_eaction(struct ip_fw_chain *ch, uint32_t eaction_id,
2865 uint32_t default_id, uint32_t instance_id)
2866 {
2867 #ifdef INET6
2868 struct dyn_ipv6_state *s6;
2869 #endif
2870 struct dyn_ipv4_state *s4;
2871 struct ip_fw *rule;
2872 uint32_t bucket;
2873
2874 #define DYN_RESET_EACTION(s, h, b) \
2875 CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) { \
2876 if ((s->data->flags & DYN_REFERENCED) == 0) \
2877 continue; \
2878 rule = s->data->parent; \
2879 if (s->type == O_LIMIT) \
2880 rule = ((__typeof(s))rule)->limit->parent; \
2881 ipfw_reset_eaction(ch, rule, eaction_id, \
2882 default_id, instance_id); \
2883 }
2884
2885 IPFW_UH_WLOCK_ASSERT(ch);
2886 if (V_dyn_count == 0)
2887 return;
2888 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2889 DYN_RESET_EACTION(s4, ipv4, bucket);
2890 #ifdef INET6
2891 DYN_RESET_EACTION(s6, ipv6, bucket);
2892 #endif
2893 }
2894 }
2895
2896 /*
2897 * Returns size of dynamic states in legacy format
2898 */
2899 int
ipfw_dyn_len(void)2900 ipfw_dyn_len(void)
2901 {
2902
2903 return ((V_dyn_count + V_dyn_parent_count) * sizeof(ipfw_dyn_rule));
2904 }
2905
2906 /*
2907 * Returns number of dynamic states.
2908 * Marks every named object index used by dynamic states with bit in @bmask.
2909 * Returns number of named objects accounted in bmask via @nocnt.
2910 * Used by dump format v1 (current).
2911 */
2912 uint32_t
ipfw_dyn_get_count(uint32_t * bmask,int * nocnt)2913 ipfw_dyn_get_count(uint32_t *bmask, int *nocnt)
2914 {
2915 #ifdef INET6
2916 struct dyn_ipv6_state *s6;
2917 #endif
2918 struct dyn_ipv4_state *s4;
2919 uint32_t bucket;
2920
2921 #define DYN_COUNT_OBJECTS(s, h, b) \
2922 CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) { \
2923 MPASS(s->kidx != 0); \
2924 if (ipfw_mark_object_kidx(bmask, IPFW_TLV_STATE_NAME, \
2925 s->kidx) != 0) \
2926 (*nocnt)++; \
2927 }
2928
2929 IPFW_UH_RLOCK_ASSERT(&V_layer3_chain);
2930
2931 /* No need to pass through all the buckets. */
2932 *nocnt = 0;
2933 if (V_dyn_count + V_dyn_parent_count == 0)
2934 return (0);
2935
2936 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2937 DYN_COUNT_OBJECTS(s4, ipv4, bucket);
2938 #ifdef INET6
2939 DYN_COUNT_OBJECTS(s6, ipv6, bucket);
2940 #endif
2941 }
2942
2943 return (V_dyn_count + V_dyn_parent_count);
2944 }
2945
2946 /*
2947 * Check if rule contains at least one dynamic opcode.
2948 *
2949 * Returns 1 if such opcode is found, 0 otherwise.
2950 */
2951 int
ipfw_is_dyn_rule(struct ip_fw * rule)2952 ipfw_is_dyn_rule(struct ip_fw *rule)
2953 {
2954 int cmdlen, l;
2955 ipfw_insn *cmd;
2956
2957 l = rule->cmd_len;
2958 cmd = rule->cmd;
2959 cmdlen = 0;
2960 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) {
2961 cmdlen = F_LEN(cmd);
2962
2963 switch (cmd->opcode) {
2964 case O_LIMIT:
2965 case O_KEEP_STATE:
2966 case O_PROBE_STATE:
2967 case O_CHECK_STATE:
2968 return (1);
2969 }
2970 }
2971
2972 return (0);
2973 }
2974
2975 static void
dyn_export_parent(const struct dyn_parent * p,uint32_t kidx,uint8_t set,ipfw_dyn_rule * dst)2976 dyn_export_parent(const struct dyn_parent *p, uint32_t kidx, uint8_t set,
2977 ipfw_dyn_rule *dst)
2978 {
2979
2980 dst->type = O_LIMIT_PARENT;
2981 dst->set = set;
2982 dst->kidx = kidx;
2983 dst->rulenum = p->rulenum;
2984 dst->count = DPARENT_COUNT(p);
2985 dst->expire = TIME_LEQ(p->expire, time_uptime) ? 0:
2986 p->expire - time_uptime;
2987 dst->hashval = p->hashval;
2988
2989 /* unused fields */
2990 dst->pad = 0;
2991 dst->pcnt = 0;
2992 dst->bcnt = 0;
2993 dst->ack_fwd = 0;
2994 dst->ack_rev = 0;
2995 }
2996
2997 static void
dyn_export_data(const struct dyn_data * data,uint32_t kidx,uint8_t type,uint8_t set,ipfw_dyn_rule * dst)2998 dyn_export_data(const struct dyn_data *data, uint32_t kidx, uint8_t type,
2999 uint8_t set, ipfw_dyn_rule *dst)
3000 {
3001
3002 dst->type = type;
3003 dst->set = set;
3004 dst->kidx = kidx;
3005 dst->rulenum = data->rulenum;
3006 dst->pcnt = data->pcnt_fwd + data->pcnt_rev;
3007 dst->bcnt = data->bcnt_fwd + data->bcnt_rev;
3008 dst->expire = TIME_LEQ(data->expire, time_uptime) ? 0:
3009 data->expire - time_uptime;
3010 dst->state = data->state;
3011 if (data->flags & DYN_REFERENCED)
3012 dst->state |= IPFW_DYN_ORPHANED;
3013
3014 dst->ack_fwd = data->ack_fwd;
3015 dst->ack_rev = data->ack_rev;
3016 dst->hashval = data->hashval;
3017 }
3018
3019 static void
dyn_export_ipv4_state(const struct dyn_ipv4_state * s,ipfw_dyn_rule * dst)3020 dyn_export_ipv4_state(const struct dyn_ipv4_state *s, ipfw_dyn_rule *dst)
3021 {
3022 struct ip_fw *rule;
3023
3024 switch (s->type) {
3025 case O_LIMIT_PARENT:
3026 rule = s->limit->parent;
3027 dyn_export_parent(s->limit, s->kidx, rule->set, dst);
3028 break;
3029 default:
3030 rule = s->data->parent;
3031 if (s->type == O_LIMIT)
3032 rule = ((struct dyn_ipv4_state *)rule)->limit->parent;
3033 dyn_export_data(s->data, s->kidx, s->type, rule->set, dst);
3034 }
3035
3036 dst->id.dst_ip = s->dst;
3037 dst->id.src_ip = s->src;
3038 dst->id.dst_port = s->dport;
3039 dst->id.src_port = s->sport;
3040 dst->id.fib = s->data->fibnum;
3041 dst->id.proto = s->proto;
3042 dst->id._flags = 0;
3043 dst->id.addr_type = 4;
3044
3045 memset(&dst->id.dst_ip6, 0, sizeof(dst->id.dst_ip6));
3046 memset(&dst->id.src_ip6, 0, sizeof(dst->id.src_ip6));
3047 dst->id.flow_id6 = dst->id.extra = 0;
3048 }
3049
3050 #ifdef INET6
3051 static void
dyn_export_ipv6_state(const struct dyn_ipv6_state * s,ipfw_dyn_rule * dst)3052 dyn_export_ipv6_state(const struct dyn_ipv6_state *s, ipfw_dyn_rule *dst)
3053 {
3054 struct ip_fw *rule;
3055
3056 switch (s->type) {
3057 case O_LIMIT_PARENT:
3058 rule = s->limit->parent;
3059 dyn_export_parent(s->limit, s->kidx, rule->set, dst);
3060 break;
3061 default:
3062 rule = s->data->parent;
3063 if (s->type == O_LIMIT)
3064 rule = ((struct dyn_ipv6_state *)rule)->limit->parent;
3065 dyn_export_data(s->data, s->kidx, s->type, rule->set, dst);
3066 }
3067
3068 dst->id.src_ip6 = s->src;
3069 dst->id.dst_ip6 = s->dst;
3070 dst->id.dst_port = s->dport;
3071 dst->id.src_port = s->sport;
3072 dst->id.fib = s->data->fibnum;
3073 dst->id.proto = s->proto;
3074 dst->id._flags = 0;
3075 dst->id.addr_type = 6;
3076
3077 dst->id.dst_ip = dst->id.src_ip = 0;
3078 dst->id.flow_id6 = dst->id.extra = 0;
3079 }
3080 #endif /* INET6 */
3081
3082 /*
3083 * Fills the buffer given by @sd with dynamic states.
3084 * Used by dump format v1 (current).
3085 *
3086 * Returns 0 on success.
3087 */
3088 int
ipfw_dump_states(struct ip_fw_chain * chain,struct sockopt_data * sd)3089 ipfw_dump_states(struct ip_fw_chain *chain, struct sockopt_data *sd)
3090 {
3091 #ifdef INET6
3092 struct dyn_ipv6_state *s6;
3093 #endif
3094 struct dyn_ipv4_state *s4;
3095 ipfw_obj_dyntlv *dst, *last;
3096 ipfw_obj_ctlv *ctlv;
3097 uint32_t bucket;
3098
3099 if (V_dyn_count == 0)
3100 return (0);
3101
3102 /*
3103 * IPFW_UH_RLOCK garantees that another userland request
3104 * and callout thread will not delete entries from states
3105 * lists.
3106 */
3107 IPFW_UH_RLOCK_ASSERT(chain);
3108
3109 ctlv = (ipfw_obj_ctlv *)ipfw_get_sopt_space(sd, sizeof(*ctlv));
3110 if (ctlv == NULL)
3111 return (ENOMEM);
3112 ctlv->head.type = IPFW_TLV_DYNSTATE_LIST;
3113 ctlv->objsize = sizeof(ipfw_obj_dyntlv);
3114 last = NULL;
3115
3116 #define DYN_EXPORT_STATES(s, af, h, b) \
3117 CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) { \
3118 dst = (ipfw_obj_dyntlv *)ipfw_get_sopt_space(sd, \
3119 sizeof(ipfw_obj_dyntlv)); \
3120 if (dst == NULL) \
3121 return (ENOMEM); \
3122 dyn_export_ ## af ## _state(s, &dst->state); \
3123 dst->head.length = sizeof(ipfw_obj_dyntlv); \
3124 dst->head.type = IPFW_TLV_DYN_ENT; \
3125 last = dst; \
3126 }
3127
3128 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3129 DYN_EXPORT_STATES(s4, ipv4, ipv4_parent, bucket);
3130 DYN_EXPORT_STATES(s4, ipv4, ipv4, bucket);
3131 #ifdef INET6
3132 DYN_EXPORT_STATES(s6, ipv6, ipv6_parent, bucket);
3133 DYN_EXPORT_STATES(s6, ipv6, ipv6, bucket);
3134 #endif /* INET6 */
3135 }
3136
3137 /* mark last dynamic rule */
3138 if (last != NULL)
3139 last->head.flags = IPFW_DF_LAST; /* XXX: unused */
3140 return (0);
3141 #undef DYN_EXPORT_STATES
3142 }
3143
3144 /*
3145 * When we have enabled V_dyn_keep_states, states that become ORPHANED
3146 * will keep pointer to original rule. Then this rule pointer is used
3147 * to apply rule action after ipfw_dyn_lookup_state().
3148 * Some rule actions use IPFW_INC_RULE_COUNTER() directly to this rule
3149 * pointer, but other actions use chain->map[f_pos] instead. The last
3150 * case leads to incrementing counters on the wrong rule, because
3151 * ORPHANED states have not parent rule in chain->map[].
3152 * To solve this we add protected rule:
3153 * count ip from any to any not // comment
3154 * It will be matched only by packets that are handled by ORPHANED states.
3155 */
3156 static void
dyn_add_protected_rule(struct ip_fw_chain * chain)3157 dyn_add_protected_rule(struct ip_fw_chain *chain)
3158 {
3159 static const char *comment =
3160 "orphaned dynamic states counter";
3161 struct ip_fw *rule;
3162 ipfw_insn *cmd;
3163 size_t l;
3164
3165 l = roundup(strlen(comment) + 1, sizeof(uint32_t));
3166 rule = ipfw_alloc_rule(chain, sizeof(*rule) + sizeof(ipfw_insn) + l);
3167 cmd = rule->cmd;
3168 cmd->opcode = O_NOP;
3169 cmd->len = 1 + l/sizeof(uint32_t);
3170 cmd->len |= F_NOT; /* make rule to be not matched */
3171 strcpy((char *)(cmd + 1), comment);
3172 cmd += F_LEN(cmd);
3173
3174 cmd->len = 1;
3175 cmd->opcode = O_COUNT;
3176 rule->act_ofs = cmd - rule->cmd;
3177 rule->cmd_len = rule->act_ofs + 1;
3178 ipfw_add_protected_rule(chain, rule, 0);
3179 }
3180
3181 void
ipfw_dyn_init(struct ip_fw_chain * chain)3182 ipfw_dyn_init(struct ip_fw_chain *chain)
3183 {
3184
3185 #ifdef IPFIREWALL_JENKINSHASH
3186 V_dyn_hashseed = arc4random();
3187 #endif
3188 V_dyn_max = 16384; /* max # of states */
3189 V_dyn_parent_max = 4096; /* max # of parent states */
3190 V_dyn_buckets_max = 8192; /* must be power of 2 */
3191
3192 V_dyn_ack_lifetime = 300;
3193 V_dyn_syn_lifetime = 20;
3194 V_dyn_fin_lifetime = 1;
3195 V_dyn_rst_lifetime = 1;
3196 V_dyn_udp_lifetime = 10;
3197 V_dyn_short_lifetime = 5;
3198
3199 V_dyn_keepalive_interval = 20;
3200 V_dyn_keepalive_period = 5;
3201 V_dyn_keepalive = 1; /* send keepalives */
3202 V_dyn_keepalive_last = time_uptime;
3203
3204 V_dyn_data_zone = uma_zcreate("IPFW dynamic states data",
3205 sizeof(struct dyn_data), NULL, NULL, NULL, NULL,
3206 UMA_ALIGN_PTR, 0);
3207 uma_zone_set_max(V_dyn_data_zone, V_dyn_max);
3208
3209 V_dyn_parent_zone = uma_zcreate("IPFW parent dynamic states",
3210 sizeof(struct dyn_parent), NULL, NULL, NULL, NULL,
3211 UMA_ALIGN_PTR, 0);
3212 uma_zone_set_max(V_dyn_parent_zone, V_dyn_parent_max);
3213
3214 SLIST_INIT(&V_dyn_expired_ipv4);
3215 V_dyn_ipv4 = NULL;
3216 V_dyn_ipv4_parent = NULL;
3217 V_dyn_ipv4_zone = uma_zcreate("IPFW IPv4 dynamic states",
3218 sizeof(struct dyn_ipv4_state), NULL, NULL, NULL, NULL,
3219 UMA_ALIGN_PTR, 0);
3220
3221 #ifdef INET6
3222 SLIST_INIT(&V_dyn_expired_ipv6);
3223 V_dyn_ipv6 = NULL;
3224 V_dyn_ipv6_parent = NULL;
3225 V_dyn_ipv6_zone = uma_zcreate("IPFW IPv6 dynamic states",
3226 sizeof(struct dyn_ipv6_state), NULL, NULL, NULL, NULL,
3227 UMA_ALIGN_PTR, 0);
3228 #endif
3229
3230 /* Initialize buckets. */
3231 V_curr_dyn_buckets = 0;
3232 V_dyn_bucket_lock = NULL;
3233 dyn_grow_hashtable(chain, 256, M_WAITOK);
3234
3235 if (IS_DEFAULT_VNET(curvnet))
3236 dyn_hp_cache = malloc(mp_ncpus * sizeof(void *), M_IPFW,
3237 M_WAITOK | M_ZERO);
3238
3239 DYN_EXPIRED_LOCK_INIT();
3240 callout_init(&V_dyn_timeout, 1);
3241 callout_reset(&V_dyn_timeout, hz, dyn_tick, curvnet);
3242 IPFW_ADD_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
3243
3244 dyn_add_protected_rule(chain);
3245 }
3246
3247 void
ipfw_dyn_uninit(int pass)3248 ipfw_dyn_uninit(int pass)
3249 {
3250 #ifdef INET6
3251 struct dyn_ipv6_state *s6;
3252 #endif
3253 struct dyn_ipv4_state *s4;
3254 int bucket;
3255
3256 if (pass == 0) {
3257 callout_drain(&V_dyn_timeout);
3258 return;
3259 }
3260 IPFW_DEL_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
3261 DYN_EXPIRED_LOCK_DESTROY();
3262
3263 #define DYN_FREE_STATES_FORCED(CK, s, af, name, en) do { \
3264 while ((s = CK ## SLIST_FIRST(&V_dyn_ ## name)) != NULL) { \
3265 CK ## SLIST_REMOVE_HEAD(&V_dyn_ ## name, en); \
3266 if (s->type == O_LIMIT_PARENT) \
3267 uma_zfree(V_dyn_parent_zone, s->limit); \
3268 else \
3269 uma_zfree(V_dyn_data_zone, s->data); \
3270 uma_zfree(V_dyn_ ## af ## _zone, s); \
3271 } \
3272 } while (0)
3273 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3274 DYN_BUCKET_LOCK_DESTROY(V_dyn_bucket_lock, bucket);
3275
3276 DYN_FREE_STATES_FORCED(CK_, s4, ipv4, ipv4[bucket], entry);
3277 DYN_FREE_STATES_FORCED(CK_, s4, ipv4, ipv4_parent[bucket],
3278 entry);
3279 #ifdef INET6
3280 DYN_FREE_STATES_FORCED(CK_, s6, ipv6, ipv6[bucket], entry);
3281 DYN_FREE_STATES_FORCED(CK_, s6, ipv6, ipv6_parent[bucket],
3282 entry);
3283 #endif /* INET6 */
3284 }
3285 DYN_FREE_STATES_FORCED(, s4, ipv4, expired_ipv4, expired);
3286 #ifdef INET6
3287 DYN_FREE_STATES_FORCED(, s6, ipv6, expired_ipv6, expired);
3288 #endif
3289 #undef DYN_FREE_STATES_FORCED
3290
3291 uma_zdestroy(V_dyn_ipv4_zone);
3292 uma_zdestroy(V_dyn_data_zone);
3293 uma_zdestroy(V_dyn_parent_zone);
3294 #ifdef INET6
3295 uma_zdestroy(V_dyn_ipv6_zone);
3296 free(V_dyn_ipv6, M_IPFW);
3297 free(V_dyn_ipv6_parent, M_IPFW);
3298 free(V_dyn_ipv6_add, M_IPFW);
3299 free(V_dyn_ipv6_parent_add, M_IPFW);
3300 free(V_dyn_ipv6_del, M_IPFW);
3301 free(V_dyn_ipv6_parent_del, M_IPFW);
3302 #endif
3303 free(V_dyn_bucket_lock, M_IPFW);
3304 free(V_dyn_ipv4, M_IPFW);
3305 free(V_dyn_ipv4_parent, M_IPFW);
3306 free(V_dyn_ipv4_add, M_IPFW);
3307 free(V_dyn_ipv4_parent_add, M_IPFW);
3308 free(V_dyn_ipv4_del, M_IPFW);
3309 free(V_dyn_ipv4_parent_del, M_IPFW);
3310 if (IS_DEFAULT_VNET(curvnet))
3311 free(dyn_hp_cache, M_IPFW);
3312 }
3313