xref: /freebsd/sys/netinet/ip_reass.c (revision 7b71f57f4e514a2ab7308ce4147e14d90e099ad0)
1 /*-
2  * Copyright (c) 2015 Gleb Smirnoff <glebius@FreeBSD.org>
3  * Copyright (c) 2015 Adrian Chadd <adrian@FreeBSD.org>
4  * Copyright (c) 1982, 1986, 1988, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include "opt_rss.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/eventhandler.h>
37 #include <sys/kernel.h>
38 #include <sys/hash.h>
39 #include <sys/mbuf.h>
40 #include <sys/malloc.h>
41 #include <sys/limits.h>
42 #include <sys/lock.h>
43 #include <sys/mutex.h>
44 #include <sys/sysctl.h>
45 #include <sys/socket.h>
46 
47 #include <net/if.h>
48 #include <net/if_var.h>
49 #include <net/if_private.h>
50 #include <net/rss_config.h>
51 #include <net/netisr.h>
52 #include <net/vnet.h>
53 
54 #include <netinet/in.h>
55 #include <netinet/ip.h>
56 #include <netinet/ip_var.h>
57 #include <netinet/in_rss.h>
58 #ifdef MAC
59 #include <security/mac/mac_framework.h>
60 #endif
61 
62 SYSCTL_DECL(_net_inet_ip);
63 
64 /*
65  * Reassembly headers are stored in hash buckets.
66  */
67 #define	IPREASS_NHASH_LOG2	10
68 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
69 #define	IPREASS_HMASK		(V_ipq_hashsize - 1)
70 
71 struct ipqbucket {
72 	TAILQ_HEAD(ipqhead, ipq) head;
73 	struct mtx		 lock;
74 	struct callout		 timer;
75 #ifdef VIMAGE
76 	struct vnet		 *vnet;
77 #endif
78 	int			 count;
79 };
80 
81 VNET_DEFINE_STATIC(struct ipqbucket *, ipq);
82 #define	V_ipq		VNET(ipq)
83 VNET_DEFINE_STATIC(uint32_t, ipq_hashseed);
84 #define	V_ipq_hashseed	VNET(ipq_hashseed)
85 VNET_DEFINE_STATIC(uint32_t, ipq_hashsize);
86 #define	V_ipq_hashsize	VNET(ipq_hashsize)
87 
88 #define	IPQ_LOCK(i)	mtx_lock(&V_ipq[i].lock)
89 #define	IPQ_TRYLOCK(i)	mtx_trylock(&V_ipq[i].lock)
90 #define	IPQ_UNLOCK(i)	mtx_unlock(&V_ipq[i].lock)
91 #define	IPQ_LOCK_ASSERT(i)	mtx_assert(&V_ipq[i].lock, MA_OWNED)
92 #define	IPQ_BUCKET_LOCK_ASSERT(b)	mtx_assert(&(b)->lock, MA_OWNED)
93 
94 VNET_DEFINE_STATIC(int, ipreass_maxbucketsize);
95 #define	V_ipreass_maxbucketsize	VNET(ipreass_maxbucketsize)
96 
97 void		ipreass_init(void);
98 void		ipreass_vnet_init(void);
99 #ifdef VIMAGE
100 void		ipreass_destroy(void);
101 #endif
102 static int	sysctl_maxfragpackets(SYSCTL_HANDLER_ARGS);
103 static int	sysctl_maxfragbucketsize(SYSCTL_HANDLER_ARGS);
104 static int	sysctl_fragttl(SYSCTL_HANDLER_ARGS);
105 static void	ipreass_zone_change(void *);
106 static void	ipreass_drain_tomax(void);
107 static void	ipq_free(struct ipqbucket *, struct ipq *);
108 static struct ipq * ipq_reuse(int);
109 static void	ipreass_callout(void *);
110 static void	ipreass_reschedule(struct ipqbucket *);
111 
112 static inline void
ipq_timeout(struct ipqbucket * bucket,struct ipq * fp)113 ipq_timeout(struct ipqbucket *bucket, struct ipq *fp)
114 {
115 
116 	IPSTAT_ADD(ips_fragtimeout, fp->ipq_nfrags);
117 	ipq_free(bucket, fp);
118 }
119 
120 static inline void
ipq_drop(struct ipqbucket * bucket,struct ipq * fp)121 ipq_drop(struct ipqbucket *bucket, struct ipq *fp)
122 {
123 
124 	IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
125 	ipq_free(bucket, fp);
126 	ipreass_reschedule(bucket);
127 }
128 
129 /*
130  * By default, limit the number of IP fragments across all reassembly
131  * queues to  1/32 of the total number of mbuf clusters.
132  *
133  * Limit the total number of reassembly queues per VNET to the
134  * IP fragment limit, but ensure the limit will not allow any bucket
135  * to grow above 100 items. (The bucket limit is
136  * IP_MAXFRAGPACKETS / (V_ipq_hashsize / 2), so the 50 is the correct
137  * multiplier to reach a 100-item limit.)
138  * The 100-item limit was chosen as brief testing seems to show that
139  * this produces "reasonable" performance on some subset of systems
140  * under DoS attack.
141  */
142 #define	IP_MAXFRAGS		(nmbclusters / 32)
143 #define	IP_MAXFRAGPACKETS	(imin(IP_MAXFRAGS, V_ipq_hashsize * 50))
144 
145 static int		maxfrags;
146 static u_int __exclusive_cache_line	nfrags;
147 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfrags, CTLFLAG_RW,
148     &maxfrags, 0,
149     "Maximum number of IPv4 fragments allowed across all reassembly queues");
150 SYSCTL_UINT(_net_inet_ip, OID_AUTO, curfrags, CTLFLAG_RD,
151     &nfrags, 0,
152     "Current number of IPv4 fragments across all reassembly queues");
153 
154 VNET_DEFINE_STATIC(uma_zone_t, ipq_zone);
155 #define	V_ipq_zone	VNET(ipq_zone)
156 
157 SYSCTL_UINT(_net_inet_ip, OID_AUTO, reass_hashsize,
158     CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(ipq_hashsize), 0,
159     "Size of IP fragment reassembly hashtable");
160 
161 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets,
162     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
163     NULL, 0, sysctl_maxfragpackets, "I",
164     "Maximum number of IPv4 fragment reassembly queue entries");
165 SYSCTL_UMA_CUR(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_VNET,
166     &VNET_NAME(ipq_zone),
167     "Current number of IPv4 fragment reassembly queue entries");
168 
169 VNET_DEFINE_STATIC(int, noreass);
170 #define	V_noreass	VNET(noreass)
171 
172 VNET_DEFINE_STATIC(int, maxfragsperpacket);
173 #define	V_maxfragsperpacket	VNET(maxfragsperpacket)
174 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_VNET | CTLFLAG_RW,
175     &VNET_NAME(maxfragsperpacket), 0,
176     "Maximum number of IPv4 fragments allowed per packet");
177 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragbucketsize,
178     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
179     sysctl_maxfragbucketsize, "I",
180     "Maximum number of IPv4 fragment reassembly queue entries per bucket");
181 
182 VNET_DEFINE_STATIC(u_int, ipfragttl) = 30;
183 #define	V_ipfragttl	VNET(ipfragttl)
184 SYSCTL_PROC(_net_inet_ip, OID_AUTO, fragttl, CTLTYPE_INT | CTLFLAG_RW |
185     CTLFLAG_MPSAFE | CTLFLAG_VNET, NULL, 0, sysctl_fragttl, "IU",
186     "IP fragment life time on reassembly queue (seconds)");
187 
188 /*
189  * Take incoming datagram fragment and try to reassemble it into
190  * whole datagram.  If the argument is the first fragment or one
191  * in between the function will return NULL and store the mbuf
192  * in the fragment chain.  If the argument is the last fragment
193  * the packet will be reassembled and the pointer to the new
194  * mbuf returned for further processing.  Only m_tags attached
195  * to the first packet/fragment are preserved.
196  * The IP header is *NOT* adjusted out of iplen.
197  */
198 #define	M_IP_FRAG	M_PROTO9
199 struct mbuf *
ip_reass(struct mbuf * m)200 ip_reass(struct mbuf *m)
201 {
202 	struct ip *ip;
203 	struct mbuf *p, *q, *nq, *t;
204 	struct ipq *fp;
205 	struct ifnet *srcifp;
206 	struct ipqhead *head;
207 	int i, hlen, next, tmpmax;
208 	u_int8_t ecn, ecn0;
209 	uint32_t hash, hashkey[3];
210 #ifdef	RSS
211 	uint32_t rss_hash, rss_type;
212 #endif
213 
214 	/*
215 	 * If no reassembling or maxfragsperpacket are 0,
216 	 * never accept fragments.
217 	 * Also, drop packet if it would exceed the maximum
218 	 * number of fragments.
219 	 */
220 	tmpmax = maxfrags;
221 	if (V_noreass == 1 || V_maxfragsperpacket == 0 ||
222 	    (tmpmax >= 0 && atomic_load_int(&nfrags) >= (u_int)tmpmax)) {
223 		IPSTAT_INC(ips_fragments);
224 		IPSTAT_INC(ips_fragdropped);
225 		m_freem(m);
226 		return (NULL);
227 	}
228 
229 	ip = mtod(m, struct ip *);
230 	hlen = ip->ip_hl << 2;
231 
232 	/*
233 	 * Adjust ip_len to not reflect header,
234 	 * convert offset of this to bytes.
235 	 */
236 	ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
237 	/*
238 	 * Make sure that fragments have a data length
239 	 * that's a non-zero multiple of 8 bytes, unless
240 	 * this is the last fragment.
241 	 */
242 	if (ip->ip_len == htons(0) ||
243 	    ((ip->ip_off & htons(IP_MF)) && (ntohs(ip->ip_len) & 0x7) != 0)) {
244 		IPSTAT_INC(ips_toosmall); /* XXX */
245 		IPSTAT_INC(ips_fragdropped);
246 		m_freem(m);
247 		return (NULL);
248 	}
249 	if (ip->ip_off & htons(IP_MF))
250 		m->m_flags |= M_IP_FRAG;
251 	else
252 		m->m_flags &= ~M_IP_FRAG;
253 	ip->ip_off = htons(ntohs(ip->ip_off) << 3);
254 
255 	/*
256 	 * Make sure the fragment lies within a packet of valid size.
257 	 */
258 	if (ntohs(ip->ip_len) + ntohs(ip->ip_off) > IP_MAXPACKET) {
259 		IPSTAT_INC(ips_toolong);
260 		IPSTAT_INC(ips_fragdropped);
261 		m_freem(m);
262 		return (NULL);
263 	}
264 
265 	/*
266 	 * Store receive network interface pointer for later.
267 	 */
268 	srcifp = m->m_pkthdr.rcvif;
269 
270 	/*
271 	 * Attempt reassembly; if it succeeds, proceed.
272 	 * ip_reass() will return a different mbuf.
273 	 */
274 	IPSTAT_INC(ips_fragments);
275 	m->m_pkthdr.PH_loc.ptr = ip;
276 
277 	/*
278 	 * Presence of header sizes in mbufs
279 	 * would confuse code below.
280 	 */
281 	m->m_data += hlen;
282 	m->m_len -= hlen;
283 
284 	hashkey[0] = ip->ip_src.s_addr;
285 	hashkey[1] = ip->ip_dst.s_addr;
286 	hashkey[2] = (uint32_t)ip->ip_p << 16;
287 	hashkey[2] += ip->ip_id;
288 	hash = jenkins_hash32(hashkey, nitems(hashkey), V_ipq_hashseed);
289 	hash &= IPREASS_HMASK;
290 	head = &V_ipq[hash].head;
291 	IPQ_LOCK(hash);
292 
293 	/*
294 	 * Look for queue of fragments
295 	 * of this datagram.
296 	 */
297 	TAILQ_FOREACH(fp, head, ipq_list)
298 		if (ip->ip_id == fp->ipq_id &&
299 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
300 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
301 #ifdef MAC
302 		    mac_ipq_match(m, fp) &&
303 #endif
304 		    ip->ip_p == fp->ipq_p)
305 			break;
306 	/*
307 	 * If first fragment to arrive, create a reassembly queue.
308 	 */
309 	if (fp == NULL) {
310 		if (V_ipq[hash].count < V_ipreass_maxbucketsize)
311 			fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
312 		if (fp == NULL)
313 			fp = ipq_reuse(hash);
314 		if (fp == NULL)
315 			goto dropfrag;
316 #ifdef MAC
317 		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
318 			uma_zfree(V_ipq_zone, fp);
319 			fp = NULL;
320 			goto dropfrag;
321 		}
322 		mac_ipq_create(m, fp);
323 #endif
324 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
325 		V_ipq[hash].count++;
326 		fp->ipq_nfrags = 1;
327 		atomic_add_int(&nfrags, 1);
328 		fp->ipq_expire = time_uptime + V_ipfragttl;
329 		fp->ipq_p = ip->ip_p;
330 		fp->ipq_id = ip->ip_id;
331 		fp->ipq_src = ip->ip_src;
332 		fp->ipq_dst = ip->ip_dst;
333 		fp->ipq_frags = m;
334 		if (m->m_flags & M_IP_FRAG)
335 			fp->ipq_maxoff = -1;
336 		else
337 			fp->ipq_maxoff = ntohs(ip->ip_off) + ntohs(ip->ip_len);
338 		m->m_nextpkt = NULL;
339 		if (fp == TAILQ_LAST(head, ipqhead))
340 			callout_reset_sbt(&V_ipq[hash].timer,
341 			    SBT_1S * V_ipfragttl, SBT_1S, ipreass_callout,
342 			    &V_ipq[hash], 0);
343 		else
344 			MPASS(callout_active(&V_ipq[hash].timer));
345 		goto done;
346 	} else {
347 		/*
348 		 * If we already saw the last fragment, make sure
349 		 * this fragment's offset looks sane. Otherwise, if
350 		 * this is the last fragment, record its endpoint.
351 		 */
352 		if (fp->ipq_maxoff > 0) {
353 			i = ntohs(ip->ip_off) + ntohs(ip->ip_len);
354 			if (((m->m_flags & M_IP_FRAG) && i >= fp->ipq_maxoff) ||
355 			    ((m->m_flags & M_IP_FRAG) == 0 &&
356 			    i != fp->ipq_maxoff)) {
357 				fp = NULL;
358 				goto dropfrag;
359 			}
360 		} else if ((m->m_flags & M_IP_FRAG) == 0)
361 			fp->ipq_maxoff = ntohs(ip->ip_off) + ntohs(ip->ip_len);
362 		fp->ipq_nfrags++;
363 		atomic_add_int(&nfrags, 1);
364 #ifdef MAC
365 		mac_ipq_update(m, fp);
366 #endif
367 	}
368 
369 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.PH_loc.ptr))
370 
371 	/*
372 	 * Handle ECN by comparing this segment with the first one;
373 	 * if CE is set, do not lose CE.
374 	 * drop if CE and not-ECT are mixed for the same packet.
375 	 */
376 	ecn = ip->ip_tos & IPTOS_ECN_MASK;
377 	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
378 	if (ecn == IPTOS_ECN_CE) {
379 		if (ecn0 == IPTOS_ECN_NOTECT)
380 			goto dropfrag;
381 		if (ecn0 != IPTOS_ECN_CE)
382 			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
383 	}
384 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
385 		goto dropfrag;
386 
387 	/*
388 	 * Find a segment which begins after this one does.
389 	 */
390 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
391 		if (ntohs(GETIP(q)->ip_off) > ntohs(ip->ip_off))
392 			break;
393 
394 	/*
395 	 * If there is a preceding segment, it may provide some of
396 	 * our data already.  If so, drop the data from the incoming
397 	 * segment.  If it provides all of our data, drop us, otherwise
398 	 * stick new segment in the proper place.
399 	 *
400 	 * If some of the data is dropped from the preceding
401 	 * segment, then it's checksum is invalidated.
402 	 */
403 	if (p) {
404 		i = ntohs(GETIP(p)->ip_off) + ntohs(GETIP(p)->ip_len) -
405 		    ntohs(ip->ip_off);
406 		if (i > 0) {
407 			if (i >= ntohs(ip->ip_len))
408 				goto dropfrag;
409 			m_adj(m, i);
410 			m->m_pkthdr.csum_flags = 0;
411 			ip->ip_off = htons(ntohs(ip->ip_off) + i);
412 			ip->ip_len = htons(ntohs(ip->ip_len) - i);
413 		}
414 		m->m_nextpkt = p->m_nextpkt;
415 		p->m_nextpkt = m;
416 	} else {
417 		m->m_nextpkt = fp->ipq_frags;
418 		fp->ipq_frags = m;
419 	}
420 
421 	/*
422 	 * While we overlap succeeding segments trim them or,
423 	 * if they are completely covered, dequeue them.
424 	 */
425 	for (; q != NULL && ntohs(ip->ip_off) + ntohs(ip->ip_len) >
426 	    ntohs(GETIP(q)->ip_off); q = nq) {
427 		i = (ntohs(ip->ip_off) + ntohs(ip->ip_len)) -
428 		    ntohs(GETIP(q)->ip_off);
429 		if (i < ntohs(GETIP(q)->ip_len)) {
430 			GETIP(q)->ip_len = htons(ntohs(GETIP(q)->ip_len) - i);
431 			GETIP(q)->ip_off = htons(ntohs(GETIP(q)->ip_off) + i);
432 			m_adj(q, i);
433 			q->m_pkthdr.csum_flags = 0;
434 			break;
435 		}
436 		nq = q->m_nextpkt;
437 		m->m_nextpkt = nq;
438 		IPSTAT_INC(ips_fragdropped);
439 		fp->ipq_nfrags--;
440 		atomic_subtract_int(&nfrags, 1);
441 		m_freem(q);
442 	}
443 
444 	/*
445 	 * Check for complete reassembly and perform frag per packet
446 	 * limiting.
447 	 *
448 	 * Frag limiting is performed here so that the nth frag has
449 	 * a chance to complete the packet before we drop the packet.
450 	 * As a result, n+1 frags are actually allowed per packet, but
451 	 * only n will ever be stored. (n = maxfragsperpacket.)
452 	 *
453 	 */
454 	next = 0;
455 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
456 		if (ntohs(GETIP(q)->ip_off) != next) {
457 			if (fp->ipq_nfrags > V_maxfragsperpacket)
458 				ipq_drop(&V_ipq[hash], fp);
459 			goto done;
460 		}
461 		next += ntohs(GETIP(q)->ip_len);
462 	}
463 	/* Make sure the last packet didn't have the IP_MF flag */
464 	if (p->m_flags & M_IP_FRAG) {
465 		if (fp->ipq_nfrags > V_maxfragsperpacket)
466 			ipq_drop(&V_ipq[hash], fp);
467 		goto done;
468 	}
469 
470 	/*
471 	 * Reassembly is complete.  Make sure the packet is a sane size.
472 	 */
473 	q = fp->ipq_frags;
474 	ip = GETIP(q);
475 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
476 		IPSTAT_INC(ips_toolong);
477 		ipq_drop(&V_ipq[hash], fp);
478 		goto done;
479 	}
480 
481 	/*
482 	 * Concatenate fragments.
483 	 */
484 	m = q;
485 	t = m->m_next;
486 	m->m_next = NULL;
487 	m_cat(m, t);
488 	nq = q->m_nextpkt;
489 	q->m_nextpkt = NULL;
490 	for (q = nq; q != NULL; q = nq) {
491 		nq = q->m_nextpkt;
492 		q->m_nextpkt = NULL;
493 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
494 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
495 		m_demote_pkthdr(q);
496 		m_cat(m, q);
497 	}
498 	/*
499 	 * In order to do checksumming faster we do 'end-around carry' here
500 	 * (and not in for{} loop), though it implies we are not going to
501 	 * reassemble more than 64k fragments.
502 	 */
503 	while (m->m_pkthdr.csum_data & 0xffff0000)
504 		m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
505 		    (m->m_pkthdr.csum_data >> 16);
506 	atomic_subtract_int(&nfrags, fp->ipq_nfrags);
507 #ifdef MAC
508 	mac_ipq_reassemble(fp, m);
509 	mac_ipq_destroy(fp);
510 #endif
511 
512 	/*
513 	 * Create header for new ip packet by modifying header of first
514 	 * packet;  dequeue and discard fragment reassembly header.
515 	 * Make header visible.
516 	 */
517 	ip->ip_len = htons((ip->ip_hl << 2) + next);
518 	ip->ip_src = fp->ipq_src;
519 	ip->ip_dst = fp->ipq_dst;
520 	TAILQ_REMOVE(head, fp, ipq_list);
521 	V_ipq[hash].count--;
522 	uma_zfree(V_ipq_zone, fp);
523 	m->m_len += (ip->ip_hl << 2);
524 	m->m_data -= (ip->ip_hl << 2);
525 	/* some debugging cruft by sklower, below, will go away soon */
526 	if (m->m_flags & M_PKTHDR) {	/* XXX this should be done elsewhere */
527 		m_fixhdr(m);
528 		/* set valid receive interface pointer */
529 		m->m_pkthdr.rcvif = srcifp;
530 	}
531 	IPSTAT_INC(ips_reassembled);
532 	ipreass_reschedule(&V_ipq[hash]);
533 	IPQ_UNLOCK(hash);
534 
535 #ifdef	RSS
536 	/*
537 	 * Query the RSS layer for the flowid / flowtype for the
538 	 * mbuf payload.
539 	 *
540 	 * For now, just assume we have to calculate a new one.
541 	 * Later on we should check to see if the assigned flowid matches
542 	 * what RSS wants for the given IP protocol and if so, just keep it.
543 	 *
544 	 * We then queue into the relevant netisr so it can be dispatched
545 	 * to the correct CPU.
546 	 *
547 	 * Note - this may return 1, which means the flowid in the mbuf
548 	 * is correct for the configured RSS hash types and can be used.
549 	 */
550 	if (rss_mbuf_software_hash_v4(m, 0, &rss_hash, &rss_type) == 0) {
551 		m->m_pkthdr.flowid = rss_hash;
552 		M_HASHTYPE_SET(m, rss_type);
553 	}
554 
555 	/*
556 	 * Queue/dispatch for reprocessing.
557 	 *
558 	 * Note: this is much slower than just handling the frame in the
559 	 * current receive context.  It's likely worth investigating
560 	 * why this is.
561 	 */
562 	netisr_dispatch(NETISR_IP_DIRECT, m);
563 	return (NULL);
564 #endif
565 
566 	/* Handle in-line */
567 	return (m);
568 
569 dropfrag:
570 	IPSTAT_INC(ips_fragdropped);
571 	if (fp != NULL) {
572 		fp->ipq_nfrags--;
573 		atomic_subtract_int(&nfrags, 1);
574 	}
575 	m_freem(m);
576 done:
577 	IPQ_UNLOCK(hash);
578 	return (NULL);
579 
580 #undef GETIP
581 }
582 
583 /*
584  * Timer expired on a bucket.
585  * There should be at least one ipq to be timed out.
586  */
587 static void
ipreass_callout(void * arg)588 ipreass_callout(void *arg)
589 {
590 	struct ipqbucket *bucket = arg;
591 	struct ipq *fp;
592 
593 	IPQ_BUCKET_LOCK_ASSERT(bucket);
594 	MPASS(atomic_load_int(&nfrags) > 0);
595 
596 	CURVNET_SET(bucket->vnet);
597 	fp = TAILQ_LAST(&bucket->head, ipqhead);
598 	KASSERT(fp != NULL && fp->ipq_expire <= time_uptime,
599 	    ("%s: stray callout on bucket %p, %ju < %ju", __func__, bucket,
600 	    fp ? (uintmax_t)fp->ipq_expire : 0, (uintmax_t)time_uptime));
601 
602 	while (fp != NULL && fp->ipq_expire <= time_uptime) {
603 		ipq_timeout(bucket, fp);
604 		fp = TAILQ_LAST(&bucket->head, ipqhead);
605 	}
606 	ipreass_reschedule(bucket);
607 	CURVNET_RESTORE();
608 }
609 
610 static void
ipreass_reschedule(struct ipqbucket * bucket)611 ipreass_reschedule(struct ipqbucket *bucket)
612 {
613 	struct ipq *fp;
614 
615 	IPQ_BUCKET_LOCK_ASSERT(bucket);
616 
617 	if ((fp = TAILQ_LAST(&bucket->head, ipqhead)) != NULL) {
618 		time_t t;
619 
620 		/* Protect against time_uptime tick. */
621 		t = fp->ipq_expire - time_uptime;
622 		t = (t > 0) ? t : 1;
623 		callout_reset_sbt(&bucket->timer, SBT_1S * t, SBT_1S,
624 		    ipreass_callout, bucket, 0);
625 	} else
626 		callout_stop(&bucket->timer);
627 }
628 
629 static void
ipreass_drain_vnet(void)630 ipreass_drain_vnet(void)
631 {
632 	u_int dropped = 0;
633 
634 	for (int i = 0; i < V_ipq_hashsize; i++) {
635 		bool resched;
636 
637 		IPQ_LOCK(i);
638 		resched = !TAILQ_EMPTY(&V_ipq[i].head);
639 		while(!TAILQ_EMPTY(&V_ipq[i].head)) {
640 			struct ipq *fp = TAILQ_FIRST(&V_ipq[i].head);
641 
642 			dropped += fp->ipq_nfrags;
643 			ipq_free(&V_ipq[i], fp);
644 		}
645 		if (resched)
646 			ipreass_reschedule(&V_ipq[i]);
647 		KASSERT(V_ipq[i].count == 0,
648 		    ("%s: V_ipq[%d] count %d (V_ipq=%p)", __func__, i,
649 		    V_ipq[i].count, V_ipq));
650 		IPQ_UNLOCK(i);
651 	}
652 	IPSTAT_ADD(ips_fragdropped, dropped);
653 }
654 
655 /*
656  * Drain off all datagram fragments.
657  */
658 static void
ipreass_drain(void)659 ipreass_drain(void)
660 {
661 	VNET_ITERATOR_DECL(vnet_iter);
662 
663 	VNET_LIST_RLOCK();
664 	VNET_FOREACH(vnet_iter) {
665 		CURVNET_SET(vnet_iter);
666 		ipreass_drain_vnet();
667 		CURVNET_RESTORE();
668 	}
669 	VNET_LIST_RUNLOCK();
670 }
671 
672 static void
ipreass_drain_lowmem(void * arg __unused,int flags __unused)673 ipreass_drain_lowmem(void *arg __unused, int flags __unused)
674 {
675 	ipreass_drain();
676 }
677 
678 /*
679  * Initialize IP reassembly structures.
680  */
681 MALLOC_DEFINE(M_IPREASS_HASH, "IP reass", "IP packet reassembly hash headers");
682 void
ipreass_vnet_init(void)683 ipreass_vnet_init(void)
684 {
685 	int max;
686 
687 	V_ipq_hashsize = IPREASS_NHASH;
688 	TUNABLE_INT_FETCH("net.inet.ip.reass_hashsize", &V_ipq_hashsize);
689 	V_ipq = malloc(sizeof(struct ipqbucket) * V_ipq_hashsize,
690 	    M_IPREASS_HASH, M_WAITOK);
691 
692 	for (int i = 0; i < V_ipq_hashsize; i++) {
693 		TAILQ_INIT(&V_ipq[i].head);
694 		mtx_init(&V_ipq[i].lock, "IP reassembly", NULL,
695 		    MTX_DEF | MTX_DUPOK | MTX_NEW);
696 		callout_init_mtx(&V_ipq[i].timer, &V_ipq[i].lock, 0);
697 		V_ipq[i].count = 0;
698 #ifdef VIMAGE
699 		V_ipq[i].vnet = curvnet;
700 #endif
701 	}
702 	V_ipq_hashseed = arc4random();
703 	V_maxfragsperpacket = 16;
704 	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
705 	    NULL, UMA_ALIGN_PTR, 0);
706 	max = IP_MAXFRAGPACKETS;
707 	max = uma_zone_set_max(V_ipq_zone, max);
708 	V_ipreass_maxbucketsize = imax(max / (V_ipq_hashsize / 2), 1);
709 }
710 
711 void
ipreass_init(void)712 ipreass_init(void)
713 {
714 
715 	maxfrags = IP_MAXFRAGS;
716 	EVENTHANDLER_REGISTER(nmbclusters_change, ipreass_zone_change,
717 	    NULL, EVENTHANDLER_PRI_ANY);
718 	EVENTHANDLER_REGISTER(vm_lowmem, ipreass_drain_lowmem, NULL,
719 	    LOWMEM_PRI_DEFAULT);
720 	EVENTHANDLER_REGISTER(mbuf_lowmem, ipreass_drain_lowmem, NULL,
721 	    LOWMEM_PRI_DEFAULT);
722 }
723 
724 /*
725  * Drain off all datagram fragments belonging to
726  * the given network interface.
727  */
728 static void
ipreass_cleanup(void * arg __unused,struct ifnet * ifp)729 ipreass_cleanup(void *arg __unused, struct ifnet *ifp)
730 {
731 	struct ipq *fp, *temp;
732 	struct mbuf *m;
733 	int i;
734 
735 	KASSERT(ifp != NULL, ("%s: ifp is NULL", __func__));
736 
737 	CURVNET_SET_QUIET(ifp->if_vnet);
738 
739 	/*
740 	 * Skip processing if IPv4 reassembly is not initialised or
741 	 * torn down by ipreass_destroy().
742 	 */
743 	if (V_ipq_zone == NULL) {
744 		CURVNET_RESTORE();
745 		return;
746 	}
747 
748 	for (i = 0; i < V_ipq_hashsize; i++) {
749 		IPQ_LOCK(i);
750 		/* Scan fragment list. */
751 		TAILQ_FOREACH_SAFE(fp, &V_ipq[i].head, ipq_list, temp) {
752 			for (m = fp->ipq_frags; m != NULL; m = m->m_nextpkt) {
753 				/* clear no longer valid rcvif pointer */
754 				if (m->m_pkthdr.rcvif == ifp)
755 					m->m_pkthdr.rcvif = NULL;
756 			}
757 		}
758 		IPQ_UNLOCK(i);
759 	}
760 	CURVNET_RESTORE();
761 }
762 EVENTHANDLER_DEFINE(ifnet_departure_event, ipreass_cleanup, NULL, 0);
763 
764 #ifdef VIMAGE
765 /*
766  * Destroy IP reassembly structures.
767  */
768 void
ipreass_destroy(void)769 ipreass_destroy(void)
770 {
771 
772 	ipreass_drain_vnet();
773 	uma_zdestroy(V_ipq_zone);
774 	V_ipq_zone = NULL;
775 	for (int i = 0; i < V_ipq_hashsize; i++)
776 		mtx_destroy(&V_ipq[i].lock);
777 	free(V_ipq, M_IPREASS_HASH);
778 }
779 #endif
780 
781 /*
782  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
783  * max has slightly different semantics than the sysctl, for historical
784  * reasons.
785  */
786 static void
ipreass_drain_tomax(void)787 ipreass_drain_tomax(void)
788 {
789 	struct ipq *fp;
790 	int target;
791 
792 	/*
793 	 * Make sure each bucket is under the new limit. If
794 	 * necessary, drop enough of the oldest elements from
795 	 * each bucket to get under the new limit.
796 	 */
797 	for (int i = 0; i < V_ipq_hashsize; i++) {
798 		IPQ_LOCK(i);
799 		while (V_ipq[i].count > V_ipreass_maxbucketsize &&
800 		    (fp = TAILQ_LAST(&V_ipq[i].head, ipqhead)) != NULL)
801 			ipq_timeout(&V_ipq[i], fp);
802 		ipreass_reschedule(&V_ipq[i]);
803 		IPQ_UNLOCK(i);
804 	}
805 
806 	/*
807 	 * If we are over the maximum number of fragments,
808 	 * drain off enough to get down to the new limit,
809 	 * stripping off last elements on queues.  Every
810 	 * run we strip the oldest element from each bucket.
811 	 */
812 	target = uma_zone_get_max(V_ipq_zone);
813 	while (uma_zone_get_cur(V_ipq_zone) > target) {
814 		for (int i = 0; i < V_ipq_hashsize; i++) {
815 			IPQ_LOCK(i);
816 			fp = TAILQ_LAST(&V_ipq[i].head, ipqhead);
817 			if (fp != NULL) {
818 				ipq_timeout(&V_ipq[i], fp);
819 				ipreass_reschedule(&V_ipq[i]);
820 			}
821 			IPQ_UNLOCK(i);
822 		}
823 	}
824 }
825 
826 static void
ipreass_zone_change(void * tag)827 ipreass_zone_change(void *tag)
828 {
829 	VNET_ITERATOR_DECL(vnet_iter);
830 	int max;
831 
832 	maxfrags = IP_MAXFRAGS;
833 	max = IP_MAXFRAGPACKETS;
834 	VNET_LIST_RLOCK_NOSLEEP();
835 	VNET_FOREACH(vnet_iter) {
836 		CURVNET_SET(vnet_iter);
837 		max = uma_zone_set_max(V_ipq_zone, max);
838 		V_ipreass_maxbucketsize = imax(max / (V_ipq_hashsize / 2), 1);
839 		ipreass_drain_tomax();
840 		CURVNET_RESTORE();
841 	}
842 	VNET_LIST_RUNLOCK_NOSLEEP();
843 }
844 
845 /*
846  * Change the limit on the UMA zone, or disable the fragment allocation
847  * at all.  Since 0 and -1 is a special values here, we need our own handler,
848  * instead of sysctl_handle_uma_zone_max().
849  */
850 static int
sysctl_maxfragpackets(SYSCTL_HANDLER_ARGS)851 sysctl_maxfragpackets(SYSCTL_HANDLER_ARGS)
852 {
853 	int error, max;
854 
855 	if (V_noreass == 0) {
856 		max = uma_zone_get_max(V_ipq_zone);
857 		if (max == 0)
858 			max = -1;
859 	} else
860 		max = 0;
861 	error = sysctl_handle_int(oidp, &max, 0, req);
862 	if (error || !req->newptr)
863 		return (error);
864 	if (max > 0) {
865 		/*
866 		 * XXXRW: Might be a good idea to sanity check the argument
867 		 * and place an extreme upper bound.
868 		 */
869 		max = uma_zone_set_max(V_ipq_zone, max);
870 		V_ipreass_maxbucketsize = imax(max / (V_ipq_hashsize / 2), 1);
871 		ipreass_drain_tomax();
872 		V_noreass = 0;
873 	} else if (max == 0) {
874 		V_noreass = 1;
875 		ipreass_drain();
876 	} else if (max == -1) {
877 		V_noreass = 0;
878 		uma_zone_set_max(V_ipq_zone, 0);
879 		V_ipreass_maxbucketsize = INT_MAX;
880 	} else
881 		return (EINVAL);
882 	return (0);
883 }
884 
885 /*
886  * Seek for old fragment queue header that can be reused.  Try to
887  * reuse a header from currently locked hash bucket.
888  */
889 static struct ipq *
ipq_reuse(int start)890 ipq_reuse(int start)
891 {
892 	struct ipq *fp;
893 	int bucket, i;
894 
895 	IPQ_LOCK_ASSERT(start);
896 
897 	for (i = 0; i < V_ipq_hashsize; i++) {
898 		bucket = (start + i) % V_ipq_hashsize;
899 		if (bucket != start && IPQ_TRYLOCK(bucket) == 0)
900 			continue;
901 		fp = TAILQ_LAST(&V_ipq[bucket].head, ipqhead);
902 		if (fp) {
903 			struct mbuf *m;
904 
905 			IPSTAT_ADD(ips_fragtimeout, fp->ipq_nfrags);
906 			atomic_subtract_int(&nfrags, fp->ipq_nfrags);
907 			while (fp->ipq_frags) {
908 				m = fp->ipq_frags;
909 				fp->ipq_frags = m->m_nextpkt;
910 				m_freem(m);
911 			}
912 			TAILQ_REMOVE(&V_ipq[bucket].head, fp, ipq_list);
913 			V_ipq[bucket].count--;
914 			ipreass_reschedule(&V_ipq[bucket]);
915 			if (bucket != start)
916 				IPQ_UNLOCK(bucket);
917 			break;
918 		}
919 		if (bucket != start)
920 			IPQ_UNLOCK(bucket);
921 	}
922 	IPQ_LOCK_ASSERT(start);
923 	return (fp);
924 }
925 
926 /*
927  * Free a fragment reassembly header and all associated datagrams.
928  */
929 static void
ipq_free(struct ipqbucket * bucket,struct ipq * fp)930 ipq_free(struct ipqbucket *bucket, struct ipq *fp)
931 {
932 	struct mbuf *q;
933 
934 	atomic_subtract_int(&nfrags, fp->ipq_nfrags);
935 	while (fp->ipq_frags) {
936 		q = fp->ipq_frags;
937 		fp->ipq_frags = q->m_nextpkt;
938 		m_freem(q);
939 	}
940 	TAILQ_REMOVE(&bucket->head, fp, ipq_list);
941 	bucket->count--;
942 	uma_zfree(V_ipq_zone, fp);
943 }
944 
945 /*
946  * Get or set the maximum number of reassembly queues per bucket.
947  */
948 static int
sysctl_maxfragbucketsize(SYSCTL_HANDLER_ARGS)949 sysctl_maxfragbucketsize(SYSCTL_HANDLER_ARGS)
950 {
951 	int error, max;
952 
953 	max = V_ipreass_maxbucketsize;
954 	error = sysctl_handle_int(oidp, &max, 0, req);
955 	if (error || !req->newptr)
956 		return (error);
957 	if (max <= 0)
958 		return (EINVAL);
959 	V_ipreass_maxbucketsize = max;
960 	ipreass_drain_tomax();
961 	return (0);
962 }
963 
964 /*
965  * Get or set the IP fragment time to live.
966  */
967 static int
sysctl_fragttl(SYSCTL_HANDLER_ARGS)968 sysctl_fragttl(SYSCTL_HANDLER_ARGS)
969 {
970 	u_int ttl;
971 	int error;
972 
973 	ttl = V_ipfragttl;
974 	error = sysctl_handle_int(oidp, &ttl, 0, req);
975 	if (error || !req->newptr)
976 		return (error);
977 
978 	if (ttl < 1 || ttl > MAXTTL)
979 		return (EINVAL);
980 
981 	atomic_store_int(&V_ipfragttl, ttl);
982 	return (0);
983 }
984