1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 1990 Mentat Inc.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright (c) 2016, Joyent, Inc. All rights reserved.
26 * Copyright (c) 2014, OmniTI Computer Consulting, Inc. All rights reserved.
27 * Copyright 2023 Oxide Computer Company
28 */
29
30 /*
31 * This file contains the interface control functions for IP.
32 */
33
34 #include <sys/types.h>
35 #include <sys/stream.h>
36 #include <sys/dlpi.h>
37 #include <sys/stropts.h>
38 #include <sys/strsun.h>
39 #include <sys/sysmacros.h>
40 #include <sys/strsubr.h>
41 #include <sys/strlog.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/cmn_err.h>
45 #include <sys/kstat.h>
46 #include <sys/debug.h>
47 #include <sys/zone.h>
48 #include <sys/sunldi.h>
49 #include <sys/file.h>
50 #include <sys/bitmap.h>
51 #include <sys/cpuvar.h>
52 #include <sys/time.h>
53 #include <sys/ctype.h>
54 #include <sys/kmem.h>
55 #include <sys/systm.h>
56 #include <sys/param.h>
57 #include <sys/socket.h>
58 #include <sys/isa_defs.h>
59 #include <net/if.h>
60 #include <net/if_arp.h>
61 #include <net/if_types.h>
62 #include <net/if_dl.h>
63 #include <net/route.h>
64 #include <sys/sockio.h>
65 #include <netinet/in.h>
66 #include <netinet/ip6.h>
67 #include <netinet/icmp6.h>
68 #include <netinet/igmp_var.h>
69 #include <sys/policy.h>
70 #include <sys/ethernet.h>
71 #include <sys/callb.h>
72 #include <sys/md5.h>
73
74 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */
75 #include <inet/mi.h>
76 #include <inet/nd.h>
77 #include <inet/tunables.h>
78 #include <inet/arp.h>
79 #include <inet/ip_arp.h>
80 #include <inet/mib2.h>
81 #include <inet/ip.h>
82 #include <inet/ip6.h>
83 #include <inet/ip6_asp.h>
84 #include <inet/tcp.h>
85 #include <inet/ip_multi.h>
86 #include <inet/ip_ire.h>
87 #include <inet/ip_ftable.h>
88 #include <inet/ip_rts.h>
89 #include <inet/ip_ndp.h>
90 #include <inet/ip_if.h>
91 #include <inet/ip_impl.h>
92 #include <inet/sctp_ip.h>
93 #include <inet/ip_netinfo.h>
94 #include <inet/ilb_ip.h>
95
96 #include <netinet/igmp.h>
97 #include <inet/ip_listutils.h>
98 #include <inet/ipclassifier.h>
99 #include <sys/mac_client.h>
100 #include <sys/dld.h>
101 #include <sys/mac_flow.h>
102
103 #include <sys/systeminfo.h>
104 #include <sys/bootconf.h>
105
106 #include <sys/tsol/tndb.h>
107 #include <sys/tsol/tnet.h>
108
109 #include <inet/rawip_impl.h> /* needed for icmp_stack_t */
110 #include <inet/udp_impl.h> /* needed for udp_stack_t */
111
112 /* The character which tells where the ill_name ends */
113 #define IPIF_SEPARATOR_CHAR ':'
114
115 /* IP ioctl function table entry */
116 typedef struct ipft_s {
117 int ipft_cmd;
118 pfi_t ipft_pfi;
119 int ipft_min_size;
120 int ipft_flags;
121 } ipft_t;
122 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */
123 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */
124
125 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *);
126 static int nd_ill_forward_set(queue_t *q, mblk_t *mp,
127 char *value, caddr_t cp, cred_t *ioc_cr);
128
129 static boolean_t ill_is_quiescent(ill_t *);
130 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask);
131 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type);
132 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
133 mblk_t *mp, boolean_t need_up);
134 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
135 mblk_t *mp, boolean_t need_up);
136 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
137 queue_t *q, mblk_t *mp, boolean_t need_up);
138 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q,
139 mblk_t *mp);
140 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
141 mblk_t *mp);
142 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t,
143 queue_t *q, mblk_t *mp, boolean_t need_up);
144 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp,
145 int ioccmd, struct linkblk *li);
146 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *);
147 static void ip_wput_ioctl(queue_t *q, mblk_t *mp);
148 static void ipsq_flush(ill_t *ill);
149
150 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen,
151 queue_t *q, mblk_t *mp, boolean_t need_up);
152 static void ipsq_delete(ipsq_t *);
153
154 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type,
155 boolean_t initialize, boolean_t insert, int *errorp);
156 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep);
157 static void ipif_delete_bcast_ires(ipif_t *ipif);
158 static int ipif_add_ires_v4(ipif_t *, boolean_t);
159 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif,
160 boolean_t isv6);
161 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp);
162 static void ipif_free(ipif_t *ipif);
163 static void ipif_free_tail(ipif_t *ipif);
164 static void ipif_set_default(ipif_t *ipif);
165 static int ipif_set_values(queue_t *q, mblk_t *mp,
166 char *interf_name, uint_t *ppa);
167 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp,
168 queue_t *q);
169 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen,
170 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid,
171 ip_stack_t *);
172 static ipif_t *ipif_lookup_on_name_async(char *name, size_t namelen,
173 boolean_t isv6, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func,
174 int *error, ip_stack_t *);
175
176 static int ill_alloc_ppa(ill_if_t *, ill_t *);
177 static void ill_delete_interface_type(ill_if_t *);
178 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q);
179 static void ill_dl_down(ill_t *ill);
180 static void ill_down(ill_t *ill);
181 static void ill_down_ipifs(ill_t *, boolean_t);
182 static void ill_free_mib(ill_t *ill);
183 static void ill_glist_delete(ill_t *);
184 static void ill_phyint_reinit(ill_t *ill);
185 static void ill_set_nce_router_flags(ill_t *, boolean_t);
186 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *);
187 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *);
188
189 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid;
190 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid;
191 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid;
192 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid;
193 static ip_v4mapinfo_func_t ip_ether_v4_mapping;
194 static ip_v6mapinfo_func_t ip_ether_v6_mapping;
195 static ip_v4mapinfo_func_t ip_ib_v4_mapping;
196 static ip_v6mapinfo_func_t ip_ib_v6_mapping;
197 static ip_v4mapinfo_func_t ip_mbcast_mapping;
198 static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *);
199 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *);
200 static void phyint_free(phyint_t *);
201
202 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *);
203 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
204 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
205 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
206 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *);
207 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *,
208 dl_capability_sub_t *);
209 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *);
210 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *);
211 static void ill_capability_dld_ack(ill_t *, mblk_t *,
212 dl_capability_sub_t *);
213 static void ill_capability_dld_enable(ill_t *);
214 static void ill_capability_ack_thr(void *);
215 static void ill_capability_lso_enable(ill_t *);
216
217 static ill_t *ill_prev_usesrc(ill_t *);
218 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t);
219 static void ill_disband_usesrc_group(ill_t *);
220 static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int);
221
222 #ifdef DEBUG
223 static void ill_trace_cleanup(const ill_t *);
224 static void ipif_trace_cleanup(const ipif_t *);
225 #endif
226
227 static void ill_dlpi_clear_deferred(ill_t *ill);
228
229 static void phyint_flags_init(phyint_t *, t_uscalar_t);
230
231 /*
232 * if we go over the memory footprint limit more than once in this msec
233 * interval, we'll start pruning aggressively.
234 */
235 int ip_min_frag_prune_time = 0;
236
237 static ipft_t ip_ioctl_ftbl[] = {
238 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 },
239 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t),
240 IPFT_F_NO_REPLY },
241 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY },
242 { 0 }
243 };
244
245 /* Simple ICMP IP Header Template */
246 static ipha_t icmp_ipha = {
247 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
248 };
249
250 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
251
252 static ip_m_t ip_m_tbl[] = {
253 { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
254 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid,
255 ip_nodef_v6intfid },
256 { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6,
257 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
258 ip_nodef_v6intfid },
259 { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6,
260 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
261 ip_nodef_v6intfid },
262 { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6,
263 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
264 ip_nodef_v6intfid },
265 { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6,
266 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid,
267 ip_nodef_v6intfid },
268 { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6,
269 ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid,
270 ip_nodef_v6intfid },
271 { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6,
272 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid,
273 ip_ipv4_v6destintfid },
274 { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6,
275 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid,
276 ip_ipv6_v6destintfid },
277 { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6,
278 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid,
279 ip_nodef_v6intfid },
280 { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
281 NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid },
282 { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
283 NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid },
284 { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
285 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
286 ip_nodef_v6intfid }
287 };
288
289 char ipif_loopback_name[] = "lo0";
290
291 /* These are used by all IP network modules. */
292 sin6_t sin6_null; /* Zero address for quick clears */
293 sin_t sin_null; /* Zero address for quick clears */
294
295 /* When set search for unused ipif_seqid */
296 static ipif_t ipif_zero;
297
298 /*
299 * ppa arena is created after these many
300 * interfaces have been plumbed.
301 */
302 uint_t ill_no_arena = 12; /* Setable in /etc/system */
303
304 /*
305 * Allocate per-interface mibs.
306 * Returns true if ok. False otherwise.
307 * ipsq may not yet be allocated (loopback case ).
308 */
309 static boolean_t
ill_allocate_mibs(ill_t * ill)310 ill_allocate_mibs(ill_t *ill)
311 {
312 /* Already allocated? */
313 if (ill->ill_ip_mib != NULL) {
314 if (ill->ill_isv6)
315 ASSERT(ill->ill_icmp6_mib != NULL);
316 return (B_TRUE);
317 }
318
319 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib),
320 KM_NOSLEEP);
321 if (ill->ill_ip_mib == NULL) {
322 return (B_FALSE);
323 }
324
325 /* Setup static information */
326 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize,
327 sizeof (mib2_ipIfStatsEntry_t));
328 if (ill->ill_isv6) {
329 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
330 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
331 sizeof (mib2_ipv6AddrEntry_t));
332 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
333 sizeof (mib2_ipv6RouteEntry_t));
334 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
335 sizeof (mib2_ipv6NetToMediaEntry_t));
336 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
337 sizeof (ipv6_member_t));
338 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
339 sizeof (ipv6_grpsrc_t));
340 } else {
341 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
342 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
343 sizeof (mib2_ipAddrEntry_t));
344 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
345 sizeof (mib2_ipRouteEntry_t));
346 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
347 sizeof (mib2_ipNetToMediaEntry_t));
348 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
349 sizeof (ip_member_t));
350 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
351 sizeof (ip_grpsrc_t));
352
353 /*
354 * For a v4 ill, we are done at this point, because per ill
355 * icmp mibs are only used for v6.
356 */
357 return (B_TRUE);
358 }
359
360 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib),
361 KM_NOSLEEP);
362 if (ill->ill_icmp6_mib == NULL) {
363 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
364 ill->ill_ip_mib = NULL;
365 return (B_FALSE);
366 }
367 /* static icmp info */
368 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize =
369 sizeof (mib2_ipv6IfIcmpEntry_t);
370 /*
371 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later
372 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert
373 * -> ill_phyint_reinit
374 */
375 return (B_TRUE);
376 }
377
378 /*
379 * Completely vaporize a lower level tap and all associated interfaces.
380 * ill_delete is called only out of ip_close when the device control
381 * stream is being closed.
382 */
383 void
ill_delete(ill_t * ill)384 ill_delete(ill_t *ill)
385 {
386 ipif_t *ipif;
387 ill_t *prev_ill;
388 ip_stack_t *ipst = ill->ill_ipst;
389
390 /*
391 * ill_delete may be forcibly entering the ipsq. The previous
392 * ioctl may not have completed and may need to be aborted.
393 * ipsq_flush takes care of it. If we don't need to enter the
394 * the ipsq forcibly, the 2nd invocation of ipsq_flush in
395 * ill_delete_tail is sufficient.
396 */
397 ipsq_flush(ill);
398
399 /*
400 * Nuke all interfaces. ipif_free will take down the interface,
401 * remove it from the list, and free the data structure.
402 * Walk down the ipif list and remove the logical interfaces
403 * first before removing the main ipif. We can't unplumb
404 * zeroth interface first in the case of IPv6 as update_conn_ill
405 * -> ip_ll_multireq de-references ill_ipif for checking
406 * POINTOPOINT.
407 *
408 * If ill_ipif was not properly initialized (i.e low on memory),
409 * then no interfaces to clean up. In this case just clean up the
410 * ill.
411 */
412 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
413 ipif_free(ipif);
414
415 /*
416 * clean out all the nce_t entries that depend on this
417 * ill for the ill_phys_addr.
418 */
419 nce_flush(ill, B_TRUE);
420
421 /* Clean up msgs on pending upcalls for mrouted */
422 reset_mrt_ill(ill);
423
424 update_conn_ill(ill, ipst);
425
426 /*
427 * Remove multicast references added as a result of calls to
428 * ip_join_allmulti().
429 */
430 ip_purge_allmulti(ill);
431
432 /*
433 * If the ill being deleted is under IPMP, boot it out of the illgrp.
434 */
435 if (IS_UNDER_IPMP(ill))
436 ipmp_ill_leave_illgrp(ill);
437
438 /*
439 * ill_down will arrange to blow off any IRE's dependent on this
440 * ILL, and shut down fragmentation reassembly.
441 */
442 ill_down(ill);
443
444 /* Let SCTP know, so that it can remove this from its list. */
445 sctp_update_ill(ill, SCTP_ILL_REMOVE);
446
447 /*
448 * Walk all CONNs that can have a reference on an ire or nce for this
449 * ill (we actually walk all that now have stale references).
450 */
451 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst);
452
453 /* With IPv6 we have dce_ifindex. Cleanup for neatness */
454 if (ill->ill_isv6)
455 dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst);
456
457 /*
458 * If an address on this ILL is being used as a source address then
459 * clear out the pointers in other ILLs that point to this ILL.
460 */
461 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
462 if (ill->ill_usesrc_grp_next != NULL) {
463 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */
464 ill_disband_usesrc_group(ill);
465 } else { /* consumer of the usesrc ILL */
466 prev_ill = ill_prev_usesrc(ill);
467 prev_ill->ill_usesrc_grp_next =
468 ill->ill_usesrc_grp_next;
469 }
470 }
471 rw_exit(&ipst->ips_ill_g_usesrc_lock);
472 }
473
474 static void
ipif_non_duplicate(ipif_t * ipif)475 ipif_non_duplicate(ipif_t *ipif)
476 {
477 ill_t *ill = ipif->ipif_ill;
478 mutex_enter(&ill->ill_lock);
479 if (ipif->ipif_flags & IPIF_DUPLICATE) {
480 ipif->ipif_flags &= ~IPIF_DUPLICATE;
481 ASSERT(ill->ill_ipif_dup_count > 0);
482 ill->ill_ipif_dup_count--;
483 }
484 mutex_exit(&ill->ill_lock);
485 }
486
487 /*
488 * ill_delete_tail is called from ip_modclose after all references
489 * to the closing ill are gone. The wait is done in ip_modclose
490 */
491 void
ill_delete_tail(ill_t * ill)492 ill_delete_tail(ill_t *ill)
493 {
494 mblk_t **mpp;
495 ipif_t *ipif;
496 ip_stack_t *ipst = ill->ill_ipst;
497
498 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
499 ipif_non_duplicate(ipif);
500 (void) ipif_down_tail(ipif);
501 }
502
503 ASSERT(ill->ill_ipif_dup_count == 0);
504
505 /*
506 * If polling capability is enabled (which signifies direct
507 * upcall into IP and driver has ill saved as a handle),
508 * we need to make sure that unbind has completed before we
509 * let the ill disappear and driver no longer has any reference
510 * to this ill.
511 */
512 mutex_enter(&ill->ill_lock);
513 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS)
514 cv_wait(&ill->ill_cv, &ill->ill_lock);
515 mutex_exit(&ill->ill_lock);
516 ASSERT(!(ill->ill_capabilities &
517 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT)));
518
519 if (ill->ill_net_type != IRE_LOOPBACK)
520 qprocsoff(ill->ill_rq);
521
522 /*
523 * We do an ipsq_flush once again now. New messages could have
524 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls
525 * could also have landed up if an ioctl thread had looked up
526 * the ill before we set the ILL_CONDEMNED flag, but not yet
527 * enqueued the ioctl when we did the ipsq_flush last time.
528 */
529 ipsq_flush(ill);
530
531 /*
532 * Free capabilities.
533 */
534 if (ill->ill_hcksum_capab != NULL) {
535 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t));
536 ill->ill_hcksum_capab = NULL;
537 }
538
539 if (ill->ill_zerocopy_capab != NULL) {
540 kmem_free(ill->ill_zerocopy_capab,
541 sizeof (ill_zerocopy_capab_t));
542 ill->ill_zerocopy_capab = NULL;
543 }
544
545 if (ill->ill_lso_capab != NULL) {
546 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
547 ill->ill_lso_capab = NULL;
548 }
549
550 if (ill->ill_dld_capab != NULL) {
551 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t));
552 ill->ill_dld_capab = NULL;
553 }
554
555 /* Clean up ill_allowed_ips* related state */
556 if (ill->ill_allowed_ips != NULL) {
557 ASSERT(ill->ill_allowed_ips_cnt > 0);
558 kmem_free(ill->ill_allowed_ips,
559 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
560 ill->ill_allowed_ips = NULL;
561 ill->ill_allowed_ips_cnt = 0;
562 }
563
564 while (ill->ill_ipif != NULL)
565 ipif_free_tail(ill->ill_ipif);
566
567 /*
568 * We have removed all references to ilm from conn and the ones joined
569 * within the kernel.
570 *
571 * We don't walk conns, mrts and ires because
572 *
573 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts.
574 * 2) ill_down ->ill_downi walks all the ires and cleans up
575 * ill references.
576 */
577
578 /*
579 * If this ill is an IPMP meta-interface, blow away the illgrp. This
580 * is safe to do because the illgrp has already been unlinked from the
581 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it.
582 */
583 if (IS_IPMP(ill)) {
584 ipmp_illgrp_destroy(ill->ill_grp);
585 ill->ill_grp = NULL;
586 }
587
588 if (ill->ill_mphysaddr_list != NULL) {
589 multiphysaddr_t *mpa, *tmpa;
590
591 mpa = ill->ill_mphysaddr_list;
592 ill->ill_mphysaddr_list = NULL;
593 while (mpa) {
594 tmpa = mpa->mpa_next;
595 kmem_free(mpa, sizeof (*mpa));
596 mpa = tmpa;
597 }
598 }
599 /*
600 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free
601 * could free the phyint. No more reference to the phyint after this
602 * point.
603 */
604 (void) ill_glist_delete(ill);
605
606 if (ill->ill_frag_ptr != NULL) {
607 uint_t count;
608
609 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
610 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock);
611 }
612 mi_free(ill->ill_frag_ptr);
613 ill->ill_frag_ptr = NULL;
614 ill->ill_frag_hash_tbl = NULL;
615 }
616
617 freemsg(ill->ill_nd_lla_mp);
618 /* Free all retained control messages. */
619 mpp = &ill->ill_first_mp_to_free;
620 do {
621 while (mpp[0]) {
622 mblk_t *mp;
623 mblk_t *mp1;
624
625 mp = mpp[0];
626 mpp[0] = mp->b_next;
627 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
628 mp1->b_next = NULL;
629 mp1->b_prev = NULL;
630 }
631 freemsg(mp);
632 }
633 } while (mpp++ != &ill->ill_last_mp_to_free);
634
635 ill_free_mib(ill);
636
637 #ifdef DEBUG
638 ill_trace_cleanup(ill);
639 #endif
640
641 /* The default multicast interface might have changed */
642 ire_increment_multicast_generation(ipst, ill->ill_isv6);
643
644 /* Drop refcnt here */
645 netstack_rele(ill->ill_ipst->ips_netstack);
646 ill->ill_ipst = NULL;
647 }
648
649 static void
ill_free_mib(ill_t * ill)650 ill_free_mib(ill_t *ill)
651 {
652 ip_stack_t *ipst = ill->ill_ipst;
653
654 /*
655 * MIB statistics must not be lost, so when an interface
656 * goes away the counter values will be added to the global
657 * MIBs.
658 */
659 if (ill->ill_ip_mib != NULL) {
660 if (ill->ill_isv6) {
661 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib,
662 ill->ill_ip_mib);
663 } else {
664 ip_mib2_add_ip_stats(&ipst->ips_ip_mib,
665 ill->ill_ip_mib);
666 }
667
668 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
669 ill->ill_ip_mib = NULL;
670 }
671 if (ill->ill_icmp6_mib != NULL) {
672 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib,
673 ill->ill_icmp6_mib);
674 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib));
675 ill->ill_icmp6_mib = NULL;
676 }
677 }
678
679 /*
680 * Concatenate together a physical address and a sap.
681 *
682 * Sap_lengths are interpreted as follows:
683 * sap_length == 0 ==> no sap
684 * sap_length > 0 ==> sap is at the head of the dlpi address
685 * sap_length < 0 ==> sap is at the tail of the dlpi address
686 */
687 static void
ill_dlur_copy_address(uchar_t * phys_src,uint_t phys_length,t_scalar_t sap_src,t_scalar_t sap_length,uchar_t * dst)688 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length,
689 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst)
690 {
691 uint16_t sap_addr = (uint16_t)sap_src;
692
693 if (sap_length == 0) {
694 if (phys_src == NULL)
695 bzero(dst, phys_length);
696 else
697 bcopy(phys_src, dst, phys_length);
698 } else if (sap_length < 0) {
699 if (phys_src == NULL)
700 bzero(dst, phys_length);
701 else
702 bcopy(phys_src, dst, phys_length);
703 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr));
704 } else {
705 bcopy(&sap_addr, dst, sizeof (sap_addr));
706 if (phys_src == NULL)
707 bzero((char *)dst + sap_length, phys_length);
708 else
709 bcopy(phys_src, (char *)dst + sap_length, phys_length);
710 }
711 }
712
713 /*
714 * Generate a dl_unitdata_req mblk for the device and address given.
715 * addr_length is the length of the physical portion of the address.
716 * If addr is NULL include an all zero address of the specified length.
717 * TRUE? In any case, addr_length is taken to be the entire length of the
718 * dlpi address, including the absolute value of sap_length.
719 */
720 mblk_t *
ill_dlur_gen(uchar_t * addr,uint_t addr_length,t_uscalar_t sap,t_scalar_t sap_length)721 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap,
722 t_scalar_t sap_length)
723 {
724 dl_unitdata_req_t *dlur;
725 mblk_t *mp;
726 t_scalar_t abs_sap_length; /* absolute value */
727
728 abs_sap_length = ABS(sap_length);
729 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length,
730 DL_UNITDATA_REQ);
731 if (mp == NULL)
732 return (NULL);
733 dlur = (dl_unitdata_req_t *)mp->b_rptr;
734 /* HACK: accomodate incompatible DLPI drivers */
735 if (addr_length == 8)
736 addr_length = 6;
737 dlur->dl_dest_addr_length = addr_length + abs_sap_length;
738 dlur->dl_dest_addr_offset = sizeof (*dlur);
739 dlur->dl_priority.dl_min = 0;
740 dlur->dl_priority.dl_max = 0;
741 ill_dlur_copy_address(addr, addr_length, sap, sap_length,
742 (uchar_t *)&dlur[1]);
743 return (mp);
744 }
745
746 /*
747 * Add the pending mp to the list. There can be only 1 pending mp
748 * in the list. Any exclusive ioctl that needs to wait for a response
749 * from another module or driver needs to use this function to set
750 * the ipx_pending_mp to the ioctl mblk and wait for the response from
751 * the other module/driver. This is also used while waiting for the
752 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif.
753 */
754 boolean_t
ipsq_pending_mp_add(conn_t * connp,ipif_t * ipif,queue_t * q,mblk_t * add_mp,int waitfor)755 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp,
756 int waitfor)
757 {
758 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop;
759
760 ASSERT(IAM_WRITER_IPIF(ipif));
761 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
762 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
763 ASSERT(ipx->ipx_pending_mp == NULL);
764 /*
765 * The caller may be using a different ipif than the one passed into
766 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4
767 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT
768 * that `ipx_current_ipif == ipif'.
769 */
770 ASSERT(ipx->ipx_current_ipif != NULL);
771
772 /*
773 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the
774 * driver.
775 */
776 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) ||
777 (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) ||
778 (DB_TYPE(add_mp) == M_PCPROTO));
779
780 if (connp != NULL) {
781 ASSERT(MUTEX_HELD(&connp->conn_lock));
782 /*
783 * Return error if the conn has started closing. The conn
784 * could have finished cleaning up the pending mp list,
785 * If so we should not add another mp to the list negating
786 * the cleanup.
787 */
788 if (connp->conn_state_flags & CONN_CLOSING)
789 return (B_FALSE);
790 }
791 mutex_enter(&ipx->ipx_lock);
792 ipx->ipx_pending_ipif = ipif;
793 /*
794 * Note down the queue in b_queue. This will be returned by
795 * ipsq_pending_mp_get. Caller will then use these values to restart
796 * the processing
797 */
798 add_mp->b_next = NULL;
799 add_mp->b_queue = q;
800 ipx->ipx_pending_mp = add_mp;
801 ipx->ipx_waitfor = waitfor;
802 mutex_exit(&ipx->ipx_lock);
803
804 if (connp != NULL)
805 connp->conn_oper_pending_ill = ipif->ipif_ill;
806
807 return (B_TRUE);
808 }
809
810 /*
811 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp
812 * queued in the list.
813 */
814 mblk_t *
ipsq_pending_mp_get(ipsq_t * ipsq,conn_t ** connpp)815 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp)
816 {
817 mblk_t *curr = NULL;
818 ipxop_t *ipx = ipsq->ipsq_xop;
819
820 *connpp = NULL;
821 mutex_enter(&ipx->ipx_lock);
822 if (ipx->ipx_pending_mp == NULL) {
823 mutex_exit(&ipx->ipx_lock);
824 return (NULL);
825 }
826
827 /* There can be only 1 such excl message */
828 curr = ipx->ipx_pending_mp;
829 ASSERT(curr->b_next == NULL);
830 ipx->ipx_pending_ipif = NULL;
831 ipx->ipx_pending_mp = NULL;
832 ipx->ipx_waitfor = 0;
833 mutex_exit(&ipx->ipx_lock);
834
835 if (CONN_Q(curr->b_queue)) {
836 /*
837 * This mp did a refhold on the conn, at the start of the ioctl.
838 * So we can safely return a pointer to the conn to the caller.
839 */
840 *connpp = Q_TO_CONN(curr->b_queue);
841 } else {
842 *connpp = NULL;
843 }
844 curr->b_next = NULL;
845 curr->b_prev = NULL;
846 return (curr);
847 }
848
849 /*
850 * Cleanup the ioctl mp queued in ipx_pending_mp
851 * - Called in the ill_delete path
852 * - Called in the M_ERROR or M_HANGUP path on the ill.
853 * - Called in the conn close path.
854 *
855 * Returns success on finding the pending mblk associated with the ioctl or
856 * exclusive operation in progress, failure otherwise.
857 */
858 boolean_t
ipsq_pending_mp_cleanup(ill_t * ill,conn_t * connp)859 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp)
860 {
861 mblk_t *mp;
862 ipxop_t *ipx;
863 queue_t *q;
864 ipif_t *ipif;
865 int cmd;
866
867 ASSERT(IAM_WRITER_ILL(ill));
868 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
869
870 mutex_enter(&ipx->ipx_lock);
871 mp = ipx->ipx_pending_mp;
872 if (connp != NULL) {
873 if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) {
874 /*
875 * Nothing to clean since the conn that is closing
876 * does not have a matching pending mblk in
877 * ipx_pending_mp.
878 */
879 mutex_exit(&ipx->ipx_lock);
880 return (B_FALSE);
881 }
882 } else {
883 /*
884 * A non-zero ill_error signifies we are called in the
885 * M_ERROR or M_HANGUP path and we need to unconditionally
886 * abort any current ioctl and do the corresponding cleanup.
887 * A zero ill_error means we are in the ill_delete path and
888 * we do the cleanup only if there is a pending mp.
889 */
890 if (mp == NULL && ill->ill_error == 0) {
891 mutex_exit(&ipx->ipx_lock);
892 return (B_FALSE);
893 }
894 }
895
896 /* Now remove from the ipx_pending_mp */
897 ipx->ipx_pending_mp = NULL;
898 ipif = ipx->ipx_pending_ipif;
899 ipx->ipx_pending_ipif = NULL;
900 ipx->ipx_waitfor = 0;
901 ipx->ipx_current_ipif = NULL;
902 cmd = ipx->ipx_current_ioctl;
903 ipx->ipx_current_ioctl = 0;
904 ipx->ipx_current_done = B_TRUE;
905 mutex_exit(&ipx->ipx_lock);
906
907 if (mp == NULL)
908 return (B_FALSE);
909
910 q = mp->b_queue;
911 mp->b_next = NULL;
912 mp->b_prev = NULL;
913 mp->b_queue = NULL;
914
915 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) {
916 DTRACE_PROBE4(ipif__ioctl,
917 char *, "ipsq_pending_mp_cleanup",
918 int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill,
919 ipif_t *, ipif);
920 if (connp == NULL) {
921 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
922 } else {
923 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL);
924 mutex_enter(&ipif->ipif_ill->ill_lock);
925 ipif->ipif_state_flags &= ~IPIF_CHANGING;
926 mutex_exit(&ipif->ipif_ill->ill_lock);
927 }
928 } else {
929 inet_freemsg(mp);
930 }
931 return (B_TRUE);
932 }
933
934 /*
935 * Called in the conn close path and ill delete path
936 */
937 static void
ipsq_xopq_mp_cleanup(ill_t * ill,conn_t * connp)938 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp)
939 {
940 ipsq_t *ipsq;
941 mblk_t *prev;
942 mblk_t *curr;
943 mblk_t *next;
944 queue_t *wq, *rq = NULL;
945 mblk_t *tmp_list = NULL;
946
947 ASSERT(IAM_WRITER_ILL(ill));
948 if (connp != NULL)
949 wq = CONNP_TO_WQ(connp);
950 else
951 wq = ill->ill_wq;
952
953 /*
954 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard
955 * against this here.
956 */
957 if (wq != NULL)
958 rq = RD(wq);
959
960 ipsq = ill->ill_phyint->phyint_ipsq;
961 /*
962 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any.
963 * In the case of ioctl from a conn, there can be only 1 mp
964 * queued on the ipsq. If an ill is being unplumbed flush all
965 * the messages.
966 */
967 mutex_enter(&ipsq->ipsq_lock);
968 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL;
969 curr = next) {
970 next = curr->b_next;
971 if (connp == NULL ||
972 (curr->b_queue == wq || curr->b_queue == rq)) {
973 /* Unlink the mblk from the pending mp list */
974 if (prev != NULL) {
975 prev->b_next = curr->b_next;
976 } else {
977 ASSERT(ipsq->ipsq_xopq_mphead == curr);
978 ipsq->ipsq_xopq_mphead = curr->b_next;
979 }
980 if (ipsq->ipsq_xopq_mptail == curr)
981 ipsq->ipsq_xopq_mptail = prev;
982 /*
983 * Create a temporary list and release the ipsq lock
984 * New elements are added to the head of the tmp_list
985 */
986 curr->b_next = tmp_list;
987 tmp_list = curr;
988 } else {
989 prev = curr;
990 }
991 }
992 mutex_exit(&ipsq->ipsq_lock);
993
994 while (tmp_list != NULL) {
995 curr = tmp_list;
996 tmp_list = curr->b_next;
997 curr->b_next = NULL;
998 curr->b_prev = NULL;
999 wq = curr->b_queue;
1000 curr->b_queue = NULL;
1001 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) {
1002 DTRACE_PROBE4(ipif__ioctl,
1003 char *, "ipsq_xopq_mp_cleanup",
1004 int, 0, ill_t *, NULL, ipif_t *, NULL);
1005 ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ?
1006 CONN_CLOSE : NO_COPYOUT, NULL);
1007 } else {
1008 /*
1009 * IP-MT XXX In the case of TLI/XTI bind / optmgmt
1010 * this can't be just inet_freemsg. we have to
1011 * restart it otherwise the thread will be stuck.
1012 */
1013 inet_freemsg(curr);
1014 }
1015 }
1016 }
1017
1018 /*
1019 * This conn has started closing. Cleanup any pending ioctl from this conn.
1020 * STREAMS ensures that there can be at most 1 active ioctl on a stream.
1021 */
1022 void
conn_ioctl_cleanup(conn_t * connp)1023 conn_ioctl_cleanup(conn_t *connp)
1024 {
1025 ipsq_t *ipsq;
1026 ill_t *ill;
1027 boolean_t refheld;
1028
1029 /*
1030 * Check for a queued ioctl. If the ioctl has not yet started, the mp
1031 * is pending in the list headed by ipsq_xopq_head. If the ioctl has
1032 * started the mp could be present in ipx_pending_mp. Note that if
1033 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and
1034 * not yet queued anywhere. In this case, the conn close code will wait
1035 * until the conn_ref is dropped. If the stream was a tcp stream, then
1036 * tcp_close will wait first until all ioctls have completed for this
1037 * conn.
1038 */
1039 mutex_enter(&connp->conn_lock);
1040 ill = connp->conn_oper_pending_ill;
1041 if (ill == NULL) {
1042 mutex_exit(&connp->conn_lock);
1043 return;
1044 }
1045
1046 /*
1047 * We may not be able to refhold the ill if the ill/ipif
1048 * is changing. But we need to make sure that the ill will
1049 * not vanish. So we just bump up the ill_waiter count.
1050 */
1051 refheld = ill_waiter_inc(ill);
1052 mutex_exit(&connp->conn_lock);
1053 if (refheld) {
1054 if (ipsq_enter(ill, B_TRUE, NEW_OP)) {
1055 ill_waiter_dcr(ill);
1056 /*
1057 * Check whether this ioctl has started and is
1058 * pending. If it is not found there then check
1059 * whether this ioctl has not even started and is in
1060 * the ipsq_xopq list.
1061 */
1062 if (!ipsq_pending_mp_cleanup(ill, connp))
1063 ipsq_xopq_mp_cleanup(ill, connp);
1064 ipsq = ill->ill_phyint->phyint_ipsq;
1065 ipsq_exit(ipsq);
1066 return;
1067 }
1068 }
1069
1070 /*
1071 * The ill is also closing and we could not bump up the
1072 * ill_waiter_count or we could not enter the ipsq. Leave
1073 * the cleanup to ill_delete
1074 */
1075 mutex_enter(&connp->conn_lock);
1076 while (connp->conn_oper_pending_ill != NULL)
1077 cv_wait(&connp->conn_refcv, &connp->conn_lock);
1078 mutex_exit(&connp->conn_lock);
1079 if (refheld)
1080 ill_waiter_dcr(ill);
1081 }
1082
1083 /*
1084 * ipcl_walk function for cleaning up conn_*_ill fields.
1085 * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and
1086 * conn_bound_if in place. We prefer dropping
1087 * packets instead of sending them out the wrong interface, or accepting
1088 * packets from the wrong ifindex.
1089 */
1090 static void
conn_cleanup_ill(conn_t * connp,caddr_t arg)1091 conn_cleanup_ill(conn_t *connp, caddr_t arg)
1092 {
1093 ill_t *ill = (ill_t *)arg;
1094
1095 mutex_enter(&connp->conn_lock);
1096 if (connp->conn_dhcpinit_ill == ill) {
1097 connp->conn_dhcpinit_ill = NULL;
1098 ASSERT(ill->ill_dhcpinit != 0);
1099 atomic_dec_32(&ill->ill_dhcpinit);
1100 ill_set_inputfn(ill);
1101 }
1102 mutex_exit(&connp->conn_lock);
1103 }
1104
1105 static int
ill_down_ipifs_tail(ill_t * ill)1106 ill_down_ipifs_tail(ill_t *ill)
1107 {
1108 ipif_t *ipif;
1109 int err;
1110
1111 ASSERT(IAM_WRITER_ILL(ill));
1112 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
1113 ipif_non_duplicate(ipif);
1114 /*
1115 * ipif_down_tail will call arp_ll_down on the last ipif
1116 * and typically return EINPROGRESS when the DL_UNBIND is sent.
1117 */
1118 if ((err = ipif_down_tail(ipif)) != 0)
1119 return (err);
1120 }
1121 return (0);
1122 }
1123
1124 /* ARGSUSED */
1125 void
ipif_all_down_tail(ipsq_t * ipsq,queue_t * q,mblk_t * mp,void * dummy_arg)1126 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
1127 {
1128 ASSERT(IAM_WRITER_IPSQ(ipsq));
1129 (void) ill_down_ipifs_tail(q->q_ptr);
1130 freemsg(mp);
1131 ipsq_current_finish(ipsq);
1132 }
1133
1134 /*
1135 * ill_down_start is called when we want to down this ill and bring it up again
1136 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down
1137 * all interfaces, but don't tear down any plumbing.
1138 */
1139 boolean_t
ill_down_start(queue_t * q,mblk_t * mp)1140 ill_down_start(queue_t *q, mblk_t *mp)
1141 {
1142 ill_t *ill = q->q_ptr;
1143 ipif_t *ipif;
1144
1145 ASSERT(IAM_WRITER_ILL(ill));
1146 /*
1147 * It is possible that some ioctl is already in progress while we
1148 * received the M_ERROR / M_HANGUP in which case, we need to abort
1149 * the ioctl. ill_down_start() is being processed as CUR_OP rather
1150 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent
1151 * the in progress ioctl from ever completing.
1152 *
1153 * The thread that started the ioctl (if any) must have returned,
1154 * since we are now executing as writer. After the 2 calls below,
1155 * the state of the ipsq and the ill would reflect no trace of any
1156 * pending operation. Subsequently if there is any response to the
1157 * original ioctl from the driver, it would be discarded as an
1158 * unsolicited message from the driver.
1159 */
1160 (void) ipsq_pending_mp_cleanup(ill, NULL);
1161 ill_dlpi_clear_deferred(ill);
1162
1163 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
1164 (void) ipif_down(ipif, NULL, NULL);
1165
1166 ill_down(ill);
1167
1168 /*
1169 * Walk all CONNs that can have a reference on an ire or nce for this
1170 * ill (we actually walk all that now have stale references).
1171 */
1172 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst);
1173
1174 /* With IPv6 we have dce_ifindex. Cleanup for neatness */
1175 if (ill->ill_isv6)
1176 dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst);
1177
1178 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0);
1179
1180 /*
1181 * Atomically test and add the pending mp if references are active.
1182 */
1183 mutex_enter(&ill->ill_lock);
1184 if (!ill_is_quiescent(ill)) {
1185 /* call cannot fail since `conn_t *' argument is NULL */
1186 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
1187 mp, ILL_DOWN);
1188 mutex_exit(&ill->ill_lock);
1189 return (B_FALSE);
1190 }
1191 mutex_exit(&ill->ill_lock);
1192 return (B_TRUE);
1193 }
1194
1195 static void
ill_down(ill_t * ill)1196 ill_down(ill_t *ill)
1197 {
1198 mblk_t *mp;
1199 ip_stack_t *ipst = ill->ill_ipst;
1200
1201 /*
1202 * Blow off any IREs dependent on this ILL.
1203 * The caller needs to handle conn_ixa_cleanup
1204 */
1205 ill_delete_ires(ill);
1206
1207 ire_walk_ill(0, 0, ill_downi, ill, ill);
1208
1209 /* Remove any conn_*_ill depending on this ill */
1210 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst);
1211
1212 /*
1213 * Free state for additional IREs.
1214 */
1215 mutex_enter(&ill->ill_saved_ire_lock);
1216 mp = ill->ill_saved_ire_mp;
1217 ill->ill_saved_ire_mp = NULL;
1218 ill->ill_saved_ire_cnt = 0;
1219 mutex_exit(&ill->ill_saved_ire_lock);
1220 freemsg(mp);
1221 }
1222
1223 /*
1224 * ire_walk routine used to delete every IRE that depends on
1225 * 'ill'. (Always called as writer, and may only be called from ire_walk.)
1226 *
1227 * Note: since the routes added by the kernel are deleted separately,
1228 * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE.
1229 *
1230 * We also remove references on ire_nce_cache entries that refer to the ill.
1231 */
1232 void
ill_downi(ire_t * ire,char * ill_arg)1233 ill_downi(ire_t *ire, char *ill_arg)
1234 {
1235 ill_t *ill = (ill_t *)ill_arg;
1236 nce_t *nce;
1237
1238 mutex_enter(&ire->ire_lock);
1239 nce = ire->ire_nce_cache;
1240 if (nce != NULL && nce->nce_ill == ill)
1241 ire->ire_nce_cache = NULL;
1242 else
1243 nce = NULL;
1244 mutex_exit(&ire->ire_lock);
1245 if (nce != NULL)
1246 nce_refrele(nce);
1247 if (ire->ire_ill == ill) {
1248 /*
1249 * The existing interface binding for ire must be
1250 * deleted before trying to bind the route to another
1251 * interface. However, since we are using the contents of the
1252 * ire after ire_delete, the caller has to ensure that
1253 * CONDEMNED (deleted) ire's are not removed from the list
1254 * when ire_delete() returns. Currently ill_downi() is
1255 * only called as part of ire_walk*() routines, so that
1256 * the irb_refhold() done by ire_walk*() will ensure that
1257 * ire_delete() does not lead to ire_inactive().
1258 */
1259 ASSERT(ire->ire_bucket->irb_refcnt > 0);
1260 ire_delete(ire);
1261 if (ire->ire_unbound)
1262 ire_rebind(ire);
1263 }
1264 }
1265
1266 /* Remove IRE_IF_CLONE on this ill */
1267 void
ill_downi_if_clone(ire_t * ire,char * ill_arg)1268 ill_downi_if_clone(ire_t *ire, char *ill_arg)
1269 {
1270 ill_t *ill = (ill_t *)ill_arg;
1271
1272 ASSERT(ire->ire_type & IRE_IF_CLONE);
1273 if (ire->ire_ill == ill)
1274 ire_delete(ire);
1275 }
1276
1277 /* Consume an M_IOCACK of the fastpath probe. */
1278 void
ill_fastpath_ack(ill_t * ill,mblk_t * mp)1279 ill_fastpath_ack(ill_t *ill, mblk_t *mp)
1280 {
1281 mblk_t *mp1 = mp;
1282
1283 /*
1284 * If this was the first attempt turn on the fastpath probing.
1285 */
1286 mutex_enter(&ill->ill_lock);
1287 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS)
1288 ill->ill_dlpi_fastpath_state = IDS_OK;
1289 mutex_exit(&ill->ill_lock);
1290
1291 /* Free the M_IOCACK mblk, hold on to the data */
1292 mp = mp->b_cont;
1293 freeb(mp1);
1294 if (mp == NULL)
1295 return;
1296 if (mp->b_cont != NULL)
1297 nce_fastpath_update(ill, mp);
1298 else
1299 ip0dbg(("ill_fastpath_ack: no b_cont\n"));
1300 freemsg(mp);
1301 }
1302
1303 /*
1304 * Throw an M_IOCTL message downstream asking "do you know fastpath?"
1305 * The data portion of the request is a dl_unitdata_req_t template for
1306 * what we would send downstream in the absence of a fastpath confirmation.
1307 */
1308 int
ill_fastpath_probe(ill_t * ill,mblk_t * dlur_mp)1309 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp)
1310 {
1311 struct iocblk *ioc;
1312 mblk_t *mp;
1313
1314 if (dlur_mp == NULL)
1315 return (EINVAL);
1316
1317 mutex_enter(&ill->ill_lock);
1318 switch (ill->ill_dlpi_fastpath_state) {
1319 case IDS_FAILED:
1320 /*
1321 * Driver NAKed the first fastpath ioctl - assume it doesn't
1322 * support it.
1323 */
1324 mutex_exit(&ill->ill_lock);
1325 return (ENOTSUP);
1326 case IDS_UNKNOWN:
1327 /* This is the first probe */
1328 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS;
1329 break;
1330 default:
1331 break;
1332 }
1333 mutex_exit(&ill->ill_lock);
1334
1335 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL)
1336 return (EAGAIN);
1337
1338 mp->b_cont = copyb(dlur_mp);
1339 if (mp->b_cont == NULL) {
1340 freeb(mp);
1341 return (EAGAIN);
1342 }
1343
1344 ioc = (struct iocblk *)mp->b_rptr;
1345 ioc->ioc_count = msgdsize(mp->b_cont);
1346
1347 DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe",
1348 char *, "DL_IOC_HDR_INFO", ill_t *, ill);
1349 putnext(ill->ill_wq, mp);
1350 return (0);
1351 }
1352
1353 void
ill_capability_probe(ill_t * ill)1354 ill_capability_probe(ill_t *ill)
1355 {
1356 mblk_t *mp;
1357
1358 ASSERT(IAM_WRITER_ILL(ill));
1359
1360 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN &&
1361 ill->ill_dlpi_capab_state != IDCS_FAILED)
1362 return;
1363
1364 /*
1365 * We are starting a new cycle of capability negotiation.
1366 * Free up the capab reset messages of any previous incarnation.
1367 * We will do a fresh allocation when we get the response to our probe
1368 */
1369 if (ill->ill_capab_reset_mp != NULL) {
1370 freemsg(ill->ill_capab_reset_mp);
1371 ill->ill_capab_reset_mp = NULL;
1372 }
1373
1374 ip1dbg(("ill_capability_probe: starting capability negotiation\n"));
1375
1376 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ);
1377 if (mp == NULL)
1378 return;
1379
1380 ill_capability_send(ill, mp);
1381 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT;
1382 }
1383
1384 void
ill_capability_reset(ill_t * ill,boolean_t reneg)1385 ill_capability_reset(ill_t *ill, boolean_t reneg)
1386 {
1387 ASSERT(IAM_WRITER_ILL(ill));
1388
1389 if (ill->ill_dlpi_capab_state != IDCS_OK)
1390 return;
1391
1392 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT;
1393
1394 ill_capability_send(ill, ill->ill_capab_reset_mp);
1395 ill->ill_capab_reset_mp = NULL;
1396 /*
1397 * We turn off all capabilities except those pertaining to
1398 * direct function call capabilities viz. ILL_CAPAB_DLD*
1399 * which will be turned off by the corresponding reset functions.
1400 */
1401 ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY);
1402 }
1403
1404 static void
ill_capability_reset_alloc(ill_t * ill)1405 ill_capability_reset_alloc(ill_t *ill)
1406 {
1407 mblk_t *mp;
1408 size_t size = 0;
1409 int err;
1410 dl_capability_req_t *capb;
1411
1412 ASSERT(IAM_WRITER_ILL(ill));
1413 ASSERT(ill->ill_capab_reset_mp == NULL);
1414
1415 if (ILL_HCKSUM_CAPABLE(ill)) {
1416 size += sizeof (dl_capability_sub_t) +
1417 sizeof (dl_capab_hcksum_t);
1418 }
1419
1420 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) {
1421 size += sizeof (dl_capability_sub_t) +
1422 sizeof (dl_capab_zerocopy_t);
1423 }
1424
1425 if (ill->ill_capabilities & ILL_CAPAB_DLD) {
1426 size += sizeof (dl_capability_sub_t) +
1427 sizeof (dl_capab_dld_t);
1428 }
1429
1430 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED,
1431 STR_NOSIG, &err);
1432
1433 mp->b_datap->db_type = M_PROTO;
1434 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t));
1435
1436 capb = (dl_capability_req_t *)mp->b_rptr;
1437 capb->dl_primitive = DL_CAPABILITY_REQ;
1438 capb->dl_sub_offset = sizeof (dl_capability_req_t);
1439 capb->dl_sub_length = size;
1440
1441 mp->b_wptr += sizeof (dl_capability_req_t);
1442
1443 /*
1444 * Each handler fills in the corresponding dl_capability_sub_t
1445 * inside the mblk,
1446 */
1447 ill_capability_hcksum_reset_fill(ill, mp);
1448 ill_capability_zerocopy_reset_fill(ill, mp);
1449 ill_capability_dld_reset_fill(ill, mp);
1450
1451 ill->ill_capab_reset_mp = mp;
1452 }
1453
1454 static void
ill_capability_id_ack(ill_t * ill,mblk_t * mp,dl_capability_sub_t * outers)1455 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers)
1456 {
1457 dl_capab_id_t *id_ic;
1458 uint_t sub_dl_cap = outers->dl_cap;
1459 dl_capability_sub_t *inners;
1460 uint8_t *capend;
1461
1462 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER);
1463
1464 /*
1465 * Note: range checks here are not absolutely sufficient to
1466 * make us robust against malformed messages sent by drivers;
1467 * this is in keeping with the rest of IP's dlpi handling.
1468 * (Remember, it's coming from something else in the kernel
1469 * address space)
1470 */
1471
1472 capend = (uint8_t *)(outers + 1) + outers->dl_length;
1473 if (capend > mp->b_wptr) {
1474 cmn_err(CE_WARN, "ill_capability_id_ack: "
1475 "malformed sub-capability too long for mblk");
1476 return;
1477 }
1478
1479 id_ic = (dl_capab_id_t *)(outers + 1);
1480
1481 inners = &id_ic->id_subcap;
1482 if (outers->dl_length < sizeof (*id_ic) ||
1483 inners->dl_length > (outers->dl_length - sizeof (*inners))) {
1484 cmn_err(CE_WARN, "ill_capability_id_ack: malformed "
1485 "encapsulated capab type %d too long for mblk",
1486 inners->dl_cap);
1487 return;
1488 }
1489
1490 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) {
1491 ip1dbg(("ill_capability_id_ack: mid token for capab type %d "
1492 "isn't as expected; pass-thru module(s) detected, "
1493 "discarding capability\n", inners->dl_cap));
1494 return;
1495 }
1496
1497 /* Process the encapsulated sub-capability */
1498 ill_capability_dispatch(ill, mp, inners);
1499 }
1500
1501 static void
ill_capability_dld_reset_fill(ill_t * ill,mblk_t * mp)1502 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp)
1503 {
1504 dl_capability_sub_t *dl_subcap;
1505
1506 if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
1507 return;
1508
1509 /*
1510 * The dl_capab_dld_t that follows the dl_capability_sub_t is not
1511 * initialized below since it is not used by DLD.
1512 */
1513 dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1514 dl_subcap->dl_cap = DL_CAPAB_DLD;
1515 dl_subcap->dl_length = sizeof (dl_capab_dld_t);
1516
1517 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t);
1518 }
1519
1520 static void
ill_capability_dispatch(ill_t * ill,mblk_t * mp,dl_capability_sub_t * subp)1521 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp)
1522 {
1523 /*
1524 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK
1525 * is only to get the VRRP capability.
1526 *
1527 * Note that we cannot check ill_ipif_up_count here since
1528 * ill_ipif_up_count is only incremented when the resolver is setup.
1529 * That is done asynchronously, and can race with this function.
1530 */
1531 if (!ill->ill_dl_up) {
1532 if (subp->dl_cap == DL_CAPAB_VRRP)
1533 ill_capability_vrrp_ack(ill, mp, subp);
1534 return;
1535 }
1536
1537 switch (subp->dl_cap) {
1538 case DL_CAPAB_HCKSUM:
1539 ill_capability_hcksum_ack(ill, mp, subp);
1540 break;
1541 case DL_CAPAB_ZEROCOPY:
1542 ill_capability_zerocopy_ack(ill, mp, subp);
1543 break;
1544 case DL_CAPAB_DLD:
1545 ill_capability_dld_ack(ill, mp, subp);
1546 break;
1547 case DL_CAPAB_VRRP:
1548 break;
1549 default:
1550 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n",
1551 subp->dl_cap));
1552 }
1553 }
1554
1555 /*
1556 * Process the vrrp capability received from a DLS Provider. isub must point
1557 * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message.
1558 */
1559 static void
ill_capability_vrrp_ack(ill_t * ill,mblk_t * mp,dl_capability_sub_t * isub)1560 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1561 {
1562 dl_capab_vrrp_t *vrrp;
1563 uint_t sub_dl_cap = isub->dl_cap;
1564 uint8_t *capend;
1565
1566 ASSERT(IAM_WRITER_ILL(ill));
1567 ASSERT(sub_dl_cap == DL_CAPAB_VRRP);
1568
1569 /*
1570 * Note: range checks here are not absolutely sufficient to
1571 * make us robust against malformed messages sent by drivers;
1572 * this is in keeping with the rest of IP's dlpi handling.
1573 * (Remember, it's coming from something else in the kernel
1574 * address space)
1575 */
1576 capend = (uint8_t *)(isub + 1) + isub->dl_length;
1577 if (capend > mp->b_wptr) {
1578 cmn_err(CE_WARN, "ill_capability_vrrp_ack: "
1579 "malformed sub-capability too long for mblk");
1580 return;
1581 }
1582 vrrp = (dl_capab_vrrp_t *)(isub + 1);
1583
1584 /*
1585 * Compare the IP address family and set ILLF_VRRP for the right ill.
1586 */
1587 if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) ||
1588 (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) {
1589 ill->ill_flags |= ILLF_VRRP;
1590 }
1591 }
1592
1593 /*
1594 * Process a hardware checksum offload capability negotiation ack received
1595 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM)
1596 * of a DL_CAPABILITY_ACK message.
1597 */
1598 static void
ill_capability_hcksum_ack(ill_t * ill,mblk_t * mp,dl_capability_sub_t * isub)1599 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1600 {
1601 dl_capability_req_t *ocap;
1602 dl_capab_hcksum_t *ihck, *ohck;
1603 ill_hcksum_capab_t **ill_hcksum;
1604 mblk_t *nmp = NULL;
1605 uint_t sub_dl_cap = isub->dl_cap;
1606 uint8_t *capend;
1607
1608 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM);
1609
1610 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab;
1611
1612 /*
1613 * Note: range checks here are not absolutely sufficient to
1614 * make us robust against malformed messages sent by drivers;
1615 * this is in keeping with the rest of IP's dlpi handling.
1616 * (Remember, it's coming from something else in the kernel
1617 * address space)
1618 */
1619 capend = (uint8_t *)(isub + 1) + isub->dl_length;
1620 if (capend > mp->b_wptr) {
1621 cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1622 "malformed sub-capability too long for mblk");
1623 return;
1624 }
1625
1626 /*
1627 * There are two types of acks we process here:
1628 * 1. acks in reply to a (first form) generic capability req
1629 * (no ENABLE flag set)
1630 * 2. acks in reply to a ENABLE capability req.
1631 * (ENABLE flag set)
1632 */
1633 ihck = (dl_capab_hcksum_t *)(isub + 1);
1634
1635 if (ihck->hcksum_version != HCKSUM_VERSION_1) {
1636 cmn_err(CE_CONT, "ill_capability_hcksum_ack: "
1637 "unsupported hardware checksum "
1638 "sub-capability (version %d, expected %d)",
1639 ihck->hcksum_version, HCKSUM_VERSION_1);
1640 return;
1641 }
1642
1643 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) {
1644 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware "
1645 "checksum capability isn't as expected; pass-thru "
1646 "module(s) detected, discarding capability\n"));
1647 return;
1648 }
1649
1650 #define CURR_HCKSUM_CAPAB \
1651 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \
1652 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM)
1653
1654 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) &&
1655 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) {
1656 /* do ENABLE processing */
1657 if (*ill_hcksum == NULL) {
1658 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t),
1659 KM_NOSLEEP);
1660
1661 if (*ill_hcksum == NULL) {
1662 cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1663 "could not enable hcksum version %d "
1664 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION,
1665 ill->ill_name);
1666 return;
1667 }
1668 }
1669
1670 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version;
1671 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags;
1672 ill->ill_capabilities |= ILL_CAPAB_HCKSUM;
1673 ip1dbg(("ill_capability_hcksum_ack: interface %s "
1674 "has enabled hardware checksumming\n ",
1675 ill->ill_name));
1676 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) {
1677 /*
1678 * Enabling hardware checksum offload
1679 * Currently IP supports {TCP,UDP}/IPv4
1680 * partial and full cksum offload and
1681 * IPv4 header checksum offload.
1682 * Allocate new mblk which will
1683 * contain a new capability request
1684 * to enable hardware checksum offload.
1685 */
1686 uint_t size;
1687 uchar_t *rptr;
1688
1689 size = sizeof (dl_capability_req_t) +
1690 sizeof (dl_capability_sub_t) + isub->dl_length;
1691
1692 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1693 cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1694 "could not enable hardware cksum for %s (ENOMEM)\n",
1695 ill->ill_name);
1696 return;
1697 }
1698
1699 rptr = nmp->b_rptr;
1700 /* initialize dl_capability_req_t */
1701 ocap = (dl_capability_req_t *)nmp->b_rptr;
1702 ocap->dl_sub_offset =
1703 sizeof (dl_capability_req_t);
1704 ocap->dl_sub_length =
1705 sizeof (dl_capability_sub_t) +
1706 isub->dl_length;
1707 nmp->b_rptr += sizeof (dl_capability_req_t);
1708
1709 /* initialize dl_capability_sub_t */
1710 bcopy(isub, nmp->b_rptr, sizeof (*isub));
1711 nmp->b_rptr += sizeof (*isub);
1712
1713 /* initialize dl_capab_hcksum_t */
1714 ohck = (dl_capab_hcksum_t *)nmp->b_rptr;
1715 bcopy(ihck, ohck, sizeof (*ihck));
1716
1717 nmp->b_rptr = rptr;
1718 ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
1719
1720 /* Set ENABLE flag */
1721 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB;
1722 ohck->hcksum_txflags |= HCKSUM_ENABLE;
1723
1724 /*
1725 * nmp points to a DL_CAPABILITY_REQ message to enable
1726 * hardware checksum acceleration.
1727 */
1728 ill_capability_send(ill, nmp);
1729 } else {
1730 ip1dbg(("ill_capability_hcksum_ack: interface %s has "
1731 "advertised %x hardware checksum capability flags\n",
1732 ill->ill_name, ihck->hcksum_txflags));
1733 }
1734 }
1735
1736 static void
ill_capability_hcksum_reset_fill(ill_t * ill,mblk_t * mp)1737 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp)
1738 {
1739 dl_capab_hcksum_t *hck_subcap;
1740 dl_capability_sub_t *dl_subcap;
1741
1742 if (!ILL_HCKSUM_CAPABLE(ill))
1743 return;
1744
1745 ASSERT(ill->ill_hcksum_capab != NULL);
1746
1747 dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1748 dl_subcap->dl_cap = DL_CAPAB_HCKSUM;
1749 dl_subcap->dl_length = sizeof (*hck_subcap);
1750
1751 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1);
1752 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version;
1753 hck_subcap->hcksum_txflags = 0;
1754
1755 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap);
1756 }
1757
1758 static void
ill_capability_zerocopy_ack(ill_t * ill,mblk_t * mp,dl_capability_sub_t * isub)1759 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1760 {
1761 mblk_t *nmp = NULL;
1762 dl_capability_req_t *oc;
1763 dl_capab_zerocopy_t *zc_ic, *zc_oc;
1764 ill_zerocopy_capab_t **ill_zerocopy_capab;
1765 uint_t sub_dl_cap = isub->dl_cap;
1766 uint8_t *capend;
1767
1768 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY);
1769
1770 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab;
1771
1772 /*
1773 * Note: range checks here are not absolutely sufficient to
1774 * make us robust against malformed messages sent by drivers;
1775 * this is in keeping with the rest of IP's dlpi handling.
1776 * (Remember, it's coming from something else in the kernel
1777 * address space)
1778 */
1779 capend = (uint8_t *)(isub + 1) + isub->dl_length;
1780 if (capend > mp->b_wptr) {
1781 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1782 "malformed sub-capability too long for mblk");
1783 return;
1784 }
1785
1786 zc_ic = (dl_capab_zerocopy_t *)(isub + 1);
1787 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) {
1788 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: "
1789 "unsupported ZEROCOPY sub-capability (version %d, "
1790 "expected %d)", zc_ic->zerocopy_version,
1791 ZEROCOPY_VERSION_1);
1792 return;
1793 }
1794
1795 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) {
1796 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy "
1797 "capability isn't as expected; pass-thru module(s) "
1798 "detected, discarding capability\n"));
1799 return;
1800 }
1801
1802 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) {
1803 if (*ill_zerocopy_capab == NULL) {
1804 *ill_zerocopy_capab =
1805 kmem_zalloc(sizeof (ill_zerocopy_capab_t),
1806 KM_NOSLEEP);
1807
1808 if (*ill_zerocopy_capab == NULL) {
1809 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1810 "could not enable Zero-copy version %d "
1811 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1,
1812 ill->ill_name);
1813 return;
1814 }
1815 }
1816
1817 ip1dbg(("ill_capability_zerocopy_ack: interface %s "
1818 "supports Zero-copy version %d\n", ill->ill_name,
1819 ZEROCOPY_VERSION_1));
1820
1821 (*ill_zerocopy_capab)->ill_zerocopy_version =
1822 zc_ic->zerocopy_version;
1823 (*ill_zerocopy_capab)->ill_zerocopy_flags =
1824 zc_ic->zerocopy_flags;
1825
1826 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY;
1827 } else {
1828 uint_t size;
1829 uchar_t *rptr;
1830
1831 size = sizeof (dl_capability_req_t) +
1832 sizeof (dl_capability_sub_t) +
1833 sizeof (dl_capab_zerocopy_t);
1834
1835 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1836 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1837 "could not enable zerocopy for %s (ENOMEM)\n",
1838 ill->ill_name);
1839 return;
1840 }
1841
1842 rptr = nmp->b_rptr;
1843 /* initialize dl_capability_req_t */
1844 oc = (dl_capability_req_t *)rptr;
1845 oc->dl_sub_offset = sizeof (dl_capability_req_t);
1846 oc->dl_sub_length = sizeof (dl_capability_sub_t) +
1847 sizeof (dl_capab_zerocopy_t);
1848 rptr += sizeof (dl_capability_req_t);
1849
1850 /* initialize dl_capability_sub_t */
1851 bcopy(isub, rptr, sizeof (*isub));
1852 rptr += sizeof (*isub);
1853
1854 /* initialize dl_capab_zerocopy_t */
1855 zc_oc = (dl_capab_zerocopy_t *)rptr;
1856 *zc_oc = *zc_ic;
1857
1858 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s "
1859 "to enable zero-copy version %d\n", ill->ill_name,
1860 ZEROCOPY_VERSION_1));
1861
1862 /* set VMSAFE_MEM flag */
1863 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM;
1864
1865 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */
1866 ill_capability_send(ill, nmp);
1867 }
1868 }
1869
1870 static void
ill_capability_zerocopy_reset_fill(ill_t * ill,mblk_t * mp)1871 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp)
1872 {
1873 dl_capab_zerocopy_t *zerocopy_subcap;
1874 dl_capability_sub_t *dl_subcap;
1875
1876 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY))
1877 return;
1878
1879 ASSERT(ill->ill_zerocopy_capab != NULL);
1880
1881 dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1882 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY;
1883 dl_subcap->dl_length = sizeof (*zerocopy_subcap);
1884
1885 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1);
1886 zerocopy_subcap->zerocopy_version =
1887 ill->ill_zerocopy_capab->ill_zerocopy_version;
1888 zerocopy_subcap->zerocopy_flags = 0;
1889
1890 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap);
1891 }
1892
1893 /*
1894 * DLD capability
1895 * Refer to dld.h for more information regarding the purpose and usage
1896 * of this capability.
1897 */
1898 static void
ill_capability_dld_ack(ill_t * ill,mblk_t * mp,dl_capability_sub_t * isub)1899 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1900 {
1901 dl_capab_dld_t *dld_ic, dld;
1902 uint_t sub_dl_cap = isub->dl_cap;
1903 uint8_t *capend;
1904 ill_dld_capab_t *idc;
1905
1906 ASSERT(IAM_WRITER_ILL(ill));
1907 ASSERT(sub_dl_cap == DL_CAPAB_DLD);
1908
1909 /*
1910 * Note: range checks here are not absolutely sufficient to
1911 * make us robust against malformed messages sent by drivers;
1912 * this is in keeping with the rest of IP's dlpi handling.
1913 * (Remember, it's coming from something else in the kernel
1914 * address space)
1915 */
1916 capend = (uint8_t *)(isub + 1) + isub->dl_length;
1917 if (capend > mp->b_wptr) {
1918 cmn_err(CE_WARN, "ill_capability_dld_ack: "
1919 "malformed sub-capability too long for mblk");
1920 return;
1921 }
1922 dld_ic = (dl_capab_dld_t *)(isub + 1);
1923 if (dld_ic->dld_version != DLD_CURRENT_VERSION) {
1924 cmn_err(CE_CONT, "ill_capability_dld_ack: "
1925 "unsupported DLD sub-capability (version %d, "
1926 "expected %d)", dld_ic->dld_version,
1927 DLD_CURRENT_VERSION);
1928 return;
1929 }
1930 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) {
1931 ip1dbg(("ill_capability_dld_ack: mid token for dld "
1932 "capability isn't as expected; pass-thru module(s) "
1933 "detected, discarding capability\n"));
1934 return;
1935 }
1936
1937 /*
1938 * Copy locally to ensure alignment.
1939 */
1940 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t));
1941
1942 if ((idc = ill->ill_dld_capab) == NULL) {
1943 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP);
1944 if (idc == NULL) {
1945 cmn_err(CE_WARN, "ill_capability_dld_ack: "
1946 "could not enable DLD version %d "
1947 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION,
1948 ill->ill_name);
1949 return;
1950 }
1951 ill->ill_dld_capab = idc;
1952 }
1953 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab;
1954 idc->idc_capab_dh = (void *)dld.dld_capab_handle;
1955 ip1dbg(("ill_capability_dld_ack: interface %s "
1956 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION));
1957
1958 ill_capability_dld_enable(ill);
1959 }
1960
1961 /*
1962 * Typically capability negotiation between IP and the driver happens via
1963 * DLPI message exchange. However GLD also offers a direct function call
1964 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities,
1965 * But arbitrary function calls into IP or GLD are not permitted, since both
1966 * of them are protected by their own perimeter mechanism. The perimeter can
1967 * be viewed as a coarse lock or serialization mechanism. The hierarchy of
1968 * these perimeters is IP -> MAC. Thus for example to enable the squeue
1969 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter
1970 * to enter the mac perimeter and then do the direct function calls into
1971 * GLD to enable squeue polling. The ring related callbacks from the mac into
1972 * the stack to add, bind, quiesce, restart or cleanup a ring are all
1973 * protected by the mac perimeter.
1974 */
1975 static void
ill_mac_perim_enter(ill_t * ill,mac_perim_handle_t * mphp)1976 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp)
1977 {
1978 ill_dld_capab_t *idc = ill->ill_dld_capab;
1979 int err;
1980
1981 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp,
1982 DLD_ENABLE);
1983 ASSERT(err == 0);
1984 }
1985
1986 static void
ill_mac_perim_exit(ill_t * ill,mac_perim_handle_t mph)1987 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph)
1988 {
1989 ill_dld_capab_t *idc = ill->ill_dld_capab;
1990 int err;
1991
1992 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph,
1993 DLD_DISABLE);
1994 ASSERT(err == 0);
1995 }
1996
1997 boolean_t
ill_mac_perim_held(ill_t * ill)1998 ill_mac_perim_held(ill_t *ill)
1999 {
2000 ill_dld_capab_t *idc = ill->ill_dld_capab;
2001
2002 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL,
2003 DLD_QUERY));
2004 }
2005
2006 static void
ill_capability_direct_enable(ill_t * ill)2007 ill_capability_direct_enable(ill_t *ill)
2008 {
2009 ill_dld_capab_t *idc = ill->ill_dld_capab;
2010 ill_dld_direct_t *idd = &idc->idc_direct;
2011 dld_capab_direct_t direct;
2012 int rc;
2013
2014 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
2015
2016 bzero(&direct, sizeof (direct));
2017 direct.di_rx_cf = (uintptr_t)ip_input;
2018 direct.di_rx_ch = ill;
2019
2020 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct,
2021 DLD_ENABLE);
2022 if (rc == 0) {
2023 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df;
2024 idd->idd_tx_dh = direct.di_tx_dh;
2025 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df;
2026 idd->idd_tx_cb_dh = direct.di_tx_cb_dh;
2027 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df;
2028 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh;
2029 ASSERT(idd->idd_tx_cb_df != NULL);
2030 ASSERT(idd->idd_tx_fctl_df != NULL);
2031 ASSERT(idd->idd_tx_df != NULL);
2032 /*
2033 * One time registration of flow enable callback function
2034 */
2035 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh,
2036 ill_flow_enable, ill);
2037 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT;
2038 DTRACE_PROBE1(direct_on, (ill_t *), ill);
2039 } else {
2040 cmn_err(CE_WARN, "warning: could not enable DIRECT "
2041 "capability, rc = %d\n", rc);
2042 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc);
2043 }
2044 }
2045
2046 static void
ill_capability_poll_enable(ill_t * ill)2047 ill_capability_poll_enable(ill_t *ill)
2048 {
2049 ill_dld_capab_t *idc = ill->ill_dld_capab;
2050 dld_capab_poll_t poll;
2051 int rc;
2052
2053 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
2054
2055 bzero(&poll, sizeof (poll));
2056 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring;
2057 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring;
2058 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring;
2059 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring;
2060 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring;
2061 poll.poll_ring_ch = ill;
2062 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll,
2063 DLD_ENABLE);
2064 if (rc == 0) {
2065 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL;
2066 DTRACE_PROBE1(poll_on, (ill_t *), ill);
2067 } else {
2068 ip1dbg(("warning: could not enable POLL "
2069 "capability, rc = %d\n", rc));
2070 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc);
2071 }
2072 }
2073
2074 /*
2075 * Enable the LSO capability.
2076 */
2077 static void
ill_capability_lso_enable(ill_t * ill)2078 ill_capability_lso_enable(ill_t *ill)
2079 {
2080 ill_dld_capab_t *idc = ill->ill_dld_capab;
2081 dld_capab_lso_t lso;
2082 int rc;
2083
2084 ASSERT(IAM_WRITER_ILL(ill));
2085
2086 if (ill->ill_lso_capab == NULL) {
2087 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t),
2088 KM_NOSLEEP);
2089 if (ill->ill_lso_capab == NULL) {
2090 cmn_err(CE_WARN, "ill_capability_lso_enable: "
2091 "could not enable LSO for %s (ENOMEM)\n",
2092 ill->ill_name);
2093 return;
2094 }
2095 }
2096
2097 bzero(&lso, sizeof (lso));
2098 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso,
2099 DLD_ENABLE)) == 0) {
2100 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags;
2101 ill->ill_lso_capab->ill_lso_max_tcpv4 = lso.lso_max_tcpv4;
2102 ill->ill_lso_capab->ill_lso_max_tcpv6 = lso.lso_max_tcpv6;
2103 ill->ill_capabilities |= ILL_CAPAB_LSO;
2104 ip1dbg(("ill_capability_lso_enable: interface %s "
2105 "has enabled LSO\n ", ill->ill_name));
2106 } else {
2107 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
2108 ill->ill_lso_capab = NULL;
2109 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc);
2110 }
2111 }
2112
2113 static void
ill_capability_dld_enable(ill_t * ill)2114 ill_capability_dld_enable(ill_t *ill)
2115 {
2116 mac_perim_handle_t mph;
2117
2118 ASSERT(IAM_WRITER_ILL(ill));
2119
2120 ill_mac_perim_enter(ill, &mph);
2121 if (!ill->ill_isv6) {
2122 ill_capability_direct_enable(ill);
2123 ill_capability_poll_enable(ill);
2124 }
2125 ill_capability_lso_enable(ill);
2126 ill->ill_capabilities |= ILL_CAPAB_DLD;
2127 ill_mac_perim_exit(ill, mph);
2128 }
2129
2130 static void
ill_capability_dld_disable(ill_t * ill)2131 ill_capability_dld_disable(ill_t *ill)
2132 {
2133 ill_dld_capab_t *idc;
2134 ill_dld_direct_t *idd;
2135 mac_perim_handle_t mph;
2136
2137 ASSERT(IAM_WRITER_ILL(ill));
2138
2139 if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
2140 return;
2141
2142 ill_mac_perim_enter(ill, &mph);
2143
2144 idc = ill->ill_dld_capab;
2145 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) {
2146 /*
2147 * For performance we avoid locks in the transmit data path
2148 * and don't maintain a count of the number of threads using
2149 * direct calls. Thus some threads could be using direct
2150 * transmit calls to GLD, even after the capability mechanism
2151 * turns it off. This is still safe since the handles used in
2152 * the direct calls continue to be valid until the unplumb is
2153 * completed. Remove the callback that was added (1-time) at
2154 * capab enable time.
2155 */
2156 mutex_enter(&ill->ill_lock);
2157 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT;
2158 mutex_exit(&ill->ill_lock);
2159 if (ill->ill_flownotify_mh != NULL) {
2160 idd = &idc->idc_direct;
2161 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL,
2162 ill->ill_flownotify_mh);
2163 ill->ill_flownotify_mh = NULL;
2164 }
2165 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT,
2166 NULL, DLD_DISABLE);
2167 }
2168
2169 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) {
2170 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL;
2171 ip_squeue_clean_all(ill);
2172 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL,
2173 NULL, DLD_DISABLE);
2174 }
2175
2176 if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) {
2177 ASSERT(ill->ill_lso_capab != NULL);
2178 /*
2179 * Clear the capability flag for LSO but retain the
2180 * ill_lso_capab structure since it's possible that another
2181 * thread is still referring to it. The structure only gets
2182 * deallocated when we destroy the ill.
2183 */
2184
2185 ill->ill_capabilities &= ~ILL_CAPAB_LSO;
2186 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO,
2187 NULL, DLD_DISABLE);
2188 }
2189
2190 ill->ill_capabilities &= ~ILL_CAPAB_DLD;
2191 ill_mac_perim_exit(ill, mph);
2192 }
2193
2194 /*
2195 * Capability Negotiation protocol
2196 *
2197 * We don't wait for DLPI capability operations to finish during interface
2198 * bringup or teardown. Doing so would introduce more asynchrony and the
2199 * interface up/down operations will need multiple return and restarts.
2200 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as
2201 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next
2202 * exclusive operation won't start until the DLPI operations of the previous
2203 * exclusive operation complete.
2204 *
2205 * The capability state machine is shown below.
2206 *
2207 * state next state event, action
2208 *
2209 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe
2210 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack
2211 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack)
2212 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG
2213 * IDCS_OK IDCS_RESET_SENT ill_capability_reset
2214 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr
2215 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr ->
2216 * ill_capability_probe.
2217 */
2218
2219 /*
2220 * Dedicated thread started from ip_stack_init that handles capability
2221 * disable. This thread ensures the taskq dispatch does not fail by waiting
2222 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure
2223 * that direct calls to DLD are done in a cv_waitable context.
2224 */
2225 void
ill_taskq_dispatch(ip_stack_t * ipst)2226 ill_taskq_dispatch(ip_stack_t *ipst)
2227 {
2228 callb_cpr_t cprinfo;
2229 char name[64];
2230 mblk_t *mp;
2231
2232 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d",
2233 ipst->ips_netstack->netstack_stackid);
2234 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr,
2235 name);
2236 mutex_enter(&ipst->ips_capab_taskq_lock);
2237
2238 for (;;) {
2239 mp = ipst->ips_capab_taskq_head;
2240 while (mp != NULL) {
2241 ipst->ips_capab_taskq_head = mp->b_next;
2242 if (ipst->ips_capab_taskq_head == NULL)
2243 ipst->ips_capab_taskq_tail = NULL;
2244 mutex_exit(&ipst->ips_capab_taskq_lock);
2245 mp->b_next = NULL;
2246
2247 VERIFY(taskq_dispatch(system_taskq,
2248 ill_capability_ack_thr, mp, TQ_SLEEP) !=
2249 TASKQID_INVALID);
2250 mutex_enter(&ipst->ips_capab_taskq_lock);
2251 mp = ipst->ips_capab_taskq_head;
2252 }
2253
2254 if (ipst->ips_capab_taskq_quit)
2255 break;
2256 CALLB_CPR_SAFE_BEGIN(&cprinfo);
2257 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock);
2258 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock);
2259 }
2260 VERIFY(ipst->ips_capab_taskq_head == NULL);
2261 VERIFY(ipst->ips_capab_taskq_tail == NULL);
2262 CALLB_CPR_EXIT(&cprinfo);
2263 thread_exit();
2264 }
2265
2266 /*
2267 * Consume a new-style hardware capabilities negotiation ack.
2268 * Called via taskq on receipt of DL_CAPABILITY_ACK.
2269 */
2270 static void
ill_capability_ack_thr(void * arg)2271 ill_capability_ack_thr(void *arg)
2272 {
2273 mblk_t *mp = arg;
2274 dl_capability_ack_t *capp;
2275 dl_capability_sub_t *subp, *endp;
2276 ill_t *ill;
2277 boolean_t reneg;
2278
2279 ill = (ill_t *)mp->b_prev;
2280 mp->b_prev = NULL;
2281
2282 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE);
2283
2284 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT ||
2285 ill->ill_dlpi_capab_state == IDCS_RENEG) {
2286 /*
2287 * We have received the ack for our DL_CAPAB reset request.
2288 * There isnt' anything in the message that needs processing.
2289 * All message based capabilities have been disabled, now
2290 * do the function call based capability disable.
2291 */
2292 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG;
2293 ill_capability_dld_disable(ill);
2294 ill->ill_dlpi_capab_state = IDCS_UNKNOWN;
2295 if (reneg)
2296 ill_capability_probe(ill);
2297 goto done;
2298 }
2299
2300 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
2301 ill->ill_dlpi_capab_state = IDCS_OK;
2302
2303 capp = (dl_capability_ack_t *)mp->b_rptr;
2304
2305 if (capp->dl_sub_length == 0) {
2306 /* no new-style capabilities */
2307 goto done;
2308 }
2309
2310 /* make sure the driver supplied correct dl_sub_length */
2311 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) {
2312 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, "
2313 "invalid dl_sub_length (%d)\n", capp->dl_sub_length));
2314 goto done;
2315 }
2316
2317 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset))
2318 /*
2319 * There are sub-capabilities. Process the ones we know about.
2320 * Loop until we don't have room for another sub-cap header..
2321 */
2322 for (subp = SC(capp, capp->dl_sub_offset),
2323 endp = SC(subp, capp->dl_sub_length - sizeof (*subp));
2324 subp <= endp;
2325 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) {
2326
2327 switch (subp->dl_cap) {
2328 case DL_CAPAB_ID_WRAPPER:
2329 ill_capability_id_ack(ill, mp, subp);
2330 break;
2331 default:
2332 ill_capability_dispatch(ill, mp, subp);
2333 break;
2334 }
2335 }
2336 #undef SC
2337 done:
2338 inet_freemsg(mp);
2339 ill_capability_done(ill);
2340 ipsq_exit(ill->ill_phyint->phyint_ipsq);
2341 }
2342
2343 /*
2344 * This needs to be started in a taskq thread to provide a cv_waitable
2345 * context.
2346 */
2347 void
ill_capability_ack(ill_t * ill,mblk_t * mp)2348 ill_capability_ack(ill_t *ill, mblk_t *mp)
2349 {
2350 ip_stack_t *ipst = ill->ill_ipst;
2351
2352 mp->b_prev = (mblk_t *)ill;
2353 ASSERT(mp->b_next == NULL);
2354
2355 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp,
2356 TQ_NOSLEEP) != TASKQID_INVALID)
2357 return;
2358
2359 /*
2360 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread
2361 * which will do the dispatch using TQ_SLEEP to guarantee success.
2362 */
2363 mutex_enter(&ipst->ips_capab_taskq_lock);
2364 if (ipst->ips_capab_taskq_head == NULL) {
2365 ASSERT(ipst->ips_capab_taskq_tail == NULL);
2366 ipst->ips_capab_taskq_head = mp;
2367 } else {
2368 ipst->ips_capab_taskq_tail->b_next = mp;
2369 }
2370 ipst->ips_capab_taskq_tail = mp;
2371
2372 cv_signal(&ipst->ips_capab_taskq_cv);
2373 mutex_exit(&ipst->ips_capab_taskq_lock);
2374 }
2375
2376 /*
2377 * This routine is called to scan the fragmentation reassembly table for
2378 * the specified ILL for any packets that are starting to smell.
2379 * dead_interval is the maximum time in seconds that will be tolerated. It
2380 * will either be the value specified in ip_g_frag_timeout, or zero if the
2381 * ILL is shutting down and it is time to blow everything off.
2382 *
2383 * It returns the number of seconds (as a time_t) that the next frag timer
2384 * should be scheduled for, 0 meaning that the timer doesn't need to be
2385 * re-started. Note that the method of calculating next_timeout isn't
2386 * entirely accurate since time will flow between the time we grab
2387 * current_time and the time we schedule the next timeout. This isn't a
2388 * big problem since this is the timer for sending an ICMP reassembly time
2389 * exceeded messages, and it doesn't have to be exactly accurate.
2390 *
2391 * This function is
2392 * sometimes called as writer, although this is not required.
2393 */
2394 time_t
ill_frag_timeout(ill_t * ill,time_t dead_interval)2395 ill_frag_timeout(ill_t *ill, time_t dead_interval)
2396 {
2397 ipfb_t *ipfb;
2398 ipfb_t *endp;
2399 ipf_t *ipf;
2400 ipf_t *ipfnext;
2401 mblk_t *mp;
2402 time_t current_time = gethrestime_sec();
2403 time_t next_timeout = 0;
2404 uint32_t hdr_length;
2405 mblk_t *send_icmp_head;
2406 mblk_t *send_icmp_head_v6;
2407 ip_stack_t *ipst = ill->ill_ipst;
2408 ip_recv_attr_t iras;
2409
2410 bzero(&iras, sizeof (iras));
2411 iras.ira_flags = 0;
2412 iras.ira_ill = iras.ira_rill = ill;
2413 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
2414 iras.ira_rifindex = iras.ira_ruifindex;
2415
2416 ipfb = ill->ill_frag_hash_tbl;
2417 if (ipfb == NULL)
2418 return (B_FALSE);
2419 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT];
2420 /* Walk the frag hash table. */
2421 for (; ipfb < endp; ipfb++) {
2422 send_icmp_head = NULL;
2423 send_icmp_head_v6 = NULL;
2424 mutex_enter(&ipfb->ipfb_lock);
2425 while ((ipf = ipfb->ipfb_ipf) != 0) {
2426 time_t frag_time = current_time - ipf->ipf_timestamp;
2427 time_t frag_timeout;
2428
2429 if (frag_time < dead_interval) {
2430 /*
2431 * There are some outstanding fragments
2432 * that will timeout later. Make note of
2433 * the time so that we can reschedule the
2434 * next timeout appropriately.
2435 */
2436 frag_timeout = dead_interval - frag_time;
2437 if (next_timeout == 0 ||
2438 frag_timeout < next_timeout) {
2439 next_timeout = frag_timeout;
2440 }
2441 break;
2442 }
2443 /* Time's up. Get it out of here. */
2444 hdr_length = ipf->ipf_nf_hdr_len;
2445 ipfnext = ipf->ipf_hash_next;
2446 if (ipfnext)
2447 ipfnext->ipf_ptphn = ipf->ipf_ptphn;
2448 *ipf->ipf_ptphn = ipfnext;
2449 mp = ipf->ipf_mp->b_cont;
2450 for (; mp; mp = mp->b_cont) {
2451 /* Extra points for neatness. */
2452 IP_REASS_SET_START(mp, 0);
2453 IP_REASS_SET_END(mp, 0);
2454 }
2455 mp = ipf->ipf_mp->b_cont;
2456 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count);
2457 ASSERT(ipfb->ipfb_count >= ipf->ipf_count);
2458 ipfb->ipfb_count -= ipf->ipf_count;
2459 ASSERT(ipfb->ipfb_frag_pkts > 0);
2460 ipfb->ipfb_frag_pkts--;
2461 /*
2462 * We do not send any icmp message from here because
2463 * we currently are holding the ipfb_lock for this
2464 * hash chain. If we try and send any icmp messages
2465 * from here we may end up via a put back into ip
2466 * trying to get the same lock, causing a recursive
2467 * mutex panic. Instead we build a list and send all
2468 * the icmp messages after we have dropped the lock.
2469 */
2470 if (ill->ill_isv6) {
2471 if (hdr_length != 0) {
2472 mp->b_next = send_icmp_head_v6;
2473 send_icmp_head_v6 = mp;
2474 } else {
2475 freemsg(mp);
2476 }
2477 } else {
2478 if (hdr_length != 0) {
2479 mp->b_next = send_icmp_head;
2480 send_icmp_head = mp;
2481 } else {
2482 freemsg(mp);
2483 }
2484 }
2485 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
2486 ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill);
2487 freeb(ipf->ipf_mp);
2488 }
2489 mutex_exit(&ipfb->ipfb_lock);
2490 /*
2491 * Now need to send any icmp messages that we delayed from
2492 * above.
2493 */
2494 while (send_icmp_head_v6 != NULL) {
2495 ip6_t *ip6h;
2496
2497 mp = send_icmp_head_v6;
2498 send_icmp_head_v6 = send_icmp_head_v6->b_next;
2499 mp->b_next = NULL;
2500 ip6h = (ip6_t *)mp->b_rptr;
2501 iras.ira_flags = 0;
2502 /*
2503 * This will result in an incorrect ALL_ZONES zoneid
2504 * for multicast packets, but we
2505 * don't send ICMP errors for those in any case.
2506 */
2507 iras.ira_zoneid =
2508 ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst,
2509 ill, ipst);
2510 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill);
2511 icmp_time_exceeded_v6(mp,
2512 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE,
2513 &iras);
2514 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
2515 }
2516 while (send_icmp_head != NULL) {
2517 ipaddr_t dst;
2518
2519 mp = send_icmp_head;
2520 send_icmp_head = send_icmp_head->b_next;
2521 mp->b_next = NULL;
2522
2523 dst = ((ipha_t *)mp->b_rptr)->ipha_dst;
2524
2525 iras.ira_flags = IRAF_IS_IPV4;
2526 /*
2527 * This will result in an incorrect ALL_ZONES zoneid
2528 * for broadcast and multicast packets, but we
2529 * don't send ICMP errors for those in any case.
2530 */
2531 iras.ira_zoneid = ipif_lookup_addr_zoneid(dst,
2532 ill, ipst);
2533 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill);
2534 icmp_time_exceeded(mp,
2535 ICMP_REASSEMBLY_TIME_EXCEEDED, &iras);
2536 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
2537 }
2538 }
2539 /*
2540 * A non-dying ILL will use the return value to decide whether to
2541 * restart the frag timer, and for how long.
2542 */
2543 return (next_timeout);
2544 }
2545
2546 /*
2547 * This routine is called when the approximate count of mblk memory used
2548 * for the specified ILL has exceeded max_count.
2549 */
2550 void
ill_frag_prune(ill_t * ill,uint_t max_count)2551 ill_frag_prune(ill_t *ill, uint_t max_count)
2552 {
2553 ipfb_t *ipfb;
2554 ipf_t *ipf;
2555 size_t count;
2556 clock_t now;
2557
2558 /*
2559 * If we are here within ip_min_frag_prune_time msecs remove
2560 * ill_frag_free_num_pkts oldest packets from each bucket and increment
2561 * ill_frag_free_num_pkts.
2562 */
2563 mutex_enter(&ill->ill_lock);
2564 now = ddi_get_lbolt();
2565 if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <=
2566 (ip_min_frag_prune_time != 0 ?
2567 ip_min_frag_prune_time : msec_per_tick)) {
2568
2569 ill->ill_frag_free_num_pkts++;
2570
2571 } else {
2572 ill->ill_frag_free_num_pkts = 0;
2573 }
2574 ill->ill_last_frag_clean_time = now;
2575 mutex_exit(&ill->ill_lock);
2576
2577 /*
2578 * free ill_frag_free_num_pkts oldest packets from each bucket.
2579 */
2580 if (ill->ill_frag_free_num_pkts != 0) {
2581 int ix;
2582
2583 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
2584 ipfb = &ill->ill_frag_hash_tbl[ix];
2585 mutex_enter(&ipfb->ipfb_lock);
2586 if (ipfb->ipfb_ipf != NULL) {
2587 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf,
2588 ill->ill_frag_free_num_pkts);
2589 }
2590 mutex_exit(&ipfb->ipfb_lock);
2591 }
2592 }
2593 /*
2594 * While the reassembly list for this ILL is too big, prune a fragment
2595 * queue by age, oldest first.
2596 */
2597 while (ill->ill_frag_count > max_count) {
2598 int ix;
2599 ipfb_t *oipfb = NULL;
2600 uint_t oldest = UINT_MAX;
2601
2602 count = 0;
2603 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
2604 ipfb = &ill->ill_frag_hash_tbl[ix];
2605 mutex_enter(&ipfb->ipfb_lock);
2606 ipf = ipfb->ipfb_ipf;
2607 if (ipf != NULL && ipf->ipf_gen < oldest) {
2608 oldest = ipf->ipf_gen;
2609 oipfb = ipfb;
2610 }
2611 count += ipfb->ipfb_count;
2612 mutex_exit(&ipfb->ipfb_lock);
2613 }
2614 if (oipfb == NULL)
2615 break;
2616
2617 if (count <= max_count)
2618 return; /* Somebody beat us to it, nothing to do */
2619 mutex_enter(&oipfb->ipfb_lock);
2620 ipf = oipfb->ipfb_ipf;
2621 if (ipf != NULL) {
2622 ill_frag_free_pkts(ill, oipfb, ipf, 1);
2623 }
2624 mutex_exit(&oipfb->ipfb_lock);
2625 }
2626 }
2627
2628 /*
2629 * free 'free_cnt' fragmented packets starting at ipf.
2630 */
2631 void
ill_frag_free_pkts(ill_t * ill,ipfb_t * ipfb,ipf_t * ipf,int free_cnt)2632 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt)
2633 {
2634 size_t count;
2635 mblk_t *mp;
2636 mblk_t *tmp;
2637 ipf_t **ipfp = ipf->ipf_ptphn;
2638
2639 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock));
2640 ASSERT(ipfp != NULL);
2641 ASSERT(ipf != NULL);
2642
2643 while (ipf != NULL && free_cnt-- > 0) {
2644 count = ipf->ipf_count;
2645 mp = ipf->ipf_mp;
2646 ipf = ipf->ipf_hash_next;
2647 for (tmp = mp; tmp; tmp = tmp->b_cont) {
2648 IP_REASS_SET_START(tmp, 0);
2649 IP_REASS_SET_END(tmp, 0);
2650 }
2651 atomic_add_32(&ill->ill_frag_count, -count);
2652 ASSERT(ipfb->ipfb_count >= count);
2653 ipfb->ipfb_count -= count;
2654 ASSERT(ipfb->ipfb_frag_pkts > 0);
2655 ipfb->ipfb_frag_pkts--;
2656 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
2657 ip_drop_input("ipIfStatsReasmFails", mp, ill);
2658 freemsg(mp);
2659 }
2660
2661 if (ipf)
2662 ipf->ipf_ptphn = ipfp;
2663 ipfp[0] = ipf;
2664 }
2665
2666 /*
2667 * Helper function for ill_forward_set().
2668 */
2669 static void
ill_forward_set_on_ill(ill_t * ill,boolean_t enable)2670 ill_forward_set_on_ill(ill_t *ill, boolean_t enable)
2671 {
2672 ip_stack_t *ipst = ill->ill_ipst;
2673
2674 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
2675
2676 ip1dbg(("ill_forward_set: %s %s forwarding on %s",
2677 (enable ? "Enabling" : "Disabling"),
2678 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name));
2679 mutex_enter(&ill->ill_lock);
2680 if (enable)
2681 ill->ill_flags |= ILLF_ROUTER;
2682 else
2683 ill->ill_flags &= ~ILLF_ROUTER;
2684 mutex_exit(&ill->ill_lock);
2685 if (ill->ill_isv6)
2686 ill_set_nce_router_flags(ill, enable);
2687 /* Notify routing socket listeners of this change. */
2688 if (ill->ill_ipif != NULL)
2689 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
2690 }
2691
2692 /*
2693 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing
2694 * socket messages for each interface whose flags we change.
2695 */
2696 int
ill_forward_set(ill_t * ill,boolean_t enable)2697 ill_forward_set(ill_t *ill, boolean_t enable)
2698 {
2699 ipmp_illgrp_t *illg;
2700 ip_stack_t *ipst = ill->ill_ipst;
2701
2702 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
2703
2704 if ((enable && (ill->ill_flags & ILLF_ROUTER)) ||
2705 (!enable && !(ill->ill_flags & ILLF_ROUTER)))
2706 return (0);
2707
2708 if (IS_LOOPBACK(ill))
2709 return (EINVAL);
2710
2711 if (enable && ill->ill_allowed_ips_cnt > 0)
2712 return (EPERM);
2713
2714 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) {
2715 /*
2716 * Update all of the interfaces in the group.
2717 */
2718 illg = ill->ill_grp;
2719 ill = list_head(&illg->ig_if);
2720 for (; ill != NULL; ill = list_next(&illg->ig_if, ill))
2721 ill_forward_set_on_ill(ill, enable);
2722
2723 /*
2724 * Update the IPMP meta-interface.
2725 */
2726 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable);
2727 return (0);
2728 }
2729
2730 ill_forward_set_on_ill(ill, enable);
2731 return (0);
2732 }
2733
2734 /*
2735 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for
2736 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately
2737 * set or clear.
2738 */
2739 static void
ill_set_nce_router_flags(ill_t * ill,boolean_t enable)2740 ill_set_nce_router_flags(ill_t *ill, boolean_t enable)
2741 {
2742 ipif_t *ipif;
2743 ncec_t *ncec;
2744 nce_t *nce;
2745
2746 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
2747 /*
2748 * NOTE: we match across the illgrp because nce's for
2749 * addresses on IPMP interfaces have an nce_ill that points to
2750 * the bound underlying ill.
2751 */
2752 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr);
2753 if (nce != NULL) {
2754 ncec = nce->nce_common;
2755 mutex_enter(&ncec->ncec_lock);
2756 if (enable)
2757 ncec->ncec_flags |= NCE_F_ISROUTER;
2758 else
2759 ncec->ncec_flags &= ~NCE_F_ISROUTER;
2760 mutex_exit(&ncec->ncec_lock);
2761 nce_refrele(nce);
2762 }
2763 }
2764 }
2765
2766 /*
2767 * Intializes the context structure and returns the first ill in the list
2768 * cuurently start_list and end_list can have values:
2769 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists.
2770 * IP_V4_G_HEAD Traverse IPV4 list only.
2771 * IP_V6_G_HEAD Traverse IPV6 list only.
2772 */
2773
2774 /*
2775 * We don't check for CONDEMNED ills here. Caller must do that if
2776 * necessary under the ill lock.
2777 */
2778 ill_t *
ill_first(int start_list,int end_list,ill_walk_context_t * ctx,ip_stack_t * ipst)2779 ill_first(int start_list, int end_list, ill_walk_context_t *ctx,
2780 ip_stack_t *ipst)
2781 {
2782 ill_if_t *ifp;
2783 ill_t *ill;
2784 avl_tree_t *avl_tree;
2785
2786 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
2787 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0);
2788
2789 /*
2790 * setup the lists to search
2791 */
2792 if (end_list != MAX_G_HEADS) {
2793 ctx->ctx_current_list = start_list;
2794 ctx->ctx_last_list = end_list;
2795 } else {
2796 ctx->ctx_last_list = MAX_G_HEADS - 1;
2797 ctx->ctx_current_list = 0;
2798 }
2799
2800 while (ctx->ctx_current_list <= ctx->ctx_last_list) {
2801 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
2802 if (ifp != (ill_if_t *)
2803 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
2804 avl_tree = &ifp->illif_avl_by_ppa;
2805 ill = avl_first(avl_tree);
2806 /*
2807 * ill is guaranteed to be non NULL or ifp should have
2808 * not existed.
2809 */
2810 ASSERT(ill != NULL);
2811 return (ill);
2812 }
2813 ctx->ctx_current_list++;
2814 }
2815
2816 return (NULL);
2817 }
2818
2819 /*
2820 * returns the next ill in the list. ill_first() must have been called
2821 * before calling ill_next() or bad things will happen.
2822 */
2823
2824 /*
2825 * We don't check for CONDEMNED ills here. Caller must do that if
2826 * necessary under the ill lock.
2827 */
2828 ill_t *
ill_next(ill_walk_context_t * ctx,ill_t * lastill)2829 ill_next(ill_walk_context_t *ctx, ill_t *lastill)
2830 {
2831 ill_if_t *ifp;
2832 ill_t *ill;
2833 ip_stack_t *ipst = lastill->ill_ipst;
2834
2835 ASSERT(lastill->ill_ifptr != (ill_if_t *)
2836 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst));
2837 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill,
2838 AVL_AFTER)) != NULL) {
2839 return (ill);
2840 }
2841
2842 /* goto next ill_ifp in the list. */
2843 ifp = lastill->ill_ifptr->illif_next;
2844
2845 /* make sure not at end of circular list */
2846 while (ifp ==
2847 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
2848 if (++ctx->ctx_current_list > ctx->ctx_last_list)
2849 return (NULL);
2850 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
2851 }
2852
2853 return (avl_first(&ifp->illif_avl_by_ppa));
2854 }
2855
2856 /*
2857 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+
2858 * The final number (PPA) must not have any leading zeros. Upon success, a
2859 * pointer to the start of the PPA is returned; otherwise NULL is returned.
2860 */
2861 static char *
ill_get_ppa_ptr(char * name)2862 ill_get_ppa_ptr(char *name)
2863 {
2864 int namelen = strlen(name);
2865 int end_ndx = namelen - 1;
2866 int ppa_ndx, i;
2867
2868 /*
2869 * Check that the first character is [a-zA-Z], and that the last
2870 * character is [0-9].
2871 */
2872 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx]))
2873 return (NULL);
2874
2875 /*
2876 * Set `ppa_ndx' to the PPA start, and check for leading zeroes.
2877 */
2878 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--)
2879 if (!isdigit(name[ppa_ndx - 1]))
2880 break;
2881
2882 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx)
2883 return (NULL);
2884
2885 /*
2886 * Check that the intermediate characters are [a-z0-9.]
2887 */
2888 for (i = 1; i < ppa_ndx; i++) {
2889 if (!isalpha(name[i]) && !isdigit(name[i]) &&
2890 name[i] != '.' && name[i] != '_') {
2891 return (NULL);
2892 }
2893 }
2894
2895 return (name + ppa_ndx);
2896 }
2897
2898 /*
2899 * use avl tree to locate the ill.
2900 */
2901 static ill_t *
ill_find_by_name(char * name,boolean_t isv6,ip_stack_t * ipst)2902 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst)
2903 {
2904 char *ppa_ptr = NULL;
2905 int len;
2906 uint_t ppa;
2907 ill_t *ill = NULL;
2908 ill_if_t *ifp;
2909 int list;
2910
2911 /*
2912 * get ppa ptr
2913 */
2914 if (isv6)
2915 list = IP_V6_G_HEAD;
2916 else
2917 list = IP_V4_G_HEAD;
2918
2919 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) {
2920 return (NULL);
2921 }
2922
2923 len = ppa_ptr - name + 1;
2924
2925 ppa = stoi(&ppa_ptr);
2926
2927 ifp = IP_VX_ILL_G_LIST(list, ipst);
2928
2929 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
2930 /*
2931 * match is done on len - 1 as the name is not null
2932 * terminated it contains ppa in addition to the interface
2933 * name.
2934 */
2935 if ((ifp->illif_name_len == len) &&
2936 bcmp(ifp->illif_name, name, len - 1) == 0) {
2937 break;
2938 } else {
2939 ifp = ifp->illif_next;
2940 }
2941 }
2942
2943 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
2944 /*
2945 * Even the interface type does not exist.
2946 */
2947 return (NULL);
2948 }
2949
2950 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL);
2951 if (ill != NULL) {
2952 mutex_enter(&ill->ill_lock);
2953 if (ILL_CAN_LOOKUP(ill)) {
2954 ill_refhold_locked(ill);
2955 mutex_exit(&ill->ill_lock);
2956 return (ill);
2957 }
2958 mutex_exit(&ill->ill_lock);
2959 }
2960 return (NULL);
2961 }
2962
2963 /*
2964 * comparison function for use with avl.
2965 */
2966 static int
ill_compare_ppa(const void * ppa_ptr,const void * ill_ptr)2967 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr)
2968 {
2969 uint_t ppa;
2970 uint_t ill_ppa;
2971
2972 ASSERT(ppa_ptr != NULL && ill_ptr != NULL);
2973
2974 ppa = *((uint_t *)ppa_ptr);
2975 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa;
2976 /*
2977 * We want the ill with the lowest ppa to be on the
2978 * top.
2979 */
2980 if (ill_ppa < ppa)
2981 return (1);
2982 if (ill_ppa > ppa)
2983 return (-1);
2984 return (0);
2985 }
2986
2987 /*
2988 * remove an interface type from the global list.
2989 */
2990 static void
ill_delete_interface_type(ill_if_t * interface)2991 ill_delete_interface_type(ill_if_t *interface)
2992 {
2993 ASSERT(interface != NULL);
2994 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0);
2995
2996 avl_destroy(&interface->illif_avl_by_ppa);
2997 if (interface->illif_ppa_arena != NULL)
2998 vmem_destroy(interface->illif_ppa_arena);
2999
3000 remque(interface);
3001
3002 mi_free(interface);
3003 }
3004
3005 /*
3006 * remove ill from the global list.
3007 */
3008 static void
ill_glist_delete(ill_t * ill)3009 ill_glist_delete(ill_t *ill)
3010 {
3011 ip_stack_t *ipst;
3012 phyint_t *phyi;
3013
3014 if (ill == NULL)
3015 return;
3016 ipst = ill->ill_ipst;
3017 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
3018
3019 /*
3020 * If the ill was never inserted into the AVL tree
3021 * we skip the if branch.
3022 */
3023 if (ill->ill_ifptr != NULL) {
3024 /*
3025 * remove from AVL tree and free ppa number
3026 */
3027 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill);
3028
3029 if (ill->ill_ifptr->illif_ppa_arena != NULL) {
3030 vmem_free(ill->ill_ifptr->illif_ppa_arena,
3031 (void *)(uintptr_t)(ill->ill_ppa+1), 1);
3032 }
3033 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) {
3034 ill_delete_interface_type(ill->ill_ifptr);
3035 }
3036
3037 /*
3038 * Indicate ill is no longer in the list.
3039 */
3040 ill->ill_ifptr = NULL;
3041 ill->ill_name_length = 0;
3042 ill->ill_name[0] = '\0';
3043 ill->ill_ppa = UINT_MAX;
3044 }
3045
3046 /* Generate one last event for this ill. */
3047 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name,
3048 ill->ill_name_length);
3049
3050 ASSERT(ill->ill_phyint != NULL);
3051 phyi = ill->ill_phyint;
3052 ill->ill_phyint = NULL;
3053
3054 /*
3055 * ill_init allocates a phyint always to store the copy
3056 * of flags relevant to phyint. At that point in time, we could
3057 * not assign the name and hence phyint_illv4/v6 could not be
3058 * initialized. Later in ipif_set_values, we assign the name to
3059 * the ill, at which point in time we assign phyint_illv4/v6.
3060 * Thus we don't rely on phyint_illv6 to be initialized always.
3061 */
3062 if (ill->ill_flags & ILLF_IPV6)
3063 phyi->phyint_illv6 = NULL;
3064 else
3065 phyi->phyint_illv4 = NULL;
3066
3067 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) {
3068 rw_exit(&ipst->ips_ill_g_lock);
3069 return;
3070 }
3071
3072 /*
3073 * There are no ills left on this phyint; pull it out of the phyint
3074 * avl trees, and free it.
3075 */
3076 if (phyi->phyint_ifindex > 0) {
3077 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3078 phyi);
3079 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
3080 phyi);
3081 }
3082 rw_exit(&ipst->ips_ill_g_lock);
3083
3084 phyint_free(phyi);
3085 }
3086
3087 /*
3088 * allocate a ppa, if the number of plumbed interfaces of this type are
3089 * less than ill_no_arena do a linear search to find a unused ppa.
3090 * When the number goes beyond ill_no_arena switch to using an arena.
3091 * Note: ppa value of zero cannot be allocated from vmem_arena as it
3092 * is the return value for an error condition, so allocation starts at one
3093 * and is decremented by one.
3094 */
3095 static int
ill_alloc_ppa(ill_if_t * ifp,ill_t * ill)3096 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill)
3097 {
3098 ill_t *tmp_ill;
3099 uint_t start, end;
3100 int ppa;
3101
3102 if (ifp->illif_ppa_arena == NULL &&
3103 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) {
3104 /*
3105 * Create an arena.
3106 */
3107 ifp->illif_ppa_arena = vmem_create(ifp->illif_name,
3108 (void *)1, UINT_MAX - 1, 1, NULL, NULL,
3109 NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
3110 /* allocate what has already been assigned */
3111 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa);
3112 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa,
3113 tmp_ill, AVL_AFTER)) {
3114 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
3115 1, /* size */
3116 1, /* align/quantum */
3117 0, /* phase */
3118 0, /* nocross */
3119 /* minaddr */
3120 (void *)((uintptr_t)tmp_ill->ill_ppa + 1),
3121 /* maxaddr */
3122 (void *)((uintptr_t)tmp_ill->ill_ppa + 2),
3123 VM_NOSLEEP|VM_FIRSTFIT);
3124 if (ppa == 0) {
3125 ip1dbg(("ill_alloc_ppa: ppa allocation"
3126 " failed while switching"));
3127 vmem_destroy(ifp->illif_ppa_arena);
3128 ifp->illif_ppa_arena = NULL;
3129 break;
3130 }
3131 }
3132 }
3133
3134 if (ifp->illif_ppa_arena != NULL) {
3135 if (ill->ill_ppa == UINT_MAX) {
3136 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena,
3137 1, VM_NOSLEEP|VM_FIRSTFIT);
3138 if (ppa == 0)
3139 return (EAGAIN);
3140 ill->ill_ppa = --ppa;
3141 } else {
3142 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
3143 1, /* size */
3144 1, /* align/quantum */
3145 0, /* phase */
3146 0, /* nocross */
3147 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */
3148 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */
3149 VM_NOSLEEP|VM_FIRSTFIT);
3150 /*
3151 * Most likely the allocation failed because
3152 * the requested ppa was in use.
3153 */
3154 if (ppa == 0)
3155 return (EEXIST);
3156 }
3157 return (0);
3158 }
3159
3160 /*
3161 * No arena is in use and not enough (>ill_no_arena) interfaces have
3162 * been plumbed to create one. Do a linear search to get a unused ppa.
3163 */
3164 if (ill->ill_ppa == UINT_MAX) {
3165 end = UINT_MAX - 1;
3166 start = 0;
3167 } else {
3168 end = start = ill->ill_ppa;
3169 }
3170
3171 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL);
3172 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) {
3173 if (start++ >= end) {
3174 if (ill->ill_ppa == UINT_MAX)
3175 return (EAGAIN);
3176 else
3177 return (EEXIST);
3178 }
3179 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER);
3180 }
3181 ill->ill_ppa = start;
3182 return (0);
3183 }
3184
3185 /*
3186 * Insert ill into the list of configured ill's. Once this function completes,
3187 * the ill is globally visible and is available through lookups. More precisely
3188 * this happens after the caller drops the ill_g_lock.
3189 */
3190 static int
ill_glist_insert(ill_t * ill,char * name,boolean_t isv6)3191 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6)
3192 {
3193 ill_if_t *ill_interface;
3194 avl_index_t where = 0;
3195 int error;
3196 int name_length;
3197 int index;
3198 boolean_t check_length = B_FALSE;
3199 ip_stack_t *ipst = ill->ill_ipst;
3200
3201 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
3202
3203 name_length = mi_strlen(name) + 1;
3204
3205 if (isv6)
3206 index = IP_V6_G_HEAD;
3207 else
3208 index = IP_V4_G_HEAD;
3209
3210 ill_interface = IP_VX_ILL_G_LIST(index, ipst);
3211 /*
3212 * Search for interface type based on name
3213 */
3214 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
3215 if ((ill_interface->illif_name_len == name_length) &&
3216 (strcmp(ill_interface->illif_name, name) == 0)) {
3217 break;
3218 }
3219 ill_interface = ill_interface->illif_next;
3220 }
3221
3222 /*
3223 * Interface type not found, create one.
3224 */
3225 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
3226 ill_g_head_t ghead;
3227
3228 /*
3229 * allocate ill_if_t structure
3230 */
3231 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t));
3232 if (ill_interface == NULL) {
3233 return (ENOMEM);
3234 }
3235
3236 (void) strcpy(ill_interface->illif_name, name);
3237 ill_interface->illif_name_len = name_length;
3238
3239 avl_create(&ill_interface->illif_avl_by_ppa,
3240 ill_compare_ppa, sizeof (ill_t),
3241 offsetof(struct ill_s, ill_avl_byppa));
3242
3243 /*
3244 * link the structure in the back to maintain order
3245 * of configuration for ifconfig output.
3246 */
3247 ghead = ipst->ips_ill_g_heads[index];
3248 insque(ill_interface, ghead.ill_g_list_tail);
3249 }
3250
3251 if (ill->ill_ppa == UINT_MAX)
3252 check_length = B_TRUE;
3253
3254 error = ill_alloc_ppa(ill_interface, ill);
3255 if (error != 0) {
3256 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
3257 ill_delete_interface_type(ill->ill_ifptr);
3258 return (error);
3259 }
3260
3261 /*
3262 * When the ppa is choosen by the system, check that there is
3263 * enough space to insert ppa. if a specific ppa was passed in this
3264 * check is not required as the interface name passed in will have
3265 * the right ppa in it.
3266 */
3267 if (check_length) {
3268 /*
3269 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars.
3270 */
3271 char buf[sizeof (uint_t) * 3];
3272
3273 /*
3274 * convert ppa to string to calculate the amount of space
3275 * required for it in the name.
3276 */
3277 numtos(ill->ill_ppa, buf);
3278
3279 /* Do we have enough space to insert ppa ? */
3280
3281 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) {
3282 /* Free ppa and interface type struct */
3283 if (ill_interface->illif_ppa_arena != NULL) {
3284 vmem_free(ill_interface->illif_ppa_arena,
3285 (void *)(uintptr_t)(ill->ill_ppa+1), 1);
3286 }
3287 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
3288 ill_delete_interface_type(ill->ill_ifptr);
3289
3290 return (EINVAL);
3291 }
3292 }
3293
3294 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa);
3295 ill->ill_name_length = mi_strlen(ill->ill_name) + 1;
3296
3297 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa,
3298 &where);
3299 ill->ill_ifptr = ill_interface;
3300 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where);
3301
3302 ill_phyint_reinit(ill);
3303 return (0);
3304 }
3305
3306 /* Initialize the per phyint ipsq used for serialization */
3307 static boolean_t
ipsq_init(ill_t * ill,boolean_t enter)3308 ipsq_init(ill_t *ill, boolean_t enter)
3309 {
3310 ipsq_t *ipsq;
3311 ipxop_t *ipx;
3312
3313 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL)
3314 return (B_FALSE);
3315
3316 ill->ill_phyint->phyint_ipsq = ipsq;
3317 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop;
3318 ipx->ipx_ipsq = ipsq;
3319 ipsq->ipsq_next = ipsq;
3320 ipsq->ipsq_phyint = ill->ill_phyint;
3321 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0);
3322 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0);
3323 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */
3324 if (enter) {
3325 ipx->ipx_writer = curthread;
3326 ipx->ipx_forced = B_FALSE;
3327 ipx->ipx_reentry_cnt = 1;
3328 #ifdef DEBUG
3329 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
3330 #endif
3331 }
3332 return (B_TRUE);
3333 }
3334
3335 /*
3336 * Here we perform initialisation of the ill_t common to both regular
3337 * interface ILLs and the special loopback ILL created by ill_lookup_on_name.
3338 */
3339 static int
ill_init_common(ill_t * ill,queue_t * q,boolean_t isv6,boolean_t is_loopback,boolean_t ipsq_enter)3340 ill_init_common(ill_t *ill, queue_t *q, boolean_t isv6, boolean_t is_loopback,
3341 boolean_t ipsq_enter)
3342 {
3343 int count;
3344 uchar_t *frag_ptr;
3345
3346 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0);
3347 mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL);
3348 ill->ill_saved_ire_cnt = 0;
3349
3350 if (is_loopback) {
3351 ill->ill_max_frag = isv6 ? ip_loopback_mtu_v6plus :
3352 ip_loopback_mtuplus;
3353 /*
3354 * No resolver here.
3355 */
3356 ill->ill_net_type = IRE_LOOPBACK;
3357 } else {
3358 ill->ill_rq = q;
3359 ill->ill_wq = WR(q);
3360 ill->ill_ppa = UINT_MAX;
3361 }
3362
3363 ill->ill_isv6 = isv6;
3364
3365 /*
3366 * Allocate sufficient space to contain our fragment hash table and
3367 * the device name.
3368 */
3369 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 2 * LIFNAMSIZ);
3370 if (frag_ptr == NULL)
3371 return (ENOMEM);
3372 ill->ill_frag_ptr = frag_ptr;
3373 ill->ill_frag_free_num_pkts = 0;
3374 ill->ill_last_frag_clean_time = 0;
3375 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr;
3376 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE);
3377 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
3378 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock,
3379 NULL, MUTEX_DEFAULT, NULL);
3380 }
3381
3382 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
3383 if (ill->ill_phyint == NULL) {
3384 mi_free(frag_ptr);
3385 return (ENOMEM);
3386 }
3387
3388 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
3389 if (isv6) {
3390 ill->ill_phyint->phyint_illv6 = ill;
3391 } else {
3392 ill->ill_phyint->phyint_illv4 = ill;
3393 }
3394 if (is_loopback) {
3395 phyint_flags_init(ill->ill_phyint, DL_LOOP);
3396 }
3397
3398 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node));
3399
3400 ill_set_inputfn(ill);
3401
3402 if (!ipsq_init(ill, ipsq_enter)) {
3403 mi_free(frag_ptr);
3404 mi_free(ill->ill_phyint);
3405 return (ENOMEM);
3406 }
3407
3408 /* Frag queue limit stuff */
3409 ill->ill_frag_count = 0;
3410 ill->ill_ipf_gen = 0;
3411
3412 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL);
3413 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL);
3414 ill->ill_global_timer = INFINITY;
3415 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
3416 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
3417 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
3418 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
3419
3420 /*
3421 * Initialize IPv6 configuration variables. The IP module is always
3422 * opened as an IPv4 module. Instead tracking down the cases where
3423 * it switches to do ipv6, we'll just initialize the IPv6 configuration
3424 * here for convenience, this has no effect until the ill is set to do
3425 * IPv6.
3426 */
3427 ill->ill_reachable_time = ND_REACHABLE_TIME;
3428 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT;
3429 ill->ill_max_buf = ND_MAX_Q;
3430 ill->ill_refcnt = 0;
3431
3432 return (0);
3433 }
3434
3435 /*
3436 * ill_init is called by ip_open when a device control stream is opened.
3437 * It does a few initializations, and shoots a DL_INFO_REQ message down
3438 * to the driver. The response is later picked up in ip_rput_dlpi and
3439 * used to set up default mechanisms for talking to the driver. (Always
3440 * called as writer.)
3441 *
3442 * If this function returns error, ip_open will call ip_close which in
3443 * turn will call ill_delete to clean up any memory allocated here that
3444 * is not yet freed.
3445 *
3446 * Note: ill_ipst and ill_zoneid must be set before calling ill_init.
3447 */
3448 int
ill_init(queue_t * q,ill_t * ill)3449 ill_init(queue_t *q, ill_t *ill)
3450 {
3451 int ret;
3452 dl_info_req_t *dlir;
3453 mblk_t *info_mp;
3454
3455 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)),
3456 BPRI_HI);
3457 if (info_mp == NULL)
3458 return (ENOMEM);
3459
3460 /*
3461 * For now pretend this is a v4 ill. We need to set phyint_ill*
3462 * at this point because of the following reason. If we can't
3463 * enter the ipsq at some point and cv_wait, the writer that
3464 * wakes us up tries to locate us using the list of all phyints
3465 * in an ipsq and the ills from the phyint thru the phyint_ill*.
3466 * If we don't set it now, we risk a missed wakeup.
3467 */
3468 if ((ret = ill_init_common(ill, q, B_FALSE, B_FALSE, B_TRUE)) != 0) {
3469 freemsg(info_mp);
3470 return (ret);
3471 }
3472
3473 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING;
3474
3475 /* Send down the Info Request to the driver. */
3476 info_mp->b_datap->db_type = M_PCPROTO;
3477 dlir = (dl_info_req_t *)info_mp->b_rptr;
3478 info_mp->b_wptr = (uchar_t *)&dlir[1];
3479 dlir->dl_primitive = DL_INFO_REQ;
3480
3481 ill->ill_dlpi_pending = DL_PRIM_INVAL;
3482
3483 qprocson(q);
3484 ill_dlpi_send(ill, info_mp);
3485
3486 return (0);
3487 }
3488
3489 /*
3490 * ill_dls_info
3491 * creates datalink socket info from the device.
3492 */
3493 int
ill_dls_info(struct sockaddr_dl * sdl,const ill_t * ill)3494 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill)
3495 {
3496 size_t len;
3497
3498 sdl->sdl_family = AF_LINK;
3499 sdl->sdl_index = ill_get_upper_ifindex(ill);
3500 sdl->sdl_type = ill->ill_type;
3501 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data));
3502 len = strlen(sdl->sdl_data);
3503 ASSERT(len < 256);
3504 sdl->sdl_nlen = (uchar_t)len;
3505 sdl->sdl_alen = ill->ill_phys_addr_length;
3506 sdl->sdl_slen = 0;
3507 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL)
3508 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen);
3509
3510 return (sizeof (struct sockaddr_dl));
3511 }
3512
3513 /*
3514 * ill_xarp_info
3515 * creates xarp info from the device.
3516 */
3517 static int
ill_xarp_info(struct sockaddr_dl * sdl,ill_t * ill)3518 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill)
3519 {
3520 sdl->sdl_family = AF_LINK;
3521 sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
3522 sdl->sdl_type = ill->ill_type;
3523 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data));
3524 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data);
3525 sdl->sdl_alen = ill->ill_phys_addr_length;
3526 sdl->sdl_slen = 0;
3527 return (sdl->sdl_nlen);
3528 }
3529
3530 static int
loopback_kstat_update(kstat_t * ksp,int rw)3531 loopback_kstat_update(kstat_t *ksp, int rw)
3532 {
3533 kstat_named_t *kn;
3534 netstackid_t stackid;
3535 netstack_t *ns;
3536 ip_stack_t *ipst;
3537
3538 if (ksp == NULL || ksp->ks_data == NULL)
3539 return (EIO);
3540
3541 if (rw == KSTAT_WRITE)
3542 return (EACCES);
3543
3544 kn = KSTAT_NAMED_PTR(ksp);
3545 stackid = (zoneid_t)(uintptr_t)ksp->ks_private;
3546
3547 ns = netstack_find_by_stackid(stackid);
3548 if (ns == NULL)
3549 return (-1);
3550
3551 ipst = ns->netstack_ip;
3552 if (ipst == NULL) {
3553 netstack_rele(ns);
3554 return (-1);
3555 }
3556 kn[0].value.ui32 = ipst->ips_loopback_packets;
3557 kn[1].value.ui32 = ipst->ips_loopback_packets;
3558 netstack_rele(ns);
3559 return (0);
3560 }
3561
3562 /*
3563 * Has ifindex been plumbed already?
3564 */
3565 static boolean_t
phyint_exists(uint_t index,ip_stack_t * ipst)3566 phyint_exists(uint_t index, ip_stack_t *ipst)
3567 {
3568 ASSERT(index != 0);
3569 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
3570
3571 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3572 &index, NULL) != NULL);
3573 }
3574
3575 /*
3576 * Pick a unique ifindex.
3577 * When the index counter passes IF_INDEX_MAX for the first time, the wrap
3578 * flag is set so that next time time ip_assign_ifindex() is called, it
3579 * falls through and resets the index counter back to 1, the minimum value
3580 * for the interface index. The logic below assumes that ips_ill_index
3581 * can hold a value of IF_INDEX_MAX+1 without there being any loss
3582 * (i.e. reset back to 0.)
3583 */
3584 boolean_t
ip_assign_ifindex(uint_t * indexp,ip_stack_t * ipst)3585 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst)
3586 {
3587 uint_t loops;
3588
3589 if (!ipst->ips_ill_index_wrap) {
3590 *indexp = ipst->ips_ill_index++;
3591 if (ipst->ips_ill_index > IF_INDEX_MAX) {
3592 /*
3593 * Reached the maximum ifindex value, set the wrap
3594 * flag to indicate that it is no longer possible
3595 * to assume that a given index is unallocated.
3596 */
3597 ipst->ips_ill_index_wrap = B_TRUE;
3598 }
3599 return (B_TRUE);
3600 }
3601
3602 if (ipst->ips_ill_index > IF_INDEX_MAX)
3603 ipst->ips_ill_index = 1;
3604
3605 /*
3606 * Start reusing unused indexes. Note that we hold the ill_g_lock
3607 * at this point and don't want to call any function that attempts
3608 * to get the lock again.
3609 */
3610 for (loops = IF_INDEX_MAX; loops > 0; loops--) {
3611 if (!phyint_exists(ipst->ips_ill_index, ipst)) {
3612 /* found unused index - use it */
3613 *indexp = ipst->ips_ill_index;
3614 return (B_TRUE);
3615 }
3616
3617 ipst->ips_ill_index++;
3618 if (ipst->ips_ill_index > IF_INDEX_MAX)
3619 ipst->ips_ill_index = 1;
3620 }
3621
3622 /*
3623 * all interface indicies are inuse.
3624 */
3625 return (B_FALSE);
3626 }
3627
3628 /*
3629 * Assign a unique interface index for the phyint.
3630 */
3631 static boolean_t
phyint_assign_ifindex(phyint_t * phyi,ip_stack_t * ipst)3632 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst)
3633 {
3634 ASSERT(phyi->phyint_ifindex == 0);
3635 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst));
3636 }
3637
3638 /*
3639 * Initialize the flags on `phyi' as per the provided mactype.
3640 */
3641 static void
phyint_flags_init(phyint_t * phyi,t_uscalar_t mactype)3642 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype)
3643 {
3644 uint64_t flags = 0;
3645
3646 /*
3647 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces,
3648 * we always presume the underlying hardware is working and set
3649 * PHYI_RUNNING (if it's not, the driver will subsequently send a
3650 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization
3651 * there are no active interfaces in the group so we set PHYI_FAILED.
3652 */
3653 if (mactype == SUNW_DL_IPMP)
3654 flags |= PHYI_FAILED;
3655 else
3656 flags |= PHYI_RUNNING;
3657
3658 switch (mactype) {
3659 case SUNW_DL_VNI:
3660 flags |= PHYI_VIRTUAL;
3661 break;
3662 case SUNW_DL_IPMP:
3663 flags |= PHYI_IPMP;
3664 break;
3665 case DL_LOOP:
3666 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL);
3667 break;
3668 }
3669
3670 mutex_enter(&phyi->phyint_lock);
3671 phyi->phyint_flags |= flags;
3672 mutex_exit(&phyi->phyint_lock);
3673 }
3674
3675 /*
3676 * Return a pointer to the ill which matches the supplied name. Note that
3677 * the ill name length includes the null termination character. (May be
3678 * called as writer.)
3679 * If do_alloc and the interface is "lo0" it will be automatically created.
3680 * Cannot bump up reference on condemned ills. So dup detect can't be done
3681 * using this func.
3682 */
3683 ill_t *
ill_lookup_on_name(char * name,boolean_t do_alloc,boolean_t isv6,boolean_t * did_alloc,ip_stack_t * ipst)3684 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6,
3685 boolean_t *did_alloc, ip_stack_t *ipst)
3686 {
3687 ill_t *ill;
3688 ipif_t *ipif;
3689 ipsq_t *ipsq;
3690 kstat_named_t *kn;
3691 boolean_t isloopback;
3692 in6_addr_t ov6addr;
3693
3694 isloopback = mi_strcmp(name, ipif_loopback_name) == 0;
3695
3696 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3697 ill = ill_find_by_name(name, isv6, ipst);
3698 rw_exit(&ipst->ips_ill_g_lock);
3699 if (ill != NULL)
3700 return (ill);
3701
3702 /*
3703 * Couldn't find it. Does this happen to be a lookup for the
3704 * loopback device and are we allowed to allocate it?
3705 */
3706 if (!isloopback || !do_alloc)
3707 return (NULL);
3708
3709 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
3710 ill = ill_find_by_name(name, isv6, ipst);
3711 if (ill != NULL) {
3712 rw_exit(&ipst->ips_ill_g_lock);
3713 return (ill);
3714 }
3715
3716 /* Create the loopback device on demand */
3717 ill = (ill_t *)(mi_alloc(sizeof (ill_t) +
3718 sizeof (ipif_loopback_name), BPRI_MED));
3719 if (ill == NULL)
3720 goto done;
3721
3722 bzero(ill, sizeof (*ill));
3723 ill->ill_ipst = ipst;
3724 netstack_hold(ipst->ips_netstack);
3725 /*
3726 * For exclusive stacks we set the zoneid to zero
3727 * to make IP operate as if in the global zone.
3728 */
3729 ill->ill_zoneid = GLOBAL_ZONEID;
3730
3731 if (ill_init_common(ill, NULL, isv6, B_TRUE, B_FALSE) != 0)
3732 goto done;
3733
3734 if (!ill_allocate_mibs(ill))
3735 goto done;
3736
3737 ill->ill_current_frag = ill->ill_max_frag;
3738 ill->ill_mtu = ill->ill_max_frag; /* Initial value */
3739 ill->ill_mc_mtu = ill->ill_mtu;
3740 /*
3741 * ipif_loopback_name can't be pointed at directly because its used
3742 * by both the ipv4 and ipv6 interfaces. When the ill is removed
3743 * from the glist, ill_glist_delete() sets the first character of
3744 * ill_name to '\0'.
3745 */
3746 ill->ill_name = (char *)ill + sizeof (*ill);
3747 (void) strcpy(ill->ill_name, ipif_loopback_name);
3748 ill->ill_name_length = sizeof (ipif_loopback_name);
3749 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */
3750 ill->ill_dlpi_pending = DL_PRIM_INVAL;
3751
3752 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL);
3753 if (ipif == NULL)
3754 goto done;
3755
3756 ill->ill_flags = ILLF_MULTICAST;
3757
3758 ov6addr = ipif->ipif_v6lcl_addr;
3759 /* Set up default loopback address and mask. */
3760 if (!isv6) {
3761 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK);
3762
3763 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr);
3764 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask);
3765 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
3766 ipif->ipif_v6subnet);
3767 ill->ill_flags |= ILLF_IPV4;
3768 } else {
3769 ipif->ipif_v6lcl_addr = ipv6_loopback;
3770 ipif->ipif_v6net_mask = ipv6_all_ones;
3771 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
3772 ipif->ipif_v6subnet);
3773 ill->ill_flags |= ILLF_IPV6;
3774 }
3775
3776 /*
3777 * Chain us in at the end of the ill list. hold the ill
3778 * before we make it globally visible. 1 for the lookup.
3779 */
3780 ill_refhold(ill);
3781
3782 ipsq = ill->ill_phyint->phyint_ipsq;
3783
3784 if (ill_glist_insert(ill, "lo", isv6) != 0)
3785 cmn_err(CE_PANIC, "cannot insert loopback interface");
3786
3787 /* Let SCTP know so that it can add this to its list */
3788 sctp_update_ill(ill, SCTP_ILL_INSERT);
3789
3790 /*
3791 * We have already assigned ipif_v6lcl_addr above, but we need to
3792 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which
3793 * requires to be after ill_glist_insert() since we need the
3794 * ill_index set. Pass on ipv6_loopback as the old address.
3795 */
3796 sctp_update_ipif_addr(ipif, ov6addr);
3797
3798 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);
3799
3800 /*
3801 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs.
3802 * If so, free our original one.
3803 */
3804 if (ipsq != ill->ill_phyint->phyint_ipsq)
3805 ipsq_delete(ipsq);
3806
3807 if (ipst->ips_loopback_ksp == NULL) {
3808 /* Export loopback interface statistics */
3809 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0,
3810 ipif_loopback_name, "net",
3811 KSTAT_TYPE_NAMED, 2, 0,
3812 ipst->ips_netstack->netstack_stackid);
3813 if (ipst->ips_loopback_ksp != NULL) {
3814 ipst->ips_loopback_ksp->ks_update =
3815 loopback_kstat_update;
3816 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp);
3817 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32);
3818 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32);
3819 ipst->ips_loopback_ksp->ks_private =
3820 (void *)(uintptr_t)ipst->ips_netstack->
3821 netstack_stackid;
3822 kstat_install(ipst->ips_loopback_ksp);
3823 }
3824 }
3825
3826 *did_alloc = B_TRUE;
3827 rw_exit(&ipst->ips_ill_g_lock);
3828 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id),
3829 NE_PLUMB, ill->ill_name, ill->ill_name_length);
3830 return (ill);
3831 done:
3832 if (ill != NULL) {
3833 if (ill->ill_phyint != NULL) {
3834 ipsq = ill->ill_phyint->phyint_ipsq;
3835 if (ipsq != NULL) {
3836 ipsq->ipsq_phyint = NULL;
3837 ipsq_delete(ipsq);
3838 }
3839 mi_free(ill->ill_phyint);
3840 }
3841 ill_free_mib(ill);
3842 if (ill->ill_ipst != NULL)
3843 netstack_rele(ill->ill_ipst->ips_netstack);
3844 mi_free(ill);
3845 }
3846 rw_exit(&ipst->ips_ill_g_lock);
3847 return (NULL);
3848 }
3849
3850 /*
3851 * For IPP calls - use the ip_stack_t for global stack.
3852 */
3853 ill_t *
ill_lookup_on_ifindex_global_instance(uint_t index,boolean_t isv6)3854 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6)
3855 {
3856 ip_stack_t *ipst;
3857 ill_t *ill;
3858 netstack_t *ns;
3859
3860 ns = netstack_find_by_stackid(GLOBAL_NETSTACKID);
3861
3862 if ((ipst = ns->netstack_ip) == NULL) {
3863 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n");
3864 netstack_rele(ns);
3865 return (NULL);
3866 }
3867
3868 ill = ill_lookup_on_ifindex(index, isv6, ipst);
3869 netstack_rele(ns);
3870 return (ill);
3871 }
3872
3873 /*
3874 * Return a pointer to the ill which matches the index and IP version type.
3875 */
3876 ill_t *
ill_lookup_on_ifindex(uint_t index,boolean_t isv6,ip_stack_t * ipst)3877 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
3878 {
3879 ill_t *ill;
3880 phyint_t *phyi;
3881
3882 /*
3883 * Indexes are stored in the phyint - a common structure
3884 * to both IPv4 and IPv6.
3885 */
3886 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3887 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3888 (void *) &index, NULL);
3889 if (phyi != NULL) {
3890 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4;
3891 if (ill != NULL) {
3892 mutex_enter(&ill->ill_lock);
3893 if (!ILL_IS_CONDEMNED(ill)) {
3894 ill_refhold_locked(ill);
3895 mutex_exit(&ill->ill_lock);
3896 rw_exit(&ipst->ips_ill_g_lock);
3897 return (ill);
3898 }
3899 mutex_exit(&ill->ill_lock);
3900 }
3901 }
3902 rw_exit(&ipst->ips_ill_g_lock);
3903 return (NULL);
3904 }
3905
3906 /*
3907 * Verify whether or not an interface index is valid for the specified zoneid
3908 * to transmit packets.
3909 * It can be zero (meaning "reset") or an interface index assigned
3910 * to a non-VNI interface. (We don't use VNI interface to send packets.)
3911 */
3912 boolean_t
ip_xmit_ifindex_valid(uint_t ifindex,zoneid_t zoneid,boolean_t isv6,ip_stack_t * ipst)3913 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6,
3914 ip_stack_t *ipst)
3915 {
3916 ill_t *ill;
3917
3918 if (ifindex == 0)
3919 return (B_TRUE);
3920
3921 ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst);
3922 if (ill == NULL)
3923 return (B_FALSE);
3924 if (IS_VNI(ill)) {
3925 ill_refrele(ill);
3926 return (B_FALSE);
3927 }
3928 ill_refrele(ill);
3929 return (B_TRUE);
3930 }
3931
3932 /*
3933 * Return the ifindex next in sequence after the passed in ifindex.
3934 * If there is no next ifindex for the given protocol, return 0.
3935 */
3936 uint_t
ill_get_next_ifindex(uint_t index,boolean_t isv6,ip_stack_t * ipst)3937 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
3938 {
3939 phyint_t *phyi;
3940 phyint_t *phyi_initial;
3941 uint_t ifindex;
3942
3943 phyi_initial = NULL;
3944 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3945
3946 if (index == 0) {
3947 phyi = avl_first(
3948 &ipst->ips_phyint_g_list->phyint_list_avl_by_index);
3949 } else {
3950 phyi = phyi_initial = avl_find(
3951 &ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3952 (void *) &index, NULL);
3953 }
3954
3955 for (; phyi != NULL;
3956 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3957 phyi, AVL_AFTER)) {
3958 /*
3959 * If we're not returning the first interface in the tree
3960 * and we still haven't moved past the phyint_t that
3961 * corresponds to index, avl_walk needs to be called again
3962 */
3963 if (!((index != 0) && (phyi == phyi_initial))) {
3964 if (isv6) {
3965 if ((phyi->phyint_illv6) &&
3966 ILL_CAN_LOOKUP(phyi->phyint_illv6) &&
3967 (phyi->phyint_illv6->ill_isv6 == 1))
3968 break;
3969 } else {
3970 if ((phyi->phyint_illv4) &&
3971 ILL_CAN_LOOKUP(phyi->phyint_illv4) &&
3972 (phyi->phyint_illv4->ill_isv6 == 0))
3973 break;
3974 }
3975 }
3976 }
3977
3978 rw_exit(&ipst->ips_ill_g_lock);
3979
3980 if (phyi != NULL)
3981 ifindex = phyi->phyint_ifindex;
3982 else
3983 ifindex = 0;
3984
3985 return (ifindex);
3986 }
3987
3988 /*
3989 * Return the ifindex for the named interface.
3990 * If there is no next ifindex for the interface, return 0.
3991 */
3992 uint_t
ill_get_ifindex_by_name(char * name,ip_stack_t * ipst)3993 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst)
3994 {
3995 phyint_t *phyi;
3996 avl_index_t where = 0;
3997 uint_t ifindex;
3998
3999 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4000
4001 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
4002 name, &where)) == NULL) {
4003 rw_exit(&ipst->ips_ill_g_lock);
4004 return (0);
4005 }
4006
4007 ifindex = phyi->phyint_ifindex;
4008
4009 rw_exit(&ipst->ips_ill_g_lock);
4010
4011 return (ifindex);
4012 }
4013
4014 /*
4015 * Return the ifindex to be used by upper layer protocols for instance
4016 * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill.
4017 */
4018 uint_t
ill_get_upper_ifindex(const ill_t * ill)4019 ill_get_upper_ifindex(const ill_t *ill)
4020 {
4021 if (IS_UNDER_IPMP(ill))
4022 return (ipmp_ill_get_ipmp_ifindex(ill));
4023 else
4024 return (ill->ill_phyint->phyint_ifindex);
4025 }
4026
4027
4028 /*
4029 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt
4030 * that gives a running thread a reference to the ill. This reference must be
4031 * released by the thread when it is done accessing the ill and related
4032 * objects. ill_refcnt can not be used to account for static references
4033 * such as other structures pointing to an ill. Callers must generally
4034 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros
4035 * or be sure that the ill is not being deleted or changing state before
4036 * calling the refhold functions. A non-zero ill_refcnt ensures that the
4037 * ill won't change any of its critical state such as address, netmask etc.
4038 */
4039 void
ill_refhold(ill_t * ill)4040 ill_refhold(ill_t *ill)
4041 {
4042 mutex_enter(&ill->ill_lock);
4043 ill->ill_refcnt++;
4044 ILL_TRACE_REF(ill);
4045 mutex_exit(&ill->ill_lock);
4046 }
4047
4048 void
ill_refhold_locked(ill_t * ill)4049 ill_refhold_locked(ill_t *ill)
4050 {
4051 ASSERT(MUTEX_HELD(&ill->ill_lock));
4052 ill->ill_refcnt++;
4053 ILL_TRACE_REF(ill);
4054 }
4055
4056 /* Returns true if we managed to get a refhold */
4057 boolean_t
ill_check_and_refhold(ill_t * ill)4058 ill_check_and_refhold(ill_t *ill)
4059 {
4060 mutex_enter(&ill->ill_lock);
4061 if (!ILL_IS_CONDEMNED(ill)) {
4062 ill_refhold_locked(ill);
4063 mutex_exit(&ill->ill_lock);
4064 return (B_TRUE);
4065 }
4066 mutex_exit(&ill->ill_lock);
4067 return (B_FALSE);
4068 }
4069
4070 /*
4071 * Must not be called while holding any locks. Otherwise if this is
4072 * the last reference to be released, there is a chance of recursive mutex
4073 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
4074 * to restart an ioctl.
4075 */
4076 void
ill_refrele(ill_t * ill)4077 ill_refrele(ill_t *ill)
4078 {
4079 mutex_enter(&ill->ill_lock);
4080 ASSERT(ill->ill_refcnt != 0);
4081 ill->ill_refcnt--;
4082 ILL_UNTRACE_REF(ill);
4083 if (ill->ill_refcnt != 0) {
4084 /* Every ire pointing to the ill adds 1 to ill_refcnt */
4085 mutex_exit(&ill->ill_lock);
4086 return;
4087 }
4088
4089 /* Drops the ill_lock */
4090 ipif_ill_refrele_tail(ill);
4091 }
4092
4093 /*
4094 * Obtain a weak reference count on the ill. This reference ensures the
4095 * ill won't be freed, but the ill may change any of its critical state
4096 * such as netmask, address etc. Returns an error if the ill has started
4097 * closing.
4098 */
4099 boolean_t
ill_waiter_inc(ill_t * ill)4100 ill_waiter_inc(ill_t *ill)
4101 {
4102 mutex_enter(&ill->ill_lock);
4103 if (ill->ill_state_flags & ILL_CONDEMNED) {
4104 mutex_exit(&ill->ill_lock);
4105 return (B_FALSE);
4106 }
4107 ill->ill_waiters++;
4108 mutex_exit(&ill->ill_lock);
4109 return (B_TRUE);
4110 }
4111
4112 void
ill_waiter_dcr(ill_t * ill)4113 ill_waiter_dcr(ill_t *ill)
4114 {
4115 mutex_enter(&ill->ill_lock);
4116 ill->ill_waiters--;
4117 if (ill->ill_waiters == 0)
4118 cv_broadcast(&ill->ill_cv);
4119 mutex_exit(&ill->ill_lock);
4120 }
4121
4122 /*
4123 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the
4124 * driver. We construct best guess defaults for lower level information that
4125 * we need. If an interface is brought up without injection of any overriding
4126 * information from outside, we have to be ready to go with these defaults.
4127 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ)
4128 * we primarely want the dl_provider_style.
4129 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND
4130 * at which point we assume the other part of the information is valid.
4131 */
4132 void
ip_ll_subnet_defaults(ill_t * ill,mblk_t * mp)4133 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp)
4134 {
4135 uchar_t *brdcst_addr;
4136 uint_t brdcst_addr_length, phys_addr_length;
4137 t_scalar_t sap_length;
4138 dl_info_ack_t *dlia;
4139 ip_m_t *ipm;
4140 dl_qos_cl_sel1_t *sel1;
4141 int min_mtu;
4142
4143 ASSERT(IAM_WRITER_ILL(ill));
4144
4145 /*
4146 * Till the ill is fully up the ill is not globally visible.
4147 * So no need for a lock.
4148 */
4149 dlia = (dl_info_ack_t *)mp->b_rptr;
4150 ill->ill_mactype = dlia->dl_mac_type;
4151
4152 ipm = ip_m_lookup(dlia->dl_mac_type);
4153 if (ipm == NULL) {
4154 ipm = ip_m_lookup(DL_OTHER);
4155 ASSERT(ipm != NULL);
4156 }
4157 ill->ill_media = ipm;
4158
4159 /*
4160 * When the new DLPI stuff is ready we'll pull lengths
4161 * from dlia.
4162 */
4163 if (dlia->dl_version == DL_VERSION_2) {
4164 brdcst_addr_length = dlia->dl_brdcst_addr_length;
4165 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset,
4166 brdcst_addr_length);
4167 if (brdcst_addr == NULL) {
4168 brdcst_addr_length = 0;
4169 }
4170 sap_length = dlia->dl_sap_length;
4171 phys_addr_length = dlia->dl_addr_length - ABS(sap_length);
4172 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n",
4173 brdcst_addr_length, sap_length, phys_addr_length));
4174 } else {
4175 brdcst_addr_length = 6;
4176 brdcst_addr = ip_six_byte_all_ones;
4177 sap_length = -2;
4178 phys_addr_length = brdcst_addr_length;
4179 }
4180
4181 ill->ill_bcast_addr_length = brdcst_addr_length;
4182 ill->ill_phys_addr_length = phys_addr_length;
4183 ill->ill_sap_length = sap_length;
4184
4185 /*
4186 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU,
4187 * but we must ensure a minimum IP MTU is used since other bits of
4188 * IP will fly apart otherwise.
4189 */
4190 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU;
4191 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu);
4192 ill->ill_current_frag = ill->ill_max_frag;
4193 ill->ill_mtu = ill->ill_max_frag;
4194 ill->ill_mc_mtu = ill->ill_mtu; /* Overridden by DL_NOTE_SDU_SIZE2 */
4195
4196 ill->ill_type = ipm->ip_m_type;
4197
4198 if (!ill->ill_dlpi_style_set) {
4199 if (dlia->dl_provider_style == DL_STYLE2)
4200 ill->ill_needs_attach = 1;
4201
4202 phyint_flags_init(ill->ill_phyint, ill->ill_mactype);
4203
4204 /*
4205 * Allocate the first ipif on this ill. We don't delay it
4206 * further as ioctl handling assumes at least one ipif exists.
4207 *
4208 * At this point we don't know whether the ill is v4 or v6.
4209 * We will know this whan the SIOCSLIFNAME happens and
4210 * the correct value for ill_isv6 will be assigned in
4211 * ipif_set_values(). We need to hold the ill lock and
4212 * clear the ILL_LL_SUBNET_PENDING flag and atomically do
4213 * the wakeup.
4214 */
4215 (void) ipif_allocate(ill, 0, IRE_LOCAL,
4216 dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL);
4217 mutex_enter(&ill->ill_lock);
4218 ASSERT(ill->ill_dlpi_style_set == 0);
4219 ill->ill_dlpi_style_set = 1;
4220 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING;
4221 cv_broadcast(&ill->ill_cv);
4222 mutex_exit(&ill->ill_lock);
4223 freemsg(mp);
4224 return;
4225 }
4226 ASSERT(ill->ill_ipif != NULL);
4227 /*
4228 * We know whether it is IPv4 or IPv6 now, as this is the
4229 * second DL_INFO_ACK we are recieving in response to the
4230 * DL_INFO_REQ sent in ipif_set_values.
4231 */
4232 ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap;
4233 /*
4234 * Clear all the flags that were set based on ill_bcast_addr_length
4235 * and ill_phys_addr_length (in ipif_set_values) as these could have
4236 * changed now and we need to re-evaluate.
4237 */
4238 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP);
4239 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT);
4240
4241 /*
4242 * Free ill_bcast_mp as things could have changed now.
4243 *
4244 * NOTE: The IPMP meta-interface is special-cased because it starts
4245 * with no underlying interfaces (and thus an unknown broadcast
4246 * address length), but we enforce that an interface is broadcast-
4247 * capable as part of allowing it to join a group.
4248 */
4249 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) {
4250 if (ill->ill_bcast_mp != NULL)
4251 freemsg(ill->ill_bcast_mp);
4252 ill->ill_net_type = IRE_IF_NORESOLVER;
4253
4254 ill->ill_bcast_mp = ill_dlur_gen(NULL,
4255 ill->ill_phys_addr_length,
4256 ill->ill_sap,
4257 ill->ill_sap_length);
4258
4259 if (ill->ill_isv6)
4260 /*
4261 * Note: xresolv interfaces will eventually need NOARP
4262 * set here as well, but that will require those
4263 * external resolvers to have some knowledge of
4264 * that flag and act appropriately. Not to be changed
4265 * at present.
4266 */
4267 ill->ill_flags |= ILLF_NONUD;
4268 else
4269 ill->ill_flags |= ILLF_NOARP;
4270
4271 if (ill->ill_mactype == SUNW_DL_VNI) {
4272 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT;
4273 } else if (ill->ill_phys_addr_length == 0 ||
4274 ill->ill_mactype == DL_IPV4 ||
4275 ill->ill_mactype == DL_IPV6) {
4276 /*
4277 * The underying link is point-to-point, so mark the
4278 * interface as such. We can do IP multicast over
4279 * such a link since it transmits all network-layer
4280 * packets to the remote side the same way.
4281 */
4282 ill->ill_flags |= ILLF_MULTICAST;
4283 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT;
4284 }
4285 } else {
4286 ill->ill_net_type = IRE_IF_RESOLVER;
4287 if (ill->ill_bcast_mp != NULL)
4288 freemsg(ill->ill_bcast_mp);
4289 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr,
4290 ill->ill_bcast_addr_length, ill->ill_sap,
4291 ill->ill_sap_length);
4292 /*
4293 * Later detect lack of DLPI driver multicast
4294 * capability by catching DL_ENABMULTI errors in
4295 * ip_rput_dlpi.
4296 */
4297 ill->ill_flags |= ILLF_MULTICAST;
4298 if (!ill->ill_isv6)
4299 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST;
4300 }
4301
4302 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */
4303 if (ill->ill_mactype == SUNW_DL_IPMP)
4304 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP);
4305
4306 /* By default an interface does not support any CoS marking */
4307 ill->ill_flags &= ~ILLF_COS_ENABLED;
4308
4309 /*
4310 * If we get QoS information in DL_INFO_ACK, the device supports
4311 * some form of CoS marking, set ILLF_COS_ENABLED.
4312 */
4313 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset,
4314 dlia->dl_qos_length);
4315 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) {
4316 ill->ill_flags |= ILLF_COS_ENABLED;
4317 }
4318
4319 /* Clear any previous error indication. */
4320 ill->ill_error = 0;
4321 freemsg(mp);
4322 }
4323
4324 /*
4325 * Perform various checks to verify that an address would make sense as a
4326 * local, remote, or subnet interface address.
4327 */
4328 static boolean_t
ip_addr_ok_v4(ipaddr_t addr,ipaddr_t subnet_mask)4329 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask)
4330 {
4331 ipaddr_t net_mask;
4332
4333 /*
4334 * Don't allow all zeroes, or all ones, but allow
4335 * all ones netmask.
4336 */
4337 if ((net_mask = ip_net_mask(addr)) == 0)
4338 return (B_FALSE);
4339 /* A given netmask overrides the "guess" netmask */
4340 if (subnet_mask != 0)
4341 net_mask = subnet_mask;
4342 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) ||
4343 (addr == (addr | ~net_mask)))) {
4344 return (B_FALSE);
4345 }
4346
4347 /*
4348 * Even if the netmask is all ones, we do not allow address to be
4349 * 255.255.255.255
4350 */
4351 if (addr == INADDR_BROADCAST)
4352 return (B_FALSE);
4353
4354 if (CLASSD(addr))
4355 return (B_FALSE);
4356
4357 return (B_TRUE);
4358 }
4359
4360 #define V6_IPIF_LINKLOCAL(p) \
4361 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr)
4362
4363 /*
4364 * Compare two given ipifs and check if the second one is better than
4365 * the first one using the order of preference (not taking deprecated
4366 * into acount) specified in ipif_lookup_multicast().
4367 */
4368 static boolean_t
ipif_comp_multi(ipif_t * old_ipif,ipif_t * new_ipif,boolean_t isv6)4369 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6)
4370 {
4371 /* Check the least preferred first. */
4372 if (IS_LOOPBACK(old_ipif->ipif_ill)) {
4373 /* If both ipifs are the same, use the first one. */
4374 if (IS_LOOPBACK(new_ipif->ipif_ill))
4375 return (B_FALSE);
4376 else
4377 return (B_TRUE);
4378 }
4379
4380 /* For IPv6, check for link local address. */
4381 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) {
4382 if (IS_LOOPBACK(new_ipif->ipif_ill) ||
4383 V6_IPIF_LINKLOCAL(new_ipif)) {
4384 /* The second one is equal or less preferred. */
4385 return (B_FALSE);
4386 } else {
4387 return (B_TRUE);
4388 }
4389 }
4390
4391 /* Then check for point to point interface. */
4392 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) {
4393 if (IS_LOOPBACK(new_ipif->ipif_ill) ||
4394 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) ||
4395 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) {
4396 return (B_FALSE);
4397 } else {
4398 return (B_TRUE);
4399 }
4400 }
4401
4402 /* old_ipif is a normal interface, so no need to use the new one. */
4403 return (B_FALSE);
4404 }
4405
4406 /*
4407 * Find a mulitcast-capable ipif given an IP instance and zoneid.
4408 * The ipif must be up, and its ill must multicast-capable, not
4409 * condemned, not an underlying interface in an IPMP group, and
4410 * not a VNI interface. Order of preference:
4411 *
4412 * 1a. normal
4413 * 1b. normal, but deprecated
4414 * 2a. point to point
4415 * 2b. point to point, but deprecated
4416 * 3a. link local
4417 * 3b. link local, but deprecated
4418 * 4. loopback.
4419 */
4420 static ipif_t *
ipif_lookup_multicast(ip_stack_t * ipst,zoneid_t zoneid,boolean_t isv6)4421 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
4422 {
4423 ill_t *ill;
4424 ill_walk_context_t ctx;
4425 ipif_t *ipif;
4426 ipif_t *saved_ipif = NULL;
4427 ipif_t *dep_ipif = NULL;
4428
4429 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4430 if (isv6)
4431 ill = ILL_START_WALK_V6(&ctx, ipst);
4432 else
4433 ill = ILL_START_WALK_V4(&ctx, ipst);
4434
4435 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4436 mutex_enter(&ill->ill_lock);
4437 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) ||
4438 ILL_IS_CONDEMNED(ill) ||
4439 !(ill->ill_flags & ILLF_MULTICAST)) {
4440 mutex_exit(&ill->ill_lock);
4441 continue;
4442 }
4443 for (ipif = ill->ill_ipif; ipif != NULL;
4444 ipif = ipif->ipif_next) {
4445 if (zoneid != ipif->ipif_zoneid &&
4446 zoneid != ALL_ZONES &&
4447 ipif->ipif_zoneid != ALL_ZONES) {
4448 continue;
4449 }
4450 if (!(ipif->ipif_flags & IPIF_UP) ||
4451 IPIF_IS_CONDEMNED(ipif)) {
4452 continue;
4453 }
4454
4455 /*
4456 * Found one candidate. If it is deprecated,
4457 * remember it in dep_ipif. If it is not deprecated,
4458 * remember it in saved_ipif.
4459 */
4460 if (ipif->ipif_flags & IPIF_DEPRECATED) {
4461 if (dep_ipif == NULL) {
4462 dep_ipif = ipif;
4463 } else if (ipif_comp_multi(dep_ipif, ipif,
4464 isv6)) {
4465 /*
4466 * If the previous dep_ipif does not
4467 * belong to the same ill, we've done
4468 * a ipif_refhold() on it. So we need
4469 * to release it.
4470 */
4471 if (dep_ipif->ipif_ill != ill)
4472 ipif_refrele(dep_ipif);
4473 dep_ipif = ipif;
4474 }
4475 continue;
4476 }
4477 if (saved_ipif == NULL) {
4478 saved_ipif = ipif;
4479 } else {
4480 if (ipif_comp_multi(saved_ipif, ipif, isv6)) {
4481 if (saved_ipif->ipif_ill != ill)
4482 ipif_refrele(saved_ipif);
4483 saved_ipif = ipif;
4484 }
4485 }
4486 }
4487 /*
4488 * Before going to the next ill, do a ipif_refhold() on the
4489 * saved ones.
4490 */
4491 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill)
4492 ipif_refhold_locked(saved_ipif);
4493 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill)
4494 ipif_refhold_locked(dep_ipif);
4495 mutex_exit(&ill->ill_lock);
4496 }
4497 rw_exit(&ipst->ips_ill_g_lock);
4498
4499 /*
4500 * If we have only the saved_ipif, return it. But if we have both
4501 * saved_ipif and dep_ipif, check to see which one is better.
4502 */
4503 if (saved_ipif != NULL) {
4504 if (dep_ipif != NULL) {
4505 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) {
4506 ipif_refrele(saved_ipif);
4507 return (dep_ipif);
4508 } else {
4509 ipif_refrele(dep_ipif);
4510 return (saved_ipif);
4511 }
4512 }
4513 return (saved_ipif);
4514 } else {
4515 return (dep_ipif);
4516 }
4517 }
4518
4519 ill_t *
ill_lookup_multicast(ip_stack_t * ipst,zoneid_t zoneid,boolean_t isv6)4520 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
4521 {
4522 ipif_t *ipif;
4523 ill_t *ill;
4524
4525 ipif = ipif_lookup_multicast(ipst, zoneid, isv6);
4526 if (ipif == NULL)
4527 return (NULL);
4528
4529 ill = ipif->ipif_ill;
4530 ill_refhold(ill);
4531 ipif_refrele(ipif);
4532 return (ill);
4533 }
4534
4535 /*
4536 * This function is called when an application does not specify an interface
4537 * to be used for multicast traffic (joining a group/sending data). It
4538 * calls ire_lookup_multi() to look for an interface route for the
4539 * specified multicast group. Doing this allows the administrator to add
4540 * prefix routes for multicast to indicate which interface to be used for
4541 * multicast traffic in the above scenario. The route could be for all
4542 * multicast (224.0/4), for a single multicast group (a /32 route) or
4543 * anything in between. If there is no such multicast route, we just find
4544 * any multicast capable interface and return it. The returned ipif
4545 * is refhold'ed.
4546 *
4547 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the
4548 * unicast table. This is used by CGTP.
4549 */
4550 ill_t *
ill_lookup_group_v4(ipaddr_t group,zoneid_t zoneid,ip_stack_t * ipst,boolean_t * multirtp,ipaddr_t * setsrcp)4551 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst,
4552 boolean_t *multirtp, ipaddr_t *setsrcp)
4553 {
4554 ill_t *ill;
4555
4556 ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp);
4557 if (ill != NULL)
4558 return (ill);
4559
4560 return (ill_lookup_multicast(ipst, zoneid, B_FALSE));
4561 }
4562
4563 /*
4564 * Look for an ipif with the specified interface address and destination.
4565 * The destination address is used only for matching point-to-point interfaces.
4566 */
4567 ipif_t *
ipif_lookup_interface(ipaddr_t if_addr,ipaddr_t dst,ip_stack_t * ipst)4568 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst)
4569 {
4570 ipif_t *ipif;
4571 ill_t *ill;
4572 ill_walk_context_t ctx;
4573
4574 /*
4575 * First match all the point-to-point interfaces
4576 * before looking at non-point-to-point interfaces.
4577 * This is done to avoid returning non-point-to-point
4578 * ipif instead of unnumbered point-to-point ipif.
4579 */
4580 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4581 ill = ILL_START_WALK_V4(&ctx, ipst);
4582 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4583 mutex_enter(&ill->ill_lock);
4584 for (ipif = ill->ill_ipif; ipif != NULL;
4585 ipif = ipif->ipif_next) {
4586 /* Allow the ipif to be down */
4587 if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
4588 (ipif->ipif_lcl_addr == if_addr) &&
4589 (ipif->ipif_pp_dst_addr == dst)) {
4590 if (!IPIF_IS_CONDEMNED(ipif)) {
4591 ipif_refhold_locked(ipif);
4592 mutex_exit(&ill->ill_lock);
4593 rw_exit(&ipst->ips_ill_g_lock);
4594 return (ipif);
4595 }
4596 }
4597 }
4598 mutex_exit(&ill->ill_lock);
4599 }
4600 rw_exit(&ipst->ips_ill_g_lock);
4601
4602 /* lookup the ipif based on interface address */
4603 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst);
4604 ASSERT(ipif == NULL || !ipif->ipif_isv6);
4605 return (ipif);
4606 }
4607
4608 /*
4609 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact().
4610 */
4611 static ipif_t *
ipif_lookup_addr_common(ipaddr_t addr,ill_t * match_ill,uint32_t match_flags,zoneid_t zoneid,ip_stack_t * ipst)4612 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags,
4613 zoneid_t zoneid, ip_stack_t *ipst)
4614 {
4615 ipif_t *ipif;
4616 ill_t *ill;
4617 boolean_t ptp = B_FALSE;
4618 ill_walk_context_t ctx;
4619 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP);
4620 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP);
4621
4622 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4623 /*
4624 * Repeat twice, first based on local addresses and
4625 * next time for pointopoint.
4626 */
4627 repeat:
4628 ill = ILL_START_WALK_V4(&ctx, ipst);
4629 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4630 if (match_ill != NULL && ill != match_ill &&
4631 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) {
4632 continue;
4633 }
4634 mutex_enter(&ill->ill_lock);
4635 for (ipif = ill->ill_ipif; ipif != NULL;
4636 ipif = ipif->ipif_next) {
4637 if (zoneid != ALL_ZONES &&
4638 zoneid != ipif->ipif_zoneid &&
4639 ipif->ipif_zoneid != ALL_ZONES)
4640 continue;
4641
4642 if (no_duplicate && !(ipif->ipif_flags & IPIF_UP))
4643 continue;
4644
4645 /* Allow the ipif to be down */
4646 if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
4647 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
4648 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
4649 (ipif->ipif_pp_dst_addr == addr))) {
4650 if (!IPIF_IS_CONDEMNED(ipif)) {
4651 ipif_refhold_locked(ipif);
4652 mutex_exit(&ill->ill_lock);
4653 rw_exit(&ipst->ips_ill_g_lock);
4654 return (ipif);
4655 }
4656 }
4657 }
4658 mutex_exit(&ill->ill_lock);
4659 }
4660
4661 /* If we already did the ptp case, then we are done */
4662 if (ptp) {
4663 rw_exit(&ipst->ips_ill_g_lock);
4664 return (NULL);
4665 }
4666 ptp = B_TRUE;
4667 goto repeat;
4668 }
4669
4670 /*
4671 * Lookup an ipif with the specified address. For point-to-point links we
4672 * look for matches on either the destination address or the local address,
4673 * but we skip the local address check if IPIF_UNNUMBERED is set. If the
4674 * `match_ill' argument is non-NULL, the lookup is restricted to that ill
4675 * (or illgrp if `match_ill' is in an IPMP group).
4676 */
4677 ipif_t *
ipif_lookup_addr(ipaddr_t addr,ill_t * match_ill,zoneid_t zoneid,ip_stack_t * ipst)4678 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid,
4679 ip_stack_t *ipst)
4680 {
4681 return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP,
4682 zoneid, ipst));
4683 }
4684
4685 /*
4686 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr,
4687 * except that we will only return an address if it is not marked as
4688 * IPIF_DUPLICATE
4689 */
4690 ipif_t *
ipif_lookup_addr_nondup(ipaddr_t addr,ill_t * match_ill,zoneid_t zoneid,ip_stack_t * ipst)4691 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid,
4692 ip_stack_t *ipst)
4693 {
4694 return (ipif_lookup_addr_common(addr, match_ill,
4695 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP),
4696 zoneid, ipst));
4697 }
4698
4699 /*
4700 * Special abbreviated version of ipif_lookup_addr() that doesn't match
4701 * `match_ill' across the IPMP group. This function is only needed in some
4702 * corner-cases; almost everything should use ipif_lookup_addr().
4703 */
4704 ipif_t *
ipif_lookup_addr_exact(ipaddr_t addr,ill_t * match_ill,ip_stack_t * ipst)4705 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
4706 {
4707 ASSERT(match_ill != NULL);
4708 return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES,
4709 ipst));
4710 }
4711
4712 /*
4713 * Look for an ipif with the specified address. For point-point links
4714 * we look for matches on either the destination address and the local
4715 * address, but we ignore the check on the local address if IPIF_UNNUMBERED
4716 * is set.
4717 * If the `match_ill' argument is non-NULL, the lookup is restricted to that
4718 * ill (or illgrp if `match_ill' is in an IPMP group).
4719 * Return the zoneid for the ipif which matches. ALL_ZONES if no match.
4720 */
4721 zoneid_t
ipif_lookup_addr_zoneid(ipaddr_t addr,ill_t * match_ill,ip_stack_t * ipst)4722 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
4723 {
4724 zoneid_t zoneid;
4725 ipif_t *ipif;
4726 ill_t *ill;
4727 boolean_t ptp = B_FALSE;
4728 ill_walk_context_t ctx;
4729
4730 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4731 /*
4732 * Repeat twice, first based on local addresses and
4733 * next time for pointopoint.
4734 */
4735 repeat:
4736 ill = ILL_START_WALK_V4(&ctx, ipst);
4737 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4738 if (match_ill != NULL && ill != match_ill &&
4739 !IS_IN_SAME_ILLGRP(ill, match_ill)) {
4740 continue;
4741 }
4742 mutex_enter(&ill->ill_lock);
4743 for (ipif = ill->ill_ipif; ipif != NULL;
4744 ipif = ipif->ipif_next) {
4745 /* Allow the ipif to be down */
4746 if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
4747 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
4748 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
4749 (ipif->ipif_pp_dst_addr == addr)) &&
4750 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
4751 zoneid = ipif->ipif_zoneid;
4752 mutex_exit(&ill->ill_lock);
4753 rw_exit(&ipst->ips_ill_g_lock);
4754 /*
4755 * If ipif_zoneid was ALL_ZONES then we have
4756 * a trusted extensions shared IP address.
4757 * In that case GLOBAL_ZONEID works to send.
4758 */
4759 if (zoneid == ALL_ZONES)
4760 zoneid = GLOBAL_ZONEID;
4761 return (zoneid);
4762 }
4763 }
4764 mutex_exit(&ill->ill_lock);
4765 }
4766
4767 /* If we already did the ptp case, then we are done */
4768 if (ptp) {
4769 rw_exit(&ipst->ips_ill_g_lock);
4770 return (ALL_ZONES);
4771 }
4772 ptp = B_TRUE;
4773 goto repeat;
4774 }
4775
4776 /*
4777 * Look for an ipif that matches the specified remote address i.e. the
4778 * ipif that would receive the specified packet.
4779 * First look for directly connected interfaces and then do a recursive
4780 * IRE lookup and pick the first ipif corresponding to the source address in the
4781 * ire.
4782 * Returns: held ipif
4783 *
4784 * This is only used for ICMP_ADDRESS_MASK_REQUESTs
4785 */
4786 ipif_t *
ipif_lookup_remote(ill_t * ill,ipaddr_t addr,zoneid_t zoneid)4787 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid)
4788 {
4789 ipif_t *ipif;
4790
4791 ASSERT(!ill->ill_isv6);
4792
4793 /*
4794 * Someone could be changing this ipif currently or change it
4795 * after we return this. Thus a few packets could use the old
4796 * old values. However structure updates/creates (ire, ilg, ilm etc)
4797 * will atomically be updated or cleaned up with the new value
4798 * Thus we don't need a lock to check the flags or other attrs below.
4799 */
4800 mutex_enter(&ill->ill_lock);
4801 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4802 if (IPIF_IS_CONDEMNED(ipif))
4803 continue;
4804 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid &&
4805 ipif->ipif_zoneid != ALL_ZONES)
4806 continue;
4807 /* Allow the ipif to be down */
4808 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
4809 if ((ipif->ipif_pp_dst_addr == addr) ||
4810 (!(ipif->ipif_flags & IPIF_UNNUMBERED) &&
4811 ipif->ipif_lcl_addr == addr)) {
4812 ipif_refhold_locked(ipif);
4813 mutex_exit(&ill->ill_lock);
4814 return (ipif);
4815 }
4816 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) {
4817 ipif_refhold_locked(ipif);
4818 mutex_exit(&ill->ill_lock);
4819 return (ipif);
4820 }
4821 }
4822 mutex_exit(&ill->ill_lock);
4823 /*
4824 * For a remote destination it isn't possible to nail down a particular
4825 * ipif.
4826 */
4827
4828 /* Pick the first interface */
4829 ipif = ipif_get_next_ipif(NULL, ill);
4830 return (ipif);
4831 }
4832
4833 /*
4834 * This func does not prevent refcnt from increasing. But if
4835 * the caller has taken steps to that effect, then this func
4836 * can be used to determine whether the ill has become quiescent
4837 */
4838 static boolean_t
ill_is_quiescent(ill_t * ill)4839 ill_is_quiescent(ill_t *ill)
4840 {
4841 ipif_t *ipif;
4842
4843 ASSERT(MUTEX_HELD(&ill->ill_lock));
4844
4845 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4846 if (ipif->ipif_refcnt != 0)
4847 return (B_FALSE);
4848 }
4849 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) {
4850 return (B_FALSE);
4851 }
4852 return (B_TRUE);
4853 }
4854
4855 boolean_t
ill_is_freeable(ill_t * ill)4856 ill_is_freeable(ill_t *ill)
4857 {
4858 ipif_t *ipif;
4859
4860 ASSERT(MUTEX_HELD(&ill->ill_lock));
4861
4862 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4863 if (ipif->ipif_refcnt != 0) {
4864 return (B_FALSE);
4865 }
4866 }
4867 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) {
4868 return (B_FALSE);
4869 }
4870 return (B_TRUE);
4871 }
4872
4873 /*
4874 * This func does not prevent refcnt from increasing. But if
4875 * the caller has taken steps to that effect, then this func
4876 * can be used to determine whether the ipif has become quiescent
4877 */
4878 static boolean_t
ipif_is_quiescent(ipif_t * ipif)4879 ipif_is_quiescent(ipif_t *ipif)
4880 {
4881 ill_t *ill;
4882
4883 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
4884
4885 if (ipif->ipif_refcnt != 0)
4886 return (B_FALSE);
4887
4888 ill = ipif->ipif_ill;
4889 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
4890 ill->ill_logical_down) {
4891 return (B_TRUE);
4892 }
4893
4894 /* This is the last ipif going down or being deleted on this ill */
4895 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) {
4896 return (B_FALSE);
4897 }
4898
4899 return (B_TRUE);
4900 }
4901
4902 /*
4903 * return true if the ipif can be destroyed: the ipif has to be quiescent
4904 * with zero references from ire/ilm to it.
4905 */
4906 static boolean_t
ipif_is_freeable(ipif_t * ipif)4907 ipif_is_freeable(ipif_t *ipif)
4908 {
4909 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
4910 ASSERT(ipif->ipif_id != 0);
4911 return (ipif->ipif_refcnt == 0);
4912 }
4913
4914 /*
4915 * The ipif/ill/ire has been refreled. Do the tail processing.
4916 * Determine if the ipif or ill in question has become quiescent and if so
4917 * wakeup close and/or restart any queued pending ioctl that is waiting
4918 * for the ipif_down (or ill_down)
4919 */
4920 void
ipif_ill_refrele_tail(ill_t * ill)4921 ipif_ill_refrele_tail(ill_t *ill)
4922 {
4923 mblk_t *mp;
4924 conn_t *connp;
4925 ipsq_t *ipsq;
4926 ipxop_t *ipx;
4927 ipif_t *ipif;
4928 dl_notify_ind_t *dlindp;
4929
4930 ASSERT(MUTEX_HELD(&ill->ill_lock));
4931
4932 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) {
4933 /* ip_modclose() may be waiting */
4934 cv_broadcast(&ill->ill_cv);
4935 }
4936
4937 ipsq = ill->ill_phyint->phyint_ipsq;
4938 mutex_enter(&ipsq->ipsq_lock);
4939 ipx = ipsq->ipsq_xop;
4940 mutex_enter(&ipx->ipx_lock);
4941 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */
4942 goto unlock;
4943
4944 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL);
4945
4946 ipif = ipx->ipx_pending_ipif;
4947 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */
4948 goto unlock;
4949
4950 switch (ipx->ipx_waitfor) {
4951 case IPIF_DOWN:
4952 if (!ipif_is_quiescent(ipif))
4953 goto unlock;
4954 break;
4955 case IPIF_FREE:
4956 if (!ipif_is_freeable(ipif))
4957 goto unlock;
4958 break;
4959 case ILL_DOWN:
4960 if (!ill_is_quiescent(ill))
4961 goto unlock;
4962 break;
4963 case ILL_FREE:
4964 /*
4965 * ILL_FREE is only for loopback; normal ill teardown waits
4966 * synchronously in ip_modclose() without using ipx_waitfor,
4967 * handled by the cv_broadcast() at the top of this function.
4968 */
4969 if (!ill_is_freeable(ill))
4970 goto unlock;
4971 break;
4972 default:
4973 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n",
4974 (void *)ipsq, ipx->ipx_waitfor);
4975 }
4976
4977 ill_refhold_locked(ill); /* for qwriter_ip() call below */
4978 mutex_exit(&ipx->ipx_lock);
4979 mp = ipsq_pending_mp_get(ipsq, &connp);
4980 mutex_exit(&ipsq->ipsq_lock);
4981 mutex_exit(&ill->ill_lock);
4982
4983 ASSERT(mp != NULL);
4984 /*
4985 * NOTE: all of the qwriter_ip() calls below use CUR_OP since
4986 * we can only get here when the current operation decides it
4987 * it needs to quiesce via ipsq_pending_mp_add().
4988 */
4989 switch (mp->b_datap->db_type) {
4990 case M_PCPROTO:
4991 case M_PROTO:
4992 /*
4993 * For now, only DL_NOTIFY_IND messages can use this facility.
4994 */
4995 dlindp = (dl_notify_ind_t *)mp->b_rptr;
4996 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND);
4997
4998 switch (dlindp->dl_notification) {
4999 case DL_NOTE_PHYS_ADDR:
5000 qwriter_ip(ill, ill->ill_rq, mp,
5001 ill_set_phys_addr_tail, CUR_OP, B_TRUE);
5002 return;
5003 case DL_NOTE_REPLUMB:
5004 qwriter_ip(ill, ill->ill_rq, mp,
5005 ill_replumb_tail, CUR_OP, B_TRUE);
5006 return;
5007 default:
5008 ASSERT(0);
5009 ill_refrele(ill);
5010 }
5011 break;
5012
5013 case M_ERROR:
5014 case M_HANGUP:
5015 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP,
5016 B_TRUE);
5017 return;
5018
5019 case M_IOCTL:
5020 case M_IOCDATA:
5021 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) :
5022 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE);
5023 return;
5024
5025 default:
5026 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p "
5027 "db_type %d\n", (void *)mp, mp->b_datap->db_type);
5028 }
5029 return;
5030 unlock:
5031 mutex_exit(&ipsq->ipsq_lock);
5032 mutex_exit(&ipx->ipx_lock);
5033 mutex_exit(&ill->ill_lock);
5034 }
5035
5036 #ifdef DEBUG
5037 /* Reuse trace buffer from beginning (if reached the end) and record trace */
5038 static void
th_trace_rrecord(th_trace_t * th_trace)5039 th_trace_rrecord(th_trace_t *th_trace)
5040 {
5041 tr_buf_t *tr_buf;
5042 uint_t lastref;
5043
5044 lastref = th_trace->th_trace_lastref;
5045 lastref++;
5046 if (lastref == TR_BUF_MAX)
5047 lastref = 0;
5048 th_trace->th_trace_lastref = lastref;
5049 tr_buf = &th_trace->th_trbuf[lastref];
5050 tr_buf->tr_time = ddi_get_lbolt();
5051 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH);
5052 }
5053
5054 static void
th_trace_free(void * value)5055 th_trace_free(void *value)
5056 {
5057 th_trace_t *th_trace = value;
5058
5059 ASSERT(th_trace->th_refcnt == 0);
5060 kmem_free(th_trace, sizeof (*th_trace));
5061 }
5062
5063 /*
5064 * Find or create the per-thread hash table used to track object references.
5065 * The ipst argument is NULL if we shouldn't allocate.
5066 *
5067 * Accesses per-thread data, so there's no need to lock here.
5068 */
5069 static mod_hash_t *
th_trace_gethash(ip_stack_t * ipst)5070 th_trace_gethash(ip_stack_t *ipst)
5071 {
5072 th_hash_t *thh;
5073
5074 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) {
5075 mod_hash_t *mh;
5076 char name[256];
5077 size_t objsize, rshift;
5078 int retv;
5079
5080 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL)
5081 return (NULL);
5082 (void) snprintf(name, sizeof (name), "th_trace_%p",
5083 (void *)curthread);
5084
5085 /*
5086 * We use mod_hash_create_extended here rather than the more
5087 * obvious mod_hash_create_ptrhash because the latter has a
5088 * hard-coded KM_SLEEP, and we'd prefer to fail rather than
5089 * block.
5090 */
5091 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)),
5092 MAX(sizeof (ire_t), sizeof (ncec_t)));
5093 rshift = highbit(objsize);
5094 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor,
5095 th_trace_free, mod_hash_byptr, (void *)rshift,
5096 mod_hash_ptrkey_cmp, KM_NOSLEEP);
5097 if (mh == NULL) {
5098 kmem_free(thh, sizeof (*thh));
5099 return (NULL);
5100 }
5101 thh->thh_hash = mh;
5102 thh->thh_ipst = ipst;
5103 /*
5104 * We trace ills, ipifs, ires, and nces. All of these are
5105 * per-IP-stack, so the lock on the thread list is as well.
5106 */
5107 rw_enter(&ip_thread_rwlock, RW_WRITER);
5108 list_insert_tail(&ip_thread_list, thh);
5109 rw_exit(&ip_thread_rwlock);
5110 retv = tsd_set(ip_thread_data, thh);
5111 ASSERT(retv == 0);
5112 }
5113 return (thh != NULL ? thh->thh_hash : NULL);
5114 }
5115
5116 boolean_t
th_trace_ref(const void * obj,ip_stack_t * ipst)5117 th_trace_ref(const void *obj, ip_stack_t *ipst)
5118 {
5119 th_trace_t *th_trace;
5120 mod_hash_t *mh;
5121 mod_hash_val_t val;
5122
5123 if ((mh = th_trace_gethash(ipst)) == NULL)
5124 return (B_FALSE);
5125
5126 /*
5127 * Attempt to locate the trace buffer for this obj and thread.
5128 * If it does not exist, then allocate a new trace buffer and
5129 * insert into the hash.
5130 */
5131 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) {
5132 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP);
5133 if (th_trace == NULL)
5134 return (B_FALSE);
5135
5136 th_trace->th_id = curthread;
5137 if (mod_hash_insert(mh, (mod_hash_key_t)obj,
5138 (mod_hash_val_t)th_trace) != 0) {
5139 kmem_free(th_trace, sizeof (th_trace_t));
5140 return (B_FALSE);
5141 }
5142 } else {
5143 th_trace = (th_trace_t *)val;
5144 }
5145
5146 ASSERT(th_trace->th_refcnt >= 0 &&
5147 th_trace->th_refcnt < TR_BUF_MAX - 1);
5148
5149 th_trace->th_refcnt++;
5150 th_trace_rrecord(th_trace);
5151 return (B_TRUE);
5152 }
5153
5154 /*
5155 * For the purpose of tracing a reference release, we assume that global
5156 * tracing is always on and that the same thread initiated the reference hold
5157 * is releasing.
5158 */
5159 void
th_trace_unref(const void * obj)5160 th_trace_unref(const void *obj)
5161 {
5162 int retv;
5163 mod_hash_t *mh;
5164 th_trace_t *th_trace;
5165 mod_hash_val_t val;
5166
5167 mh = th_trace_gethash(NULL);
5168 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val);
5169 ASSERT(retv == 0);
5170 th_trace = (th_trace_t *)val;
5171
5172 ASSERT(th_trace->th_refcnt > 0);
5173 th_trace->th_refcnt--;
5174 th_trace_rrecord(th_trace);
5175 }
5176
5177 /*
5178 * If tracing has been disabled, then we assume that the reference counts are
5179 * now useless, and we clear them out before destroying the entries.
5180 */
5181 void
th_trace_cleanup(const void * obj,boolean_t trace_disable)5182 th_trace_cleanup(const void *obj, boolean_t trace_disable)
5183 {
5184 th_hash_t *thh;
5185 mod_hash_t *mh;
5186 mod_hash_val_t val;
5187 th_trace_t *th_trace;
5188 int retv;
5189
5190 rw_enter(&ip_thread_rwlock, RW_READER);
5191 for (thh = list_head(&ip_thread_list); thh != NULL;
5192 thh = list_next(&ip_thread_list, thh)) {
5193 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj,
5194 &val) == 0) {
5195 th_trace = (th_trace_t *)val;
5196 if (trace_disable)
5197 th_trace->th_refcnt = 0;
5198 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj);
5199 ASSERT(retv == 0);
5200 }
5201 }
5202 rw_exit(&ip_thread_rwlock);
5203 }
5204
5205 void
ipif_trace_ref(ipif_t * ipif)5206 ipif_trace_ref(ipif_t *ipif)
5207 {
5208 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5209
5210 if (ipif->ipif_trace_disable)
5211 return;
5212
5213 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) {
5214 ipif->ipif_trace_disable = B_TRUE;
5215 ipif_trace_cleanup(ipif);
5216 }
5217 }
5218
5219 void
ipif_untrace_ref(ipif_t * ipif)5220 ipif_untrace_ref(ipif_t *ipif)
5221 {
5222 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5223
5224 if (!ipif->ipif_trace_disable)
5225 th_trace_unref(ipif);
5226 }
5227
5228 void
ill_trace_ref(ill_t * ill)5229 ill_trace_ref(ill_t *ill)
5230 {
5231 ASSERT(MUTEX_HELD(&ill->ill_lock));
5232
5233 if (ill->ill_trace_disable)
5234 return;
5235
5236 if (!th_trace_ref(ill, ill->ill_ipst)) {
5237 ill->ill_trace_disable = B_TRUE;
5238 ill_trace_cleanup(ill);
5239 }
5240 }
5241
5242 void
ill_untrace_ref(ill_t * ill)5243 ill_untrace_ref(ill_t *ill)
5244 {
5245 ASSERT(MUTEX_HELD(&ill->ill_lock));
5246
5247 if (!ill->ill_trace_disable)
5248 th_trace_unref(ill);
5249 }
5250
5251 /*
5252 * Called when ipif is unplumbed or when memory alloc fails. Note that on
5253 * failure, ipif_trace_disable is set.
5254 */
5255 static void
ipif_trace_cleanup(const ipif_t * ipif)5256 ipif_trace_cleanup(const ipif_t *ipif)
5257 {
5258 th_trace_cleanup(ipif, ipif->ipif_trace_disable);
5259 }
5260
5261 /*
5262 * Called when ill is unplumbed or when memory alloc fails. Note that on
5263 * failure, ill_trace_disable is set.
5264 */
5265 static void
ill_trace_cleanup(const ill_t * ill)5266 ill_trace_cleanup(const ill_t *ill)
5267 {
5268 th_trace_cleanup(ill, ill->ill_trace_disable);
5269 }
5270 #endif /* DEBUG */
5271
5272 void
ipif_refhold_locked(ipif_t * ipif)5273 ipif_refhold_locked(ipif_t *ipif)
5274 {
5275 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5276 ipif->ipif_refcnt++;
5277 IPIF_TRACE_REF(ipif);
5278 }
5279
5280 void
ipif_refhold(ipif_t * ipif)5281 ipif_refhold(ipif_t *ipif)
5282 {
5283 ill_t *ill;
5284
5285 ill = ipif->ipif_ill;
5286 mutex_enter(&ill->ill_lock);
5287 ipif->ipif_refcnt++;
5288 IPIF_TRACE_REF(ipif);
5289 mutex_exit(&ill->ill_lock);
5290 }
5291
5292 /*
5293 * Must not be called while holding any locks. Otherwise if this is
5294 * the last reference to be released there is a chance of recursive mutex
5295 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
5296 * to restart an ioctl.
5297 */
5298 void
ipif_refrele(ipif_t * ipif)5299 ipif_refrele(ipif_t *ipif)
5300 {
5301 ill_t *ill;
5302
5303 ill = ipif->ipif_ill;
5304
5305 mutex_enter(&ill->ill_lock);
5306 ASSERT(ipif->ipif_refcnt != 0);
5307 ipif->ipif_refcnt--;
5308 IPIF_UNTRACE_REF(ipif);
5309 if (ipif->ipif_refcnt != 0) {
5310 mutex_exit(&ill->ill_lock);
5311 return;
5312 }
5313
5314 /* Drops the ill_lock */
5315 ipif_ill_refrele_tail(ill);
5316 }
5317
5318 ipif_t *
ipif_get_next_ipif(ipif_t * curr,ill_t * ill)5319 ipif_get_next_ipif(ipif_t *curr, ill_t *ill)
5320 {
5321 ipif_t *ipif;
5322
5323 mutex_enter(&ill->ill_lock);
5324 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next);
5325 ipif != NULL; ipif = ipif->ipif_next) {
5326 if (IPIF_IS_CONDEMNED(ipif))
5327 continue;
5328 ipif_refhold_locked(ipif);
5329 mutex_exit(&ill->ill_lock);
5330 return (ipif);
5331 }
5332 mutex_exit(&ill->ill_lock);
5333 return (NULL);
5334 }
5335
5336 /*
5337 * TODO: make this table extendible at run time
5338 * Return a pointer to the mac type info for 'mac_type'
5339 */
5340 static ip_m_t *
ip_m_lookup(t_uscalar_t mac_type)5341 ip_m_lookup(t_uscalar_t mac_type)
5342 {
5343 ip_m_t *ipm;
5344
5345 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++)
5346 if (ipm->ip_m_mac_type == mac_type)
5347 return (ipm);
5348 return (NULL);
5349 }
5350
5351 /*
5352 * Make a link layer address from the multicast IP address *addr.
5353 * To form the link layer address, invoke the ip_m_v*mapping function
5354 * associated with the link-layer type.
5355 */
5356 void
ip_mcast_mapping(ill_t * ill,uchar_t * addr,uchar_t * hwaddr)5357 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr)
5358 {
5359 ip_m_t *ipm;
5360
5361 if (ill->ill_net_type == IRE_IF_NORESOLVER)
5362 return;
5363
5364 ASSERT(addr != NULL);
5365
5366 ipm = ip_m_lookup(ill->ill_mactype);
5367 if (ipm == NULL ||
5368 (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) ||
5369 (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) {
5370 ip0dbg(("no mapping for ill %s mactype 0x%x\n",
5371 ill->ill_name, ill->ill_mactype));
5372 return;
5373 }
5374 if (ill->ill_isv6)
5375 (*ipm->ip_m_v6mapping)(ill, addr, hwaddr);
5376 else
5377 (*ipm->ip_m_v4mapping)(ill, addr, hwaddr);
5378 }
5379
5380 /*
5381 * Returns B_FALSE if the IPv4 netmask pointed by `mask' is non-contiguous.
5382 * Otherwise returns B_TRUE.
5383 *
5384 * The netmask can be verified to be contiguous with 32 shifts and or
5385 * operations. Take the contiguous mask (in host byte order) and compute
5386 * mask | mask << 1 | mask << 2 | ... | mask << 31
5387 * the result will be the same as the 'mask' for contiguous mask.
5388 */
5389 static boolean_t
ip_contiguous_mask(uint32_t mask)5390 ip_contiguous_mask(uint32_t mask)
5391 {
5392 uint32_t m = mask;
5393 int i;
5394
5395 for (i = 1; i < 32; i++)
5396 m |= (mask << i);
5397
5398 return (m == mask);
5399 }
5400
5401 /*
5402 * ip_rt_add is called to add an IPv4 route to the forwarding table.
5403 * ill is passed in to associate it with the correct interface.
5404 * If ire_arg is set, then we return the held IRE in that location.
5405 */
5406 int
ip_rt_add(ipaddr_t dst_addr,ipaddr_t mask,ipaddr_t gw_addr,ipaddr_t src_addr,int flags,ill_t * ill,ire_t ** ire_arg,boolean_t ioctl_msg,struct rtsa_s * sp,ip_stack_t * ipst,zoneid_t zoneid)5407 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
5408 ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg,
5409 boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid)
5410 {
5411 ire_t *ire, *nire;
5412 ire_t *gw_ire = NULL;
5413 ipif_t *ipif = NULL;
5414 uint_t type;
5415 int match_flags = MATCH_IRE_TYPE;
5416 tsol_gc_t *gc = NULL;
5417 tsol_gcgrp_t *gcgrp = NULL;
5418 boolean_t gcgrp_xtraref = B_FALSE;
5419 boolean_t cgtp_broadcast;
5420 boolean_t unbound = B_FALSE;
5421
5422 ip1dbg(("ip_rt_add:"));
5423
5424 if (ire_arg != NULL)
5425 *ire_arg = NULL;
5426
5427 /* disallow non-contiguous netmasks */
5428 if (!ip_contiguous_mask(ntohl(mask)))
5429 return (ENOTSUP);
5430
5431 /*
5432 * If this is the case of RTF_HOST being set, then we set the netmask
5433 * to all ones (regardless if one was supplied).
5434 */
5435 if (flags & RTF_HOST)
5436 mask = IP_HOST_MASK;
5437
5438 /*
5439 * Prevent routes with a zero gateway from being created (since
5440 * interfaces can currently be plumbed and brought up no assigned
5441 * address).
5442 */
5443 if (gw_addr == 0)
5444 return (ENETUNREACH);
5445 /*
5446 * Get the ipif, if any, corresponding to the gw_addr
5447 * If -ifp was specified we restrict ourselves to the ill, otherwise
5448 * we match on the gatway and destination to handle unnumbered pt-pt
5449 * interfaces.
5450 */
5451 if (ill != NULL)
5452 ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst);
5453 else
5454 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst);
5455 if (ipif != NULL) {
5456 if (IS_VNI(ipif->ipif_ill)) {
5457 ipif_refrele(ipif);
5458 return (EINVAL);
5459 }
5460 }
5461
5462 /*
5463 * GateD will attempt to create routes with a loopback interface
5464 * address as the gateway and with RTF_GATEWAY set. We allow
5465 * these routes to be added, but create them as interface routes
5466 * since the gateway is an interface address.
5467 */
5468 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) {
5469 flags &= ~RTF_GATEWAY;
5470 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK &&
5471 mask == IP_HOST_MASK) {
5472 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK,
5473 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
5474 NULL);
5475 if (ire != NULL) {
5476 ire_refrele(ire);
5477 ipif_refrele(ipif);
5478 return (EEXIST);
5479 }
5480 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x"
5481 "for 0x%x\n", (void *)ipif,
5482 ipif->ipif_ire_type,
5483 ntohl(ipif->ipif_lcl_addr)));
5484 ire = ire_create(
5485 (uchar_t *)&dst_addr, /* dest address */
5486 (uchar_t *)&mask, /* mask */
5487 NULL, /* no gateway */
5488 ipif->ipif_ire_type, /* LOOPBACK */
5489 ipif->ipif_ill,
5490 zoneid,
5491 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0,
5492 NULL,
5493 ipst);
5494
5495 if (ire == NULL) {
5496 ipif_refrele(ipif);
5497 return (ENOMEM);
5498 }
5499 /* src address assigned by the caller? */
5500 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5501 ire->ire_setsrc_addr = src_addr;
5502
5503 nire = ire_add(ire);
5504 if (nire == NULL) {
5505 /*
5506 * In the result of failure, ire_add() will have
5507 * already deleted the ire in question, so there
5508 * is no need to do that here.
5509 */
5510 ipif_refrele(ipif);
5511 return (ENOMEM);
5512 }
5513 /*
5514 * Check if it was a duplicate entry. This handles
5515 * the case of two racing route adds for the same route
5516 */
5517 if (nire != ire) {
5518 ASSERT(nire->ire_identical_ref > 1);
5519 ire_delete(nire);
5520 ire_refrele(nire);
5521 ipif_refrele(ipif);
5522 return (EEXIST);
5523 }
5524 ire = nire;
5525 goto save_ire;
5526 }
5527 }
5528
5529 /*
5530 * The routes for multicast with CGTP are quite special in that
5531 * the gateway is the local interface address, yet RTF_GATEWAY
5532 * is set. We turn off RTF_GATEWAY to provide compatibility with
5533 * this undocumented and unusual use of multicast routes.
5534 */
5535 if ((flags & RTF_MULTIRT) && ipif != NULL)
5536 flags &= ~RTF_GATEWAY;
5537
5538 /*
5539 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set
5540 * and the gateway address provided is one of the system's interface
5541 * addresses. By using the routing socket interface and supplying an
5542 * RTA_IFP sockaddr with an interface index, an alternate method of
5543 * specifying an interface route to be created is available which uses
5544 * the interface index that specifies the outgoing interface rather than
5545 * the address of an outgoing interface (which may not be able to
5546 * uniquely identify an interface). When coupled with the RTF_GATEWAY
5547 * flag, routes can be specified which not only specify the next-hop to
5548 * be used when routing to a certain prefix, but also which outgoing
5549 * interface should be used.
5550 *
5551 * Previously, interfaces would have unique addresses assigned to them
5552 * and so the address assigned to a particular interface could be used
5553 * to identify a particular interface. One exception to this was the
5554 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
5555 *
5556 * With the advent of IPv6 and its link-local addresses, this
5557 * restriction was relaxed and interfaces could share addresses between
5558 * themselves. In fact, typically all of the link-local interfaces on
5559 * an IPv6 node or router will have the same link-local address. In
5560 * order to differentiate between these interfaces, the use of an
5561 * interface index is necessary and this index can be carried inside a
5562 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction
5563 * of using the interface index, however, is that all of the ipif's that
5564 * are part of an ill have the same index and so the RTA_IFP sockaddr
5565 * cannot be used to differentiate between ipif's (or logical
5566 * interfaces) that belong to the same ill (physical interface).
5567 *
5568 * For example, in the following case involving IPv4 interfaces and
5569 * logical interfaces
5570 *
5571 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0
5572 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0
5573 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0
5574 *
5575 * the ipif's corresponding to each of these interface routes can be
5576 * uniquely identified by the "gateway" (actually interface address).
5577 *
5578 * In this case involving multiple IPv6 default routes to a particular
5579 * link-local gateway, the use of RTA_IFP is necessary to specify which
5580 * default route is of interest:
5581 *
5582 * default fe80::123:4567:89ab:cdef U if0
5583 * default fe80::123:4567:89ab:cdef U if1
5584 */
5585
5586 /* RTF_GATEWAY not set */
5587 if (!(flags & RTF_GATEWAY)) {
5588 if (sp != NULL) {
5589 ip2dbg(("ip_rt_add: gateway security attributes "
5590 "cannot be set with interface route\n"));
5591 if (ipif != NULL)
5592 ipif_refrele(ipif);
5593 return (EINVAL);
5594 }
5595
5596 /*
5597 * Whether or not ill (RTA_IFP) is set, we require that
5598 * the gateway is one of our local addresses.
5599 */
5600 if (ipif == NULL)
5601 return (ENETUNREACH);
5602
5603 /*
5604 * We use MATCH_IRE_ILL here. If the caller specified an
5605 * interface (from the RTA_IFP sockaddr) we use it, otherwise
5606 * we use the ill derived from the gateway address.
5607 * We can always match the gateway address since we record it
5608 * in ire_gateway_addr.
5609 * We don't allow RTA_IFP to specify a different ill than the
5610 * one matching the ipif to make sure we can delete the route.
5611 */
5612 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL;
5613 if (ill == NULL) {
5614 ill = ipif->ipif_ill;
5615 } else if (ill != ipif->ipif_ill) {
5616 ipif_refrele(ipif);
5617 return (EINVAL);
5618 }
5619
5620 /*
5621 * We check for an existing entry at this point.
5622 *
5623 * Since a netmask isn't passed in via the ioctl interface
5624 * (SIOCADDRT), we don't check for a matching netmask in that
5625 * case.
5626 */
5627 if (!ioctl_msg)
5628 match_flags |= MATCH_IRE_MASK;
5629 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr,
5630 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst,
5631 NULL);
5632 if (ire != NULL) {
5633 ire_refrele(ire);
5634 ipif_refrele(ipif);
5635 return (EEXIST);
5636 }
5637
5638 /*
5639 * Some software (for example, GateD and Sun Cluster) attempts
5640 * to create (what amount to) IRE_PREFIX routes with the
5641 * loopback address as the gateway. This is primarily done to
5642 * set up prefixes with the RTF_REJECT flag set (for example,
5643 * when generating aggregate routes.)
5644 *
5645 * If the IRE type (as defined by ill->ill_net_type) would be
5646 * IRE_LOOPBACK, then we map the request into a
5647 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as
5648 * these interface routes, by definition, can only be that.
5649 *
5650 * Needless to say, the real IRE_LOOPBACK is NOT created by this
5651 * routine, but rather using ire_create() directly.
5652 *
5653 */
5654 type = ill->ill_net_type;
5655 if (type == IRE_LOOPBACK) {
5656 type = IRE_IF_NORESOLVER;
5657 flags |= RTF_BLACKHOLE;
5658 }
5659
5660 /*
5661 * Create a copy of the IRE_IF_NORESOLVER or
5662 * IRE_IF_RESOLVER with the modified address, netmask, and
5663 * gateway.
5664 */
5665 ire = ire_create(
5666 (uchar_t *)&dst_addr,
5667 (uint8_t *)&mask,
5668 (uint8_t *)&gw_addr,
5669 type,
5670 ill,
5671 zoneid,
5672 flags,
5673 NULL,
5674 ipst);
5675 if (ire == NULL) {
5676 ipif_refrele(ipif);
5677 return (ENOMEM);
5678 }
5679
5680 /* src address assigned by the caller? */
5681 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5682 ire->ire_setsrc_addr = src_addr;
5683
5684 nire = ire_add(ire);
5685 if (nire == NULL) {
5686 /*
5687 * In the result of failure, ire_add() will have
5688 * already deleted the ire in question, so there
5689 * is no need to do that here.
5690 */
5691 ipif_refrele(ipif);
5692 return (ENOMEM);
5693 }
5694 /*
5695 * Check if it was a duplicate entry. This handles
5696 * the case of two racing route adds for the same route
5697 */
5698 if (nire != ire) {
5699 ire_delete(nire);
5700 ire_refrele(nire);
5701 ipif_refrele(ipif);
5702 return (EEXIST);
5703 }
5704 ire = nire;
5705 goto save_ire;
5706 }
5707
5708 /*
5709 * Get an interface IRE for the specified gateway.
5710 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
5711 * gateway, it is currently unreachable and we fail the request
5712 * accordingly. We reject any RTF_GATEWAY routes where the gateway
5713 * is an IRE_LOCAL or IRE_LOOPBACK.
5714 * If RTA_IFP was specified we look on that particular ill.
5715 */
5716 if (ill != NULL)
5717 match_flags |= MATCH_IRE_ILL;
5718
5719 /* Check whether the gateway is reachable. */
5720 again:
5721 type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK;
5722 if (flags & RTF_INDIRECT)
5723 type |= IRE_OFFLINK;
5724
5725 gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill,
5726 ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
5727 if (gw_ire == NULL) {
5728 /*
5729 * With IPMP, we allow host routes to influence in.mpathd's
5730 * target selection. However, if the test addresses are on
5731 * their own network, the above lookup will fail since the
5732 * underlying IRE_INTERFACEs are marked hidden. So allow
5733 * hidden test IREs to be found and try again.
5734 */
5735 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) {
5736 match_flags |= MATCH_IRE_TESTHIDDEN;
5737 goto again;
5738 }
5739 if (ipif != NULL)
5740 ipif_refrele(ipif);
5741 return (ENETUNREACH);
5742 }
5743 if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
5744 ire_refrele(gw_ire);
5745 if (ipif != NULL)
5746 ipif_refrele(ipif);
5747 return (ENETUNREACH);
5748 }
5749
5750 if (ill == NULL && !(flags & RTF_INDIRECT)) {
5751 unbound = B_TRUE;
5752 if (ipst->ips_ip_strict_src_multihoming > 0)
5753 ill = gw_ire->ire_ill;
5754 }
5755
5756 /*
5757 * We create one of three types of IREs as a result of this request
5758 * based on the netmask. A netmask of all ones (which is automatically
5759 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
5760 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
5761 * created. Otherwise, an IRE_PREFIX route is created for the
5762 * destination prefix.
5763 */
5764 if (mask == IP_HOST_MASK)
5765 type = IRE_HOST;
5766 else if (mask == 0)
5767 type = IRE_DEFAULT;
5768 else
5769 type = IRE_PREFIX;
5770
5771 /* check for a duplicate entry */
5772 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill,
5773 ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW,
5774 0, ipst, NULL);
5775 if (ire != NULL) {
5776 if (ipif != NULL)
5777 ipif_refrele(ipif);
5778 ire_refrele(gw_ire);
5779 ire_refrele(ire);
5780 return (EEXIST);
5781 }
5782
5783 /* Security attribute exists */
5784 if (sp != NULL) {
5785 tsol_gcgrp_addr_t ga;
5786
5787 /* find or create the gateway credentials group */
5788 ga.ga_af = AF_INET;
5789 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr);
5790
5791 /* we hold reference to it upon success */
5792 gcgrp = gcgrp_lookup(&ga, B_TRUE);
5793 if (gcgrp == NULL) {
5794 if (ipif != NULL)
5795 ipif_refrele(ipif);
5796 ire_refrele(gw_ire);
5797 return (ENOMEM);
5798 }
5799
5800 /*
5801 * Create and add the security attribute to the group; a
5802 * reference to the group is made upon allocating a new
5803 * entry successfully. If it finds an already-existing
5804 * entry for the security attribute in the group, it simply
5805 * returns it and no new reference is made to the group.
5806 */
5807 gc = gc_create(sp, gcgrp, &gcgrp_xtraref);
5808 if (gc == NULL) {
5809 if (ipif != NULL)
5810 ipif_refrele(ipif);
5811 /* release reference held by gcgrp_lookup */
5812 GCGRP_REFRELE(gcgrp);
5813 ire_refrele(gw_ire);
5814 return (ENOMEM);
5815 }
5816 }
5817
5818 /* Create the IRE. */
5819 ire = ire_create(
5820 (uchar_t *)&dst_addr, /* dest address */
5821 (uchar_t *)&mask, /* mask */
5822 (uchar_t *)&gw_addr, /* gateway address */
5823 (ushort_t)type, /* IRE type */
5824 ill,
5825 zoneid,
5826 flags,
5827 gc, /* security attribute */
5828 ipst);
5829
5830 /*
5831 * The ire holds a reference to the 'gc' and the 'gc' holds a
5832 * reference to the 'gcgrp'. We can now release the extra reference
5833 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used.
5834 */
5835 if (gcgrp_xtraref)
5836 GCGRP_REFRELE(gcgrp);
5837 if (ire == NULL) {
5838 if (gc != NULL)
5839 GC_REFRELE(gc);
5840 if (ipif != NULL)
5841 ipif_refrele(ipif);
5842 ire_refrele(gw_ire);
5843 return (ENOMEM);
5844 }
5845
5846 /* Before we add, check if an extra CGTP broadcast is needed */
5847 cgtp_broadcast = ((flags & RTF_MULTIRT) &&
5848 ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST);
5849
5850 /* src address assigned by the caller? */
5851 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5852 ire->ire_setsrc_addr = src_addr;
5853
5854 ire->ire_unbound = unbound;
5855
5856 /*
5857 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
5858 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0?
5859 */
5860
5861 /* Add the new IRE. */
5862 nire = ire_add(ire);
5863 if (nire == NULL) {
5864 /*
5865 * In the result of failure, ire_add() will have
5866 * already deleted the ire in question, so there
5867 * is no need to do that here.
5868 */
5869 if (ipif != NULL)
5870 ipif_refrele(ipif);
5871 ire_refrele(gw_ire);
5872 return (ENOMEM);
5873 }
5874 /*
5875 * Check if it was a duplicate entry. This handles
5876 * the case of two racing route adds for the same route
5877 */
5878 if (nire != ire) {
5879 ire_delete(nire);
5880 ire_refrele(nire);
5881 if (ipif != NULL)
5882 ipif_refrele(ipif);
5883 ire_refrele(gw_ire);
5884 return (EEXIST);
5885 }
5886 ire = nire;
5887
5888 if (flags & RTF_MULTIRT) {
5889 /*
5890 * Invoke the CGTP (multirouting) filtering module
5891 * to add the dst address in the filtering database.
5892 * Replicated inbound packets coming from that address
5893 * will be filtered to discard the duplicates.
5894 * It is not necessary to call the CGTP filter hook
5895 * when the dst address is a broadcast or multicast,
5896 * because an IP source address cannot be a broadcast
5897 * or a multicast.
5898 */
5899 if (cgtp_broadcast) {
5900 ip_cgtp_bcast_add(ire, ipst);
5901 goto save_ire;
5902 }
5903 if (ipst->ips_ip_cgtp_filter_ops != NULL &&
5904 !CLASSD(ire->ire_addr)) {
5905 int res;
5906 ipif_t *src_ipif;
5907
5908 /* Find the source address corresponding to gw_ire */
5909 src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr,
5910 NULL, zoneid, ipst);
5911 if (src_ipif != NULL) {
5912 res = ipst->ips_ip_cgtp_filter_ops->
5913 cfo_add_dest_v4(
5914 ipst->ips_netstack->netstack_stackid,
5915 ire->ire_addr,
5916 ire->ire_gateway_addr,
5917 ire->ire_setsrc_addr,
5918 src_ipif->ipif_lcl_addr);
5919 ipif_refrele(src_ipif);
5920 } else {
5921 res = EADDRNOTAVAIL;
5922 }
5923 if (res != 0) {
5924 if (ipif != NULL)
5925 ipif_refrele(ipif);
5926 ire_refrele(gw_ire);
5927 ire_delete(ire);
5928 ire_refrele(ire); /* Held in ire_add */
5929 return (res);
5930 }
5931 }
5932 }
5933
5934 save_ire:
5935 if (gw_ire != NULL) {
5936 ire_refrele(gw_ire);
5937 gw_ire = NULL;
5938 }
5939 if (ill != NULL) {
5940 /*
5941 * Save enough information so that we can recreate the IRE if
5942 * the interface goes down and then up. The metrics associated
5943 * with the route will be saved as well when rts_setmetrics() is
5944 * called after the IRE has been created. In the case where
5945 * memory cannot be allocated, none of this information will be
5946 * saved.
5947 */
5948 ill_save_ire(ill, ire);
5949 }
5950 if (ioctl_msg)
5951 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst);
5952 if (ire_arg != NULL) {
5953 /*
5954 * Store the ire that was successfully added into where ire_arg
5955 * points to so that callers don't have to look it up
5956 * themselves (but they are responsible for ire_refrele()ing
5957 * the ire when they are finished with it).
5958 */
5959 *ire_arg = ire;
5960 } else {
5961 ire_refrele(ire); /* Held in ire_add */
5962 }
5963 if (ipif != NULL)
5964 ipif_refrele(ipif);
5965 return (0);
5966 }
5967
5968 /*
5969 * ip_rt_delete is called to delete an IPv4 route.
5970 * ill is passed in to associate it with the correct interface.
5971 */
5972 /* ARGSUSED4 */
5973 int
ip_rt_delete(ipaddr_t dst_addr,ipaddr_t mask,ipaddr_t gw_addr,uint_t rtm_addrs,int flags,ill_t * ill,boolean_t ioctl_msg,ip_stack_t * ipst,zoneid_t zoneid)5974 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
5975 uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg,
5976 ip_stack_t *ipst, zoneid_t zoneid)
5977 {
5978 ire_t *ire = NULL;
5979 ipif_t *ipif;
5980 uint_t type;
5981 uint_t match_flags = MATCH_IRE_TYPE;
5982 int err = 0;
5983
5984 ip1dbg(("ip_rt_delete:"));
5985 /*
5986 * If this is the case of RTF_HOST being set, then we set the netmask
5987 * to all ones. Otherwise, we use the netmask if one was supplied.
5988 */
5989 if (flags & RTF_HOST) {
5990 mask = IP_HOST_MASK;
5991 match_flags |= MATCH_IRE_MASK;
5992 } else if (rtm_addrs & RTA_NETMASK) {
5993 match_flags |= MATCH_IRE_MASK;
5994 }
5995
5996 /*
5997 * Note that RTF_GATEWAY is never set on a delete, therefore
5998 * we check if the gateway address is one of our interfaces first,
5999 * and fall back on RTF_GATEWAY routes.
6000 *
6001 * This makes it possible to delete an original
6002 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
6003 * However, we have RTF_KERNEL set on the ones created by ipif_up
6004 * and those can not be deleted here.
6005 *
6006 * We use MATCH_IRE_ILL if we know the interface. If the caller
6007 * specified an interface (from the RTA_IFP sockaddr) we use it,
6008 * otherwise we use the ill derived from the gateway address.
6009 * We can always match the gateway address since we record it
6010 * in ire_gateway_addr.
6011 *
6012 * For more detail on specifying routes by gateway address and by
6013 * interface index, see the comments in ip_rt_add().
6014 */
6015 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst);
6016 if (ipif != NULL) {
6017 ill_t *ill_match;
6018
6019 if (ill != NULL)
6020 ill_match = ill;
6021 else
6022 ill_match = ipif->ipif_ill;
6023
6024 match_flags |= MATCH_IRE_ILL;
6025 if (ipif->ipif_ire_type == IRE_LOOPBACK) {
6026 ire = ire_ftable_lookup_v4(dst_addr, mask, 0,
6027 IRE_LOOPBACK, ill_match, ALL_ZONES, NULL,
6028 match_flags, 0, ipst, NULL);
6029 }
6030 if (ire == NULL) {
6031 match_flags |= MATCH_IRE_GW;
6032 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr,
6033 IRE_INTERFACE, ill_match, ALL_ZONES, NULL,
6034 match_flags, 0, ipst, NULL);
6035 }
6036 /* Avoid deleting routes created by kernel from an ipif */
6037 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) {
6038 ire_refrele(ire);
6039 ire = NULL;
6040 }
6041
6042 /* Restore in case we didn't find a match */
6043 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL);
6044 }
6045
6046 if (ire == NULL) {
6047 /*
6048 * At this point, the gateway address is not one of our own
6049 * addresses or a matching interface route was not found. We
6050 * set the IRE type to lookup based on whether
6051 * this is a host route, a default route or just a prefix.
6052 *
6053 * If an ill was passed in, then the lookup is based on an
6054 * interface index so MATCH_IRE_ILL is added to match_flags.
6055 */
6056 match_flags |= MATCH_IRE_GW;
6057 if (ill != NULL)
6058 match_flags |= MATCH_IRE_ILL;
6059 if (mask == IP_HOST_MASK)
6060 type = IRE_HOST;
6061 else if (mask == 0)
6062 type = IRE_DEFAULT;
6063 else
6064 type = IRE_PREFIX;
6065 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill,
6066 ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
6067 }
6068
6069 if (ipif != NULL) {
6070 ipif_refrele(ipif);
6071 ipif = NULL;
6072 }
6073
6074 if (ire == NULL)
6075 return (ESRCH);
6076
6077 if (ire->ire_flags & RTF_MULTIRT) {
6078 /*
6079 * Invoke the CGTP (multirouting) filtering module
6080 * to remove the dst address from the filtering database.
6081 * Packets coming from that address will no longer be
6082 * filtered to remove duplicates.
6083 */
6084 if (ipst->ips_ip_cgtp_filter_ops != NULL) {
6085 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4(
6086 ipst->ips_netstack->netstack_stackid,
6087 ire->ire_addr, ire->ire_gateway_addr);
6088 }
6089 ip_cgtp_bcast_delete(ire, ipst);
6090 }
6091
6092 ill = ire->ire_ill;
6093 if (ill != NULL)
6094 ill_remove_saved_ire(ill, ire);
6095 if (ioctl_msg)
6096 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst);
6097 ire_delete(ire);
6098 ire_refrele(ire);
6099 return (err);
6100 }
6101
6102 /*
6103 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL.
6104 */
6105 /* ARGSUSED */
6106 int
ip_siocaddrt(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_if_req)6107 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
6108 ip_ioctl_cmd_t *ipip, void *dummy_if_req)
6109 {
6110 ipaddr_t dst_addr;
6111 ipaddr_t gw_addr;
6112 ipaddr_t mask;
6113 int error = 0;
6114 mblk_t *mp1;
6115 struct rtentry *rt;
6116 ipif_t *ipif = NULL;
6117 ip_stack_t *ipst;
6118
6119 ASSERT(q->q_next == NULL);
6120 ipst = CONNQ_TO_IPST(q);
6121
6122 ip1dbg(("ip_siocaddrt:"));
6123 /* Existence of mp1 verified in ip_wput_nondata */
6124 mp1 = mp->b_cont->b_cont;
6125 rt = (struct rtentry *)mp1->b_rptr;
6126
6127 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
6128 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
6129
6130 /*
6131 * If the RTF_HOST flag is on, this is a request to assign a gateway
6132 * to a particular host address. In this case, we set the netmask to
6133 * all ones for the particular destination address. Otherwise,
6134 * determine the netmask to be used based on dst_addr and the interfaces
6135 * in use.
6136 */
6137 if (rt->rt_flags & RTF_HOST) {
6138 mask = IP_HOST_MASK;
6139 } else {
6140 /*
6141 * Note that ip_subnet_mask returns a zero mask in the case of
6142 * default (an all-zeroes address).
6143 */
6144 mask = ip_subnet_mask(dst_addr, &ipif, ipst);
6145 }
6146
6147 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL,
6148 B_TRUE, NULL, ipst, ALL_ZONES);
6149 if (ipif != NULL)
6150 ipif_refrele(ipif);
6151 return (error);
6152 }
6153
6154 /*
6155 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL.
6156 */
6157 /* ARGSUSED */
6158 int
ip_siocdelrt(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_if_req)6159 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
6160 ip_ioctl_cmd_t *ipip, void *dummy_if_req)
6161 {
6162 ipaddr_t dst_addr;
6163 ipaddr_t gw_addr;
6164 ipaddr_t mask;
6165 int error;
6166 mblk_t *mp1;
6167 struct rtentry *rt;
6168 ipif_t *ipif = NULL;
6169 ip_stack_t *ipst;
6170
6171 ASSERT(q->q_next == NULL);
6172 ipst = CONNQ_TO_IPST(q);
6173
6174 ip1dbg(("ip_siocdelrt:"));
6175 /* Existence of mp1 verified in ip_wput_nondata */
6176 mp1 = mp->b_cont->b_cont;
6177 rt = (struct rtentry *)mp1->b_rptr;
6178
6179 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
6180 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
6181
6182 /*
6183 * If the RTF_HOST flag is on, this is a request to delete a gateway
6184 * to a particular host address. In this case, we set the netmask to
6185 * all ones for the particular destination address. Otherwise,
6186 * determine the netmask to be used based on dst_addr and the interfaces
6187 * in use.
6188 */
6189 if (rt->rt_flags & RTF_HOST) {
6190 mask = IP_HOST_MASK;
6191 } else {
6192 /*
6193 * Note that ip_subnet_mask returns a zero mask in the case of
6194 * default (an all-zeroes address).
6195 */
6196 mask = ip_subnet_mask(dst_addr, &ipif, ipst);
6197 }
6198
6199 error = ip_rt_delete(dst_addr, mask, gw_addr,
6200 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE,
6201 ipst, ALL_ZONES);
6202 if (ipif != NULL)
6203 ipif_refrele(ipif);
6204 return (error);
6205 }
6206
6207 /*
6208 * Enqueue the mp onto the ipsq, chained by b_next.
6209 * b_prev stores the function to be executed later, and b_queue the queue
6210 * where this mp originated.
6211 */
6212 void
ipsq_enq(ipsq_t * ipsq,queue_t * q,mblk_t * mp,ipsq_func_t func,int type,ill_t * pending_ill)6213 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
6214 ill_t *pending_ill)
6215 {
6216 conn_t *connp;
6217 ipxop_t *ipx = ipsq->ipsq_xop;
6218
6219 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
6220 ASSERT(MUTEX_HELD(&ipx->ipx_lock));
6221 ASSERT(func != NULL);
6222
6223 mp->b_queue = q;
6224 mp->b_prev = (void *)func;
6225 mp->b_next = NULL;
6226
6227 switch (type) {
6228 case CUR_OP:
6229 if (ipx->ipx_mptail != NULL) {
6230 ASSERT(ipx->ipx_mphead != NULL);
6231 ipx->ipx_mptail->b_next = mp;
6232 } else {
6233 ASSERT(ipx->ipx_mphead == NULL);
6234 ipx->ipx_mphead = mp;
6235 }
6236 ipx->ipx_mptail = mp;
6237 break;
6238
6239 case NEW_OP:
6240 if (ipsq->ipsq_xopq_mptail != NULL) {
6241 ASSERT(ipsq->ipsq_xopq_mphead != NULL);
6242 ipsq->ipsq_xopq_mptail->b_next = mp;
6243 } else {
6244 ASSERT(ipsq->ipsq_xopq_mphead == NULL);
6245 ipsq->ipsq_xopq_mphead = mp;
6246 }
6247 ipsq->ipsq_xopq_mptail = mp;
6248 ipx->ipx_ipsq_queued = B_TRUE;
6249 break;
6250
6251 case SWITCH_OP:
6252 ASSERT(ipsq->ipsq_swxop != NULL);
6253 /* only one switch operation is currently allowed */
6254 ASSERT(ipsq->ipsq_switch_mp == NULL);
6255 ipsq->ipsq_switch_mp = mp;
6256 ipx->ipx_ipsq_queued = B_TRUE;
6257 break;
6258 default:
6259 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type);
6260 }
6261
6262 if (CONN_Q(q) && pending_ill != NULL) {
6263 connp = Q_TO_CONN(q);
6264 ASSERT(MUTEX_HELD(&connp->conn_lock));
6265 connp->conn_oper_pending_ill = pending_ill;
6266 }
6267 }
6268
6269 /*
6270 * Dequeue the next message that requested exclusive access to this IPSQ's
6271 * xop. Specifically:
6272 *
6273 * 1. If we're still processing the current operation on `ipsq', then
6274 * dequeue the next message for the operation (from ipx_mphead), or
6275 * return NULL if there are no queued messages for the operation.
6276 * These messages are queued via CUR_OP to qwriter_ip() and friends.
6277 *
6278 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is
6279 * not set) see if the ipsq has requested an xop switch. If so, switch
6280 * `ipsq' to a different xop. Xop switches only happen when joining or
6281 * leaving IPMP groups and require a careful dance -- see the comments
6282 * in-line below for details. If we're leaving a group xop or if we're
6283 * joining a group xop and become writer on it, then we proceed to (3).
6284 * Otherwise, we return NULL and exit the xop.
6285 *
6286 * 3. For each IPSQ in the xop, return any switch operation stored on
6287 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before
6288 * any other messages queued on the IPSQ. Otherwise, dequeue the next
6289 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead.
6290 * Note that if the phyint tied to `ipsq' is not using IPMP there will
6291 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for
6292 * each phyint in the group, including the IPMP meta-interface phyint.
6293 */
6294 static mblk_t *
ipsq_dq(ipsq_t * ipsq)6295 ipsq_dq(ipsq_t *ipsq)
6296 {
6297 ill_t *illv4, *illv6;
6298 mblk_t *mp;
6299 ipsq_t *xopipsq;
6300 ipsq_t *leftipsq = NULL;
6301 ipxop_t *ipx;
6302 phyint_t *phyi = ipsq->ipsq_phyint;
6303 ip_stack_t *ipst = ipsq->ipsq_ipst;
6304 boolean_t emptied = B_FALSE;
6305
6306 /*
6307 * Grab all the locks we need in the defined order (ill_g_lock ->
6308 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next.
6309 */
6310 rw_enter(&ipst->ips_ill_g_lock,
6311 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER);
6312 mutex_enter(&ipsq->ipsq_lock);
6313 ipx = ipsq->ipsq_xop;
6314 mutex_enter(&ipx->ipx_lock);
6315
6316 /*
6317 * Dequeue the next message associated with the current exclusive
6318 * operation, if any.
6319 */
6320 if ((mp = ipx->ipx_mphead) != NULL) {
6321 ipx->ipx_mphead = mp->b_next;
6322 if (ipx->ipx_mphead == NULL)
6323 ipx->ipx_mptail = NULL;
6324 mp->b_next = (void *)ipsq;
6325 goto out;
6326 }
6327
6328 if (ipx->ipx_current_ipif != NULL)
6329 goto empty;
6330
6331 if (ipsq->ipsq_swxop != NULL) {
6332 /*
6333 * The exclusive operation that is now being completed has
6334 * requested a switch to a different xop. This happens
6335 * when an interface joins or leaves an IPMP group. Joins
6336 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()).
6337 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb
6338 * (phyint_free()), or interface plumb for an ill type
6339 * not in the IPMP group (ip_rput_dlpi_writer()).
6340 *
6341 * Xop switches are not allowed on the IPMP meta-interface.
6342 */
6343 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP));
6344 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
6345 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq);
6346
6347 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) {
6348 /*
6349 * We're switching back to our own xop, so we have two
6350 * xop's to drain/exit: our own, and the group xop
6351 * that we are leaving.
6352 *
6353 * First, pull ourselves out of the group ipsq list.
6354 * This is safe since we're writer on ill_g_lock.
6355 */
6356 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop);
6357
6358 xopipsq = ipx->ipx_ipsq;
6359 while (xopipsq->ipsq_next != ipsq)
6360 xopipsq = xopipsq->ipsq_next;
6361
6362 xopipsq->ipsq_next = ipsq->ipsq_next;
6363 ipsq->ipsq_next = ipsq;
6364 ipsq->ipsq_xop = ipsq->ipsq_swxop;
6365 ipsq->ipsq_swxop = NULL;
6366
6367 /*
6368 * Second, prepare to exit the group xop. The actual
6369 * ipsq_exit() is done at the end of this function
6370 * since we cannot hold any locks across ipsq_exit().
6371 * Note that although we drop the group's ipx_lock, no
6372 * threads can proceed since we're still ipx_writer.
6373 */
6374 leftipsq = xopipsq;
6375 mutex_exit(&ipx->ipx_lock);
6376
6377 /*
6378 * Third, set ipx to point to our own xop (which was
6379 * inactive and therefore can be entered).
6380 */
6381 ipx = ipsq->ipsq_xop;
6382 mutex_enter(&ipx->ipx_lock);
6383 ASSERT(ipx->ipx_writer == NULL);
6384 ASSERT(ipx->ipx_current_ipif == NULL);
6385 } else {
6386 /*
6387 * We're switching from our own xop to a group xop.
6388 * The requestor of the switch must ensure that the
6389 * group xop cannot go away (e.g. by ensuring the
6390 * phyint associated with the xop cannot go away).
6391 *
6392 * If we can become writer on our new xop, then we'll
6393 * do the drain. Otherwise, the current writer of our
6394 * new xop will do the drain when it exits.
6395 *
6396 * First, splice ourselves into the group IPSQ list.
6397 * This is safe since we're writer on ill_g_lock.
6398 */
6399 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
6400
6401 xopipsq = ipsq->ipsq_swxop->ipx_ipsq;
6402 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq)
6403 xopipsq = xopipsq->ipsq_next;
6404
6405 xopipsq->ipsq_next = ipsq;
6406 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq;
6407 ipsq->ipsq_xop = ipsq->ipsq_swxop;
6408 ipsq->ipsq_swxop = NULL;
6409
6410 /*
6411 * Second, exit our own xop, since it's now unused.
6412 * This is safe since we've got the only reference.
6413 */
6414 ASSERT(ipx->ipx_writer == curthread);
6415 ipx->ipx_writer = NULL;
6416 VERIFY(--ipx->ipx_reentry_cnt == 0);
6417 ipx->ipx_ipsq_queued = B_FALSE;
6418 mutex_exit(&ipx->ipx_lock);
6419
6420 /*
6421 * Third, set ipx to point to our new xop, and check
6422 * if we can become writer on it. If we cannot, then
6423 * the current writer will drain the IPSQ group when
6424 * it exits. Our ipsq_xop is guaranteed to be stable
6425 * because we're still holding ipsq_lock.
6426 */
6427 ipx = ipsq->ipsq_xop;
6428 mutex_enter(&ipx->ipx_lock);
6429 if (ipx->ipx_writer != NULL ||
6430 ipx->ipx_current_ipif != NULL) {
6431 goto out;
6432 }
6433 }
6434
6435 /*
6436 * Fourth, become writer on our new ipx before we continue
6437 * with the drain. Note that we never dropped ipsq_lock
6438 * above, so no other thread could've raced with us to
6439 * become writer first. Also, we're holding ipx_lock, so
6440 * no other thread can examine the ipx right now.
6441 */
6442 ASSERT(ipx->ipx_current_ipif == NULL);
6443 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
6444 VERIFY(ipx->ipx_reentry_cnt++ == 0);
6445 ipx->ipx_writer = curthread;
6446 ipx->ipx_forced = B_FALSE;
6447 #ifdef DEBUG
6448 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6449 #endif
6450 }
6451
6452 xopipsq = ipsq;
6453 do {
6454 /*
6455 * So that other operations operate on a consistent and
6456 * complete phyint, a switch message on an IPSQ must be
6457 * handled prior to any other operations on that IPSQ.
6458 */
6459 if ((mp = xopipsq->ipsq_switch_mp) != NULL) {
6460 xopipsq->ipsq_switch_mp = NULL;
6461 ASSERT(mp->b_next == NULL);
6462 mp->b_next = (void *)xopipsq;
6463 goto out;
6464 }
6465
6466 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) {
6467 xopipsq->ipsq_xopq_mphead = mp->b_next;
6468 if (xopipsq->ipsq_xopq_mphead == NULL)
6469 xopipsq->ipsq_xopq_mptail = NULL;
6470 mp->b_next = (void *)xopipsq;
6471 goto out;
6472 }
6473 } while ((xopipsq = xopipsq->ipsq_next) != ipsq);
6474 empty:
6475 /*
6476 * There are no messages. Further, we are holding ipx_lock, hence no
6477 * new messages can end up on any IPSQ in the xop.
6478 */
6479 ipx->ipx_writer = NULL;
6480 ipx->ipx_forced = B_FALSE;
6481 VERIFY(--ipx->ipx_reentry_cnt == 0);
6482 ipx->ipx_ipsq_queued = B_FALSE;
6483 emptied = B_TRUE;
6484 #ifdef DEBUG
6485 ipx->ipx_depth = 0;
6486 #endif
6487 out:
6488 mutex_exit(&ipx->ipx_lock);
6489 mutex_exit(&ipsq->ipsq_lock);
6490
6491 /*
6492 * If we completely emptied the xop, then wake up any threads waiting
6493 * to enter any of the IPSQ's associated with it.
6494 */
6495 if (emptied) {
6496 xopipsq = ipsq;
6497 do {
6498 if ((phyi = xopipsq->ipsq_phyint) == NULL)
6499 continue;
6500
6501 illv4 = phyi->phyint_illv4;
6502 illv6 = phyi->phyint_illv6;
6503
6504 GRAB_ILL_LOCKS(illv4, illv6);
6505 if (illv4 != NULL)
6506 cv_broadcast(&illv4->ill_cv);
6507 if (illv6 != NULL)
6508 cv_broadcast(&illv6->ill_cv);
6509 RELEASE_ILL_LOCKS(illv4, illv6);
6510 } while ((xopipsq = xopipsq->ipsq_next) != ipsq);
6511 }
6512 rw_exit(&ipst->ips_ill_g_lock);
6513
6514 /*
6515 * Now that all locks are dropped, exit the IPSQ we left.
6516 */
6517 if (leftipsq != NULL)
6518 ipsq_exit(leftipsq);
6519
6520 return (mp);
6521 }
6522
6523 /*
6524 * Return completion status of previously initiated DLPI operations on
6525 * ills in the purview of an ipsq.
6526 */
6527 static boolean_t
ipsq_dlpi_done(ipsq_t * ipsq)6528 ipsq_dlpi_done(ipsq_t *ipsq)
6529 {
6530 ipsq_t *ipsq_start;
6531 phyint_t *phyi;
6532 ill_t *ill;
6533
6534 ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock));
6535 ipsq_start = ipsq;
6536
6537 do {
6538 /*
6539 * The only current users of this function are ipsq_try_enter
6540 * and ipsq_enter which have made sure that ipsq_writer is
6541 * NULL before we reach here. ill_dlpi_pending is modified
6542 * only by an ipsq writer
6543 */
6544 ASSERT(ipsq->ipsq_xop->ipx_writer == NULL);
6545 phyi = ipsq->ipsq_phyint;
6546 /*
6547 * phyi could be NULL if a phyint that is part of an
6548 * IPMP group is being unplumbed. A more detailed
6549 * comment is in ipmp_grp_update_kstats()
6550 */
6551 if (phyi != NULL) {
6552 ill = phyi->phyint_illv4;
6553 if (ill != NULL &&
6554 (ill->ill_dlpi_pending != DL_PRIM_INVAL ||
6555 ill->ill_arl_dlpi_pending))
6556 return (B_FALSE);
6557
6558 ill = phyi->phyint_illv6;
6559 if (ill != NULL &&
6560 ill->ill_dlpi_pending != DL_PRIM_INVAL)
6561 return (B_FALSE);
6562 }
6563
6564 } while ((ipsq = ipsq->ipsq_next) != ipsq_start);
6565
6566 return (B_TRUE);
6567 }
6568
6569 /*
6570 * Enter the ipsq corresponding to ill, by waiting synchronously till
6571 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq
6572 * will have to drain completely before ipsq_enter returns success.
6573 * ipx_current_ipif will be set if some exclusive op is in progress,
6574 * and the ipsq_exit logic will start the next enqueued op after
6575 * completion of the current op. If 'force' is used, we don't wait
6576 * for the enqueued ops. This is needed when a conn_close wants to
6577 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb
6578 * of an ill can also use this option. But we dont' use it currently.
6579 */
6580 #define ENTER_SQ_WAIT_TICKS 100
6581 boolean_t
ipsq_enter(ill_t * ill,boolean_t force,int type)6582 ipsq_enter(ill_t *ill, boolean_t force, int type)
6583 {
6584 ipsq_t *ipsq;
6585 ipxop_t *ipx;
6586 boolean_t waited_enough = B_FALSE;
6587 ip_stack_t *ipst = ill->ill_ipst;
6588
6589 /*
6590 * Note that the relationship between ill and ipsq is fixed as long as
6591 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the
6592 * relationship between the IPSQ and xop cannot change. However,
6593 * since we cannot hold ipsq_lock across the cv_wait(), it may change
6594 * while we're waiting. We wait on ill_cv and rely on ipsq_exit()
6595 * waking up all ills in the xop when it becomes available.
6596 */
6597 for (;;) {
6598 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6599 mutex_enter(&ill->ill_lock);
6600 if (ill->ill_state_flags & ILL_CONDEMNED) {
6601 mutex_exit(&ill->ill_lock);
6602 rw_exit(&ipst->ips_ill_g_lock);
6603 return (B_FALSE);
6604 }
6605
6606 ipsq = ill->ill_phyint->phyint_ipsq;
6607 mutex_enter(&ipsq->ipsq_lock);
6608 ipx = ipsq->ipsq_xop;
6609 mutex_enter(&ipx->ipx_lock);
6610
6611 if (ipx->ipx_writer == NULL && (type == CUR_OP ||
6612 (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) ||
6613 waited_enough))
6614 break;
6615
6616 rw_exit(&ipst->ips_ill_g_lock);
6617
6618 if (!force || ipx->ipx_writer != NULL) {
6619 mutex_exit(&ipx->ipx_lock);
6620 mutex_exit(&ipsq->ipsq_lock);
6621 cv_wait(&ill->ill_cv, &ill->ill_lock);
6622 } else {
6623 mutex_exit(&ipx->ipx_lock);
6624 mutex_exit(&ipsq->ipsq_lock);
6625 (void) cv_reltimedwait(&ill->ill_cv,
6626 &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK);
6627 waited_enough = B_TRUE;
6628 }
6629 mutex_exit(&ill->ill_lock);
6630 }
6631
6632 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
6633 ASSERT(ipx->ipx_reentry_cnt == 0);
6634 ipx->ipx_writer = curthread;
6635 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL);
6636 ipx->ipx_reentry_cnt++;
6637 #ifdef DEBUG
6638 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6639 #endif
6640 mutex_exit(&ipx->ipx_lock);
6641 mutex_exit(&ipsq->ipsq_lock);
6642 mutex_exit(&ill->ill_lock);
6643 rw_exit(&ipst->ips_ill_g_lock);
6644
6645 return (B_TRUE);
6646 }
6647
6648 /*
6649 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock
6650 * across the call to the core interface ipsq_try_enter() and hence calls this
6651 * function directly. This is explained more fully in ipif_set_values().
6652 * In order to support the above constraint, ipsq_try_enter is implemented as
6653 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently
6654 */
6655 static ipsq_t *
ipsq_try_enter_internal(ill_t * ill,queue_t * q,mblk_t * mp,ipsq_func_t func,int type,boolean_t reentry_ok)6656 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func,
6657 int type, boolean_t reentry_ok)
6658 {
6659 ipsq_t *ipsq;
6660 ipxop_t *ipx;
6661 ip_stack_t *ipst = ill->ill_ipst;
6662
6663 /*
6664 * lock ordering:
6665 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock.
6666 *
6667 * ipx of an ipsq can't change when ipsq_lock is held.
6668 */
6669 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
6670 GRAB_CONN_LOCK(q);
6671 mutex_enter(&ill->ill_lock);
6672 ipsq = ill->ill_phyint->phyint_ipsq;
6673 mutex_enter(&ipsq->ipsq_lock);
6674 ipx = ipsq->ipsq_xop;
6675 mutex_enter(&ipx->ipx_lock);
6676
6677 /*
6678 * 1. Enter the ipsq if we are already writer and reentry is ok.
6679 * (Note: If the caller does not specify reentry_ok then neither
6680 * 'func' nor any of its callees must ever attempt to enter the ipsq
6681 * again. Otherwise it can lead to an infinite loop
6682 * 2. Enter the ipsq if there is no current writer and this attempted
6683 * entry is part of the current operation
6684 * 3. Enter the ipsq if there is no current writer and this is a new
6685 * operation and the operation queue is empty and there is no
6686 * operation currently in progress and if all previously initiated
6687 * DLPI operations have completed.
6688 */
6689 if ((ipx->ipx_writer == curthread && reentry_ok) ||
6690 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP &&
6691 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL &&
6692 ipsq_dlpi_done(ipsq))))) {
6693 /* Success. */
6694 ipx->ipx_reentry_cnt++;
6695 ipx->ipx_writer = curthread;
6696 ipx->ipx_forced = B_FALSE;
6697 mutex_exit(&ipx->ipx_lock);
6698 mutex_exit(&ipsq->ipsq_lock);
6699 mutex_exit(&ill->ill_lock);
6700 RELEASE_CONN_LOCK(q);
6701 #ifdef DEBUG
6702 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6703 #endif
6704 return (ipsq);
6705 }
6706
6707 if (func != NULL)
6708 ipsq_enq(ipsq, q, mp, func, type, ill);
6709
6710 mutex_exit(&ipx->ipx_lock);
6711 mutex_exit(&ipsq->ipsq_lock);
6712 mutex_exit(&ill->ill_lock);
6713 RELEASE_CONN_LOCK(q);
6714 return (NULL);
6715 }
6716
6717 /*
6718 * The ipsq_t (ipsq) is the synchronization data structure used to serialize
6719 * certain critical operations like plumbing (i.e. most set ioctls), etc.
6720 * There is one ipsq per phyint. The ipsq
6721 * serializes exclusive ioctls issued by applications on a per ipsq basis in
6722 * ipsq_xopq_mphead. It also protects against multiple threads executing in
6723 * the ipsq. Responses from the driver pertain to the current ioctl (say a
6724 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing
6725 * up the interface) and are enqueued in ipx_mphead.
6726 *
6727 * If a thread does not want to reenter the ipsq when it is already writer,
6728 * it must make sure that the specified reentry point to be called later
6729 * when the ipsq is empty, nor any code path starting from the specified reentry
6730 * point must never ever try to enter the ipsq again. Otherwise it can lead
6731 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example.
6732 * When the thread that is currently exclusive finishes, it (ipsq_exit)
6733 * dequeues the requests waiting to become exclusive in ipx_mphead and calls
6734 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit
6735 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next
6736 * ioctl if the current ioctl has completed. If the current ioctl is still
6737 * in progress it simply returns. The current ioctl could be waiting for
6738 * a response from another module (the driver or could be waiting for
6739 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp
6740 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the
6741 * execution of the ioctl and ipsq_exit does not start the next ioctl unless
6742 * ipx_current_ipif is NULL which happens only once the ioctl is complete and
6743 * all associated DLPI operations have completed.
6744 */
6745
6746 /*
6747 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif'
6748 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ
6749 * on success, or NULL on failure. The caller ensures ipif/ill is valid by
6750 * refholding it as necessary. If the IPSQ cannot be entered and `func' is
6751 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ
6752 * can be entered. If `func' is NULL, then `q' and `mp' are ignored.
6753 */
6754 ipsq_t *
ipsq_try_enter(ipif_t * ipif,ill_t * ill,queue_t * q,mblk_t * mp,ipsq_func_t func,int type,boolean_t reentry_ok)6755 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
6756 ipsq_func_t func, int type, boolean_t reentry_ok)
6757 {
6758 ip_stack_t *ipst;
6759 ipsq_t *ipsq;
6760
6761 /* Only 1 of ipif or ill can be specified */
6762 ASSERT((ipif != NULL) ^ (ill != NULL));
6763
6764 if (ipif != NULL)
6765 ill = ipif->ipif_ill;
6766 ipst = ill->ill_ipst;
6767
6768 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6769 ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok);
6770 rw_exit(&ipst->ips_ill_g_lock);
6771
6772 return (ipsq);
6773 }
6774
6775 /*
6776 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures
6777 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ
6778 * cannot be entered, the mp is queued for completion.
6779 */
6780 void
qwriter_ip(ill_t * ill,queue_t * q,mblk_t * mp,ipsq_func_t func,int type,boolean_t reentry_ok)6781 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
6782 boolean_t reentry_ok)
6783 {
6784 ipsq_t *ipsq;
6785
6786 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok);
6787
6788 /*
6789 * Drop the caller's refhold on the ill. This is safe since we either
6790 * entered the IPSQ (and thus are exclusive), or failed to enter the
6791 * IPSQ, in which case we return without accessing ill anymore. This
6792 * is needed because func needs to see the correct refcount.
6793 * e.g. removeif can work only then.
6794 */
6795 ill_refrele(ill);
6796 if (ipsq != NULL) {
6797 (*func)(ipsq, q, mp, NULL);
6798 ipsq_exit(ipsq);
6799 }
6800 }
6801
6802 /*
6803 * Exit the specified IPSQ. If this is the final exit on it then drain it
6804 * prior to exiting. Caller must be writer on the specified IPSQ.
6805 */
6806 void
ipsq_exit(ipsq_t * ipsq)6807 ipsq_exit(ipsq_t *ipsq)
6808 {
6809 mblk_t *mp;
6810 ipsq_t *mp_ipsq;
6811 queue_t *q;
6812 phyint_t *phyi;
6813 ipsq_func_t func;
6814
6815 ASSERT(IAM_WRITER_IPSQ(ipsq));
6816
6817 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1);
6818 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) {
6819 ipsq->ipsq_xop->ipx_reentry_cnt--;
6820 return;
6821 }
6822
6823 for (;;) {
6824 phyi = ipsq->ipsq_phyint;
6825 mp = ipsq_dq(ipsq);
6826 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next;
6827
6828 /*
6829 * If we've changed to a new IPSQ, and the phyint associated
6830 * with the old one has gone away, free the old IPSQ. Note
6831 * that this cannot happen while the IPSQ is in a group.
6832 */
6833 if (mp_ipsq != ipsq && phyi == NULL) {
6834 ASSERT(ipsq->ipsq_next == ipsq);
6835 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
6836 ipsq_delete(ipsq);
6837 }
6838
6839 if (mp == NULL)
6840 break;
6841
6842 q = mp->b_queue;
6843 func = (ipsq_func_t)mp->b_prev;
6844 ipsq = mp_ipsq;
6845 mp->b_next = mp->b_prev = NULL;
6846 mp->b_queue = NULL;
6847
6848 /*
6849 * If 'q' is an conn queue, it is valid, since we did a
6850 * a refhold on the conn at the start of the ioctl.
6851 * If 'q' is an ill queue, it is valid, since close of an
6852 * ill will clean up its IPSQ.
6853 */
6854 (*func)(ipsq, q, mp, NULL);
6855 }
6856 }
6857
6858 /*
6859 * Used to start any igmp or mld timers that could not be started
6860 * while holding ill_mcast_lock. The timers can't be started while holding
6861 * the lock, since mld/igmp_start_timers may need to call untimeout()
6862 * which can't be done while holding the lock which the timeout handler
6863 * acquires. Otherwise
6864 * there could be a deadlock since the timeout handlers
6865 * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire
6866 * ill_mcast_lock.
6867 */
6868 void
ill_mcast_timer_start(ip_stack_t * ipst)6869 ill_mcast_timer_start(ip_stack_t *ipst)
6870 {
6871 int next;
6872
6873 mutex_enter(&ipst->ips_igmp_timer_lock);
6874 next = ipst->ips_igmp_deferred_next;
6875 ipst->ips_igmp_deferred_next = INFINITY;
6876 mutex_exit(&ipst->ips_igmp_timer_lock);
6877
6878 if (next != INFINITY)
6879 igmp_start_timers(next, ipst);
6880
6881 mutex_enter(&ipst->ips_mld_timer_lock);
6882 next = ipst->ips_mld_deferred_next;
6883 ipst->ips_mld_deferred_next = INFINITY;
6884 mutex_exit(&ipst->ips_mld_timer_lock);
6885
6886 if (next != INFINITY)
6887 mld_start_timers(next, ipst);
6888 }
6889
6890 /*
6891 * Start the current exclusive operation on `ipsq'; associate it with `ipif'
6892 * and `ioccmd'.
6893 */
6894 void
ipsq_current_start(ipsq_t * ipsq,ipif_t * ipif,int ioccmd)6895 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd)
6896 {
6897 ill_t *ill = ipif->ipif_ill;
6898 ipxop_t *ipx = ipsq->ipsq_xop;
6899
6900 ASSERT(IAM_WRITER_IPSQ(ipsq));
6901 ASSERT(ipx->ipx_current_ipif == NULL);
6902 ASSERT(ipx->ipx_current_ioctl == 0);
6903
6904 ipx->ipx_current_done = B_FALSE;
6905 ipx->ipx_current_ioctl = ioccmd;
6906 mutex_enter(&ipx->ipx_lock);
6907 ipx->ipx_current_ipif = ipif;
6908 mutex_exit(&ipx->ipx_lock);
6909
6910 /*
6911 * Set IPIF_CHANGING on one or more ipifs associated with the
6912 * current exclusive operation. IPIF_CHANGING prevents any new
6913 * references to the ipif (so that the references will eventually
6914 * drop to zero) and also prevents any "get" operations (e.g.,
6915 * SIOCGLIFFLAGS) from being able to access the ipif until the
6916 * operation has completed and the ipif is again in a stable state.
6917 *
6918 * For ioctls, IPIF_CHANGING is set on the ipif associated with the
6919 * ioctl. For internal operations (where ioccmd is zero), all ipifs
6920 * on the ill are marked with IPIF_CHANGING since it's unclear which
6921 * ipifs will be affected.
6922 *
6923 * Note that SIOCLIFREMOVEIF is a special case as it sets
6924 * IPIF_CONDEMNED internally after identifying the right ipif to
6925 * operate on.
6926 */
6927 switch (ioccmd) {
6928 case SIOCLIFREMOVEIF:
6929 break;
6930 case 0:
6931 mutex_enter(&ill->ill_lock);
6932 ipif = ipif->ipif_ill->ill_ipif;
6933 for (; ipif != NULL; ipif = ipif->ipif_next)
6934 ipif->ipif_state_flags |= IPIF_CHANGING;
6935 mutex_exit(&ill->ill_lock);
6936 break;
6937 default:
6938 mutex_enter(&ill->ill_lock);
6939 ipif->ipif_state_flags |= IPIF_CHANGING;
6940 mutex_exit(&ill->ill_lock);
6941 }
6942 }
6943
6944 /*
6945 * Finish the current exclusive operation on `ipsq'. Usually, this will allow
6946 * the next exclusive operation to begin once we ipsq_exit(). However, if
6947 * pending DLPI operations remain, then we will wait for the queue to drain
6948 * before allowing the next exclusive operation to begin. This ensures that
6949 * DLPI operations from one exclusive operation are never improperly processed
6950 * as part of a subsequent exclusive operation.
6951 */
6952 void
ipsq_current_finish(ipsq_t * ipsq)6953 ipsq_current_finish(ipsq_t *ipsq)
6954 {
6955 ipxop_t *ipx = ipsq->ipsq_xop;
6956 t_uscalar_t dlpi_pending = DL_PRIM_INVAL;
6957 ipif_t *ipif = ipx->ipx_current_ipif;
6958
6959 ASSERT(IAM_WRITER_IPSQ(ipsq));
6960
6961 /*
6962 * For SIOCLIFREMOVEIF, the ipif has been already been blown away
6963 * (but in that case, IPIF_CHANGING will already be clear and no
6964 * pending DLPI messages can remain).
6965 */
6966 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) {
6967 ill_t *ill = ipif->ipif_ill;
6968
6969 mutex_enter(&ill->ill_lock);
6970 dlpi_pending = ill->ill_dlpi_pending;
6971 if (ipx->ipx_current_ioctl == 0) {
6972 ipif = ill->ill_ipif;
6973 for (; ipif != NULL; ipif = ipif->ipif_next)
6974 ipif->ipif_state_flags &= ~IPIF_CHANGING;
6975 } else {
6976 ipif->ipif_state_flags &= ~IPIF_CHANGING;
6977 }
6978 mutex_exit(&ill->ill_lock);
6979 }
6980
6981 ASSERT(!ipx->ipx_current_done);
6982 ipx->ipx_current_done = B_TRUE;
6983 ipx->ipx_current_ioctl = 0;
6984 if (dlpi_pending == DL_PRIM_INVAL) {
6985 mutex_enter(&ipx->ipx_lock);
6986 ipx->ipx_current_ipif = NULL;
6987 mutex_exit(&ipx->ipx_lock);
6988 }
6989 }
6990
6991 /*
6992 * The ill is closing. Flush all messages on the ipsq that originated
6993 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead
6994 * for this ill since ipsq_enter could not have entered until then.
6995 * New messages can't be queued since the CONDEMNED flag is set.
6996 */
6997 static void
ipsq_flush(ill_t * ill)6998 ipsq_flush(ill_t *ill)
6999 {
7000 queue_t *q;
7001 mblk_t *prev;
7002 mblk_t *mp;
7003 mblk_t *mp_next;
7004 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
7005
7006 ASSERT(IAM_WRITER_ILL(ill));
7007
7008 /*
7009 * Flush any messages sent up by the driver.
7010 */
7011 mutex_enter(&ipx->ipx_lock);
7012 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) {
7013 mp_next = mp->b_next;
7014 q = mp->b_queue;
7015 if (q == ill->ill_rq || q == ill->ill_wq) {
7016 /* dequeue mp */
7017 if (prev == NULL)
7018 ipx->ipx_mphead = mp->b_next;
7019 else
7020 prev->b_next = mp->b_next;
7021 if (ipx->ipx_mptail == mp) {
7022 ASSERT(mp_next == NULL);
7023 ipx->ipx_mptail = prev;
7024 }
7025 inet_freemsg(mp);
7026 } else {
7027 prev = mp;
7028 }
7029 }
7030 mutex_exit(&ipx->ipx_lock);
7031 (void) ipsq_pending_mp_cleanup(ill, NULL);
7032 ipsq_xopq_mp_cleanup(ill, NULL);
7033 }
7034
7035 /*
7036 * Parse an ifreq or lifreq struct coming down ioctls and refhold
7037 * and return the associated ipif.
7038 * Return value:
7039 * Non zero: An error has occurred. ci may not be filled out.
7040 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and
7041 * a held ipif in ci.ci_ipif.
7042 */
7043 int
ip_extract_lifreq(queue_t * q,mblk_t * mp,const ip_ioctl_cmd_t * ipip,cmd_info_t * ci)7044 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
7045 cmd_info_t *ci)
7046 {
7047 char *name;
7048 struct ifreq *ifr;
7049 struct lifreq *lifr;
7050 ipif_t *ipif = NULL;
7051 ill_t *ill;
7052 conn_t *connp;
7053 boolean_t isv6;
7054 int err;
7055 mblk_t *mp1;
7056 zoneid_t zoneid;
7057 ip_stack_t *ipst;
7058
7059 if (q->q_next != NULL) {
7060 ill = (ill_t *)q->q_ptr;
7061 isv6 = ill->ill_isv6;
7062 connp = NULL;
7063 zoneid = ALL_ZONES;
7064 ipst = ill->ill_ipst;
7065 } else {
7066 ill = NULL;
7067 connp = Q_TO_CONN(q);
7068 isv6 = (connp->conn_family == AF_INET6);
7069 zoneid = connp->conn_zoneid;
7070 if (zoneid == GLOBAL_ZONEID) {
7071 /* global zone can access ipifs in all zones */
7072 zoneid = ALL_ZONES;
7073 }
7074 ipst = connp->conn_netstack->netstack_ip;
7075 }
7076
7077 /* Has been checked in ip_wput_nondata */
7078 mp1 = mp->b_cont->b_cont;
7079
7080 if (ipip->ipi_cmd_type == IF_CMD) {
7081 /* This a old style SIOC[GS]IF* command */
7082 ifr = (struct ifreq *)mp1->b_rptr;
7083 /*
7084 * Null terminate the string to protect against buffer
7085 * overrun. String was generated by user code and may not
7086 * be trusted.
7087 */
7088 ifr->ifr_name[IFNAMSIZ - 1] = '\0';
7089 name = ifr->ifr_name;
7090 ci->ci_sin = (sin_t *)&ifr->ifr_addr;
7091 ci->ci_sin6 = NULL;
7092 ci->ci_lifr = (struct lifreq *)ifr;
7093 } else {
7094 /* This a new style SIOC[GS]LIF* command */
7095 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
7096 lifr = (struct lifreq *)mp1->b_rptr;
7097 /*
7098 * Null terminate the string to protect against buffer
7099 * overrun. String was generated by user code and may not
7100 * be trusted.
7101 */
7102 lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
7103 name = lifr->lifr_name;
7104 ci->ci_sin = (sin_t *)&lifr->lifr_addr;
7105 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr;
7106 ci->ci_lifr = lifr;
7107 }
7108
7109 if (ipip->ipi_cmd == SIOCSLIFNAME) {
7110 /*
7111 * The ioctl will be failed if the ioctl comes down
7112 * an conn stream
7113 */
7114 if (ill == NULL) {
7115 /*
7116 * Not an ill queue, return EINVAL same as the
7117 * old error code.
7118 */
7119 return (ENXIO);
7120 }
7121 ipif = ill->ill_ipif;
7122 ipif_refhold(ipif);
7123 } else {
7124 /*
7125 * Ensure that ioctls don't see any internal state changes
7126 * caused by set ioctls by deferring them if IPIF_CHANGING is
7127 * set.
7128 */
7129 ipif = ipif_lookup_on_name_async(name, mi_strlen(name),
7130 isv6, zoneid, q, mp, ip_process_ioctl, &err, ipst);
7131 if (ipif == NULL) {
7132 if (err == EINPROGRESS)
7133 return (err);
7134 err = 0; /* Ensure we don't use it below */
7135 }
7136 }
7137
7138 /*
7139 * Old style [GS]IFCMD does not admit IPv6 ipif
7140 */
7141 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) {
7142 ipif_refrele(ipif);
7143 return (ENXIO);
7144 }
7145
7146 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL &&
7147 name[0] == '\0') {
7148 /*
7149 * Handle a or a SIOC?IF* with a null name
7150 * during plumb (on the ill queue before the I_PLINK).
7151 */
7152 ipif = ill->ill_ipif;
7153 ipif_refhold(ipif);
7154 }
7155
7156 if (ipif == NULL)
7157 return (ENXIO);
7158
7159 DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq",
7160 int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif);
7161
7162 ci->ci_ipif = ipif;
7163 return (0);
7164 }
7165
7166 /*
7167 * Return the total number of ipifs.
7168 */
7169 static uint_t
ip_get_numifs(zoneid_t zoneid,ip_stack_t * ipst)7170 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst)
7171 {
7172 uint_t numifs = 0;
7173 ill_t *ill;
7174 ill_walk_context_t ctx;
7175 ipif_t *ipif;
7176
7177 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7178 ill = ILL_START_WALK_V4(&ctx, ipst);
7179 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7180 if (IS_UNDER_IPMP(ill))
7181 continue;
7182 for (ipif = ill->ill_ipif; ipif != NULL;
7183 ipif = ipif->ipif_next) {
7184 if (ipif->ipif_zoneid == zoneid ||
7185 ipif->ipif_zoneid == ALL_ZONES)
7186 numifs++;
7187 }
7188 }
7189 rw_exit(&ipst->ips_ill_g_lock);
7190 return (numifs);
7191 }
7192
7193 /*
7194 * Return the total number of ipifs.
7195 */
7196 static uint_t
ip_get_numlifs(int family,int lifn_flags,zoneid_t zoneid,ip_stack_t * ipst)7197 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst)
7198 {
7199 uint_t numifs = 0;
7200 ill_t *ill;
7201 ipif_t *ipif;
7202 ill_walk_context_t ctx;
7203
7204 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid));
7205
7206 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7207 if (family == AF_INET)
7208 ill = ILL_START_WALK_V4(&ctx, ipst);
7209 else if (family == AF_INET6)
7210 ill = ILL_START_WALK_V6(&ctx, ipst);
7211 else
7212 ill = ILL_START_WALK_ALL(&ctx, ipst);
7213
7214 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7215 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP))
7216 continue;
7217
7218 for (ipif = ill->ill_ipif; ipif != NULL;
7219 ipif = ipif->ipif_next) {
7220 if ((ipif->ipif_flags & IPIF_NOXMIT) &&
7221 !(lifn_flags & LIFC_NOXMIT))
7222 continue;
7223 if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
7224 !(lifn_flags & LIFC_TEMPORARY))
7225 continue;
7226 if (((ipif->ipif_flags &
7227 (IPIF_NOXMIT|IPIF_NOLOCAL|
7228 IPIF_DEPRECATED)) ||
7229 IS_LOOPBACK(ill) ||
7230 !(ipif->ipif_flags & IPIF_UP)) &&
7231 (lifn_flags & LIFC_EXTERNAL_SOURCE))
7232 continue;
7233
7234 if (zoneid != ipif->ipif_zoneid &&
7235 ipif->ipif_zoneid != ALL_ZONES &&
7236 (zoneid != GLOBAL_ZONEID ||
7237 !(lifn_flags & LIFC_ALLZONES)))
7238 continue;
7239
7240 numifs++;
7241 }
7242 }
7243 rw_exit(&ipst->ips_ill_g_lock);
7244 return (numifs);
7245 }
7246
7247 uint_t
ip_get_lifsrcofnum(ill_t * ill)7248 ip_get_lifsrcofnum(ill_t *ill)
7249 {
7250 uint_t numifs = 0;
7251 ill_t *ill_head = ill;
7252 ip_stack_t *ipst = ill->ill_ipst;
7253
7254 /*
7255 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some
7256 * other thread may be trying to relink the ILLs in this usesrc group
7257 * and adjusting the ill_usesrc_grp_next pointers
7258 */
7259 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
7260 if ((ill->ill_usesrc_ifindex == 0) &&
7261 (ill->ill_usesrc_grp_next != NULL)) {
7262 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head);
7263 ill = ill->ill_usesrc_grp_next)
7264 numifs++;
7265 }
7266 rw_exit(&ipst->ips_ill_g_usesrc_lock);
7267
7268 return (numifs);
7269 }
7270
7271 /* Null values are passed in for ipif, sin, and ifreq */
7272 /* ARGSUSED */
7273 int
ip_sioctl_get_ifnum(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)7274 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7275 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7276 {
7277 int *nump;
7278 conn_t *connp = Q_TO_CONN(q);
7279
7280 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
7281
7282 /* Existence of b_cont->b_cont checked in ip_wput_nondata */
7283 nump = (int *)mp->b_cont->b_cont->b_rptr;
7284
7285 *nump = ip_get_numifs(connp->conn_zoneid,
7286 connp->conn_netstack->netstack_ip);
7287 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump));
7288 return (0);
7289 }
7290
7291 /* Null values are passed in for ipif, sin, and ifreq */
7292 /* ARGSUSED */
7293 int
ip_sioctl_get_lifnum(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)7294 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin,
7295 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7296 {
7297 struct lifnum *lifn;
7298 mblk_t *mp1;
7299 conn_t *connp = Q_TO_CONN(q);
7300
7301 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
7302
7303 /* Existence checked in ip_wput_nondata */
7304 mp1 = mp->b_cont->b_cont;
7305
7306 lifn = (struct lifnum *)mp1->b_rptr;
7307 switch (lifn->lifn_family) {
7308 case AF_UNSPEC:
7309 case AF_INET:
7310 case AF_INET6:
7311 break;
7312 default:
7313 return (EAFNOSUPPORT);
7314 }
7315
7316 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags,
7317 connp->conn_zoneid, connp->conn_netstack->netstack_ip);
7318 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count));
7319 return (0);
7320 }
7321
7322 /* ARGSUSED */
7323 int
ip_sioctl_get_ifconf(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)7324 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7325 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7326 {
7327 STRUCT_HANDLE(ifconf, ifc);
7328 mblk_t *mp1;
7329 struct iocblk *iocp;
7330 struct ifreq *ifr;
7331 ill_walk_context_t ctx;
7332 ill_t *ill;
7333 ipif_t *ipif;
7334 struct sockaddr_in *sin;
7335 int32_t ifclen;
7336 zoneid_t zoneid;
7337 ip_stack_t *ipst = CONNQ_TO_IPST(q);
7338
7339 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */
7340
7341 ip1dbg(("ip_sioctl_get_ifconf"));
7342 /* Existence verified in ip_wput_nondata */
7343 mp1 = mp->b_cont->b_cont;
7344 iocp = (struct iocblk *)mp->b_rptr;
7345 zoneid = Q_TO_CONN(q)->conn_zoneid;
7346
7347 /*
7348 * The original SIOCGIFCONF passed in a struct ifconf which specified
7349 * the user buffer address and length into which the list of struct
7350 * ifreqs was to be copied. Since AT&T Streams does not seem to
7351 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS,
7352 * the SIOCGIFCONF operation was redefined to simply provide
7353 * a large output buffer into which we are supposed to jam the ifreq
7354 * array. The same ioctl command code was used, despite the fact that
7355 * both the applications and the kernel code had to change, thus making
7356 * it impossible to support both interfaces.
7357 *
7358 * For reasons not good enough to try to explain, the following
7359 * algorithm is used for deciding what to do with one of these:
7360 * If the IOCTL comes in as an I_STR, it is assumed to be of the new
7361 * form with the output buffer coming down as the continuation message.
7362 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style,
7363 * and we have to copy in the ifconf structure to find out how big the
7364 * output buffer is and where to copy out to. Sure no problem...
7365 *
7366 */
7367 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL);
7368 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) {
7369 int numifs = 0;
7370 size_t ifc_bufsize;
7371
7372 /*
7373 * Must be (better be!) continuation of a TRANSPARENT
7374 * IOCTL. We just copied in the ifconf structure.
7375 */
7376 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag,
7377 (struct ifconf *)mp1->b_rptr);
7378
7379 /*
7380 * Allocate a buffer to hold requested information.
7381 *
7382 * If ifc_len is larger than what is needed, we only
7383 * allocate what we will use.
7384 *
7385 * If ifc_len is smaller than what is needed, return
7386 * EINVAL.
7387 *
7388 * XXX: the ill_t structure can hava 2 counters, for
7389 * v4 and v6 (not just ill_ipif_up_count) to store the
7390 * number of interfaces for a device, so we don't need
7391 * to count them here...
7392 */
7393 numifs = ip_get_numifs(zoneid, ipst);
7394
7395 ifclen = STRUCT_FGET(ifc, ifc_len);
7396 ifc_bufsize = numifs * sizeof (struct ifreq);
7397 if (ifc_bufsize > ifclen) {
7398 if (iocp->ioc_cmd == O_SIOCGIFCONF) {
7399 /* old behaviour */
7400 return (EINVAL);
7401 } else {
7402 ifc_bufsize = ifclen;
7403 }
7404 }
7405
7406 mp1 = mi_copyout_alloc(q, mp,
7407 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE);
7408 if (mp1 == NULL)
7409 return (ENOMEM);
7410
7411 mp1->b_wptr = mp1->b_rptr + ifc_bufsize;
7412 }
7413 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
7414 /*
7415 * the SIOCGIFCONF ioctl only knows about
7416 * IPv4 addresses, so don't try to tell
7417 * it about interfaces with IPv6-only
7418 * addresses. (Last parm 'isv6' is B_FALSE)
7419 */
7420
7421 ifr = (struct ifreq *)mp1->b_rptr;
7422
7423 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7424 ill = ILL_START_WALK_V4(&ctx, ipst);
7425 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7426 if (IS_UNDER_IPMP(ill))
7427 continue;
7428 for (ipif = ill->ill_ipif; ipif != NULL;
7429 ipif = ipif->ipif_next) {
7430 if (zoneid != ipif->ipif_zoneid &&
7431 ipif->ipif_zoneid != ALL_ZONES)
7432 continue;
7433 if ((uchar_t *)&ifr[1] > mp1->b_wptr) {
7434 if (iocp->ioc_cmd == O_SIOCGIFCONF) {
7435 /* old behaviour */
7436 rw_exit(&ipst->ips_ill_g_lock);
7437 return (EINVAL);
7438 } else {
7439 goto if_copydone;
7440 }
7441 }
7442 ipif_get_name(ipif, ifr->ifr_name,
7443 sizeof (ifr->ifr_name));
7444 sin = (sin_t *)&ifr->ifr_addr;
7445 *sin = sin_null;
7446 sin->sin_family = AF_INET;
7447 sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
7448 ifr++;
7449 }
7450 }
7451 if_copydone:
7452 rw_exit(&ipst->ips_ill_g_lock);
7453 mp1->b_wptr = (uchar_t *)ifr;
7454
7455 if (STRUCT_BUF(ifc) != NULL) {
7456 STRUCT_FSET(ifc, ifc_len,
7457 (int)((uchar_t *)ifr - mp1->b_rptr));
7458 }
7459 return (0);
7460 }
7461
7462 /*
7463 * Get the interfaces using the address hosted on the interface passed in,
7464 * as a source adddress
7465 */
7466 /* ARGSUSED */
7467 int
ip_sioctl_get_lifsrcof(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)7468 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7469 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7470 {
7471 mblk_t *mp1;
7472 ill_t *ill, *ill_head;
7473 ipif_t *ipif, *orig_ipif;
7474 int numlifs = 0;
7475 size_t lifs_bufsize, lifsmaxlen;
7476 struct lifreq *lifr;
7477 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7478 uint_t ifindex;
7479 zoneid_t zoneid;
7480 boolean_t isv6 = B_FALSE;
7481 struct sockaddr_in *sin;
7482 struct sockaddr_in6 *sin6;
7483 STRUCT_HANDLE(lifsrcof, lifs);
7484 ip_stack_t *ipst;
7485
7486 ipst = CONNQ_TO_IPST(q);
7487
7488 ASSERT(q->q_next == NULL);
7489
7490 zoneid = Q_TO_CONN(q)->conn_zoneid;
7491
7492 /* Existence verified in ip_wput_nondata */
7493 mp1 = mp->b_cont->b_cont;
7494
7495 /*
7496 * Must be (better be!) continuation of a TRANSPARENT
7497 * IOCTL. We just copied in the lifsrcof structure.
7498 */
7499 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag,
7500 (struct lifsrcof *)mp1->b_rptr);
7501
7502 if (MBLKL(mp1) != STRUCT_SIZE(lifs))
7503 return (EINVAL);
7504
7505 ifindex = STRUCT_FGET(lifs, lifs_ifindex);
7506 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6;
7507 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst);
7508 if (ipif == NULL) {
7509 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n",
7510 ifindex));
7511 return (ENXIO);
7512 }
7513
7514 /* Allocate a buffer to hold requested information */
7515 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill);
7516 lifs_bufsize = numlifs * sizeof (struct lifreq);
7517 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen);
7518 /* The actual size needed is always returned in lifs_len */
7519 STRUCT_FSET(lifs, lifs_len, lifs_bufsize);
7520
7521 /* If the amount we need is more than what is passed in, abort */
7522 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) {
7523 ipif_refrele(ipif);
7524 return (0);
7525 }
7526
7527 mp1 = mi_copyout_alloc(q, mp,
7528 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE);
7529 if (mp1 == NULL) {
7530 ipif_refrele(ipif);
7531 return (ENOMEM);
7532 }
7533
7534 mp1->b_wptr = mp1->b_rptr + lifs_bufsize;
7535 bzero(mp1->b_rptr, lifs_bufsize);
7536
7537 lifr = (struct lifreq *)mp1->b_rptr;
7538
7539 ill = ill_head = ipif->ipif_ill;
7540 orig_ipif = ipif;
7541
7542 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */
7543 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
7544 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7545
7546 ill = ill->ill_usesrc_grp_next; /* start from next ill */
7547 for (; (ill != NULL) && (ill != ill_head);
7548 ill = ill->ill_usesrc_grp_next) {
7549
7550 if ((uchar_t *)&lifr[1] > mp1->b_wptr)
7551 break;
7552
7553 ipif = ill->ill_ipif;
7554 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name));
7555 if (ipif->ipif_isv6) {
7556 sin6 = (sin6_t *)&lifr->lifr_addr;
7557 *sin6 = sin6_null;
7558 sin6->sin6_family = AF_INET6;
7559 sin6->sin6_addr = ipif->ipif_v6lcl_addr;
7560 lifr->lifr_addrlen = ip_mask_to_plen_v6(
7561 &ipif->ipif_v6net_mask);
7562 } else {
7563 sin = (sin_t *)&lifr->lifr_addr;
7564 *sin = sin_null;
7565 sin->sin_family = AF_INET;
7566 sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
7567 lifr->lifr_addrlen = ip_mask_to_plen(
7568 ipif->ipif_net_mask);
7569 }
7570 lifr++;
7571 }
7572 rw_exit(&ipst->ips_ill_g_lock);
7573 rw_exit(&ipst->ips_ill_g_usesrc_lock);
7574 ipif_refrele(orig_ipif);
7575 mp1->b_wptr = (uchar_t *)lifr;
7576 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr));
7577
7578 return (0);
7579 }
7580
7581 /* ARGSUSED */
7582 int
ip_sioctl_get_lifconf(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)7583 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7584 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7585 {
7586 mblk_t *mp1;
7587 int list;
7588 ill_t *ill;
7589 ipif_t *ipif;
7590 int flags;
7591 int numlifs = 0;
7592 size_t lifc_bufsize;
7593 struct lifreq *lifr;
7594 sa_family_t family;
7595 struct sockaddr_in *sin;
7596 struct sockaddr_in6 *sin6;
7597 ill_walk_context_t ctx;
7598 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7599 int32_t lifclen;
7600 zoneid_t zoneid;
7601 STRUCT_HANDLE(lifconf, lifc);
7602 ip_stack_t *ipst = CONNQ_TO_IPST(q);
7603
7604 ip1dbg(("ip_sioctl_get_lifconf"));
7605
7606 ASSERT(q->q_next == NULL);
7607
7608 zoneid = Q_TO_CONN(q)->conn_zoneid;
7609
7610 /* Existence verified in ip_wput_nondata */
7611 mp1 = mp->b_cont->b_cont;
7612
7613 /*
7614 * An extended version of SIOCGIFCONF that takes an
7615 * additional address family and flags field.
7616 * AF_UNSPEC retrieve both IPv4 and IPv6.
7617 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT
7618 * interfaces are omitted.
7619 * Similarly, IPIF_TEMPORARY interfaces are omitted
7620 * unless LIFC_TEMPORARY is specified.
7621 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT,
7622 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and
7623 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE
7624 * has priority over LIFC_NOXMIT.
7625 */
7626 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL);
7627
7628 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc))
7629 return (EINVAL);
7630
7631 /*
7632 * Must be (better be!) continuation of a TRANSPARENT
7633 * IOCTL. We just copied in the lifconf structure.
7634 */
7635 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr);
7636
7637 family = STRUCT_FGET(lifc, lifc_family);
7638 flags = STRUCT_FGET(lifc, lifc_flags);
7639
7640 switch (family) {
7641 case AF_UNSPEC:
7642 /*
7643 * walk all ILL's.
7644 */
7645 list = MAX_G_HEADS;
7646 break;
7647 case AF_INET:
7648 /*
7649 * walk only IPV4 ILL's.
7650 */
7651 list = IP_V4_G_HEAD;
7652 break;
7653 case AF_INET6:
7654 /*
7655 * walk only IPV6 ILL's.
7656 */
7657 list = IP_V6_G_HEAD;
7658 break;
7659 default:
7660 return (EAFNOSUPPORT);
7661 }
7662
7663 /*
7664 * Allocate a buffer to hold requested information.
7665 *
7666 * If lifc_len is larger than what is needed, we only
7667 * allocate what we will use.
7668 *
7669 * If lifc_len is smaller than what is needed, return
7670 * EINVAL.
7671 */
7672 numlifs = ip_get_numlifs(family, flags, zoneid, ipst);
7673 lifc_bufsize = numlifs * sizeof (struct lifreq);
7674 lifclen = STRUCT_FGET(lifc, lifc_len);
7675 if (lifc_bufsize > lifclen) {
7676 if (iocp->ioc_cmd == O_SIOCGLIFCONF)
7677 return (EINVAL);
7678 else
7679 lifc_bufsize = lifclen;
7680 }
7681
7682 mp1 = mi_copyout_alloc(q, mp,
7683 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE);
7684 if (mp1 == NULL)
7685 return (ENOMEM);
7686
7687 mp1->b_wptr = mp1->b_rptr + lifc_bufsize;
7688 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
7689
7690 lifr = (struct lifreq *)mp1->b_rptr;
7691
7692 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7693 ill = ill_first(list, list, &ctx, ipst);
7694 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7695 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP))
7696 continue;
7697
7698 for (ipif = ill->ill_ipif; ipif != NULL;
7699 ipif = ipif->ipif_next) {
7700 if ((ipif->ipif_flags & IPIF_NOXMIT) &&
7701 !(flags & LIFC_NOXMIT))
7702 continue;
7703
7704 if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
7705 !(flags & LIFC_TEMPORARY))
7706 continue;
7707
7708 if (((ipif->ipif_flags &
7709 (IPIF_NOXMIT|IPIF_NOLOCAL|
7710 IPIF_DEPRECATED)) ||
7711 IS_LOOPBACK(ill) ||
7712 !(ipif->ipif_flags & IPIF_UP)) &&
7713 (flags & LIFC_EXTERNAL_SOURCE))
7714 continue;
7715
7716 if (zoneid != ipif->ipif_zoneid &&
7717 ipif->ipif_zoneid != ALL_ZONES &&
7718 (zoneid != GLOBAL_ZONEID ||
7719 !(flags & LIFC_ALLZONES)))
7720 continue;
7721
7722 if ((uchar_t *)&lifr[1] > mp1->b_wptr) {
7723 if (iocp->ioc_cmd == O_SIOCGLIFCONF) {
7724 rw_exit(&ipst->ips_ill_g_lock);
7725 return (EINVAL);
7726 } else {
7727 goto lif_copydone;
7728 }
7729 }
7730
7731 ipif_get_name(ipif, lifr->lifr_name,
7732 sizeof (lifr->lifr_name));
7733 lifr->lifr_type = ill->ill_type;
7734 if (ipif->ipif_isv6) {
7735 sin6 = (sin6_t *)&lifr->lifr_addr;
7736 *sin6 = sin6_null;
7737 sin6->sin6_family = AF_INET6;
7738 sin6->sin6_addr =
7739 ipif->ipif_v6lcl_addr;
7740 lifr->lifr_addrlen =
7741 ip_mask_to_plen_v6(
7742 &ipif->ipif_v6net_mask);
7743 if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) {
7744 sin6->sin6_scope_id =
7745 ill->ill_phyint->phyint_ifindex;
7746 }
7747 } else {
7748 sin = (sin_t *)&lifr->lifr_addr;
7749 *sin = sin_null;
7750 sin->sin_family = AF_INET;
7751 sin->sin_addr.s_addr =
7752 ipif->ipif_lcl_addr;
7753 lifr->lifr_addrlen =
7754 ip_mask_to_plen(
7755 ipif->ipif_net_mask);
7756 }
7757 lifr++;
7758 }
7759 }
7760 lif_copydone:
7761 rw_exit(&ipst->ips_ill_g_lock);
7762
7763 mp1->b_wptr = (uchar_t *)lifr;
7764 if (STRUCT_BUF(lifc) != NULL) {
7765 STRUCT_FSET(lifc, lifc_len,
7766 (int)((uchar_t *)lifr - mp1->b_rptr));
7767 }
7768 return (0);
7769 }
7770
7771 static void
ip_sioctl_ip6addrpolicy(queue_t * q,mblk_t * mp)7772 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp)
7773 {
7774 ip6_asp_t *table;
7775 size_t table_size;
7776 mblk_t *data_mp;
7777 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7778 ip_stack_t *ipst;
7779
7780 if (q->q_next == NULL)
7781 ipst = CONNQ_TO_IPST(q);
7782 else
7783 ipst = ILLQ_TO_IPST(q);
7784
7785 /* These two ioctls are I_STR only */
7786 if (iocp->ioc_count == TRANSPARENT) {
7787 miocnak(q, mp, 0, EINVAL);
7788 return;
7789 }
7790
7791 data_mp = mp->b_cont;
7792 if (data_mp == NULL) {
7793 /* The user passed us a NULL argument */
7794 table = NULL;
7795 table_size = iocp->ioc_count;
7796 } else {
7797 /*
7798 * The user provided a table. The stream head
7799 * may have copied in the user data in chunks,
7800 * so make sure everything is pulled up
7801 * properly.
7802 */
7803 if (MBLKL(data_mp) < iocp->ioc_count) {
7804 mblk_t *new_data_mp;
7805 if ((new_data_mp = msgpullup(data_mp, -1)) ==
7806 NULL) {
7807 miocnak(q, mp, 0, ENOMEM);
7808 return;
7809 }
7810 freemsg(data_mp);
7811 data_mp = new_data_mp;
7812 mp->b_cont = data_mp;
7813 }
7814 table = (ip6_asp_t *)data_mp->b_rptr;
7815 table_size = iocp->ioc_count;
7816 }
7817
7818 switch (iocp->ioc_cmd) {
7819 case SIOCGIP6ADDRPOLICY:
7820 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst);
7821 if (iocp->ioc_rval == -1)
7822 iocp->ioc_error = EINVAL;
7823 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
7824 else if (table != NULL &&
7825 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) {
7826 ip6_asp_t *src = table;
7827 ip6_asp32_t *dst = (void *)table;
7828 int count = table_size / sizeof (ip6_asp_t);
7829 int i;
7830
7831 /*
7832 * We need to do an in-place shrink of the array
7833 * to match the alignment attributes of the
7834 * 32-bit ABI looking at it.
7835 */
7836 /* LINTED: logical expression always true: op "||" */
7837 ASSERT(sizeof (*src) > sizeof (*dst));
7838 for (i = 1; i < count; i++)
7839 bcopy(src + i, dst + i, sizeof (*dst));
7840 }
7841 #endif
7842 break;
7843
7844 case SIOCSIP6ADDRPOLICY:
7845 ASSERT(mp->b_prev == NULL);
7846 mp->b_prev = (void *)q;
7847 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
7848 /*
7849 * We pass in the datamodel here so that the ip6_asp_replace()
7850 * routine can handle converting from 32-bit to native formats
7851 * where necessary.
7852 *
7853 * A better way to handle this might be to convert the inbound
7854 * data structure here, and hang it off a new 'mp'; thus the
7855 * ip6_asp_replace() logic would always be dealing with native
7856 * format data structures..
7857 *
7858 * (An even simpler way to handle these ioctls is to just
7859 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure
7860 * and just recompile everything that depends on it.)
7861 */
7862 #endif
7863 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst,
7864 iocp->ioc_flag & IOC_MODELS);
7865 return;
7866 }
7867
7868 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK;
7869 qreply(q, mp);
7870 }
7871
7872 static void
ip_sioctl_dstinfo(queue_t * q,mblk_t * mp)7873 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp)
7874 {
7875 mblk_t *data_mp;
7876 struct dstinforeq *dir;
7877 uint8_t *end, *cur;
7878 in6_addr_t *daddr, *saddr;
7879 ipaddr_t v4daddr;
7880 ire_t *ire;
7881 ipaddr_t v4setsrc;
7882 in6_addr_t v6setsrc;
7883 char *slabel, *dlabel;
7884 boolean_t isipv4;
7885 int match_ire;
7886 ill_t *dst_ill;
7887 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7888 conn_t *connp = Q_TO_CONN(q);
7889 zoneid_t zoneid = IPCL_ZONEID(connp);
7890 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
7891 uint64_t ipif_flags;
7892
7893 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
7894
7895 /*
7896 * This ioctl is I_STR only, and must have a
7897 * data mblk following the M_IOCTL mblk.
7898 */
7899 data_mp = mp->b_cont;
7900 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) {
7901 miocnak(q, mp, 0, EINVAL);
7902 return;
7903 }
7904
7905 if (MBLKL(data_mp) < iocp->ioc_count) {
7906 mblk_t *new_data_mp;
7907
7908 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) {
7909 miocnak(q, mp, 0, ENOMEM);
7910 return;
7911 }
7912 freemsg(data_mp);
7913 data_mp = new_data_mp;
7914 mp->b_cont = data_mp;
7915 }
7916 match_ire = MATCH_IRE_DSTONLY;
7917
7918 for (cur = data_mp->b_rptr, end = data_mp->b_wptr;
7919 end - cur >= sizeof (struct dstinforeq);
7920 cur += sizeof (struct dstinforeq)) {
7921 dir = (struct dstinforeq *)cur;
7922 daddr = &dir->dir_daddr;
7923 saddr = &dir->dir_saddr;
7924
7925 /*
7926 * ip_addr_scope_v6() and ip6_asp_lookup() handle
7927 * v4 mapped addresses; ire_ftable_lookup_v6()
7928 * and ip_select_source_v6() do not.
7929 */
7930 dir->dir_dscope = ip_addr_scope_v6(daddr);
7931 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst);
7932
7933 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr);
7934 if (isipv4) {
7935 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr);
7936 v4setsrc = INADDR_ANY;
7937 ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid,
7938 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc,
7939 NULL, NULL);
7940 } else {
7941 v6setsrc = ipv6_all_zeros;
7942 ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid,
7943 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc,
7944 NULL, NULL);
7945 }
7946 ASSERT(ire != NULL);
7947 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
7948 ire_refrele(ire);
7949 dir->dir_dreachable = 0;
7950
7951 /* move on to next dst addr */
7952 continue;
7953 }
7954 dir->dir_dreachable = 1;
7955
7956 dst_ill = ire_nexthop_ill(ire);
7957 if (dst_ill == NULL) {
7958 ire_refrele(ire);
7959 continue;
7960 }
7961
7962 /* With ipmp we most likely look at the ipmp ill here */
7963 dir->dir_dmactype = dst_ill->ill_mactype;
7964
7965 if (isipv4) {
7966 ipaddr_t v4saddr;
7967
7968 if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr,
7969 connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst,
7970 &v4saddr, NULL, &ipif_flags) != 0) {
7971 v4saddr = INADDR_ANY;
7972 ipif_flags = 0;
7973 }
7974 IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr);
7975 } else {
7976 if (ip_select_source_v6(dst_ill, &v6setsrc, daddr,
7977 zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT,
7978 saddr, NULL, &ipif_flags) != 0) {
7979 *saddr = ipv6_all_zeros;
7980 ipif_flags = 0;
7981 }
7982 }
7983
7984 dir->dir_sscope = ip_addr_scope_v6(saddr);
7985 slabel = ip6_asp_lookup(saddr, NULL, ipst);
7986 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel);
7987 dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0;
7988 ire_refrele(ire);
7989 ill_refrele(dst_ill);
7990 }
7991 miocack(q, mp, iocp->ioc_count, 0);
7992 }
7993
7994 /*
7995 * Check if this is an address assigned to this machine.
7996 * Skips interfaces that are down by using ire checks.
7997 * Translates mapped addresses to v4 addresses and then
7998 * treats them as such, returning true if the v4 address
7999 * associated with this mapped address is configured.
8000 * Note: Applications will have to be careful what they do
8001 * with the response; use of mapped addresses limits
8002 * what can be done with the socket, especially with
8003 * respect to socket options and ioctls - neither IPv4
8004 * options nor IPv6 sticky options/ancillary data options
8005 * may be used.
8006 */
8007 /* ARGSUSED */
8008 int
ip_sioctl_tmyaddr(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_ifreq)8009 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
8010 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
8011 {
8012 struct sioc_addrreq *sia;
8013 sin_t *sin;
8014 ire_t *ire;
8015 mblk_t *mp1;
8016 zoneid_t zoneid;
8017 ip_stack_t *ipst;
8018
8019 ip1dbg(("ip_sioctl_tmyaddr"));
8020
8021 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8022 zoneid = Q_TO_CONN(q)->conn_zoneid;
8023 ipst = CONNQ_TO_IPST(q);
8024
8025 /* Existence verified in ip_wput_nondata */
8026 mp1 = mp->b_cont->b_cont;
8027 sia = (struct sioc_addrreq *)mp1->b_rptr;
8028 sin = (sin_t *)&sia->sa_addr;
8029 switch (sin->sin_family) {
8030 case AF_INET6: {
8031 sin6_t *sin6 = (sin6_t *)sin;
8032
8033 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
8034 ipaddr_t v4_addr;
8035
8036 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
8037 v4_addr);
8038 ire = ire_ftable_lookup_v4(v4_addr, 0, 0,
8039 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL,
8040 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8041 } else {
8042 in6_addr_t v6addr;
8043
8044 v6addr = sin6->sin6_addr;
8045 ire = ire_ftable_lookup_v6(&v6addr, 0, 0,
8046 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL,
8047 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8048 }
8049 break;
8050 }
8051 case AF_INET: {
8052 ipaddr_t v4addr;
8053
8054 v4addr = sin->sin_addr.s_addr;
8055 ire = ire_ftable_lookup_v4(v4addr, 0, 0,
8056 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
8057 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8058 break;
8059 }
8060 default:
8061 return (EAFNOSUPPORT);
8062 }
8063 if (ire != NULL) {
8064 sia->sa_res = 1;
8065 ire_refrele(ire);
8066 } else {
8067 sia->sa_res = 0;
8068 }
8069 return (0);
8070 }
8071
8072 /*
8073 * Check if this is an address assigned on-link i.e. neighbor,
8074 * and makes sure it's reachable from the current zone.
8075 * Returns true for my addresses as well.
8076 * Translates mapped addresses to v4 addresses and then
8077 * treats them as such, returning true if the v4 address
8078 * associated with this mapped address is configured.
8079 * Note: Applications will have to be careful what they do
8080 * with the response; use of mapped addresses limits
8081 * what can be done with the socket, especially with
8082 * respect to socket options and ioctls - neither IPv4
8083 * options nor IPv6 sticky options/ancillary data options
8084 * may be used.
8085 */
8086 /* ARGSUSED */
8087 int
ip_sioctl_tonlink(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * duymmy_ifreq)8088 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
8089 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq)
8090 {
8091 struct sioc_addrreq *sia;
8092 sin_t *sin;
8093 mblk_t *mp1;
8094 ire_t *ire = NULL;
8095 zoneid_t zoneid;
8096 ip_stack_t *ipst;
8097
8098 ip1dbg(("ip_sioctl_tonlink"));
8099
8100 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8101 zoneid = Q_TO_CONN(q)->conn_zoneid;
8102 ipst = CONNQ_TO_IPST(q);
8103
8104 /* Existence verified in ip_wput_nondata */
8105 mp1 = mp->b_cont->b_cont;
8106 sia = (struct sioc_addrreq *)mp1->b_rptr;
8107 sin = (sin_t *)&sia->sa_addr;
8108
8109 /*
8110 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST
8111 * to make sure we only look at on-link unicast address.
8112 */
8113 switch (sin->sin_family) {
8114 case AF_INET6: {
8115 sin6_t *sin6 = (sin6_t *)sin;
8116
8117 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
8118 ipaddr_t v4_addr;
8119
8120 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
8121 v4_addr);
8122 if (!CLASSD(v4_addr)) {
8123 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0,
8124 NULL, zoneid, NULL, MATCH_IRE_DSTONLY,
8125 0, ipst, NULL);
8126 }
8127 } else {
8128 in6_addr_t v6addr;
8129
8130 v6addr = sin6->sin6_addr;
8131 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) {
8132 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0,
8133 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0,
8134 ipst, NULL);
8135 }
8136 }
8137 break;
8138 }
8139 case AF_INET: {
8140 ipaddr_t v4addr;
8141
8142 v4addr = sin->sin_addr.s_addr;
8143 if (!CLASSD(v4addr)) {
8144 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL,
8145 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
8146 }
8147 break;
8148 }
8149 default:
8150 return (EAFNOSUPPORT);
8151 }
8152 sia->sa_res = 0;
8153 if (ire != NULL) {
8154 ASSERT(!(ire->ire_type & IRE_MULTICAST));
8155
8156 if ((ire->ire_type & IRE_ONLINK) &&
8157 !(ire->ire_type & IRE_BROADCAST))
8158 sia->sa_res = 1;
8159 ire_refrele(ire);
8160 }
8161 return (0);
8162 }
8163
8164 /*
8165 * TBD: implement when kernel maintaines a list of site prefixes.
8166 */
8167 /* ARGSUSED */
8168 int
ip_sioctl_tmysite(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)8169 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8170 ip_ioctl_cmd_t *ipip, void *ifreq)
8171 {
8172 return (ENXIO);
8173 }
8174
8175 /* ARP IOCTLs. */
8176 /* ARGSUSED */
8177 int
ip_sioctl_arp(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_ifreq)8178 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8179 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
8180 {
8181 int err;
8182 ipaddr_t ipaddr;
8183 struct iocblk *iocp;
8184 conn_t *connp;
8185 struct arpreq *ar;
8186 struct xarpreq *xar;
8187 int arp_flags, flags, alength;
8188 uchar_t *lladdr;
8189 ip_stack_t *ipst;
8190 ill_t *ill = ipif->ipif_ill;
8191 ill_t *proxy_ill = NULL;
8192 ipmp_arpent_t *entp = NULL;
8193 boolean_t proxyarp = B_FALSE;
8194 boolean_t if_arp_ioctl = B_FALSE;
8195 ncec_t *ncec = NULL;
8196 nce_t *nce;
8197
8198 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
8199 connp = Q_TO_CONN(q);
8200 ipst = connp->conn_netstack->netstack_ip;
8201 iocp = (struct iocblk *)mp->b_rptr;
8202
8203 if (ipip->ipi_cmd_type == XARP_CMD) {
8204 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */
8205 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr;
8206 ar = NULL;
8207
8208 arp_flags = xar->xarp_flags;
8209 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha);
8210 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0);
8211 /*
8212 * Validate against user's link layer address length
8213 * input and name and addr length limits.
8214 */
8215 alength = ill->ill_phys_addr_length;
8216 if (ipip->ipi_cmd == SIOCSXARP) {
8217 if (alength != xar->xarp_ha.sdl_alen ||
8218 (alength + xar->xarp_ha.sdl_nlen >
8219 sizeof (xar->xarp_ha.sdl_data)))
8220 return (EINVAL);
8221 }
8222 } else {
8223 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */
8224 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr;
8225 xar = NULL;
8226
8227 arp_flags = ar->arp_flags;
8228 lladdr = (uchar_t *)ar->arp_ha.sa_data;
8229 /*
8230 * Theoretically, the sa_family could tell us what link
8231 * layer type this operation is trying to deal with. By
8232 * common usage AF_UNSPEC means ethernet. We'll assume
8233 * any attempt to use the SIOC?ARP ioctls is for ethernet,
8234 * for now. Our new SIOC*XARP ioctls can be used more
8235 * generally.
8236 *
8237 * If the underlying media happens to have a non 6 byte
8238 * address, arp module will fail set/get, but the del
8239 * operation will succeed.
8240 */
8241 alength = 6;
8242 if ((ipip->ipi_cmd != SIOCDARP) &&
8243 (alength != ill->ill_phys_addr_length)) {
8244 return (EINVAL);
8245 }
8246 }
8247
8248 /* Translate ATF* flags to NCE* flags */
8249 flags = 0;
8250 if (arp_flags & ATF_AUTHORITY)
8251 flags |= NCE_F_AUTHORITY;
8252 if (arp_flags & ATF_PERM)
8253 flags |= NCE_F_NONUD; /* not subject to aging */
8254 if (arp_flags & ATF_PUBL)
8255 flags |= NCE_F_PUBLISH;
8256
8257 /*
8258 * IPMP ARP special handling:
8259 *
8260 * 1. Since ARP mappings must appear consistent across the group,
8261 * prohibit changing ARP mappings on the underlying interfaces.
8262 *
8263 * 2. Since ARP mappings for IPMP data addresses are maintained by
8264 * IP itself, prohibit changing them.
8265 *
8266 * 3. For proxy ARP, use a functioning hardware address in the group,
8267 * provided one exists. If one doesn't, just add the entry as-is;
8268 * ipmp_illgrp_refresh_arpent() will refresh it if things change.
8269 */
8270 if (IS_UNDER_IPMP(ill)) {
8271 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP)
8272 return (EPERM);
8273 }
8274 if (IS_IPMP(ill)) {
8275 ipmp_illgrp_t *illg = ill->ill_grp;
8276
8277 switch (ipip->ipi_cmd) {
8278 case SIOCSARP:
8279 case SIOCSXARP:
8280 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength);
8281 if (proxy_ill != NULL) {
8282 proxyarp = B_TRUE;
8283 if (!ipmp_ill_is_active(proxy_ill))
8284 proxy_ill = ipmp_illgrp_next_ill(illg);
8285 if (proxy_ill != NULL)
8286 lladdr = proxy_ill->ill_phys_addr;
8287 }
8288 /* FALLTHRU */
8289 }
8290 }
8291
8292 ipaddr = sin->sin_addr.s_addr;
8293 /*
8294 * don't match across illgrp per case (1) and (2).
8295 * XXX use IS_IPMP(ill) like ndp_sioc_update?
8296 */
8297 nce = nce_lookup_v4(ill, &ipaddr);
8298 if (nce != NULL)
8299 ncec = nce->nce_common;
8300
8301 switch (iocp->ioc_cmd) {
8302 case SIOCDARP:
8303 case SIOCDXARP: {
8304 /*
8305 * Delete the NCE if any.
8306 */
8307 if (ncec == NULL) {
8308 iocp->ioc_error = ENXIO;
8309 break;
8310 }
8311 /* Don't allow changes to arp mappings of local addresses. */
8312 if (NCE_MYADDR(ncec)) {
8313 nce_refrele(nce);
8314 return (ENOTSUP);
8315 }
8316 iocp->ioc_error = 0;
8317
8318 /*
8319 * Delete the nce_common which has ncec_ill set to ipmp_ill.
8320 * This will delete all the nce entries on the under_ills.
8321 */
8322 ncec_delete(ncec);
8323 /*
8324 * Once the NCE has been deleted, then the ire_dep* consistency
8325 * mechanism will find any IRE which depended on the now
8326 * condemned NCE (as part of sending packets).
8327 * That mechanism handles redirects by deleting redirects
8328 * that refer to UNREACHABLE nces.
8329 */
8330 break;
8331 }
8332 case SIOCGARP:
8333 case SIOCGXARP:
8334 if (ncec != NULL) {
8335 lladdr = ncec->ncec_lladdr;
8336 flags = ncec->ncec_flags;
8337 iocp->ioc_error = 0;
8338 ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags);
8339 } else {
8340 iocp->ioc_error = ENXIO;
8341 }
8342 break;
8343 case SIOCSARP:
8344 case SIOCSXARP:
8345 /* Don't allow changes to arp mappings of local addresses. */
8346 if (ncec != NULL && NCE_MYADDR(ncec)) {
8347 nce_refrele(nce);
8348 return (ENOTSUP);
8349 }
8350
8351 /* static arp entries will undergo NUD if ATF_PERM is not set */
8352 flags |= NCE_F_STATIC;
8353 if (!if_arp_ioctl) {
8354 ip_nce_lookup_and_update(&ipaddr, NULL, ipst,
8355 lladdr, alength, flags);
8356 } else {
8357 ipif_t *ipif = ipif_get_next_ipif(NULL, ill);
8358 if (ipif != NULL) {
8359 ip_nce_lookup_and_update(&ipaddr, ipif, ipst,
8360 lladdr, alength, flags);
8361 ipif_refrele(ipif);
8362 }
8363 }
8364 if (nce != NULL) {
8365 nce_refrele(nce);
8366 nce = NULL;
8367 }
8368 /*
8369 * NCE_F_STATIC entries will be added in state ND_REACHABLE
8370 * by nce_add_common()
8371 */
8372 err = nce_lookup_then_add_v4(ill, lladdr,
8373 ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED,
8374 &nce);
8375 if (err == EEXIST) {
8376 ncec = nce->nce_common;
8377 mutex_enter(&ncec->ncec_lock);
8378 ncec->ncec_state = ND_REACHABLE;
8379 ncec->ncec_flags = flags;
8380 nce_update(ncec, ND_UNCHANGED, lladdr);
8381 mutex_exit(&ncec->ncec_lock);
8382 err = 0;
8383 }
8384 if (nce != NULL) {
8385 nce_refrele(nce);
8386 nce = NULL;
8387 }
8388 if (IS_IPMP(ill) && err == 0) {
8389 entp = ipmp_illgrp_create_arpent(ill->ill_grp,
8390 proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length,
8391 flags);
8392 if (entp == NULL || (proxyarp && proxy_ill == NULL)) {
8393 iocp->ioc_error = (entp == NULL ? ENOMEM : 0);
8394 break;
8395 }
8396 }
8397 iocp->ioc_error = err;
8398 }
8399
8400 if (nce != NULL) {
8401 nce_refrele(nce);
8402 }
8403
8404 /*
8405 * If we created an IPMP ARP entry, mark that we've notified ARP.
8406 */
8407 if (entp != NULL)
8408 ipmp_illgrp_mark_arpent(ill->ill_grp, entp);
8409
8410 return (iocp->ioc_error);
8411 }
8412
8413 /*
8414 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify
8415 * the associated sin and refhold and return the associated ipif via `ci'.
8416 */
8417 int
ip_extract_arpreq(queue_t * q,mblk_t * mp,const ip_ioctl_cmd_t * ipip,cmd_info_t * ci)8418 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
8419 cmd_info_t *ci)
8420 {
8421 mblk_t *mp1;
8422 sin_t *sin;
8423 conn_t *connp;
8424 ipif_t *ipif;
8425 ire_t *ire = NULL;
8426 ill_t *ill = NULL;
8427 boolean_t exists;
8428 ip_stack_t *ipst;
8429 struct arpreq *ar;
8430 struct xarpreq *xar;
8431 struct sockaddr_dl *sdl;
8432
8433 /* ioctl comes down on a conn */
8434 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
8435 connp = Q_TO_CONN(q);
8436 if (connp->conn_family == AF_INET6)
8437 return (ENXIO);
8438
8439 ipst = connp->conn_netstack->netstack_ip;
8440
8441 /* Verified in ip_wput_nondata */
8442 mp1 = mp->b_cont->b_cont;
8443
8444 if (ipip->ipi_cmd_type == XARP_CMD) {
8445 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq));
8446 xar = (struct xarpreq *)mp1->b_rptr;
8447 sin = (sin_t *)&xar->xarp_pa;
8448 sdl = &xar->xarp_ha;
8449
8450 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET)
8451 return (ENXIO);
8452 if (sdl->sdl_nlen >= LIFNAMSIZ)
8453 return (EINVAL);
8454 } else {
8455 ASSERT(ipip->ipi_cmd_type == ARP_CMD);
8456 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq));
8457 ar = (struct arpreq *)mp1->b_rptr;
8458 sin = (sin_t *)&ar->arp_pa;
8459 }
8460
8461 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) {
8462 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen,
8463 B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst);
8464 if (ipif == NULL)
8465 return (ENXIO);
8466 if (ipif->ipif_id != 0) {
8467 ipif_refrele(ipif);
8468 return (ENXIO);
8469 }
8470 } else {
8471 /*
8472 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen
8473 * of 0: use the IP address to find the ipif. If the IP
8474 * address is an IPMP test address, ire_ftable_lookup() will
8475 * find the wrong ill, so we first do an ipif_lookup_addr().
8476 */
8477 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES,
8478 ipst);
8479 if (ipif == NULL) {
8480 ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr,
8481 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES,
8482 NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
8483 if (ire == NULL || ((ill = ire->ire_ill) == NULL)) {
8484 if (ire != NULL)
8485 ire_refrele(ire);
8486 return (ENXIO);
8487 }
8488 ASSERT(ire != NULL && ill != NULL);
8489 ipif = ill->ill_ipif;
8490 ipif_refhold(ipif);
8491 ire_refrele(ire);
8492 }
8493 }
8494
8495 if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) {
8496 ipif_refrele(ipif);
8497 return (ENXIO);
8498 }
8499
8500 ci->ci_sin = sin;
8501 ci->ci_ipif = ipif;
8502 return (0);
8503 }
8504
8505 /*
8506 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the
8507 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is
8508 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it
8509 * up and thus an ill can join that illgrp.
8510 *
8511 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than
8512 * open()/close() primarily because close() is not allowed to fail or block
8513 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason
8514 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure
8515 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the
8516 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts
8517 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent
8518 * state if I_UNLINK didn't occur.
8519 *
8520 * Note that for each plumb/unplumb operation, we may end up here more than
8521 * once because of the way ifconfig works. However, it's OK to link the same
8522 * illgrp more than once, or unlink an illgrp that's already unlinked.
8523 */
8524 static int
ip_sioctl_plink_ipmp(ill_t * ill,int ioccmd)8525 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd)
8526 {
8527 int err;
8528 ip_stack_t *ipst = ill->ill_ipst;
8529
8530 ASSERT(IS_IPMP(ill));
8531 ASSERT(IAM_WRITER_ILL(ill));
8532
8533 switch (ioccmd) {
8534 case I_LINK:
8535 return (ENOTSUP);
8536
8537 case I_PLINK:
8538 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
8539 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp);
8540 rw_exit(&ipst->ips_ipmp_lock);
8541 break;
8542
8543 case I_PUNLINK:
8544 /*
8545 * Require all UP ipifs be brought down prior to unlinking the
8546 * illgrp so any associated IREs (and other state) is torched.
8547 */
8548 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0)
8549 return (EBUSY);
8550
8551 /*
8552 * NOTE: We hold ipmp_lock across the unlink to prevent a race
8553 * with an SIOCSLIFGROUPNAME request from an ill trying to
8554 * join this group. Specifically: ills trying to join grab
8555 * ipmp_lock and bump a "pending join" counter checked by
8556 * ipmp_illgrp_unlink_grp(). During the unlink no new pending
8557 * joins can occur (since we have ipmp_lock). Once we drop
8558 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not
8559 * find the illgrp (since we unlinked it) and will return
8560 * EAFNOSUPPORT. This will then take them back through the
8561 * IPMP meta-interface plumbing logic in ifconfig, and thus
8562 * back through I_PLINK above.
8563 */
8564 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
8565 err = ipmp_illgrp_unlink_grp(ill->ill_grp);
8566 rw_exit(&ipst->ips_ipmp_lock);
8567 return (err);
8568 default:
8569 break;
8570 }
8571 return (0);
8572 }
8573
8574 /*
8575 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also
8576 * atomically set/clear the muxids. Also complete the ioctl by acking or
8577 * naking it. Note that the code is structured such that the link type,
8578 * whether it's persistent or not, is treated equally. ifconfig(8) and
8579 * its clones use the persistent link, while pppd(8) and perhaps many
8580 * other daemons may use non-persistent link. When combined with some
8581 * ill_t states, linking and unlinking lower streams may be used as
8582 * indicators of dynamic re-plumbing events [see PSARC/1999/348].
8583 */
8584 /* ARGSUSED */
8585 void
ip_sioctl_plink(ipsq_t * ipsq,queue_t * q,mblk_t * mp,void * dummy_arg)8586 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8587 {
8588 mblk_t *mp1;
8589 struct linkblk *li;
8590 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd;
8591 int err = 0;
8592
8593 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK ||
8594 ioccmd == I_LINK || ioccmd == I_UNLINK);
8595
8596 mp1 = mp->b_cont; /* This is the linkblk info */
8597 li = (struct linkblk *)mp1->b_rptr;
8598
8599 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li);
8600 if (err == EINPROGRESS)
8601 return;
8602 if (err == 0)
8603 miocack(q, mp, 0, 0);
8604 else
8605 miocnak(q, mp, 0, err);
8606
8607 /* Conn was refheld in ip_sioctl_copyin_setup */
8608 if (CONN_Q(q)) {
8609 CONN_DEC_IOCTLREF(Q_TO_CONN(q));
8610 CONN_OPER_PENDING_DONE(Q_TO_CONN(q));
8611 }
8612 }
8613
8614 /*
8615 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to
8616 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP
8617 * module stream).
8618 * Returns zero on success, EINPROGRESS if the operation is still pending, or
8619 * an error code on failure.
8620 */
8621 static int
ip_sioctl_plink_ipmod(ipsq_t * ipsq,queue_t * q,mblk_t * mp,int ioccmd,struct linkblk * li)8622 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd,
8623 struct linkblk *li)
8624 {
8625 int err = 0;
8626 ill_t *ill;
8627 queue_t *ipwq, *dwq;
8628 const char *name;
8629 struct qinit *qinfo;
8630 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK);
8631 boolean_t entered_ipsq = B_FALSE;
8632 boolean_t is_ip = B_FALSE;
8633 arl_t *arl;
8634
8635 /*
8636 * Walk the lower stream to verify it's the IP module stream.
8637 * The IP module is identified by its name, wput function,
8638 * and non-NULL q_next. STREAMS ensures that the lower stream
8639 * (li->l_qbot) will not vanish until this ioctl completes.
8640 */
8641 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) {
8642 qinfo = ipwq->q_qinfo;
8643 name = qinfo->qi_minfo->mi_idname;
8644 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 &&
8645 qinfo->qi_putp != ip_lwput && ipwq->q_next != NULL) {
8646 is_ip = B_TRUE;
8647 break;
8648 }
8649 if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 &&
8650 qinfo->qi_putp != ip_lwput && ipwq->q_next != NULL) {
8651 break;
8652 }
8653 }
8654
8655 /*
8656 * If this isn't an IP module stream, bail.
8657 */
8658 if (ipwq == NULL)
8659 return (0);
8660
8661 if (!is_ip) {
8662 arl = (arl_t *)ipwq->q_ptr;
8663 ill = arl_to_ill(arl);
8664 if (ill == NULL)
8665 return (0);
8666 } else {
8667 ill = ipwq->q_ptr;
8668 }
8669 ASSERT(ill != NULL);
8670
8671 if (ipsq == NULL) {
8672 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
8673 NEW_OP, B_FALSE);
8674 if (ipsq == NULL) {
8675 if (!is_ip)
8676 ill_refrele(ill);
8677 return (EINPROGRESS);
8678 }
8679 entered_ipsq = B_TRUE;
8680 }
8681 ASSERT(IAM_WRITER_ILL(ill));
8682 mutex_enter(&ill->ill_lock);
8683 if (!is_ip) {
8684 if (islink && ill->ill_muxid == 0) {
8685 /*
8686 * Plumbing has to be done with IP plumbed first, arp
8687 * second, but here we have arp being plumbed first.
8688 */
8689 mutex_exit(&ill->ill_lock);
8690 if (entered_ipsq)
8691 ipsq_exit(ipsq);
8692 ill_refrele(ill);
8693 return (EINVAL);
8694 }
8695 }
8696 mutex_exit(&ill->ill_lock);
8697 if (!is_ip) {
8698 arl->arl_muxid = islink ? li->l_index : 0;
8699 ill_refrele(ill);
8700 goto done;
8701 }
8702
8703 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0)
8704 goto done;
8705
8706 /*
8707 * As part of I_{P}LINKing, stash the number of downstream modules and
8708 * the read queue of the module immediately below IP in the ill.
8709 * These are used during the capability negotiation below.
8710 */
8711 ill->ill_lmod_rq = NULL;
8712 ill->ill_lmod_cnt = 0;
8713 if (islink && ((dwq = ipwq->q_next) != NULL)) {
8714 ill->ill_lmod_rq = RD(dwq);
8715 for (; dwq != NULL; dwq = dwq->q_next)
8716 ill->ill_lmod_cnt++;
8717 }
8718
8719 ill->ill_muxid = islink ? li->l_index : 0;
8720
8721 /*
8722 * Mark the ipsq busy until the capability operations initiated below
8723 * complete. The PLINK/UNLINK ioctl itself completes when our caller
8724 * returns, but the capability operation may complete asynchronously
8725 * much later.
8726 */
8727 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd);
8728 /*
8729 * If there's at least one up ipif on this ill, then we're bound to
8730 * the underlying driver via DLPI. In that case, renegotiate
8731 * capabilities to account for any possible change in modules
8732 * interposed between IP and the driver.
8733 */
8734 if (ill->ill_ipif_up_count > 0) {
8735 if (islink)
8736 ill_capability_probe(ill);
8737 else
8738 ill_capability_reset(ill, B_FALSE);
8739 }
8740 ipsq_current_finish(ipsq);
8741 done:
8742 if (entered_ipsq)
8743 ipsq_exit(ipsq);
8744
8745 return (err);
8746 }
8747
8748 /*
8749 * Search the ioctl command in the ioctl tables and return a pointer
8750 * to the ioctl command information. The ioctl command tables are
8751 * static and fully populated at compile time.
8752 */
8753 ip_ioctl_cmd_t *
ip_sioctl_lookup(int ioc_cmd)8754 ip_sioctl_lookup(int ioc_cmd)
8755 {
8756 int index;
8757 ip_ioctl_cmd_t *ipip;
8758 ip_ioctl_cmd_t *ipip_end;
8759
8760 if (ioc_cmd == IPI_DONTCARE)
8761 return (NULL);
8762
8763 /*
8764 * Do a 2 step search. First search the indexed table
8765 * based on the least significant byte of the ioctl cmd.
8766 * If we don't find a match, then search the misc table
8767 * serially.
8768 */
8769 index = ioc_cmd & 0xFF;
8770 if (index < ip_ndx_ioctl_count) {
8771 ipip = &ip_ndx_ioctl_table[index];
8772 if (ipip->ipi_cmd == ioc_cmd) {
8773 /* Found a match in the ndx table */
8774 return (ipip);
8775 }
8776 }
8777
8778 /* Search the misc table */
8779 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count];
8780 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) {
8781 if (ipip->ipi_cmd == ioc_cmd)
8782 /* Found a match in the misc table */
8783 return (ipip);
8784 }
8785
8786 return (NULL);
8787 }
8788
8789 /*
8790 * helper function for ip_sioctl_getsetprop(), which does some sanity checks
8791 */
8792 static boolean_t
getset_ioctl_checks(mblk_t * mp)8793 getset_ioctl_checks(mblk_t *mp)
8794 {
8795 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8796 mblk_t *mp1 = mp->b_cont;
8797 mod_ioc_prop_t *pioc;
8798 uint_t flags;
8799 uint_t pioc_size;
8800
8801 /* do sanity checks on various arguments */
8802 if (mp1 == NULL || iocp->ioc_count == 0 ||
8803 iocp->ioc_count == TRANSPARENT) {
8804 return (B_FALSE);
8805 }
8806 if (msgdsize(mp1) < iocp->ioc_count) {
8807 if (!pullupmsg(mp1, iocp->ioc_count))
8808 return (B_FALSE);
8809 }
8810
8811 pioc = (mod_ioc_prop_t *)mp1->b_rptr;
8812
8813 /* sanity checks on mpr_valsize */
8814 pioc_size = sizeof (mod_ioc_prop_t);
8815 if (pioc->mpr_valsize != 0)
8816 pioc_size += pioc->mpr_valsize - 1;
8817
8818 if (iocp->ioc_count != pioc_size)
8819 return (B_FALSE);
8820
8821 flags = pioc->mpr_flags;
8822 if (iocp->ioc_cmd == SIOCSETPROP) {
8823 /*
8824 * One can either reset the value to it's default value or
8825 * change the current value or append/remove the value from
8826 * a multi-valued properties.
8827 */
8828 if ((flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT &&
8829 flags != MOD_PROP_ACTIVE &&
8830 flags != (MOD_PROP_ACTIVE|MOD_PROP_APPEND) &&
8831 flags != (MOD_PROP_ACTIVE|MOD_PROP_REMOVE))
8832 return (B_FALSE);
8833 } else {
8834 ASSERT(iocp->ioc_cmd == SIOCGETPROP);
8835
8836 /*
8837 * One can retrieve only one kind of property information
8838 * at a time.
8839 */
8840 if ((flags & MOD_PROP_ACTIVE) != MOD_PROP_ACTIVE &&
8841 (flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT &&
8842 (flags & MOD_PROP_POSSIBLE) != MOD_PROP_POSSIBLE &&
8843 (flags & MOD_PROP_PERM) != MOD_PROP_PERM)
8844 return (B_FALSE);
8845 }
8846
8847 return (B_TRUE);
8848 }
8849
8850 /*
8851 * process the SIOC{SET|GET}PROP ioctl's
8852 */
8853 /* ARGSUSED */
8854 static void
ip_sioctl_getsetprop(queue_t * q,mblk_t * mp)8855 ip_sioctl_getsetprop(queue_t *q, mblk_t *mp)
8856 {
8857 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8858 mblk_t *mp1 = mp->b_cont;
8859 mod_ioc_prop_t *pioc;
8860 mod_prop_info_t *ptbl = NULL, *pinfo = NULL;
8861 ip_stack_t *ipst;
8862 netstack_t *stack;
8863 cred_t *cr;
8864 boolean_t set;
8865 int err;
8866
8867 ASSERT(q->q_next == NULL);
8868 ASSERT(CONN_Q(q));
8869
8870 if (!getset_ioctl_checks(mp)) {
8871 miocnak(q, mp, 0, EINVAL);
8872 return;
8873 }
8874 ipst = CONNQ_TO_IPST(q);
8875 stack = ipst->ips_netstack;
8876 pioc = (mod_ioc_prop_t *)mp1->b_rptr;
8877
8878 switch (pioc->mpr_proto) {
8879 case MOD_PROTO_IP:
8880 case MOD_PROTO_IPV4:
8881 case MOD_PROTO_IPV6:
8882 ptbl = ipst->ips_propinfo_tbl;
8883 break;
8884 case MOD_PROTO_RAWIP:
8885 ptbl = stack->netstack_icmp->is_propinfo_tbl;
8886 break;
8887 case MOD_PROTO_TCP:
8888 ptbl = stack->netstack_tcp->tcps_propinfo_tbl;
8889 break;
8890 case MOD_PROTO_UDP:
8891 ptbl = stack->netstack_udp->us_propinfo_tbl;
8892 break;
8893 case MOD_PROTO_SCTP:
8894 ptbl = stack->netstack_sctp->sctps_propinfo_tbl;
8895 break;
8896 default:
8897 miocnak(q, mp, 0, EINVAL);
8898 return;
8899 }
8900
8901 pinfo = mod_prop_lookup(ptbl, pioc->mpr_name, pioc->mpr_proto);
8902 if (pinfo == NULL) {
8903 miocnak(q, mp, 0, ENOENT);
8904 return;
8905 }
8906
8907 set = (iocp->ioc_cmd == SIOCSETPROP) ? B_TRUE : B_FALSE;
8908 if (set && pinfo->mpi_setf != NULL) {
8909 cr = msg_getcred(mp, NULL);
8910 if (cr == NULL)
8911 cr = iocp->ioc_cr;
8912 err = pinfo->mpi_setf(stack, cr, pinfo, pioc->mpr_ifname,
8913 pioc->mpr_val, pioc->mpr_flags);
8914 } else if (!set && pinfo->mpi_getf != NULL) {
8915 err = pinfo->mpi_getf(stack, pinfo, pioc->mpr_ifname,
8916 pioc->mpr_val, pioc->mpr_valsize, pioc->mpr_flags);
8917 } else {
8918 err = EPERM;
8919 }
8920
8921 if (err != 0) {
8922 miocnak(q, mp, 0, err);
8923 } else {
8924 if (set)
8925 miocack(q, mp, 0, 0);
8926 else /* For get, we need to return back the data */
8927 miocack(q, mp, iocp->ioc_count, 0);
8928 }
8929 }
8930
8931 /*
8932 * process the legacy ND_GET, ND_SET ioctl just for {ip|ip6}_forwarding
8933 * as several routing daemons have unfortunately used this 'unpublished'
8934 * but well-known ioctls.
8935 */
8936 /* ARGSUSED */
8937 static void
ip_process_legacy_nddprop(queue_t * q,mblk_t * mp)8938 ip_process_legacy_nddprop(queue_t *q, mblk_t *mp)
8939 {
8940 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8941 mblk_t *mp1 = mp->b_cont;
8942 char *pname, *pval, *buf;
8943 uint_t bufsize, proto;
8944 mod_prop_info_t *pinfo = NULL;
8945 ip_stack_t *ipst;
8946 int err = 0;
8947
8948 ASSERT(CONN_Q(q));
8949 ipst = CONNQ_TO_IPST(q);
8950
8951 if (iocp->ioc_count == 0 || mp1 == NULL) {
8952 miocnak(q, mp, 0, EINVAL);
8953 return;
8954 }
8955
8956 mp1->b_datap->db_lim[-1] = '\0'; /* Force null termination */
8957 pval = buf = pname = (char *)mp1->b_rptr;
8958 bufsize = MBLKL(mp1);
8959
8960 if (strcmp(pname, "ip_forwarding") == 0) {
8961 pname = "forwarding";
8962 proto = MOD_PROTO_IPV4;
8963 } else if (strcmp(pname, "ip6_forwarding") == 0) {
8964 pname = "forwarding";
8965 proto = MOD_PROTO_IPV6;
8966 } else {
8967 miocnak(q, mp, 0, EINVAL);
8968 return;
8969 }
8970
8971 pinfo = mod_prop_lookup(ipst->ips_propinfo_tbl, pname, proto);
8972
8973 switch (iocp->ioc_cmd) {
8974 case ND_GET:
8975 if ((err = pinfo->mpi_getf(ipst->ips_netstack, pinfo, NULL, buf,
8976 bufsize, 0)) == 0) {
8977 miocack(q, mp, iocp->ioc_count, 0);
8978 return;
8979 }
8980 break;
8981 case ND_SET:
8982 /*
8983 * buffer will have property name and value in the following
8984 * format,
8985 * <property name>'\0'<property value>'\0', extract them;
8986 */
8987 while (*pval++)
8988 noop;
8989
8990 if (!*pval || pval >= (char *)mp1->b_wptr) {
8991 err = EINVAL;
8992 } else if ((err = pinfo->mpi_setf(ipst->ips_netstack, NULL,
8993 pinfo, NULL, pval, 0)) == 0) {
8994 miocack(q, mp, 0, 0);
8995 return;
8996 }
8997 break;
8998 default:
8999 err = EINVAL;
9000 break;
9001 }
9002 miocnak(q, mp, 0, err);
9003 }
9004
9005 /*
9006 * Wrapper function for resuming deferred ioctl processing
9007 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER,
9008 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently.
9009 */
9010 /* ARGSUSED */
9011 void
ip_sioctl_copyin_resume(ipsq_t * dummy_ipsq,queue_t * q,mblk_t * mp,void * dummy_arg)9012 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp,
9013 void *dummy_arg)
9014 {
9015 ip_sioctl_copyin_setup(q, mp);
9016 }
9017
9018 /*
9019 * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message
9020 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle
9021 * in either I_STR or TRANSPARENT form, using the mi_copy facility.
9022 * We establish here the size of the block to be copied in. mi_copyin
9023 * arranges for this to happen, an processing continues in ip_wput_nondata with
9024 * an M_IOCDATA message.
9025 */
9026 void
ip_sioctl_copyin_setup(queue_t * q,mblk_t * mp)9027 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp)
9028 {
9029 int copyin_size;
9030 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9031 ip_ioctl_cmd_t *ipip;
9032 cred_t *cr;
9033 ip_stack_t *ipst;
9034
9035 if (CONN_Q(q))
9036 ipst = CONNQ_TO_IPST(q);
9037 else
9038 ipst = ILLQ_TO_IPST(q);
9039
9040 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
9041 if (ipip == NULL) {
9042 /*
9043 * The ioctl is not one we understand or own.
9044 * Pass it along to be processed down stream,
9045 * if this is a module instance of IP, else nak
9046 * the ioctl.
9047 */
9048 if (q->q_next == NULL) {
9049 goto nak;
9050 } else {
9051 putnext(q, mp);
9052 return;
9053 }
9054 }
9055
9056 /*
9057 * If this is deferred, then we will do all the checks when we
9058 * come back.
9059 */
9060 if ((iocp->ioc_cmd == SIOCGDSTINFO ||
9061 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) {
9062 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume);
9063 return;
9064 }
9065
9066 /*
9067 * Only allow a very small subset of IP ioctls on this stream if
9068 * IP is a module and not a driver. Allowing ioctls to be processed
9069 * in this case may cause assert failures or data corruption.
9070 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few
9071 * ioctls allowed on an IP module stream, after which this stream
9072 * normally becomes a multiplexor (at which time the stream head
9073 * will fail all ioctls).
9074 */
9075 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
9076 goto nak;
9077 }
9078
9079 /* Make sure we have ioctl data to process. */
9080 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT))
9081 goto nak;
9082
9083 /*
9084 * Prefer dblk credential over ioctl credential; some synthesized
9085 * ioctls have kcred set because there's no way to crhold()
9086 * a credential in some contexts. (ioc_cr is not crfree() by
9087 * the framework; the caller of ioctl needs to hold the reference
9088 * for the duration of the call).
9089 */
9090 cr = msg_getcred(mp, NULL);
9091 if (cr == NULL)
9092 cr = iocp->ioc_cr;
9093
9094 /* Make sure normal users don't send down privileged ioctls */
9095 if ((ipip->ipi_flags & IPI_PRIV) &&
9096 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) {
9097 /* We checked the privilege earlier but log it here */
9098 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE));
9099 return;
9100 }
9101
9102 /*
9103 * The ioctl command tables can only encode fixed length
9104 * ioctl data. If the length is variable, the table will
9105 * encode the length as zero. Such special cases are handled
9106 * below in the switch.
9107 */
9108 if (ipip->ipi_copyin_size != 0) {
9109 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size);
9110 return;
9111 }
9112
9113 switch (iocp->ioc_cmd) {
9114 case O_SIOCGIFCONF:
9115 case SIOCGIFCONF:
9116 /*
9117 * This IOCTL is hilarious. See comments in
9118 * ip_sioctl_get_ifconf for the story.
9119 */
9120 if (iocp->ioc_count == TRANSPARENT)
9121 copyin_size = SIZEOF_STRUCT(ifconf,
9122 iocp->ioc_flag);
9123 else
9124 copyin_size = iocp->ioc_count;
9125 mi_copyin(q, mp, NULL, copyin_size);
9126 return;
9127
9128 case O_SIOCGLIFCONF:
9129 case SIOCGLIFCONF:
9130 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag);
9131 mi_copyin(q, mp, NULL, copyin_size);
9132 return;
9133
9134 case SIOCGLIFSRCOF:
9135 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag);
9136 mi_copyin(q, mp, NULL, copyin_size);
9137 return;
9138
9139 case SIOCGIP6ADDRPOLICY:
9140 ip_sioctl_ip6addrpolicy(q, mp);
9141 ip6_asp_table_refrele(ipst);
9142 return;
9143
9144 case SIOCSIP6ADDRPOLICY:
9145 ip_sioctl_ip6addrpolicy(q, mp);
9146 return;
9147
9148 case SIOCGDSTINFO:
9149 ip_sioctl_dstinfo(q, mp);
9150 ip6_asp_table_refrele(ipst);
9151 return;
9152
9153 case ND_SET:
9154 case ND_GET:
9155 ip_process_legacy_nddprop(q, mp);
9156 return;
9157
9158 case SIOCSETPROP:
9159 case SIOCGETPROP:
9160 ip_sioctl_getsetprop(q, mp);
9161 return;
9162
9163 case I_PLINK:
9164 case I_PUNLINK:
9165 case I_LINK:
9166 case I_UNLINK:
9167 /*
9168 * We treat non-persistent link similarly as the persistent
9169 * link case, in terms of plumbing/unplumbing, as well as
9170 * dynamic re-plumbing events indicator. See comments
9171 * in ip_sioctl_plink() for more.
9172 *
9173 * Request can be enqueued in the 'ipsq' while waiting
9174 * to become exclusive. So bump up the conn ref.
9175 */
9176 if (CONN_Q(q)) {
9177 CONN_INC_REF(Q_TO_CONN(q));
9178 CONN_INC_IOCTLREF(Q_TO_CONN(q))
9179 }
9180 ip_sioctl_plink(NULL, q, mp, NULL);
9181 return;
9182
9183 case IP_IOCTL:
9184 ip_wput_ioctl(q, mp);
9185 return;
9186
9187 case SIOCILB:
9188 /* The ioctl length varies depending on the ILB command. */
9189 copyin_size = iocp->ioc_count;
9190 if (copyin_size < sizeof (ilb_cmd_t))
9191 goto nak;
9192 mi_copyin(q, mp, NULL, copyin_size);
9193 return;
9194
9195 default:
9196 cmn_err(CE_WARN, "Unknown ioctl %d/0x%x slipped through.",
9197 iocp->ioc_cmd, iocp->ioc_cmd);
9198 /* FALLTHRU */
9199 }
9200 nak:
9201 if (mp->b_cont != NULL) {
9202 freemsg(mp->b_cont);
9203 mp->b_cont = NULL;
9204 }
9205 iocp->ioc_error = EINVAL;
9206 mp->b_datap->db_type = M_IOCNAK;
9207 iocp->ioc_count = 0;
9208 qreply(q, mp);
9209 }
9210
9211 static void
ip_sioctl_garp_reply(mblk_t * mp,ill_t * ill,void * hwaddr,int flags)9212 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags)
9213 {
9214 struct arpreq *ar;
9215 struct xarpreq *xar;
9216 mblk_t *tmp;
9217 struct iocblk *iocp;
9218 int x_arp_ioctl = B_FALSE;
9219 int *flagsp;
9220 char *storage = NULL;
9221
9222 ASSERT(ill != NULL);
9223
9224 iocp = (struct iocblk *)mp->b_rptr;
9225 ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP);
9226
9227 tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */
9228 if ((iocp->ioc_cmd == SIOCGXARP) ||
9229 (iocp->ioc_cmd == SIOCSXARP)) {
9230 x_arp_ioctl = B_TRUE;
9231 xar = (struct xarpreq *)tmp->b_rptr;
9232 flagsp = &xar->xarp_flags;
9233 storage = xar->xarp_ha.sdl_data;
9234 } else {
9235 ar = (struct arpreq *)tmp->b_rptr;
9236 flagsp = &ar->arp_flags;
9237 storage = ar->arp_ha.sa_data;
9238 }
9239
9240 /*
9241 * We're done if this is not an SIOCG{X}ARP
9242 */
9243 if (x_arp_ioctl) {
9244 storage += ill_xarp_info(&xar->xarp_ha, ill);
9245 if ((ill->ill_phys_addr_length + ill->ill_name_length) >
9246 sizeof (xar->xarp_ha.sdl_data)) {
9247 iocp->ioc_error = EINVAL;
9248 return;
9249 }
9250 }
9251 *flagsp = ATF_INUSE;
9252 /*
9253 * If /sbin/arp told us we are the authority using the "permanent"
9254 * flag, or if this is one of my addresses print "permanent"
9255 * in the /sbin/arp output.
9256 */
9257 if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY))
9258 *flagsp |= ATF_AUTHORITY;
9259 if (flags & NCE_F_NONUD)
9260 *flagsp |= ATF_PERM; /* not subject to aging */
9261 if (flags & NCE_F_PUBLISH)
9262 *flagsp |= ATF_PUBL;
9263 if (hwaddr != NULL) {
9264 *flagsp |= ATF_COM;
9265 bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length);
9266 }
9267 }
9268
9269 /*
9270 * Create a new logical interface. If ipif_id is zero (i.e. not a logical
9271 * interface) create the next available logical interface for this
9272 * physical interface.
9273 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an
9274 * ipif with the specified name.
9275 *
9276 * If the address family is not AF_UNSPEC then set the address as well.
9277 *
9278 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout)
9279 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer.
9280 *
9281 * Executed as a writer on the ill.
9282 * So no lock is needed to traverse the ipif chain, or examine the
9283 * phyint flags.
9284 */
9285 /* ARGSUSED */
9286 int
ip_sioctl_addif(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * dummy_ipip,void * dummy_ifreq)9287 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9288 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9289 {
9290 mblk_t *mp1;
9291 struct lifreq *lifr;
9292 boolean_t isv6;
9293 boolean_t exists;
9294 char *name;
9295 char *endp;
9296 char *cp;
9297 int namelen;
9298 ipif_t *ipif;
9299 long id;
9300 ipsq_t *ipsq;
9301 ill_t *ill;
9302 sin_t *sin;
9303 int err = 0;
9304 boolean_t found_sep = B_FALSE;
9305 conn_t *connp;
9306 zoneid_t zoneid;
9307 ip_stack_t *ipst = CONNQ_TO_IPST(q);
9308
9309 ASSERT(q->q_next == NULL);
9310 ip1dbg(("ip_sioctl_addif\n"));
9311 /* Existence of mp1 has been checked in ip_wput_nondata */
9312 mp1 = mp->b_cont->b_cont;
9313 /*
9314 * Null terminate the string to protect against buffer
9315 * overrun. String was generated by user code and may not
9316 * be trusted.
9317 */
9318 lifr = (struct lifreq *)mp1->b_rptr;
9319 lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
9320 name = lifr->lifr_name;
9321 ASSERT(CONN_Q(q));
9322 connp = Q_TO_CONN(q);
9323 isv6 = (connp->conn_family == AF_INET6);
9324 zoneid = connp->conn_zoneid;
9325 namelen = mi_strlen(name);
9326 if (namelen == 0)
9327 return (EINVAL);
9328
9329 exists = B_FALSE;
9330 if ((namelen + 1 == sizeof (ipif_loopback_name)) &&
9331 (mi_strcmp(name, ipif_loopback_name) == 0)) {
9332 /*
9333 * Allow creating lo0 using SIOCLIFADDIF.
9334 * can't be any other writer thread. So can pass null below
9335 * for the last 4 args to ipif_lookup_name.
9336 */
9337 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE,
9338 &exists, isv6, zoneid, ipst);
9339 /* Prevent any further action */
9340 if (ipif == NULL) {
9341 return (ENOBUFS);
9342 } else if (!exists) {
9343 /* We created the ipif now and as writer */
9344 ipif_refrele(ipif);
9345 return (0);
9346 } else {
9347 ill = ipif->ipif_ill;
9348 ill_refhold(ill);
9349 ipif_refrele(ipif);
9350 }
9351 } else {
9352 /* Look for a colon in the name. */
9353 endp = &name[namelen];
9354 for (cp = endp; --cp > name; ) {
9355 if (*cp == IPIF_SEPARATOR_CHAR) {
9356 found_sep = B_TRUE;
9357 /*
9358 * Reject any non-decimal aliases for plumbing
9359 * of logical interfaces. Aliases with leading
9360 * zeroes are also rejected as they introduce
9361 * ambiguity in the naming of the interfaces.
9362 * Comparing with "0" takes care of all such
9363 * cases.
9364 */
9365 if ((strncmp("0", cp+1, 1)) == 0)
9366 return (EINVAL);
9367
9368 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 ||
9369 id <= 0 || *endp != '\0') {
9370 return (EINVAL);
9371 }
9372 *cp = '\0';
9373 break;
9374 }
9375 }
9376 ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst);
9377 if (found_sep)
9378 *cp = IPIF_SEPARATOR_CHAR;
9379 if (ill == NULL)
9380 return (ENXIO);
9381 }
9382
9383 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP,
9384 B_TRUE);
9385
9386 /*
9387 * Release the refhold due to the lookup, now that we are excl
9388 * or we are just returning
9389 */
9390 ill_refrele(ill);
9391
9392 if (ipsq == NULL)
9393 return (EINPROGRESS);
9394
9395 /* We are now exclusive on the IPSQ */
9396 ASSERT(IAM_WRITER_ILL(ill));
9397
9398 if (found_sep) {
9399 /* Now see if there is an IPIF with this unit number. */
9400 for (ipif = ill->ill_ipif; ipif != NULL;
9401 ipif = ipif->ipif_next) {
9402 if (ipif->ipif_id == id) {
9403 err = EEXIST;
9404 goto done;
9405 }
9406 }
9407 }
9408
9409 /*
9410 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use
9411 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name()
9412 * instead.
9413 */
9414 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL,
9415 B_TRUE, B_TRUE, &err)) == NULL) {
9416 goto done;
9417 }
9418
9419 /* Return created name with ioctl */
9420 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name,
9421 IPIF_SEPARATOR_CHAR, ipif->ipif_id);
9422 ip1dbg(("created %s\n", lifr->lifr_name));
9423
9424 /* Set address */
9425 sin = (sin_t *)&lifr->lifr_addr;
9426 if (sin->sin_family != AF_UNSPEC) {
9427 err = ip_sioctl_addr(ipif, sin, q, mp,
9428 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr);
9429 }
9430
9431 done:
9432 ipsq_exit(ipsq);
9433 return (err);
9434 }
9435
9436 /*
9437 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical
9438 * interface) delete it based on the IP address (on this physical interface).
9439 * Otherwise delete it based on the ipif_id.
9440 * Also, special handling to allow a removeif of lo0.
9441 */
9442 /* ARGSUSED */
9443 int
ip_sioctl_removeif(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_if_req)9444 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9445 ip_ioctl_cmd_t *ipip, void *dummy_if_req)
9446 {
9447 conn_t *connp;
9448 ill_t *ill = ipif->ipif_ill;
9449 boolean_t success;
9450 ip_stack_t *ipst;
9451
9452 ipst = CONNQ_TO_IPST(q);
9453
9454 ASSERT(q->q_next == NULL);
9455 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n",
9456 ill->ill_name, ipif->ipif_id, (void *)ipif));
9457 ASSERT(IAM_WRITER_IPIF(ipif));
9458
9459 connp = Q_TO_CONN(q);
9460 /*
9461 * Special case for unplumbing lo0 (the loopback physical interface).
9462 * If unplumbing lo0, the incoming address structure has been
9463 * initialized to all zeros. When unplumbing lo0, all its logical
9464 * interfaces must be removed too.
9465 *
9466 * Note that this interface may be called to remove a specific
9467 * loopback logical interface (eg, lo0:1). But in that case
9468 * ipif->ipif_id != 0 so that the code path for that case is the
9469 * same as any other interface (meaning it skips the code directly
9470 * below).
9471 */
9472 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) {
9473 if (sin->sin_family == AF_UNSPEC &&
9474 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) {
9475 /*
9476 * Mark it condemned. No new ref. will be made to ill.
9477 */
9478 mutex_enter(&ill->ill_lock);
9479 ill->ill_state_flags |= ILL_CONDEMNED;
9480 for (ipif = ill->ill_ipif; ipif != NULL;
9481 ipif = ipif->ipif_next) {
9482 ipif->ipif_state_flags |= IPIF_CONDEMNED;
9483 }
9484 mutex_exit(&ill->ill_lock);
9485
9486 ipif = ill->ill_ipif;
9487 /* unplumb the loopback interface */
9488 ill_delete(ill);
9489 mutex_enter(&connp->conn_lock);
9490 mutex_enter(&ill->ill_lock);
9491
9492 /* Are any references to this ill active */
9493 if (ill_is_freeable(ill)) {
9494 mutex_exit(&ill->ill_lock);
9495 mutex_exit(&connp->conn_lock);
9496 ill_delete_tail(ill);
9497 mi_free(ill);
9498 return (0);
9499 }
9500 success = ipsq_pending_mp_add(connp, ipif,
9501 CONNP_TO_WQ(connp), mp, ILL_FREE);
9502 mutex_exit(&connp->conn_lock);
9503 mutex_exit(&ill->ill_lock);
9504 if (success)
9505 return (EINPROGRESS);
9506 else
9507 return (EINTR);
9508 }
9509 }
9510
9511 if (ipif->ipif_id == 0) {
9512 ipsq_t *ipsq;
9513
9514 /* Find based on address */
9515 if (ipif->ipif_isv6) {
9516 sin6_t *sin6;
9517
9518 if (sin->sin_family != AF_INET6)
9519 return (EAFNOSUPPORT);
9520
9521 sin6 = (sin6_t *)sin;
9522 /* We are a writer, so we should be able to lookup */
9523 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill,
9524 ipst);
9525 } else {
9526 if (sin->sin_family != AF_INET)
9527 return (EAFNOSUPPORT);
9528
9529 /* We are a writer, so we should be able to lookup */
9530 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill,
9531 ipst);
9532 }
9533 if (ipif == NULL) {
9534 return (EADDRNOTAVAIL);
9535 }
9536
9537 /*
9538 * It is possible for a user to send an SIOCLIFREMOVEIF with
9539 * lifr_name of the physical interface but with an ip address
9540 * lifr_addr of a logical interface plumbed over it.
9541 * So update ipx_current_ipif now that ipif points to the
9542 * correct one.
9543 */
9544 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
9545 ipsq->ipsq_xop->ipx_current_ipif = ipif;
9546
9547 /* This is a writer */
9548 ipif_refrele(ipif);
9549 }
9550
9551 /*
9552 * Can not delete instance zero since it is tied to the ill.
9553 */
9554 if (ipif->ipif_id == 0)
9555 return (EBUSY);
9556
9557 mutex_enter(&ill->ill_lock);
9558 ipif->ipif_state_flags |= IPIF_CONDEMNED;
9559 mutex_exit(&ill->ill_lock);
9560
9561 ipif_free(ipif);
9562
9563 mutex_enter(&connp->conn_lock);
9564 mutex_enter(&ill->ill_lock);
9565
9566 /* Are any references to this ipif active */
9567 if (ipif_is_freeable(ipif)) {
9568 mutex_exit(&ill->ill_lock);
9569 mutex_exit(&connp->conn_lock);
9570 ipif_non_duplicate(ipif);
9571 (void) ipif_down_tail(ipif);
9572 ipif_free_tail(ipif); /* frees ipif */
9573 return (0);
9574 }
9575 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp,
9576 IPIF_FREE);
9577 mutex_exit(&ill->ill_lock);
9578 mutex_exit(&connp->conn_lock);
9579 if (success)
9580 return (EINPROGRESS);
9581 else
9582 return (EINTR);
9583 }
9584
9585 /*
9586 * Restart the removeif ioctl. The refcnt has gone down to 0.
9587 * The ipif is already condemned. So can't find it thru lookups.
9588 */
9589 /* ARGSUSED */
9590 int
ip_sioctl_removeif_restart(ipif_t * ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_if_req)9591 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
9592 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req)
9593 {
9594 ill_t *ill = ipif->ipif_ill;
9595
9596 ASSERT(IAM_WRITER_IPIF(ipif));
9597 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED);
9598
9599 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n",
9600 ill->ill_name, ipif->ipif_id, (void *)ipif));
9601
9602 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) {
9603 ASSERT(ill->ill_state_flags & ILL_CONDEMNED);
9604 ill_delete_tail(ill);
9605 mi_free(ill);
9606 return (0);
9607 }
9608
9609 ipif_non_duplicate(ipif);
9610 (void) ipif_down_tail(ipif);
9611 ipif_free_tail(ipif);
9612
9613 return (0);
9614 }
9615
9616 /*
9617 * Set the local interface address using the given prefix and ill_token.
9618 */
9619 /* ARGSUSED */
9620 int
ip_sioctl_prefix(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * dummy_ipip,void * dummy_ifreq)9621 ip_sioctl_prefix(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9622 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9623 {
9624 int err;
9625 in6_addr_t v6addr;
9626 sin6_t *sin6;
9627 ill_t *ill;
9628 int i;
9629
9630 ip1dbg(("ip_sioctl_prefix(%s:%u %p)\n",
9631 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9632
9633 ASSERT(IAM_WRITER_IPIF(ipif));
9634
9635 if (!ipif->ipif_isv6)
9636 return (EINVAL);
9637
9638 if (sin->sin_family != AF_INET6)
9639 return (EAFNOSUPPORT);
9640
9641 sin6 = (sin6_t *)sin;
9642 v6addr = sin6->sin6_addr;
9643 ill = ipif->ipif_ill;
9644
9645 if (IN6_IS_ADDR_UNSPECIFIED(&v6addr) ||
9646 IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token))
9647 return (EADDRNOTAVAIL);
9648
9649 for (i = 0; i < 4; i++)
9650 sin6->sin6_addr.s6_addr32[i] |= ill->ill_token.s6_addr32[i];
9651
9652 err = ip_sioctl_addr(ipif, sin, q, mp,
9653 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], dummy_ifreq);
9654 return (err);
9655 }
9656
9657 /*
9658 * Restart entry point to restart the address set operation after the
9659 * refcounts have dropped to zero.
9660 */
9661 /* ARGSUSED */
9662 int
ip_sioctl_prefix_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)9663 ip_sioctl_prefix_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9664 ip_ioctl_cmd_t *ipip, void *ifreq)
9665 {
9666 ip1dbg(("ip_sioctl_prefix_restart(%s:%u %p)\n",
9667 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9668 return (ip_sioctl_addr_restart(ipif, sin, q, mp, ipip, ifreq));
9669 }
9670
9671 /*
9672 * Set the local interface address.
9673 * Allow an address of all zero when the interface is down.
9674 */
9675 /* ARGSUSED */
9676 int
ip_sioctl_addr(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * dummy_ipip,void * dummy_ifreq)9677 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9678 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9679 {
9680 int err = 0;
9681 in6_addr_t v6addr;
9682 boolean_t need_up = B_FALSE;
9683 ill_t *ill;
9684 int i;
9685
9686 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n",
9687 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9688
9689 ASSERT(IAM_WRITER_IPIF(ipif));
9690
9691 ill = ipif->ipif_ill;
9692 if (ipif->ipif_isv6) {
9693 sin6_t *sin6;
9694 phyint_t *phyi;
9695
9696 if (sin->sin_family != AF_INET6)
9697 return (EAFNOSUPPORT);
9698
9699 sin6 = (sin6_t *)sin;
9700 v6addr = sin6->sin6_addr;
9701 phyi = ill->ill_phyint;
9702
9703 /*
9704 * Enforce that true multicast interfaces have a link-local
9705 * address for logical unit 0.
9706 *
9707 * However for those ipif's for which link-local address was
9708 * not created by default, also allow setting :: as the address.
9709 * This scenario would arise, when we delete an address on ipif
9710 * with logical unit 0, we would want to set :: as the address.
9711 */
9712 if (ipif->ipif_id == 0 &&
9713 (ill->ill_flags & ILLF_MULTICAST) &&
9714 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) &&
9715 !(phyi->phyint_flags & (PHYI_LOOPBACK)) &&
9716 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) {
9717
9718 /*
9719 * if default link-local was not created by kernel for
9720 * this ill, allow setting :: as the address on ipif:0.
9721 */
9722 if (ill->ill_flags & ILLF_NOLINKLOCAL) {
9723 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr))
9724 return (EADDRNOTAVAIL);
9725 } else {
9726 return (EADDRNOTAVAIL);
9727 }
9728 }
9729
9730 /*
9731 * up interfaces shouldn't have the unspecified address
9732 * unless they also have the IPIF_NOLOCAL flags set and
9733 * have a subnet assigned.
9734 */
9735 if ((ipif->ipif_flags & IPIF_UP) &&
9736 IN6_IS_ADDR_UNSPECIFIED(&v6addr) &&
9737 (!(ipif->ipif_flags & IPIF_NOLOCAL) ||
9738 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) {
9739 return (EADDRNOTAVAIL);
9740 }
9741
9742 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
9743 return (EADDRNOTAVAIL);
9744 } else {
9745 ipaddr_t addr;
9746
9747 if (sin->sin_family != AF_INET)
9748 return (EAFNOSUPPORT);
9749
9750 addr = sin->sin_addr.s_addr;
9751
9752 /* Allow INADDR_ANY as the local address. */
9753 if (addr != INADDR_ANY &&
9754 !ip_addr_ok_v4(addr, ipif->ipif_net_mask))
9755 return (EADDRNOTAVAIL);
9756
9757 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9758 }
9759 /*
9760 * verify that the address being configured is permitted by the
9761 * ill_allowed_ips[] for the interface.
9762 */
9763 if (ill->ill_allowed_ips_cnt > 0) {
9764 for (i = 0; i < ill->ill_allowed_ips_cnt; i++) {
9765 if (IN6_ARE_ADDR_EQUAL(&ill->ill_allowed_ips[i],
9766 &v6addr))
9767 break;
9768 }
9769 if (i == ill->ill_allowed_ips_cnt) {
9770 pr_addr_dbg("!allowed addr %s\n", AF_INET6, &v6addr);
9771 return (EPERM);
9772 }
9773 }
9774 /*
9775 * Even if there is no change we redo things just to rerun
9776 * ipif_set_default.
9777 */
9778 if (ipif->ipif_flags & IPIF_UP) {
9779 /*
9780 * Setting a new local address, make sure
9781 * we have net and subnet bcast ire's for
9782 * the old address if we need them.
9783 */
9784 /*
9785 * If the interface is already marked up,
9786 * we call ipif_down which will take care
9787 * of ditching any IREs that have been set
9788 * up based on the old interface address.
9789 */
9790 err = ipif_logical_down(ipif, q, mp);
9791 if (err == EINPROGRESS)
9792 return (err);
9793 (void) ipif_down_tail(ipif);
9794 need_up = 1;
9795 }
9796
9797 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up);
9798 return (err);
9799 }
9800
9801 int
ip_sioctl_addr_tail(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,boolean_t need_up)9802 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9803 boolean_t need_up)
9804 {
9805 in6_addr_t v6addr;
9806 in6_addr_t ov6addr;
9807 ipaddr_t addr;
9808 sin6_t *sin6;
9809 int sinlen;
9810 int err = 0;
9811 ill_t *ill = ipif->ipif_ill;
9812 boolean_t need_dl_down;
9813 boolean_t need_arp_down;
9814 struct iocblk *iocp;
9815
9816 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL;
9817
9818 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n",
9819 ill->ill_name, ipif->ipif_id, (void *)ipif));
9820 ASSERT(IAM_WRITER_IPIF(ipif));
9821
9822 /* Must cancel any pending timer before taking the ill_lock */
9823 if (ipif->ipif_recovery_id != 0)
9824 (void) untimeout(ipif->ipif_recovery_id);
9825 ipif->ipif_recovery_id = 0;
9826
9827 if (ipif->ipif_isv6) {
9828 sin6 = (sin6_t *)sin;
9829 v6addr = sin6->sin6_addr;
9830 sinlen = sizeof (struct sockaddr_in6);
9831 } else {
9832 addr = sin->sin_addr.s_addr;
9833 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9834 sinlen = sizeof (struct sockaddr_in);
9835 }
9836 mutex_enter(&ill->ill_lock);
9837 ov6addr = ipif->ipif_v6lcl_addr;
9838 ipif->ipif_v6lcl_addr = v6addr;
9839 sctp_update_ipif_addr(ipif, ov6addr);
9840 ipif->ipif_addr_ready = 0;
9841
9842 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);
9843
9844 /*
9845 * If the interface was previously marked as a duplicate, then since
9846 * we've now got a "new" address, it should no longer be considered a
9847 * duplicate -- even if the "new" address is the same as the old one.
9848 * Note that if all ipifs are down, we may have a pending ARP down
9849 * event to handle. This is because we want to recover from duplicates
9850 * and thus delay tearing down ARP until the duplicates have been
9851 * removed or disabled.
9852 */
9853 need_dl_down = need_arp_down = B_FALSE;
9854 if (ipif->ipif_flags & IPIF_DUPLICATE) {
9855 need_arp_down = !need_up;
9856 ipif->ipif_flags &= ~IPIF_DUPLICATE;
9857 if (--ill->ill_ipif_dup_count == 0 && !need_up &&
9858 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
9859 need_dl_down = B_TRUE;
9860 }
9861 }
9862
9863 ipif_set_default(ipif);
9864
9865 /*
9866 * If we've just manually set the IPv6 link-local address (0th ipif),
9867 * tag the ill so that future updates to the interface ID don't result
9868 * in this address getting automatically reconfigured from under the
9869 * administrator.
9870 */
9871 if (ipif->ipif_isv6 && ipif->ipif_id == 0) {
9872 if (iocp == NULL || (iocp->ioc_cmd == SIOCSLIFADDR &&
9873 !IN6_IS_ADDR_UNSPECIFIED(&v6addr)))
9874 ill->ill_manual_linklocal = 1;
9875 }
9876
9877 /*
9878 * When publishing an interface address change event, we only notify
9879 * the event listeners of the new address. It is assumed that if they
9880 * actively care about the addresses assigned that they will have
9881 * already discovered the previous address assigned (if there was one.)
9882 *
9883 * Don't attach nic event message for SIOCLIFADDIF ioctl.
9884 */
9885 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) {
9886 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id),
9887 NE_ADDRESS_CHANGE, sin, sinlen);
9888 }
9889
9890 mutex_exit(&ill->ill_lock);
9891
9892 if (need_up) {
9893 /*
9894 * Now bring the interface back up. If this
9895 * is the only IPIF for the ILL, ipif_up
9896 * will have to re-bind to the device, so
9897 * we may get back EINPROGRESS, in which
9898 * case, this IOCTL will get completed in
9899 * ip_rput_dlpi when we see the DL_BIND_ACK.
9900 */
9901 err = ipif_up(ipif, q, mp);
9902 } else {
9903 /* Perhaps ilgs should use this ill */
9904 update_conn_ill(NULL, ill->ill_ipst);
9905 }
9906
9907 if (need_dl_down)
9908 ill_dl_down(ill);
9909
9910 if (need_arp_down && !ill->ill_isv6)
9911 (void) ipif_arp_down(ipif);
9912
9913 /*
9914 * The default multicast interface might have changed (for
9915 * instance if the IPv6 scope of the address changed)
9916 */
9917 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6);
9918
9919 return (err);
9920 }
9921
9922 /*
9923 * Restart entry point to restart the address set operation after the
9924 * refcounts have dropped to zero.
9925 */
9926 /* ARGSUSED */
9927 int
ip_sioctl_addr_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)9928 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9929 ip_ioctl_cmd_t *ipip, void *ifreq)
9930 {
9931 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n",
9932 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9933 ASSERT(IAM_WRITER_IPIF(ipif));
9934 (void) ipif_down_tail(ipif);
9935 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE));
9936 }
9937
9938 /* ARGSUSED */
9939 int
ip_sioctl_get_addr(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)9940 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9941 ip_ioctl_cmd_t *ipip, void *if_req)
9942 {
9943 sin6_t *sin6 = (struct sockaddr_in6 *)sin;
9944 struct lifreq *lifr = (struct lifreq *)if_req;
9945
9946 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n",
9947 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9948 /*
9949 * The net mask and address can't change since we have a
9950 * reference to the ipif. So no lock is necessary.
9951 */
9952 if (ipif->ipif_isv6) {
9953 *sin6 = sin6_null;
9954 sin6->sin6_family = AF_INET6;
9955 sin6->sin6_addr = ipif->ipif_v6lcl_addr;
9956 if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) {
9957 sin6->sin6_scope_id =
9958 ipif->ipif_ill->ill_phyint->phyint_ifindex;
9959 }
9960 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
9961 lifr->lifr_addrlen =
9962 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
9963 } else {
9964 *sin = sin_null;
9965 sin->sin_family = AF_INET;
9966 sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
9967 if (ipip->ipi_cmd_type == LIF_CMD) {
9968 lifr->lifr_addrlen =
9969 ip_mask_to_plen(ipif->ipif_net_mask);
9970 }
9971 }
9972 return (0);
9973 }
9974
9975 /*
9976 * Set the destination address for a pt-pt interface.
9977 */
9978 /* ARGSUSED */
9979 int
ip_sioctl_dstaddr(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)9980 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9981 ip_ioctl_cmd_t *ipip, void *if_req)
9982 {
9983 int err = 0;
9984 in6_addr_t v6addr;
9985 boolean_t need_up = B_FALSE;
9986
9987 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n",
9988 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9989 ASSERT(IAM_WRITER_IPIF(ipif));
9990
9991 if (ipif->ipif_isv6) {
9992 sin6_t *sin6;
9993
9994 if (sin->sin_family != AF_INET6)
9995 return (EAFNOSUPPORT);
9996
9997 sin6 = (sin6_t *)sin;
9998 v6addr = sin6->sin6_addr;
9999
10000 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
10001 return (EADDRNOTAVAIL);
10002 } else {
10003 ipaddr_t addr;
10004
10005 if (sin->sin_family != AF_INET)
10006 return (EAFNOSUPPORT);
10007
10008 addr = sin->sin_addr.s_addr;
10009 if (addr != INADDR_ANY &&
10010 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) {
10011 return (EADDRNOTAVAIL);
10012 }
10013
10014 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10015 }
10016
10017 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr))
10018 return (0); /* No change */
10019
10020 if (ipif->ipif_flags & IPIF_UP) {
10021 /*
10022 * If the interface is already marked up,
10023 * we call ipif_down which will take care
10024 * of ditching any IREs that have been set
10025 * up based on the old pp dst address.
10026 */
10027 err = ipif_logical_down(ipif, q, mp);
10028 if (err == EINPROGRESS)
10029 return (err);
10030 (void) ipif_down_tail(ipif);
10031 need_up = B_TRUE;
10032 }
10033 /*
10034 * could return EINPROGRESS. If so ioctl will complete in
10035 * ip_rput_dlpi_writer
10036 */
10037 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up);
10038 return (err);
10039 }
10040
10041 static int
ip_sioctl_dstaddr_tail(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,boolean_t need_up)10042 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10043 boolean_t need_up)
10044 {
10045 in6_addr_t v6addr;
10046 ill_t *ill = ipif->ipif_ill;
10047 int err = 0;
10048 boolean_t need_dl_down;
10049 boolean_t need_arp_down;
10050
10051 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name,
10052 ipif->ipif_id, (void *)ipif));
10053
10054 /* Must cancel any pending timer before taking the ill_lock */
10055 if (ipif->ipif_recovery_id != 0)
10056 (void) untimeout(ipif->ipif_recovery_id);
10057 ipif->ipif_recovery_id = 0;
10058
10059 if (ipif->ipif_isv6) {
10060 sin6_t *sin6;
10061
10062 sin6 = (sin6_t *)sin;
10063 v6addr = sin6->sin6_addr;
10064 } else {
10065 ipaddr_t addr;
10066
10067 addr = sin->sin_addr.s_addr;
10068 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10069 }
10070 mutex_enter(&ill->ill_lock);
10071 /* Set point to point destination address. */
10072 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10073 /*
10074 * Allow this as a means of creating logical
10075 * pt-pt interfaces on top of e.g. an Ethernet.
10076 * XXX Undocumented HACK for testing.
10077 * pt-pt interfaces are created with NUD disabled.
10078 */
10079 ipif->ipif_flags |= IPIF_POINTOPOINT;
10080 ipif->ipif_flags &= ~IPIF_BROADCAST;
10081 if (ipif->ipif_isv6)
10082 ill->ill_flags |= ILLF_NONUD;
10083 }
10084
10085 /*
10086 * If the interface was previously marked as a duplicate, then since
10087 * we've now got a "new" address, it should no longer be considered a
10088 * duplicate -- even if the "new" address is the same as the old one.
10089 * Note that if all ipifs are down, we may have a pending ARP down
10090 * event to handle.
10091 */
10092 need_dl_down = need_arp_down = B_FALSE;
10093 if (ipif->ipif_flags & IPIF_DUPLICATE) {
10094 need_arp_down = !need_up;
10095 ipif->ipif_flags &= ~IPIF_DUPLICATE;
10096 if (--ill->ill_ipif_dup_count == 0 && !need_up &&
10097 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
10098 need_dl_down = B_TRUE;
10099 }
10100 }
10101
10102 /*
10103 * If we've just manually set the IPv6 destination link-local address
10104 * (0th ipif), tag the ill so that future updates to the destination
10105 * interface ID (as can happen with interfaces over IP tunnels) don't
10106 * result in this address getting automatically reconfigured from
10107 * under the administrator.
10108 */
10109 if (ipif->ipif_isv6 && ipif->ipif_id == 0)
10110 ill->ill_manual_dst_linklocal = 1;
10111
10112 /* Set the new address. */
10113 ipif->ipif_v6pp_dst_addr = v6addr;
10114 /* Make sure subnet tracks pp_dst */
10115 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
10116 mutex_exit(&ill->ill_lock);
10117
10118 if (need_up) {
10119 /*
10120 * Now bring the interface back up. If this
10121 * is the only IPIF for the ILL, ipif_up
10122 * will have to re-bind to the device, so
10123 * we may get back EINPROGRESS, in which
10124 * case, this IOCTL will get completed in
10125 * ip_rput_dlpi when we see the DL_BIND_ACK.
10126 */
10127 err = ipif_up(ipif, q, mp);
10128 }
10129
10130 if (need_dl_down)
10131 ill_dl_down(ill);
10132 if (need_arp_down && !ipif->ipif_isv6)
10133 (void) ipif_arp_down(ipif);
10134
10135 return (err);
10136 }
10137
10138 /*
10139 * Restart entry point to restart the dstaddress set operation after the
10140 * refcounts have dropped to zero.
10141 */
10142 /* ARGSUSED */
10143 int
ip_sioctl_dstaddr_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)10144 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10145 ip_ioctl_cmd_t *ipip, void *ifreq)
10146 {
10147 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n",
10148 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10149 (void) ipif_down_tail(ipif);
10150 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE));
10151 }
10152
10153 /* ARGSUSED */
10154 int
ip_sioctl_get_dstaddr(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10155 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10156 ip_ioctl_cmd_t *ipip, void *if_req)
10157 {
10158 sin6_t *sin6 = (struct sockaddr_in6 *)sin;
10159
10160 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n",
10161 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10162 /*
10163 * Get point to point destination address. The addresses can't
10164 * change since we hold a reference to the ipif.
10165 */
10166 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0)
10167 return (EADDRNOTAVAIL);
10168
10169 if (ipif->ipif_isv6) {
10170 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
10171 *sin6 = sin6_null;
10172 sin6->sin6_family = AF_INET6;
10173 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr;
10174 } else {
10175 *sin = sin_null;
10176 sin->sin_family = AF_INET;
10177 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr;
10178 }
10179 return (0);
10180 }
10181
10182 /*
10183 * Check which flags will change by the given flags being set
10184 * silently ignore flags which userland is not allowed to control.
10185 * (Because these flags may change between SIOCGLIFFLAGS and
10186 * SIOCSLIFFLAGS, and that's outside of userland's control,
10187 * we need to silently ignore them rather than fail.)
10188 */
10189 static void
ip_sioctl_flags_onoff(ipif_t * ipif,uint64_t flags,uint64_t * onp,uint64_t * offp)10190 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp,
10191 uint64_t *offp)
10192 {
10193 ill_t *ill = ipif->ipif_ill;
10194 phyint_t *phyi = ill->ill_phyint;
10195 uint64_t cantchange_flags, intf_flags;
10196 uint64_t turn_on, turn_off;
10197
10198 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
10199 cantchange_flags = IFF_CANTCHANGE;
10200 if (IS_IPMP(ill))
10201 cantchange_flags |= IFF_IPMP_CANTCHANGE;
10202 turn_on = (flags ^ intf_flags) & ~cantchange_flags;
10203 turn_off = intf_flags & turn_on;
10204 turn_on ^= turn_off;
10205 *onp = turn_on;
10206 *offp = turn_off;
10207 }
10208
10209 /*
10210 * Set interface flags. Many flags require special handling (e.g.,
10211 * bringing the interface down); see below for details.
10212 *
10213 * NOTE : We really don't enforce that ipif_id zero should be used
10214 * for setting any flags other than IFF_LOGINT_FLAGS. This
10215 * is because applications generally does SICGLIFFLAGS and
10216 * ORs in the new flags (that affects the logical) and does a
10217 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other
10218 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the
10219 * flags that will be turned on is correct with respect to
10220 * ipif_id 0. For backward compatibility reasons, it is not done.
10221 */
10222 /* ARGSUSED */
10223 int
ip_sioctl_flags(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10224 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10225 ip_ioctl_cmd_t *ipip, void *if_req)
10226 {
10227 uint64_t turn_on;
10228 uint64_t turn_off;
10229 int err = 0;
10230 phyint_t *phyi;
10231 ill_t *ill;
10232 conn_t *connp;
10233 uint64_t intf_flags;
10234 boolean_t phyint_flags_modified = B_FALSE;
10235 uint64_t flags;
10236 struct ifreq *ifr;
10237 struct lifreq *lifr;
10238 boolean_t set_linklocal = B_FALSE;
10239
10240 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n",
10241 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10242
10243 ASSERT(IAM_WRITER_IPIF(ipif));
10244
10245 ill = ipif->ipif_ill;
10246 phyi = ill->ill_phyint;
10247
10248 if (ipip->ipi_cmd_type == IF_CMD) {
10249 ifr = (struct ifreq *)if_req;
10250 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff);
10251 } else {
10252 lifr = (struct lifreq *)if_req;
10253 flags = lifr->lifr_flags;
10254 }
10255
10256 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
10257
10258 /*
10259 * Have the flags been set correctly until now?
10260 */
10261 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
10262 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
10263 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
10264 /*
10265 * Compare the new flags to the old, and partition
10266 * into those coming on and those going off.
10267 * For the 16 bit command keep the bits above bit 16 unchanged.
10268 */
10269 if (ipip->ipi_cmd == SIOCSIFFLAGS)
10270 flags |= intf_flags & ~0xFFFF;
10271
10272 /*
10273 * Explicitly fail attempts to change flags that are always invalid on
10274 * an IPMP meta-interface.
10275 */
10276 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID))
10277 return (EINVAL);
10278
10279 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10280 if ((turn_on|turn_off) == 0)
10281 return (0); /* No change */
10282
10283 /*
10284 * All test addresses must be IFF_DEPRECATED (to ensure source address
10285 * selection avoids them) -- so force IFF_DEPRECATED on, and do not
10286 * allow it to be turned off.
10287 */
10288 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED &&
10289 (turn_on|intf_flags) & IFF_NOFAILOVER)
10290 return (EINVAL);
10291
10292 if ((connp = Q_TO_CONN(q)) == NULL)
10293 return (EINVAL);
10294
10295 /*
10296 * Only vrrp control socket is allowed to change IFF_UP and
10297 * IFF_NOACCEPT flags when IFF_VRRP is set.
10298 */
10299 if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) {
10300 if (!connp->conn_isvrrp)
10301 return (EINVAL);
10302 }
10303
10304 /*
10305 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by
10306 * VRRP control socket.
10307 */
10308 if ((turn_off | turn_on) & IFF_NOACCEPT) {
10309 if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP))
10310 return (EINVAL);
10311 }
10312
10313 if (turn_on & IFF_NOFAILOVER) {
10314 turn_on |= IFF_DEPRECATED;
10315 flags |= IFF_DEPRECATED;
10316 }
10317
10318 /*
10319 * On underlying interfaces, only allow applications to manage test
10320 * addresses -- otherwise, they may get confused when the address
10321 * moves as part of being brought up. Likewise, prevent an
10322 * application-managed test address from being converted to a data
10323 * address. To prevent migration of administratively up addresses in
10324 * the kernel, we don't allow them to be converted either.
10325 */
10326 if (IS_UNDER_IPMP(ill)) {
10327 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF;
10328
10329 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER))
10330 return (EINVAL);
10331
10332 if ((turn_off & IFF_NOFAILOVER) &&
10333 (flags & (appflags | IFF_UP | IFF_DUPLICATE)))
10334 return (EINVAL);
10335 }
10336
10337 /*
10338 * Only allow IFF_TEMPORARY flag to be set on
10339 * IPv6 interfaces.
10340 */
10341 if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6))
10342 return (EINVAL);
10343
10344 /*
10345 * cannot turn off IFF_NOXMIT on VNI interfaces.
10346 */
10347 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill))
10348 return (EINVAL);
10349
10350 /*
10351 * Don't allow the IFF_ROUTER flag to be turned on on loopback
10352 * interfaces. It makes no sense in that context.
10353 */
10354 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK))
10355 return (EINVAL);
10356
10357 /*
10358 * For IPv6 ipif_id 0, don't allow the interface to be up without
10359 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set.
10360 * If the link local address isn't set, and can be set, it will get
10361 * set later on in this function.
10362 */
10363 if (ipif->ipif_id == 0 && ipif->ipif_isv6 &&
10364 (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) &&
10365 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
10366 if (ipif_cant_setlinklocal(ipif))
10367 return (EINVAL);
10368 set_linklocal = B_TRUE;
10369 }
10370
10371 /*
10372 * If we modify physical interface flags, we'll potentially need to
10373 * send up two routing socket messages for the changes (one for the
10374 * IPv4 ill, and another for the IPv6 ill). Note that here.
10375 */
10376 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
10377 phyint_flags_modified = B_TRUE;
10378
10379 /*
10380 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE
10381 * (otherwise, we'd immediately use them, defeating standby). Also,
10382 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not
10383 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already
10384 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We
10385 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics
10386 * will not be honored.
10387 */
10388 if (turn_on & PHYI_STANDBY) {
10389 /*
10390 * No need to grab ill_g_usesrc_lock here; see the
10391 * synchronization notes in ip.c.
10392 */
10393 if (ill->ill_usesrc_grp_next != NULL ||
10394 intf_flags & PHYI_INACTIVE)
10395 return (EINVAL);
10396 if (!(flags & PHYI_FAILED)) {
10397 flags |= PHYI_INACTIVE;
10398 turn_on |= PHYI_INACTIVE;
10399 }
10400 }
10401
10402 if (turn_off & PHYI_STANDBY) {
10403 flags &= ~PHYI_INACTIVE;
10404 turn_off |= PHYI_INACTIVE;
10405 }
10406
10407 /*
10408 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both
10409 * would end up on.
10410 */
10411 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) ==
10412 (PHYI_FAILED | PHYI_INACTIVE))
10413 return (EINVAL);
10414
10415 /*
10416 * If ILLF_ROUTER changes, we need to change the ip forwarding
10417 * status of the interface.
10418 */
10419 if ((turn_on | turn_off) & ILLF_ROUTER) {
10420 err = ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0));
10421 if (err != 0)
10422 return (err);
10423 }
10424
10425 /*
10426 * If the interface is not UP and we are not going to
10427 * bring it UP, record the flags and return. When the
10428 * interface comes UP later, the right actions will be
10429 * taken.
10430 */
10431 if (!(ipif->ipif_flags & IPIF_UP) &&
10432 !(turn_on & IPIF_UP)) {
10433 /* Record new flags in their respective places. */
10434 mutex_enter(&ill->ill_lock);
10435 mutex_enter(&ill->ill_phyint->phyint_lock);
10436 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
10437 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
10438 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
10439 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
10440 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
10441 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
10442 mutex_exit(&ill->ill_lock);
10443 mutex_exit(&ill->ill_phyint->phyint_lock);
10444
10445 /*
10446 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the
10447 * same to the kernel: if any of them has been set by
10448 * userland, the interface cannot be used for data traffic.
10449 */
10450 if ((turn_on|turn_off) &
10451 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
10452 ASSERT(!IS_IPMP(ill));
10453 /*
10454 * It's possible the ill is part of an "anonymous"
10455 * IPMP group rather than a real group. In that case,
10456 * there are no other interfaces in the group and thus
10457 * no need to call ipmp_phyint_refresh_active().
10458 */
10459 if (IS_UNDER_IPMP(ill))
10460 ipmp_phyint_refresh_active(phyi);
10461 }
10462
10463 if (phyint_flags_modified) {
10464 if (phyi->phyint_illv4 != NULL) {
10465 ip_rts_ifmsg(phyi->phyint_illv4->
10466 ill_ipif, RTSQ_DEFAULT);
10467 }
10468 if (phyi->phyint_illv6 != NULL) {
10469 ip_rts_ifmsg(phyi->phyint_illv6->
10470 ill_ipif, RTSQ_DEFAULT);
10471 }
10472 }
10473 /* The default multicast interface might have changed */
10474 ire_increment_multicast_generation(ill->ill_ipst,
10475 ill->ill_isv6);
10476
10477 return (0);
10478 } else if (set_linklocal) {
10479 mutex_enter(&ill->ill_lock);
10480 if (set_linklocal)
10481 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL;
10482 mutex_exit(&ill->ill_lock);
10483 }
10484
10485 /*
10486 * Disallow IPv6 interfaces coming up that have the unspecified address,
10487 * or point-to-point interfaces with an unspecified destination. We do
10488 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that
10489 * have a subnet assigned, which is how in.ndpd currently manages its
10490 * onlink prefix list when no addresses are configured with those
10491 * prefixes.
10492 */
10493 if (ipif->ipif_isv6 &&
10494 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
10495 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) ||
10496 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) ||
10497 ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
10498 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) {
10499 return (EINVAL);
10500 }
10501
10502 /*
10503 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination
10504 * from being brought up.
10505 */
10506 if (!ipif->ipif_isv6 &&
10507 ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
10508 ipif->ipif_pp_dst_addr == INADDR_ANY)) {
10509 return (EINVAL);
10510 }
10511
10512 /*
10513 * If we are going to change one or more of the flags that are
10514 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP,
10515 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and
10516 * IPIF_NOFAILOVER, we will take special action. This is
10517 * done by bring the ipif down, changing the flags and bringing
10518 * it back up again. For IPIF_NOFAILOVER, the act of bringing it
10519 * back up will trigger the address to be moved.
10520 *
10521 * If we are going to change IFF_NOACCEPT, we need to bring
10522 * all the ipifs down then bring them up again. The act of
10523 * bringing all the ipifs back up will trigger the local
10524 * ires being recreated with "no_accept" set/cleared.
10525 *
10526 * Note that ILLF_NOACCEPT is always set separately from the
10527 * other flags.
10528 */
10529 if ((turn_on|turn_off) &
10530 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP|
10531 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED|
10532 IPIF_NOFAILOVER)) {
10533 /*
10534 * ipif_down() will ire_delete bcast ire's for the subnet,
10535 * while the ire_identical_ref tracks the case of IRE_BROADCAST
10536 * entries shared between multiple ipifs on the same subnet.
10537 */
10538 if (((ipif->ipif_flags | turn_on) & IPIF_UP) &&
10539 !(turn_off & IPIF_UP)) {
10540 if (ipif->ipif_flags & IPIF_UP)
10541 ill->ill_logical_down = 1;
10542 turn_on &= ~IPIF_UP;
10543 }
10544 err = ipif_down(ipif, q, mp);
10545 ip1dbg(("ipif_down returns %d err ", err));
10546 if (err == EINPROGRESS)
10547 return (err);
10548 (void) ipif_down_tail(ipif);
10549 } else if ((turn_on|turn_off) & ILLF_NOACCEPT) {
10550 /*
10551 * If we can quiesce the ill, then continue. If not, then
10552 * ip_sioctl_flags_tail() will be called from
10553 * ipif_ill_refrele_tail().
10554 */
10555 ill_down_ipifs(ill, B_TRUE);
10556
10557 mutex_enter(&connp->conn_lock);
10558 mutex_enter(&ill->ill_lock);
10559 if (!ill_is_quiescent(ill)) {
10560 boolean_t success;
10561
10562 success = ipsq_pending_mp_add(connp, ill->ill_ipif,
10563 q, mp, ILL_DOWN);
10564 mutex_exit(&ill->ill_lock);
10565 mutex_exit(&connp->conn_lock);
10566 return (success ? EINPROGRESS : EINTR);
10567 }
10568 mutex_exit(&ill->ill_lock);
10569 mutex_exit(&connp->conn_lock);
10570 }
10571 return (ip_sioctl_flags_tail(ipif, flags, q, mp));
10572 }
10573
10574 static int
ip_sioctl_flags_tail(ipif_t * ipif,uint64_t flags,queue_t * q,mblk_t * mp)10575 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp)
10576 {
10577 ill_t *ill;
10578 phyint_t *phyi;
10579 uint64_t turn_on, turn_off;
10580 boolean_t phyint_flags_modified = B_FALSE;
10581 int err = 0;
10582 boolean_t set_linklocal = B_FALSE;
10583
10584 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n",
10585 ipif->ipif_ill->ill_name, ipif->ipif_id));
10586
10587 ASSERT(IAM_WRITER_IPIF(ipif));
10588
10589 ill = ipif->ipif_ill;
10590 phyi = ill->ill_phyint;
10591
10592 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10593
10594 /*
10595 * IFF_UP is handled separately.
10596 */
10597 turn_on &= ~IFF_UP;
10598 turn_off &= ~IFF_UP;
10599
10600 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
10601 phyint_flags_modified = B_TRUE;
10602
10603 /*
10604 * Now we change the flags. Track current value of
10605 * other flags in their respective places.
10606 */
10607 mutex_enter(&ill->ill_lock);
10608 mutex_enter(&phyi->phyint_lock);
10609 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
10610 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
10611 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
10612 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
10613 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
10614 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
10615 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) {
10616 set_linklocal = B_TRUE;
10617 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL;
10618 }
10619
10620 mutex_exit(&ill->ill_lock);
10621 mutex_exit(&phyi->phyint_lock);
10622
10623 if (set_linklocal)
10624 (void) ipif_setlinklocal(ipif);
10625
10626 /*
10627 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to
10628 * the kernel: if any of them has been set by userland, the interface
10629 * cannot be used for data traffic.
10630 */
10631 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
10632 ASSERT(!IS_IPMP(ill));
10633 /*
10634 * It's possible the ill is part of an "anonymous" IPMP group
10635 * rather than a real group. In that case, there are no other
10636 * interfaces in the group and thus no need for us to call
10637 * ipmp_phyint_refresh_active().
10638 */
10639 if (IS_UNDER_IPMP(ill))
10640 ipmp_phyint_refresh_active(phyi);
10641 }
10642
10643 if ((turn_on|turn_off) & ILLF_NOACCEPT) {
10644 /*
10645 * If the ILLF_NOACCEPT flag is changed, bring up all the
10646 * ipifs that were brought down.
10647 *
10648 * The routing sockets messages are sent as the result
10649 * of ill_up_ipifs(), further, SCTP's IPIF list was updated
10650 * as well.
10651 */
10652 err = ill_up_ipifs(ill, q, mp);
10653 } else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) {
10654 /*
10655 * XXX ipif_up really does not know whether a phyint flags
10656 * was modified or not. So, it sends up information on
10657 * only one routing sockets message. As we don't bring up
10658 * the interface and also set PHYI_ flags simultaneously
10659 * it should be okay.
10660 */
10661 err = ipif_up(ipif, q, mp);
10662 } else {
10663 /*
10664 * Make sure routing socket sees all changes to the flags.
10665 * ipif_up_done* handles this when we use ipif_up.
10666 */
10667 if (phyint_flags_modified) {
10668 if (phyi->phyint_illv4 != NULL) {
10669 ip_rts_ifmsg(phyi->phyint_illv4->
10670 ill_ipif, RTSQ_DEFAULT);
10671 }
10672 if (phyi->phyint_illv6 != NULL) {
10673 ip_rts_ifmsg(phyi->phyint_illv6->
10674 ill_ipif, RTSQ_DEFAULT);
10675 }
10676 } else {
10677 ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
10678 }
10679 /*
10680 * Update the flags in SCTP's IPIF list, ipif_up() will do
10681 * this in need_up case.
10682 */
10683 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
10684 }
10685
10686 /* The default multicast interface might have changed */
10687 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6);
10688 return (err);
10689 }
10690
10691 /*
10692 * Restart the flags operation now that the refcounts have dropped to zero.
10693 */
10694 /* ARGSUSED */
10695 int
ip_sioctl_flags_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10696 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10697 ip_ioctl_cmd_t *ipip, void *if_req)
10698 {
10699 uint64_t flags;
10700 struct ifreq *ifr = if_req;
10701 struct lifreq *lifr = if_req;
10702 uint64_t turn_on, turn_off;
10703
10704 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n",
10705 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10706
10707 if (ipip->ipi_cmd_type == IF_CMD) {
10708 /* cast to uint16_t prevents unwanted sign extension */
10709 flags = (uint16_t)ifr->ifr_flags;
10710 } else {
10711 flags = lifr->lifr_flags;
10712 }
10713
10714 /*
10715 * If this function call is a result of the ILLF_NOACCEPT flag
10716 * change, do not call ipif_down_tail(). See ip_sioctl_flags().
10717 */
10718 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10719 if (!((turn_on|turn_off) & ILLF_NOACCEPT))
10720 (void) ipif_down_tail(ipif);
10721
10722 return (ip_sioctl_flags_tail(ipif, flags, q, mp));
10723 }
10724
10725 /*
10726 * Can operate on either a module or a driver queue.
10727 */
10728 /* ARGSUSED */
10729 int
ip_sioctl_get_flags(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10730 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10731 ip_ioctl_cmd_t *ipip, void *if_req)
10732 {
10733 /*
10734 * Has the flags been set correctly till now ?
10735 */
10736 ill_t *ill = ipif->ipif_ill;
10737 phyint_t *phyi = ill->ill_phyint;
10738
10739 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n",
10740 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10741 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
10742 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
10743 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
10744
10745 /*
10746 * Need a lock since some flags can be set even when there are
10747 * references to the ipif.
10748 */
10749 mutex_enter(&ill->ill_lock);
10750 if (ipip->ipi_cmd_type == IF_CMD) {
10751 struct ifreq *ifr = (struct ifreq *)if_req;
10752
10753 /* Get interface flags (low 16 only). */
10754 ifr->ifr_flags = ((ipif->ipif_flags |
10755 ill->ill_flags | phyi->phyint_flags) & 0xffff);
10756 } else {
10757 struct lifreq *lifr = (struct lifreq *)if_req;
10758
10759 /* Get interface flags. */
10760 lifr->lifr_flags = ipif->ipif_flags |
10761 ill->ill_flags | phyi->phyint_flags;
10762 }
10763 mutex_exit(&ill->ill_lock);
10764 return (0);
10765 }
10766
10767 /*
10768 * We allow the MTU to be set on an ILL, but not have it be different
10769 * for different IPIFs since we don't actually send packets on IPIFs.
10770 */
10771 /* ARGSUSED */
10772 int
ip_sioctl_mtu(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10773 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10774 ip_ioctl_cmd_t *ipip, void *if_req)
10775 {
10776 int mtu;
10777 int ip_min_mtu;
10778 struct ifreq *ifr;
10779 struct lifreq *lifr;
10780 ill_t *ill;
10781
10782 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name,
10783 ipif->ipif_id, (void *)ipif));
10784 if (ipip->ipi_cmd_type == IF_CMD) {
10785 ifr = (struct ifreq *)if_req;
10786 mtu = ifr->ifr_metric;
10787 } else {
10788 lifr = (struct lifreq *)if_req;
10789 mtu = lifr->lifr_mtu;
10790 }
10791 /* Only allow for logical unit zero i.e. not on "bge0:17" */
10792 if (ipif->ipif_id != 0)
10793 return (EINVAL);
10794
10795 ill = ipif->ipif_ill;
10796 if (ipif->ipif_isv6)
10797 ip_min_mtu = IPV6_MIN_MTU;
10798 else
10799 ip_min_mtu = IP_MIN_MTU;
10800
10801 mutex_enter(&ill->ill_lock);
10802 if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) {
10803 mutex_exit(&ill->ill_lock);
10804 return (EINVAL);
10805 }
10806 /* Avoid increasing ill_mc_mtu */
10807 if (ill->ill_mc_mtu > mtu)
10808 ill->ill_mc_mtu = mtu;
10809
10810 /*
10811 * The dce and fragmentation code can handle changes to ill_mtu
10812 * concurrent with sending/fragmenting packets.
10813 */
10814 ill->ill_mtu = mtu;
10815 ill->ill_flags |= ILLF_FIXEDMTU;
10816 mutex_exit(&ill->ill_lock);
10817
10818 /*
10819 * Make sure all dce_generation checks find out
10820 * that ill_mtu/ill_mc_mtu has changed.
10821 */
10822 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst);
10823
10824 /*
10825 * Refresh IPMP meta-interface MTU if necessary.
10826 */
10827 if (IS_UNDER_IPMP(ill))
10828 ipmp_illgrp_refresh_mtu(ill->ill_grp);
10829
10830 /* Update the MTU in SCTP's list */
10831 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
10832 return (0);
10833 }
10834
10835 /* Get interface MTU. */
10836 /* ARGSUSED */
10837 int
ip_sioctl_get_mtu(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10838 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10839 ip_ioctl_cmd_t *ipip, void *if_req)
10840 {
10841 struct ifreq *ifr;
10842 struct lifreq *lifr;
10843
10844 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n",
10845 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10846
10847 /*
10848 * We allow a get on any logical interface even though the set
10849 * can only be done on logical unit 0.
10850 */
10851 if (ipip->ipi_cmd_type == IF_CMD) {
10852 ifr = (struct ifreq *)if_req;
10853 ifr->ifr_metric = ipif->ipif_ill->ill_mtu;
10854 } else {
10855 lifr = (struct lifreq *)if_req;
10856 lifr->lifr_mtu = ipif->ipif_ill->ill_mtu;
10857 }
10858 return (0);
10859 }
10860
10861 /* Set interface broadcast address. */
10862 /* ARGSUSED2 */
10863 int
ip_sioctl_brdaddr(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10864 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10865 ip_ioctl_cmd_t *ipip, void *if_req)
10866 {
10867 ipaddr_t addr;
10868 ire_t *ire;
10869 ill_t *ill = ipif->ipif_ill;
10870 ip_stack_t *ipst = ill->ill_ipst;
10871
10872 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name,
10873 ipif->ipif_id));
10874
10875 ASSERT(IAM_WRITER_IPIF(ipif));
10876 if (!(ipif->ipif_flags & IPIF_BROADCAST))
10877 return (EADDRNOTAVAIL);
10878
10879 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */
10880
10881 if (sin->sin_family != AF_INET)
10882 return (EAFNOSUPPORT);
10883
10884 addr = sin->sin_addr.s_addr;
10885
10886 if (ipif->ipif_flags & IPIF_UP) {
10887 /*
10888 * If we are already up, make sure the new
10889 * broadcast address makes sense. If it does,
10890 * there should be an IRE for it already.
10891 */
10892 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST,
10893 ill, ipif->ipif_zoneid, NULL,
10894 (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL);
10895 if (ire == NULL) {
10896 return (EINVAL);
10897 } else {
10898 ire_refrele(ire);
10899 }
10900 }
10901 /*
10902 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST
10903 * needs to already exist we never need to change the set of
10904 * IRE_BROADCASTs when we are UP.
10905 */
10906 if (addr != ipif->ipif_brd_addr)
10907 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr);
10908
10909 return (0);
10910 }
10911
10912 /* Get interface broadcast address. */
10913 /* ARGSUSED */
10914 int
ip_sioctl_get_brdaddr(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10915 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10916 ip_ioctl_cmd_t *ipip, void *if_req)
10917 {
10918 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n",
10919 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10920 if (!(ipif->ipif_flags & IPIF_BROADCAST))
10921 return (EADDRNOTAVAIL);
10922
10923 /* IPIF_BROADCAST not possible with IPv6 */
10924 ASSERT(!ipif->ipif_isv6);
10925 *sin = sin_null;
10926 sin->sin_family = AF_INET;
10927 sin->sin_addr.s_addr = ipif->ipif_brd_addr;
10928 return (0);
10929 }
10930
10931 /*
10932 * This routine is called to handle the SIOCS*IFNETMASK IOCTL.
10933 */
10934 /* ARGSUSED */
10935 int
ip_sioctl_netmask(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10936 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10937 ip_ioctl_cmd_t *ipip, void *if_req)
10938 {
10939 int err = 0;
10940 in6_addr_t v6mask;
10941
10942 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n",
10943 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10944
10945 ASSERT(IAM_WRITER_IPIF(ipif));
10946
10947 if (ipif->ipif_isv6) {
10948 sin6_t *sin6;
10949
10950 if (sin->sin_family != AF_INET6)
10951 return (EAFNOSUPPORT);
10952
10953 sin6 = (sin6_t *)sin;
10954 v6mask = sin6->sin6_addr;
10955 } else {
10956 ipaddr_t mask;
10957
10958 if (sin->sin_family != AF_INET)
10959 return (EAFNOSUPPORT);
10960
10961 mask = sin->sin_addr.s_addr;
10962 if (!ip_contiguous_mask(ntohl(mask)))
10963 return (ENOTSUP);
10964 V4MASK_TO_V6(mask, v6mask);
10965 }
10966
10967 /*
10968 * No big deal if the interface isn't already up, or the mask
10969 * isn't really changing, or this is pt-pt.
10970 */
10971 if (!(ipif->ipif_flags & IPIF_UP) ||
10972 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) ||
10973 (ipif->ipif_flags & IPIF_POINTOPOINT)) {
10974 ipif->ipif_v6net_mask = v6mask;
10975 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10976 V6_MASK_COPY(ipif->ipif_v6lcl_addr,
10977 ipif->ipif_v6net_mask,
10978 ipif->ipif_v6subnet);
10979 }
10980 return (0);
10981 }
10982 /*
10983 * Make sure we have valid net and subnet broadcast ire's
10984 * for the old netmask, if needed by other logical interfaces.
10985 */
10986 err = ipif_logical_down(ipif, q, mp);
10987 if (err == EINPROGRESS)
10988 return (err);
10989 (void) ipif_down_tail(ipif);
10990 err = ip_sioctl_netmask_tail(ipif, sin, q, mp);
10991 return (err);
10992 }
10993
10994 static int
ip_sioctl_netmask_tail(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp)10995 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp)
10996 {
10997 in6_addr_t v6mask;
10998 int err = 0;
10999
11000 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n",
11001 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11002
11003 if (ipif->ipif_isv6) {
11004 sin6_t *sin6;
11005
11006 sin6 = (sin6_t *)sin;
11007 v6mask = sin6->sin6_addr;
11008 } else {
11009 ipaddr_t mask;
11010
11011 mask = sin->sin_addr.s_addr;
11012 V4MASK_TO_V6(mask, v6mask);
11013 }
11014
11015 ipif->ipif_v6net_mask = v6mask;
11016 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11017 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
11018 ipif->ipif_v6subnet);
11019 }
11020 err = ipif_up(ipif, q, mp);
11021
11022 if (err == 0 || err == EINPROGRESS) {
11023 /*
11024 * The interface must be DL_BOUND if this packet has to
11025 * go out on the wire. Since we only go through a logical
11026 * down and are bound with the driver during an internal
11027 * down/up that is satisfied.
11028 */
11029 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) {
11030 /* Potentially broadcast an address mask reply. */
11031 ipif_mask_reply(ipif);
11032 }
11033 }
11034 return (err);
11035 }
11036
11037 /* ARGSUSED */
11038 int
ip_sioctl_netmask_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11039 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11040 ip_ioctl_cmd_t *ipip, void *if_req)
11041 {
11042 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n",
11043 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11044 (void) ipif_down_tail(ipif);
11045 return (ip_sioctl_netmask_tail(ipif, sin, q, mp));
11046 }
11047
11048 /* Get interface net mask. */
11049 /* ARGSUSED */
11050 int
ip_sioctl_get_netmask(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11051 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11052 ip_ioctl_cmd_t *ipip, void *if_req)
11053 {
11054 struct lifreq *lifr = (struct lifreq *)if_req;
11055 struct sockaddr_in6 *sin6 = (sin6_t *)sin;
11056
11057 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n",
11058 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11059
11060 /*
11061 * net mask can't change since we have a reference to the ipif.
11062 */
11063 if (ipif->ipif_isv6) {
11064 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11065 *sin6 = sin6_null;
11066 sin6->sin6_family = AF_INET6;
11067 sin6->sin6_addr = ipif->ipif_v6net_mask;
11068 lifr->lifr_addrlen =
11069 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11070 } else {
11071 *sin = sin_null;
11072 sin->sin_family = AF_INET;
11073 sin->sin_addr.s_addr = ipif->ipif_net_mask;
11074 if (ipip->ipi_cmd_type == LIF_CMD) {
11075 lifr->lifr_addrlen =
11076 ip_mask_to_plen(ipif->ipif_net_mask);
11077 }
11078 }
11079 return (0);
11080 }
11081
11082 /* ARGSUSED */
11083 int
ip_sioctl_metric(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11084 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11085 ip_ioctl_cmd_t *ipip, void *if_req)
11086 {
11087 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n",
11088 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11089
11090 /*
11091 * Since no applications should ever be setting metrics on underlying
11092 * interfaces, we explicitly fail to smoke 'em out.
11093 */
11094 if (IS_UNDER_IPMP(ipif->ipif_ill))
11095 return (EINVAL);
11096
11097 /*
11098 * Set interface metric. We don't use this for
11099 * anything but we keep track of it in case it is
11100 * important to routing applications or such.
11101 */
11102 if (ipip->ipi_cmd_type == IF_CMD) {
11103 struct ifreq *ifr;
11104
11105 ifr = (struct ifreq *)if_req;
11106 ipif->ipif_ill->ill_metric = ifr->ifr_metric;
11107 } else {
11108 struct lifreq *lifr;
11109
11110 lifr = (struct lifreq *)if_req;
11111 ipif->ipif_ill->ill_metric = lifr->lifr_metric;
11112 }
11113 return (0);
11114 }
11115
11116 /* ARGSUSED */
11117 int
ip_sioctl_get_metric(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11118 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11119 ip_ioctl_cmd_t *ipip, void *if_req)
11120 {
11121 /* Get interface metric. */
11122 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n",
11123 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11124
11125 if (ipip->ipi_cmd_type == IF_CMD) {
11126 struct ifreq *ifr;
11127
11128 ifr = (struct ifreq *)if_req;
11129 ifr->ifr_metric = ipif->ipif_ill->ill_metric;
11130 } else {
11131 struct lifreq *lifr;
11132
11133 lifr = (struct lifreq *)if_req;
11134 lifr->lifr_metric = ipif->ipif_ill->ill_metric;
11135 }
11136
11137 return (0);
11138 }
11139
11140 /* ARGSUSED */
11141 int
ip_sioctl_muxid(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11142 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11143 ip_ioctl_cmd_t *ipip, void *if_req)
11144 {
11145 int arp_muxid;
11146
11147 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n",
11148 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11149 /*
11150 * Set the muxid returned from I_PLINK.
11151 */
11152 if (ipip->ipi_cmd_type == IF_CMD) {
11153 struct ifreq *ifr = (struct ifreq *)if_req;
11154
11155 ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid;
11156 arp_muxid = ifr->ifr_arp_muxid;
11157 } else {
11158 struct lifreq *lifr = (struct lifreq *)if_req;
11159
11160 ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid;
11161 arp_muxid = lifr->lifr_arp_muxid;
11162 }
11163 arl_set_muxid(ipif->ipif_ill, arp_muxid);
11164 return (0);
11165 }
11166
11167 /* ARGSUSED */
11168 int
ip_sioctl_get_muxid(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11169 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11170 ip_ioctl_cmd_t *ipip, void *if_req)
11171 {
11172 int arp_muxid = 0;
11173
11174 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n",
11175 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11176 /*
11177 * Get the muxid saved in ill for I_PUNLINK.
11178 */
11179 arp_muxid = arl_get_muxid(ipif->ipif_ill);
11180 if (ipip->ipi_cmd_type == IF_CMD) {
11181 struct ifreq *ifr = (struct ifreq *)if_req;
11182
11183 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid;
11184 ifr->ifr_arp_muxid = arp_muxid;
11185 } else {
11186 struct lifreq *lifr = (struct lifreq *)if_req;
11187
11188 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid;
11189 lifr->lifr_arp_muxid = arp_muxid;
11190 }
11191 return (0);
11192 }
11193
11194 /*
11195 * Set the subnet prefix. Does not modify the broadcast address.
11196 */
11197 /* ARGSUSED */
11198 int
ip_sioctl_subnet(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11199 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11200 ip_ioctl_cmd_t *ipip, void *if_req)
11201 {
11202 int err = 0;
11203 in6_addr_t v6addr;
11204 in6_addr_t v6mask;
11205 boolean_t need_up = B_FALSE;
11206 int addrlen;
11207
11208 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n",
11209 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11210
11211 ASSERT(IAM_WRITER_IPIF(ipif));
11212 addrlen = ((struct lifreq *)if_req)->lifr_addrlen;
11213
11214 if (ipif->ipif_isv6) {
11215 sin6_t *sin6;
11216
11217 if (sin->sin_family != AF_INET6)
11218 return (EAFNOSUPPORT);
11219
11220 sin6 = (sin6_t *)sin;
11221 v6addr = sin6->sin6_addr;
11222 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones))
11223 return (EADDRNOTAVAIL);
11224 } else {
11225 ipaddr_t addr;
11226
11227 if (sin->sin_family != AF_INET)
11228 return (EAFNOSUPPORT);
11229
11230 addr = sin->sin_addr.s_addr;
11231 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF))
11232 return (EADDRNOTAVAIL);
11233 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11234 /* Add 96 bits */
11235 addrlen += IPV6_ABITS - IP_ABITS;
11236 }
11237
11238 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL)
11239 return (EINVAL);
11240
11241 /* Check if bits in the address is set past the mask */
11242 if (!V6_MASK_EQ(v6addr, v6mask, v6addr))
11243 return (EINVAL);
11244
11245 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) &&
11246 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask))
11247 return (0); /* No change */
11248
11249 if (ipif->ipif_flags & IPIF_UP) {
11250 /*
11251 * If the interface is already marked up,
11252 * we call ipif_down which will take care
11253 * of ditching any IREs that have been set
11254 * up based on the old interface address.
11255 */
11256 err = ipif_logical_down(ipif, q, mp);
11257 if (err == EINPROGRESS)
11258 return (err);
11259 (void) ipif_down_tail(ipif);
11260 need_up = B_TRUE;
11261 }
11262
11263 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up);
11264 return (err);
11265 }
11266
11267 static int
ip_sioctl_subnet_tail(ipif_t * ipif,in6_addr_t v6addr,in6_addr_t v6mask,queue_t * q,mblk_t * mp,boolean_t need_up)11268 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask,
11269 queue_t *q, mblk_t *mp, boolean_t need_up)
11270 {
11271 ill_t *ill = ipif->ipif_ill;
11272 int err = 0;
11273
11274 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n",
11275 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11276
11277 /* Set the new address. */
11278 mutex_enter(&ill->ill_lock);
11279 ipif->ipif_v6net_mask = v6mask;
11280 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11281 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask,
11282 ipif->ipif_v6subnet);
11283 }
11284 mutex_exit(&ill->ill_lock);
11285
11286 if (need_up) {
11287 /*
11288 * Now bring the interface back up. If this
11289 * is the only IPIF for the ILL, ipif_up
11290 * will have to re-bind to the device, so
11291 * we may get back EINPROGRESS, in which
11292 * case, this IOCTL will get completed in
11293 * ip_rput_dlpi when we see the DL_BIND_ACK.
11294 */
11295 err = ipif_up(ipif, q, mp);
11296 if (err == EINPROGRESS)
11297 return (err);
11298 }
11299 return (err);
11300 }
11301
11302 /* ARGSUSED */
11303 int
ip_sioctl_subnet_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11304 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11305 ip_ioctl_cmd_t *ipip, void *if_req)
11306 {
11307 int addrlen;
11308 in6_addr_t v6addr;
11309 in6_addr_t v6mask;
11310 struct lifreq *lifr = (struct lifreq *)if_req;
11311
11312 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n",
11313 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11314 (void) ipif_down_tail(ipif);
11315
11316 addrlen = lifr->lifr_addrlen;
11317 if (ipif->ipif_isv6) {
11318 sin6_t *sin6;
11319
11320 sin6 = (sin6_t *)sin;
11321 v6addr = sin6->sin6_addr;
11322 } else {
11323 ipaddr_t addr;
11324
11325 addr = sin->sin_addr.s_addr;
11326 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11327 addrlen += IPV6_ABITS - IP_ABITS;
11328 }
11329 (void) ip_plen_to_mask_v6(addrlen, &v6mask);
11330
11331 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE));
11332 }
11333
11334 /* ARGSUSED */
11335 int
ip_sioctl_get_subnet(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11336 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11337 ip_ioctl_cmd_t *ipip, void *if_req)
11338 {
11339 struct lifreq *lifr = (struct lifreq *)if_req;
11340 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin;
11341
11342 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n",
11343 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11344 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11345
11346 if (ipif->ipif_isv6) {
11347 *sin6 = sin6_null;
11348 sin6->sin6_family = AF_INET6;
11349 sin6->sin6_addr = ipif->ipif_v6subnet;
11350 lifr->lifr_addrlen =
11351 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11352 } else {
11353 *sin = sin_null;
11354 sin->sin_family = AF_INET;
11355 sin->sin_addr.s_addr = ipif->ipif_subnet;
11356 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask);
11357 }
11358 return (0);
11359 }
11360
11361 /*
11362 * Set the IPv6 address token.
11363 */
11364 /* ARGSUSED */
11365 int
ip_sioctl_token(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipi,void * if_req)11366 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11367 ip_ioctl_cmd_t *ipi, void *if_req)
11368 {
11369 ill_t *ill = ipif->ipif_ill;
11370 int err;
11371 in6_addr_t v6addr;
11372 in6_addr_t v6mask;
11373 boolean_t need_up = B_FALSE;
11374 int i;
11375 sin6_t *sin6 = (sin6_t *)sin;
11376 struct lifreq *lifr = (struct lifreq *)if_req;
11377 int addrlen;
11378
11379 ip1dbg(("ip_sioctl_token(%s:%u %p)\n",
11380 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11381 ASSERT(IAM_WRITER_IPIF(ipif));
11382
11383 addrlen = lifr->lifr_addrlen;
11384 /* Only allow for logical unit zero i.e. not on "le0:17" */
11385 if (ipif->ipif_id != 0)
11386 return (EINVAL);
11387
11388 if (!ipif->ipif_isv6)
11389 return (EINVAL);
11390
11391 if (addrlen > IPV6_ABITS)
11392 return (EINVAL);
11393
11394 v6addr = sin6->sin6_addr;
11395
11396 /*
11397 * The length of the token is the length from the end. To get
11398 * the proper mask for this, compute the mask of the bits not
11399 * in the token; ie. the prefix, and then xor to get the mask.
11400 */
11401 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL)
11402 return (EINVAL);
11403 for (i = 0; i < 4; i++) {
11404 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
11405 }
11406
11407 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) &&
11408 ill->ill_token_length == addrlen)
11409 return (0); /* No change */
11410
11411 if (ipif->ipif_flags & IPIF_UP) {
11412 err = ipif_logical_down(ipif, q, mp);
11413 if (err == EINPROGRESS)
11414 return (err);
11415 (void) ipif_down_tail(ipif);
11416 need_up = B_TRUE;
11417 }
11418 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up);
11419 return (err);
11420 }
11421
11422 static int
ip_sioctl_token_tail(ipif_t * ipif,sin6_t * sin6,int addrlen,queue_t * q,mblk_t * mp,boolean_t need_up)11423 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q,
11424 mblk_t *mp, boolean_t need_up)
11425 {
11426 in6_addr_t v6addr;
11427 in6_addr_t v6mask;
11428 ill_t *ill = ipif->ipif_ill;
11429 int i;
11430 int err = 0;
11431
11432 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n",
11433 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11434 v6addr = sin6->sin6_addr;
11435 /*
11436 * The length of the token is the length from the end. To get
11437 * the proper mask for this, compute the mask of the bits not
11438 * in the token; ie. the prefix, and then xor to get the mask.
11439 */
11440 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask);
11441 for (i = 0; i < 4; i++)
11442 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
11443
11444 mutex_enter(&ill->ill_lock);
11445 V6_MASK_COPY(v6addr, v6mask, ill->ill_token);
11446 ill->ill_token_length = addrlen;
11447 ill->ill_manual_token = 1;
11448
11449 /* Reconfigure the link-local address based on this new token */
11450 ipif_setlinklocal(ill->ill_ipif);
11451
11452 mutex_exit(&ill->ill_lock);
11453
11454 if (need_up) {
11455 /*
11456 * Now bring the interface back up. If this
11457 * is the only IPIF for the ILL, ipif_up
11458 * will have to re-bind to the device, so
11459 * we may get back EINPROGRESS, in which
11460 * case, this IOCTL will get completed in
11461 * ip_rput_dlpi when we see the DL_BIND_ACK.
11462 */
11463 err = ipif_up(ipif, q, mp);
11464 if (err == EINPROGRESS)
11465 return (err);
11466 }
11467 return (err);
11468 }
11469
11470 /* ARGSUSED */
11471 int
ip_sioctl_get_token(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipi,void * if_req)11472 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11473 ip_ioctl_cmd_t *ipi, void *if_req)
11474 {
11475 ill_t *ill;
11476 sin6_t *sin6 = (sin6_t *)sin;
11477 struct lifreq *lifr = (struct lifreq *)if_req;
11478
11479 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n",
11480 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11481 if (ipif->ipif_id != 0)
11482 return (EINVAL);
11483
11484 ill = ipif->ipif_ill;
11485 if (!ill->ill_isv6)
11486 return (ENXIO);
11487
11488 *sin6 = sin6_null;
11489 sin6->sin6_family = AF_INET6;
11490 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token));
11491 sin6->sin6_addr = ill->ill_token;
11492 lifr->lifr_addrlen = ill->ill_token_length;
11493 return (0);
11494 }
11495
11496 /*
11497 * Set (hardware) link specific information that might override
11498 * what was acquired through the DL_INFO_ACK.
11499 */
11500 /* ARGSUSED */
11501 int
ip_sioctl_lnkinfo(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipi,void * if_req)11502 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11503 ip_ioctl_cmd_t *ipi, void *if_req)
11504 {
11505 ill_t *ill = ipif->ipif_ill;
11506 int ip_min_mtu;
11507 struct lifreq *lifr = (struct lifreq *)if_req;
11508 lif_ifinfo_req_t *lir;
11509
11510 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n",
11511 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11512 lir = &lifr->lifr_ifinfo;
11513 ASSERT(IAM_WRITER_IPIF(ipif));
11514
11515 /* Only allow for logical unit zero i.e. not on "bge0:17" */
11516 if (ipif->ipif_id != 0)
11517 return (EINVAL);
11518
11519 /* Set interface MTU. */
11520 if (ipif->ipif_isv6)
11521 ip_min_mtu = IPV6_MIN_MTU;
11522 else
11523 ip_min_mtu = IP_MIN_MTU;
11524
11525 /*
11526 * Verify values before we set anything. Allow zero to
11527 * mean unspecified.
11528 *
11529 * XXX We should be able to set the user-defined lir_mtu to some value
11530 * that is greater than ill_current_frag but less than ill_max_frag- the
11531 * ill_max_frag value tells us the max MTU that can be handled by the
11532 * datalink, whereas the ill_current_frag is dynamically computed for
11533 * some link-types like tunnels, based on the tunnel PMTU. However,
11534 * since there is currently no way of distinguishing between
11535 * administratively fixed link mtu values (e.g., those set via
11536 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered
11537 * for tunnels) we conservatively choose the ill_current_frag as the
11538 * upper-bound.
11539 */
11540 if (lir->lir_maxmtu != 0 &&
11541 (lir->lir_maxmtu > ill->ill_current_frag ||
11542 lir->lir_maxmtu < ip_min_mtu))
11543 return (EINVAL);
11544 if (lir->lir_reachtime != 0 &&
11545 lir->lir_reachtime > ND_MAX_REACHTIME)
11546 return (EINVAL);
11547 if (lir->lir_reachretrans != 0 &&
11548 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME)
11549 return (EINVAL);
11550
11551 mutex_enter(&ill->ill_lock);
11552 /*
11553 * The dce and fragmentation code can handle changes to ill_mtu
11554 * concurrent with sending/fragmenting packets.
11555 */
11556 if (lir->lir_maxmtu != 0)
11557 ill->ill_user_mtu = lir->lir_maxmtu;
11558
11559 if (lir->lir_reachtime != 0)
11560 ill->ill_reachable_time = lir->lir_reachtime;
11561
11562 if (lir->lir_reachretrans != 0)
11563 ill->ill_reachable_retrans_time = lir->lir_reachretrans;
11564
11565 ill->ill_max_hops = lir->lir_maxhops;
11566 ill->ill_max_buf = ND_MAX_Q;
11567 if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) {
11568 /*
11569 * ill_mtu is the actual interface MTU, obtained as the min
11570 * of user-configured mtu and the value announced by the
11571 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since
11572 * we have already made the choice of requiring
11573 * ill_user_mtu < ill_current_frag by the time we get here,
11574 * the ill_mtu effectively gets assigned to the ill_user_mtu
11575 * here.
11576 */
11577 ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu);
11578 ill->ill_mc_mtu = MIN(ill->ill_mc_mtu, ill->ill_user_mtu);
11579 }
11580 mutex_exit(&ill->ill_lock);
11581
11582 /*
11583 * Make sure all dce_generation checks find out
11584 * that ill_mtu/ill_mc_mtu has changed.
11585 */
11586 if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0))
11587 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst);
11588
11589 /*
11590 * Refresh IPMP meta-interface MTU if necessary.
11591 */
11592 if (IS_UNDER_IPMP(ill))
11593 ipmp_illgrp_refresh_mtu(ill->ill_grp);
11594
11595 return (0);
11596 }
11597
11598 /* ARGSUSED */
11599 int
ip_sioctl_get_lnkinfo(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipi,void * if_req)11600 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11601 ip_ioctl_cmd_t *ipi, void *if_req)
11602 {
11603 struct lif_ifinfo_req *lir;
11604 ill_t *ill = ipif->ipif_ill;
11605
11606 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n",
11607 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11608 if (ipif->ipif_id != 0)
11609 return (EINVAL);
11610
11611 lir = &((struct lifreq *)if_req)->lifr_ifinfo;
11612 lir->lir_maxhops = ill->ill_max_hops;
11613 lir->lir_reachtime = ill->ill_reachable_time;
11614 lir->lir_reachretrans = ill->ill_reachable_retrans_time;
11615 lir->lir_maxmtu = ill->ill_mtu;
11616
11617 return (0);
11618 }
11619
11620 /*
11621 * Return best guess as to the subnet mask for the specified address.
11622 * Based on the subnet masks for all the configured interfaces.
11623 *
11624 * We end up returning a zero mask in the case of default, multicast or
11625 * experimental.
11626 */
11627 static ipaddr_t
ip_subnet_mask(ipaddr_t addr,ipif_t ** ipifp,ip_stack_t * ipst)11628 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst)
11629 {
11630 ipaddr_t net_mask;
11631 ill_t *ill;
11632 ipif_t *ipif;
11633 ill_walk_context_t ctx;
11634 ipif_t *fallback_ipif = NULL;
11635
11636 net_mask = ip_net_mask(addr);
11637 if (net_mask == 0) {
11638 *ipifp = NULL;
11639 return (0);
11640 }
11641
11642 /* Let's check to see if this is maybe a local subnet route. */
11643 /* this function only applies to IPv4 interfaces */
11644 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
11645 ill = ILL_START_WALK_V4(&ctx, ipst);
11646 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
11647 mutex_enter(&ill->ill_lock);
11648 for (ipif = ill->ill_ipif; ipif != NULL;
11649 ipif = ipif->ipif_next) {
11650 if (IPIF_IS_CONDEMNED(ipif))
11651 continue;
11652 if (!(ipif->ipif_flags & IPIF_UP))
11653 continue;
11654 if ((ipif->ipif_subnet & net_mask) ==
11655 (addr & net_mask)) {
11656 /*
11657 * Don't trust pt-pt interfaces if there are
11658 * other interfaces.
11659 */
11660 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
11661 if (fallback_ipif == NULL) {
11662 ipif_refhold_locked(ipif);
11663 fallback_ipif = ipif;
11664 }
11665 continue;
11666 }
11667
11668 /*
11669 * Fine. Just assume the same net mask as the
11670 * directly attached subnet interface is using.
11671 */
11672 ipif_refhold_locked(ipif);
11673 mutex_exit(&ill->ill_lock);
11674 rw_exit(&ipst->ips_ill_g_lock);
11675 if (fallback_ipif != NULL)
11676 ipif_refrele(fallback_ipif);
11677 *ipifp = ipif;
11678 return (ipif->ipif_net_mask);
11679 }
11680 }
11681 mutex_exit(&ill->ill_lock);
11682 }
11683 rw_exit(&ipst->ips_ill_g_lock);
11684
11685 *ipifp = fallback_ipif;
11686 return ((fallback_ipif != NULL) ?
11687 fallback_ipif->ipif_net_mask : net_mask);
11688 }
11689
11690 /*
11691 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl.
11692 */
11693 static void
ip_wput_ioctl(queue_t * q,mblk_t * mp)11694 ip_wput_ioctl(queue_t *q, mblk_t *mp)
11695 {
11696 IOCP iocp;
11697 ipft_t *ipft;
11698 ipllc_t *ipllc;
11699 mblk_t *mp1;
11700 cred_t *cr;
11701 int error = 0;
11702 conn_t *connp;
11703
11704 ip1dbg(("ip_wput_ioctl"));
11705 iocp = (IOCP)mp->b_rptr;
11706 mp1 = mp->b_cont;
11707 if (mp1 == NULL) {
11708 iocp->ioc_error = EINVAL;
11709 mp->b_datap->db_type = M_IOCNAK;
11710 iocp->ioc_count = 0;
11711 qreply(q, mp);
11712 return;
11713 }
11714
11715 /*
11716 * These IOCTLs provide various control capabilities to
11717 * upstream agents such as ULPs and processes. There
11718 * are currently two such IOCTLs implemented. They
11719 * are used by TCP to provide update information for
11720 * existing IREs and to forcibly delete an IRE for a
11721 * host that is not responding, thereby forcing an
11722 * attempt at a new route.
11723 */
11724 iocp->ioc_error = EINVAL;
11725 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd)))
11726 goto done;
11727
11728 ipllc = (ipllc_t *)mp1->b_rptr;
11729 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) {
11730 if (ipllc->ipllc_cmd == ipft->ipft_cmd)
11731 break;
11732 }
11733 /*
11734 * prefer credential from mblk over ioctl;
11735 * see ip_sioctl_copyin_setup
11736 */
11737 cr = msg_getcred(mp, NULL);
11738 if (cr == NULL)
11739 cr = iocp->ioc_cr;
11740
11741 /*
11742 * Refhold the conn in case the request gets queued up in some lookup
11743 */
11744 ASSERT(CONN_Q(q));
11745 connp = Q_TO_CONN(q);
11746 CONN_INC_REF(connp);
11747 CONN_INC_IOCTLREF(connp);
11748 if (ipft->ipft_pfi &&
11749 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size ||
11750 pullupmsg(mp1, ipft->ipft_min_size))) {
11751 error = (*ipft->ipft_pfi)(q,
11752 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr);
11753 }
11754 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) {
11755 /*
11756 * CONN_OPER_PENDING_DONE happens in the function called
11757 * through ipft_pfi above.
11758 */
11759 return;
11760 }
11761
11762 CONN_DEC_IOCTLREF(connp);
11763 CONN_OPER_PENDING_DONE(connp);
11764 if (ipft->ipft_flags & IPFT_F_NO_REPLY) {
11765 freemsg(mp);
11766 return;
11767 }
11768 iocp->ioc_error = error;
11769
11770 done:
11771 mp->b_datap->db_type = M_IOCACK;
11772 if (iocp->ioc_error)
11773 iocp->ioc_count = 0;
11774 qreply(q, mp);
11775 }
11776
11777 /*
11778 * Assign a unique id for the ipif. This is used by sctp_addr.c
11779 * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures.
11780 */
11781 static void
ipif_assign_seqid(ipif_t * ipif)11782 ipif_assign_seqid(ipif_t *ipif)
11783 {
11784 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
11785
11786 ipif->ipif_seqid = atomic_inc_64_nv(&ipst->ips_ipif_g_seqid);
11787 }
11788
11789 /*
11790 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are
11791 * administratively down (i.e., no DAD), of the same type, and locked. Note
11792 * that the clone is complete -- including the seqid -- and the expectation is
11793 * that the caller will either free or overwrite `sipif' before it's unlocked.
11794 */
11795 static void
ipif_clone(const ipif_t * sipif,ipif_t * dipif)11796 ipif_clone(const ipif_t *sipif, ipif_t *dipif)
11797 {
11798 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock));
11799 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock));
11800 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
11801 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
11802 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type);
11803
11804 dipif->ipif_flags = sipif->ipif_flags;
11805 dipif->ipif_zoneid = sipif->ipif_zoneid;
11806 dipif->ipif_v6subnet = sipif->ipif_v6subnet;
11807 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr;
11808 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask;
11809 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr;
11810 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr;
11811
11812 /*
11813 * As per the comment atop the function, we assume that these sipif
11814 * fields will be changed before sipif is unlocked.
11815 */
11816 dipif->ipif_seqid = sipif->ipif_seqid;
11817 dipif->ipif_state_flags = sipif->ipif_state_flags;
11818 }
11819
11820 /*
11821 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif'
11822 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin
11823 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then
11824 * transfer the xop to `dipif'. Requires that all ipifs are administratively
11825 * down (i.e., no DAD), of the same type, and unlocked.
11826 */
11827 static void
ipif_transfer(ipif_t * sipif,ipif_t * dipif,ipif_t * virgipif)11828 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif)
11829 {
11830 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq;
11831 ipxop_t *ipx = ipsq->ipsq_xop;
11832
11833 ASSERT(sipif != dipif);
11834 ASSERT(sipif != virgipif);
11835
11836 /*
11837 * Grab all of the locks that protect the ipif in a defined order.
11838 */
11839 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
11840
11841 ipif_clone(sipif, dipif);
11842 if (virgipif != NULL) {
11843 ipif_clone(virgipif, sipif);
11844 mi_free(virgipif);
11845 }
11846
11847 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
11848
11849 /*
11850 * Transfer ownership of the current xop, if necessary.
11851 */
11852 if (ipx->ipx_current_ipif == sipif) {
11853 ASSERT(ipx->ipx_pending_ipif == NULL);
11854 mutex_enter(&ipx->ipx_lock);
11855 ipx->ipx_current_ipif = dipif;
11856 mutex_exit(&ipx->ipx_lock);
11857 }
11858
11859 if (virgipif == NULL)
11860 mi_free(sipif);
11861 }
11862
11863 /*
11864 * checks if:
11865 * - <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and
11866 * - logical interface is within the allowed range
11867 */
11868 static int
is_lifname_valid(ill_t * ill,unsigned int ipif_id)11869 is_lifname_valid(ill_t *ill, unsigned int ipif_id)
11870 {
11871 if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ)
11872 return (ENAMETOOLONG);
11873
11874 if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if)
11875 return (ERANGE);
11876 return (0);
11877 }
11878
11879 /*
11880 * Insert the ipif, so that the list of ipifs on the ill will be sorted
11881 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will
11882 * be inserted into the first space available in the list. The value of
11883 * ipif_id will then be set to the appropriate value for its position.
11884 */
11885 static int
ipif_insert(ipif_t * ipif,boolean_t acquire_g_lock)11886 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock)
11887 {
11888 ill_t *ill;
11889 ipif_t *tipif;
11890 ipif_t **tipifp;
11891 int id, err;
11892 ip_stack_t *ipst;
11893
11894 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK ||
11895 IAM_WRITER_IPIF(ipif));
11896
11897 ill = ipif->ipif_ill;
11898 ASSERT(ill != NULL);
11899 ipst = ill->ill_ipst;
11900
11901 /*
11902 * In the case of lo0:0 we already hold the ill_g_lock.
11903 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate ->
11904 * ipif_insert.
11905 */
11906 if (acquire_g_lock)
11907 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
11908 mutex_enter(&ill->ill_lock);
11909 id = ipif->ipif_id;
11910 tipifp = &(ill->ill_ipif);
11911 if (id == -1) { /* need to find a real id */
11912 id = 0;
11913 while ((tipif = *tipifp) != NULL) {
11914 ASSERT(tipif->ipif_id >= id);
11915 if (tipif->ipif_id != id)
11916 break; /* non-consecutive id */
11917 id++;
11918 tipifp = &(tipif->ipif_next);
11919 }
11920 if ((err = is_lifname_valid(ill, id)) != 0) {
11921 mutex_exit(&ill->ill_lock);
11922 if (acquire_g_lock)
11923 rw_exit(&ipst->ips_ill_g_lock);
11924 return (err);
11925 }
11926 ipif->ipif_id = id; /* assign new id */
11927 } else if ((err = is_lifname_valid(ill, id)) == 0) {
11928 /* we have a real id; insert ipif in the right place */
11929 while ((tipif = *tipifp) != NULL) {
11930 ASSERT(tipif->ipif_id != id);
11931 if (tipif->ipif_id > id)
11932 break; /* found correct location */
11933 tipifp = &(tipif->ipif_next);
11934 }
11935 } else {
11936 mutex_exit(&ill->ill_lock);
11937 if (acquire_g_lock)
11938 rw_exit(&ipst->ips_ill_g_lock);
11939 return (err);
11940 }
11941
11942 ASSERT(tipifp != &(ill->ill_ipif) || id == 0);
11943
11944 ipif->ipif_next = tipif;
11945 *tipifp = ipif;
11946 mutex_exit(&ill->ill_lock);
11947 if (acquire_g_lock)
11948 rw_exit(&ipst->ips_ill_g_lock);
11949
11950 return (0);
11951 }
11952
11953 static void
ipif_remove(ipif_t * ipif)11954 ipif_remove(ipif_t *ipif)
11955 {
11956 ipif_t **ipifp;
11957 ill_t *ill = ipif->ipif_ill;
11958
11959 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock));
11960
11961 mutex_enter(&ill->ill_lock);
11962 ipifp = &ill->ill_ipif;
11963 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
11964 if (*ipifp == ipif) {
11965 *ipifp = ipif->ipif_next;
11966 break;
11967 }
11968 }
11969 mutex_exit(&ill->ill_lock);
11970 }
11971
11972 /*
11973 * Allocate and initialize a new interface control structure. (Always
11974 * called as writer.)
11975 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill
11976 * is not part of the global linked list of ills. ipif_seqid is unique
11977 * in the system and to preserve the uniqueness, it is assigned only
11978 * when ill becomes part of the global list. At that point ill will
11979 * have a name. If it doesn't get assigned here, it will get assigned
11980 * in ipif_set_values() as part of SIOCSLIFNAME processing.
11981 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set
11982 * the interface flags or any other information from the DL_INFO_ACK for
11983 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at
11984 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the
11985 * second DL_INFO_ACK comes in from the driver.
11986 */
11987 static ipif_t *
ipif_allocate(ill_t * ill,int id,uint_t ire_type,boolean_t initialize,boolean_t insert,int * errorp)11988 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize,
11989 boolean_t insert, int *errorp)
11990 {
11991 int err;
11992 ipif_t *ipif;
11993 ip_stack_t *ipst = ill->ill_ipst;
11994
11995 ip1dbg(("ipif_allocate(%s:%d ill %p)\n",
11996 ill->ill_name, id, (void *)ill));
11997 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill));
11998
11999 if (errorp != NULL)
12000 *errorp = 0;
12001
12002 if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) {
12003 if (errorp != NULL)
12004 *errorp = ENOMEM;
12005 return (NULL);
12006 }
12007 *ipif = ipif_zero; /* start clean */
12008
12009 ipif->ipif_ill = ill;
12010 ipif->ipif_id = id; /* could be -1 */
12011 /*
12012 * Inherit the zoneid from the ill; for the shared stack instance
12013 * this is always the global zone
12014 */
12015 ipif->ipif_zoneid = ill->ill_zoneid;
12016
12017 ipif->ipif_refcnt = 0;
12018
12019 if (insert) {
12020 if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) {
12021 mi_free(ipif);
12022 if (errorp != NULL)
12023 *errorp = err;
12024 return (NULL);
12025 }
12026 /* -1 id should have been replaced by real id */
12027 id = ipif->ipif_id;
12028 ASSERT(id >= 0);
12029 }
12030
12031 if (ill->ill_name[0] != '\0')
12032 ipif_assign_seqid(ipif);
12033
12034 /*
12035 * If this is the zeroth ipif on the IPMP ill, create the illgrp
12036 * (which must not exist yet because the zeroth ipif is created once
12037 * per ill). However, do not not link it to the ipmp_grp_t until
12038 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details.
12039 */
12040 if (id == 0 && IS_IPMP(ill)) {
12041 if (ipmp_illgrp_create(ill) == NULL) {
12042 if (insert) {
12043 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
12044 ipif_remove(ipif);
12045 rw_exit(&ipst->ips_ill_g_lock);
12046 }
12047 mi_free(ipif);
12048 if (errorp != NULL)
12049 *errorp = ENOMEM;
12050 return (NULL);
12051 }
12052 }
12053
12054 /*
12055 * We grab ill_lock to protect the flag changes. The ipif is still
12056 * not up and can't be looked up until the ioctl completes and the
12057 * IPIF_CHANGING flag is cleared.
12058 */
12059 mutex_enter(&ill->ill_lock);
12060
12061 ipif->ipif_ire_type = ire_type;
12062
12063 if (ipif->ipif_isv6) {
12064 ill->ill_flags |= ILLF_IPV6;
12065 } else {
12066 ipaddr_t inaddr_any = INADDR_ANY;
12067
12068 ill->ill_flags |= ILLF_IPV4;
12069
12070 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */
12071 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12072 &ipif->ipif_v6lcl_addr);
12073 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12074 &ipif->ipif_v6subnet);
12075 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12076 &ipif->ipif_v6net_mask);
12077 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12078 &ipif->ipif_v6brd_addr);
12079 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12080 &ipif->ipif_v6pp_dst_addr);
12081 }
12082
12083 /*
12084 * Don't set the interface flags etc. now, will do it in
12085 * ip_ll_subnet_defaults.
12086 */
12087 if (!initialize)
12088 goto out;
12089
12090 /*
12091 * NOTE: The IPMP meta-interface is special-cased because it starts
12092 * with no underlying interfaces (and thus an unknown broadcast
12093 * address length), but all interfaces that can be placed into an IPMP
12094 * group are required to be broadcast-capable.
12095 */
12096 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) {
12097 /*
12098 * Later detect lack of DLPI driver multicast capability by
12099 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi().
12100 */
12101 ill->ill_flags |= ILLF_MULTICAST;
12102 if (!ipif->ipif_isv6)
12103 ipif->ipif_flags |= IPIF_BROADCAST;
12104 } else {
12105 if (ill->ill_net_type != IRE_LOOPBACK) {
12106 if (ipif->ipif_isv6)
12107 /*
12108 * Note: xresolv interfaces will eventually need
12109 * NOARP set here as well, but that will require
12110 * those external resolvers to have some
12111 * knowledge of that flag and act appropriately.
12112 * Not to be changed at present.
12113 */
12114 ill->ill_flags |= ILLF_NONUD;
12115 else
12116 ill->ill_flags |= ILLF_NOARP;
12117 }
12118 if (ill->ill_phys_addr_length == 0) {
12119 if (IS_VNI(ill)) {
12120 ipif->ipif_flags |= IPIF_NOXMIT;
12121 } else {
12122 /* pt-pt supports multicast. */
12123 ill->ill_flags |= ILLF_MULTICAST;
12124 if (ill->ill_net_type != IRE_LOOPBACK)
12125 ipif->ipif_flags |= IPIF_POINTOPOINT;
12126 }
12127 }
12128 }
12129 out:
12130 mutex_exit(&ill->ill_lock);
12131 return (ipif);
12132 }
12133
12134 /*
12135 * Remove the neighbor cache entries associated with this logical
12136 * interface.
12137 */
12138 int
ipif_arp_down(ipif_t * ipif)12139 ipif_arp_down(ipif_t *ipif)
12140 {
12141 ill_t *ill = ipif->ipif_ill;
12142 int err = 0;
12143
12144 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
12145 ASSERT(IAM_WRITER_IPIF(ipif));
12146
12147 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down",
12148 ill_t *, ill, ipif_t *, ipif);
12149 ipif_nce_down(ipif);
12150
12151 /*
12152 * If this is the last ipif that is going down and there are no
12153 * duplicate addresses we may yet attempt to re-probe, then we need to
12154 * clean up ARP completely.
12155 */
12156 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
12157 !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) {
12158 /*
12159 * If this was the last ipif on an IPMP interface, purge any
12160 * static ARP entries associated with it.
12161 */
12162 if (IS_IPMP(ill))
12163 ipmp_illgrp_refresh_arpent(ill->ill_grp);
12164
12165 /* UNBIND, DETACH */
12166 err = arp_ll_down(ill);
12167 }
12168
12169 return (err);
12170 }
12171
12172 /*
12173 * Get the resolver set up for a new IP address. (Always called as writer.)
12174 * Called both for IPv4 and IPv6 interfaces, though it only does some
12175 * basic DAD related initialization for IPv6. Honors ILLF_NOARP.
12176 *
12177 * The enumerated value res_act tunes the behavior:
12178 * * Res_act_initial: set up all the resolver structures for a new
12179 * IP address.
12180 * * Res_act_defend: tell ARP that it needs to send a single gratuitous
12181 * ARP message in defense of the address.
12182 * * Res_act_rebind: tell ARP to change the hardware address for an IP
12183 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif().
12184 *
12185 * Returns zero on success, or an errno upon failure.
12186 */
12187 int
ipif_resolver_up(ipif_t * ipif,enum ip_resolver_action res_act)12188 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act)
12189 {
12190 ill_t *ill = ipif->ipif_ill;
12191 int err;
12192 boolean_t was_dup;
12193
12194 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n",
12195 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags));
12196 ASSERT(IAM_WRITER_IPIF(ipif));
12197
12198 was_dup = B_FALSE;
12199 if (res_act == Res_act_initial) {
12200 ipif->ipif_addr_ready = 0;
12201 /*
12202 * We're bringing an interface up here. There's no way that we
12203 * should need to shut down ARP now.
12204 */
12205 mutex_enter(&ill->ill_lock);
12206 if (ipif->ipif_flags & IPIF_DUPLICATE) {
12207 ipif->ipif_flags &= ~IPIF_DUPLICATE;
12208 ill->ill_ipif_dup_count--;
12209 was_dup = B_TRUE;
12210 }
12211 mutex_exit(&ill->ill_lock);
12212 }
12213 if (ipif->ipif_recovery_id != 0)
12214 (void) untimeout(ipif->ipif_recovery_id);
12215 ipif->ipif_recovery_id = 0;
12216 if (ill->ill_net_type != IRE_IF_RESOLVER) {
12217 ipif->ipif_addr_ready = 1;
12218 return (0);
12219 }
12220 /* NDP will set the ipif_addr_ready flag when it's ready */
12221 if (ill->ill_isv6)
12222 return (0);
12223
12224 err = ipif_arp_up(ipif, res_act, was_dup);
12225 return (err);
12226 }
12227
12228 /*
12229 * This routine restarts IPv4/IPv6 duplicate address detection (DAD)
12230 * when a link has just gone back up.
12231 */
12232 static void
ipif_nce_start_dad(ipif_t * ipif)12233 ipif_nce_start_dad(ipif_t *ipif)
12234 {
12235 ncec_t *ncec;
12236 ill_t *ill = ipif->ipif_ill;
12237 boolean_t isv6 = ill->ill_isv6;
12238
12239 if (isv6) {
12240 ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill,
12241 &ipif->ipif_v6lcl_addr);
12242 } else {
12243 ipaddr_t v4addr;
12244
12245 if (ill->ill_net_type != IRE_IF_RESOLVER ||
12246 (ipif->ipif_flags & IPIF_UNNUMBERED) ||
12247 ipif->ipif_lcl_addr == INADDR_ANY) {
12248 /*
12249 * If we can't contact ARP for some reason,
12250 * that's not really a problem. Just send
12251 * out the routing socket notification that
12252 * DAD completion would have done, and continue.
12253 */
12254 ipif_mask_reply(ipif);
12255 ipif_up_notify(ipif);
12256 ipif->ipif_addr_ready = 1;
12257 return;
12258 }
12259
12260 IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr);
12261 ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr);
12262 }
12263
12264 if (ncec == NULL) {
12265 ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n",
12266 (void *)ipif));
12267 return;
12268 }
12269 if (!nce_restart_dad(ncec)) {
12270 /*
12271 * If we can't restart DAD for some reason, that's not really a
12272 * problem. Just send out the routing socket notification that
12273 * DAD completion would have done, and continue.
12274 */
12275 ipif_up_notify(ipif);
12276 ipif->ipif_addr_ready = 1;
12277 }
12278 ncec_refrele(ncec);
12279 }
12280
12281 /*
12282 * Restart duplicate address detection on all interfaces on the given ill.
12283 *
12284 * This is called when an interface transitions from down to up
12285 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN).
12286 *
12287 * Note that since the underlying physical link has transitioned, we must cause
12288 * at least one routing socket message to be sent here, either via DAD
12289 * completion or just by default on the first ipif. (If we don't do this, then
12290 * in.mpathd will see long delays when doing link-based failure recovery.)
12291 */
12292 void
ill_restart_dad(ill_t * ill,boolean_t went_up)12293 ill_restart_dad(ill_t *ill, boolean_t went_up)
12294 {
12295 ipif_t *ipif;
12296
12297 if (ill == NULL)
12298 return;
12299
12300 /*
12301 * If layer two doesn't support duplicate address detection, then just
12302 * send the routing socket message now and be done with it.
12303 */
12304 if (!ill->ill_isv6 && arp_no_defense) {
12305 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
12306 return;
12307 }
12308
12309 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12310 if (went_up) {
12311
12312 if (ipif->ipif_flags & IPIF_UP) {
12313 ipif_nce_start_dad(ipif);
12314 } else if (ipif->ipif_flags & IPIF_DUPLICATE) {
12315 /*
12316 * kick off the bring-up process now.
12317 */
12318 ipif_do_recovery(ipif);
12319 } else {
12320 /*
12321 * Unfortunately, the first ipif is "special"
12322 * and represents the underlying ill in the
12323 * routing socket messages. Thus, when this
12324 * one ipif is down, we must still notify so
12325 * that the user knows the IFF_RUNNING status
12326 * change. (If the first ipif is up, then
12327 * we'll handle eventual routing socket
12328 * notification via DAD completion.)
12329 */
12330 if (ipif == ill->ill_ipif) {
12331 ip_rts_ifmsg(ill->ill_ipif,
12332 RTSQ_DEFAULT);
12333 }
12334 }
12335 } else {
12336 /*
12337 * After link down, we'll need to send a new routing
12338 * message when the link comes back, so clear
12339 * ipif_addr_ready.
12340 */
12341 ipif->ipif_addr_ready = 0;
12342 }
12343 }
12344
12345 /*
12346 * If we've torn down links, then notify the user right away.
12347 */
12348 if (!went_up)
12349 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
12350 }
12351
12352 static void
ipsq_delete(ipsq_t * ipsq)12353 ipsq_delete(ipsq_t *ipsq)
12354 {
12355 ipxop_t *ipx = ipsq->ipsq_xop;
12356
12357 ipsq->ipsq_ipst = NULL;
12358 ASSERT(ipsq->ipsq_phyint == NULL);
12359 ASSERT(ipsq->ipsq_xop != NULL);
12360 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL);
12361 ASSERT(ipx->ipx_pending_mp == NULL);
12362 kmem_free(ipsq, sizeof (ipsq_t));
12363 }
12364
12365 static int
ill_up_ipifs_on_ill(ill_t * ill,queue_t * q,mblk_t * mp)12366 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp)
12367 {
12368 int err = 0;
12369 ipif_t *ipif;
12370
12371 if (ill == NULL)
12372 return (0);
12373
12374 ASSERT(IAM_WRITER_ILL(ill));
12375 ill->ill_up_ipifs = B_TRUE;
12376 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12377 if (ipif->ipif_was_up) {
12378 if (!(ipif->ipif_flags & IPIF_UP))
12379 err = ipif_up(ipif, q, mp);
12380 ipif->ipif_was_up = B_FALSE;
12381 if (err != 0) {
12382 ASSERT(err == EINPROGRESS);
12383 return (err);
12384 }
12385 }
12386 }
12387 ill->ill_up_ipifs = B_FALSE;
12388 return (0);
12389 }
12390
12391 /*
12392 * This function is called to bring up all the ipifs that were up before
12393 * bringing the ill down via ill_down_ipifs().
12394 */
12395 int
ill_up_ipifs(ill_t * ill,queue_t * q,mblk_t * mp)12396 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp)
12397 {
12398 int err;
12399
12400 ASSERT(IAM_WRITER_ILL(ill));
12401
12402 if (ill->ill_replumbing) {
12403 ill->ill_replumbing = 0;
12404 /*
12405 * Send down REPLUMB_DONE notification followed by the
12406 * BIND_REQ on the arp stream.
12407 */
12408 if (!ill->ill_isv6)
12409 arp_send_replumb_conf(ill);
12410 }
12411 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp);
12412 if (err != 0)
12413 return (err);
12414
12415 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp));
12416 }
12417
12418 /*
12419 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring
12420 * down the ipifs without sending DL_UNBIND_REQ to the driver.
12421 */
12422 static void
ill_down_ipifs(ill_t * ill,boolean_t logical)12423 ill_down_ipifs(ill_t *ill, boolean_t logical)
12424 {
12425 ipif_t *ipif;
12426
12427 ASSERT(IAM_WRITER_ILL(ill));
12428
12429 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12430 /*
12431 * We go through the ipif_down logic even if the ipif
12432 * is already down, since routes can be added based
12433 * on down ipifs. Going through ipif_down once again
12434 * will delete any IREs created based on these routes.
12435 */
12436 if (ipif->ipif_flags & IPIF_UP)
12437 ipif->ipif_was_up = B_TRUE;
12438
12439 if (logical) {
12440 (void) ipif_logical_down(ipif, NULL, NULL);
12441 ipif_non_duplicate(ipif);
12442 (void) ipif_down_tail(ipif);
12443 } else {
12444 (void) ipif_down(ipif, NULL, NULL);
12445 }
12446 }
12447 }
12448
12449 /*
12450 * Redo source address selection. This makes IXAF_VERIFY_SOURCE take
12451 * a look again at valid source addresses.
12452 * This should be called each time after the set of source addresses has been
12453 * changed.
12454 */
12455 void
ip_update_source_selection(ip_stack_t * ipst)12456 ip_update_source_selection(ip_stack_t *ipst)
12457 {
12458 /* We skip past SRC_GENERATION_VERIFY */
12459 if (atomic_inc_32_nv(&ipst->ips_src_generation) ==
12460 SRC_GENERATION_VERIFY)
12461 atomic_inc_32(&ipst->ips_src_generation);
12462 }
12463
12464 /*
12465 * Finish the group join started in ip_sioctl_groupname().
12466 */
12467 /* ARGSUSED */
12468 static void
ip_join_illgrps(ipsq_t * ipsq,queue_t * q,mblk_t * mp,void * dummy)12469 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
12470 {
12471 ill_t *ill = q->q_ptr;
12472 phyint_t *phyi = ill->ill_phyint;
12473 ipmp_grp_t *grp = phyi->phyint_grp;
12474 ip_stack_t *ipst = ill->ill_ipst;
12475
12476 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */
12477 ASSERT(!IS_IPMP(ill) && grp != NULL);
12478 ASSERT(IAM_WRITER_IPSQ(ipsq));
12479
12480 if (phyi->phyint_illv4 != NULL) {
12481 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12482 VERIFY(grp->gr_pendv4-- > 0);
12483 rw_exit(&ipst->ips_ipmp_lock);
12484 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4);
12485 }
12486 if (phyi->phyint_illv6 != NULL) {
12487 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12488 VERIFY(grp->gr_pendv6-- > 0);
12489 rw_exit(&ipst->ips_ipmp_lock);
12490 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6);
12491 }
12492 freemsg(mp);
12493 }
12494
12495 /*
12496 * Process an SIOCSLIFGROUPNAME request.
12497 */
12498 /* ARGSUSED */
12499 int
ip_sioctl_groupname(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)12500 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12501 ip_ioctl_cmd_t *ipip, void *ifreq)
12502 {
12503 struct lifreq *lifr = ifreq;
12504 ill_t *ill = ipif->ipif_ill;
12505 ip_stack_t *ipst = ill->ill_ipst;
12506 phyint_t *phyi = ill->ill_phyint;
12507 ipmp_grp_t *grp = phyi->phyint_grp;
12508 mblk_t *ipsq_mp;
12509 int err = 0;
12510
12511 /*
12512 * Note that phyint_grp can only change here, where we're exclusive.
12513 */
12514 ASSERT(IAM_WRITER_ILL(ill));
12515
12516 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL ||
12517 (phyi->phyint_flags & PHYI_VIRTUAL))
12518 return (EINVAL);
12519
12520 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0';
12521
12522 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12523
12524 /*
12525 * If the name hasn't changed, there's nothing to do.
12526 */
12527 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0)
12528 goto unlock;
12529
12530 /*
12531 * Handle requests to rename an IPMP meta-interface.
12532 *
12533 * Note that creation of the IPMP meta-interface is handled in
12534 * userland through the standard plumbing sequence. As part of the
12535 * plumbing the IPMP meta-interface, its initial groupname is set to
12536 * the name of the interface (see ipif_set_values_tail()).
12537 */
12538 if (IS_IPMP(ill)) {
12539 err = ipmp_grp_rename(grp, lifr->lifr_groupname);
12540 goto unlock;
12541 }
12542
12543 /*
12544 * Handle requests to add or remove an IP interface from a group.
12545 */
12546 if (lifr->lifr_groupname[0] != '\0') { /* add */
12547 /*
12548 * Moves are handled by first removing the interface from
12549 * its existing group, and then adding it to another group.
12550 * So, fail if it's already in a group.
12551 */
12552 if (IS_UNDER_IPMP(ill)) {
12553 err = EALREADY;
12554 goto unlock;
12555 }
12556
12557 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst);
12558 if (grp == NULL) {
12559 err = ENOENT;
12560 goto unlock;
12561 }
12562
12563 /*
12564 * Check if the phyint and its ills are suitable for
12565 * inclusion into the group.
12566 */
12567 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0)
12568 goto unlock;
12569
12570 /*
12571 * Checks pass; join the group, and enqueue the remaining
12572 * illgrp joins for when we've become part of the group xop
12573 * and are exclusive across its IPSQs. Since qwriter_ip()
12574 * requires an mblk_t to scribble on, and since `mp' will be
12575 * freed as part of completing the ioctl, allocate another.
12576 */
12577 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) {
12578 err = ENOMEM;
12579 goto unlock;
12580 }
12581
12582 /*
12583 * Before we drop ipmp_lock, bump gr_pend* to ensure that the
12584 * IPMP meta-interface ills needed by `phyi' cannot go away
12585 * before ip_join_illgrps() is called back. See the comments
12586 * in ip_sioctl_plink_ipmp() for more.
12587 */
12588 if (phyi->phyint_illv4 != NULL)
12589 grp->gr_pendv4++;
12590 if (phyi->phyint_illv6 != NULL)
12591 grp->gr_pendv6++;
12592
12593 rw_exit(&ipst->ips_ipmp_lock);
12594
12595 ipmp_phyint_join_grp(phyi, grp);
12596 ill_refhold(ill);
12597 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps,
12598 SWITCH_OP, B_FALSE);
12599 return (0);
12600 } else {
12601 /*
12602 * Request to remove the interface from a group. If the
12603 * interface is not in a group, this trivially succeeds.
12604 */
12605 rw_exit(&ipst->ips_ipmp_lock);
12606 if (IS_UNDER_IPMP(ill))
12607 ipmp_phyint_leave_grp(phyi);
12608 return (0);
12609 }
12610 unlock:
12611 rw_exit(&ipst->ips_ipmp_lock);
12612 return (err);
12613 }
12614
12615 /*
12616 * Process an SIOCGLIFBINDING request.
12617 */
12618 /* ARGSUSED */
12619 int
ip_sioctl_get_binding(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)12620 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12621 ip_ioctl_cmd_t *ipip, void *ifreq)
12622 {
12623 ill_t *ill;
12624 struct lifreq *lifr = ifreq;
12625 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
12626
12627 if (!IS_IPMP(ipif->ipif_ill))
12628 return (EINVAL);
12629
12630 rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12631 if ((ill = ipif->ipif_bound_ill) == NULL)
12632 lifr->lifr_binding[0] = '\0';
12633 else
12634 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ);
12635 rw_exit(&ipst->ips_ipmp_lock);
12636 return (0);
12637 }
12638
12639 /*
12640 * Process an SIOCGLIFGROUPNAME request.
12641 */
12642 /* ARGSUSED */
12643 int
ip_sioctl_get_groupname(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)12644 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12645 ip_ioctl_cmd_t *ipip, void *ifreq)
12646 {
12647 ipmp_grp_t *grp;
12648 struct lifreq *lifr = ifreq;
12649 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
12650
12651 rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12652 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL)
12653 lifr->lifr_groupname[0] = '\0';
12654 else
12655 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ);
12656 rw_exit(&ipst->ips_ipmp_lock);
12657 return (0);
12658 }
12659
12660 /*
12661 * Process an SIOCGLIFGROUPINFO request.
12662 */
12663 /* ARGSUSED */
12664 int
ip_sioctl_groupinfo(ipif_t * dummy_ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy)12665 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12666 ip_ioctl_cmd_t *ipip, void *dummy)
12667 {
12668 ipmp_grp_t *grp;
12669 lifgroupinfo_t *lifgr;
12670 ip_stack_t *ipst = CONNQ_TO_IPST(q);
12671
12672 /* ip_wput_nondata() verified mp->b_cont->b_cont */
12673 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr;
12674 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0';
12675
12676 rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12677 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) {
12678 rw_exit(&ipst->ips_ipmp_lock);
12679 return (ENOENT);
12680 }
12681 ipmp_grp_info(grp, lifgr);
12682 rw_exit(&ipst->ips_ipmp_lock);
12683 return (0);
12684 }
12685
12686 static void
ill_dl_down(ill_t * ill)12687 ill_dl_down(ill_t *ill)
12688 {
12689 DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill);
12690
12691 /*
12692 * The ill is down; unbind but stay attached since we're still
12693 * associated with a PPA. If we have negotiated DLPI capabilites
12694 * with the data link service provider (IDS_OK) then reset them.
12695 * The interval between unbinding and rebinding is potentially
12696 * unbounded hence we cannot assume things will be the same.
12697 * The DLPI capabilities will be probed again when the data link
12698 * is brought up.
12699 */
12700 mblk_t *mp = ill->ill_unbind_mp;
12701
12702 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name));
12703
12704 if (!ill->ill_replumbing) {
12705 /* Free all ilms for this ill */
12706 update_conn_ill(ill, ill->ill_ipst);
12707 } else {
12708 ill_leave_multicast(ill);
12709 }
12710
12711 ill->ill_unbind_mp = NULL;
12712 if (mp != NULL) {
12713 ip1dbg(("ill_dl_down: %s (%u) for %s\n",
12714 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr,
12715 ill->ill_name));
12716 mutex_enter(&ill->ill_lock);
12717 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS;
12718 mutex_exit(&ill->ill_lock);
12719 /*
12720 * ip_rput does not pass up normal (M_PROTO) DLPI messages
12721 * after ILL_CONDEMNED is set. So in the unplumb case, we call
12722 * ill_capability_dld_disable disable rightaway. If this is not
12723 * an unplumb operation then the disable happens on receipt of
12724 * the capab ack via ip_rput_dlpi_writer ->
12725 * ill_capability_ack_thr. In both cases the order of
12726 * the operations seen by DLD is capability disable followed
12727 * by DL_UNBIND. Also the DLD capability disable needs a
12728 * cv_wait'able context.
12729 */
12730 if (ill->ill_state_flags & ILL_CONDEMNED)
12731 ill_capability_dld_disable(ill);
12732 ill_capability_reset(ill, B_FALSE);
12733 ill_dlpi_send(ill, mp);
12734 }
12735 mutex_enter(&ill->ill_lock);
12736 ill->ill_dl_up = 0;
12737 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0);
12738 mutex_exit(&ill->ill_lock);
12739 }
12740
12741 void
ill_dlpi_dispatch(ill_t * ill,mblk_t * mp)12742 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp)
12743 {
12744 union DL_primitives *dlp;
12745 t_uscalar_t prim;
12746 boolean_t waitack = B_FALSE;
12747
12748 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12749
12750 dlp = (union DL_primitives *)mp->b_rptr;
12751 prim = dlp->dl_primitive;
12752
12753 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n",
12754 dl_primstr(prim), prim, ill->ill_name));
12755
12756 switch (prim) {
12757 case DL_PHYS_ADDR_REQ:
12758 {
12759 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr;
12760 ill->ill_phys_addr_pend = dlpap->dl_addr_type;
12761 break;
12762 }
12763 case DL_BIND_REQ:
12764 mutex_enter(&ill->ill_lock);
12765 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
12766 mutex_exit(&ill->ill_lock);
12767 break;
12768 }
12769
12770 /*
12771 * Except for the ACKs for the M_PCPROTO messages, all other ACKs
12772 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore
12773 * we only wait for the ACK of the DL_UNBIND_REQ.
12774 */
12775 mutex_enter(&ill->ill_lock);
12776 if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
12777 (prim == DL_UNBIND_REQ)) {
12778 ill->ill_dlpi_pending = prim;
12779 waitack = B_TRUE;
12780 }
12781
12782 mutex_exit(&ill->ill_lock);
12783 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch",
12784 char *, dl_primstr(prim), ill_t *, ill);
12785 putnext(ill->ill_wq, mp);
12786
12787 /*
12788 * There is no ack for DL_NOTIFY_CONF messages
12789 */
12790 if (waitack && prim == DL_NOTIFY_CONF)
12791 ill_dlpi_done(ill, prim);
12792 }
12793
12794 /*
12795 * Helper function for ill_dlpi_send().
12796 */
12797 /* ARGSUSED */
12798 static void
ill_dlpi_send_writer(ipsq_t * ipsq,queue_t * q,mblk_t * mp,void * arg)12799 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12800 {
12801 ill_dlpi_send(q->q_ptr, mp);
12802 }
12803
12804 /*
12805 * Send a DLPI control message to the driver but make sure there
12806 * is only one outstanding message. Uses ill_dlpi_pending to tell
12807 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done()
12808 * when an ACK or a NAK is received to process the next queued message.
12809 */
12810 void
ill_dlpi_send(ill_t * ill,mblk_t * mp)12811 ill_dlpi_send(ill_t *ill, mblk_t *mp)
12812 {
12813 mblk_t **mpp;
12814
12815 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12816
12817 /*
12818 * To ensure that any DLPI requests for current exclusive operation
12819 * are always completely sent before any DLPI messages for other
12820 * operations, require writer access before enqueuing.
12821 */
12822 if (!IAM_WRITER_ILL(ill)) {
12823 ill_refhold(ill);
12824 /* qwriter_ip() does the ill_refrele() */
12825 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer,
12826 NEW_OP, B_TRUE);
12827 return;
12828 }
12829
12830 mutex_enter(&ill->ill_lock);
12831 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
12832 /* Must queue message. Tail insertion */
12833 mpp = &ill->ill_dlpi_deferred;
12834 while (*mpp != NULL)
12835 mpp = &((*mpp)->b_next);
12836
12837 ip1dbg(("ill_dlpi_send: deferring request for %s "
12838 "while %s pending\n", ill->ill_name,
12839 dl_primstr(ill->ill_dlpi_pending)));
12840
12841 *mpp = mp;
12842 mutex_exit(&ill->ill_lock);
12843 return;
12844 }
12845 mutex_exit(&ill->ill_lock);
12846 ill_dlpi_dispatch(ill, mp);
12847 }
12848
12849 void
ill_capability_send(ill_t * ill,mblk_t * mp)12850 ill_capability_send(ill_t *ill, mblk_t *mp)
12851 {
12852 ill->ill_capab_pending_cnt++;
12853 ill_dlpi_send(ill, mp);
12854 }
12855
12856 void
ill_capability_done(ill_t * ill)12857 ill_capability_done(ill_t *ill)
12858 {
12859 ASSERT(ill->ill_capab_pending_cnt != 0);
12860
12861 ill_dlpi_done(ill, DL_CAPABILITY_REQ);
12862
12863 ill->ill_capab_pending_cnt--;
12864 if (ill->ill_capab_pending_cnt == 0 &&
12865 ill->ill_dlpi_capab_state == IDCS_OK)
12866 ill_capability_reset_alloc(ill);
12867 }
12868
12869 /*
12870 * Send all deferred DLPI messages without waiting for their ACKs.
12871 */
12872 void
ill_dlpi_send_deferred(ill_t * ill)12873 ill_dlpi_send_deferred(ill_t *ill)
12874 {
12875 mblk_t *mp, *nextmp;
12876
12877 /*
12878 * Clear ill_dlpi_pending so that the message is not queued in
12879 * ill_dlpi_send().
12880 */
12881 mutex_enter(&ill->ill_lock);
12882 ill->ill_dlpi_pending = DL_PRIM_INVAL;
12883 mp = ill->ill_dlpi_deferred;
12884 ill->ill_dlpi_deferred = NULL;
12885 mutex_exit(&ill->ill_lock);
12886
12887 for (; mp != NULL; mp = nextmp) {
12888 nextmp = mp->b_next;
12889 mp->b_next = NULL;
12890 ill_dlpi_send(ill, mp);
12891 }
12892 }
12893
12894 /*
12895 * Clear all the deferred DLPI messages. Called on receiving an M_ERROR
12896 * or M_HANGUP
12897 */
12898 static void
ill_dlpi_clear_deferred(ill_t * ill)12899 ill_dlpi_clear_deferred(ill_t *ill)
12900 {
12901 mblk_t *mp, *nextmp;
12902
12903 mutex_enter(&ill->ill_lock);
12904 ill->ill_dlpi_pending = DL_PRIM_INVAL;
12905 mp = ill->ill_dlpi_deferred;
12906 ill->ill_dlpi_deferred = NULL;
12907 mutex_exit(&ill->ill_lock);
12908
12909 for (; mp != NULL; mp = nextmp) {
12910 nextmp = mp->b_next;
12911 inet_freemsg(mp);
12912 }
12913 }
12914
12915 /*
12916 * Check if the DLPI primitive `prim' is pending; print a warning if not.
12917 */
12918 boolean_t
ill_dlpi_pending(ill_t * ill,t_uscalar_t prim)12919 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim)
12920 {
12921 t_uscalar_t pending;
12922
12923 mutex_enter(&ill->ill_lock);
12924 if (ill->ill_dlpi_pending == prim) {
12925 mutex_exit(&ill->ill_lock);
12926 return (B_TRUE);
12927 }
12928
12929 /*
12930 * During teardown, ill_dlpi_dispatch() will send DLPI requests
12931 * without waiting, so don't print any warnings in that case.
12932 */
12933 if (ill->ill_state_flags & ILL_CONDEMNED) {
12934 mutex_exit(&ill->ill_lock);
12935 return (B_FALSE);
12936 }
12937 pending = ill->ill_dlpi_pending;
12938 mutex_exit(&ill->ill_lock);
12939
12940 if (pending == DL_PRIM_INVAL) {
12941 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
12942 "received unsolicited ack for %s on %s\n",
12943 dl_primstr(prim), ill->ill_name);
12944 } else {
12945 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
12946 "received unexpected ack for %s on %s (expecting %s)\n",
12947 dl_primstr(prim), ill->ill_name, dl_primstr(pending));
12948 }
12949 return (B_FALSE);
12950 }
12951
12952 /*
12953 * Complete the current DLPI operation associated with `prim' on `ill' and
12954 * start the next queued DLPI operation (if any). If there are no queued DLPI
12955 * operations and the ill's current exclusive IPSQ operation has finished
12956 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to
12957 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See
12958 * the comments above ipsq_current_finish() for details.
12959 */
12960 void
ill_dlpi_done(ill_t * ill,t_uscalar_t prim)12961 ill_dlpi_done(ill_t *ill, t_uscalar_t prim)
12962 {
12963 mblk_t *mp;
12964 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
12965 ipxop_t *ipx = ipsq->ipsq_xop;
12966
12967 ASSERT(IAM_WRITER_IPSQ(ipsq));
12968 mutex_enter(&ill->ill_lock);
12969
12970 ASSERT(prim != DL_PRIM_INVAL);
12971 ASSERT(ill->ill_dlpi_pending == prim);
12972
12973 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name,
12974 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending));
12975
12976 if ((mp = ill->ill_dlpi_deferred) == NULL) {
12977 ill->ill_dlpi_pending = DL_PRIM_INVAL;
12978 if (ipx->ipx_current_done) {
12979 mutex_enter(&ipx->ipx_lock);
12980 ipx->ipx_current_ipif = NULL;
12981 mutex_exit(&ipx->ipx_lock);
12982 }
12983 cv_signal(&ill->ill_cv);
12984 mutex_exit(&ill->ill_lock);
12985 return;
12986 }
12987
12988 ill->ill_dlpi_deferred = mp->b_next;
12989 mp->b_next = NULL;
12990 mutex_exit(&ill->ill_lock);
12991
12992 ill_dlpi_dispatch(ill, mp);
12993 }
12994
12995 /*
12996 * Queue a (multicast) DLPI control message to be sent to the driver by
12997 * later calling ill_dlpi_send_queued.
12998 * We queue them while holding a lock (ill_mcast_lock) to ensure that they
12999 * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ
13000 * for the same group to race.
13001 * We send DLPI control messages in order using ill_lock.
13002 * For IPMP we should be called on the cast_ill.
13003 */
13004 void
ill_dlpi_queue(ill_t * ill,mblk_t * mp)13005 ill_dlpi_queue(ill_t *ill, mblk_t *mp)
13006 {
13007 mblk_t **mpp;
13008
13009 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
13010
13011 mutex_enter(&ill->ill_lock);
13012 /* Must queue message. Tail insertion */
13013 mpp = &ill->ill_dlpi_deferred;
13014 while (*mpp != NULL)
13015 mpp = &((*mpp)->b_next);
13016
13017 *mpp = mp;
13018 mutex_exit(&ill->ill_lock);
13019 }
13020
13021 /*
13022 * Send the messages that were queued. Make sure there is only
13023 * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done()
13024 * when an ACK or a NAK is received to process the next queued message.
13025 * For IPMP we are called on the upper ill, but when send what is queued
13026 * on the cast_ill.
13027 */
13028 void
ill_dlpi_send_queued(ill_t * ill)13029 ill_dlpi_send_queued(ill_t *ill)
13030 {
13031 mblk_t *mp;
13032 union DL_primitives *dlp;
13033 t_uscalar_t prim;
13034 ill_t *release_ill = NULL;
13035
13036 if (IS_IPMP(ill)) {
13037 /* On the upper IPMP ill. */
13038 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13039 if (release_ill == NULL) {
13040 /* Avoid ever sending anything down to the ipmpstub */
13041 return;
13042 }
13043 ill = release_ill;
13044 }
13045 mutex_enter(&ill->ill_lock);
13046 while ((mp = ill->ill_dlpi_deferred) != NULL) {
13047 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
13048 /* Can't send. Somebody else will send it */
13049 mutex_exit(&ill->ill_lock);
13050 goto done;
13051 }
13052 ill->ill_dlpi_deferred = mp->b_next;
13053 mp->b_next = NULL;
13054 if (!ill->ill_dl_up) {
13055 /*
13056 * Nobody there. All multicast addresses will be
13057 * re-joined when we get the DL_BIND_ACK bringing the
13058 * interface up.
13059 */
13060 freemsg(mp);
13061 continue;
13062 }
13063 dlp = (union DL_primitives *)mp->b_rptr;
13064 prim = dlp->dl_primitive;
13065
13066 if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
13067 (prim == DL_UNBIND_REQ)) {
13068 ill->ill_dlpi_pending = prim;
13069 }
13070 mutex_exit(&ill->ill_lock);
13071
13072 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued",
13073 char *, dl_primstr(prim), ill_t *, ill);
13074 putnext(ill->ill_wq, mp);
13075 mutex_enter(&ill->ill_lock);
13076 }
13077 mutex_exit(&ill->ill_lock);
13078 done:
13079 if (release_ill != NULL)
13080 ill_refrele(release_ill);
13081 }
13082
13083 /*
13084 * Queue an IP (IGMP/MLD) message to be sent by IP from
13085 * ill_mcast_send_queued
13086 * We queue them while holding a lock (ill_mcast_lock) to ensure that they
13087 * are sent in order i.e., prevent a IGMP leave and IGMP join for the same
13088 * group to race.
13089 * We send them in order using ill_lock.
13090 * For IPMP we are called on the upper ill, but we queue on the cast_ill.
13091 */
13092 void
ill_mcast_queue(ill_t * ill,mblk_t * mp)13093 ill_mcast_queue(ill_t *ill, mblk_t *mp)
13094 {
13095 mblk_t **mpp;
13096 ill_t *release_ill = NULL;
13097
13098 ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock));
13099
13100 if (IS_IPMP(ill)) {
13101 /* On the upper IPMP ill. */
13102 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13103 if (release_ill == NULL) {
13104 /* Discard instead of queuing for the ipmp interface */
13105 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
13106 ip_drop_output("ipIfStatsOutDiscards - no cast_ill",
13107 mp, ill);
13108 freemsg(mp);
13109 return;
13110 }
13111 ill = release_ill;
13112 }
13113
13114 mutex_enter(&ill->ill_lock);
13115 /* Must queue message. Tail insertion */
13116 mpp = &ill->ill_mcast_deferred;
13117 while (*mpp != NULL)
13118 mpp = &((*mpp)->b_next);
13119
13120 *mpp = mp;
13121 mutex_exit(&ill->ill_lock);
13122 if (release_ill != NULL)
13123 ill_refrele(release_ill);
13124 }
13125
13126 /*
13127 * Send the IP packets that were queued by ill_mcast_queue.
13128 * These are IGMP/MLD packets.
13129 *
13130 * For IPMP we are called on the upper ill, but when send what is queued
13131 * on the cast_ill.
13132 *
13133 * Request loopback of the report if we are acting as a multicast
13134 * router, so that the process-level routing demon can hear it.
13135 * This will run multiple times for the same group if there are members
13136 * on the same group for multiple ipif's on the same ill. The
13137 * igmp_input/mld_input code will suppress this due to the loopback thus we
13138 * always loopback membership report.
13139 *
13140 * We also need to make sure that this does not get load balanced
13141 * by IPMP. We do this by passing an ill to ip_output_simple.
13142 */
13143 void
ill_mcast_send_queued(ill_t * ill)13144 ill_mcast_send_queued(ill_t *ill)
13145 {
13146 mblk_t *mp;
13147 ip_xmit_attr_t ixas;
13148 ill_t *release_ill = NULL;
13149
13150 if (IS_IPMP(ill)) {
13151 /* On the upper IPMP ill. */
13152 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13153 if (release_ill == NULL) {
13154 /*
13155 * We should have no messages on the ipmp interface
13156 * but no point in trying to send them.
13157 */
13158 return;
13159 }
13160 ill = release_ill;
13161 }
13162 bzero(&ixas, sizeof (ixas));
13163 ixas.ixa_zoneid = ALL_ZONES;
13164 ixas.ixa_cred = kcred;
13165 ixas.ixa_cpid = NOPID;
13166 ixas.ixa_tsl = NULL;
13167 /*
13168 * Here we set ixa_ifindex. If IPMP it will be the lower ill which
13169 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill.
13170 * That is necessary to handle IGMP/MLD snooping switches.
13171 */
13172 ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex;
13173 ixas.ixa_ipst = ill->ill_ipst;
13174
13175 mutex_enter(&ill->ill_lock);
13176 while ((mp = ill->ill_mcast_deferred) != NULL) {
13177 ill->ill_mcast_deferred = mp->b_next;
13178 mp->b_next = NULL;
13179 if (!ill->ill_dl_up) {
13180 /*
13181 * Nobody there. Just drop the ip packets.
13182 * IGMP/MLD will resend later, if this is a replumb.
13183 */
13184 freemsg(mp);
13185 continue;
13186 }
13187 mutex_enter(&ill->ill_phyint->phyint_lock);
13188 if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) {
13189 /*
13190 * When the ill is getting deactivated, we only want to
13191 * send the DLPI messages, so drop IGMP/MLD packets.
13192 * DLPI messages are handled by ill_dlpi_send_queued()
13193 */
13194 mutex_exit(&ill->ill_phyint->phyint_lock);
13195 freemsg(mp);
13196 continue;
13197 }
13198 mutex_exit(&ill->ill_phyint->phyint_lock);
13199 mutex_exit(&ill->ill_lock);
13200
13201 /* Check whether we are sending IPv4 or IPv6. */
13202 if (ill->ill_isv6) {
13203 ip6_t *ip6h = (ip6_t *)mp->b_rptr;
13204
13205 ixas.ixa_multicast_ttl = ip6h->ip6_hops;
13206 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6;
13207 } else {
13208 ipha_t *ipha = (ipha_t *)mp->b_rptr;
13209
13210 ixas.ixa_multicast_ttl = ipha->ipha_ttl;
13211 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
13212 ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM;
13213 }
13214 ixas.ixa_flags &= ~IXAF_VERIFY_SOURCE;
13215 ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE;
13216 (void) ip_output_simple(mp, &ixas);
13217 ixa_cleanup(&ixas);
13218
13219 mutex_enter(&ill->ill_lock);
13220 }
13221 mutex_exit(&ill->ill_lock);
13222
13223 done:
13224 if (release_ill != NULL)
13225 ill_refrele(release_ill);
13226 }
13227
13228 /*
13229 * Take down a specific interface, but don't lose any information about it.
13230 * (Always called as writer.)
13231 * This function goes through the down sequence even if the interface is
13232 * already down. There are 2 reasons.
13233 * a. Currently we permit interface routes that depend on down interfaces
13234 * to be added. This behaviour itself is questionable. However it appears
13235 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long
13236 * time. We go thru the cleanup in order to remove these routes.
13237 * b. The bringup of the interface could fail in ill_dl_up i.e. we get
13238 * DL_ERROR_ACK in response to the DL_BIND request. The interface is
13239 * down, but we need to cleanup i.e. do ill_dl_down and
13240 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down.
13241 *
13242 * IP-MT notes:
13243 *
13244 * Model of reference to interfaces.
13245 *
13246 * The following members in ipif_t track references to the ipif.
13247 * int ipif_refcnt; Active reference count
13248 *
13249 * The following members in ill_t track references to the ill.
13250 * int ill_refcnt; active refcnt
13251 * uint_t ill_ire_cnt; Number of ires referencing ill
13252 * uint_t ill_ncec_cnt; Number of ncecs referencing ill
13253 * uint_t ill_nce_cnt; Number of nces referencing ill
13254 * uint_t ill_ilm_cnt; Number of ilms referencing ill
13255 *
13256 * Reference to an ipif or ill can be obtained in any of the following ways.
13257 *
13258 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions
13259 * Pointers to ipif / ill from other data structures viz ire and conn.
13260 * Implicit reference to the ipif / ill by holding a reference to the ire.
13261 *
13262 * The ipif/ill lookup functions return a reference held ipif / ill.
13263 * ipif_refcnt and ill_refcnt track the reference counts respectively.
13264 * This is a purely dynamic reference count associated with threads holding
13265 * references to the ipif / ill. Pointers from other structures do not
13266 * count towards this reference count.
13267 *
13268 * ill_ire_cnt is the number of ire's associated with the
13269 * ill. This is incremented whenever a new ire is created referencing the
13270 * ill. This is done atomically inside ire_add_v[46] where the ire is
13271 * actually added to the ire hash table. The count is decremented in
13272 * ire_inactive where the ire is destroyed.
13273 *
13274 * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill.
13275 * This is incremented atomically in
13276 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the
13277 * table. Similarly it is decremented in ncec_inactive() where the ncec
13278 * is destroyed.
13279 *
13280 * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is
13281 * incremented atomically in nce_add() where the nce is actually added to the
13282 * ill_nce. Similarly it is decremented in nce_inactive() where the nce
13283 * is destroyed.
13284 *
13285 * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in
13286 * ilm_add() and decremented before the ilm is freed in ilm_delete().
13287 *
13288 * Flow of ioctls involving interface down/up
13289 *
13290 * The following is the sequence of an attempt to set some critical flags on an
13291 * up interface.
13292 * ip_sioctl_flags
13293 * ipif_down
13294 * wait for ipif to be quiescent
13295 * ipif_down_tail
13296 * ip_sioctl_flags_tail
13297 *
13298 * All set ioctls that involve down/up sequence would have a skeleton similar
13299 * to the above. All the *tail functions are called after the refcounts have
13300 * dropped to the appropriate values.
13301 *
13302 * SIOC ioctls during the IPIF_CHANGING interval.
13303 *
13304 * Threads handling SIOC set ioctls serialize on the squeue, but this
13305 * is not done for SIOC get ioctls. Since a set ioctl can cause several
13306 * steps of internal changes to the state, some of which are visible in
13307 * ipif_flags (such as IFF_UP being cleared and later set), and we want
13308 * the set ioctl to be atomic related to the get ioctls, the SIOC get code
13309 * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then
13310 * enqueued in the ipsq and the operation is restarted by ipsq_exit() when
13311 * the current exclusive operation completes. The IPIF_CHANGING check
13312 * and enqueue is atomic using the ill_lock and ipsq_lock. The
13313 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't
13314 * change while the ill_lock is held. Before dropping the ill_lock we acquire
13315 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish
13316 * until we release the ipsq_lock, even though the ill/ipif state flags
13317 * can change after we drop the ill_lock.
13318 */
13319 int
ipif_down(ipif_t * ipif,queue_t * q,mblk_t * mp)13320 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
13321 {
13322 ill_t *ill = ipif->ipif_ill;
13323 conn_t *connp;
13324 boolean_t success;
13325 boolean_t ipif_was_up = B_FALSE;
13326 ip_stack_t *ipst = ill->ill_ipst;
13327
13328 ASSERT(IAM_WRITER_IPIF(ipif));
13329
13330 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
13331
13332 DTRACE_PROBE3(ipif__downup, char *, "ipif_down",
13333 ill_t *, ill, ipif_t *, ipif);
13334
13335 if (ipif->ipif_flags & IPIF_UP) {
13336 mutex_enter(&ill->ill_lock);
13337 ipif->ipif_flags &= ~IPIF_UP;
13338 ASSERT(ill->ill_ipif_up_count > 0);
13339 --ill->ill_ipif_up_count;
13340 mutex_exit(&ill->ill_lock);
13341 ipif_was_up = B_TRUE;
13342 /* Update status in SCTP's list */
13343 sctp_update_ipif(ipif, SCTP_IPIF_DOWN);
13344 ill_nic_event_dispatch(ipif->ipif_ill,
13345 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0);
13346 }
13347
13348 /*
13349 * Removal of the last ipif from an ill may result in a DL_UNBIND
13350 * being sent to the driver, and we must not send any data packets to
13351 * the driver after the DL_UNBIND_REQ. To ensure this, all the
13352 * ire and nce entries used in the data path will be cleaned
13353 * up, and we also set the ILL_DOWN_IN_PROGRESS bit to make
13354 * sure on new entries will be added until the ill is bound
13355 * again. The ILL_DOWN_IN_PROGRESS bit is turned off upon
13356 * receipt of a DL_BIND_ACK.
13357 */
13358 if (ill->ill_wq != NULL && !ill->ill_logical_down &&
13359 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
13360 ill->ill_dl_up) {
13361 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
13362 }
13363
13364 /*
13365 * Blow away memberships we established in ipif_multicast_up().
13366 */
13367 ipif_multicast_down(ipif);
13368
13369 /*
13370 * Remove from the mapping for __sin6_src_id. We insert only
13371 * when the address is not INADDR_ANY. As IPv4 addresses are
13372 * stored as mapped addresses, we need to check for mapped
13373 * INADDR_ANY also.
13374 */
13375 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
13376 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) &&
13377 !(ipif->ipif_flags & IPIF_NOLOCAL)) {
13378 int err;
13379
13380 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr,
13381 ipif->ipif_zoneid, ipst);
13382 if (err != 0) {
13383 ip0dbg(("ipif_down: srcid_remove %d\n", err));
13384 }
13385 }
13386
13387 if (ipif_was_up) {
13388 /* only delete if we'd added ire's before */
13389 if (ipif->ipif_isv6)
13390 ipif_delete_ires_v6(ipif);
13391 else
13392 ipif_delete_ires_v4(ipif);
13393 }
13394
13395 if (ipif_was_up && ill->ill_ipif_up_count == 0) {
13396 /*
13397 * Since the interface is now down, it may have just become
13398 * inactive. Note that this needs to be done even for a
13399 * lll_logical_down(), or ARP entries will not get correctly
13400 * restored when the interface comes back up.
13401 */
13402 if (IS_UNDER_IPMP(ill))
13403 ipmp_ill_refresh_active(ill);
13404 }
13405
13406 /*
13407 * neighbor-discovery or arp entries for this interface. The ipif
13408 * has to be quiesced, so we walk all the nce's and delete those
13409 * that point at the ipif->ipif_ill. At the same time, we also
13410 * update IPMP so that ipifs for data addresses are unbound. We dont
13411 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer
13412 * that for ipif_down_tail()
13413 */
13414 ipif_nce_down(ipif);
13415
13416 /*
13417 * If this is the last ipif on the ill, we also need to remove
13418 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will
13419 * never succeed.
13420 */
13421 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0)
13422 ire_walk_ill(0, 0, ill_downi, ill, ill);
13423
13424 /*
13425 * Walk all CONNs that can have a reference on an ire for this
13426 * ipif (we actually walk all that now have stale references).
13427 */
13428 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst);
13429
13430 /*
13431 * If mp is NULL the caller will wait for the appropriate refcnt.
13432 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down
13433 * and ill_delete -> ipif_free -> ipif_down
13434 */
13435 if (mp == NULL) {
13436 ASSERT(q == NULL);
13437 return (0);
13438 }
13439
13440 if (CONN_Q(q)) {
13441 connp = Q_TO_CONN(q);
13442 mutex_enter(&connp->conn_lock);
13443 } else {
13444 connp = NULL;
13445 }
13446 mutex_enter(&ill->ill_lock);
13447 /*
13448 * Are there any ire's pointing to this ipif that are still active ?
13449 * If this is the last ipif going down, are there any ire's pointing
13450 * to this ill that are still active ?
13451 */
13452 if (ipif_is_quiescent(ipif)) {
13453 mutex_exit(&ill->ill_lock);
13454 if (connp != NULL)
13455 mutex_exit(&connp->conn_lock);
13456 return (0);
13457 }
13458
13459 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p",
13460 ill->ill_name, (void *)ill));
13461 /*
13462 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount
13463 * drops down, the operation will be restarted by ipif_ill_refrele_tail
13464 * which in turn is called by the last refrele on the ipif/ill/ire.
13465 */
13466 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN);
13467 if (!success) {
13468 /* The conn is closing. So just return */
13469 ASSERT(connp != NULL);
13470 mutex_exit(&ill->ill_lock);
13471 mutex_exit(&connp->conn_lock);
13472 return (EINTR);
13473 }
13474
13475 mutex_exit(&ill->ill_lock);
13476 if (connp != NULL)
13477 mutex_exit(&connp->conn_lock);
13478 return (EINPROGRESS);
13479 }
13480
13481 int
ipif_down_tail(ipif_t * ipif)13482 ipif_down_tail(ipif_t *ipif)
13483 {
13484 ill_t *ill = ipif->ipif_ill;
13485 int err = 0;
13486
13487 DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail",
13488 ill_t *, ill, ipif_t *, ipif);
13489
13490 /*
13491 * Skip any loopback interface (null wq).
13492 * If this is the last logical interface on the ill
13493 * have ill_dl_down tell the driver we are gone (unbind)
13494 * Note that lun 0 can ipif_down even though
13495 * there are other logical units that are up.
13496 * This occurs e.g. when we change a "significant" IFF_ flag.
13497 */
13498 if (ill->ill_wq != NULL && !ill->ill_logical_down &&
13499 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
13500 ill->ill_dl_up) {
13501 ill_dl_down(ill);
13502 }
13503 if (!ipif->ipif_isv6)
13504 err = ipif_arp_down(ipif);
13505
13506 ill->ill_logical_down = 0;
13507
13508 ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
13509 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT);
13510 return (err);
13511 }
13512
13513 /*
13514 * Bring interface logically down without bringing the physical interface
13515 * down e.g. when the netmask is changed. This avoids long lasting link
13516 * negotiations between an ethernet interface and a certain switches.
13517 */
13518 static int
ipif_logical_down(ipif_t * ipif,queue_t * q,mblk_t * mp)13519 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
13520 {
13521 DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down",
13522 ill_t *, ipif->ipif_ill, ipif_t *, ipif);
13523
13524 /*
13525 * The ill_logical_down flag is a transient flag. It is set here
13526 * and is cleared once the down has completed in ipif_down_tail.
13527 * This flag does not indicate whether the ill stream is in the
13528 * DL_BOUND state with the driver. Instead this flag is used by
13529 * ipif_down_tail to determine whether to DL_UNBIND the stream with
13530 * the driver. The state of the ill stream i.e. whether it is
13531 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag.
13532 */
13533 ipif->ipif_ill->ill_logical_down = 1;
13534 return (ipif_down(ipif, q, mp));
13535 }
13536
13537 /*
13538 * Initiate deallocate of an IPIF. Always called as writer. Called by
13539 * ill_delete or ip_sioctl_removeif.
13540 */
13541 static void
ipif_free(ipif_t * ipif)13542 ipif_free(ipif_t *ipif)
13543 {
13544 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
13545
13546 ASSERT(IAM_WRITER_IPIF(ipif));
13547
13548 if (ipif->ipif_recovery_id != 0)
13549 (void) untimeout(ipif->ipif_recovery_id);
13550 ipif->ipif_recovery_id = 0;
13551
13552 /*
13553 * Take down the interface. We can be called either from ill_delete
13554 * or from ip_sioctl_removeif.
13555 */
13556 (void) ipif_down(ipif, NULL, NULL);
13557
13558 /*
13559 * Now that the interface is down, there's no chance it can still
13560 * become a duplicate. Cancel any timer that may have been set while
13561 * tearing down.
13562 */
13563 if (ipif->ipif_recovery_id != 0)
13564 (void) untimeout(ipif->ipif_recovery_id);
13565 ipif->ipif_recovery_id = 0;
13566
13567 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13568 /* Remove pointers to this ill in the multicast routing tables */
13569 reset_mrt_vif_ipif(ipif);
13570 /* If necessary, clear the cached source ipif rotor. */
13571 if (ipif->ipif_ill->ill_src_ipif == ipif)
13572 ipif->ipif_ill->ill_src_ipif = NULL;
13573 rw_exit(&ipst->ips_ill_g_lock);
13574 }
13575
13576 static void
ipif_free_tail(ipif_t * ipif)13577 ipif_free_tail(ipif_t *ipif)
13578 {
13579 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
13580
13581 /*
13582 * Need to hold both ill_g_lock and ill_lock while
13583 * inserting or removing an ipif from the linked list
13584 * of ipifs hanging off the ill.
13585 */
13586 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13587
13588 #ifdef DEBUG
13589 ipif_trace_cleanup(ipif);
13590 #endif
13591
13592 /* Ask SCTP to take it out of it list */
13593 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE);
13594 ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT);
13595
13596 /* Get it out of the ILL interface list. */
13597 ipif_remove(ipif);
13598 rw_exit(&ipst->ips_ill_g_lock);
13599
13600 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE)));
13601 ASSERT(ipif->ipif_recovery_id == 0);
13602 ASSERT(ipif->ipif_ire_local == NULL);
13603 ASSERT(ipif->ipif_ire_if == NULL);
13604
13605 /* Free the memory. */
13606 mi_free(ipif);
13607 }
13608
13609 /*
13610 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id"
13611 * is zero.
13612 */
13613 void
ipif_get_name(const ipif_t * ipif,char * buf,int len)13614 ipif_get_name(const ipif_t *ipif, char *buf, int len)
13615 {
13616 char lbuf[LIFNAMSIZ];
13617 char *name;
13618 size_t name_len;
13619
13620 buf[0] = '\0';
13621 name = ipif->ipif_ill->ill_name;
13622 name_len = ipif->ipif_ill->ill_name_length;
13623 if (ipif->ipif_id != 0) {
13624 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR,
13625 ipif->ipif_id);
13626 name = lbuf;
13627 name_len = mi_strlen(name) + 1;
13628 }
13629 len -= 1;
13630 buf[len] = '\0';
13631 len = MIN(len, name_len);
13632 bcopy(name, buf, len);
13633 }
13634
13635 /*
13636 * Sets `buf' to an ill name.
13637 */
13638 void
ill_get_name(const ill_t * ill,char * buf,int len)13639 ill_get_name(const ill_t *ill, char *buf, int len)
13640 {
13641 char *name;
13642 size_t name_len;
13643
13644 name = ill->ill_name;
13645 name_len = ill->ill_name_length;
13646 len -= 1;
13647 buf[len] = '\0';
13648 len = MIN(len, name_len);
13649 bcopy(name, buf, len);
13650 }
13651
13652 /*
13653 * Find an IPIF based on the name passed in. Names can be of the form <phys>
13654 * (e.g., le0) or <phys>:<#> (e.g., le0:1). When there is no colon, the
13655 * implied unit id is zero. <phys> must correspond to the name of an ILL.
13656 * (May be called as writer.)
13657 */
13658 static ipif_t *
ipif_lookup_on_name(char * name,size_t namelen,boolean_t do_alloc,boolean_t * exists,boolean_t isv6,zoneid_t zoneid,ip_stack_t * ipst)13659 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc,
13660 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst)
13661 {
13662 char *cp;
13663 char *endp;
13664 long id;
13665 ill_t *ill;
13666 ipif_t *ipif;
13667 uint_t ire_type;
13668 boolean_t did_alloc = B_FALSE;
13669 char last;
13670
13671 /*
13672 * If the caller wants to us to create the ipif, make sure we have a
13673 * valid zoneid
13674 */
13675 ASSERT(!do_alloc || zoneid != ALL_ZONES);
13676
13677 if (namelen == 0) {
13678 return (NULL);
13679 }
13680
13681 *exists = B_FALSE;
13682 /* Look for a colon in the name. */
13683 endp = &name[namelen];
13684 for (cp = endp; --cp > name; ) {
13685 if (*cp == IPIF_SEPARATOR_CHAR)
13686 break;
13687 }
13688
13689 if (*cp == IPIF_SEPARATOR_CHAR) {
13690 /*
13691 * Reject any non-decimal aliases for logical
13692 * interfaces. Aliases with leading zeroes
13693 * are also rejected as they introduce ambiguity
13694 * in the naming of the interfaces.
13695 * In order to confirm with existing semantics,
13696 * and to not break any programs/script relying
13697 * on that behaviour, if<0>:0 is considered to be
13698 * a valid interface.
13699 *
13700 * If alias has two or more digits and the first
13701 * is zero, fail.
13702 */
13703 if (&cp[2] < endp && cp[1] == '0') {
13704 return (NULL);
13705 }
13706 }
13707
13708 if (cp <= name) {
13709 cp = endp;
13710 }
13711 last = *cp;
13712 *cp = '\0';
13713
13714 /*
13715 * Look up the ILL, based on the portion of the name
13716 * before the slash. ill_lookup_on_name returns a held ill.
13717 * Temporary to check whether ill exists already. If so
13718 * ill_lookup_on_name will clear it.
13719 */
13720 ill = ill_lookup_on_name(name, do_alloc, isv6,
13721 &did_alloc, ipst);
13722 *cp = last;
13723 if (ill == NULL)
13724 return (NULL);
13725
13726 /* Establish the unit number in the name. */
13727 id = 0;
13728 if (cp < endp && *endp == '\0') {
13729 /* If there was a colon, the unit number follows. */
13730 cp++;
13731 if (ddi_strtol(cp, NULL, 0, &id) != 0) {
13732 ill_refrele(ill);
13733 return (NULL);
13734 }
13735 }
13736
13737 mutex_enter(&ill->ill_lock);
13738 /* Now see if there is an IPIF with this unit number. */
13739 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13740 if (ipif->ipif_id == id) {
13741 if (zoneid != ALL_ZONES &&
13742 zoneid != ipif->ipif_zoneid &&
13743 ipif->ipif_zoneid != ALL_ZONES) {
13744 mutex_exit(&ill->ill_lock);
13745 ill_refrele(ill);
13746 return (NULL);
13747 }
13748 if (IPIF_CAN_LOOKUP(ipif)) {
13749 ipif_refhold_locked(ipif);
13750 mutex_exit(&ill->ill_lock);
13751 if (!did_alloc)
13752 *exists = B_TRUE;
13753 /*
13754 * Drop locks before calling ill_refrele
13755 * since it can potentially call into
13756 * ipif_ill_refrele_tail which can end up
13757 * in trying to acquire any lock.
13758 */
13759 ill_refrele(ill);
13760 return (ipif);
13761 }
13762 }
13763 }
13764
13765 if (!do_alloc) {
13766 mutex_exit(&ill->ill_lock);
13767 ill_refrele(ill);
13768 return (NULL);
13769 }
13770
13771 /*
13772 * If none found, atomically allocate and return a new one.
13773 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL
13774 * to support "receive only" use of lo0:1 etc. as is still done
13775 * below as an initial guess.
13776 * However, this is now likely to be overriden later in ipif_up_done()
13777 * when we know for sure what address has been configured on the
13778 * interface, since we might have more than one loopback interface
13779 * with a loopback address, e.g. in the case of zones, and all the
13780 * interfaces with loopback addresses need to be marked IRE_LOOPBACK.
13781 */
13782 if (ill->ill_net_type == IRE_LOOPBACK && id == 0)
13783 ire_type = IRE_LOOPBACK;
13784 else
13785 ire_type = IRE_LOCAL;
13786 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL);
13787 if (ipif != NULL)
13788 ipif_refhold_locked(ipif);
13789 mutex_exit(&ill->ill_lock);
13790 ill_refrele(ill);
13791 return (ipif);
13792 }
13793
13794 /*
13795 * Variant of the above that queues the request on the ipsq when
13796 * IPIF_CHANGING is set.
13797 */
13798 static ipif_t *
ipif_lookup_on_name_async(char * name,size_t namelen,boolean_t isv6,zoneid_t zoneid,queue_t * q,mblk_t * mp,ipsq_func_t func,int * error,ip_stack_t * ipst)13799 ipif_lookup_on_name_async(char *name, size_t namelen, boolean_t isv6,
13800 zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error,
13801 ip_stack_t *ipst)
13802 {
13803 char *cp;
13804 char *endp;
13805 long id;
13806 ill_t *ill;
13807 ipif_t *ipif;
13808 boolean_t did_alloc = B_FALSE;
13809 ipsq_t *ipsq;
13810
13811 if (error != NULL)
13812 *error = 0;
13813
13814 if (namelen == 0) {
13815 if (error != NULL)
13816 *error = ENXIO;
13817 return (NULL);
13818 }
13819
13820 /* Look for a colon in the name. */
13821 endp = &name[namelen];
13822 for (cp = endp; --cp > name; ) {
13823 if (*cp == IPIF_SEPARATOR_CHAR)
13824 break;
13825 }
13826
13827 if (*cp == IPIF_SEPARATOR_CHAR) {
13828 /*
13829 * Reject any non-decimal aliases for logical
13830 * interfaces. Aliases with leading zeroes
13831 * are also rejected as they introduce ambiguity
13832 * in the naming of the interfaces.
13833 * In order to confirm with existing semantics,
13834 * and to not break any programs/script relying
13835 * on that behaviour, if<0>:0 is considered to be
13836 * a valid interface.
13837 *
13838 * If alias has two or more digits and the first
13839 * is zero, fail.
13840 */
13841 if (&cp[2] < endp && cp[1] == '0') {
13842 if (error != NULL)
13843 *error = EINVAL;
13844 return (NULL);
13845 }
13846 }
13847
13848 if (cp <= name) {
13849 cp = endp;
13850 } else {
13851 *cp = '\0';
13852 }
13853
13854 /*
13855 * Look up the ILL, based on the portion of the name
13856 * before the slash. ill_lookup_on_name returns a held ill.
13857 * Temporary to check whether ill exists already. If so
13858 * ill_lookup_on_name will clear it.
13859 */
13860 ill = ill_lookup_on_name(name, B_FALSE, isv6, &did_alloc, ipst);
13861 if (cp != endp)
13862 *cp = IPIF_SEPARATOR_CHAR;
13863 if (ill == NULL)
13864 return (NULL);
13865
13866 /* Establish the unit number in the name. */
13867 id = 0;
13868 if (cp < endp && *endp == '\0') {
13869 /* If there was a colon, the unit number follows. */
13870 cp++;
13871 if (ddi_strtol(cp, NULL, 0, &id) != 0) {
13872 ill_refrele(ill);
13873 if (error != NULL)
13874 *error = ENXIO;
13875 return (NULL);
13876 }
13877 }
13878
13879 GRAB_CONN_LOCK(q);
13880 mutex_enter(&ill->ill_lock);
13881 /* Now see if there is an IPIF with this unit number. */
13882 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13883 if (ipif->ipif_id == id) {
13884 if (zoneid != ALL_ZONES &&
13885 zoneid != ipif->ipif_zoneid &&
13886 ipif->ipif_zoneid != ALL_ZONES) {
13887 mutex_exit(&ill->ill_lock);
13888 RELEASE_CONN_LOCK(q);
13889 ill_refrele(ill);
13890 if (error != NULL)
13891 *error = ENXIO;
13892 return (NULL);
13893 }
13894
13895 if (!(IPIF_IS_CHANGING(ipif) ||
13896 IPIF_IS_CONDEMNED(ipif)) ||
13897 IAM_WRITER_IPIF(ipif)) {
13898 ipif_refhold_locked(ipif);
13899 mutex_exit(&ill->ill_lock);
13900 /*
13901 * Drop locks before calling ill_refrele
13902 * since it can potentially call into
13903 * ipif_ill_refrele_tail which can end up
13904 * in trying to acquire any lock.
13905 */
13906 RELEASE_CONN_LOCK(q);
13907 ill_refrele(ill);
13908 return (ipif);
13909 } else if (q != NULL && !IPIF_IS_CONDEMNED(ipif)) {
13910 ipsq = ill->ill_phyint->phyint_ipsq;
13911 mutex_enter(&ipsq->ipsq_lock);
13912 mutex_enter(&ipsq->ipsq_xop->ipx_lock);
13913 mutex_exit(&ill->ill_lock);
13914 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
13915 mutex_exit(&ipsq->ipsq_xop->ipx_lock);
13916 mutex_exit(&ipsq->ipsq_lock);
13917 RELEASE_CONN_LOCK(q);
13918 ill_refrele(ill);
13919 if (error != NULL)
13920 *error = EINPROGRESS;
13921 return (NULL);
13922 }
13923 }
13924 }
13925 RELEASE_CONN_LOCK(q);
13926 mutex_exit(&ill->ill_lock);
13927 ill_refrele(ill);
13928 if (error != NULL)
13929 *error = ENXIO;
13930 return (NULL);
13931 }
13932
13933 /*
13934 * This routine is called whenever a new address comes up on an ipif. If
13935 * we are configured to respond to address mask requests, then we are supposed
13936 * to broadcast an address mask reply at this time. This routine is also
13937 * called if we are already up, but a netmask change is made. This is legal
13938 * but might not make the system manager very popular. (May be called
13939 * as writer.)
13940 */
13941 void
ipif_mask_reply(ipif_t * ipif)13942 ipif_mask_reply(ipif_t *ipif)
13943 {
13944 icmph_t *icmph;
13945 ipha_t *ipha;
13946 mblk_t *mp;
13947 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
13948 ip_xmit_attr_t ixas;
13949
13950 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN)
13951
13952 if (!ipst->ips_ip_respond_to_address_mask_broadcast)
13953 return;
13954
13955 /* ICMP mask reply is IPv4 only */
13956 ASSERT(!ipif->ipif_isv6);
13957 /* ICMP mask reply is not for a loopback interface */
13958 ASSERT(ipif->ipif_ill->ill_wq != NULL);
13959
13960 if (ipif->ipif_lcl_addr == INADDR_ANY)
13961 return;
13962
13963 mp = allocb(REPLY_LEN, BPRI_HI);
13964 if (mp == NULL)
13965 return;
13966 mp->b_wptr = mp->b_rptr + REPLY_LEN;
13967
13968 ipha = (ipha_t *)mp->b_rptr;
13969 bzero(ipha, REPLY_LEN);
13970 *ipha = icmp_ipha;
13971 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl;
13972 ipha->ipha_src = ipif->ipif_lcl_addr;
13973 ipha->ipha_dst = ipif->ipif_brd_addr;
13974 ipha->ipha_length = htons(REPLY_LEN);
13975 ipha->ipha_ident = 0;
13976
13977 icmph = (icmph_t *)&ipha[1];
13978 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
13979 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
13980 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0);
13981
13982 bzero(&ixas, sizeof (ixas));
13983 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
13984 ixas.ixa_zoneid = ALL_ZONES;
13985 ixas.ixa_ifindex = 0;
13986 ixas.ixa_ipst = ipst;
13987 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
13988 (void) ip_output_simple(mp, &ixas);
13989 ixa_cleanup(&ixas);
13990 #undef REPLY_LEN
13991 }
13992
13993 /*
13994 * Join the ipif specific multicast groups.
13995 * Must be called after a mapping has been set up in the resolver. (Always
13996 * called as writer.)
13997 */
13998 void
ipif_multicast_up(ipif_t * ipif)13999 ipif_multicast_up(ipif_t *ipif)
14000 {
14001 int err;
14002 ill_t *ill;
14003 ilm_t *ilm;
14004
14005 ASSERT(IAM_WRITER_IPIF(ipif));
14006
14007 ill = ipif->ipif_ill;
14008
14009 ip1dbg(("ipif_multicast_up\n"));
14010 if (!(ill->ill_flags & ILLF_MULTICAST) ||
14011 ipif->ipif_allhosts_ilm != NULL)
14012 return;
14013
14014 if (ipif->ipif_isv6) {
14015 in6_addr_t v6allmc = ipv6_all_hosts_mcast;
14016 in6_addr_t v6solmc = ipv6_solicited_node_mcast;
14017
14018 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3];
14019
14020 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
14021 return;
14022
14023 ip1dbg(("ipif_multicast_up - addmulti\n"));
14024
14025 /*
14026 * Join the all hosts multicast address. We skip this for
14027 * underlying IPMP interfaces since they should be invisible.
14028 */
14029 if (!IS_UNDER_IPMP(ill)) {
14030 ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid,
14031 &err);
14032 if (ilm == NULL) {
14033 ASSERT(err != 0);
14034 ip0dbg(("ipif_multicast_up: "
14035 "all_hosts_mcast failed %d\n", err));
14036 return;
14037 }
14038 ipif->ipif_allhosts_ilm = ilm;
14039 }
14040
14041 /*
14042 * Enable multicast for the solicited node multicast address.
14043 * If IPMP we need to put the membership on the upper ill.
14044 */
14045 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
14046 ill_t *mcast_ill = NULL;
14047 boolean_t need_refrele;
14048
14049 if (IS_UNDER_IPMP(ill) &&
14050 (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) {
14051 need_refrele = B_TRUE;
14052 } else {
14053 mcast_ill = ill;
14054 need_refrele = B_FALSE;
14055 }
14056
14057 ilm = ip_addmulti(&v6solmc, mcast_ill,
14058 ipif->ipif_zoneid, &err);
14059 if (need_refrele)
14060 ill_refrele(mcast_ill);
14061
14062 if (ilm == NULL) {
14063 ASSERT(err != 0);
14064 ip0dbg(("ipif_multicast_up: solicited MC"
14065 " failed %d\n", err));
14066 if ((ilm = ipif->ipif_allhosts_ilm) != NULL) {
14067 ipif->ipif_allhosts_ilm = NULL;
14068 (void) ip_delmulti(ilm);
14069 }
14070 return;
14071 }
14072 ipif->ipif_solmulti_ilm = ilm;
14073 }
14074 } else {
14075 in6_addr_t v6group;
14076
14077 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill))
14078 return;
14079
14080 /* Join the all hosts multicast address */
14081 ip1dbg(("ipif_multicast_up - addmulti\n"));
14082 IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group);
14083
14084 ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err);
14085 if (ilm == NULL) {
14086 ASSERT(err != 0);
14087 ip0dbg(("ipif_multicast_up: failed %d\n", err));
14088 return;
14089 }
14090 ipif->ipif_allhosts_ilm = ilm;
14091 }
14092 }
14093
14094 /*
14095 * Blow away any multicast groups that we joined in ipif_multicast_up().
14096 * (ilms from explicit memberships are handled in conn_update_ill.)
14097 */
14098 void
ipif_multicast_down(ipif_t * ipif)14099 ipif_multicast_down(ipif_t *ipif)
14100 {
14101 ASSERT(IAM_WRITER_IPIF(ipif));
14102
14103 ip1dbg(("ipif_multicast_down\n"));
14104
14105 if (ipif->ipif_allhosts_ilm != NULL) {
14106 (void) ip_delmulti(ipif->ipif_allhosts_ilm);
14107 ipif->ipif_allhosts_ilm = NULL;
14108 }
14109 if (ipif->ipif_solmulti_ilm != NULL) {
14110 (void) ip_delmulti(ipif->ipif_solmulti_ilm);
14111 ipif->ipif_solmulti_ilm = NULL;
14112 }
14113 }
14114
14115 /*
14116 * Used when an interface comes up to recreate any extra routes on this
14117 * interface.
14118 */
14119 int
ill_recover_saved_ire(ill_t * ill)14120 ill_recover_saved_ire(ill_t *ill)
14121 {
14122 mblk_t *mp;
14123 ip_stack_t *ipst = ill->ill_ipst;
14124
14125 ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name));
14126
14127 mutex_enter(&ill->ill_saved_ire_lock);
14128 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) {
14129 ire_t *ire, *nire;
14130 ifrt_t *ifrt;
14131
14132 ifrt = (ifrt_t *)mp->b_rptr;
14133 /*
14134 * Create a copy of the IRE with the saved address and netmask.
14135 */
14136 if (ill->ill_isv6) {
14137 ire = ire_create_v6(
14138 &ifrt->ifrt_v6addr,
14139 &ifrt->ifrt_v6mask,
14140 &ifrt->ifrt_v6gateway_addr,
14141 ifrt->ifrt_type,
14142 ill,
14143 ifrt->ifrt_zoneid,
14144 ifrt->ifrt_flags,
14145 NULL,
14146 ipst);
14147 } else {
14148 ire = ire_create(
14149 (uint8_t *)&ifrt->ifrt_addr,
14150 (uint8_t *)&ifrt->ifrt_mask,
14151 (uint8_t *)&ifrt->ifrt_gateway_addr,
14152 ifrt->ifrt_type,
14153 ill,
14154 ifrt->ifrt_zoneid,
14155 ifrt->ifrt_flags,
14156 NULL,
14157 ipst);
14158 }
14159 if (ire == NULL) {
14160 mutex_exit(&ill->ill_saved_ire_lock);
14161 return (ENOMEM);
14162 }
14163
14164 if (ifrt->ifrt_flags & RTF_SETSRC) {
14165 if (ill->ill_isv6) {
14166 ire->ire_setsrc_addr_v6 =
14167 ifrt->ifrt_v6setsrc_addr;
14168 } else {
14169 ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr;
14170 }
14171 }
14172
14173 /*
14174 * Some software (for example, GateD and Sun Cluster) attempts
14175 * to create (what amount to) IRE_PREFIX routes with the
14176 * loopback address as the gateway. This is primarily done to
14177 * set up prefixes with the RTF_REJECT flag set (for example,
14178 * when generating aggregate routes.)
14179 *
14180 * If the IRE type (as defined by ill->ill_net_type) is
14181 * IRE_LOOPBACK, then we map the request into a
14182 * IRE_IF_NORESOLVER.
14183 */
14184 if (ill->ill_net_type == IRE_LOOPBACK)
14185 ire->ire_type = IRE_IF_NORESOLVER;
14186
14187 /*
14188 * ire held by ire_add, will be refreled' towards the
14189 * the end of ipif_up_done
14190 */
14191 nire = ire_add(ire);
14192 /*
14193 * Check if it was a duplicate entry. This handles
14194 * the case of two racing route adds for the same route
14195 */
14196 if (nire == NULL) {
14197 ip1dbg(("ill_recover_saved_ire: FAILED\n"));
14198 } else if (nire != ire) {
14199 ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n",
14200 (void *)nire));
14201 ire_delete(nire);
14202 } else {
14203 ip1dbg(("ill_recover_saved_ire: added ire %p\n",
14204 (void *)nire));
14205 }
14206 if (nire != NULL)
14207 ire_refrele(nire);
14208 }
14209 mutex_exit(&ill->ill_saved_ire_lock);
14210 return (0);
14211 }
14212
14213 /*
14214 * Used to set the netmask and broadcast address to default values when the
14215 * interface is brought up. (Always called as writer.)
14216 */
14217 static void
ipif_set_default(ipif_t * ipif)14218 ipif_set_default(ipif_t *ipif)
14219 {
14220 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
14221
14222 if (!ipif->ipif_isv6) {
14223 /*
14224 * Interface holds an IPv4 address. Default
14225 * mask is the natural netmask.
14226 */
14227 if (!ipif->ipif_net_mask) {
14228 ipaddr_t v4mask;
14229
14230 v4mask = ip_net_mask(ipif->ipif_lcl_addr);
14231 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask);
14232 }
14233 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14234 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14235 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
14236 } else {
14237 V6_MASK_COPY(ipif->ipif_v6lcl_addr,
14238 ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
14239 }
14240 /*
14241 * NOTE: SunOS 4.X does this even if the broadcast address
14242 * has been already set thus we do the same here.
14243 */
14244 if (ipif->ipif_flags & IPIF_BROADCAST) {
14245 ipaddr_t v4addr;
14246
14247 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask;
14248 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr);
14249 }
14250 } else {
14251 /*
14252 * Interface holds an IPv6-only address. Default
14253 * mask is all-ones.
14254 */
14255 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))
14256 ipif->ipif_v6net_mask = ipv6_all_ones;
14257 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14258 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14259 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
14260 } else {
14261 V6_MASK_COPY(ipif->ipif_v6lcl_addr,
14262 ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
14263 }
14264 }
14265 }
14266
14267 /*
14268 * Return 0 if this address can be used as local address without causing
14269 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address
14270 * is already up on a different ill, and EADDRINUSE if it's up on the same ill.
14271 * Note that the same IPv6 link-local address is allowed as long as the ills
14272 * are not on the same link.
14273 */
14274 int
ip_addr_availability_check(ipif_t * new_ipif)14275 ip_addr_availability_check(ipif_t *new_ipif)
14276 {
14277 in6_addr_t our_v6addr;
14278 ill_t *ill;
14279 ipif_t *ipif;
14280 ill_walk_context_t ctx;
14281 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst;
14282
14283 ASSERT(IAM_WRITER_IPIF(new_ipif));
14284 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock));
14285 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock));
14286
14287 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED;
14288 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) ||
14289 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr))
14290 return (0);
14291
14292 our_v6addr = new_ipif->ipif_v6lcl_addr;
14293
14294 if (new_ipif->ipif_isv6)
14295 ill = ILL_START_WALK_V6(&ctx, ipst);
14296 else
14297 ill = ILL_START_WALK_V4(&ctx, ipst);
14298
14299 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
14300 for (ipif = ill->ill_ipif; ipif != NULL;
14301 ipif = ipif->ipif_next) {
14302 if ((ipif == new_ipif) ||
14303 !(ipif->ipif_flags & IPIF_UP) ||
14304 (ipif->ipif_flags & IPIF_UNNUMBERED) ||
14305 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
14306 &our_v6addr))
14307 continue;
14308
14309 if (new_ipif->ipif_flags & IPIF_POINTOPOINT)
14310 new_ipif->ipif_flags |= IPIF_UNNUMBERED;
14311 else if (ipif->ipif_flags & IPIF_POINTOPOINT)
14312 ipif->ipif_flags |= IPIF_UNNUMBERED;
14313 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) ||
14314 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) &&
14315 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill))
14316 continue;
14317 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid &&
14318 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill))
14319 continue;
14320 else if (new_ipif->ipif_ill == ill)
14321 return (EADDRINUSE);
14322 else
14323 return (EADDRNOTAVAIL);
14324 }
14325 }
14326
14327 return (0);
14328 }
14329
14330 /*
14331 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add
14332 * IREs for the ipif.
14333 * When the routine returns EINPROGRESS then mp has been consumed and
14334 * the ioctl will be acked from ip_rput_dlpi.
14335 */
14336 int
ipif_up(ipif_t * ipif,queue_t * q,mblk_t * mp)14337 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp)
14338 {
14339 ill_t *ill = ipif->ipif_ill;
14340 boolean_t isv6 = ipif->ipif_isv6;
14341 int err = 0;
14342 boolean_t success;
14343 uint_t ipif_orig_id;
14344 ip_stack_t *ipst = ill->ill_ipst;
14345
14346 ASSERT(IAM_WRITER_IPIF(ipif));
14347
14348 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id));
14349 DTRACE_PROBE3(ipif__downup, char *, "ipif_up",
14350 ill_t *, ill, ipif_t *, ipif);
14351
14352 /* Shouldn't get here if it is already up. */
14353 if (ipif->ipif_flags & IPIF_UP)
14354 return (EALREADY);
14355
14356 /*
14357 * If this is a request to bring up a data address on an interface
14358 * under IPMP, then move the address to its IPMP meta-interface and
14359 * try to bring it up. One complication is that the zeroth ipif for
14360 * an ill is special, in that every ill always has one, and that code
14361 * throughout IP deferences ill->ill_ipif without holding any locks.
14362 */
14363 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) &&
14364 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) {
14365 ipif_t *stubipif = NULL, *moveipif = NULL;
14366 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp);
14367
14368 /*
14369 * The ipif being brought up should be quiesced. If it's not,
14370 * something has gone amiss and we need to bail out. (If it's
14371 * quiesced, we know it will remain so via IPIF_CONDEMNED.)
14372 */
14373 mutex_enter(&ill->ill_lock);
14374 if (!ipif_is_quiescent(ipif)) {
14375 mutex_exit(&ill->ill_lock);
14376 return (EINVAL);
14377 }
14378 mutex_exit(&ill->ill_lock);
14379
14380 /*
14381 * If we're going to need to allocate ipifs, do it prior
14382 * to starting the move (and grabbing locks).
14383 */
14384 if (ipif->ipif_id == 0) {
14385 if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
14386 B_FALSE, &err)) == NULL) {
14387 return (err);
14388 }
14389 if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
14390 B_FALSE, &err)) == NULL) {
14391 mi_free(moveipif);
14392 return (err);
14393 }
14394 }
14395
14396 /*
14397 * Grab or transfer the ipif to move. During the move, keep
14398 * ill_g_lock held to prevent any ill walker threads from
14399 * seeing things in an inconsistent state.
14400 */
14401 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14402 if (ipif->ipif_id != 0) {
14403 ipif_remove(ipif);
14404 } else {
14405 ipif_transfer(ipif, moveipif, stubipif);
14406 ipif = moveipif;
14407 }
14408
14409 /*
14410 * Place the ipif on the IPMP ill. If the zeroth ipif on
14411 * the IPMP ill is a stub (0.0.0.0 down address) then we
14412 * replace that one. Otherwise, pick the next available slot.
14413 */
14414 ipif->ipif_ill = ipmp_ill;
14415 ipif_orig_id = ipif->ipif_id;
14416
14417 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) {
14418 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL);
14419 ipif = ipmp_ill->ill_ipif;
14420 } else {
14421 ipif->ipif_id = -1;
14422 if ((err = ipif_insert(ipif, B_FALSE)) != 0) {
14423 /*
14424 * No more available ipif_id's -- put it back
14425 * on the original ill and fail the operation.
14426 * Since we're writer on the ill, we can be
14427 * sure our old slot is still available.
14428 */
14429 ipif->ipif_id = ipif_orig_id;
14430 ipif->ipif_ill = ill;
14431 if (ipif_orig_id == 0) {
14432 ipif_transfer(ipif, ill->ill_ipif,
14433 NULL);
14434 } else {
14435 VERIFY(ipif_insert(ipif, B_FALSE) == 0);
14436 }
14437 rw_exit(&ipst->ips_ill_g_lock);
14438 return (err);
14439 }
14440 }
14441 rw_exit(&ipst->ips_ill_g_lock);
14442
14443 /*
14444 * Tell SCTP that the ipif has moved. Note that even if we
14445 * had to allocate a new ipif, the original sequence id was
14446 * preserved and therefore SCTP won't know.
14447 */
14448 sctp_move_ipif(ipif, ill, ipmp_ill);
14449
14450 /*
14451 * If the ipif being brought up was on slot zero, then we
14452 * first need to bring up the placeholder we stuck there. In
14453 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive
14454 * call to ipif_up() itself, if we successfully bring up the
14455 * placeholder, we'll check ill_move_ipif and bring it up too.
14456 */
14457 if (ipif_orig_id == 0) {
14458 ASSERT(ill->ill_move_ipif == NULL);
14459 ill->ill_move_ipif = ipif;
14460 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0)
14461 ASSERT(ill->ill_move_ipif == NULL);
14462 if (err != EINPROGRESS)
14463 ill->ill_move_ipif = NULL;
14464 return (err);
14465 }
14466
14467 /*
14468 * Bring it up on the IPMP ill.
14469 */
14470 return (ipif_up(ipif, q, mp));
14471 }
14472
14473 /* Skip arp/ndp for any loopback interface. */
14474 if (ill->ill_wq != NULL) {
14475 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
14476 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
14477
14478 if (!ill->ill_dl_up) {
14479 /*
14480 * ill_dl_up is not yet set. i.e. we are yet to
14481 * DL_BIND with the driver and this is the first
14482 * logical interface on the ill to become "up".
14483 * Tell the driver to get going (via DL_BIND_REQ).
14484 * Note that changing "significant" IFF_ flags
14485 * address/netmask etc cause a down/up dance, but
14486 * does not cause an unbind (DL_UNBIND) with the driver
14487 */
14488 return (ill_dl_up(ill, ipif, mp, q));
14489 }
14490
14491 /*
14492 * ipif_resolver_up may end up needeing to bind/attach
14493 * the ARP stream, which in turn necessitates a
14494 * DLPI message exchange with the driver. ioctls are
14495 * serialized and so we cannot send more than one
14496 * interface up message at a time. If ipif_resolver_up
14497 * does need to wait for the DLPI handshake for the ARP stream,
14498 * we get EINPROGRESS and we will complete in arp_bringup_done.
14499 */
14500
14501 ASSERT(connp != NULL || !CONN_Q(q));
14502 if (connp != NULL)
14503 mutex_enter(&connp->conn_lock);
14504 mutex_enter(&ill->ill_lock);
14505 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
14506 mutex_exit(&ill->ill_lock);
14507 if (connp != NULL)
14508 mutex_exit(&connp->conn_lock);
14509 if (!success)
14510 return (EINTR);
14511
14512 /*
14513 * Crank up IPv6 neighbor discovery. Unlike ARP, this should
14514 * complete when ipif_ndp_up returns.
14515 */
14516 err = ipif_resolver_up(ipif, Res_act_initial);
14517 if (err == EINPROGRESS) {
14518 /* We will complete it in arp_bringup_done() */
14519 return (err);
14520 }
14521
14522 if (isv6 && err == 0)
14523 err = ipif_ndp_up(ipif, B_TRUE);
14524
14525 ASSERT(err != EINPROGRESS);
14526 mp = ipsq_pending_mp_get(ipsq, &connp);
14527 ASSERT(mp != NULL);
14528 if (err != 0)
14529 return (err);
14530 } else {
14531 /*
14532 * Interfaces without underlying hardware don't do duplicate
14533 * address detection.
14534 */
14535 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
14536 ipif->ipif_addr_ready = 1;
14537 err = ill_add_ires(ill);
14538 /* allocation failure? */
14539 if (err != 0)
14540 return (err);
14541 }
14542
14543 err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif));
14544 if (err == 0 && ill->ill_move_ipif != NULL) {
14545 ipif = ill->ill_move_ipif;
14546 ill->ill_move_ipif = NULL;
14547 return (ipif_up(ipif, q, mp));
14548 }
14549 return (err);
14550 }
14551
14552 /*
14553 * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST.
14554 * The identical set of IREs need to be removed in ill_delete_ires().
14555 */
14556 int
ill_add_ires(ill_t * ill)14557 ill_add_ires(ill_t *ill)
14558 {
14559 ire_t *ire;
14560 in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1};
14561 in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP);
14562
14563 if (ill->ill_ire_multicast != NULL)
14564 return (0);
14565
14566 /*
14567 * provide some dummy ire_addr for creating the ire.
14568 */
14569 if (ill->ill_isv6) {
14570 ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill,
14571 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst);
14572 } else {
14573 ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill,
14574 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst);
14575 }
14576 if (ire == NULL)
14577 return (ENOMEM);
14578
14579 ill->ill_ire_multicast = ire;
14580 return (0);
14581 }
14582
14583 void
ill_delete_ires(ill_t * ill)14584 ill_delete_ires(ill_t *ill)
14585 {
14586 if (ill->ill_ire_multicast != NULL) {
14587 /*
14588 * BIND/ATTACH completed; Release the ref for ill_ire_multicast
14589 * which was taken without any th_tracing enabled.
14590 * We also mark it as condemned (note that it was never added)
14591 * so that caching conn's can move off of it.
14592 */
14593 ire_make_condemned(ill->ill_ire_multicast);
14594 ire_refrele_notr(ill->ill_ire_multicast);
14595 ill->ill_ire_multicast = NULL;
14596 }
14597 }
14598
14599 /*
14600 * Perform a bind for the physical device.
14601 * When the routine returns EINPROGRESS then mp has been consumed and
14602 * the ioctl will be acked from ip_rput_dlpi.
14603 * Allocate an unbind message and save it until ipif_down.
14604 */
14605 static int
ill_dl_up(ill_t * ill,ipif_t * ipif,mblk_t * mp,queue_t * q)14606 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
14607 {
14608 mblk_t *bind_mp = NULL;
14609 mblk_t *unbind_mp = NULL;
14610 conn_t *connp;
14611 boolean_t success;
14612 int err;
14613
14614 DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill);
14615
14616 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name));
14617 ASSERT(IAM_WRITER_ILL(ill));
14618 ASSERT(mp != NULL);
14619
14620 /*
14621 * Make sure we have an IRE_MULTICAST in case we immediately
14622 * start receiving packets.
14623 */
14624 err = ill_add_ires(ill);
14625 if (err != 0)
14626 goto bad;
14627
14628 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
14629 DL_BIND_REQ);
14630 if (bind_mp == NULL)
14631 goto bad;
14632 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
14633 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;
14634
14635 /*
14636 * ill_unbind_mp would be non-null if the following sequence had
14637 * happened:
14638 * - send DL_BIND_REQ to driver, wait for response
14639 * - multiple ioctls that need to bring the ipif up are encountered,
14640 * but they cannot enter the ipsq due to the outstanding DL_BIND_REQ.
14641 * These ioctls will then be enqueued on the ipsq
14642 * - a DL_ERROR_ACK is returned for the DL_BIND_REQ
14643 * At this point, the pending ioctls in the ipsq will be drained, and
14644 * since ill->ill_dl_up was not set, ill_dl_up would be invoked with
14645 * a non-null ill->ill_unbind_mp
14646 */
14647 if (ill->ill_unbind_mp == NULL) {
14648 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t),
14649 DL_UNBIND_REQ);
14650 if (unbind_mp == NULL)
14651 goto bad;
14652 }
14653 /*
14654 * Record state needed to complete this operation when the
14655 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks.
14656 */
14657 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
14658 ASSERT(connp != NULL || !CONN_Q(q));
14659 GRAB_CONN_LOCK(q);
14660 mutex_enter(&ipif->ipif_ill->ill_lock);
14661 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
14662 mutex_exit(&ipif->ipif_ill->ill_lock);
14663 RELEASE_CONN_LOCK(q);
14664 if (!success)
14665 goto bad;
14666
14667 /*
14668 * Save the unbind message for ill_dl_down(); it will be consumed when
14669 * the interface goes down.
14670 */
14671 if (ill->ill_unbind_mp == NULL)
14672 ill->ill_unbind_mp = unbind_mp;
14673
14674 ill_dlpi_send(ill, bind_mp);
14675 /* Send down link-layer capabilities probe if not already done. */
14676 ill_capability_probe(ill);
14677
14678 /*
14679 * Sysid used to rely on the fact that netboots set domainname
14680 * and the like. Now that miniroot boots aren't strictly netboots
14681 * and miniroot network configuration is driven from userland
14682 * these things still need to be set. This situation can be detected
14683 * by comparing the interface being configured here to the one
14684 * dhcifname was set to reference by the boot loader. Once sysid is
14685 * converted to use dhcp_ipc_getinfo() this call can go away.
14686 */
14687 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) &&
14688 (strcmp(ill->ill_name, dhcifname) == 0) &&
14689 (strlen(srpc_domain) == 0)) {
14690 if (dhcpinit() != 0)
14691 cmn_err(CE_WARN, "no cached dhcp response");
14692 }
14693
14694 /*
14695 * This operation will complete in ip_rput_dlpi with either
14696 * a DL_BIND_ACK or DL_ERROR_ACK.
14697 */
14698 return (EINPROGRESS);
14699 bad:
14700 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name));
14701
14702 freemsg(bind_mp);
14703 freemsg(unbind_mp);
14704 return (ENOMEM);
14705 }
14706
14707 /* Add room for tcp+ip headers */
14708 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20;
14709
14710 /*
14711 * DLPI and ARP is up.
14712 * Create all the IREs associated with an interface. Bring up multicast.
14713 * Set the interface flag and finish other initialization
14714 * that potentially had to be deferred to after DL_BIND_ACK.
14715 */
14716 int
ipif_up_done(ipif_t * ipif)14717 ipif_up_done(ipif_t *ipif)
14718 {
14719 ill_t *ill = ipif->ipif_ill;
14720 int err = 0;
14721 boolean_t loopback = B_FALSE;
14722 boolean_t update_src_selection = B_TRUE;
14723 ipif_t *tmp_ipif;
14724
14725 ip1dbg(("ipif_up_done(%s:%u)\n",
14726 ipif->ipif_ill->ill_name, ipif->ipif_id));
14727 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done",
14728 ill_t *, ill, ipif_t *, ipif);
14729
14730 /* Check if this is a loopback interface */
14731 if (ipif->ipif_ill->ill_wq == NULL)
14732 loopback = B_TRUE;
14733
14734 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
14735
14736 /*
14737 * If all other interfaces for this ill are down or DEPRECATED,
14738 * or otherwise unsuitable for source address selection,
14739 * reset the src generation numbers to make sure source
14740 * address selection gets to take this new ipif into account.
14741 * No need to hold ill_lock while traversing the ipif list since
14742 * we are writer
14743 */
14744 for (tmp_ipif = ill->ill_ipif; tmp_ipif;
14745 tmp_ipif = tmp_ipif->ipif_next) {
14746 if (((tmp_ipif->ipif_flags &
14747 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) ||
14748 !(tmp_ipif->ipif_flags & IPIF_UP)) ||
14749 (tmp_ipif == ipif))
14750 continue;
14751 /* first useable pre-existing interface */
14752 update_src_selection = B_FALSE;
14753 break;
14754 }
14755 if (update_src_selection)
14756 ip_update_source_selection(ill->ill_ipst);
14757
14758 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) {
14759 nce_t *loop_nce = NULL;
14760 uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD);
14761
14762 /*
14763 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
14764 * ipif_lookup_on_name(), but in the case of zones we can have
14765 * several loopback addresses on lo0. So all the interfaces with
14766 * loopback addresses need to be marked IRE_LOOPBACK.
14767 */
14768 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) ==
14769 htonl(INADDR_LOOPBACK))
14770 ipif->ipif_ire_type = IRE_LOOPBACK;
14771 else
14772 ipif->ipif_ire_type = IRE_LOCAL;
14773 if (ill->ill_net_type != IRE_LOOPBACK)
14774 flags |= NCE_F_PUBLISH;
14775
14776 /* add unicast nce for the local addr */
14777 err = nce_lookup_then_add_v4(ill, NULL,
14778 ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags,
14779 ND_REACHABLE, &loop_nce);
14780 /* A shared-IP zone sees EEXIST for lo0:N */
14781 if (err == 0 || err == EEXIST) {
14782 ipif->ipif_added_nce = 1;
14783 loop_nce->nce_ipif_cnt++;
14784 nce_refrele(loop_nce);
14785 err = 0;
14786 } else {
14787 ASSERT(loop_nce == NULL);
14788 return (err);
14789 }
14790 }
14791
14792 /* Create all the IREs associated with this interface */
14793 err = ipif_add_ires_v4(ipif, loopback);
14794 if (err != 0) {
14795 /*
14796 * see comments about return value from
14797 * ip_addr_availability_check() in ipif_add_ires_v4().
14798 */
14799 if (err != EADDRINUSE) {
14800 (void) ipif_arp_down(ipif);
14801 } else {
14802 /*
14803 * Make IPMP aware of the deleted ipif so that
14804 * the needed ipmp cleanup (e.g., of ipif_bound_ill)
14805 * can be completed. Note that we do not want to
14806 * destroy the nce that was created on the ipmp_ill
14807 * for the active copy of the duplicate address in
14808 * use.
14809 */
14810 if (IS_IPMP(ill))
14811 ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
14812 err = EADDRNOTAVAIL;
14813 }
14814 return (err);
14815 }
14816
14817 if (ill->ill_ipif_up_count == 1 && !loopback) {
14818 /* Recover any additional IREs entries for this ill */
14819 (void) ill_recover_saved_ire(ill);
14820 }
14821
14822 if (ill->ill_need_recover_multicast) {
14823 /*
14824 * Need to recover all multicast memberships in the driver.
14825 * This had to be deferred until we had attached. The same
14826 * code exists in ipif_up_done_v6() to recover IPv6
14827 * memberships.
14828 *
14829 * Note that it would be preferable to unconditionally do the
14830 * ill_recover_multicast() in ill_dl_up(), but we cannot do
14831 * that since ill_join_allmulti() depends on ill_dl_up being
14832 * set, and it is not set until we receive a DL_BIND_ACK after
14833 * having called ill_dl_up().
14834 */
14835 ill_recover_multicast(ill);
14836 }
14837
14838 if (ill->ill_ipif_up_count == 1) {
14839 /*
14840 * Since the interface is now up, it may now be active.
14841 */
14842 if (IS_UNDER_IPMP(ill))
14843 ipmp_ill_refresh_active(ill);
14844
14845 /*
14846 * If this is an IPMP interface, we may now be able to
14847 * establish ARP entries.
14848 */
14849 if (IS_IPMP(ill))
14850 ipmp_illgrp_refresh_arpent(ill->ill_grp);
14851 }
14852
14853 /* Join the allhosts multicast address */
14854 ipif_multicast_up(ipif);
14855
14856 if (!loopback && !update_src_selection &&
14857 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)))
14858 ip_update_source_selection(ill->ill_ipst);
14859
14860 if (!loopback && ipif->ipif_addr_ready) {
14861 /* Broadcast an address mask reply. */
14862 ipif_mask_reply(ipif);
14863 }
14864 /* Perhaps ilgs should use this ill */
14865 update_conn_ill(NULL, ill->ill_ipst);
14866
14867 /*
14868 * This had to be deferred until we had bound. Tell routing sockets and
14869 * others that this interface is up if it looks like the address has
14870 * been validated. Otherwise, if it isn't ready yet, wait for
14871 * duplicate address detection to do its thing.
14872 */
14873 if (ipif->ipif_addr_ready)
14874 ipif_up_notify(ipif);
14875 return (0);
14876 }
14877
14878 /*
14879 * Add the IREs associated with the ipif.
14880 * Those MUST be explicitly removed in ipif_delete_ires_v4.
14881 */
14882 static int
ipif_add_ires_v4(ipif_t * ipif,boolean_t loopback)14883 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback)
14884 {
14885 ill_t *ill = ipif->ipif_ill;
14886 ip_stack_t *ipst = ill->ill_ipst;
14887 ire_t *ire_array[20];
14888 ire_t **irep = ire_array;
14889 ire_t **irep1;
14890 ipaddr_t net_mask = 0;
14891 ipaddr_t subnet_mask, route_mask;
14892 int err;
14893 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */
14894 ire_t *ire_if = NULL;
14895 uchar_t *gw;
14896
14897 if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
14898 !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14899 /*
14900 * If we're on a labeled system then make sure that zone-
14901 * private addresses have proper remote host database entries.
14902 */
14903 if (is_system_labeled() &&
14904 ipif->ipif_ire_type != IRE_LOOPBACK &&
14905 !tsol_check_interface_address(ipif))
14906 return (EINVAL);
14907
14908 /* Register the source address for __sin6_src_id */
14909 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
14910 ipif->ipif_zoneid, ipst);
14911 if (err != 0) {
14912 ip0dbg(("ipif_add_ires: srcid_insert %d\n", err));
14913 return (err);
14914 }
14915
14916 if (loopback)
14917 gw = (uchar_t *)&ipif->ipif_lcl_addr;
14918 else
14919 gw = NULL;
14920
14921 /* If the interface address is set, create the local IRE. */
14922 ire_local = ire_create(
14923 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */
14924 (uchar_t *)&ip_g_all_ones, /* mask */
14925 gw, /* gateway */
14926 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */
14927 ipif->ipif_ill,
14928 ipif->ipif_zoneid,
14929 ((ipif->ipif_flags & IPIF_PRIVATE) ?
14930 RTF_PRIVATE : 0) | RTF_KERNEL,
14931 NULL,
14932 ipst);
14933 ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x"
14934 " for 0x%x\n", (void *)ipif, (void *)ire_local,
14935 ipif->ipif_ire_type,
14936 ntohl(ipif->ipif_lcl_addr)));
14937 if (ire_local == NULL) {
14938 ip1dbg(("ipif_up_done: NULL ire_local\n"));
14939 err = ENOMEM;
14940 goto bad;
14941 }
14942 } else {
14943 ip1dbg((
14944 "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n",
14945 ipif->ipif_ire_type,
14946 ntohl(ipif->ipif_lcl_addr),
14947 (uint_t)ipif->ipif_flags));
14948 }
14949 if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
14950 !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14951 net_mask = ip_net_mask(ipif->ipif_lcl_addr);
14952 } else {
14953 net_mask = htonl(IN_CLASSA_NET); /* fallback */
14954 }
14955
14956 subnet_mask = ipif->ipif_net_mask;
14957
14958 /*
14959 * If mask was not specified, use natural netmask of
14960 * interface address. Also, store this mask back into the
14961 * ipif struct.
14962 */
14963 if (subnet_mask == 0) {
14964 subnet_mask = net_mask;
14965 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask);
14966 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
14967 ipif->ipif_v6subnet);
14968 }
14969
14970 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */
14971 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) &&
14972 ipif->ipif_subnet != INADDR_ANY) {
14973 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14974
14975 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14976 route_mask = IP_HOST_MASK;
14977 } else {
14978 route_mask = subnet_mask;
14979 }
14980
14981 ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p "
14982 "creating if IRE ill_net_type 0x%x for 0x%x\n",
14983 (void *)ipif, (void *)ill, ill->ill_net_type,
14984 ntohl(ipif->ipif_subnet)));
14985 ire_if = ire_create(
14986 (uchar_t *)&ipif->ipif_subnet,
14987 (uchar_t *)&route_mask,
14988 (uchar_t *)&ipif->ipif_lcl_addr,
14989 ill->ill_net_type,
14990 ill,
14991 ipif->ipif_zoneid,
14992 ((ipif->ipif_flags & IPIF_PRIVATE) ?
14993 RTF_PRIVATE: 0) | RTF_KERNEL,
14994 NULL,
14995 ipst);
14996 if (ire_if == NULL) {
14997 ip1dbg(("ipif_up_done: NULL ire_if\n"));
14998 err = ENOMEM;
14999 goto bad;
15000 }
15001 }
15002
15003 /*
15004 * Create any necessary broadcast IREs.
15005 */
15006 if ((ipif->ipif_flags & IPIF_BROADCAST) &&
15007 !(ipif->ipif_flags & IPIF_NOXMIT))
15008 irep = ipif_create_bcast_ires(ipif, irep);
15009
15010 /* If an earlier ire_create failed, get out now */
15011 for (irep1 = irep; irep1 > ire_array; ) {
15012 irep1--;
15013 if (*irep1 == NULL) {
15014 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n"));
15015 err = ENOMEM;
15016 goto bad;
15017 }
15018 }
15019
15020 /*
15021 * Need to atomically check for IP address availability under
15022 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new
15023 * ills or new ipifs can be added while we are checking availability.
15024 */
15025 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
15026 mutex_enter(&ipst->ips_ip_addr_avail_lock);
15027 /* Mark it up, and increment counters. */
15028 ipif->ipif_flags |= IPIF_UP;
15029 ill->ill_ipif_up_count++;
15030 err = ip_addr_availability_check(ipif);
15031 mutex_exit(&ipst->ips_ip_addr_avail_lock);
15032 rw_exit(&ipst->ips_ill_g_lock);
15033
15034 if (err != 0) {
15035 /*
15036 * Our address may already be up on the same ill. In this case,
15037 * the ARP entry for our ipif replaced the one for the other
15038 * ipif. So we don't want to delete it (otherwise the other ipif
15039 * would be unable to send packets).
15040 * ip_addr_availability_check() identifies this case for us and
15041 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL
15042 * which is the expected error code.
15043 */
15044 ill->ill_ipif_up_count--;
15045 ipif->ipif_flags &= ~IPIF_UP;
15046 goto bad;
15047 }
15048
15049 /*
15050 * Add in all newly created IREs. ire_create_bcast() has
15051 * already checked for duplicates of the IRE_BROADCAST type.
15052 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure
15053 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is
15054 * a /32 route.
15055 */
15056 if (ire_if != NULL) {
15057 ire_if = ire_add(ire_if);
15058 if (ire_if == NULL) {
15059 err = ENOMEM;
15060 goto bad2;
15061 }
15062 #ifdef DEBUG
15063 ire_refhold_notr(ire_if);
15064 ire_refrele(ire_if);
15065 #endif
15066 }
15067 if (ire_local != NULL) {
15068 ire_local = ire_add(ire_local);
15069 if (ire_local == NULL) {
15070 err = ENOMEM;
15071 goto bad2;
15072 }
15073 #ifdef DEBUG
15074 ire_refhold_notr(ire_local);
15075 ire_refrele(ire_local);
15076 #endif
15077 }
15078 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15079 if (ire_local != NULL)
15080 ipif->ipif_ire_local = ire_local;
15081 if (ire_if != NULL)
15082 ipif->ipif_ire_if = ire_if;
15083 rw_exit(&ipst->ips_ill_g_lock);
15084 ire_local = NULL;
15085 ire_if = NULL;
15086
15087 /*
15088 * We first add all of them, and if that succeeds we refrele the
15089 * bunch. That enables us to delete all of them should any of the
15090 * ire_adds fail.
15091 */
15092 for (irep1 = irep; irep1 > ire_array; ) {
15093 irep1--;
15094 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock)));
15095 *irep1 = ire_add(*irep1);
15096 if (*irep1 == NULL) {
15097 err = ENOMEM;
15098 goto bad2;
15099 }
15100 }
15101
15102 for (irep1 = irep; irep1 > ire_array; ) {
15103 irep1--;
15104 /* refheld by ire_add. */
15105 if (*irep1 != NULL) {
15106 ire_refrele(*irep1);
15107 *irep1 = NULL;
15108 }
15109 }
15110
15111 if (!loopback) {
15112 /*
15113 * If the broadcast address has been set, make sure it makes
15114 * sense based on the interface address.
15115 * Only match on ill since we are sharing broadcast addresses.
15116 */
15117 if ((ipif->ipif_brd_addr != INADDR_ANY) &&
15118 (ipif->ipif_flags & IPIF_BROADCAST)) {
15119 ire_t *ire;
15120
15121 ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0,
15122 IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL,
15123 (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL);
15124
15125 if (ire == NULL) {
15126 /*
15127 * If there isn't a matching broadcast IRE,
15128 * revert to the default for this netmask.
15129 */
15130 ipif->ipif_v6brd_addr = ipv6_all_zeros;
15131 mutex_enter(&ipif->ipif_ill->ill_lock);
15132 ipif_set_default(ipif);
15133 mutex_exit(&ipif->ipif_ill->ill_lock);
15134 } else {
15135 ire_refrele(ire);
15136 }
15137 }
15138
15139 }
15140 return (0);
15141
15142 bad2:
15143 ill->ill_ipif_up_count--;
15144 ipif->ipif_flags &= ~IPIF_UP;
15145
15146 bad:
15147 ip1dbg(("ipif_add_ires: FAILED \n"));
15148 if (ire_local != NULL)
15149 ire_delete(ire_local);
15150 if (ire_if != NULL)
15151 ire_delete(ire_if);
15152
15153 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15154 ire_local = ipif->ipif_ire_local;
15155 ipif->ipif_ire_local = NULL;
15156 ire_if = ipif->ipif_ire_if;
15157 ipif->ipif_ire_if = NULL;
15158 rw_exit(&ipst->ips_ill_g_lock);
15159 if (ire_local != NULL) {
15160 ire_delete(ire_local);
15161 ire_refrele_notr(ire_local);
15162 }
15163 if (ire_if != NULL) {
15164 ire_delete(ire_if);
15165 ire_refrele_notr(ire_if);
15166 }
15167
15168 while (irep > ire_array) {
15169 irep--;
15170 if (*irep != NULL) {
15171 ire_delete(*irep);
15172 }
15173 }
15174 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst);
15175
15176 return (err);
15177 }
15178
15179 /* Remove all the IREs created by ipif_add_ires_v4 */
15180 void
ipif_delete_ires_v4(ipif_t * ipif)15181 ipif_delete_ires_v4(ipif_t *ipif)
15182 {
15183 ill_t *ill = ipif->ipif_ill;
15184 ip_stack_t *ipst = ill->ill_ipst;
15185 ire_t *ire;
15186
15187 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15188 ire = ipif->ipif_ire_local;
15189 ipif->ipif_ire_local = NULL;
15190 rw_exit(&ipst->ips_ill_g_lock);
15191 if (ire != NULL) {
15192 /*
15193 * Move count to ipif so we don't loose the count due to
15194 * a down/up dance.
15195 */
15196 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count);
15197
15198 ire_delete(ire);
15199 ire_refrele_notr(ire);
15200 }
15201 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15202 ire = ipif->ipif_ire_if;
15203 ipif->ipif_ire_if = NULL;
15204 rw_exit(&ipst->ips_ill_g_lock);
15205 if (ire != NULL) {
15206 ire_delete(ire);
15207 ire_refrele_notr(ire);
15208 }
15209
15210 /*
15211 * Delete the broadcast IREs.
15212 */
15213 if ((ipif->ipif_flags & IPIF_BROADCAST) &&
15214 !(ipif->ipif_flags & IPIF_NOXMIT))
15215 ipif_delete_bcast_ires(ipif);
15216 }
15217
15218 /*
15219 * Checks for availbility of a usable source address (if there is one) when the
15220 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note
15221 * this selection is done regardless of the destination.
15222 */
15223 boolean_t
ipif_zone_avail(uint_t ifindex,boolean_t isv6,zoneid_t zoneid,ip_stack_t * ipst)15224 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid,
15225 ip_stack_t *ipst)
15226 {
15227 ipif_t *ipif = NULL;
15228 ill_t *uill;
15229
15230 ASSERT(ifindex != 0);
15231
15232 uill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
15233 if (uill == NULL)
15234 return (B_FALSE);
15235
15236 mutex_enter(&uill->ill_lock);
15237 for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15238 if (IPIF_IS_CONDEMNED(ipif))
15239 continue;
15240 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15241 continue;
15242 if (!(ipif->ipif_flags & IPIF_UP))
15243 continue;
15244 if (ipif->ipif_zoneid != zoneid)
15245 continue;
15246 if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) :
15247 ipif->ipif_lcl_addr == INADDR_ANY)
15248 continue;
15249 mutex_exit(&uill->ill_lock);
15250 ill_refrele(uill);
15251 return (B_TRUE);
15252 }
15253 mutex_exit(&uill->ill_lock);
15254 ill_refrele(uill);
15255 return (B_FALSE);
15256 }
15257
15258 /*
15259 * Find an ipif with a good local address on the ill+zoneid.
15260 */
15261 ipif_t *
ipif_good_addr(ill_t * ill,zoneid_t zoneid)15262 ipif_good_addr(ill_t *ill, zoneid_t zoneid)
15263 {
15264 ipif_t *ipif;
15265
15266 mutex_enter(&ill->ill_lock);
15267 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15268 if (IPIF_IS_CONDEMNED(ipif))
15269 continue;
15270 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15271 continue;
15272 if (!(ipif->ipif_flags & IPIF_UP))
15273 continue;
15274 if (ipif->ipif_zoneid != zoneid &&
15275 ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES)
15276 continue;
15277 if (ill->ill_isv6 ?
15278 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) :
15279 ipif->ipif_lcl_addr == INADDR_ANY)
15280 continue;
15281 ipif_refhold_locked(ipif);
15282 mutex_exit(&ill->ill_lock);
15283 return (ipif);
15284 }
15285 mutex_exit(&ill->ill_lock);
15286 return (NULL);
15287 }
15288
15289 /*
15290 * IP source address type, sorted from worst to best. For a given type,
15291 * always prefer IP addresses on the same subnet. All-zones addresses are
15292 * suboptimal because they pose problems with unlabeled destinations.
15293 */
15294 typedef enum {
15295 IPIF_NONE,
15296 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */
15297 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */
15298 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */
15299 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */
15300 IPIF_DIFFNET, /* normal and different subnet */
15301 IPIF_SAMENET, /* normal and same subnet */
15302 IPIF_LOCALADDR /* local loopback */
15303 } ipif_type_t;
15304
15305 /*
15306 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone
15307 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t
15308 * enumeration, and return the highest-rated ipif. If there's a tie, we pick
15309 * the first one, unless IPMP is used in which case we round-robin among them;
15310 * see below for more.
15311 *
15312 * Returns NULL if there is no suitable source address for the ill.
15313 * This only occurs when there is no valid source address for the ill.
15314 */
15315 ipif_t *
ipif_select_source_v4(ill_t * ill,ipaddr_t dst,zoneid_t zoneid,boolean_t allow_usesrc,boolean_t * notreadyp)15316 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid,
15317 boolean_t allow_usesrc, boolean_t *notreadyp)
15318 {
15319 ill_t *usill = NULL;
15320 ill_t *ipmp_ill = NULL;
15321 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif;
15322 ipif_type_t type, best_type;
15323 tsol_tpc_t *src_rhtp, *dst_rhtp;
15324 ip_stack_t *ipst = ill->ill_ipst;
15325 boolean_t samenet;
15326
15327 if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) {
15328 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex,
15329 B_FALSE, ipst);
15330 if (usill != NULL)
15331 ill = usill; /* Select source from usesrc ILL */
15332 else
15333 return (NULL);
15334 }
15335
15336 /*
15337 * Test addresses should never be used for source address selection,
15338 * so if we were passed one, switch to the IPMP meta-interface.
15339 */
15340 if (IS_UNDER_IPMP(ill)) {
15341 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL)
15342 ill = ipmp_ill; /* Select source from IPMP ill */
15343 else
15344 return (NULL);
15345 }
15346
15347 /*
15348 * If we're dealing with an unlabeled destination on a labeled system,
15349 * make sure that we ignore source addresses that are incompatible with
15350 * the destination's default label. That destination's default label
15351 * must dominate the minimum label on the source address.
15352 */
15353 dst_rhtp = NULL;
15354 if (is_system_labeled()) {
15355 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE);
15356 if (dst_rhtp == NULL)
15357 return (NULL);
15358 if (dst_rhtp->tpc_tp.host_type != UNLABELED) {
15359 TPC_RELE(dst_rhtp);
15360 dst_rhtp = NULL;
15361 }
15362 }
15363
15364 /*
15365 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill
15366 * can be deleted. But an ipif/ill can get CONDEMNED any time.
15367 * After selecting the right ipif, under ill_lock make sure ipif is
15368 * not condemned, and increment refcnt. If ipif is CONDEMNED,
15369 * we retry. Inside the loop we still need to check for CONDEMNED,
15370 * but not under a lock.
15371 */
15372 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
15373 retry:
15374 /*
15375 * For source address selection, we treat the ipif list as circular
15376 * and continue until we get back to where we started. This allows
15377 * IPMP to vary source address selection (which improves inbound load
15378 * spreading) by caching its last ending point and starting from
15379 * there. NOTE: we don't have to worry about ill_src_ipif changing
15380 * ills since that can't happen on the IPMP ill.
15381 */
15382 start_ipif = ill->ill_ipif;
15383 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL)
15384 start_ipif = ill->ill_src_ipif;
15385
15386 ipif = start_ipif;
15387 best_ipif = NULL;
15388 best_type = IPIF_NONE;
15389 do {
15390 if ((next_ipif = ipif->ipif_next) == NULL)
15391 next_ipif = ill->ill_ipif;
15392
15393 if (IPIF_IS_CONDEMNED(ipif))
15394 continue;
15395 /* Always skip NOLOCAL and ANYCAST interfaces */
15396 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15397 continue;
15398 /* Always skip NOACCEPT interfaces */
15399 if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT)
15400 continue;
15401 if (!(ipif->ipif_flags & IPIF_UP))
15402 continue;
15403
15404 if (!ipif->ipif_addr_ready) {
15405 if (notreadyp != NULL)
15406 *notreadyp = B_TRUE;
15407 continue;
15408 }
15409
15410 if (zoneid != ALL_ZONES &&
15411 ipif->ipif_zoneid != zoneid &&
15412 ipif->ipif_zoneid != ALL_ZONES)
15413 continue;
15414
15415 /*
15416 * Interfaces with 0.0.0.0 address are allowed to be UP, but
15417 * are not valid as source addresses.
15418 */
15419 if (ipif->ipif_lcl_addr == INADDR_ANY)
15420 continue;
15421
15422 /*
15423 * Check compatibility of local address for destination's
15424 * default label if we're on a labeled system. Incompatible
15425 * addresses can't be used at all.
15426 */
15427 if (dst_rhtp != NULL) {
15428 boolean_t incompat;
15429
15430 src_rhtp = find_tpc(&ipif->ipif_lcl_addr,
15431 IPV4_VERSION, B_FALSE);
15432 if (src_rhtp == NULL)
15433 continue;
15434 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO ||
15435 src_rhtp->tpc_tp.tp_doi !=
15436 dst_rhtp->tpc_tp.tp_doi ||
15437 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label,
15438 &src_rhtp->tpc_tp.tp_sl_range_cipso) &&
15439 !blinlset(&dst_rhtp->tpc_tp.tp_def_label,
15440 src_rhtp->tpc_tp.tp_sl_set_cipso));
15441 TPC_RELE(src_rhtp);
15442 if (incompat)
15443 continue;
15444 }
15445
15446 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet);
15447
15448 if (ipif->ipif_lcl_addr == dst) {
15449 type = IPIF_LOCALADDR;
15450 } else if (ipif->ipif_flags & IPIF_DEPRECATED) {
15451 type = samenet ? IPIF_SAMENET_DEPRECATED :
15452 IPIF_DIFFNET_DEPRECATED;
15453 } else if (ipif->ipif_zoneid == ALL_ZONES) {
15454 type = samenet ? IPIF_SAMENET_ALLZONES :
15455 IPIF_DIFFNET_ALLZONES;
15456 } else {
15457 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET;
15458 }
15459
15460 if (type > best_type) {
15461 best_type = type;
15462 best_ipif = ipif;
15463 if (best_type == IPIF_LOCALADDR)
15464 break; /* can't get better */
15465 }
15466 } while ((ipif = next_ipif) != start_ipif);
15467
15468 if ((ipif = best_ipif) != NULL) {
15469 mutex_enter(&ipif->ipif_ill->ill_lock);
15470 if (IPIF_IS_CONDEMNED(ipif)) {
15471 mutex_exit(&ipif->ipif_ill->ill_lock);
15472 goto retry;
15473 }
15474 ipif_refhold_locked(ipif);
15475
15476 /*
15477 * For IPMP, update the source ipif rotor to the next ipif,
15478 * provided we can look it up. (We must not use it if it's
15479 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after
15480 * ipif_free() checked ill_src_ipif.)
15481 */
15482 if (IS_IPMP(ill) && ipif != NULL) {
15483 next_ipif = ipif->ipif_next;
15484 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif))
15485 ill->ill_src_ipif = next_ipif;
15486 else
15487 ill->ill_src_ipif = NULL;
15488 }
15489 mutex_exit(&ipif->ipif_ill->ill_lock);
15490 }
15491
15492 rw_exit(&ipst->ips_ill_g_lock);
15493 if (usill != NULL)
15494 ill_refrele(usill);
15495 if (ipmp_ill != NULL)
15496 ill_refrele(ipmp_ill);
15497 if (dst_rhtp != NULL)
15498 TPC_RELE(dst_rhtp);
15499
15500 #ifdef DEBUG
15501 if (ipif == NULL) {
15502 char buf1[INET6_ADDRSTRLEN];
15503
15504 ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n",
15505 ill->ill_name,
15506 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1))));
15507 } else {
15508 char buf1[INET6_ADDRSTRLEN];
15509 char buf2[INET6_ADDRSTRLEN];
15510
15511 ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n",
15512 ipif->ipif_ill->ill_name,
15513 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)),
15514 inet_ntop(AF_INET, &ipif->ipif_lcl_addr,
15515 buf2, sizeof (buf2))));
15516 }
15517 #endif /* DEBUG */
15518 return (ipif);
15519 }
15520
15521 /*
15522 * Pick a source address based on the destination ill and an optional setsrc
15523 * address.
15524 * The result is stored in srcp. If generation is set, then put the source
15525 * generation number there before we look for the source address (to avoid
15526 * missing changes in the set of source addresses.
15527 * If flagsp is set, then us it to pass back ipif_flags.
15528 *
15529 * If the caller wants to cache the returned source address and detect when
15530 * that might be stale, the caller should pass in a generation argument,
15531 * which the caller can later compare against ips_src_generation
15532 *
15533 * The precedence order for selecting an IPv4 source address is:
15534 * - RTF_SETSRC on the offlink ire always wins.
15535 * - If usrsrc is set, swap the ill to be the usesrc one.
15536 * - If IPMP is used on the ill, select a random address from the most
15537 * preferred ones below:
15538 * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES
15539 * 2. Not deprecated, not ALL_ZONES
15540 * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES
15541 * 4. Not deprecated, ALL_ZONES
15542 * 5. If onlink destination, same subnet and deprecated
15543 * 6. Deprecated.
15544 *
15545 * We have lower preference for ALL_ZONES IP addresses,
15546 * as they pose problems with unlabeled destinations.
15547 *
15548 * Note that when multiple IP addresses match e.g., #1 we pick
15549 * the first one if IPMP is not in use. With IPMP we randomize.
15550 */
15551 int
ip_select_source_v4(ill_t * ill,ipaddr_t setsrc,ipaddr_t dst,ipaddr_t multicast_ifaddr,zoneid_t zoneid,ip_stack_t * ipst,ipaddr_t * srcp,uint32_t * generation,uint64_t * flagsp)15552 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst,
15553 ipaddr_t multicast_ifaddr,
15554 zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp,
15555 uint32_t *generation, uint64_t *flagsp)
15556 {
15557 ipif_t *ipif;
15558 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */
15559
15560 if (flagsp != NULL)
15561 *flagsp = 0;
15562
15563 /*
15564 * Need to grab the generation number before we check to
15565 * avoid a race with a change to the set of local addresses.
15566 * No lock needed since the thread which updates the set of local
15567 * addresses use ipif/ill locks and exit those (hence a store memory
15568 * barrier) before doing the atomic increase of ips_src_generation.
15569 */
15570 if (generation != NULL) {
15571 *generation = ipst->ips_src_generation;
15572 }
15573
15574 if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) {
15575 *srcp = multicast_ifaddr;
15576 return (0);
15577 }
15578
15579 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */
15580 if (setsrc != INADDR_ANY) {
15581 *srcp = setsrc;
15582 return (0);
15583 }
15584 ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready);
15585 if (ipif == NULL) {
15586 if (notready)
15587 return (ENETDOWN);
15588 else
15589 return (EADDRNOTAVAIL);
15590 }
15591 *srcp = ipif->ipif_lcl_addr;
15592 if (flagsp != NULL)
15593 *flagsp = ipif->ipif_flags;
15594 ipif_refrele(ipif);
15595 return (0);
15596 }
15597
15598 /* ARGSUSED */
15599 int
if_unitsel_restart(ipif_t * ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_ifreq)15600 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15601 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15602 {
15603 /*
15604 * ill_phyint_reinit merged the v4 and v6 into a single
15605 * ipsq. We might not have been able to complete the
15606 * operation in ipif_set_values, if we could not become
15607 * exclusive. If so restart it here.
15608 */
15609 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
15610 }
15611
15612 /*
15613 * Can operate on either a module or a driver queue.
15614 * Returns an error if not a module queue.
15615 */
15616 /* ARGSUSED */
15617 int
if_unitsel(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_ifreq)15618 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15619 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15620 {
15621 queue_t *q1 = q;
15622 char *cp;
15623 char interf_name[LIFNAMSIZ];
15624 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr;
15625
15626 if (q->q_next == NULL) {
15627 ip1dbg((
15628 "if_unitsel: IF_UNITSEL: no q_next\n"));
15629 return (EINVAL);
15630 }
15631
15632 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0')
15633 return (EALREADY);
15634
15635 do {
15636 q1 = q1->q_next;
15637 } while (q1->q_next);
15638 cp = q1->q_qinfo->qi_minfo->mi_idname;
15639 (void) sprintf(interf_name, "%s%d", cp, ppa);
15640
15641 /*
15642 * Here we are not going to delay the ioack until after
15643 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the
15644 * original ioctl message before sending the requests.
15645 */
15646 return (ipif_set_values(q, mp, interf_name, &ppa));
15647 }
15648
15649 /* ARGSUSED */
15650 int
ip_sioctl_sifname(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_ifreq)15651 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15652 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15653 {
15654 return (ENXIO);
15655 }
15656
15657 /*
15658 * Create any IRE_BROADCAST entries for `ipif', and store those entries in
15659 * `irep'. Returns a pointer to the next free `irep' entry
15660 * A mirror exists in ipif_delete_bcast_ires().
15661 *
15662 * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is
15663 * done in ire_add.
15664 */
15665 static ire_t **
ipif_create_bcast_ires(ipif_t * ipif,ire_t ** irep)15666 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep)
15667 {
15668 ipaddr_t addr;
15669 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr);
15670 ipaddr_t subnetmask = ipif->ipif_net_mask;
15671 ill_t *ill = ipif->ipif_ill;
15672 zoneid_t zoneid = ipif->ipif_zoneid;
15673
15674 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n"));
15675
15676 ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
15677 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT));
15678
15679 if (ipif->ipif_lcl_addr == INADDR_ANY ||
15680 (ipif->ipif_flags & IPIF_NOLOCAL))
15681 netmask = htonl(IN_CLASSA_NET); /* fallback */
15682
15683 irep = ire_create_bcast(ill, 0, zoneid, irep);
15684 irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep);
15685
15686 /*
15687 * For backward compatibility, we create net broadcast IREs based on
15688 * the old "IP address class system", since some old machines only
15689 * respond to these class derived net broadcast. However, we must not
15690 * create these net broadcast IREs if the subnetmask is shorter than
15691 * the IP address class based derived netmask. Otherwise, we may
15692 * create a net broadcast address which is the same as an IP address
15693 * on the subnet -- and then TCP will refuse to talk to that address.
15694 */
15695 if (netmask < subnetmask) {
15696 addr = netmask & ipif->ipif_subnet;
15697 irep = ire_create_bcast(ill, addr, zoneid, irep);
15698 irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep);
15699 }
15700
15701 /*
15702 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
15703 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
15704 * created. Creating these broadcast IREs will only create confusion
15705 * as `addr' will be the same as the IP address.
15706 */
15707 if (subnetmask != 0xFFFFFFFF) {
15708 addr = ipif->ipif_subnet;
15709 irep = ire_create_bcast(ill, addr, zoneid, irep);
15710 irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep);
15711 }
15712
15713 return (irep);
15714 }
15715
15716 /*
15717 * Mirror of ipif_create_bcast_ires()
15718 */
15719 static void
ipif_delete_bcast_ires(ipif_t * ipif)15720 ipif_delete_bcast_ires(ipif_t *ipif)
15721 {
15722 ipaddr_t addr;
15723 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr);
15724 ipaddr_t subnetmask = ipif->ipif_net_mask;
15725 ill_t *ill = ipif->ipif_ill;
15726 zoneid_t zoneid = ipif->ipif_zoneid;
15727 ire_t *ire;
15728
15729 ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
15730 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT));
15731
15732 if (ipif->ipif_lcl_addr == INADDR_ANY ||
15733 (ipif->ipif_flags & IPIF_NOLOCAL))
15734 netmask = htonl(IN_CLASSA_NET); /* fallback */
15735
15736 ire = ire_lookup_bcast(ill, 0, zoneid);
15737 ASSERT(ire != NULL);
15738 ire_delete(ire); ire_refrele(ire);
15739 ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid);
15740 ASSERT(ire != NULL);
15741 ire_delete(ire); ire_refrele(ire);
15742
15743 /*
15744 * For backward compatibility, we create net broadcast IREs based on
15745 * the old "IP address class system", since some old machines only
15746 * respond to these class derived net broadcast. However, we must not
15747 * create these net broadcast IREs if the subnetmask is shorter than
15748 * the IP address class based derived netmask. Otherwise, we may
15749 * create a net broadcast address which is the same as an IP address
15750 * on the subnet -- and then TCP will refuse to talk to that address.
15751 */
15752 if (netmask < subnetmask) {
15753 addr = netmask & ipif->ipif_subnet;
15754 ire = ire_lookup_bcast(ill, addr, zoneid);
15755 ASSERT(ire != NULL);
15756 ire_delete(ire); ire_refrele(ire);
15757 ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid);
15758 ASSERT(ire != NULL);
15759 ire_delete(ire); ire_refrele(ire);
15760 }
15761
15762 /*
15763 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
15764 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
15765 * created. Creating these broadcast IREs will only create confusion
15766 * as `addr' will be the same as the IP address.
15767 */
15768 if (subnetmask != 0xFFFFFFFF) {
15769 addr = ipif->ipif_subnet;
15770 ire = ire_lookup_bcast(ill, addr, zoneid);
15771 ASSERT(ire != NULL);
15772 ire_delete(ire); ire_refrele(ire);
15773 ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid);
15774 ASSERT(ire != NULL);
15775 ire_delete(ire); ire_refrele(ire);
15776 }
15777 }
15778
15779 /*
15780 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV*
15781 * from lifr_flags and the name from lifr_name.
15782 * Set IFF_IPV* and ill_isv6 prior to doing the lookup
15783 * since ipif_lookup_on_name uses the _isv6 flags when matching.
15784 * Returns EINPROGRESS when mp has been consumed by queueing it on
15785 * ipx_pending_mp and the ioctl will complete in ip_rput.
15786 *
15787 * Can operate on either a module or a driver queue.
15788 * Returns an error if not a module queue.
15789 */
15790 /* ARGSUSED */
15791 int
ip_sioctl_slifname(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)15792 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15793 ip_ioctl_cmd_t *ipip, void *if_req)
15794 {
15795 ill_t *ill = q->q_ptr;
15796 phyint_t *phyi;
15797 ip_stack_t *ipst;
15798 struct lifreq *lifr = if_req;
15799 uint64_t new_flags;
15800
15801 ASSERT(ipif != NULL);
15802 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name));
15803
15804 if (q->q_next == NULL) {
15805 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n"));
15806 return (EINVAL);
15807 }
15808
15809 /*
15810 * If we are not writer on 'q' then this interface exists already
15811 * and previous lookups (ip_extract_lifreq()) found this ipif --
15812 * so return EALREADY.
15813 */
15814 if (ill != ipif->ipif_ill)
15815 return (EALREADY);
15816
15817 if (ill->ill_name[0] != '\0')
15818 return (EALREADY);
15819
15820 /*
15821 * If there's another ill already with the requested name, ensure
15822 * that it's of the same type. Otherwise, ill_phyint_reinit() will
15823 * fuse together two unrelated ills, which will cause chaos.
15824 */
15825 ipst = ill->ill_ipst;
15826 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
15827 lifr->lifr_name, NULL);
15828 if (phyi != NULL) {
15829 ill_t *ill_mate = phyi->phyint_illv4;
15830
15831 if (ill_mate == NULL)
15832 ill_mate = phyi->phyint_illv6;
15833 ASSERT(ill_mate != NULL);
15834
15835 if (ill_mate->ill_media->ip_m_mac_type !=
15836 ill->ill_media->ip_m_mac_type) {
15837 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to "
15838 "use the same ill name on differing media\n"));
15839 return (EINVAL);
15840 }
15841 }
15842
15843 /*
15844 * We start off as IFF_IPV4 in ipif_allocate and become
15845 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value.
15846 * The only flags that we read from user space are IFF_IPV4,
15847 * IFF_IPV6, and IFF_BROADCAST.
15848 *
15849 * This ill has not been inserted into the global list.
15850 * So we are still single threaded and don't need any lock
15851 *
15852 * Saniy check the flags.
15853 */
15854
15855 if ((lifr->lifr_flags & IFF_BROADCAST) &&
15856 ((lifr->lifr_flags & IFF_IPV6) ||
15857 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) {
15858 ip1dbg(("ip_sioctl_slifname: link not broadcast capable "
15859 "or IPv6 i.e., no broadcast \n"));
15860 return (EINVAL);
15861 }
15862
15863 new_flags =
15864 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST);
15865
15866 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) {
15867 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of "
15868 "IFF_IPV4 or IFF_IPV6\n"));
15869 return (EINVAL);
15870 }
15871
15872 /*
15873 * We always start off as IPv4, so only need to check for IPv6.
15874 */
15875 if ((new_flags & IFF_IPV6) != 0) {
15876 ill->ill_flags |= ILLF_IPV6;
15877 ill->ill_flags &= ~ILLF_IPV4;
15878
15879 if (lifr->lifr_flags & IFF_NOLINKLOCAL)
15880 ill->ill_flags |= ILLF_NOLINKLOCAL;
15881 }
15882
15883 if ((new_flags & IFF_BROADCAST) != 0)
15884 ipif->ipif_flags |= IPIF_BROADCAST;
15885 else
15886 ipif->ipif_flags &= ~IPIF_BROADCAST;
15887
15888 /* We started off as V4. */
15889 if (ill->ill_flags & ILLF_IPV6) {
15890 ill->ill_phyint->phyint_illv6 = ill;
15891 ill->ill_phyint->phyint_illv4 = NULL;
15892 }
15893
15894 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa));
15895 }
15896
15897 /* ARGSUSED */
15898 int
ip_sioctl_slifname_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)15899 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15900 ip_ioctl_cmd_t *ipip, void *if_req)
15901 {
15902 /*
15903 * ill_phyint_reinit merged the v4 and v6 into a single
15904 * ipsq. We might not have been able to complete the
15905 * slifname in ipif_set_values, if we could not become
15906 * exclusive. If so restart it here
15907 */
15908 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
15909 }
15910
15911 /*
15912 * Return a pointer to the ipif which matches the index, IP version type and
15913 * zoneid.
15914 */
15915 ipif_t *
ipif_lookup_on_ifindex(uint_t index,boolean_t isv6,zoneid_t zoneid,ip_stack_t * ipst)15916 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid,
15917 ip_stack_t *ipst)
15918 {
15919 ill_t *ill;
15920 ipif_t *ipif = NULL;
15921
15922 ill = ill_lookup_on_ifindex(index, isv6, ipst);
15923 if (ill != NULL) {
15924 mutex_enter(&ill->ill_lock);
15925 for (ipif = ill->ill_ipif; ipif != NULL;
15926 ipif = ipif->ipif_next) {
15927 if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES ||
15928 zoneid == ipif->ipif_zoneid ||
15929 ipif->ipif_zoneid == ALL_ZONES)) {
15930 ipif_refhold_locked(ipif);
15931 break;
15932 }
15933 }
15934 mutex_exit(&ill->ill_lock);
15935 ill_refrele(ill);
15936 }
15937 return (ipif);
15938 }
15939
15940 /*
15941 * Change an existing physical interface's index. If the new index
15942 * is acceptable we update the index and the phyint_list_avl_by_index tree.
15943 * Finally, we update other systems which may have a dependence on the
15944 * index value.
15945 */
15946 /* ARGSUSED */
15947 int
ip_sioctl_slifindex(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)15948 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15949 ip_ioctl_cmd_t *ipip, void *ifreq)
15950 {
15951 ill_t *ill;
15952 phyint_t *phyi;
15953 struct ifreq *ifr = (struct ifreq *)ifreq;
15954 struct lifreq *lifr = (struct lifreq *)ifreq;
15955 uint_t old_index, index;
15956 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
15957 avl_index_t where;
15958
15959 if (ipip->ipi_cmd_type == IF_CMD)
15960 index = ifr->ifr_index;
15961 else
15962 index = lifr->lifr_index;
15963
15964 /*
15965 * Only allow on physical interface. Also, index zero is illegal.
15966 */
15967 ill = ipif->ipif_ill;
15968 phyi = ill->ill_phyint;
15969 if (ipif->ipif_id != 0 || index == 0 || index > IF_INDEX_MAX) {
15970 return (EINVAL);
15971 }
15972
15973 /* If the index is not changing, no work to do */
15974 if (phyi->phyint_ifindex == index)
15975 return (0);
15976
15977 /*
15978 * Use phyint_exists() to determine if the new interface index
15979 * is already in use. If the index is unused then we need to
15980 * change the phyint's position in the phyint_list_avl_by_index
15981 * tree. If we do not do this, subsequent lookups (using the new
15982 * index value) will not find the phyint.
15983 */
15984 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15985 if (phyint_exists(index, ipst)) {
15986 rw_exit(&ipst->ips_ill_g_lock);
15987 return (EEXIST);
15988 }
15989
15990 /*
15991 * The new index is unused. Set it in the phyint. However we must not
15992 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex
15993 * changes. The event must be bound to old ifindex value.
15994 */
15995 ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE,
15996 &index, sizeof (index));
15997
15998 old_index = phyi->phyint_ifindex;
15999 phyi->phyint_ifindex = index;
16000
16001 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi);
16002 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16003 &index, &where);
16004 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16005 phyi, where);
16006 rw_exit(&ipst->ips_ill_g_lock);
16007
16008 /* Update SCTP's ILL list */
16009 sctp_ill_reindex(ill, old_index);
16010
16011 /* Send the routing sockets message */
16012 ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
16013 if (ILL_OTHER(ill))
16014 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT);
16015
16016 /* Perhaps ilgs should use this ill */
16017 update_conn_ill(NULL, ill->ill_ipst);
16018 return (0);
16019 }
16020
16021 /* ARGSUSED */
16022 int
ip_sioctl_get_lifindex(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)16023 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16024 ip_ioctl_cmd_t *ipip, void *ifreq)
16025 {
16026 struct ifreq *ifr = (struct ifreq *)ifreq;
16027 struct lifreq *lifr = (struct lifreq *)ifreq;
16028
16029 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n",
16030 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16031 /* Get the interface index */
16032 if (ipip->ipi_cmd_type == IF_CMD) {
16033 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
16034 } else {
16035 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
16036 }
16037 return (0);
16038 }
16039
16040 /* ARGSUSED */
16041 int
ip_sioctl_get_lifzone(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)16042 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16043 ip_ioctl_cmd_t *ipip, void *ifreq)
16044 {
16045 struct lifreq *lifr = (struct lifreq *)ifreq;
16046
16047 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n",
16048 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16049 /* Get the interface zone */
16050 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16051 lifr->lifr_zoneid = ipif->ipif_zoneid;
16052 return (0);
16053 }
16054
16055 /*
16056 * Set the zoneid of an interface.
16057 */
16058 /* ARGSUSED */
16059 int
ip_sioctl_slifzone(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)16060 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16061 ip_ioctl_cmd_t *ipip, void *ifreq)
16062 {
16063 struct lifreq *lifr = (struct lifreq *)ifreq;
16064 int err = 0;
16065 boolean_t need_up = B_FALSE;
16066 zone_t *zptr;
16067 zone_status_t status;
16068 zoneid_t zoneid;
16069
16070 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16071 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) {
16072 if (!is_system_labeled())
16073 return (ENOTSUP);
16074 zoneid = GLOBAL_ZONEID;
16075 }
16076
16077 /* cannot assign instance zero to a non-global zone */
16078 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID)
16079 return (ENOTSUP);
16080
16081 /*
16082 * Cannot assign to a zone that doesn't exist or is shutting down. In
16083 * the event of a race with the zone shutdown processing, since IP
16084 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the
16085 * interface will be cleaned up even if the zone is shut down
16086 * immediately after the status check. If the interface can't be brought
16087 * down right away, and the zone is shut down before the restart
16088 * function is called, we resolve the possible races by rechecking the
16089 * zone status in the restart function.
16090 */
16091 if ((zptr = zone_find_by_id(zoneid)) == NULL)
16092 return (EINVAL);
16093 status = zone_status_get(zptr);
16094 zone_rele(zptr);
16095
16096 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING)
16097 return (EINVAL);
16098
16099 if (ipif->ipif_flags & IPIF_UP) {
16100 /*
16101 * If the interface is already marked up,
16102 * we call ipif_down which will take care
16103 * of ditching any IREs that have been set
16104 * up based on the old interface address.
16105 */
16106 err = ipif_logical_down(ipif, q, mp);
16107 if (err == EINPROGRESS)
16108 return (err);
16109 (void) ipif_down_tail(ipif);
16110 need_up = B_TRUE;
16111 }
16112
16113 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up);
16114 return (err);
16115 }
16116
16117 static int
ip_sioctl_slifzone_tail(ipif_t * ipif,zoneid_t zoneid,queue_t * q,mblk_t * mp,boolean_t need_up)16118 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
16119 queue_t *q, mblk_t *mp, boolean_t need_up)
16120 {
16121 int err = 0;
16122 ip_stack_t *ipst;
16123
16124 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n",
16125 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16126
16127 if (CONN_Q(q))
16128 ipst = CONNQ_TO_IPST(q);
16129 else
16130 ipst = ILLQ_TO_IPST(q);
16131
16132 /*
16133 * For exclusive stacks we don't allow a different zoneid than
16134 * global.
16135 */
16136 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID &&
16137 zoneid != GLOBAL_ZONEID)
16138 return (EINVAL);
16139
16140 /* Set the new zone id. */
16141 ipif->ipif_zoneid = zoneid;
16142
16143 /* Update sctp list */
16144 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
16145
16146 /* The default multicast interface might have changed */
16147 ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6);
16148
16149 if (need_up) {
16150 /*
16151 * Now bring the interface back up. If this
16152 * is the only IPIF for the ILL, ipif_up
16153 * will have to re-bind to the device, so
16154 * we may get back EINPROGRESS, in which
16155 * case, this IOCTL will get completed in
16156 * ip_rput_dlpi when we see the DL_BIND_ACK.
16157 */
16158 err = ipif_up(ipif, q, mp);
16159 }
16160 return (err);
16161 }
16162
16163 /* ARGSUSED */
16164 int
ip_sioctl_slifzone_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)16165 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16166 ip_ioctl_cmd_t *ipip, void *if_req)
16167 {
16168 struct lifreq *lifr = (struct lifreq *)if_req;
16169 zoneid_t zoneid;
16170 zone_t *zptr;
16171 zone_status_t status;
16172
16173 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16174 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES)
16175 zoneid = GLOBAL_ZONEID;
16176
16177 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n",
16178 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16179
16180 /*
16181 * We recheck the zone status to resolve the following race condition:
16182 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone";
16183 * 2) hme0:1 is up and can't be brought down right away;
16184 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued;
16185 * 3) zone "myzone" is halted; the zone status switches to
16186 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list
16187 * the interfaces to remove - hme0:1 is not returned because it's not
16188 * yet in "myzone", so it won't be removed;
16189 * 4) the restart function for SIOCSLIFZONE is called; without the
16190 * status check here, we would have hme0:1 in "myzone" after it's been
16191 * destroyed.
16192 * Note that if the status check fails, we need to bring the interface
16193 * back to its state prior to ip_sioctl_slifzone(), hence the call to
16194 * ipif_up_done[_v6]().
16195 */
16196 status = ZONE_IS_UNINITIALIZED;
16197 if ((zptr = zone_find_by_id(zoneid)) != NULL) {
16198 status = zone_status_get(zptr);
16199 zone_rele(zptr);
16200 }
16201 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) {
16202 if (ipif->ipif_isv6) {
16203 (void) ipif_up_done_v6(ipif);
16204 } else {
16205 (void) ipif_up_done(ipif);
16206 }
16207 return (EINVAL);
16208 }
16209
16210 (void) ipif_down_tail(ipif);
16211
16212 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp,
16213 B_TRUE));
16214 }
16215
16216 /*
16217 * Return the number of addresses on `ill' with one or more of the values
16218 * in `set' set and all of the values in `clear' clear.
16219 */
16220 static uint_t
ill_flagaddr_cnt(const ill_t * ill,uint64_t set,uint64_t clear)16221 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear)
16222 {
16223 ipif_t *ipif;
16224 uint_t cnt = 0;
16225
16226 ASSERT(IAM_WRITER_ILL(ill));
16227
16228 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
16229 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear))
16230 cnt++;
16231
16232 return (cnt);
16233 }
16234
16235 /*
16236 * Return the number of migratable addresses on `ill' that are under
16237 * application control.
16238 */
16239 uint_t
ill_appaddr_cnt(const ill_t * ill)16240 ill_appaddr_cnt(const ill_t *ill)
16241 {
16242 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF,
16243 IPIF_NOFAILOVER));
16244 }
16245
16246 /*
16247 * Return the number of point-to-point addresses on `ill'.
16248 */
16249 uint_t
ill_ptpaddr_cnt(const ill_t * ill)16250 ill_ptpaddr_cnt(const ill_t *ill)
16251 {
16252 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0));
16253 }
16254
16255 /* ARGSUSED */
16256 int
ip_sioctl_get_lifusesrc(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)16257 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16258 ip_ioctl_cmd_t *ipip, void *ifreq)
16259 {
16260 struct lifreq *lifr = ifreq;
16261
16262 ASSERT(q->q_next == NULL);
16263 ASSERT(CONN_Q(q));
16264
16265 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n",
16266 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16267 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex;
16268 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index));
16269
16270 return (0);
16271 }
16272
16273 /* Find the previous ILL in this usesrc group */
16274 static ill_t *
ill_prev_usesrc(ill_t * uill)16275 ill_prev_usesrc(ill_t *uill)
16276 {
16277 ill_t *ill;
16278
16279 for (ill = uill->ill_usesrc_grp_next;
16280 ASSERT(ill), ill->ill_usesrc_grp_next != uill;
16281 ill = ill->ill_usesrc_grp_next)
16282 /* do nothing */;
16283 return (ill);
16284 }
16285
16286 /*
16287 * Release all members of the usesrc group. This routine is called
16288 * from ill_delete when the interface being unplumbed is the
16289 * group head.
16290 *
16291 * This silently clears the usesrc that ifconfig setup.
16292 * An alternative would be to keep that ifindex, and drop packets on the floor
16293 * since no source address can be selected.
16294 * Even if we keep the current semantics, don't need a lock and a linked list.
16295 * Can walk all the ills checking if they have a ill_usesrc_ifindex matching
16296 * the one that is being removed. Issue is how we return the usesrc users
16297 * (SIOCGLIFSRCOF). We want to be able to find the ills which have an
16298 * ill_usesrc_ifindex matching a target ill. We could also do that with an
16299 * ill walk, but the walker would need to insert in the ioctl response.
16300 */
16301 static void
ill_disband_usesrc_group(ill_t * uill)16302 ill_disband_usesrc_group(ill_t *uill)
16303 {
16304 ill_t *next_ill, *tmp_ill;
16305 ip_stack_t *ipst = uill->ill_ipst;
16306
16307 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
16308 next_ill = uill->ill_usesrc_grp_next;
16309
16310 do {
16311 ASSERT(next_ill != NULL);
16312 tmp_ill = next_ill->ill_usesrc_grp_next;
16313 ASSERT(tmp_ill != NULL);
16314 next_ill->ill_usesrc_grp_next = NULL;
16315 next_ill->ill_usesrc_ifindex = 0;
16316 next_ill = tmp_ill;
16317 } while (next_ill->ill_usesrc_ifindex != 0);
16318 uill->ill_usesrc_grp_next = NULL;
16319 }
16320
16321 /*
16322 * Remove the client usesrc ILL from the list and relink to a new list
16323 */
16324 int
ill_relink_usesrc_ills(ill_t * ucill,ill_t * uill,uint_t ifindex)16325 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex)
16326 {
16327 ill_t *ill, *tmp_ill;
16328 ip_stack_t *ipst = ucill->ill_ipst;
16329
16330 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) &&
16331 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
16332
16333 /*
16334 * Check if the usesrc client ILL passed in is not already
16335 * in use as a usesrc ILL i.e one whose source address is
16336 * in use OR a usesrc ILL is not already in use as a usesrc
16337 * client ILL
16338 */
16339 if ((ucill->ill_usesrc_ifindex == 0) ||
16340 (uill->ill_usesrc_ifindex != 0)) {
16341 return (-1);
16342 }
16343
16344 ill = ill_prev_usesrc(ucill);
16345 ASSERT(ill->ill_usesrc_grp_next != NULL);
16346
16347 /* Remove from the current list */
16348 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) {
16349 /* Only two elements in the list */
16350 ASSERT(ill->ill_usesrc_ifindex == 0);
16351 ill->ill_usesrc_grp_next = NULL;
16352 } else {
16353 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next;
16354 }
16355
16356 if (ifindex == 0) {
16357 ucill->ill_usesrc_ifindex = 0;
16358 ucill->ill_usesrc_grp_next = NULL;
16359 return (0);
16360 }
16361
16362 ucill->ill_usesrc_ifindex = ifindex;
16363 tmp_ill = uill->ill_usesrc_grp_next;
16364 uill->ill_usesrc_grp_next = ucill;
16365 ucill->ill_usesrc_grp_next =
16366 (tmp_ill != NULL) ? tmp_ill : uill;
16367 return (0);
16368 }
16369
16370 /*
16371 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in
16372 * ip.c for locking details.
16373 */
16374 /* ARGSUSED */
16375 int
ip_sioctl_slifusesrc(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)16376 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16377 ip_ioctl_cmd_t *ipip, void *ifreq)
16378 {
16379 struct lifreq *lifr = (struct lifreq *)ifreq;
16380 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE;
16381 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill;
16382 int err = 0, ret;
16383 uint_t ifindex;
16384 ipsq_t *ipsq = NULL;
16385 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
16386
16387 ASSERT(IAM_WRITER_IPIF(ipif));
16388 ASSERT(q->q_next == NULL);
16389 ASSERT(CONN_Q(q));
16390
16391 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6;
16392
16393 ifindex = lifr->lifr_index;
16394 if (ifindex == 0) {
16395 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) {
16396 /* non usesrc group interface, nothing to reset */
16397 return (0);
16398 }
16399 ifindex = usesrc_cli_ill->ill_usesrc_ifindex;
16400 /* valid reset request */
16401 reset_flg = B_TRUE;
16402 }
16403
16404 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
16405 if (usesrc_ill == NULL)
16406 return (ENXIO);
16407 if (usesrc_ill == ipif->ipif_ill) {
16408 ill_refrele(usesrc_ill);
16409 return (EINVAL);
16410 }
16411
16412 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl,
16413 NEW_OP, B_TRUE);
16414 if (ipsq == NULL) {
16415 err = EINPROGRESS;
16416 /* Operation enqueued on the ipsq of the usesrc ILL */
16417 goto done;
16418 }
16419
16420 /* USESRC isn't currently supported with IPMP */
16421 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) {
16422 err = ENOTSUP;
16423 goto done;
16424 }
16425
16426 /*
16427 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only
16428 * used by IPMP underlying interfaces, but someone might think it's
16429 * more general and try to use it independently with VNI.)
16430 */
16431 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) {
16432 err = ENOTSUP;
16433 goto done;
16434 }
16435
16436 /*
16437 * If the client is already in use as a usesrc_ill or a usesrc_ill is
16438 * already a client then return EINVAL
16439 */
16440 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) {
16441 err = EINVAL;
16442 goto done;
16443 }
16444
16445 /*
16446 * If the ill_usesrc_ifindex field is already set to what it needs to
16447 * be then this is a duplicate operation.
16448 */
16449 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) {
16450 err = 0;
16451 goto done;
16452 }
16453
16454 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s,"
16455 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name,
16456 usesrc_ill->ill_isv6));
16457
16458 /*
16459 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next
16460 * and the ill_usesrc_ifindex fields
16461 */
16462 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
16463
16464 if (reset_flg) {
16465 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0);
16466 if (ret != 0) {
16467 err = EINVAL;
16468 }
16469 rw_exit(&ipst->ips_ill_g_usesrc_lock);
16470 goto done;
16471 }
16472
16473 /*
16474 * Four possibilities to consider:
16475 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp
16476 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't
16477 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't
16478 * 4. Both are part of their respective usesrc groups
16479 */
16480 if ((usesrc_ill->ill_usesrc_grp_next == NULL) &&
16481 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
16482 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0);
16483 usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
16484 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
16485 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill;
16486 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) &&
16487 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
16488 usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
16489 /* Insert at head of list */
16490 usesrc_cli_ill->ill_usesrc_grp_next =
16491 usesrc_ill->ill_usesrc_grp_next;
16492 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
16493 } else {
16494 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill,
16495 ifindex);
16496 if (ret != 0)
16497 err = EINVAL;
16498 }
16499 rw_exit(&ipst->ips_ill_g_usesrc_lock);
16500
16501 done:
16502 if (ipsq != NULL)
16503 ipsq_exit(ipsq);
16504 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */
16505 ill_refrele(usesrc_ill);
16506
16507 /* Let conn_ixa caching know that source address selection changed */
16508 ip_update_source_selection(ipst);
16509
16510 return (err);
16511 }
16512
16513 /* ARGSUSED */
16514 int
ip_sioctl_get_dadstate(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)16515 ip_sioctl_get_dadstate(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16516 ip_ioctl_cmd_t *ipip, void *if_req)
16517 {
16518 struct lifreq *lifr = (struct lifreq *)if_req;
16519 ill_t *ill = ipif->ipif_ill;
16520
16521 /*
16522 * Need a lock since IFF_UP can be set even when there are
16523 * references to the ipif.
16524 */
16525 mutex_enter(&ill->ill_lock);
16526 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_addr_ready == 0)
16527 lifr->lifr_dadstate = DAD_IN_PROGRESS;
16528 else
16529 lifr->lifr_dadstate = DAD_DONE;
16530 mutex_exit(&ill->ill_lock);
16531 return (0);
16532 }
16533
16534 /*
16535 * comparison function used by avl.
16536 */
16537 static int
ill_phyint_compare_index(const void * index_ptr,const void * phyip)16538 ill_phyint_compare_index(const void *index_ptr, const void *phyip)
16539 {
16540
16541 uint_t index;
16542
16543 ASSERT(phyip != NULL && index_ptr != NULL);
16544
16545 index = *((uint_t *)index_ptr);
16546 /*
16547 * let the phyint with the lowest index be on top.
16548 */
16549 if (((phyint_t *)phyip)->phyint_ifindex < index)
16550 return (1);
16551 if (((phyint_t *)phyip)->phyint_ifindex > index)
16552 return (-1);
16553 return (0);
16554 }
16555
16556 /*
16557 * comparison function used by avl.
16558 */
16559 static int
ill_phyint_compare_name(const void * name_ptr,const void * phyip)16560 ill_phyint_compare_name(const void *name_ptr, const void *phyip)
16561 {
16562 ill_t *ill;
16563 int res = 0;
16564
16565 ASSERT(phyip != NULL && name_ptr != NULL);
16566
16567 if (((phyint_t *)phyip)->phyint_illv4)
16568 ill = ((phyint_t *)phyip)->phyint_illv4;
16569 else
16570 ill = ((phyint_t *)phyip)->phyint_illv6;
16571 ASSERT(ill != NULL);
16572
16573 res = strcmp(ill->ill_name, (char *)name_ptr);
16574 if (res > 0)
16575 return (1);
16576 else if (res < 0)
16577 return (-1);
16578 return (0);
16579 }
16580
16581 /*
16582 * This function is called on the unplumb path via ill_glist_delete() when
16583 * there are no ills left on the phyint and thus the phyint can be freed.
16584 */
16585 static void
phyint_free(phyint_t * phyi)16586 phyint_free(phyint_t *phyi)
16587 {
16588 ip_stack_t *ipst = PHYINT_TO_IPST(phyi);
16589
16590 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL);
16591
16592 /*
16593 * If this phyint was an IPMP meta-interface, blow away the group.
16594 * This is safe to do because all of the illgrps have already been
16595 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us.
16596 * If we're cleaning up as a result of failed initialization,
16597 * phyint_grp may be NULL.
16598 */
16599 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) {
16600 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
16601 ipmp_grp_destroy(phyi->phyint_grp);
16602 phyi->phyint_grp = NULL;
16603 rw_exit(&ipst->ips_ipmp_lock);
16604 }
16605
16606 /*
16607 * If this interface was under IPMP, take it out of the group.
16608 */
16609 if (phyi->phyint_grp != NULL)
16610 ipmp_phyint_leave_grp(phyi);
16611
16612 /*
16613 * Delete the phyint and disassociate its ipsq. The ipsq itself
16614 * will be freed in ipsq_exit().
16615 */
16616 phyi->phyint_ipsq->ipsq_phyint = NULL;
16617 phyi->phyint_name[0] = '\0';
16618
16619 mi_free(phyi);
16620 }
16621
16622 /*
16623 * Attach the ill to the phyint structure which can be shared by both
16624 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This
16625 * function is called from ipif_set_values and ill_lookup_on_name (for
16626 * loopback) where we know the name of the ill. We lookup the ill and if
16627 * there is one present already with the name use that phyint. Otherwise
16628 * reuse the one allocated by ill_init.
16629 */
16630 static void
ill_phyint_reinit(ill_t * ill)16631 ill_phyint_reinit(ill_t *ill)
16632 {
16633 boolean_t isv6 = ill->ill_isv6;
16634 phyint_t *phyi_old;
16635 phyint_t *phyi;
16636 avl_index_t where = 0;
16637 ill_t *ill_other = NULL;
16638 ip_stack_t *ipst = ill->ill_ipst;
16639
16640 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
16641
16642 phyi_old = ill->ill_phyint;
16643 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill &&
16644 phyi_old->phyint_illv6 == NULL));
16645 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill &&
16646 phyi_old->phyint_illv4 == NULL));
16647 ASSERT(phyi_old->phyint_ifindex == 0);
16648
16649 /*
16650 * Now that our ill has a name, set it in the phyint.
16651 */
16652 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ);
16653
16654 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16655 ill->ill_name, &where);
16656
16657 /*
16658 * 1. We grabbed the ill_g_lock before inserting this ill into
16659 * the global list of ills. So no other thread could have located
16660 * this ill and hence the ipsq of this ill is guaranteed to be empty.
16661 * 2. Now locate the other protocol instance of this ill.
16662 * 3. Now grab both ill locks in the right order, and the phyint lock of
16663 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq
16664 * of neither ill can change.
16665 * 4. Merge the phyint and thus the ipsq as well of this ill onto the
16666 * other ill.
16667 * 5. Release all locks.
16668 */
16669
16670 /*
16671 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if
16672 * we are initializing IPv4.
16673 */
16674 if (phyi != NULL) {
16675 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6;
16676 ASSERT(ill_other->ill_phyint != NULL);
16677 ASSERT((isv6 && !ill_other->ill_isv6) ||
16678 (!isv6 && ill_other->ill_isv6));
16679 GRAB_ILL_LOCKS(ill, ill_other);
16680 /*
16681 * We are potentially throwing away phyint_flags which
16682 * could be different from the one that we obtain from
16683 * ill_other->ill_phyint. But it is okay as we are assuming
16684 * that the state maintained within IP is correct.
16685 */
16686 mutex_enter(&phyi->phyint_lock);
16687 if (isv6) {
16688 ASSERT(phyi->phyint_illv6 == NULL);
16689 phyi->phyint_illv6 = ill;
16690 } else {
16691 ASSERT(phyi->phyint_illv4 == NULL);
16692 phyi->phyint_illv4 = ill;
16693 }
16694
16695 /*
16696 * Delete the old phyint and make its ipsq eligible
16697 * to be freed in ipsq_exit().
16698 */
16699 phyi_old->phyint_illv4 = NULL;
16700 phyi_old->phyint_illv6 = NULL;
16701 phyi_old->phyint_ipsq->ipsq_phyint = NULL;
16702 phyi_old->phyint_name[0] = '\0';
16703 mi_free(phyi_old);
16704 } else {
16705 mutex_enter(&ill->ill_lock);
16706 /*
16707 * We don't need to acquire any lock, since
16708 * the ill is not yet visible globally and we
16709 * have not yet released the ill_g_lock.
16710 */
16711 phyi = phyi_old;
16712 mutex_enter(&phyi->phyint_lock);
16713 /* XXX We need a recovery strategy here. */
16714 if (!phyint_assign_ifindex(phyi, ipst))
16715 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed");
16716
16717 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16718 (void *)phyi, where);
16719
16720 (void) avl_find(&ipst->ips_phyint_g_list->
16721 phyint_list_avl_by_index,
16722 &phyi->phyint_ifindex, &where);
16723 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16724 (void *)phyi, where);
16725 }
16726
16727 /*
16728 * Reassigning ill_phyint automatically reassigns the ipsq also.
16729 * pending mp is not affected because that is per ill basis.
16730 */
16731 ill->ill_phyint = phyi;
16732
16733 /*
16734 * Now that the phyint's ifindex has been assigned, complete the
16735 * remaining
16736 */
16737 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex;
16738 if (ill->ill_isv6) {
16739 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
16740 ill->ill_phyint->phyint_ifindex;
16741 ill->ill_mcast_type = ipst->ips_mld_max_version;
16742 } else {
16743 ill->ill_mcast_type = ipst->ips_igmp_max_version;
16744 }
16745
16746 /*
16747 * Generate an event within the hooks framework to indicate that
16748 * a new interface has just been added to IP. For this event to
16749 * be generated, the network interface must, at least, have an
16750 * ifindex assigned to it. (We don't generate the event for
16751 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.)
16752 *
16753 * This needs to be run inside the ill_g_lock perimeter to ensure
16754 * that the ordering of delivered events to listeners matches the
16755 * order of them in the kernel.
16756 */
16757 if (!IS_LOOPBACK(ill)) {
16758 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name,
16759 ill->ill_name_length);
16760 }
16761 RELEASE_ILL_LOCKS(ill, ill_other);
16762 mutex_exit(&phyi->phyint_lock);
16763 }
16764
16765 /*
16766 * Notify any downstream modules of the name of this interface.
16767 * An M_IOCTL is used even though we don't expect a successful reply.
16768 * Any reply message from the driver (presumably an M_IOCNAK) will
16769 * eventually get discarded somewhere upstream. The message format is
16770 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig
16771 * to IP.
16772 */
16773 static void
ip_ifname_notify(ill_t * ill,queue_t * q)16774 ip_ifname_notify(ill_t *ill, queue_t *q)
16775 {
16776 mblk_t *mp1, *mp2;
16777 struct iocblk *iocp;
16778 struct lifreq *lifr;
16779
16780 mp1 = mkiocb(SIOCSLIFNAME);
16781 if (mp1 == NULL)
16782 return;
16783 mp2 = allocb(sizeof (struct lifreq), BPRI_HI);
16784 if (mp2 == NULL) {
16785 freeb(mp1);
16786 return;
16787 }
16788
16789 mp1->b_cont = mp2;
16790 iocp = (struct iocblk *)mp1->b_rptr;
16791 iocp->ioc_count = sizeof (struct lifreq);
16792
16793 lifr = (struct lifreq *)mp2->b_rptr;
16794 mp2->b_wptr += sizeof (struct lifreq);
16795 bzero(lifr, sizeof (struct lifreq));
16796
16797 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ);
16798 lifr->lifr_ppa = ill->ill_ppa;
16799 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6));
16800
16801 DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify",
16802 char *, "SIOCSLIFNAME", ill_t *, ill);
16803 putnext(q, mp1);
16804 }
16805
16806 static int
ipif_set_values_tail(ill_t * ill,ipif_t * ipif,mblk_t * mp,queue_t * q)16807 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
16808 {
16809 int err;
16810 ip_stack_t *ipst = ill->ill_ipst;
16811 phyint_t *phyi = ill->ill_phyint;
16812
16813 /*
16814 * Now that ill_name is set, the configuration for the IPMP
16815 * meta-interface can be performed.
16816 */
16817 if (IS_IPMP(ill)) {
16818 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
16819 /*
16820 * If phyi->phyint_grp is NULL, then this is the first IPMP
16821 * meta-interface and we need to create the IPMP group.
16822 */
16823 if (phyi->phyint_grp == NULL) {
16824 /*
16825 * If someone has renamed another IPMP group to have
16826 * the same name as our interface, bail.
16827 */
16828 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) {
16829 rw_exit(&ipst->ips_ipmp_lock);
16830 return (EEXIST);
16831 }
16832 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi);
16833 if (phyi->phyint_grp == NULL) {
16834 rw_exit(&ipst->ips_ipmp_lock);
16835 return (ENOMEM);
16836 }
16837 }
16838 rw_exit(&ipst->ips_ipmp_lock);
16839 }
16840
16841 /* Tell downstream modules where they are. */
16842 ip_ifname_notify(ill, q);
16843
16844 /*
16845 * ill_dl_phys returns EINPROGRESS in the usual case.
16846 * Error cases are ENOMEM ...
16847 */
16848 err = ill_dl_phys(ill, ipif, mp, q);
16849
16850 if (ill->ill_isv6) {
16851 mutex_enter(&ipst->ips_mld_slowtimeout_lock);
16852 if (ipst->ips_mld_slowtimeout_id == 0) {
16853 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo,
16854 (void *)ipst,
16855 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
16856 }
16857 mutex_exit(&ipst->ips_mld_slowtimeout_lock);
16858 } else {
16859 mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
16860 if (ipst->ips_igmp_slowtimeout_id == 0) {
16861 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo,
16862 (void *)ipst,
16863 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
16864 }
16865 mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
16866 }
16867
16868 return (err);
16869 }
16870
16871 /*
16872 * Common routine for ppa and ifname setting. Should be called exclusive.
16873 *
16874 * Returns EINPROGRESS when mp has been consumed by queueing it on
16875 * ipx_pending_mp and the ioctl will complete in ip_rput.
16876 *
16877 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return
16878 * the new name and new ppa in lifr_name and lifr_ppa respectively.
16879 * For SLIFNAME, we pass these values back to the userland.
16880 */
16881 static int
ipif_set_values(queue_t * q,mblk_t * mp,char * interf_name,uint_t * new_ppa_ptr)16882 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr)
16883 {
16884 ill_t *ill;
16885 ipif_t *ipif;
16886 ipsq_t *ipsq;
16887 char *ppa_ptr;
16888 char *old_ptr;
16889 char old_char;
16890 int error;
16891 ip_stack_t *ipst;
16892
16893 ip1dbg(("ipif_set_values: interface %s\n", interf_name));
16894 ASSERT(q->q_next != NULL);
16895 ASSERT(interf_name != NULL);
16896
16897 ill = (ill_t *)q->q_ptr;
16898 ipst = ill->ill_ipst;
16899
16900 ASSERT(ill->ill_ipst != NULL);
16901 ASSERT(ill->ill_name[0] == '\0');
16902 ASSERT(IAM_WRITER_ILL(ill));
16903 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ);
16904 ASSERT(ill->ill_ppa == UINT_MAX);
16905
16906 ill->ill_defend_start = ill->ill_defend_count = 0;
16907 /* The ppa is sent down by ifconfig or is chosen */
16908 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) {
16909 return (EINVAL);
16910 }
16911
16912 /*
16913 * make sure ppa passed in is same as ppa in the name.
16914 * This check is not made when ppa == UINT_MAX in that case ppa
16915 * in the name could be anything. System will choose a ppa and
16916 * update new_ppa_ptr and inter_name to contain the choosen ppa.
16917 */
16918 if (*new_ppa_ptr != UINT_MAX) {
16919 /* stoi changes the pointer */
16920 old_ptr = ppa_ptr;
16921 /*
16922 * ifconfig passed in 0 for the ppa for DLPI 1 style devices
16923 * (they don't have an externally visible ppa). We assign one
16924 * here so that we can manage the interface. Note that in
16925 * the past this value was always 0 for DLPI 1 drivers.
16926 */
16927 if (*new_ppa_ptr == 0)
16928 *new_ppa_ptr = stoi(&old_ptr);
16929 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr))
16930 return (EINVAL);
16931 }
16932 /*
16933 * terminate string before ppa
16934 * save char at that location.
16935 */
16936 old_char = ppa_ptr[0];
16937 ppa_ptr[0] = '\0';
16938
16939 ill->ill_ppa = *new_ppa_ptr;
16940 /*
16941 * Finish as much work now as possible before calling ill_glist_insert
16942 * which makes the ill globally visible and also merges it with the
16943 * other protocol instance of this phyint. The remaining work is
16944 * done after entering the ipsq which may happen sometime later.
16945 */
16946 ipif = ill->ill_ipif;
16947
16948 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */
16949 ipif_assign_seqid(ipif);
16950
16951 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)))
16952 ill->ill_flags |= ILLF_IPV4;
16953
16954 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */
16955 ASSERT((ipif->ipif_flags & IPIF_UP) == 0);
16956
16957 if (ill->ill_flags & ILLF_IPV6) {
16958
16959 ill->ill_isv6 = B_TRUE;
16960 ill_set_inputfn(ill);
16961 if (ill->ill_rq != NULL) {
16962 ill->ill_rq->q_qinfo = &iprinitv6;
16963 }
16964
16965 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */
16966 ipif->ipif_v6lcl_addr = ipv6_all_zeros;
16967 ipif->ipif_v6subnet = ipv6_all_zeros;
16968 ipif->ipif_v6net_mask = ipv6_all_zeros;
16969 ipif->ipif_v6brd_addr = ipv6_all_zeros;
16970 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros;
16971 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER;
16972 /*
16973 * point-to-point or Non-mulicast capable
16974 * interfaces won't do NUD unless explicitly
16975 * configured to do so.
16976 */
16977 if (ipif->ipif_flags & IPIF_POINTOPOINT ||
16978 !(ill->ill_flags & ILLF_MULTICAST)) {
16979 ill->ill_flags |= ILLF_NONUD;
16980 }
16981 /* Make sure IPv4 specific flag is not set on IPv6 if */
16982 if (ill->ill_flags & ILLF_NOARP) {
16983 /*
16984 * Note: xresolv interfaces will eventually need
16985 * NOARP set here as well, but that will require
16986 * those external resolvers to have some
16987 * knowledge of that flag and act appropriately.
16988 * Not to be changed at present.
16989 */
16990 ill->ill_flags &= ~ILLF_NOARP;
16991 }
16992 /*
16993 * Set the ILLF_ROUTER flag according to the global
16994 * IPv6 forwarding policy.
16995 */
16996 if (ipst->ips_ipv6_forwarding != 0)
16997 ill->ill_flags |= ILLF_ROUTER;
16998 } else if (ill->ill_flags & ILLF_IPV4) {
16999 ill->ill_isv6 = B_FALSE;
17000 ill_set_inputfn(ill);
17001 ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER;
17002 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr);
17003 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet);
17004 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask);
17005 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr);
17006 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr);
17007 /*
17008 * Set the ILLF_ROUTER flag according to the global
17009 * IPv4 forwarding policy.
17010 */
17011 if (ipst->ips_ip_forwarding != 0)
17012 ill->ill_flags |= ILLF_ROUTER;
17013 }
17014
17015 ASSERT(ill->ill_phyint != NULL);
17016
17017 /*
17018 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will
17019 * be completed in ill_glist_insert -> ill_phyint_reinit
17020 */
17021 if (!ill_allocate_mibs(ill))
17022 return (ENOMEM);
17023
17024 /*
17025 * Pick a default sap until we get the DL_INFO_ACK back from
17026 * the driver.
17027 */
17028 ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap :
17029 ill->ill_media->ip_m_ipv4sap;
17030
17031 ill->ill_ifname_pending = 1;
17032 ill->ill_ifname_pending_err = 0;
17033
17034 /*
17035 * When the first ipif comes up in ipif_up_done(), multicast groups
17036 * that were joined while this ill was not bound to the DLPI link need
17037 * to be recovered by ill_recover_multicast().
17038 */
17039 ill->ill_need_recover_multicast = 1;
17040
17041 ill_refhold(ill);
17042 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
17043 if ((error = ill_glist_insert(ill, interf_name,
17044 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) {
17045 ill->ill_ppa = UINT_MAX;
17046 ill->ill_name[0] = '\0';
17047 /*
17048 * undo null termination done above.
17049 */
17050 ppa_ptr[0] = old_char;
17051 rw_exit(&ipst->ips_ill_g_lock);
17052 ill_refrele(ill);
17053 return (error);
17054 }
17055
17056 ASSERT(ill->ill_name_length <= LIFNAMSIZ);
17057
17058 /*
17059 * When we return the buffer pointed to by interf_name should contain
17060 * the same name as in ill_name.
17061 * If a ppa was choosen by the system (ppa passed in was UINT_MAX)
17062 * the buffer pointed to by new_ppa_ptr would not contain the right ppa
17063 * so copy full name and update the ppa ptr.
17064 * When ppa passed in != UINT_MAX all values are correct just undo
17065 * null termination, this saves a bcopy.
17066 */
17067 if (*new_ppa_ptr == UINT_MAX) {
17068 bcopy(ill->ill_name, interf_name, ill->ill_name_length);
17069 *new_ppa_ptr = ill->ill_ppa;
17070 } else {
17071 /*
17072 * undo null termination done above.
17073 */
17074 ppa_ptr[0] = old_char;
17075 }
17076
17077 /* Let SCTP know about this ILL */
17078 sctp_update_ill(ill, SCTP_ILL_INSERT);
17079
17080 /*
17081 * ill_glist_insert has made the ill visible globally, and
17082 * ill_phyint_reinit could have changed the ipsq. At this point,
17083 * we need to hold the ips_ill_g_lock across the call to enter the
17084 * ipsq to enforce atomicity and prevent reordering. In the event
17085 * the ipsq has changed, and if the new ipsq is currently busy,
17086 * we need to make sure that this half-completed ioctl is ahead of
17087 * any subsequent ioctl. We achieve this by not dropping the
17088 * ips_ill_g_lock which prevents any ill lookup itself thereby
17089 * ensuring that new ioctls can't start.
17090 */
17091 ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP,
17092 B_TRUE);
17093
17094 rw_exit(&ipst->ips_ill_g_lock);
17095 ill_refrele(ill);
17096 if (ipsq == NULL)
17097 return (EINPROGRESS);
17098
17099 /*
17100 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq.
17101 */
17102 if (ipsq->ipsq_xop->ipx_current_ipif == NULL)
17103 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME);
17104 else
17105 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif);
17106
17107 error = ipif_set_values_tail(ill, ipif, mp, q);
17108 ipsq_exit(ipsq);
17109 if (error != 0 && error != EINPROGRESS) {
17110 /*
17111 * restore previous values
17112 */
17113 ill->ill_isv6 = B_FALSE;
17114 ill_set_inputfn(ill);
17115 }
17116 return (error);
17117 }
17118
17119 void
ipif_init(ip_stack_t * ipst)17120 ipif_init(ip_stack_t *ipst)
17121 {
17122 int i;
17123
17124 for (i = 0; i < MAX_G_HEADS; i++) {
17125 ipst->ips_ill_g_heads[i].ill_g_list_head =
17126 (ill_if_t *)&ipst->ips_ill_g_heads[i];
17127 ipst->ips_ill_g_heads[i].ill_g_list_tail =
17128 (ill_if_t *)&ipst->ips_ill_g_heads[i];
17129 }
17130
17131 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
17132 ill_phyint_compare_index,
17133 sizeof (phyint_t),
17134 offsetof(struct phyint, phyint_avl_by_index));
17135 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
17136 ill_phyint_compare_name,
17137 sizeof (phyint_t),
17138 offsetof(struct phyint, phyint_avl_by_name));
17139 }
17140
17141 /*
17142 * Save enough information so that we can recreate the IRE if
17143 * the interface goes down and then up.
17144 */
17145 void
ill_save_ire(ill_t * ill,ire_t * ire)17146 ill_save_ire(ill_t *ill, ire_t *ire)
17147 {
17148 mblk_t *save_mp;
17149
17150 save_mp = allocb(sizeof (ifrt_t), BPRI_MED);
17151 if (save_mp != NULL) {
17152 ifrt_t *ifrt;
17153
17154 save_mp->b_wptr += sizeof (ifrt_t);
17155 ifrt = (ifrt_t *)save_mp->b_rptr;
17156 bzero(ifrt, sizeof (ifrt_t));
17157 ifrt->ifrt_type = ire->ire_type;
17158 if (ire->ire_ipversion == IPV4_VERSION) {
17159 ASSERT(!ill->ill_isv6);
17160 ifrt->ifrt_addr = ire->ire_addr;
17161 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr;
17162 ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr;
17163 ifrt->ifrt_mask = ire->ire_mask;
17164 } else {
17165 ASSERT(ill->ill_isv6);
17166 ifrt->ifrt_v6addr = ire->ire_addr_v6;
17167 /* ire_gateway_addr_v6 can change due to RTM_CHANGE */
17168 mutex_enter(&ire->ire_lock);
17169 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6;
17170 mutex_exit(&ire->ire_lock);
17171 ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6;
17172 ifrt->ifrt_v6mask = ire->ire_mask_v6;
17173 }
17174 ifrt->ifrt_flags = ire->ire_flags;
17175 ifrt->ifrt_zoneid = ire->ire_zoneid;
17176 mutex_enter(&ill->ill_saved_ire_lock);
17177 save_mp->b_cont = ill->ill_saved_ire_mp;
17178 ill->ill_saved_ire_mp = save_mp;
17179 ill->ill_saved_ire_cnt++;
17180 mutex_exit(&ill->ill_saved_ire_lock);
17181 }
17182 }
17183
17184 /*
17185 * Remove one entry from ill_saved_ire_mp.
17186 */
17187 void
ill_remove_saved_ire(ill_t * ill,ire_t * ire)17188 ill_remove_saved_ire(ill_t *ill, ire_t *ire)
17189 {
17190 mblk_t **mpp;
17191 mblk_t *mp;
17192 ifrt_t *ifrt;
17193
17194 /* Remove from ill_saved_ire_mp list if it is there */
17195 mutex_enter(&ill->ill_saved_ire_lock);
17196 for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL;
17197 mpp = &(*mpp)->b_cont) {
17198 in6_addr_t gw_addr_v6;
17199
17200 /*
17201 * On a given ill, the tuple of address, gateway, mask,
17202 * ire_type, and zoneid is unique for each saved IRE.
17203 */
17204 mp = *mpp;
17205 ifrt = (ifrt_t *)mp->b_rptr;
17206 /* ire_gateway_addr_v6 can change - need lock */
17207 mutex_enter(&ire->ire_lock);
17208 gw_addr_v6 = ire->ire_gateway_addr_v6;
17209 mutex_exit(&ire->ire_lock);
17210
17211 if (ifrt->ifrt_zoneid != ire->ire_zoneid ||
17212 ifrt->ifrt_type != ire->ire_type)
17213 continue;
17214
17215 if (ill->ill_isv6 ?
17216 (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr,
17217 &ire->ire_addr_v6) &&
17218 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr,
17219 &gw_addr_v6) &&
17220 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask,
17221 &ire->ire_mask_v6)) :
17222 (ifrt->ifrt_addr == ire->ire_addr &&
17223 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr &&
17224 ifrt->ifrt_mask == ire->ire_mask)) {
17225 *mpp = mp->b_cont;
17226 ill->ill_saved_ire_cnt--;
17227 freeb(mp);
17228 break;
17229 }
17230 }
17231 mutex_exit(&ill->ill_saved_ire_lock);
17232 }
17233
17234 /*
17235 * IP multirouting broadcast routes handling
17236 * Append CGTP broadcast IREs to regular ones created
17237 * at ifconfig time.
17238 * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both
17239 * the destination and the gateway are broadcast addresses.
17240 * The caller has verified that the destination is an IRE_BROADCAST and that
17241 * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then
17242 * we create a MULTIRT IRE_BROADCAST.
17243 * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything
17244 * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion.
17245 */
17246 static void
ip_cgtp_bcast_add(ire_t * ire,ip_stack_t * ipst)17247 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst)
17248 {
17249 ire_t *ire_prim;
17250
17251 ASSERT(ire != NULL);
17252
17253 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
17254 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
17255 NULL);
17256 if (ire_prim != NULL) {
17257 /*
17258 * We are in the special case of broadcasts for
17259 * CGTP. We add an IRE_BROADCAST that holds
17260 * the RTF_MULTIRT flag, the destination
17261 * address and the low level
17262 * info of ire_prim. In other words, CGTP
17263 * broadcast is added to the redundant ipif.
17264 */
17265 ill_t *ill_prim;
17266 ire_t *bcast_ire;
17267
17268 ill_prim = ire_prim->ire_ill;
17269
17270 ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n",
17271 (void *)ire_prim, (void *)ill_prim));
17272
17273 bcast_ire = ire_create(
17274 (uchar_t *)&ire->ire_addr,
17275 (uchar_t *)&ip_g_all_ones,
17276 (uchar_t *)&ire->ire_gateway_addr,
17277 IRE_BROADCAST,
17278 ill_prim,
17279 GLOBAL_ZONEID, /* CGTP is only for the global zone */
17280 ire->ire_flags | RTF_KERNEL,
17281 NULL,
17282 ipst);
17283
17284 /*
17285 * Here we assume that ire_add does head insertion so that
17286 * the added IRE_BROADCAST comes before the existing IRE_HOST.
17287 */
17288 if (bcast_ire != NULL) {
17289 if (ire->ire_flags & RTF_SETSRC) {
17290 bcast_ire->ire_setsrc_addr =
17291 ire->ire_setsrc_addr;
17292 }
17293 bcast_ire = ire_add(bcast_ire);
17294 if (bcast_ire != NULL) {
17295 ip2dbg(("ip_cgtp_filter_bcast_add: "
17296 "added bcast_ire %p\n",
17297 (void *)bcast_ire));
17298
17299 ill_save_ire(ill_prim, bcast_ire);
17300 ire_refrele(bcast_ire);
17301 }
17302 }
17303 ire_refrele(ire_prim);
17304 }
17305 }
17306
17307 /*
17308 * IP multirouting broadcast routes handling
17309 * Remove the broadcast ire.
17310 * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both
17311 * the destination and the gateway are broadcast addresses.
17312 * The caller has only verified that RTF_MULTIRT was set. We check
17313 * that the destination is broadcast and that the gateway is a broadcast
17314 * address, and if so delete the IRE added by ip_cgtp_bcast_add().
17315 */
17316 static void
ip_cgtp_bcast_delete(ire_t * ire,ip_stack_t * ipst)17317 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst)
17318 {
17319 ASSERT(ire != NULL);
17320
17321 if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) {
17322 ire_t *ire_prim;
17323
17324 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
17325 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0,
17326 ipst, NULL);
17327 if (ire_prim != NULL) {
17328 ill_t *ill_prim;
17329 ire_t *bcast_ire;
17330
17331 ill_prim = ire_prim->ire_ill;
17332
17333 ip2dbg(("ip_cgtp_filter_bcast_delete: "
17334 "ire_prim %p, ill_prim %p\n",
17335 (void *)ire_prim, (void *)ill_prim));
17336
17337 bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0,
17338 ire->ire_gateway_addr, IRE_BROADCAST,
17339 ill_prim, ALL_ZONES, NULL,
17340 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL |
17341 MATCH_IRE_MASK, 0, ipst, NULL);
17342
17343 if (bcast_ire != NULL) {
17344 ip2dbg(("ip_cgtp_filter_bcast_delete: "
17345 "looked up bcast_ire %p\n",
17346 (void *)bcast_ire));
17347 ill_remove_saved_ire(bcast_ire->ire_ill,
17348 bcast_ire);
17349 ire_delete(bcast_ire);
17350 ire_refrele(bcast_ire);
17351 }
17352 ire_refrele(ire_prim);
17353 }
17354 }
17355 }
17356
17357 /*
17358 * Derive an interface id from the link layer address.
17359 * Knows about IEEE 802 and IEEE EUI-64 mappings.
17360 */
17361 static void
ip_ether_v6intfid(ill_t * ill,in6_addr_t * v6addr)17362 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17363 {
17364 char *addr;
17365
17366 /*
17367 * Note that some IPv6 interfaces get plumbed over links that claim to
17368 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g.
17369 * PPP links). The ETHERADDRL check here ensures that we only set the
17370 * interface ID on IPv6 interfaces above links that actually have real
17371 * Ethernet addresses.
17372 */
17373 if (ill->ill_phys_addr_length == ETHERADDRL) {
17374 /* Form EUI-64 like address */
17375 addr = (char *)&v6addr->s6_addr32[2];
17376 bcopy(ill->ill_phys_addr, addr, 3);
17377 addr[0] ^= 0x2; /* Toggle Universal/Local bit */
17378 addr[3] = (char)0xff;
17379 addr[4] = (char)0xfe;
17380 bcopy(ill->ill_phys_addr + 3, addr + 5, 3);
17381 }
17382 }
17383
17384 /* ARGSUSED */
17385 static void
ip_nodef_v6intfid(ill_t * ill,in6_addr_t * v6addr)17386 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17387 {
17388 }
17389
17390 typedef struct ipmp_ifcookie {
17391 uint32_t ic_hostid;
17392 char ic_ifname[LIFNAMSIZ];
17393 char ic_zonename[ZONENAME_MAX];
17394 } ipmp_ifcookie_t;
17395
17396 /*
17397 * Construct a pseudo-random interface ID for the IPMP interface that's both
17398 * predictable and (almost) guaranteed to be unique.
17399 */
17400 static void
ip_ipmp_v6intfid(ill_t * ill,in6_addr_t * v6addr)17401 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17402 {
17403 zone_t *zp;
17404 uint8_t *addr;
17405 uchar_t hash[16];
17406 ulong_t hostid;
17407 MD5_CTX ctx;
17408 ipmp_ifcookie_t ic = { 0 };
17409
17410 ASSERT(IS_IPMP(ill));
17411
17412 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid);
17413 ic.ic_hostid = htonl((uint32_t)hostid);
17414
17415 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ);
17416
17417 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) {
17418 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX);
17419 zone_rele(zp);
17420 }
17421
17422 MD5Init(&ctx);
17423 MD5Update(&ctx, &ic, sizeof (ic));
17424 MD5Final(hash, &ctx);
17425
17426 /*
17427 * Map the hash to an interface ID per the basic approach in RFC3041.
17428 */
17429 addr = &v6addr->s6_addr8[8];
17430 bcopy(hash + 8, addr, sizeof (uint64_t));
17431 addr[0] &= ~0x2; /* set local bit */
17432 }
17433
17434 /*
17435 * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet.
17436 */
17437 static void
ip_ether_v6_mapping(ill_t * ill,uchar_t * m_ip6addr,uchar_t * m_physaddr)17438 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr)
17439 {
17440 phyint_t *phyi = ill->ill_phyint;
17441
17442 /*
17443 * Check PHYI_MULTI_BCAST and length of physical
17444 * address to determine if we use the mapping or the
17445 * broadcast address.
17446 */
17447 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 ||
17448 ill->ill_phys_addr_length != ETHERADDRL) {
17449 ip_mbcast_mapping(ill, m_ip6addr, m_physaddr);
17450 return;
17451 }
17452 m_physaddr[0] = 0x33;
17453 m_physaddr[1] = 0x33;
17454 m_physaddr[2] = m_ip6addr[12];
17455 m_physaddr[3] = m_ip6addr[13];
17456 m_physaddr[4] = m_ip6addr[14];
17457 m_physaddr[5] = m_ip6addr[15];
17458 }
17459
17460 /*
17461 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet.
17462 */
17463 static void
ip_ether_v4_mapping(ill_t * ill,uchar_t * m_ipaddr,uchar_t * m_physaddr)17464 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17465 {
17466 phyint_t *phyi = ill->ill_phyint;
17467
17468 /*
17469 * Check PHYI_MULTI_BCAST and length of physical
17470 * address to determine if we use the mapping or the
17471 * broadcast address.
17472 */
17473 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 ||
17474 ill->ill_phys_addr_length != ETHERADDRL) {
17475 ip_mbcast_mapping(ill, m_ipaddr, m_physaddr);
17476 return;
17477 }
17478 m_physaddr[0] = 0x01;
17479 m_physaddr[1] = 0x00;
17480 m_physaddr[2] = 0x5e;
17481 m_physaddr[3] = m_ipaddr[1] & 0x7f;
17482 m_physaddr[4] = m_ipaddr[2];
17483 m_physaddr[5] = m_ipaddr[3];
17484 }
17485
17486 /* ARGSUSED */
17487 static void
ip_mbcast_mapping(ill_t * ill,uchar_t * m_ipaddr,uchar_t * m_physaddr)17488 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17489 {
17490 /*
17491 * for the MULTI_BCAST case and other cases when we want to
17492 * use the link-layer broadcast address for multicast.
17493 */
17494 uint8_t *bphys_addr;
17495 dl_unitdata_req_t *dlur;
17496
17497 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17498 if (ill->ill_sap_length < 0) {
17499 bphys_addr = (uchar_t *)dlur +
17500 dlur->dl_dest_addr_offset;
17501 } else {
17502 bphys_addr = (uchar_t *)dlur +
17503 dlur->dl_dest_addr_offset + ill->ill_sap_length;
17504 }
17505
17506 bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length);
17507 }
17508
17509 /*
17510 * Derive IPoIB interface id from the link layer address.
17511 */
17512 static void
ip_ib_v6intfid(ill_t * ill,in6_addr_t * v6addr)17513 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17514 {
17515 char *addr;
17516
17517 ASSERT(ill->ill_phys_addr_length == 20);
17518 addr = (char *)&v6addr->s6_addr32[2];
17519 bcopy(ill->ill_phys_addr + 12, addr, 8);
17520 /*
17521 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit
17522 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE
17523 * rules. In these cases, the IBA considers these GUIDs to be in
17524 * "Modified EUI-64" format, and thus toggling the u/l bit is not
17525 * required; vendors are required not to assign global EUI-64's
17526 * that differ only in u/l bit values, thus guaranteeing uniqueness
17527 * of the interface identifier. Whether the GUID is in modified
17528 * or proper EUI-64 format, the ipv6 identifier must have the u/l
17529 * bit set to 1.
17530 */
17531 addr[0] |= 2; /* Set Universal/Local bit to 1 */
17532 }
17533
17534 /*
17535 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand.
17536 * Note on mapping from multicast IP addresses to IPoIB multicast link
17537 * addresses. IPoIB multicast link addresses are based on IBA link addresses.
17538 * The format of an IPoIB multicast address is:
17539 *
17540 * 4 byte QPN Scope Sign. Pkey
17541 * +--------------------------------------------+
17542 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID |
17543 * +--------------------------------------------+
17544 *
17545 * The Scope and Pkey components are properties of the IBA port and
17546 * network interface. They can be ascertained from the broadcast address.
17547 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6.
17548 */
17549 static void
ip_ib_v4_mapping(ill_t * ill,uchar_t * m_ipaddr,uchar_t * m_physaddr)17550 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17551 {
17552 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
17553 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00,
17554 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
17555 uint8_t *bphys_addr;
17556 dl_unitdata_req_t *dlur;
17557
17558 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length);
17559
17560 /*
17561 * RFC 4391: IPv4 MGID is 28-bit long.
17562 */
17563 m_physaddr[16] = m_ipaddr[0] & 0x0f;
17564 m_physaddr[17] = m_ipaddr[1];
17565 m_physaddr[18] = m_ipaddr[2];
17566 m_physaddr[19] = m_ipaddr[3];
17567
17568
17569 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17570 if (ill->ill_sap_length < 0) {
17571 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
17572 } else {
17573 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
17574 ill->ill_sap_length;
17575 }
17576 /*
17577 * Now fill in the IBA scope/Pkey values from the broadcast address.
17578 */
17579 m_physaddr[5] = bphys_addr[5];
17580 m_physaddr[8] = bphys_addr[8];
17581 m_physaddr[9] = bphys_addr[9];
17582 }
17583
17584 static void
ip_ib_v6_mapping(ill_t * ill,uchar_t * m_ipaddr,uchar_t * m_physaddr)17585 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17586 {
17587 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
17588 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00,
17589 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
17590 uint8_t *bphys_addr;
17591 dl_unitdata_req_t *dlur;
17592
17593 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length);
17594
17595 /*
17596 * RFC 4391: IPv4 MGID is 80-bit long.
17597 */
17598 bcopy(&m_ipaddr[6], &m_physaddr[10], 10);
17599
17600 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17601 if (ill->ill_sap_length < 0) {
17602 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
17603 } else {
17604 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
17605 ill->ill_sap_length;
17606 }
17607 /*
17608 * Now fill in the IBA scope/Pkey values from the broadcast address.
17609 */
17610 m_physaddr[5] = bphys_addr[5];
17611 m_physaddr[8] = bphys_addr[8];
17612 m_physaddr[9] = bphys_addr[9];
17613 }
17614
17615 /*
17616 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4
17617 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the
17618 * IPv6 interface id. This is a suggested mechanism described in section 3.7
17619 * of RFC4213.
17620 */
17621 static void
ip_ipv4_genv6intfid(ill_t * ill,uint8_t * physaddr,in6_addr_t * v6addr)17622 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
17623 {
17624 ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t));
17625 v6addr->s6_addr32[2] = 0;
17626 bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t));
17627 }
17628
17629 /*
17630 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6
17631 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface
17632 * id.
17633 */
17634 static void
ip_ipv6_genv6intfid(ill_t * ill,uint8_t * physaddr,in6_addr_t * v6addr)17635 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
17636 {
17637 in6_addr_t *v6lladdr = (in6_addr_t *)physaddr;
17638
17639 ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t));
17640 bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8);
17641 }
17642
17643 static void
ip_ipv6_v6intfid(ill_t * ill,in6_addr_t * v6addr)17644 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17645 {
17646 ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr);
17647 }
17648
17649 static void
ip_ipv6_v6destintfid(ill_t * ill,in6_addr_t * v6addr)17650 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
17651 {
17652 ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr);
17653 }
17654
17655 static void
ip_ipv4_v6intfid(ill_t * ill,in6_addr_t * v6addr)17656 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17657 {
17658 ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr);
17659 }
17660
17661 static void
ip_ipv4_v6destintfid(ill_t * ill,in6_addr_t * v6addr)17662 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
17663 {
17664 ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr);
17665 }
17666
17667 /*
17668 * Lookup an ill and verify that the zoneid has an ipif on that ill.
17669 * Returns an held ill, or NULL.
17670 */
17671 ill_t *
ill_lookup_on_ifindex_zoneid(uint_t index,zoneid_t zoneid,boolean_t isv6,ip_stack_t * ipst)17672 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6,
17673 ip_stack_t *ipst)
17674 {
17675 ill_t *ill;
17676 ipif_t *ipif;
17677
17678 ill = ill_lookup_on_ifindex(index, isv6, ipst);
17679 if (ill == NULL)
17680 return (NULL);
17681
17682 mutex_enter(&ill->ill_lock);
17683 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17684 if (IPIF_IS_CONDEMNED(ipif))
17685 continue;
17686 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid &&
17687 ipif->ipif_zoneid != ALL_ZONES)
17688 continue;
17689
17690 mutex_exit(&ill->ill_lock);
17691 return (ill);
17692 }
17693 mutex_exit(&ill->ill_lock);
17694 ill_refrele(ill);
17695 return (NULL);
17696 }
17697
17698 /*
17699 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id)
17700 * If a pointer to an ipif_t is returned then the caller will need to do
17701 * an ill_refrele().
17702 */
17703 ipif_t *
ipif_getby_indexes(uint_t ifindex,uint_t lifidx,boolean_t isv6,ip_stack_t * ipst)17704 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6,
17705 ip_stack_t *ipst)
17706 {
17707 ipif_t *ipif;
17708 ill_t *ill;
17709
17710 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
17711 if (ill == NULL)
17712 return (NULL);
17713
17714 mutex_enter(&ill->ill_lock);
17715 if (ill->ill_state_flags & ILL_CONDEMNED) {
17716 mutex_exit(&ill->ill_lock);
17717 ill_refrele(ill);
17718 return (NULL);
17719 }
17720
17721 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17722 if (!IPIF_CAN_LOOKUP(ipif))
17723 continue;
17724 if (lifidx == ipif->ipif_id) {
17725 ipif_refhold_locked(ipif);
17726 break;
17727 }
17728 }
17729
17730 mutex_exit(&ill->ill_lock);
17731 ill_refrele(ill);
17732 return (ipif);
17733 }
17734
17735 /*
17736 * Set ill_inputfn based on the current know state.
17737 * This needs to be called when any of the factors taken into
17738 * account changes.
17739 */
17740 void
ill_set_inputfn(ill_t * ill)17741 ill_set_inputfn(ill_t *ill)
17742 {
17743 ip_stack_t *ipst = ill->ill_ipst;
17744
17745 if (ill->ill_isv6) {
17746 if (is_system_labeled())
17747 ill->ill_inputfn = ill_input_full_v6;
17748 else
17749 ill->ill_inputfn = ill_input_short_v6;
17750 } else {
17751 if (is_system_labeled())
17752 ill->ill_inputfn = ill_input_full_v4;
17753 else if (ill->ill_dhcpinit != 0)
17754 ill->ill_inputfn = ill_input_full_v4;
17755 else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head
17756 != NULL)
17757 ill->ill_inputfn = ill_input_full_v4;
17758 else if (ipst->ips_ip_cgtp_filter &&
17759 ipst->ips_ip_cgtp_filter_ops != NULL)
17760 ill->ill_inputfn = ill_input_full_v4;
17761 else
17762 ill->ill_inputfn = ill_input_short_v4;
17763 }
17764 }
17765
17766 /*
17767 * Re-evaluate ill_inputfn for all the IPv4 ills.
17768 * Used when RSVP and CGTP comes and goes.
17769 */
17770 void
ill_set_inputfn_all(ip_stack_t * ipst)17771 ill_set_inputfn_all(ip_stack_t *ipst)
17772 {
17773 ill_walk_context_t ctx;
17774 ill_t *ill;
17775
17776 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
17777 ill = ILL_START_WALK_V4(&ctx, ipst);
17778 for (; ill != NULL; ill = ill_next(&ctx, ill))
17779 ill_set_inputfn(ill);
17780
17781 rw_exit(&ipst->ips_ill_g_lock);
17782 }
17783
17784 /*
17785 * Set the physical address information for `ill' to the contents of the
17786 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be
17787 * asynchronous if `ill' cannot immediately be quiesced -- in which case
17788 * EINPROGRESS will be returned.
17789 */
17790 int
ill_set_phys_addr(ill_t * ill,mblk_t * mp)17791 ill_set_phys_addr(ill_t *ill, mblk_t *mp)
17792 {
17793 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17794 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr;
17795
17796 ASSERT(IAM_WRITER_IPSQ(ipsq));
17797
17798 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR &&
17799 dlindp->dl_data != DL_CURR_DEST_ADDR &&
17800 dlindp->dl_data != DL_CURR_PHYS_ADDR) {
17801 /* Changing DL_IPV6_TOKEN is not yet supported */
17802 return (0);
17803 }
17804
17805 /*
17806 * We need to store up to two copies of `mp' in `ill'. Due to the
17807 * design of ipsq_pending_mp_add(), we can't pass them as separate
17808 * arguments to ill_set_phys_addr_tail(). Instead, chain them
17809 * together here, then pull 'em apart in ill_set_phys_addr_tail().
17810 */
17811 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) {
17812 freemsg(mp);
17813 return (ENOMEM);
17814 }
17815
17816 ipsq_current_start(ipsq, ill->ill_ipif, 0);
17817
17818 /*
17819 * Since we'll only do a logical down, we can't rely on ipif_down
17820 * to turn on ILL_DOWN_IN_PROGRESS, or for the DL_BIND_ACK to reset
17821 * ILL_DOWN_IN_PROGRESS. We instead manage this separately for this
17822 * case, to quiesce ire's and nce's for ill_is_quiescent.
17823 */
17824 mutex_enter(&ill->ill_lock);
17825 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
17826 /* no more ire/nce addition allowed */
17827 mutex_exit(&ill->ill_lock);
17828
17829 /*
17830 * If we can quiesce the ill, then set the address. If not, then
17831 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail().
17832 */
17833 ill_down_ipifs(ill, B_TRUE);
17834 mutex_enter(&ill->ill_lock);
17835 if (!ill_is_quiescent(ill)) {
17836 /* call cannot fail since `conn_t *' argument is NULL */
17837 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
17838 mp, ILL_DOWN);
17839 mutex_exit(&ill->ill_lock);
17840 return (EINPROGRESS);
17841 }
17842 mutex_exit(&ill->ill_lock);
17843
17844 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL);
17845 return (0);
17846 }
17847
17848 /*
17849 * When the allowed-ips link property is set on the datalink, IP receives a
17850 * DL_NOTE_ALLOWED_IPS notification that is processed in ill_set_allowed_ips()
17851 * to initialize the ill_allowed_ips[] array in the ill_t. This array is then
17852 * used to vet addresses passed to ip_sioctl_addr() and to ensure that the
17853 * only IP addresses configured on the ill_t are those in the ill_allowed_ips[]
17854 * array.
17855 */
17856 void
ill_set_allowed_ips(ill_t * ill,mblk_t * mp)17857 ill_set_allowed_ips(ill_t *ill, mblk_t *mp)
17858 {
17859 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17860 dl_notify_ind_t *dlip = (dl_notify_ind_t *)mp->b_rptr;
17861 mac_protect_t *mrp;
17862 int i;
17863
17864 ASSERT(IAM_WRITER_IPSQ(ipsq));
17865 mrp = (mac_protect_t *)&dlip[1];
17866
17867 if (mrp->mp_ipaddrcnt == 0) { /* reset allowed-ips */
17868 kmem_free(ill->ill_allowed_ips,
17869 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
17870 ill->ill_allowed_ips_cnt = 0;
17871 ill->ill_allowed_ips = NULL;
17872 mutex_enter(&ill->ill_phyint->phyint_lock);
17873 ill->ill_phyint->phyint_flags &= ~PHYI_L3PROTECT;
17874 mutex_exit(&ill->ill_phyint->phyint_lock);
17875 return;
17876 }
17877
17878 if (ill->ill_allowed_ips != NULL) {
17879 kmem_free(ill->ill_allowed_ips,
17880 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
17881 }
17882 ill->ill_allowed_ips_cnt = mrp->mp_ipaddrcnt;
17883 ill->ill_allowed_ips = kmem_alloc(
17884 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t), KM_SLEEP);
17885 for (i = 0; i < mrp->mp_ipaddrcnt; i++)
17886 ill->ill_allowed_ips[i] = mrp->mp_ipaddrs[i].ip_addr;
17887
17888 mutex_enter(&ill->ill_phyint->phyint_lock);
17889 ill->ill_phyint->phyint_flags |= PHYI_L3PROTECT;
17890 mutex_exit(&ill->ill_phyint->phyint_lock);
17891 }
17892
17893 /*
17894 * Once the ill associated with `q' has quiesced, set its physical address
17895 * information to the values in `addrmp'. Note that two copies of `addrmp'
17896 * are passed (linked by b_cont), since we sometimes need to save two distinct
17897 * copies in the ill_t, and our context doesn't permit sleeping or allocation
17898 * failure (we'll free the other copy if it's not needed). Since the ill_t
17899 * is quiesced, we know any stale nce's with the old address information have
17900 * already been removed, so we don't need to call nce_flush().
17901 */
17902 /* ARGSUSED */
17903 static void
ill_set_phys_addr_tail(ipsq_t * ipsq,queue_t * q,mblk_t * addrmp,void * dummy)17904 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy)
17905 {
17906 ill_t *ill = q->q_ptr;
17907 mblk_t *addrmp2 = unlinkb(addrmp);
17908 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr;
17909 uint_t addrlen, addroff;
17910 int status;
17911
17912 ASSERT(IAM_WRITER_IPSQ(ipsq));
17913
17914 addroff = dlindp->dl_addr_offset;
17915 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length);
17916
17917 switch (dlindp->dl_data) {
17918 case DL_IPV6_LINK_LAYER_ADDR:
17919 ill_set_ndmp(ill, addrmp, addroff, addrlen);
17920 freemsg(addrmp2);
17921 break;
17922
17923 case DL_CURR_DEST_ADDR:
17924 freemsg(ill->ill_dest_addr_mp);
17925 ill->ill_dest_addr = addrmp->b_rptr + addroff;
17926 ill->ill_dest_addr_mp = addrmp;
17927 if (ill->ill_isv6) {
17928 ill_setdesttoken(ill);
17929 ipif_setdestlinklocal(ill->ill_ipif);
17930 }
17931 freemsg(addrmp2);
17932 break;
17933
17934 case DL_CURR_PHYS_ADDR:
17935 freemsg(ill->ill_phys_addr_mp);
17936 ill->ill_phys_addr = addrmp->b_rptr + addroff;
17937 ill->ill_phys_addr_mp = addrmp;
17938 ill->ill_phys_addr_length = addrlen;
17939 if (ill->ill_isv6)
17940 ill_set_ndmp(ill, addrmp2, addroff, addrlen);
17941 else
17942 freemsg(addrmp2);
17943 if (ill->ill_isv6) {
17944 ill_setdefaulttoken(ill);
17945 ipif_setlinklocal(ill->ill_ipif);
17946 }
17947 break;
17948 default:
17949 ASSERT(0);
17950 }
17951
17952 /*
17953 * reset ILL_DOWN_IN_PROGRESS so that we can successfully add ires
17954 * as we bring the ipifs up again.
17955 */
17956 mutex_enter(&ill->ill_lock);
17957 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
17958 mutex_exit(&ill->ill_lock);
17959 /*
17960 * If there are ipifs to bring up, ill_up_ipifs() will return
17961 * EINPROGRESS, and ipsq_current_finish() will be called by
17962 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is
17963 * brought up.
17964 */
17965 status = ill_up_ipifs(ill, q, addrmp);
17966 if (status != EINPROGRESS)
17967 ipsq_current_finish(ipsq);
17968 }
17969
17970 /*
17971 * Helper routine for setting the ill_nd_lla fields.
17972 */
17973 void
ill_set_ndmp(ill_t * ill,mblk_t * ndmp,uint_t addroff,uint_t addrlen)17974 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen)
17975 {
17976 freemsg(ill->ill_nd_lla_mp);
17977 ill->ill_nd_lla = ndmp->b_rptr + addroff;
17978 ill->ill_nd_lla_mp = ndmp;
17979 ill->ill_nd_lla_len = addrlen;
17980 }
17981
17982 /*
17983 * Replumb the ill.
17984 */
17985 int
ill_replumb(ill_t * ill,mblk_t * mp)17986 ill_replumb(ill_t *ill, mblk_t *mp)
17987 {
17988 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17989
17990 ASSERT(IAM_WRITER_IPSQ(ipsq));
17991
17992 ipsq_current_start(ipsq, ill->ill_ipif, 0);
17993
17994 /*
17995 * If we can quiesce the ill, then continue. If not, then
17996 * ill_replumb_tail() will be called from ipif_ill_refrele_tail().
17997 */
17998 ill_down_ipifs(ill, B_FALSE);
17999
18000 mutex_enter(&ill->ill_lock);
18001 if (!ill_is_quiescent(ill)) {
18002 /* call cannot fail since `conn_t *' argument is NULL */
18003 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
18004 mp, ILL_DOWN);
18005 mutex_exit(&ill->ill_lock);
18006 return (EINPROGRESS);
18007 }
18008 mutex_exit(&ill->ill_lock);
18009
18010 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL);
18011 return (0);
18012 }
18013
18014 /* ARGSUSED */
18015 static void
ill_replumb_tail(ipsq_t * ipsq,queue_t * q,mblk_t * mp,void * dummy)18016 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
18017 {
18018 ill_t *ill = q->q_ptr;
18019 int err;
18020 conn_t *connp = NULL;
18021
18022 ASSERT(IAM_WRITER_IPSQ(ipsq));
18023 freemsg(ill->ill_replumb_mp);
18024 ill->ill_replumb_mp = copyb(mp);
18025
18026 if (ill->ill_replumb_mp == NULL) {
18027 /* out of memory */
18028 ipsq_current_finish(ipsq);
18029 return;
18030 }
18031
18032 mutex_enter(&ill->ill_lock);
18033 ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif,
18034 ill->ill_rq, ill->ill_replumb_mp, 0);
18035 mutex_exit(&ill->ill_lock);
18036
18037 if (!ill->ill_up_ipifs) {
18038 /* already closing */
18039 ipsq_current_finish(ipsq);
18040 return;
18041 }
18042 ill->ill_replumbing = 1;
18043 err = ill_down_ipifs_tail(ill);
18044
18045 /*
18046 * Successfully quiesced and brought down the interface, now we send
18047 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the
18048 * DL_NOTE_REPLUMB message.
18049 */
18050 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO,
18051 DL_NOTIFY_CONF);
18052 ASSERT(mp != NULL);
18053 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification =
18054 DL_NOTE_REPLUMB_DONE;
18055 ill_dlpi_send(ill, mp);
18056
18057 /*
18058 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP
18059 * streams have to be unbound. When all the DLPI exchanges are done,
18060 * ipsq_current_finish() will be called by arp_bringup_done(). The
18061 * remainder of ipif bringup via ill_up_ipifs() will also be done in
18062 * arp_bringup_done().
18063 */
18064 ASSERT(ill->ill_replumb_mp != NULL);
18065 if (err == EINPROGRESS)
18066 return;
18067 else
18068 ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp);
18069 ASSERT(connp == NULL);
18070 if (err == 0 && ill->ill_replumb_mp != NULL &&
18071 ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) {
18072 return;
18073 }
18074 ipsq_current_finish(ipsq);
18075 }
18076
18077 /*
18078 * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf'
18079 * which is `bufsize' bytes. On success, zero is returned and `buf' updated
18080 * as per the ioctl. On failure, an errno is returned.
18081 */
18082 static int
ip_ioctl(ldi_handle_t lh,int cmd,void * buf,uint_t bufsize,cred_t * cr)18083 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr)
18084 {
18085 int rval;
18086 struct strioctl iocb;
18087
18088 iocb.ic_cmd = cmd;
18089 iocb.ic_timout = 15;
18090 iocb.ic_len = bufsize;
18091 iocb.ic_dp = buf;
18092
18093 return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval));
18094 }
18095
18096 /*
18097 * Issue an SIOCGLIFCONF for address family `af' and store the result into a
18098 * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success.
18099 */
18100 static int
ip_lifconf_ioctl(ldi_handle_t lh,int af,struct lifconf * lifcp,uint_t * bufsizep,cred_t * cr)18101 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp,
18102 uint_t *bufsizep, cred_t *cr)
18103 {
18104 int err;
18105 struct lifnum lifn;
18106
18107 bzero(&lifn, sizeof (lifn));
18108 lifn.lifn_family = af;
18109 lifn.lifn_flags = LIFC_UNDER_IPMP;
18110
18111 if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0)
18112 return (err);
18113
18114 /*
18115 * Pad the interface count to account for additional interfaces that
18116 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF.
18117 */
18118 lifn.lifn_count += 4;
18119 bzero(lifcp, sizeof (*lifcp));
18120 lifcp->lifc_flags = LIFC_UNDER_IPMP;
18121 lifcp->lifc_family = af;
18122 lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq);
18123 lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP);
18124
18125 err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr);
18126 if (err != 0) {
18127 kmem_free(lifcp->lifc_buf, *bufsizep);
18128 return (err);
18129 }
18130
18131 return (0);
18132 }
18133
18134 /*
18135 * Helper for ip_interface_cleanup() that removes the loopback interface.
18136 */
18137 static void
ip_loopback_removeif(ldi_handle_t lh,boolean_t isv6,cred_t * cr)18138 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
18139 {
18140 int err;
18141 struct lifreq lifr;
18142
18143 bzero(&lifr, sizeof (lifr));
18144 (void) strcpy(lifr.lifr_name, ipif_loopback_name);
18145
18146 /*
18147 * Attempt to remove the interface. It may legitimately not exist
18148 * (e.g. the zone administrator unplumbed it), so ignore ENXIO.
18149 */
18150 err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr);
18151 if (err != 0 && err != ENXIO) {
18152 ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: "
18153 "error %d\n", isv6 ? "v6" : "v4", err));
18154 }
18155 }
18156
18157 /*
18158 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP
18159 * groups and that IPMP data addresses are down. These conditions must be met
18160 * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp().
18161 */
18162 static void
ip_ipmp_cleanup(ldi_handle_t lh,boolean_t isv6,cred_t * cr)18163 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
18164 {
18165 int af = isv6 ? AF_INET6 : AF_INET;
18166 int i, nifs;
18167 int err;
18168 uint_t bufsize;
18169 uint_t lifrsize = sizeof (struct lifreq);
18170 struct lifconf lifc;
18171 struct lifreq *lifrp;
18172
18173 if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) {
18174 cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list "
18175 "(error %d); any IPMP interfaces cannot be shutdown", err);
18176 return;
18177 }
18178
18179 nifs = lifc.lifc_len / lifrsize;
18180 for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) {
18181 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
18182 if (err != 0) {
18183 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get "
18184 "flags: error %d", lifrp->lifr_name, err);
18185 continue;
18186 }
18187
18188 if (lifrp->lifr_flags & IFF_IPMP) {
18189 if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0)
18190 continue;
18191
18192 lifrp->lifr_flags &= ~IFF_UP;
18193 err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr);
18194 if (err != 0) {
18195 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18196 "bring down (error %d); IPMP interface may "
18197 "not be shutdown", lifrp->lifr_name, err);
18198 }
18199
18200 /*
18201 * Check if IFF_DUPLICATE is still set -- and if so,
18202 * reset the address to clear it.
18203 */
18204 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
18205 if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE))
18206 continue;
18207
18208 err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr);
18209 if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR,
18210 lifrp, lifrsize, cr)) != 0) {
18211 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18212 "reset DAD (error %d); IPMP interface may "
18213 "not be shutdown", lifrp->lifr_name, err);
18214 }
18215 continue;
18216 }
18217
18218 if (strchr(lifrp->lifr_name, IPIF_SEPARATOR_CHAR) == 0) {
18219 lifrp->lifr_groupname[0] = '\0';
18220 if ((err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp,
18221 lifrsize, cr)) != 0) {
18222 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18223 "leave IPMP group (error %d); associated "
18224 "IPMP interface may not be shutdown",
18225 lifrp->lifr_name, err);
18226 continue;
18227 }
18228 }
18229 }
18230
18231 kmem_free(lifc.lifc_buf, bufsize);
18232 }
18233
18234 #define UDPDEV "/devices/pseudo/udp@0:udp"
18235 #define UDP6DEV "/devices/pseudo/udp6@0:udp6"
18236
18237 /*
18238 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down.
18239 * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away
18240 * when the user-level processes in the zone are killed and the latter are
18241 * cleaned up by str_stack_shutdown().
18242 */
18243 void
ip_interface_cleanup(ip_stack_t * ipst)18244 ip_interface_cleanup(ip_stack_t *ipst)
18245 {
18246 ldi_handle_t lh;
18247 ldi_ident_t li;
18248 cred_t *cr;
18249 int err;
18250 int i;
18251 char *devs[] = { UDP6DEV, UDPDEV };
18252 netstackid_t stackid = ipst->ips_netstack->netstack_stackid;
18253
18254 if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) {
18255 cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:"
18256 " error %d", err);
18257 return;
18258 }
18259
18260 cr = zone_get_kcred(netstackid_to_zoneid(stackid));
18261 ASSERT(cr != NULL);
18262
18263 /*
18264 * NOTE: loop executes exactly twice and is hardcoded to know that the
18265 * first iteration is IPv6. (Unrolling yields repetitious code, hence
18266 * the loop.)
18267 */
18268 for (i = 0; i < 2; i++) {
18269 err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li);
18270 if (err != 0) {
18271 cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:"
18272 " error %d", devs[i], err);
18273 continue;
18274 }
18275
18276 ip_loopback_removeif(lh, i == 0, cr);
18277 ip_ipmp_cleanup(lh, i == 0, cr);
18278
18279 (void) ldi_close(lh, FREAD|FWRITE, cr);
18280 }
18281
18282 ldi_ident_release(li);
18283 crfree(cr);
18284 }
18285
18286 /*
18287 * This needs to be in-sync with nic_event_t definition
18288 */
18289 static const char *
ill_hook_event2str(nic_event_t event)18290 ill_hook_event2str(nic_event_t event)
18291 {
18292 switch (event) {
18293 case NE_PLUMB:
18294 return ("PLUMB");
18295 case NE_UNPLUMB:
18296 return ("UNPLUMB");
18297 case NE_UP:
18298 return ("UP");
18299 case NE_DOWN:
18300 return ("DOWN");
18301 case NE_ADDRESS_CHANGE:
18302 return ("ADDRESS_CHANGE");
18303 case NE_LIF_UP:
18304 return ("LIF_UP");
18305 case NE_LIF_DOWN:
18306 return ("LIF_DOWN");
18307 case NE_IFINDEX_CHANGE:
18308 return ("IFINDEX_CHANGE");
18309 default:
18310 return ("UNKNOWN");
18311 }
18312 }
18313
18314 void
ill_nic_event_dispatch(ill_t * ill,lif_if_t lif,nic_event_t event,nic_event_data_t data,size_t datalen)18315 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event,
18316 nic_event_data_t data, size_t datalen)
18317 {
18318 ip_stack_t *ipst = ill->ill_ipst;
18319 hook_nic_event_int_t *info;
18320 const char *str = NULL;
18321
18322 /* create a new nic event info */
18323 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL)
18324 goto fail;
18325
18326 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex;
18327 info->hnei_event.hne_lif = lif;
18328 info->hnei_event.hne_event = event;
18329 info->hnei_event.hne_protocol = ill->ill_isv6 ?
18330 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
18331 info->hnei_event.hne_data = NULL;
18332 info->hnei_event.hne_datalen = 0;
18333 info->hnei_stackid = ipst->ips_netstack->netstack_stackid;
18334
18335 if (data != NULL && datalen != 0) {
18336 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP);
18337 if (info->hnei_event.hne_data == NULL)
18338 goto fail;
18339 bcopy(data, info->hnei_event.hne_data, datalen);
18340 info->hnei_event.hne_datalen = datalen;
18341 }
18342
18343 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info,
18344 DDI_NOSLEEP) == DDI_SUCCESS)
18345 return;
18346
18347 fail:
18348 if (info != NULL) {
18349 if (info->hnei_event.hne_data != NULL) {
18350 kmem_free(info->hnei_event.hne_data,
18351 info->hnei_event.hne_datalen);
18352 }
18353 kmem_free(info, sizeof (hook_nic_event_t));
18354 }
18355 str = ill_hook_event2str(event);
18356 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event "
18357 "information for %s (ENOMEM)\n", str, ill->ill_name));
18358 }
18359
18360 static int
ipif_arp_up_done_tail(ipif_t * ipif,enum ip_resolver_action res_act)18361 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act)
18362 {
18363 int err = 0;
18364 const in_addr_t *addr = NULL;
18365 nce_t *nce = NULL;
18366 ill_t *ill = ipif->ipif_ill;
18367 ill_t *bound_ill;
18368 boolean_t added_ipif = B_FALSE;
18369 uint16_t state;
18370 uint16_t flags;
18371
18372 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail",
18373 ill_t *, ill, ipif_t *, ipif);
18374 if (ipif->ipif_lcl_addr != INADDR_ANY) {
18375 addr = &ipif->ipif_lcl_addr;
18376 }
18377
18378 if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) {
18379 if (res_act != Res_act_initial)
18380 return (EINVAL);
18381 }
18382
18383 if (addr != NULL) {
18384 ipmp_illgrp_t *illg = ill->ill_grp;
18385
18386 /* add unicast nce for the local addr */
18387
18388 if (IS_IPMP(ill)) {
18389 /*
18390 * If we're here via ipif_up(), then the ipif
18391 * won't be bound yet -- add it to the group,
18392 * which will bind it if possible. (We would
18393 * add it in ipif_up(), but deleting on failure
18394 * there is gruesome.) If we're here via
18395 * ipmp_ill_bind_ipif(), then the ipif has
18396 * already been added to the group and we
18397 * just need to use the binding.
18398 */
18399 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) {
18400 bound_ill = ipmp_illgrp_add_ipif(illg, ipif);
18401 if (bound_ill == NULL) {
18402 /*
18403 * We couldn't bind the ipif to an ill
18404 * yet, so we have nothing to publish.
18405 * Mark the address as ready and return.
18406 */
18407 ipif->ipif_addr_ready = 1;
18408 return (0);
18409 }
18410 added_ipif = B_TRUE;
18411 }
18412 } else {
18413 bound_ill = ill;
18414 }
18415
18416 flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY |
18417 NCE_F_NONUD);
18418 /*
18419 * If this is an initial bring-up (or the ipif was never
18420 * completely brought up), do DAD. Otherwise, we're here
18421 * because IPMP has rebound an address to this ill: send
18422 * unsolicited advertisements (ARP announcements) to
18423 * inform others.
18424 */
18425 if (res_act == Res_act_initial || !ipif->ipif_addr_ready) {
18426 state = ND_UNCHANGED; /* compute in nce_add_common() */
18427 } else {
18428 state = ND_REACHABLE;
18429 flags |= NCE_F_UNSOL_ADV;
18430 }
18431
18432 retry:
18433 err = nce_lookup_then_add_v4(ill,
18434 bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length,
18435 addr, flags, state, &nce);
18436
18437 /*
18438 * note that we may encounter EEXIST if we are moving
18439 * the nce as a result of a rebind operation.
18440 */
18441 switch (err) {
18442 case 0:
18443 ipif->ipif_added_nce = 1;
18444 nce->nce_ipif_cnt++;
18445 break;
18446 case EEXIST:
18447 ip1dbg(("ipif_arp_up: NCE already exists for %s\n",
18448 ill->ill_name));
18449 if (!NCE_MYADDR(nce->nce_common)) {
18450 /*
18451 * A leftover nce from before this address
18452 * existed
18453 */
18454 ncec_delete(nce->nce_common);
18455 nce_refrele(nce);
18456 nce = NULL;
18457 goto retry;
18458 }
18459 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
18460 nce_refrele(nce);
18461 nce = NULL;
18462 ip1dbg(("ipif_arp_up: NCE already exists "
18463 "for %s:%u\n", ill->ill_name,
18464 ipif->ipif_id));
18465 goto arp_up_done;
18466 }
18467 /*
18468 * Duplicate local addresses are permissible for
18469 * IPIF_POINTOPOINT interfaces which will get marked
18470 * IPIF_UNNUMBERED later in
18471 * ip_addr_availability_check().
18472 *
18473 * The nce_ipif_cnt field tracks the number of
18474 * ipifs that have nce_addr as their local address.
18475 */
18476 ipif->ipif_addr_ready = 1;
18477 ipif->ipif_added_nce = 1;
18478 nce->nce_ipif_cnt++;
18479 err = 0;
18480 break;
18481 default:
18482 ASSERT(nce == NULL);
18483 goto arp_up_done;
18484 }
18485 if (arp_no_defense) {
18486 if ((ipif->ipif_flags & IPIF_UP) &&
18487 !ipif->ipif_addr_ready)
18488 ipif_up_notify(ipif);
18489 ipif->ipif_addr_ready = 1;
18490 }
18491 } else {
18492 /* zero address. nothing to publish */
18493 ipif->ipif_addr_ready = 1;
18494 }
18495 if (nce != NULL)
18496 nce_refrele(nce);
18497 arp_up_done:
18498 if (added_ipif && err != 0)
18499 ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
18500 return (err);
18501 }
18502
18503 int
ipif_arp_up(ipif_t * ipif,enum ip_resolver_action res_act,boolean_t was_dup)18504 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup)
18505 {
18506 int err = 0;
18507 ill_t *ill = ipif->ipif_ill;
18508 boolean_t first_interface, wait_for_dlpi = B_FALSE;
18509
18510 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up",
18511 ill_t *, ill, ipif_t *, ipif);
18512
18513 /*
18514 * need to bring up ARP or setup mcast mapping only
18515 * when the first interface is coming UP.
18516 */
18517 first_interface = (ill->ill_ipif_up_count == 0 &&
18518 ill->ill_ipif_dup_count == 0 && !was_dup);
18519
18520 if (res_act == Res_act_initial && first_interface) {
18521 /*
18522 * Send ATTACH + BIND
18523 */
18524 err = arp_ll_up(ill);
18525 if (err != EINPROGRESS && err != 0)
18526 return (err);
18527
18528 /*
18529 * Add NCE for local address. Start DAD.
18530 * we'll wait to hear that DAD has finished
18531 * before using the interface.
18532 */
18533 if (err == EINPROGRESS)
18534 wait_for_dlpi = B_TRUE;
18535 }
18536
18537 if (!wait_for_dlpi)
18538 (void) ipif_arp_up_done_tail(ipif, res_act);
18539
18540 return (!wait_for_dlpi ? 0 : EINPROGRESS);
18541 }
18542
18543 /*
18544 * Finish processing of "arp_up" after all the DLPI message
18545 * exchanges have completed between arp and the driver.
18546 */
18547 void
arp_bringup_done(ill_t * ill,int err)18548 arp_bringup_done(ill_t *ill, int err)
18549 {
18550 mblk_t *mp1;
18551 ipif_t *ipif;
18552 conn_t *connp = NULL;
18553 ipsq_t *ipsq;
18554 queue_t *q;
18555
18556 ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name));
18557
18558 ASSERT(IAM_WRITER_ILL(ill));
18559
18560 ipsq = ill->ill_phyint->phyint_ipsq;
18561 ipif = ipsq->ipsq_xop->ipx_pending_ipif;
18562 mp1 = ipsq_pending_mp_get(ipsq, &connp);
18563 ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
18564 if (mp1 == NULL) /* bringup was aborted by the user */
18565 return;
18566
18567 /*
18568 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
18569 * must have an associated conn_t. Otherwise, we're bringing this
18570 * interface back up as part of handling an asynchronous event (e.g.,
18571 * physical address change).
18572 */
18573 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18574 ASSERT(connp != NULL);
18575 q = CONNP_TO_WQ(connp);
18576 } else {
18577 ASSERT(connp == NULL);
18578 q = ill->ill_rq;
18579 }
18580 if (err == 0) {
18581 if (ipif->ipif_isv6) {
18582 if ((err = ipif_up_done_v6(ipif)) != 0)
18583 ip0dbg(("arp_bringup_done: init failed\n"));
18584 } else {
18585 err = ipif_arp_up_done_tail(ipif, Res_act_initial);
18586 if (err != 0 ||
18587 (err = ipif_up_done(ipif)) != 0) {
18588 ip0dbg(("arp_bringup_done: "
18589 "init failed err %x\n", err));
18590 (void) ipif_arp_down(ipif);
18591 }
18592
18593 }
18594 } else {
18595 ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n"));
18596 }
18597
18598 if ((err == 0) && (ill->ill_up_ipifs)) {
18599 err = ill_up_ipifs(ill, q, mp1);
18600 if (err == EINPROGRESS)
18601 return;
18602 }
18603
18604 /*
18605 * If we have a moved ipif to bring up, and everything has succeeded
18606 * to this point, bring it up on the IPMP ill. Otherwise, leave it
18607 * down -- the admin can try to bring it up by hand if need be.
18608 */
18609 if (ill->ill_move_ipif != NULL) {
18610 ipif = ill->ill_move_ipif;
18611 ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif,
18612 ipif->ipif_ill->ill_name));
18613 ill->ill_move_ipif = NULL;
18614 if (err == 0) {
18615 err = ipif_up(ipif, q, mp1);
18616 if (err == EINPROGRESS)
18617 return;
18618 }
18619 }
18620
18621 /*
18622 * The operation must complete without EINPROGRESS since
18623 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
18624 * Otherwise, the operation will be stuck forever in the ipsq.
18625 */
18626 ASSERT(err != EINPROGRESS);
18627 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18628 DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish",
18629 int, ipsq->ipsq_xop->ipx_current_ioctl,
18630 ill_t *, ill, ipif_t *, ipif);
18631 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
18632 } else {
18633 ipsq_current_finish(ipsq);
18634 }
18635 }
18636
18637 /*
18638 * Finish processing of arp replumb after all the DLPI message
18639 * exchanges have completed between arp and the driver.
18640 */
18641 void
arp_replumb_done(ill_t * ill,int err)18642 arp_replumb_done(ill_t *ill, int err)
18643 {
18644 mblk_t *mp1;
18645 ipif_t *ipif;
18646 conn_t *connp = NULL;
18647 ipsq_t *ipsq;
18648 queue_t *q;
18649
18650 ASSERT(IAM_WRITER_ILL(ill));
18651
18652 ipsq = ill->ill_phyint->phyint_ipsq;
18653 ipif = ipsq->ipsq_xop->ipx_pending_ipif;
18654 mp1 = ipsq_pending_mp_get(ipsq, &connp);
18655 ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
18656 if (mp1 == NULL) {
18657 ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n",
18658 ipsq->ipsq_xop->ipx_current_ioctl));
18659 /* bringup was aborted by the user */
18660 return;
18661 }
18662 /*
18663 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
18664 * must have an associated conn_t. Otherwise, we're bringing this
18665 * interface back up as part of handling an asynchronous event (e.g.,
18666 * physical address change).
18667 */
18668 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18669 ASSERT(connp != NULL);
18670 q = CONNP_TO_WQ(connp);
18671 } else {
18672 ASSERT(connp == NULL);
18673 q = ill->ill_rq;
18674 }
18675 if ((err == 0) && (ill->ill_up_ipifs)) {
18676 err = ill_up_ipifs(ill, q, mp1);
18677 if (err == EINPROGRESS)
18678 return;
18679 }
18680 /*
18681 * The operation must complete without EINPROGRESS since
18682 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
18683 * Otherwise, the operation will be stuck forever in the ipsq.
18684 */
18685 ASSERT(err != EINPROGRESS);
18686 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18687 DTRACE_PROBE4(ipif__ioctl, char *,
18688 "arp_replumb_done finish",
18689 int, ipsq->ipsq_xop->ipx_current_ioctl,
18690 ill_t *, ill, ipif_t *, ipif);
18691 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
18692 } else {
18693 ipsq_current_finish(ipsq);
18694 }
18695 }
18696
18697 void
ipif_up_notify(ipif_t * ipif)18698 ipif_up_notify(ipif_t *ipif)
18699 {
18700 ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
18701 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT);
18702 sctp_update_ipif(ipif, SCTP_IPIF_UP);
18703 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id),
18704 NE_LIF_UP, NULL, 0);
18705 }
18706
18707 /*
18708 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and
18709 * this assumes the context is cv_wait'able. Hence it shouldnt' be used on
18710 * TPI end points with STREAMS modules pushed above. This is assured by not
18711 * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl
18712 * never ends up on an ipsq, otherwise we may end up processing the ioctl
18713 * while unwinding from the ispq and that could be a thread from the bottom.
18714 */
18715 /* ARGSUSED */
18716 int
ip_sioctl_ilb_cmd(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * arg)18717 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
18718 ip_ioctl_cmd_t *ipip, void *arg)
18719 {
18720 mblk_t *cmd_mp = mp->b_cont->b_cont;
18721 ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr);
18722 int ret = 0;
18723 int i;
18724 size_t size;
18725 ip_stack_t *ipst;
18726 zoneid_t zoneid;
18727 ilb_stack_t *ilbs;
18728
18729 ipst = CONNQ_TO_IPST(q);
18730 ilbs = ipst->ips_netstack->netstack_ilb;
18731 zoneid = Q_TO_CONN(q)->conn_zoneid;
18732
18733 switch (command) {
18734 case ILB_CREATE_RULE: {
18735 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;
18736
18737 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
18738 ret = EINVAL;
18739 break;
18740 }
18741
18742 ret = ilb_rule_add(ilbs, zoneid, cmd);
18743 break;
18744 }
18745 case ILB_DESTROY_RULE:
18746 case ILB_ENABLE_RULE:
18747 case ILB_DISABLE_RULE: {
18748 ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr;
18749
18750 if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) {
18751 ret = EINVAL;
18752 break;
18753 }
18754
18755 if (cmd->flags & ILB_RULE_ALLRULES) {
18756 if (command == ILB_DESTROY_RULE) {
18757 ilb_rule_del_all(ilbs, zoneid);
18758 break;
18759 } else if (command == ILB_ENABLE_RULE) {
18760 ilb_rule_enable_all(ilbs, zoneid);
18761 break;
18762 } else if (command == ILB_DISABLE_RULE) {
18763 ilb_rule_disable_all(ilbs, zoneid);
18764 break;
18765 }
18766 } else {
18767 if (command == ILB_DESTROY_RULE) {
18768 ret = ilb_rule_del(ilbs, zoneid, cmd->name);
18769 } else if (command == ILB_ENABLE_RULE) {
18770 ret = ilb_rule_enable(ilbs, zoneid, cmd->name,
18771 NULL);
18772 } else if (command == ILB_DISABLE_RULE) {
18773 ret = ilb_rule_disable(ilbs, zoneid, cmd->name,
18774 NULL);
18775 }
18776 }
18777 break;
18778 }
18779 case ILB_NUM_RULES: {
18780 ilb_num_rules_cmd_t *cmd;
18781
18782 if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) {
18783 ret = EINVAL;
18784 break;
18785 }
18786 cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr;
18787 ilb_get_num_rules(ilbs, zoneid, &(cmd->num));
18788 break;
18789 }
18790 case ILB_RULE_NAMES: {
18791 ilb_rule_names_cmd_t *cmd;
18792
18793 cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr;
18794 if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) ||
18795 cmd->num_names == 0) {
18796 ret = EINVAL;
18797 break;
18798 }
18799 size = cmd->num_names * ILB_RULE_NAMESZ;
18800 if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) +
18801 size != cmd_mp->b_wptr) {
18802 ret = EINVAL;
18803 break;
18804 }
18805 ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf);
18806 break;
18807 }
18808 case ILB_NUM_SERVERS: {
18809 ilb_num_servers_cmd_t *cmd;
18810
18811 if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) {
18812 ret = EINVAL;
18813 break;
18814 }
18815 cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr;
18816 ret = ilb_get_num_servers(ilbs, zoneid, cmd->name,
18817 &(cmd->num));
18818 break;
18819 }
18820 case ILB_LIST_RULE: {
18821 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;
18822
18823 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
18824 ret = EINVAL;
18825 break;
18826 }
18827 ret = ilb_rule_list(ilbs, zoneid, cmd);
18828 break;
18829 }
18830 case ILB_LIST_SERVERS: {
18831 ilb_servers_info_cmd_t *cmd;
18832
18833 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
18834 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) ||
18835 cmd->num_servers == 0) {
18836 ret = EINVAL;
18837 break;
18838 }
18839 size = cmd->num_servers * sizeof (ilb_server_info_t);
18840 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
18841 size != cmd_mp->b_wptr) {
18842 ret = EINVAL;
18843 break;
18844 }
18845
18846 ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers,
18847 &cmd->num_servers);
18848 break;
18849 }
18850 case ILB_ADD_SERVERS: {
18851 ilb_servers_info_cmd_t *cmd;
18852 ilb_rule_t *rule;
18853
18854 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
18855 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) {
18856 ret = EINVAL;
18857 break;
18858 }
18859 size = cmd->num_servers * sizeof (ilb_server_info_t);
18860 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
18861 size != cmd_mp->b_wptr) {
18862 ret = EINVAL;
18863 break;
18864 }
18865 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
18866 if (rule == NULL) {
18867 ASSERT(ret != 0);
18868 break;
18869 }
18870 for (i = 0; i < cmd->num_servers; i++) {
18871 ilb_server_info_t *s;
18872
18873 s = &cmd->servers[i];
18874 s->err = ilb_server_add(ilbs, rule, s);
18875 }
18876 ILB_RULE_REFRELE(rule);
18877 break;
18878 }
18879 case ILB_DEL_SERVERS:
18880 case ILB_ENABLE_SERVERS:
18881 case ILB_DISABLE_SERVERS: {
18882 ilb_servers_cmd_t *cmd;
18883 ilb_rule_t *rule;
18884 int (*f)();
18885
18886 cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr;
18887 if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) {
18888 ret = EINVAL;
18889 break;
18890 }
18891 size = cmd->num_servers * sizeof (ilb_server_arg_t);
18892 if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) +
18893 size != cmd_mp->b_wptr) {
18894 ret = EINVAL;
18895 break;
18896 }
18897
18898 if (command == ILB_DEL_SERVERS)
18899 f = ilb_server_del;
18900 else if (command == ILB_ENABLE_SERVERS)
18901 f = ilb_server_enable;
18902 else if (command == ILB_DISABLE_SERVERS)
18903 f = ilb_server_disable;
18904
18905 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
18906 if (rule == NULL) {
18907 ASSERT(ret != 0);
18908 break;
18909 }
18910
18911 for (i = 0; i < cmd->num_servers; i++) {
18912 ilb_server_arg_t *s;
18913
18914 s = &cmd->servers[i];
18915 s->err = f(ilbs, zoneid, NULL, rule, &s->addr);
18916 }
18917 ILB_RULE_REFRELE(rule);
18918 break;
18919 }
18920 case ILB_LIST_NAT_TABLE: {
18921 ilb_list_nat_cmd_t *cmd;
18922
18923 cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr;
18924 if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) {
18925 ret = EINVAL;
18926 break;
18927 }
18928 size = cmd->num_nat * sizeof (ilb_nat_entry_t);
18929 if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) +
18930 size != cmd_mp->b_wptr) {
18931 ret = EINVAL;
18932 break;
18933 }
18934
18935 ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat,
18936 &cmd->flags);
18937 break;
18938 }
18939 case ILB_LIST_STICKY_TABLE: {
18940 ilb_list_sticky_cmd_t *cmd;
18941
18942 cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr;
18943 if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) {
18944 ret = EINVAL;
18945 break;
18946 }
18947 size = cmd->num_sticky * sizeof (ilb_sticky_entry_t);
18948 if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) +
18949 size != cmd_mp->b_wptr) {
18950 ret = EINVAL;
18951 break;
18952 }
18953
18954 ret = ilb_list_sticky(ilbs, zoneid, cmd->entries,
18955 &cmd->num_sticky, &cmd->flags);
18956 break;
18957 }
18958 default:
18959 ret = EINVAL;
18960 break;
18961 }
18962 done:
18963 return (ret);
18964 }
18965
18966 /* Remove all cache entries for this logical interface */
18967 void
ipif_nce_down(ipif_t * ipif)18968 ipif_nce_down(ipif_t *ipif)
18969 {
18970 ill_t *ill = ipif->ipif_ill;
18971 nce_t *nce;
18972
18973 DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down",
18974 ill_t *, ill, ipif_t *, ipif);
18975 if (ipif->ipif_added_nce) {
18976 if (ipif->ipif_isv6)
18977 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr);
18978 else
18979 nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr);
18980 if (nce != NULL) {
18981 if (--nce->nce_ipif_cnt == 0)
18982 ncec_delete(nce->nce_common);
18983 ipif->ipif_added_nce = 0;
18984 nce_refrele(nce);
18985 } else {
18986 /*
18987 * nce may already be NULL because it was already
18988 * flushed, e.g., due to a call to nce_flush
18989 */
18990 ipif->ipif_added_nce = 0;
18991 }
18992 }
18993 /*
18994 * Make IPMP aware of the deleted data address.
18995 */
18996 if (IS_IPMP(ill))
18997 ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
18998
18999 /*
19000 * Remove all other nces dependent on this ill when the last ipif
19001 * is going away.
19002 */
19003 if (ill->ill_ipif_up_count == 0) {
19004 ncec_walk(ill, ncec_delete_per_ill, ill, ill->ill_ipst);
19005 if (IS_UNDER_IPMP(ill))
19006 nce_flush(ill, B_TRUE);
19007 }
19008 }
19009
19010 /*
19011 * find the first interface that uses usill for its source address.
19012 */
19013 ill_t *
ill_lookup_usesrc(ill_t * usill)19014 ill_lookup_usesrc(ill_t *usill)
19015 {
19016 ip_stack_t *ipst = usill->ill_ipst;
19017 ill_t *ill;
19018
19019 ASSERT(usill != NULL);
19020
19021 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */
19022 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
19023 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
19024 for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill;
19025 ill = ill->ill_usesrc_grp_next) {
19026 if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) &&
19027 !ILL_IS_CONDEMNED(ill)) {
19028 ill_refhold(ill);
19029 break;
19030 }
19031 }
19032 rw_exit(&ipst->ips_ill_g_lock);
19033 rw_exit(&ipst->ips_ill_g_usesrc_lock);
19034 return (ill);
19035 }
19036
19037 /*
19038 * This comment applies to both ip_sioctl_get_ifhwaddr and
19039 * ip_sioctl_get_lifhwaddr as the basic function of these two functions
19040 * is the same.
19041 *
19042 * The goal here is to find an IP interface that corresponds to the name
19043 * provided by the caller in the ifreq/lifreq structure held in the mblk_t
19044 * chain and to fill out a sockaddr/sockaddr_storage structure with the
19045 * mac address.
19046 *
19047 * The SIOCGIFHWADDR/SIOCGLIFHWADDR ioctl may return an error for a number
19048 * of different reasons:
19049 * ENXIO - the device name is not known to IP.
19050 * EADDRNOTAVAIL - the device has no hardware address. This is indicated
19051 * by ill_phys_addr not pointing to an actual address.
19052 * EPFNOSUPPORT - this will indicate that a request is being made for a
19053 * mac address that will not fit in the data structure supplier (struct
19054 * sockaddr).
19055 *
19056 */
19057 /* ARGSUSED */
19058 int
ip_sioctl_get_ifhwaddr(ipif_t * ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)19059 ip_sioctl_get_ifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
19060 ip_ioctl_cmd_t *ipip, void *if_req)
19061 {
19062 struct sockaddr *sock;
19063 struct ifreq *ifr;
19064 mblk_t *mp1;
19065 ill_t *ill;
19066
19067 ASSERT(ipif != NULL);
19068 ill = ipif->ipif_ill;
19069
19070 if (ill->ill_phys_addr == NULL) {
19071 return (EADDRNOTAVAIL);
19072 }
19073 if (ill->ill_phys_addr_length > sizeof (sock->sa_data)) {
19074 return (EPFNOSUPPORT);
19075 }
19076
19077 ip1dbg(("ip_sioctl_get_hwaddr(%s)\n", ill->ill_name));
19078
19079 /* Existence of mp1 has been checked in ip_wput_nondata */
19080 mp1 = mp->b_cont->b_cont;
19081 ifr = (struct ifreq *)mp1->b_rptr;
19082
19083 sock = &ifr->ifr_addr;
19084 /*
19085 * The "family" field in the returned structure is set to a value
19086 * that represents the type of device to which the address belongs.
19087 * The value returned may differ to that on Linux but it will still
19088 * represent the correct symbol on Solaris.
19089 */
19090 sock->sa_family = arp_hw_type(ill->ill_mactype);
19091 bcopy(ill->ill_phys_addr, &sock->sa_data, ill->ill_phys_addr_length);
19092
19093 return (0);
19094 }
19095
19096 /*
19097 * The expection of applications using SIOCGIFHWADDR is that data will
19098 * be returned in the sa_data field of the sockaddr structure. With
19099 * SIOCGLIFHWADDR, we're breaking new ground as there is no Linux
19100 * equivalent. In light of this, struct sockaddr_dl is used as it
19101 * offers more space for address storage in sll_data.
19102 */
19103 /* ARGSUSED */
19104 int
ip_sioctl_get_lifhwaddr(ipif_t * ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)19105 ip_sioctl_get_lifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
19106 ip_ioctl_cmd_t *ipip, void *if_req)
19107 {
19108 struct sockaddr_dl *sock;
19109 struct lifreq *lifr;
19110 mblk_t *mp1;
19111 ill_t *ill;
19112
19113 ASSERT(ipif != NULL);
19114 ill = ipif->ipif_ill;
19115
19116 if (ill->ill_phys_addr == NULL) {
19117 return (EADDRNOTAVAIL);
19118 }
19119 if (ill->ill_phys_addr_length > sizeof (sock->sdl_data)) {
19120 return (EPFNOSUPPORT);
19121 }
19122
19123 ip1dbg(("ip_sioctl_get_lifhwaddr(%s)\n", ill->ill_name));
19124
19125 /* Existence of mp1 has been checked in ip_wput_nondata */
19126 mp1 = mp->b_cont->b_cont;
19127 lifr = (struct lifreq *)mp1->b_rptr;
19128
19129 /*
19130 * sockaddr_ll is used here because it is also the structure used in
19131 * responding to the same ioctl in sockpfp. The only other choice is
19132 * sockaddr_dl which contains fields that are not required here
19133 * because its purpose is different.
19134 */
19135 lifr->lifr_type = ill->ill_type;
19136 sock = (struct sockaddr_dl *)&lifr->lifr_addr;
19137 sock->sdl_family = AF_LINK;
19138 sock->sdl_index = ill->ill_phyint->phyint_ifindex;
19139 sock->sdl_type = ill->ill_mactype;
19140 sock->sdl_nlen = 0;
19141 sock->sdl_slen = 0;
19142 sock->sdl_alen = ill->ill_phys_addr_length;
19143 bcopy(ill->ill_phys_addr, sock->sdl_data, ill->ill_phys_addr_length);
19144
19145 return (0);
19146 }
19147