xref: /illumos-gate/usr/src/uts/common/inet/ip/ip6_if.c (revision 6a634c9dca3093f3922e4b7ab826d7bdf17bf78e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 1990 Mentat Inc.
24  */
25 
26 /*
27  * This file contains the interface control functions for IPv6.
28  */
29 
30 #include <sys/types.h>
31 #include <sys/sysmacros.h>
32 #include <sys/stream.h>
33 #include <sys/dlpi.h>
34 #include <sys/stropts.h>
35 #include <sys/ddi.h>
36 #include <sys/cmn_err.h>
37 #include <sys/kstat.h>
38 #include <sys/debug.h>
39 #include <sys/zone.h>
40 #include <sys/policy.h>
41 
42 #include <sys/systm.h>
43 #include <sys/param.h>
44 #include <sys/socket.h>
45 #include <sys/isa_defs.h>
46 #include <net/if.h>
47 #include <net/if_dl.h>
48 #include <net/route.h>
49 #include <netinet/in.h>
50 #include <netinet/igmp_var.h>
51 #include <netinet/ip6.h>
52 #include <netinet/icmp6.h>
53 
54 #include <inet/common.h>
55 #include <inet/nd.h>
56 #include <inet/tunables.h>
57 #include <inet/mib2.h>
58 #include <inet/ip.h>
59 #include <inet/ip6.h>
60 #include <inet/ip_multi.h>
61 #include <inet/ip_ire.h>
62 #include <inet/ip_rts.h>
63 #include <inet/ip_ndp.h>
64 #include <inet/ip_if.h>
65 #include <inet/ip6_asp.h>
66 #include <inet/ipclassifier.h>
67 #include <inet/sctp_ip.h>
68 
69 #include <sys/tsol/tndb.h>
70 #include <sys/tsol/tnet.h>
71 
72 static in6_addr_t	ipv6_ll_template =
73 			{(uint32_t)V6_LINKLOCAL, 0x0, 0x0, 0x0};
74 
75 static ipif_t *
76 ipif_lookup_interface_v6(const in6_addr_t *if_addr, const in6_addr_t *dst,
77     ip_stack_t *ipst);
78 
79 static int	ipif_add_ires_v6(ipif_t *, boolean_t);
80 
81 /*
82  * This function is called when an application does not specify an interface
83  * to be used for multicast traffic.  It calls ire_lookup_multi_v6() to look
84  * for an interface route for the specified multicast group.  Doing
85  * this allows the administrator to add prefix routes for multicast to
86  * indicate which interface to be used for multicast traffic in the above
87  * scenario.  The route could be for all multicast (ff00::/8), for a single
88  * multicast group (a /128 route) or anything in between.  If there is no
89  * such multicast route, we just find any multicast capable interface and
90  * return it.
91  *
92  * We support MULTIRT and RTF_SETSRC on the multicast routes added to the
93  * unicast table. This is used by CGTP.
94  */
95 ill_t *
ill_lookup_group_v6(const in6_addr_t * group,zoneid_t zoneid,ip_stack_t * ipst,boolean_t * multirtp,in6_addr_t * setsrcp)96 ill_lookup_group_v6(const in6_addr_t *group, zoneid_t zoneid, ip_stack_t *ipst,
97     boolean_t *multirtp, in6_addr_t *setsrcp)
98 {
99 	ill_t	*ill;
100 
101 	ill = ire_lookup_multi_ill_v6(group, zoneid, ipst, multirtp, setsrcp);
102 	if (ill != NULL)
103 		return (ill);
104 
105 	return (ill_lookup_multicast(ipst, zoneid, B_TRUE));
106 }
107 
108 /*
109  * Look for an ipif with the specified interface address and destination.
110  * The destination address is used only for matching point-to-point interfaces.
111  */
112 static ipif_t *
ipif_lookup_interface_v6(const in6_addr_t * if_addr,const in6_addr_t * dst,ip_stack_t * ipst)113 ipif_lookup_interface_v6(const in6_addr_t *if_addr, const in6_addr_t *dst,
114     ip_stack_t *ipst)
115 {
116 	ipif_t	*ipif;
117 	ill_t	*ill;
118 	ill_walk_context_t ctx;
119 
120 	/*
121 	 * First match all the point-to-point interfaces
122 	 * before looking at non-point-to-point interfaces.
123 	 * This is done to avoid returning non-point-to-point
124 	 * ipif instead of unnumbered point-to-point ipif.
125 	 */
126 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
127 	ill = ILL_START_WALK_V6(&ctx, ipst);
128 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
129 		mutex_enter(&ill->ill_lock);
130 		for (ipif = ill->ill_ipif; ipif != NULL;
131 		    ipif = ipif->ipif_next) {
132 			/* Allow the ipif to be down */
133 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
134 			    (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
135 			    if_addr)) &&
136 			    (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr,
137 			    dst))) {
138 				if (!IPIF_IS_CONDEMNED(ipif)) {
139 					ipif_refhold_locked(ipif);
140 					mutex_exit(&ill->ill_lock);
141 					rw_exit(&ipst->ips_ill_g_lock);
142 					return (ipif);
143 				}
144 			}
145 		}
146 		mutex_exit(&ill->ill_lock);
147 	}
148 	rw_exit(&ipst->ips_ill_g_lock);
149 	/* lookup the ipif based on interface address */
150 	ipif = ipif_lookup_addr_v6(if_addr, NULL, ALL_ZONES, ipst);
151 	ASSERT(ipif == NULL || ipif->ipif_isv6);
152 	return (ipif);
153 }
154 
155 /*
156  * Common function for ipif_lookup_addr_v6() and ipif_lookup_addr_exact_v6().
157  */
158 static ipif_t *
ipif_lookup_addr_common_v6(const in6_addr_t * addr,ill_t * match_ill,uint32_t match_flags,zoneid_t zoneid,ip_stack_t * ipst)159 ipif_lookup_addr_common_v6(const in6_addr_t *addr, ill_t *match_ill,
160     uint32_t match_flags, zoneid_t zoneid, ip_stack_t *ipst)
161 {
162 	ipif_t	*ipif;
163 	ill_t	*ill;
164 	boolean_t  ptp = B_FALSE;
165 	ill_walk_context_t ctx;
166 	boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP);
167 	boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP);
168 
169 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
170 	/*
171 	 * Repeat twice, first based on local addresses and
172 	 * next time for pointopoint.
173 	 */
174 repeat:
175 	ill = ILL_START_WALK_V6(&ctx, ipst);
176 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
177 		if (match_ill != NULL && ill != match_ill &&
178 		    (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) {
179 			continue;
180 		}
181 		mutex_enter(&ill->ill_lock);
182 		for (ipif = ill->ill_ipif; ipif != NULL;
183 		    ipif = ipif->ipif_next) {
184 			if (zoneid != ALL_ZONES &&
185 			    ipif->ipif_zoneid != zoneid &&
186 			    ipif->ipif_zoneid != ALL_ZONES)
187 				continue;
188 
189 			if (no_duplicate &&
190 			    !(ipif->ipif_flags & IPIF_UP)) {
191 				continue;
192 			}
193 
194 			/* Allow the ipif to be down */
195 			if ((!ptp && (IN6_ARE_ADDR_EQUAL(
196 			    &ipif->ipif_v6lcl_addr, addr) &&
197 			    (ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
198 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
199 			    IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr,
200 			    addr))) {
201 				if (!IPIF_IS_CONDEMNED(ipif)) {
202 					ipif_refhold_locked(ipif);
203 					mutex_exit(&ill->ill_lock);
204 					rw_exit(&ipst->ips_ill_g_lock);
205 					return (ipif);
206 				}
207 			}
208 		}
209 		mutex_exit(&ill->ill_lock);
210 	}
211 
212 	/* If we already did the ptp case, then we are done */
213 	if (ptp) {
214 		rw_exit(&ipst->ips_ill_g_lock);
215 		return (NULL);
216 	}
217 	ptp = B_TRUE;
218 	goto repeat;
219 }
220 
221 /*
222  * Lookup an ipif with the specified address.  For point-to-point links we
223  * look for matches on either the destination address or the local address,
224  * but we skip the local address check if IPIF_UNNUMBERED is set.  If the
225  * `match_ill' argument is non-NULL, the lookup is restricted to that ill
226  * (or illgrp if `match_ill' is in an IPMP group).
227  */
228 ipif_t *
ipif_lookup_addr_v6(const in6_addr_t * addr,ill_t * match_ill,zoneid_t zoneid,ip_stack_t * ipst)229 ipif_lookup_addr_v6(const in6_addr_t *addr, ill_t *match_ill, zoneid_t zoneid,
230     ip_stack_t *ipst)
231 {
232 	return (ipif_lookup_addr_common_v6(addr, match_ill, IPIF_MATCH_ILLGRP,
233 	    zoneid, ipst));
234 }
235 
236 /*
237  * Lookup an ipif with the specified address. Similar to ipif_lookup_addr,
238  * except that we will only return an address if it is not marked as
239  * IPIF_DUPLICATE
240  */
241 ipif_t *
ipif_lookup_addr_nondup_v6(const in6_addr_t * addr,ill_t * match_ill,zoneid_t zoneid,ip_stack_t * ipst)242 ipif_lookup_addr_nondup_v6(const in6_addr_t *addr, ill_t *match_ill,
243     zoneid_t zoneid, ip_stack_t *ipst)
244 {
245 	return (ipif_lookup_addr_common_v6(addr, match_ill,
246 	    (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP), zoneid,
247 	    ipst));
248 }
249 
250 /*
251  * Special abbreviated version of ipif_lookup_addr_v6() that doesn't match
252  * `match_ill' across the IPMP group.  This function is only needed in some
253  * corner-cases; almost everything should use ipif_lookup_addr_v6().
254  */
255 ipif_t *
ipif_lookup_addr_exact_v6(const in6_addr_t * addr,ill_t * match_ill,ip_stack_t * ipst)256 ipif_lookup_addr_exact_v6(const in6_addr_t *addr, ill_t *match_ill,
257     ip_stack_t *ipst)
258 {
259 	ASSERT(match_ill != NULL);
260 	return (ipif_lookup_addr_common_v6(addr, match_ill, 0, ALL_ZONES,
261 	    ipst));
262 }
263 
264 /*
265  * Look for an ipif with the specified address. For point-point links
266  * we look for matches on either the destination address and the local
267  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
268  * is set.
269  * If the `match_ill' argument is non-NULL, the lookup is restricted to that
270  * ill (or illgrp if `match_ill' is in an IPMP group).
271  * Return the zoneid for the ipif. ALL_ZONES if none found.
272  */
273 zoneid_t
ipif_lookup_addr_zoneid_v6(const in6_addr_t * addr,ill_t * match_ill,ip_stack_t * ipst)274 ipif_lookup_addr_zoneid_v6(const in6_addr_t *addr, ill_t *match_ill,
275     ip_stack_t *ipst)
276 {
277 	ipif_t	*ipif;
278 	ill_t	*ill;
279 	boolean_t  ptp = B_FALSE;
280 	ill_walk_context_t ctx;
281 	zoneid_t	zoneid;
282 
283 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
284 	/*
285 	 * Repeat twice, first based on local addresses and
286 	 * next time for pointopoint.
287 	 */
288 repeat:
289 	ill = ILL_START_WALK_V6(&ctx, ipst);
290 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
291 		if (match_ill != NULL && ill != match_ill &&
292 		    !IS_IN_SAME_ILLGRP(ill, match_ill)) {
293 			continue;
294 		}
295 		mutex_enter(&ill->ill_lock);
296 		for (ipif = ill->ill_ipif; ipif != NULL;
297 		    ipif = ipif->ipif_next) {
298 			/* Allow the ipif to be down */
299 			if ((!ptp && (IN6_ARE_ADDR_EQUAL(
300 			    &ipif->ipif_v6lcl_addr, addr) &&
301 			    (ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
302 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
303 			    IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr,
304 			    addr)) &&
305 			    !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
306 				zoneid = ipif->ipif_zoneid;
307 				mutex_exit(&ill->ill_lock);
308 				rw_exit(&ipst->ips_ill_g_lock);
309 				/*
310 				 * If ipif_zoneid was ALL_ZONES then we have
311 				 * a trusted extensions shared IP address.
312 				 * In that case GLOBAL_ZONEID works to send.
313 				 */
314 				if (zoneid == ALL_ZONES)
315 					zoneid = GLOBAL_ZONEID;
316 				return (zoneid);
317 			}
318 		}
319 		mutex_exit(&ill->ill_lock);
320 	}
321 
322 	/* If we already did the ptp case, then we are done */
323 	if (ptp) {
324 		rw_exit(&ipst->ips_ill_g_lock);
325 		return (ALL_ZONES);
326 	}
327 	ptp = B_TRUE;
328 	goto repeat;
329 }
330 
331 /*
332  * Perform various checks to verify that an address would make sense as a local
333  * interface address.  This is currently only called when an attempt is made
334  * to set a local address.
335  *
336  * Does not allow a v4-mapped address, an address that equals the subnet
337  * anycast address, ... a multicast address, ...
338  */
339 boolean_t
ip_local_addr_ok_v6(const in6_addr_t * addr,const in6_addr_t * subnet_mask)340 ip_local_addr_ok_v6(const in6_addr_t *addr, const in6_addr_t *subnet_mask)
341 {
342 	in6_addr_t subnet;
343 
344 	if (IN6_IS_ADDR_UNSPECIFIED(addr))
345 		return (B_TRUE);	/* Allow all zeros */
346 
347 	/*
348 	 * Don't allow all zeroes or host part, but allow
349 	 * all ones netmask.
350 	 */
351 	V6_MASK_COPY(*addr, *subnet_mask, subnet);
352 	if (IN6_IS_ADDR_V4MAPPED(addr) ||
353 	    (IN6_ARE_ADDR_EQUAL(addr, &subnet) &&
354 	    !IN6_ARE_ADDR_EQUAL(subnet_mask, &ipv6_all_ones)) ||
355 	    (IN6_IS_ADDR_V4COMPAT(addr) && CLASSD(V4_PART_OF_V6((*addr)))) ||
356 	    IN6_IS_ADDR_MULTICAST(addr))
357 		return (B_FALSE);
358 
359 	return (B_TRUE);
360 }
361 
362 /*
363  * Perform various checks to verify that an address would make sense as a
364  * remote/subnet interface address.
365  */
366 boolean_t
ip_remote_addr_ok_v6(const in6_addr_t * addr,const in6_addr_t * subnet_mask)367 ip_remote_addr_ok_v6(const in6_addr_t *addr, const in6_addr_t *subnet_mask)
368 {
369 	in6_addr_t subnet;
370 
371 	if (IN6_IS_ADDR_UNSPECIFIED(addr))
372 		return (B_TRUE);	/* Allow all zeros */
373 
374 	V6_MASK_COPY(*addr, *subnet_mask, subnet);
375 	if (IN6_IS_ADDR_V4MAPPED(addr) ||
376 	    (IN6_ARE_ADDR_EQUAL(addr, &subnet) &&
377 	    !IN6_ARE_ADDR_EQUAL(subnet_mask, &ipv6_all_ones)) ||
378 	    IN6_IS_ADDR_MULTICAST(addr) ||
379 	    (IN6_IS_ADDR_V4COMPAT(addr) && CLASSD(V4_PART_OF_V6((*addr)))))
380 		return (B_FALSE);
381 
382 	return (B_TRUE);
383 }
384 
385 /*
386  * ip_rt_add_v6 is called to add an IPv6 route to the forwarding table.
387  * ill is passed in to associate it with the correct interface
388  * (for link-local destinations and gateways).
389  * If ire_arg is set, then we return the held IRE in that location.
390  */
391 /* ARGSUSED1 */
392 int
ip_rt_add_v6(const in6_addr_t * dst_addr,const in6_addr_t * mask,const in6_addr_t * gw_addr,const in6_addr_t * src_addr,int flags,ill_t * ill,ire_t ** ire_arg,struct rtsa_s * sp,ip_stack_t * ipst,zoneid_t zoneid)393 ip_rt_add_v6(const in6_addr_t *dst_addr, const in6_addr_t *mask,
394     const in6_addr_t *gw_addr, const in6_addr_t *src_addr, int flags,
395     ill_t *ill, ire_t **ire_arg, struct rtsa_s *sp, ip_stack_t *ipst,
396     zoneid_t zoneid)
397 {
398 	ire_t	*ire, *nire;
399 	ire_t	*gw_ire = NULL;
400 	ipif_t	*ipif;
401 	uint_t	type;
402 	int	match_flags = MATCH_IRE_TYPE;
403 	tsol_gc_t *gc = NULL;
404 	tsol_gcgrp_t *gcgrp = NULL;
405 	boolean_t gcgrp_xtraref = B_FALSE;
406 	boolean_t unbound = B_FALSE;
407 
408 	if (ire_arg != NULL)
409 		*ire_arg = NULL;
410 
411 	/*
412 	 * Prevent routes with a zero gateway from being created (since
413 	 * interfaces can currently be plumbed and brought up with no assigned
414 	 * address).
415 	 */
416 	if (IN6_IS_ADDR_UNSPECIFIED(gw_addr))
417 		return (ENETUNREACH);
418 
419 	/*
420 	 * If this is the case of RTF_HOST being set, then we set the netmask
421 	 * to all ones (regardless if one was supplied).
422 	 */
423 	if (flags & RTF_HOST)
424 		mask = &ipv6_all_ones;
425 
426 	/*
427 	 * Get the ipif, if any, corresponding to the gw_addr
428 	 * If -ifp was specified we restrict ourselves to the ill, otherwise
429 	 * we match on the gatway and destination to handle unnumbered pt-pt
430 	 * interfaces.
431 	 */
432 	if (ill != NULL)
433 		ipif = ipif_lookup_addr_v6(gw_addr, ill, ALL_ZONES, ipst);
434 	else
435 		ipif = ipif_lookup_interface_v6(gw_addr, dst_addr, ipst);
436 	if (ipif != NULL) {
437 		if (IS_VNI(ipif->ipif_ill)) {
438 			ipif_refrele(ipif);
439 			return (EINVAL);
440 		}
441 	}
442 
443 	/*
444 	 * GateD will attempt to create routes with a loopback interface
445 	 * address as the gateway and with RTF_GATEWAY set.  We allow
446 	 * these routes to be added, but create them as interface routes
447 	 * since the gateway is an interface address.
448 	 */
449 	if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) {
450 		flags &= ~RTF_GATEWAY;
451 		if (IN6_ARE_ADDR_EQUAL(gw_addr, &ipv6_loopback) &&
452 		    IN6_ARE_ADDR_EQUAL(dst_addr, &ipv6_loopback) &&
453 		    IN6_ARE_ADDR_EQUAL(mask, &ipv6_all_ones)) {
454 			ire = ire_ftable_lookup_v6(dst_addr, 0, 0, IRE_LOOPBACK,
455 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
456 			    NULL);
457 			if (ire != NULL) {
458 				ire_refrele(ire);
459 				ipif_refrele(ipif);
460 				return (EEXIST);
461 			}
462 			ip1dbg(("ip_rt_add_v6: 0x%p creating IRE 0x%x"
463 			    "for 0x%x\n", (void *)ipif,
464 			    ipif->ipif_ire_type,
465 			    ntohl(ipif->ipif_lcl_addr)));
466 			ire = ire_create_v6(
467 			    dst_addr,
468 			    mask,
469 			    NULL,
470 			    ipif->ipif_ire_type,	/* LOOPBACK */
471 			    ipif->ipif_ill,
472 			    zoneid,
473 			    (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0,
474 			    NULL,
475 			    ipst);
476 
477 			if (ire == NULL) {
478 				ipif_refrele(ipif);
479 				return (ENOMEM);
480 			}
481 			/* src address assigned by the caller? */
482 			if ((flags & RTF_SETSRC) &&
483 			    !IN6_IS_ADDR_UNSPECIFIED(src_addr))
484 				ire->ire_setsrc_addr_v6 = *src_addr;
485 
486 			nire = ire_add(ire);
487 			if (nire == NULL) {
488 				/*
489 				 * In the result of failure, ire_add() will have
490 				 * already deleted the ire in question, so there
491 				 * is no need to do that here.
492 				 */
493 				ipif_refrele(ipif);
494 				return (ENOMEM);
495 			}
496 			/*
497 			 * Check if it was a duplicate entry. This handles
498 			 * the case of two racing route adds for the same route
499 			 */
500 			if (nire != ire) {
501 				ASSERT(nire->ire_identical_ref > 1);
502 				ire_delete(nire);
503 				ire_refrele(nire);
504 				ipif_refrele(ipif);
505 				return (EEXIST);
506 			}
507 			ire = nire;
508 			goto save_ire;
509 		}
510 	}
511 
512 	/*
513 	 * The routes for multicast with CGTP are quite special in that
514 	 * the gateway is the local interface address, yet RTF_GATEWAY
515 	 * is set. We turn off RTF_GATEWAY to provide compatibility with
516 	 * this undocumented and unusual use of multicast routes.
517 	 */
518 	if ((flags & RTF_MULTIRT) && ipif != NULL)
519 		flags &= ~RTF_GATEWAY;
520 
521 	/*
522 	 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set
523 	 * and the gateway address provided is one of the system's interface
524 	 * addresses.  By using the routing socket interface and supplying an
525 	 * RTA_IFP sockaddr with an interface index, an alternate method of
526 	 * specifying an interface route to be created is available which uses
527 	 * the interface index that specifies the outgoing interface rather than
528 	 * the address of an outgoing interface (which may not be able to
529 	 * uniquely identify an interface).  When coupled with the RTF_GATEWAY
530 	 * flag, routes can be specified which not only specify the next-hop to
531 	 * be used when routing to a certain prefix, but also which outgoing
532 	 * interface should be used.
533 	 *
534 	 * Previously, interfaces would have unique addresses assigned to them
535 	 * and so the address assigned to a particular interface could be used
536 	 * to identify a particular interface.  One exception to this was the
537 	 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
538 	 *
539 	 * With the advent of IPv6 and its link-local addresses, this
540 	 * restriction was relaxed and interfaces could share addresses between
541 	 * themselves.  In fact, typically all of the link-local interfaces on
542 	 * an IPv6 node or router will have the same link-local address.  In
543 	 * order to differentiate between these interfaces, the use of an
544 	 * interface index is necessary and this index can be carried inside a
545 	 * RTA_IFP sockaddr (which is actually a sockaddr_dl).  One restriction
546 	 * of using the interface index, however, is that all of the ipif's that
547 	 * are part of an ill have the same index and so the RTA_IFP sockaddr
548 	 * cannot be used to differentiate between ipif's (or logical
549 	 * interfaces) that belong to the same ill (physical interface).
550 	 *
551 	 * For example, in the following case involving IPv4 interfaces and
552 	 * logical interfaces
553 	 *
554 	 *	192.0.2.32	255.255.255.224	192.0.2.33	U	if0
555 	 *	192.0.2.32	255.255.255.224	192.0.2.34	U	if0
556 	 *	192.0.2.32	255.255.255.224	192.0.2.35	U	if0
557 	 *
558 	 * the ipif's corresponding to each of these interface routes can be
559 	 * uniquely identified by the "gateway" (actually interface address).
560 	 *
561 	 * In this case involving multiple IPv6 default routes to a particular
562 	 * link-local gateway, the use of RTA_IFP is necessary to specify which
563 	 * default route is of interest:
564 	 *
565 	 *	default		fe80::123:4567:89ab:cdef	U	if0
566 	 *	default		fe80::123:4567:89ab:cdef	U	if1
567 	 */
568 
569 	/* RTF_GATEWAY not set */
570 	if (!(flags & RTF_GATEWAY)) {
571 		if (sp != NULL) {
572 			ip2dbg(("ip_rt_add_v6: gateway security attributes "
573 			    "cannot be set with interface route\n"));
574 			if (ipif != NULL)
575 				ipif_refrele(ipif);
576 			return (EINVAL);
577 		}
578 
579 		/*
580 		 * Whether or not ill (RTA_IFP) is set, we require that
581 		 * the gateway is one of our local addresses.
582 		 */
583 		if (ipif == NULL)
584 			return (ENETUNREACH);
585 
586 		/*
587 		 * We use MATCH_IRE_ILL here. If the caller specified an
588 		 * interface (from the RTA_IFP sockaddr) we use it, otherwise
589 		 * we use the ill derived from the gateway address.
590 		 * We can always match the gateway address since we record it
591 		 * in ire_gateway_addr.
592 		 * We don't allow RTA_IFP to specify a different ill than the
593 		 * one matching the ipif to make sure we can delete the route.
594 		 */
595 		match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL;
596 		if (ill == NULL) {
597 			ill = ipif->ipif_ill;
598 		} else if (ill != ipif->ipif_ill) {
599 			ipif_refrele(ipif);
600 			return (EINVAL);
601 		}
602 
603 		/*
604 		 * We check for an existing entry at this point.
605 		 */
606 		match_flags |= MATCH_IRE_MASK;
607 		ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr,
608 		    IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst,
609 		    NULL);
610 		if (ire != NULL) {
611 			ire_refrele(ire);
612 			ipif_refrele(ipif);
613 			return (EEXIST);
614 		}
615 
616 		/*
617 		 * Some software (for example, GateD and Sun Cluster) attempts
618 		 * to create (what amount to) IRE_PREFIX routes with the
619 		 * loopback address as the gateway.  This is primarily done to
620 		 * set up prefixes with the RTF_REJECT flag set (for example,
621 		 * when generating aggregate routes). We also OR in the
622 		 * RTF_BLACKHOLE flag as these interface routes, by
623 		 * definition, can only be that.
624 		 *
625 		 * If the IRE type (as defined by ill->ill_net_type) would be
626 		 * IRE_LOOPBACK, then we map the request into a
627 		 * IRE_IF_NORESOLVER.
628 		 *
629 		 * Needless to say, the real IRE_LOOPBACK is NOT created by this
630 		 * routine, but rather using ire_create_v6() directly.
631 		 */
632 		type = ill->ill_net_type;
633 		if (type == IRE_LOOPBACK) {
634 			type = IRE_IF_NORESOLVER;
635 			flags |= RTF_BLACKHOLE;
636 		}
637 
638 		/*
639 		 * Create a copy of the IRE_IF_NORESOLVER or
640 		 * IRE_IF_RESOLVER with the modified address, netmask, and
641 		 * gateway.
642 		 */
643 		ire = ire_create_v6(
644 		    dst_addr,
645 		    mask,
646 		    gw_addr,
647 		    type,
648 		    ill,
649 		    zoneid,
650 		    flags,
651 		    NULL,
652 		    ipst);
653 		if (ire == NULL) {
654 			ipif_refrele(ipif);
655 			return (ENOMEM);
656 		}
657 
658 		/* src address assigned by the caller? */
659 		if ((flags & RTF_SETSRC) && !IN6_IS_ADDR_UNSPECIFIED(src_addr))
660 			ire->ire_setsrc_addr_v6 = *src_addr;
661 
662 		nire = ire_add(ire);
663 		if (nire == NULL) {
664 			/*
665 			 * In the result of failure, ire_add() will have
666 			 * already deleted the ire in question, so there
667 			 * is no need to do that here.
668 			 */
669 			ipif_refrele(ipif);
670 			return (ENOMEM);
671 		}
672 		/*
673 		 * Check if it was a duplicate entry. This handles
674 		 * the case of two racing route adds for the same route
675 		 */
676 		if (nire != ire) {
677 			ASSERT(nire->ire_identical_ref > 1);
678 			ire_delete(nire);
679 			ire_refrele(nire);
680 			ipif_refrele(ipif);
681 			return (EEXIST);
682 		}
683 		ire = nire;
684 		goto save_ire;
685 	}
686 
687 	/*
688 	 * Get an interface IRE for the specified gateway.
689 	 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
690 	 * gateway, it is currently unreachable and we fail the request
691 	 * accordingly. We reject any RTF_GATEWAY routes where the gateway
692 	 * is an IRE_LOCAL or IRE_LOOPBACK.
693 	 * If RTA_IFP was specified we look on that particular ill.
694 	 */
695 	if (ill != NULL)
696 		match_flags |= MATCH_IRE_ILL;
697 
698 	/* Check whether the gateway is reachable. */
699 again:
700 	type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK;
701 	if (flags & RTF_INDIRECT)
702 		type |= IRE_OFFLINK;
703 
704 	gw_ire = ire_ftable_lookup_v6(gw_addr, 0, 0, type, ill,
705 	    ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
706 	if (gw_ire == NULL) {
707 		/*
708 		 * With IPMP, we allow host routes to influence in.mpathd's
709 		 * target selection.  However, if the test addresses are on
710 		 * their own network, the above lookup will fail since the
711 		 * underlying IRE_INTERFACEs are marked hidden.  So allow
712 		 * hidden test IREs to be found and try again.
713 		 */
714 		if (!(match_flags & MATCH_IRE_TESTHIDDEN))  {
715 			match_flags |= MATCH_IRE_TESTHIDDEN;
716 			goto again;
717 		}
718 		if (ipif != NULL)
719 			ipif_refrele(ipif);
720 		return (ENETUNREACH);
721 	}
722 	if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
723 		ire_refrele(gw_ire);
724 		if (ipif != NULL)
725 			ipif_refrele(ipif);
726 		return (ENETUNREACH);
727 	}
728 	if (ill == NULL && !(flags & RTF_INDIRECT)) {
729 		unbound = B_TRUE;
730 		if (ipst->ips_ipv6_strict_src_multihoming > 0)
731 			ill = gw_ire->ire_ill;
732 	}
733 
734 	/*
735 	 * We create one of three types of IREs as a result of this request
736 	 * based on the netmask.  A netmask of all ones (which is automatically
737 	 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
738 	 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
739 	 * created.  Otherwise, an IRE_PREFIX route is created for the
740 	 * destination prefix.
741 	 */
742 	if (IN6_ARE_ADDR_EQUAL(mask, &ipv6_all_ones))
743 		type = IRE_HOST;
744 	else if (IN6_IS_ADDR_UNSPECIFIED(mask))
745 		type = IRE_DEFAULT;
746 	else
747 		type = IRE_PREFIX;
748 
749 	/* check for a duplicate entry */
750 	ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr, type, ill,
751 	    ALL_ZONES, NULL,
752 	    match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, 0, ipst, NULL);
753 	if (ire != NULL) {
754 		if (ipif != NULL)
755 			ipif_refrele(ipif);
756 		ire_refrele(gw_ire);
757 		ire_refrele(ire);
758 		return (EEXIST);
759 	}
760 
761 	/* Security attribute exists */
762 	if (sp != NULL) {
763 		tsol_gcgrp_addr_t ga;
764 
765 		/* find or create the gateway credentials group */
766 		ga.ga_af = AF_INET6;
767 		ga.ga_addr = *gw_addr;
768 
769 		/* we hold reference to it upon success */
770 		gcgrp = gcgrp_lookup(&ga, B_TRUE);
771 		if (gcgrp == NULL) {
772 			if (ipif != NULL)
773 				ipif_refrele(ipif);
774 			ire_refrele(gw_ire);
775 			return (ENOMEM);
776 		}
777 
778 		/*
779 		 * Create and add the security attribute to the group; a
780 		 * reference to the group is made upon allocating a new
781 		 * entry successfully.  If it finds an already-existing
782 		 * entry for the security attribute in the group, it simply
783 		 * returns it and no new reference is made to the group.
784 		 */
785 		gc = gc_create(sp, gcgrp, &gcgrp_xtraref);
786 		if (gc == NULL) {
787 			/* release reference held by gcgrp_lookup */
788 			GCGRP_REFRELE(gcgrp);
789 			if (ipif != NULL)
790 				ipif_refrele(ipif);
791 			ire_refrele(gw_ire);
792 			return (ENOMEM);
793 		}
794 	}
795 
796 	/* Create the IRE. */
797 	ire = ire_create_v6(
798 	    dst_addr,				/* dest address */
799 	    mask,				/* mask */
800 	    gw_addr,				/* gateway address */
801 	    (ushort_t)type,			/* IRE type */
802 	    ill,
803 	    zoneid,
804 	    flags,
805 	    gc,					/* security attribute */
806 	    ipst);
807 
808 	/*
809 	 * The ire holds a reference to the 'gc' and the 'gc' holds a
810 	 * reference to the 'gcgrp'. We can now release the extra reference
811 	 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used.
812 	 */
813 	if (gcgrp_xtraref)
814 		GCGRP_REFRELE(gcgrp);
815 	if (ire == NULL) {
816 		if (gc != NULL)
817 			GC_REFRELE(gc);
818 		if (ipif != NULL)
819 			ipif_refrele(ipif);
820 		ire_refrele(gw_ire);
821 		return (ENOMEM);
822 	}
823 
824 	/* src address assigned by the caller? */
825 	if ((flags & RTF_SETSRC) && !IN6_IS_ADDR_UNSPECIFIED(src_addr))
826 		ire->ire_setsrc_addr_v6 = *src_addr;
827 
828 	ire->ire_unbound = unbound;
829 
830 	/*
831 	 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
832 	 * SUN/OS socket stuff does but do we really want to allow ::0 ?
833 	 */
834 
835 	/* Add the new IRE. */
836 	nire = ire_add(ire);
837 	if (nire == NULL) {
838 		/*
839 		 * In the result of failure, ire_add() will have
840 		 * already deleted the ire in question, so there
841 		 * is no need to do that here.
842 		 */
843 		if (ipif != NULL)
844 			ipif_refrele(ipif);
845 		ire_refrele(gw_ire);
846 		return (ENOMEM);
847 	}
848 	/*
849 	 * Check if it was a duplicate entry. This handles
850 	 * the case of two racing route adds for the same route
851 	 */
852 	if (nire != ire) {
853 		ASSERT(nire->ire_identical_ref > 1);
854 		ire_delete(nire);
855 		ire_refrele(nire);
856 		if (ipif != NULL)
857 			ipif_refrele(ipif);
858 		ire_refrele(gw_ire);
859 		return (EEXIST);
860 	}
861 	ire = nire;
862 
863 	if (flags & RTF_MULTIRT) {
864 		/*
865 		 * Invoke the CGTP (multirouting) filtering module
866 		 * to add the dst address in the filtering database.
867 		 * Replicated inbound packets coming from that address
868 		 * will be filtered to discard the duplicates.
869 		 * It is not necessary to call the CGTP filter hook
870 		 * when the dst address is a multicast, because an
871 		 * IP source address cannot be a multicast.
872 		 */
873 		if (ipst->ips_ip_cgtp_filter_ops != NULL &&
874 		    !IN6_IS_ADDR_MULTICAST(&(ire->ire_addr_v6))) {
875 			int res;
876 			ipif_t *src_ipif;
877 
878 			/* Find the source address corresponding to gw_ire */
879 			src_ipif = ipif_lookup_addr_v6(
880 			    &gw_ire->ire_gateway_addr_v6, NULL, zoneid, ipst);
881 			if (src_ipif != NULL) {
882 				res = ipst->ips_ip_cgtp_filter_ops->
883 				    cfo_add_dest_v6(
884 				    ipst->ips_netstack->netstack_stackid,
885 				    &ire->ire_addr_v6,
886 				    &ire->ire_gateway_addr_v6,
887 				    &ire->ire_setsrc_addr_v6,
888 				    &src_ipif->ipif_v6lcl_addr);
889 				ipif_refrele(src_ipif);
890 			} else {
891 				res = EADDRNOTAVAIL;
892 			}
893 			if (res != 0) {
894 				if (ipif != NULL)
895 					ipif_refrele(ipif);
896 				ire_refrele(gw_ire);
897 				ire_delete(ire);
898 				ire_refrele(ire);	/* Held in ire_add */
899 				return (res);
900 			}
901 		}
902 	}
903 
904 save_ire:
905 	if (gw_ire != NULL) {
906 		ire_refrele(gw_ire);
907 		gw_ire = NULL;
908 	}
909 	if (ire->ire_ill != NULL) {
910 		/*
911 		 * Save enough information so that we can recreate the IRE if
912 		 * the ILL goes down and then up.  The metrics associated
913 		 * with the route will be saved as well when rts_setmetrics() is
914 		 * called after the IRE has been created.  In the case where
915 		 * memory cannot be allocated, none of this information will be
916 		 * saved.
917 		 */
918 		ill_save_ire(ire->ire_ill, ire);
919 	}
920 
921 	if (ire_arg != NULL) {
922 		/*
923 		 * Store the ire that was successfully added into where ire_arg
924 		 * points to so that callers don't have to look it up
925 		 * themselves (but they are responsible for ire_refrele()ing
926 		 * the ire when they are finished with it).
927 		 */
928 		*ire_arg = ire;
929 	} else {
930 		ire_refrele(ire);		/* Held in ire_add */
931 	}
932 	if (ipif != NULL)
933 		ipif_refrele(ipif);
934 	return (0);
935 }
936 
937 /*
938  * ip_rt_delete_v6 is called to delete an IPv6 route.
939  * ill is passed in to associate it with the correct interface.
940  * (for link-local destinations and gateways).
941  */
942 /* ARGSUSED4 */
943 int
ip_rt_delete_v6(const in6_addr_t * dst_addr,const in6_addr_t * mask,const in6_addr_t * gw_addr,uint_t rtm_addrs,int flags,ill_t * ill,ip_stack_t * ipst,zoneid_t zoneid)944 ip_rt_delete_v6(const in6_addr_t *dst_addr, const in6_addr_t *mask,
945     const in6_addr_t *gw_addr, uint_t rtm_addrs, int flags, ill_t *ill,
946     ip_stack_t *ipst, zoneid_t zoneid)
947 {
948 	ire_t	*ire = NULL;
949 	ipif_t	*ipif;
950 	uint_t	type;
951 	uint_t	match_flags = MATCH_IRE_TYPE;
952 	int	err = 0;
953 
954 	/*
955 	 * If this is the case of RTF_HOST being set, then we set the netmask
956 	 * to all ones.  Otherwise, we use the netmask if one was supplied.
957 	 */
958 	if (flags & RTF_HOST) {
959 		mask = &ipv6_all_ones;
960 		match_flags |= MATCH_IRE_MASK;
961 	} else if (rtm_addrs & RTA_NETMASK) {
962 		match_flags |= MATCH_IRE_MASK;
963 	}
964 
965 	/*
966 	 * Note that RTF_GATEWAY is never set on a delete, therefore
967 	 * we check if the gateway address is one of our interfaces first,
968 	 * and fall back on RTF_GATEWAY routes.
969 	 *
970 	 * This makes it possible to delete an original
971 	 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
972 	 * However, we have RTF_KERNEL set on the ones created by ipif_up
973 	 * and those can not be deleted here.
974 	 *
975 	 * We use MATCH_IRE_ILL if we know the interface. If the caller
976 	 * specified an interface (from the RTA_IFP sockaddr) we use it,
977 	 * otherwise we use the ill derived from the gateway address.
978 	 * We can always match the gateway address since we record it
979 	 * in ire_gateway_addr.
980 	 *
981 	 * For more detail on specifying routes by gateway address and by
982 	 * interface index, see the comments in ip_rt_add_v6().
983 	 */
984 	ipif = ipif_lookup_interface_v6(gw_addr, dst_addr, ipst);
985 	if (ipif != NULL) {
986 		ill_t	*ill_match;
987 
988 		if (ill != NULL)
989 			ill_match = ill;
990 		else
991 			ill_match = ipif->ipif_ill;
992 
993 		match_flags |= MATCH_IRE_ILL;
994 		if (ipif->ipif_ire_type == IRE_LOOPBACK) {
995 			ire = ire_ftable_lookup_v6(dst_addr, mask, 0,
996 			    IRE_LOOPBACK, ill_match, ALL_ZONES, NULL,
997 			    match_flags, 0, ipst, NULL);
998 		}
999 		if (ire == NULL) {
1000 			match_flags |= MATCH_IRE_GW;
1001 			ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr,
1002 			    IRE_INTERFACE, ill_match, ALL_ZONES, NULL,
1003 			    match_flags, 0, ipst, NULL);
1004 		}
1005 		/* Avoid deleting routes created by kernel from an ipif */
1006 		if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) {
1007 			ire_refrele(ire);
1008 			ire = NULL;
1009 		}
1010 
1011 		/* Restore in case we didn't find a match */
1012 		match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL);
1013 	}
1014 
1015 	if (ire == NULL) {
1016 		/*
1017 		 * At this point, the gateway address is not one of our own
1018 		 * addresses or a matching interface route was not found.  We
1019 		 * set the IRE type to lookup based on whether
1020 		 * this is a host route, a default route or just a prefix.
1021 		 *
1022 		 * If an ill was passed in, then the lookup is based on an
1023 		 * interface index so MATCH_IRE_ILL is added to match_flags.
1024 		 */
1025 		match_flags |= MATCH_IRE_GW;
1026 		if (ill != NULL)
1027 			match_flags |= MATCH_IRE_ILL;
1028 		if (IN6_ARE_ADDR_EQUAL(mask, &ipv6_all_ones))
1029 			type = IRE_HOST;
1030 		else if (IN6_IS_ADDR_UNSPECIFIED(mask))
1031 			type = IRE_DEFAULT;
1032 		else
1033 			type = IRE_PREFIX;
1034 		ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr, type,
1035 		    ill, ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
1036 	}
1037 
1038 	if (ipif != NULL) {
1039 		ipif_refrele(ipif);
1040 		ipif = NULL;
1041 	}
1042 	if (ire == NULL)
1043 		return (ESRCH);
1044 
1045 	if (ire->ire_flags & RTF_MULTIRT) {
1046 		/*
1047 		 * Invoke the CGTP (multirouting) filtering module
1048 		 * to remove the dst address from the filtering database.
1049 		 * Packets coming from that address will no longer be
1050 		 * filtered to remove duplicates.
1051 		 */
1052 		if (ipst->ips_ip_cgtp_filter_ops != NULL) {
1053 			err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v6(
1054 			    ipst->ips_netstack->netstack_stackid,
1055 			    &ire->ire_addr_v6, &ire->ire_gateway_addr_v6);
1056 		}
1057 	}
1058 
1059 	ill = ire->ire_ill;
1060 	if (ill != NULL)
1061 		ill_remove_saved_ire(ill, ire);
1062 	ire_delete(ire);
1063 	ire_refrele(ire);
1064 	return (err);
1065 }
1066 
1067 /*
1068  * Derive an interface id from the link layer address.
1069  */
1070 void
ill_setdefaulttoken(ill_t * ill)1071 ill_setdefaulttoken(ill_t *ill)
1072 {
1073 	if (!ill->ill_manual_token) {
1074 		bzero(&ill->ill_token, sizeof (ill->ill_token));
1075 		MEDIA_V6INTFID(ill->ill_media, ill, &ill->ill_token);
1076 		ill->ill_token_length = IPV6_TOKEN_LEN;
1077 	}
1078 }
1079 
1080 void
ill_setdesttoken(ill_t * ill)1081 ill_setdesttoken(ill_t *ill)
1082 {
1083 	bzero(&ill->ill_dest_token, sizeof (ill->ill_dest_token));
1084 	MEDIA_V6DESTINTFID(ill->ill_media, ill, &ill->ill_dest_token);
1085 }
1086 
1087 /*
1088  * Create a link-local address from a token.
1089  */
1090 static void
ipif_get_linklocal(in6_addr_t * dest,const in6_addr_t * token)1091 ipif_get_linklocal(in6_addr_t *dest, const in6_addr_t *token)
1092 {
1093 	int i;
1094 
1095 	for (i = 0; i < 4; i++) {
1096 		dest->s6_addr32[i] =
1097 		    token->s6_addr32[i] | ipv6_ll_template.s6_addr32[i];
1098 	}
1099 }
1100 
1101 /*
1102  * Set a default IPv6 address for a 6to4 tunnel interface 2002:<tsrc>::1/16
1103  */
1104 static void
ipif_set6to4addr(ipif_t * ipif)1105 ipif_set6to4addr(ipif_t *ipif)
1106 {
1107 	ill_t		*ill = ipif->ipif_ill;
1108 	struct in_addr	v4phys;
1109 
1110 	ASSERT(ill->ill_mactype == DL_6TO4);
1111 	ASSERT(ill->ill_phys_addr_length == sizeof (struct in_addr));
1112 	ASSERT(ipif->ipif_isv6);
1113 
1114 	if (ipif->ipif_flags & IPIF_UP)
1115 		return;
1116 
1117 	(void) ip_plen_to_mask_v6(16, &ipif->ipif_v6net_mask);
1118 	bcopy(ill->ill_phys_addr, &v4phys, sizeof (struct in_addr));
1119 	IN6_V4ADDR_TO_6TO4(&v4phys, &ipif->ipif_v6lcl_addr);
1120 	V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
1121 	    ipif->ipif_v6subnet);
1122 }
1123 
1124 /*
1125  * Is it not possible to set the link local address?
1126  * The address can be set if the token is set, and the token
1127  * isn't too long.
1128  * Return B_TRUE if the address can't be set, or B_FALSE if it can.
1129  */
1130 boolean_t
ipif_cant_setlinklocal(ipif_t * ipif)1131 ipif_cant_setlinklocal(ipif_t *ipif)
1132 {
1133 	ill_t *ill = ipif->ipif_ill;
1134 
1135 	if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token) ||
1136 	    ill->ill_token_length > IPV6_ABITS - IPV6_LL_PREFIXLEN)
1137 		return (B_TRUE);
1138 
1139 	return (B_FALSE);
1140 }
1141 
1142 /*
1143  * Generate a link-local address from the token.
1144  */
1145 void
ipif_setlinklocal(ipif_t * ipif)1146 ipif_setlinklocal(ipif_t *ipif)
1147 {
1148 	ill_t		*ill = ipif->ipif_ill;
1149 	in6_addr_t	ov6addr;
1150 
1151 	ASSERT(IAM_WRITER_ILL(ill));
1152 
1153 	/*
1154 	 * If the interface was created with no link-local address
1155 	 * on it and the flag ILLF_NOLINKLOCAL was set, then we
1156 	 * dont want to update the link-local.
1157 	 */
1158 	if ((ill->ill_flags & ILLF_NOLINKLOCAL) &&
1159 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
1160 		return;
1161 	/*
1162 	 * ill_manual_linklocal is set when the link-local address was
1163 	 * manually configured.
1164 	 */
1165 	if (ill->ill_manual_linklocal)
1166 		return;
1167 
1168 	/*
1169 	 * IPv6 interfaces over 6to4 tunnels are special.  They do not have
1170 	 * link-local addresses, but instead have a single automatically
1171 	 * generated global address.
1172 	 */
1173 	if (ill->ill_mactype == DL_6TO4) {
1174 		ipif_set6to4addr(ipif);
1175 		return;
1176 	}
1177 
1178 	if (ipif_cant_setlinklocal(ipif))
1179 		return;
1180 
1181 	ov6addr = ipif->ipif_v6lcl_addr;
1182 	ipif_get_linklocal(&ipif->ipif_v6lcl_addr, &ill->ill_token);
1183 	sctp_update_ipif_addr(ipif, ov6addr);
1184 	(void) ip_plen_to_mask_v6(IPV6_LL_PREFIXLEN, &ipif->ipif_v6net_mask);
1185 	if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)) {
1186 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
1187 		    ipif->ipif_v6subnet);
1188 	}
1189 
1190 	ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);
1191 }
1192 
1193 /*
1194  * Generate a destination link-local address for a point-to-point IPv6
1195  * interface with a destination interface id (IP tunnels are such interfaces)
1196  * based on the destination token.
1197  */
1198 void
ipif_setdestlinklocal(ipif_t * ipif)1199 ipif_setdestlinklocal(ipif_t *ipif)
1200 {
1201 	ill_t	*ill = ipif->ipif_ill;
1202 
1203 	ASSERT(IAM_WRITER_ILL(ill));
1204 
1205 	if (ill->ill_manual_dst_linklocal)
1206 		return;
1207 
1208 	if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_dest_token))
1209 		return;
1210 
1211 	ipif_get_linklocal(&ipif->ipif_v6pp_dst_addr, &ill->ill_dest_token);
1212 	ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
1213 }
1214 
1215 /*
1216  * Get the resolver set up for a new ipif.  (Always called as writer.)
1217  */
1218 int
ipif_ndp_up(ipif_t * ipif,boolean_t initial)1219 ipif_ndp_up(ipif_t *ipif, boolean_t initial)
1220 {
1221 	ill_t		*ill = ipif->ipif_ill;
1222 	int		err = 0;
1223 	nce_t		*nce = NULL;
1224 	boolean_t	added_ipif = B_FALSE;
1225 
1226 	DTRACE_PROBE3(ipif__downup, char *, "ipif_ndp_up",
1227 	    ill_t *, ill, ipif_t *, ipif);
1228 	ip1dbg(("ipif_ndp_up(%s:%u)\n", ill->ill_name, ipif->ipif_id));
1229 
1230 	if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) ||
1231 	    (!(ill->ill_net_type & IRE_INTERFACE))) {
1232 		ipif->ipif_addr_ready = 1;
1233 		return (0);
1234 	}
1235 
1236 	if ((ipif->ipif_flags & (IPIF_UNNUMBERED|IPIF_NOLOCAL)) == 0) {
1237 		uint16_t	flags;
1238 		uint16_t	state;
1239 		uchar_t		*hw_addr;
1240 		ill_t		*bound_ill;
1241 		ipmp_illgrp_t	*illg = ill->ill_grp;
1242 		uint_t		hw_addr_len;
1243 
1244 		flags = NCE_F_MYADDR | NCE_F_NONUD | NCE_F_PUBLISH |
1245 		    NCE_F_AUTHORITY;
1246 		if (ill->ill_flags & ILLF_ROUTER)
1247 			flags |= NCE_F_ISROUTER;
1248 
1249 		if (ipif->ipif_flags & IPIF_ANYCAST)
1250 			flags |= NCE_F_ANYCAST;
1251 
1252 		if (IS_IPMP(ill)) {
1253 			ASSERT(ill->ill_net_type == IRE_IF_RESOLVER);
1254 			/*
1255 			 * If we're here via ipif_up(), then the ipif won't be
1256 			 * bound yet -- add it to the group, which will bind
1257 			 * it if possible.  (We would add it in ipif_up(), but
1258 			 * deleting on failure there is gruesome.)  If we're
1259 			 * here via ipmp_ill_bind_ipif(), then the ipif has
1260 			 * already been added to the group and we just need to
1261 			 * use the binding.
1262 			 */
1263 			if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) {
1264 				bound_ill = ipmp_illgrp_add_ipif(illg, ipif);
1265 				if (bound_ill == NULL) {
1266 					/*
1267 					 * We couldn't bind the ipif to an ill
1268 					 * yet, so we have nothing to publish.
1269 					 * Set ipif_addr_ready so that this
1270 					 * address can be used locally for now.
1271 					 * The routing socket message will be
1272 					 * sent from ipif_up_done_v6().
1273 					 */
1274 					ipif->ipif_addr_ready = 1;
1275 					return (0);
1276 				}
1277 				added_ipif = B_TRUE;
1278 			}
1279 			hw_addr = bound_ill->ill_nd_lla;
1280 			hw_addr_len = bound_ill->ill_phys_addr_length;
1281 		} else {
1282 			bound_ill = ill;
1283 			hw_addr = ill->ill_nd_lla;
1284 			hw_addr_len = ill->ill_phys_addr_length;
1285 		}
1286 
1287 		/*
1288 		 * If this is an initial bring-up (or the ipif was never
1289 		 * completely brought up), do DAD.  Otherwise, we're here
1290 		 * because IPMP has rebound an address to this ill: send
1291 		 * unsolicited advertisements to inform others.
1292 		 */
1293 		if (initial || !ipif->ipif_addr_ready) {
1294 			/* Causes Duplicate Address Detection to run */
1295 			state = ND_PROBE;
1296 		} else {
1297 			state = ND_REACHABLE;
1298 			flags |= NCE_F_UNSOL_ADV;
1299 		}
1300 
1301 retry:
1302 		err = nce_lookup_then_add_v6(ill, hw_addr, hw_addr_len,
1303 		    &ipif->ipif_v6lcl_addr, flags, state, &nce);
1304 		switch (err) {
1305 		case 0:
1306 			ip1dbg(("ipif_ndp_up: NCE created for %s\n",
1307 			    ill->ill_name));
1308 			ipif->ipif_addr_ready = 1;
1309 			ipif->ipif_added_nce = 1;
1310 			nce->nce_ipif_cnt++;
1311 			break;
1312 		case EINPROGRESS:
1313 			ip1dbg(("ipif_ndp_up: running DAD now for %s\n",
1314 			    ill->ill_name));
1315 			ipif->ipif_added_nce = 1;
1316 			nce->nce_ipif_cnt++;
1317 			break;
1318 		case EEXIST:
1319 			ip1dbg(("ipif_ndp_up: NCE already exists for %s\n",
1320 			    ill->ill_name));
1321 			if (!NCE_MYADDR(nce->nce_common)) {
1322 				/*
1323 				 * A leftover nce from before this address
1324 				 * existed
1325 				 */
1326 				ncec_delete(nce->nce_common);
1327 				nce_refrele(nce);
1328 				nce = NULL;
1329 				goto retry;
1330 			}
1331 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
1332 				nce_refrele(nce);
1333 				nce = NULL;
1334 				ip1dbg(("ipif_ndp_up: NCE already exists "
1335 				    "for %s\n", ill->ill_name));
1336 				goto fail;
1337 			}
1338 			/*
1339 			 * Duplicate local addresses are permissible for
1340 			 * IPIF_POINTOPOINT interfaces which will get marked
1341 			 * IPIF_UNNUMBERED later in
1342 			 * ip_addr_availability_check().
1343 			 *
1344 			 * The nce_ipif_cnt field tracks the number of
1345 			 * ipifs that have nce_addr as their local address.
1346 			 */
1347 			ipif->ipif_addr_ready = 1;
1348 			ipif->ipif_added_nce = 1;
1349 			nce->nce_ipif_cnt++;
1350 			err = 0;
1351 			break;
1352 		default:
1353 			ip1dbg(("ipif_ndp_up: NCE creation failed for %s\n",
1354 			    ill->ill_name));
1355 			goto fail;
1356 		}
1357 	} else {
1358 		/* No local NCE for this entry */
1359 		ipif->ipif_addr_ready = 1;
1360 	}
1361 	if (nce != NULL)
1362 		nce_refrele(nce);
1363 	return (0);
1364 fail:
1365 	if (added_ipif)
1366 		ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
1367 
1368 	return (err);
1369 }
1370 
1371 /* Remove all cache entries for this logical interface */
1372 void
ipif_ndp_down(ipif_t * ipif)1373 ipif_ndp_down(ipif_t *ipif)
1374 {
1375 	ipif_nce_down(ipif);
1376 }
1377 
1378 /*
1379  * Return the scope of the given IPv6 address.  If the address is an
1380  * IPv4 mapped IPv6 address, return the scope of the corresponding
1381  * IPv4 address.
1382  */
1383 in6addr_scope_t
ip_addr_scope_v6(const in6_addr_t * addr)1384 ip_addr_scope_v6(const in6_addr_t *addr)
1385 {
1386 	static in6_addr_t ipv6loopback = IN6ADDR_LOOPBACK_INIT;
1387 
1388 	if (IN6_IS_ADDR_V4MAPPED(addr)) {
1389 		in_addr_t v4addr_h = ntohl(V4_PART_OF_V6((*addr)));
1390 		if ((v4addr_h >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
1391 		    (v4addr_h & IN_AUTOCONF_MASK) == IN_AUTOCONF_NET)
1392 			return (IP6_SCOPE_LINKLOCAL);
1393 		if ((v4addr_h & IN_PRIVATE8_MASK) == IN_PRIVATE8_NET ||
1394 		    (v4addr_h & IN_PRIVATE12_MASK) == IN_PRIVATE12_NET ||
1395 		    (v4addr_h & IN_PRIVATE16_MASK) == IN_PRIVATE16_NET)
1396 			return (IP6_SCOPE_SITELOCAL);
1397 		return (IP6_SCOPE_GLOBAL);
1398 	}
1399 
1400 	if (IN6_IS_ADDR_MULTICAST(addr))
1401 		return (IN6_ADDR_MC_SCOPE(addr));
1402 
1403 	/* link-local and loopback addresses are of link-local scope */
1404 	if (IN6_IS_ADDR_LINKLOCAL(addr) ||
1405 	    IN6_ARE_ADDR_EQUAL(addr, &ipv6loopback))
1406 		return (IP6_SCOPE_LINKLOCAL);
1407 	if (IN6_IS_ADDR_SITELOCAL(addr))
1408 		return (IP6_SCOPE_SITELOCAL);
1409 	return (IP6_SCOPE_GLOBAL);
1410 }
1411 
1412 
1413 /*
1414  * Returns the length of the common prefix of a1 and a2, as per
1415  * CommonPrefixLen() defined in RFC 3484.
1416  */
1417 static int
ip_common_prefix_v6(const in6_addr_t * a1,const in6_addr_t * a2)1418 ip_common_prefix_v6(const in6_addr_t *a1, const in6_addr_t *a2)
1419 {
1420 	int i;
1421 	uint32_t a1val, a2val, mask;
1422 
1423 	for (i = 0; i < 4; i++) {
1424 		if ((a1val = a1->s6_addr32[i]) != (a2val = a2->s6_addr32[i])) {
1425 			a1val ^= a2val;
1426 			i *= 32;
1427 			mask = 0x80000000u;
1428 			while (!(a1val & mask)) {
1429 				mask >>= 1;
1430 				i++;
1431 			}
1432 			return (i);
1433 		}
1434 	}
1435 	return (IPV6_ABITS);
1436 }
1437 
1438 #define	IPIF_VALID_IPV6_SOURCE(ipif) \
1439 	(((ipif)->ipif_flags & IPIF_UP) && \
1440 	!((ipif)->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) && \
1441 	!((ipif)->ipif_ill->ill_flags & ILLF_NOACCEPT))
1442 
1443 /* source address candidate */
1444 typedef struct candidate {
1445 	ipif_t		*cand_ipif;
1446 	/* The properties of this candidate */
1447 	boolean_t	cand_isdst;
1448 	boolean_t	cand_isdst_set;
1449 	in6addr_scope_t	cand_scope;
1450 	boolean_t	cand_scope_set;
1451 	boolean_t	cand_isdeprecated;
1452 	boolean_t	cand_isdeprecated_set;
1453 	boolean_t	cand_ispreferred;
1454 	boolean_t	cand_ispreferred_set;
1455 	boolean_t	cand_matchedinterface;
1456 	boolean_t	cand_matchedinterface_set;
1457 	boolean_t	cand_matchedlabel;
1458 	boolean_t	cand_matchedlabel_set;
1459 	boolean_t	cand_istmp;
1460 	boolean_t	cand_istmp_set;
1461 	int		cand_common_pref;
1462 	boolean_t	cand_common_pref_set;
1463 	boolean_t	cand_pref_eq;
1464 	boolean_t	cand_pref_eq_set;
1465 	int		cand_pref_len;
1466 	boolean_t	cand_pref_len_set;
1467 } cand_t;
1468 #define	cand_srcaddr	cand_ipif->ipif_v6lcl_addr
1469 #define	cand_mask	cand_ipif->ipif_v6net_mask
1470 #define	cand_flags	cand_ipif->ipif_flags
1471 #define	cand_ill	cand_ipif->ipif_ill
1472 #define	cand_zoneid	cand_ipif->ipif_zoneid
1473 
1474 /* information about the destination for source address selection */
1475 typedef struct dstinfo {
1476 	const in6_addr_t	*dst_addr;
1477 	ill_t			*dst_ill;
1478 	uint_t			dst_restrict_ill;
1479 	boolean_t		dst_prefer_src_tmp;
1480 	in6addr_scope_t		dst_scope;
1481 	char			*dst_label;
1482 } dstinfo_t;
1483 
1484 /*
1485  * The following functions are rules used to select a source address in
1486  * ipif_select_source_v6().  Each rule compares a current candidate (cc)
1487  * against the best candidate (bc).  Each rule has three possible outcomes;
1488  * the candidate is preferred over the best candidate (CAND_PREFER), the
1489  * candidate is not preferred over the best candidate (CAND_AVOID), or the
1490  * candidate is of equal value as the best candidate (CAND_TIE).
1491  *
1492  * These rules are part of a greater "Default Address Selection for IPv6"
1493  * sheme, which is standards based work coming out of the IETF ipv6 working
1494  * group.  The IETF document defines both IPv6 source address selection and
1495  * destination address ordering.  The rules defined here implement the IPv6
1496  * source address selection.  Destination address ordering is done by
1497  * libnsl, and uses a similar set of rules to implement the sorting.
1498  *
1499  * Most of the rules are defined by the RFC and are not typically altered.  The
1500  * last rule, number 8, has language that allows for local preferences.  In the
1501  * scheme below, this means that new Solaris rules should normally go between
1502  * rule_ifprefix and rule_prefix.
1503  */
1504 typedef enum {CAND_AVOID, CAND_TIE, CAND_PREFER} rule_res_t;
1505 typedef	rule_res_t (*rulef_t)(cand_t *, cand_t *, const dstinfo_t *,
1506     ip_stack_t *);
1507 
1508 /* Prefer an address if it is equal to the destination address. */
1509 /* ARGSUSED3 */
1510 static rule_res_t
rule_isdst(cand_t * bc,cand_t * cc,const dstinfo_t * dstinfo,ip_stack_t * ipst)1511 rule_isdst(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, ip_stack_t *ipst)
1512 {
1513 	if (!bc->cand_isdst_set) {
1514 		bc->cand_isdst =
1515 		    IN6_ARE_ADDR_EQUAL(&bc->cand_srcaddr, dstinfo->dst_addr);
1516 		bc->cand_isdst_set = B_TRUE;
1517 	}
1518 
1519 	cc->cand_isdst =
1520 	    IN6_ARE_ADDR_EQUAL(&cc->cand_srcaddr, dstinfo->dst_addr);
1521 	cc->cand_isdst_set = B_TRUE;
1522 
1523 	if (cc->cand_isdst == bc->cand_isdst)
1524 		return (CAND_TIE);
1525 	else if (cc->cand_isdst)
1526 		return (CAND_PREFER);
1527 	else
1528 		return (CAND_AVOID);
1529 }
1530 
1531 /*
1532  * Prefer addresses that are of closest scope to the destination.  Always
1533  * prefer addresses that are of greater scope than the destination over
1534  * those that are of lesser scope than the destination.
1535  */
1536 /* ARGSUSED3 */
1537 static rule_res_t
rule_scope(cand_t * bc,cand_t * cc,const dstinfo_t * dstinfo,ip_stack_t * ipst)1538 rule_scope(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, ip_stack_t *ipst)
1539 {
1540 	if (!bc->cand_scope_set) {
1541 		bc->cand_scope = ip_addr_scope_v6(&bc->cand_srcaddr);
1542 		bc->cand_scope_set = B_TRUE;
1543 	}
1544 
1545 	cc->cand_scope = ip_addr_scope_v6(&cc->cand_srcaddr);
1546 	cc->cand_scope_set = B_TRUE;
1547 
1548 	if (cc->cand_scope < bc->cand_scope) {
1549 		if (cc->cand_scope < dstinfo->dst_scope)
1550 			return (CAND_AVOID);
1551 		else
1552 			return (CAND_PREFER);
1553 	} else if (bc->cand_scope < cc->cand_scope) {
1554 		if (bc->cand_scope < dstinfo->dst_scope)
1555 			return (CAND_PREFER);
1556 		else
1557 			return (CAND_AVOID);
1558 	} else {
1559 		return (CAND_TIE);
1560 	}
1561 }
1562 
1563 /*
1564  * Prefer non-deprecated source addresses.
1565  */
1566 /* ARGSUSED2 */
1567 static rule_res_t
rule_deprecated(cand_t * bc,cand_t * cc,const dstinfo_t * dstinfo,ip_stack_t * ipst)1568 rule_deprecated(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo,
1569     ip_stack_t *ipst)
1570 {
1571 	if (!bc->cand_isdeprecated_set) {
1572 		bc->cand_isdeprecated =
1573 		    ((bc->cand_flags & IPIF_DEPRECATED) != 0);
1574 		bc->cand_isdeprecated_set = B_TRUE;
1575 	}
1576 
1577 	cc->cand_isdeprecated = ((cc->cand_flags & IPIF_DEPRECATED) != 0);
1578 	cc->cand_isdeprecated_set = B_TRUE;
1579 
1580 	if (bc->cand_isdeprecated == cc->cand_isdeprecated)
1581 		return (CAND_TIE);
1582 	else if (cc->cand_isdeprecated)
1583 		return (CAND_AVOID);
1584 	else
1585 		return (CAND_PREFER);
1586 }
1587 
1588 /*
1589  * Prefer source addresses that have the IPIF_PREFERRED flag set.  This
1590  * rule must be before rule_interface because the flag could be set on any
1591  * interface, not just the interface being used for outgoing packets (for
1592  * example, the IFF_PREFERRED could be set on an address assigned to the
1593  * loopback interface).
1594  */
1595 /* ARGSUSED2 */
1596 static rule_res_t
rule_preferred(cand_t * bc,cand_t * cc,const dstinfo_t * dstinfo,ip_stack_t * ipst)1597 rule_preferred(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo,
1598     ip_stack_t *ipst)
1599 {
1600 	if (!bc->cand_ispreferred_set) {
1601 		bc->cand_ispreferred = ((bc->cand_flags & IPIF_PREFERRED) != 0);
1602 		bc->cand_ispreferred_set = B_TRUE;
1603 	}
1604 
1605 	cc->cand_ispreferred = ((cc->cand_flags & IPIF_PREFERRED) != 0);
1606 	cc->cand_ispreferred_set = B_TRUE;
1607 
1608 	if (bc->cand_ispreferred == cc->cand_ispreferred)
1609 		return (CAND_TIE);
1610 	else if (cc->cand_ispreferred)
1611 		return (CAND_PREFER);
1612 	else
1613 		return (CAND_AVOID);
1614 }
1615 
1616 /*
1617  * Prefer source addresses that are assigned to the outgoing interface.
1618  */
1619 /* ARGSUSED3 */
1620 static rule_res_t
rule_interface(cand_t * bc,cand_t * cc,const dstinfo_t * dstinfo,ip_stack_t * ipst)1621 rule_interface(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo,
1622     ip_stack_t *ipst)
1623 {
1624 	ill_t *dstill = dstinfo->dst_ill;
1625 
1626 	/*
1627 	 * If dstinfo->dst_restrict_ill is set, this rule is unnecessary
1628 	 * since we know all candidates will be on the same link.
1629 	 */
1630 	if (dstinfo->dst_restrict_ill)
1631 		return (CAND_TIE);
1632 
1633 	if (!bc->cand_matchedinterface_set) {
1634 		bc->cand_matchedinterface = bc->cand_ill == dstill;
1635 		bc->cand_matchedinterface_set = B_TRUE;
1636 	}
1637 
1638 	cc->cand_matchedinterface = cc->cand_ill == dstill;
1639 	cc->cand_matchedinterface_set = B_TRUE;
1640 
1641 	if (bc->cand_matchedinterface == cc->cand_matchedinterface)
1642 		return (CAND_TIE);
1643 	else if (cc->cand_matchedinterface)
1644 		return (CAND_PREFER);
1645 	else
1646 		return (CAND_AVOID);
1647 }
1648 
1649 /*
1650  * Prefer source addresses whose label matches the destination's label.
1651  */
1652 static rule_res_t
rule_label(cand_t * bc,cand_t * cc,const dstinfo_t * dstinfo,ip_stack_t * ipst)1653 rule_label(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, ip_stack_t *ipst)
1654 {
1655 	char *label;
1656 
1657 	if (!bc->cand_matchedlabel_set) {
1658 		label = ip6_asp_lookup(&bc->cand_srcaddr, NULL, ipst);
1659 		bc->cand_matchedlabel =
1660 		    ip6_asp_labelcmp(label, dstinfo->dst_label);
1661 		bc->cand_matchedlabel_set = B_TRUE;
1662 	}
1663 
1664 	label = ip6_asp_lookup(&cc->cand_srcaddr, NULL, ipst);
1665 	cc->cand_matchedlabel = ip6_asp_labelcmp(label, dstinfo->dst_label);
1666 	cc->cand_matchedlabel_set = B_TRUE;
1667 
1668 	if (bc->cand_matchedlabel == cc->cand_matchedlabel)
1669 		return (CAND_TIE);
1670 	else if (cc->cand_matchedlabel)
1671 		return (CAND_PREFER);
1672 	else
1673 		return (CAND_AVOID);
1674 }
1675 
1676 /*
1677  * Prefer public addresses over temporary ones.  An application can reverse
1678  * the logic of this rule and prefer temporary addresses by using the
1679  * IPV6_SRC_PREFERENCES socket option.
1680  */
1681 /* ARGSUSED3 */
1682 static rule_res_t
rule_temporary(cand_t * bc,cand_t * cc,const dstinfo_t * dstinfo,ip_stack_t * ipst)1683 rule_temporary(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo,
1684     ip_stack_t *ipst)
1685 {
1686 	if (!bc->cand_istmp_set) {
1687 		bc->cand_istmp = ((bc->cand_flags & IPIF_TEMPORARY) != 0);
1688 		bc->cand_istmp_set = B_TRUE;
1689 	}
1690 
1691 	cc->cand_istmp = ((cc->cand_flags & IPIF_TEMPORARY) != 0);
1692 	cc->cand_istmp_set = B_TRUE;
1693 
1694 	if (bc->cand_istmp == cc->cand_istmp)
1695 		return (CAND_TIE);
1696 
1697 	if (dstinfo->dst_prefer_src_tmp && cc->cand_istmp)
1698 		return (CAND_PREFER);
1699 	else if (!dstinfo->dst_prefer_src_tmp && !cc->cand_istmp)
1700 		return (CAND_PREFER);
1701 	else
1702 		return (CAND_AVOID);
1703 }
1704 
1705 /*
1706  * Prefer source addresses with longer matching prefix with the destination
1707  * under the interface mask.  This gets us on the same subnet before applying
1708  * any Solaris-specific rules.
1709  */
1710 /* ARGSUSED3 */
1711 static rule_res_t
rule_ifprefix(cand_t * bc,cand_t * cc,const dstinfo_t * dstinfo,ip_stack_t * ipst)1712 rule_ifprefix(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo,
1713     ip_stack_t *ipst)
1714 {
1715 	if (!bc->cand_pref_eq_set) {
1716 		bc->cand_pref_eq = V6_MASK_EQ_2(bc->cand_srcaddr,
1717 		    bc->cand_mask, *dstinfo->dst_addr);
1718 		bc->cand_pref_eq_set = B_TRUE;
1719 	}
1720 
1721 	cc->cand_pref_eq = V6_MASK_EQ_2(cc->cand_srcaddr, cc->cand_mask,
1722 	    *dstinfo->dst_addr);
1723 	cc->cand_pref_eq_set = B_TRUE;
1724 
1725 	if (bc->cand_pref_eq) {
1726 		if (cc->cand_pref_eq) {
1727 			if (!bc->cand_pref_len_set) {
1728 				bc->cand_pref_len =
1729 				    ip_mask_to_plen_v6(&bc->cand_mask);
1730 				bc->cand_pref_len_set = B_TRUE;
1731 			}
1732 			cc->cand_pref_len = ip_mask_to_plen_v6(&cc->cand_mask);
1733 			cc->cand_pref_len_set = B_TRUE;
1734 			if (bc->cand_pref_len == cc->cand_pref_len)
1735 				return (CAND_TIE);
1736 			else if (bc->cand_pref_len > cc->cand_pref_len)
1737 				return (CAND_AVOID);
1738 			else
1739 				return (CAND_PREFER);
1740 		} else {
1741 			return (CAND_AVOID);
1742 		}
1743 	} else {
1744 		if (cc->cand_pref_eq)
1745 			return (CAND_PREFER);
1746 		else
1747 			return (CAND_TIE);
1748 	}
1749 }
1750 
1751 /*
1752  * Prefer to use zone-specific addresses when possible instead of all-zones
1753  * addresses.
1754  */
1755 /* ARGSUSED2 */
1756 static rule_res_t
rule_zone_specific(cand_t * bc,cand_t * cc,const dstinfo_t * dstinfo,ip_stack_t * ipst)1757 rule_zone_specific(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo,
1758     ip_stack_t *ipst)
1759 {
1760 	if ((bc->cand_zoneid == ALL_ZONES) ==
1761 	    (cc->cand_zoneid == ALL_ZONES))
1762 		return (CAND_TIE);
1763 	else if (cc->cand_zoneid == ALL_ZONES)
1764 		return (CAND_AVOID);
1765 	else
1766 		return (CAND_PREFER);
1767 }
1768 
1769 /*
1770  * Prefer to use DHCPv6 (first) and static addresses (second) when possible
1771  * instead of statelessly autoconfigured addresses.
1772  *
1773  * This is done after trying all other preferences (and before the final tie
1774  * breaker) so that, if all else is equal, we select addresses configured by
1775  * DHCPv6 over other addresses.  We presume that DHCPv6 addresses, unlike
1776  * stateless autoconfigured addresses, are deliberately configured by an
1777  * administrator, and thus are correctly set up in DNS and network packet
1778  * filters.
1779  */
1780 /* ARGSUSED2 */
1781 static rule_res_t
rule_addr_type(cand_t * bc,cand_t * cc,const dstinfo_t * dstinfo,ip_stack_t * ipst)1782 rule_addr_type(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo,
1783     ip_stack_t *ipst)
1784 {
1785 #define	ATYPE(x)	\
1786 	((x) & IPIF_DHCPRUNNING) ? 1 : ((x) & IPIF_ADDRCONF) ? 3 : 2
1787 	int bcval = ATYPE(bc->cand_flags);
1788 	int ccval = ATYPE(cc->cand_flags);
1789 #undef ATYPE
1790 
1791 	if (bcval == ccval)
1792 		return (CAND_TIE);
1793 	else if (ccval < bcval)
1794 		return (CAND_PREFER);
1795 	else
1796 		return (CAND_AVOID);
1797 }
1798 
1799 /*
1800  * Prefer source addresses with longer matching prefix with the destination.
1801  * We do the longest matching prefix calculation by doing an xor of both
1802  * addresses with the destination, and pick the address with the longest string
1803  * of leading zeros, as per CommonPrefixLen() defined in RFC 3484.
1804  */
1805 /* ARGSUSED3 */
1806 static rule_res_t
rule_prefix(cand_t * bc,cand_t * cc,const dstinfo_t * dstinfo,ip_stack_t * ipst)1807 rule_prefix(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, ip_stack_t *ipst)
1808 {
1809 	if (!bc->cand_common_pref_set) {
1810 		bc->cand_common_pref = ip_common_prefix_v6(&bc->cand_srcaddr,
1811 		    dstinfo->dst_addr);
1812 		bc->cand_common_pref_set = B_TRUE;
1813 	}
1814 
1815 	cc->cand_common_pref = ip_common_prefix_v6(&cc->cand_srcaddr,
1816 	    dstinfo->dst_addr);
1817 	cc->cand_common_pref_set = B_TRUE;
1818 
1819 	if (bc->cand_common_pref == cc->cand_common_pref)
1820 		return (CAND_TIE);
1821 	else if (bc->cand_common_pref > cc->cand_common_pref)
1822 		return (CAND_AVOID);
1823 	else
1824 		return (CAND_PREFER);
1825 }
1826 
1827 /*
1828  * Last rule: we must pick something, so just prefer the current best
1829  * candidate.
1830  */
1831 /* ARGSUSED */
1832 static rule_res_t
rule_must_be_last(cand_t * bc,cand_t * cc,const dstinfo_t * dstinfo,ip_stack_t * ipst)1833 rule_must_be_last(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo,
1834     ip_stack_t *ipst)
1835 {
1836 	return (CAND_AVOID);
1837 }
1838 
1839 /*
1840  * Determine the best source address given a destination address and a
1841  * destination ill.  If no suitable source address is found, it returns
1842  * NULL. If there is a usable address pointed to by the usesrc
1843  * (i.e ill_usesrc_ifindex != 0) then return that first since it is more
1844  * fine grained (i.e per interface)
1845  *
1846  * This implementation is based on the "Default Address Selection for IPv6"
1847  * specification produced by the IETF IPv6 working group.  It has been
1848  * implemented so that the list of addresses is only traversed once (the
1849  * specification's algorithm could traverse the list of addresses once for
1850  * every rule).
1851  *
1852  * The restrict_ill argument restricts the algorithm to choose a source
1853  * address that is assigned to the destination ill.  This is used when
1854  * the destination address is a link-local or multicast address, and when
1855  * ipv6_strict_dst_multihoming is turned on.
1856  *
1857  * src_prefs is the caller's set of source address preferences.  If source
1858  * address selection is being called to determine the source address of a
1859  * connected socket (from ip_set_destination_v6()), then the preferences are
1860  * taken from conn_ixa->ixa_src_preferences.  These preferences can be set on a
1861  * per-socket basis using the IPV6_SRC_PREFERENCES socket option.  The only
1862  * preference currently implemented is for rfc3041 temporary addresses.
1863  */
1864 ipif_t *
ipif_select_source_v6(ill_t * dstill,const in6_addr_t * dst,boolean_t restrict_ill,uint32_t src_prefs,zoneid_t zoneid,boolean_t allow_usesrc,boolean_t * notreadyp)1865 ipif_select_source_v6(ill_t *dstill, const in6_addr_t *dst,
1866     boolean_t restrict_ill, uint32_t src_prefs, zoneid_t zoneid,
1867     boolean_t allow_usesrc, boolean_t *notreadyp)
1868 {
1869 	dstinfo_t	dstinfo;
1870 	char		dstr[INET6_ADDRSTRLEN];
1871 	char		sstr[INET6_ADDRSTRLEN];
1872 	ipif_t		*ipif, *start_ipif, *next_ipif;
1873 	ill_t		*ill, *usesrc_ill = NULL, *ipmp_ill = NULL;
1874 	ill_walk_context_t	ctx;
1875 	cand_t		best_c;	/* The best candidate */
1876 	cand_t		curr_c;	/* The current candidate */
1877 	uint_t		index;
1878 	boolean_t	first_candidate = B_TRUE;
1879 	rule_res_t	rule_result;
1880 	tsol_tpc_t	*src_rhtp, *dst_rhtp;
1881 	ip_stack_t	*ipst = dstill->ill_ipst;
1882 
1883 	/*
1884 	 * The list of ordering rules.  They are applied in the order they
1885 	 * appear in the list.
1886 	 *
1887 	 * Solaris doesn't currently support Mobile IPv6, so there's no
1888 	 * rule_mipv6 corresponding to rule 4 in the specification.
1889 	 */
1890 	rulef_t	rules[] = {
1891 		rule_isdst,
1892 		rule_scope,
1893 		rule_deprecated,
1894 		rule_preferred,
1895 		rule_interface,
1896 		rule_label,
1897 		rule_temporary,
1898 		rule_ifprefix,			/* local rules after this */
1899 		rule_zone_specific,
1900 		rule_addr_type,
1901 		rule_prefix,			/* local rules before this */
1902 		rule_must_be_last,		/* must always be last */
1903 		NULL
1904 	};
1905 
1906 	ASSERT(dstill->ill_isv6);
1907 	ASSERT(!IN6_IS_ADDR_V4MAPPED(dst));
1908 
1909 	/*
1910 	 * Check if there is a usable src address pointed to by the
1911 	 * usesrc ifindex. This has higher precedence since it is
1912 	 * finer grained (i.e per interface) v/s being system wide.
1913 	 */
1914 	if (dstill->ill_usesrc_ifindex != 0 && allow_usesrc) {
1915 		if ((usesrc_ill =
1916 		    ill_lookup_on_ifindex(dstill->ill_usesrc_ifindex, B_TRUE,
1917 		    ipst)) != NULL) {
1918 			dstinfo.dst_ill = usesrc_ill;
1919 		} else {
1920 			return (NULL);
1921 		}
1922 	} else if (IS_UNDER_IPMP(dstill)) {
1923 		/*
1924 		 * Test addresses should never be used for source address
1925 		 * selection, so if we were passed an underlying ill, switch
1926 		 * to the IPMP meta-interface.
1927 		 */
1928 		if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(dstill)) != NULL)
1929 			dstinfo.dst_ill = ipmp_ill;
1930 		else
1931 			return (NULL);
1932 	} else {
1933 		dstinfo.dst_ill = dstill;
1934 	}
1935 
1936 	/*
1937 	 * If we're dealing with an unlabeled destination on a labeled system,
1938 	 * make sure that we ignore source addresses that are incompatible with
1939 	 * the destination's default label.  That destination's default label
1940 	 * must dominate the minimum label on the source address.
1941 	 *
1942 	 * (Note that this has to do with Trusted Solaris.  It's not related to
1943 	 * the labels described by ip6_asp_lookup.)
1944 	 */
1945 	dst_rhtp = NULL;
1946 	if (is_system_labeled()) {
1947 		dst_rhtp = find_tpc(dst, IPV6_VERSION, B_FALSE);
1948 		if (dst_rhtp == NULL)
1949 			return (NULL);
1950 		if (dst_rhtp->tpc_tp.host_type != UNLABELED) {
1951 			TPC_RELE(dst_rhtp);
1952 			dst_rhtp = NULL;
1953 		}
1954 	}
1955 
1956 	dstinfo.dst_addr = dst;
1957 	dstinfo.dst_scope = ip_addr_scope_v6(dst);
1958 	dstinfo.dst_label = ip6_asp_lookup(dst, NULL, ipst);
1959 	dstinfo.dst_prefer_src_tmp = ((src_prefs & IPV6_PREFER_SRC_TMP) != 0);
1960 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
1961 	/*
1962 	 * Section three of the I-D states that for multicast and
1963 	 * link-local destinations, the candidate set must be restricted to
1964 	 * an interface that is on the same link as the outgoing interface.
1965 	 * Also, when ipv6_strict_dst_multihoming is turned on, always
1966 	 * restrict the source address to the destination link as doing
1967 	 * otherwise will almost certainly cause problems.
1968 	 */
1969 	if (IN6_IS_ADDR_LINKLOCAL(dst) || IN6_IS_ADDR_MULTICAST(dst) ||
1970 	    ipst->ips_ipv6_strict_dst_multihoming || usesrc_ill != NULL) {
1971 		dstinfo.dst_restrict_ill = B_TRUE;
1972 	} else {
1973 		dstinfo.dst_restrict_ill = restrict_ill;
1974 	}
1975 
1976 	bzero(&best_c, sizeof (cand_t));
1977 
1978 	/*
1979 	 * Take a pass through the list of IPv6 interfaces to choose the best
1980 	 * possible source address.  If restrict_ill is set, just use dst_ill.
1981 	 */
1982 	if (dstinfo.dst_restrict_ill)
1983 		ill = dstinfo.dst_ill;
1984 	else
1985 		ill = ILL_START_WALK_V6(&ctx, ipst);
1986 
1987 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
1988 		ASSERT(ill->ill_isv6);
1989 
1990 		/*
1991 		 * Test addresses should never be used for source address
1992 		 * selection, so ignore underlying ills.
1993 		 */
1994 		if (IS_UNDER_IPMP(ill))
1995 			continue;
1996 
1997 		if (ill->ill_ipif == NULL)
1998 			continue;
1999 		/*
2000 		 * For source address selection, we treat the ipif list as
2001 		 * circular and continue until we get back to where we
2002 		 * started.  This allows IPMP to vary source address selection
2003 		 * (which improves inbound load spreading) by caching its last
2004 		 * ending point and starting from there.  NOTE: we don't have
2005 		 * to worry about ill_src_ipif changing ills since that can't
2006 		 * happen on the IPMP ill.
2007 		 */
2008 		start_ipif = ill->ill_ipif;
2009 		if (IS_IPMP(ill) && ill->ill_src_ipif != NULL)
2010 			start_ipif = ill->ill_src_ipif;
2011 
2012 		ipif = start_ipif;
2013 		do {
2014 			if ((next_ipif = ipif->ipif_next) == NULL)
2015 				next_ipif = ill->ill_ipif;
2016 
2017 			if (!IPIF_VALID_IPV6_SOURCE(ipif))
2018 				continue;
2019 
2020 			if (!ipif->ipif_addr_ready) {
2021 				if (notreadyp != NULL)
2022 					*notreadyp = B_TRUE;
2023 				continue;
2024 			}
2025 
2026 			if (zoneid != ALL_ZONES &&
2027 			    ipif->ipif_zoneid != zoneid &&
2028 			    ipif->ipif_zoneid != ALL_ZONES)
2029 				continue;
2030 
2031 			/*
2032 			 * Check compatibility of local address for
2033 			 * destination's default label if we're on a labeled
2034 			 * system.  Incompatible addresses can't be used at
2035 			 * all and must be skipped over.
2036 			 */
2037 			if (dst_rhtp != NULL) {
2038 				boolean_t incompat;
2039 
2040 				src_rhtp = find_tpc(&ipif->ipif_v6lcl_addr,
2041 				    IPV6_VERSION, B_FALSE);
2042 				if (src_rhtp == NULL)
2043 					continue;
2044 				incompat =
2045 				    src_rhtp->tpc_tp.host_type != SUN_CIPSO ||
2046 				    src_rhtp->tpc_tp.tp_doi !=
2047 				    dst_rhtp->tpc_tp.tp_doi ||
2048 				    (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label,
2049 				    &src_rhtp->tpc_tp.tp_sl_range_cipso) &&
2050 				    !blinlset(&dst_rhtp->tpc_tp.tp_def_label,
2051 				    src_rhtp->tpc_tp.tp_sl_set_cipso));
2052 				TPC_RELE(src_rhtp);
2053 				if (incompat)
2054 					continue;
2055 			}
2056 
2057 			if (first_candidate) {
2058 				/*
2059 				 * This is first valid address in the list.
2060 				 * It is automatically the best candidate
2061 				 * so far.
2062 				 */
2063 				best_c.cand_ipif = ipif;
2064 				first_candidate = B_FALSE;
2065 				continue;
2066 			}
2067 
2068 			bzero(&curr_c, sizeof (cand_t));
2069 			curr_c.cand_ipif = ipif;
2070 
2071 			/*
2072 			 * Compare this current candidate (curr_c) with the
2073 			 * best candidate (best_c) by applying the
2074 			 * comparison rules in order until one breaks the
2075 			 * tie.
2076 			 */
2077 			for (index = 0; rules[index] != NULL; index++) {
2078 				/* Apply a comparison rule. */
2079 				rule_result = (rules[index])(&best_c, &curr_c,
2080 				    &dstinfo, ipst);
2081 				if (rule_result == CAND_AVOID) {
2082 					/*
2083 					 * The best candidate is still the
2084 					 * best candidate.  Forget about
2085 					 * this current candidate and go on
2086 					 * to the next one.
2087 					 */
2088 					break;
2089 				} else if (rule_result == CAND_PREFER) {
2090 					/*
2091 					 * This candidate is prefered.  It
2092 					 * becomes the best candidate so
2093 					 * far.  Go on to the next address.
2094 					 */
2095 					best_c = curr_c;
2096 					break;
2097 				}
2098 				/* We have a tie, apply the next rule. */
2099 			}
2100 
2101 			/*
2102 			 * The last rule must be a tie breaker rule and
2103 			 * must never produce a tie.  At this point, the
2104 			 * candidate should have either been rejected, or
2105 			 * have been prefered as the best candidate so far.
2106 			 */
2107 			ASSERT(rule_result != CAND_TIE);
2108 		} while ((ipif = next_ipif) != start_ipif);
2109 
2110 		/*
2111 		 * For IPMP, update the source ipif rotor to the next ipif,
2112 		 * provided we can look it up.  (We must not use it if it's
2113 		 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after
2114 		 * ipif_free() checked ill_src_ipif.)
2115 		 */
2116 		if (IS_IPMP(ill) && ipif != NULL) {
2117 			mutex_enter(&ipif->ipif_ill->ill_lock);
2118 			next_ipif = ipif->ipif_next;
2119 			if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif))
2120 				ill->ill_src_ipif = next_ipif;
2121 			else
2122 				ill->ill_src_ipif = NULL;
2123 			mutex_exit(&ipif->ipif_ill->ill_lock);
2124 		}
2125 
2126 		/*
2127 		 * Only one ill to consider if dst_restrict_ill is set.
2128 		 */
2129 		if (dstinfo.dst_restrict_ill)
2130 			break;
2131 	}
2132 
2133 	ipif = best_c.cand_ipif;
2134 	ip1dbg(("ipif_select_source_v6(%s, %s) -> %s\n",
2135 	    dstinfo.dst_ill->ill_name,
2136 	    inet_ntop(AF_INET6, dstinfo.dst_addr, dstr, sizeof (dstr)),
2137 	    (ipif == NULL ? "NULL" :
2138 	    inet_ntop(AF_INET6, &ipif->ipif_v6lcl_addr, sstr, sizeof (sstr)))));
2139 
2140 	if (usesrc_ill != NULL)
2141 		ill_refrele(usesrc_ill);
2142 
2143 	if (ipmp_ill != NULL)
2144 		ill_refrele(ipmp_ill);
2145 
2146 	if (dst_rhtp != NULL)
2147 		TPC_RELE(dst_rhtp);
2148 
2149 	if (ipif == NULL) {
2150 		rw_exit(&ipst->ips_ill_g_lock);
2151 		return (NULL);
2152 	}
2153 
2154 	mutex_enter(&ipif->ipif_ill->ill_lock);
2155 	if (!IPIF_IS_CONDEMNED(ipif)) {
2156 		ipif_refhold_locked(ipif);
2157 		mutex_exit(&ipif->ipif_ill->ill_lock);
2158 		rw_exit(&ipst->ips_ill_g_lock);
2159 		return (ipif);
2160 	}
2161 	mutex_exit(&ipif->ipif_ill->ill_lock);
2162 	rw_exit(&ipst->ips_ill_g_lock);
2163 	ip1dbg(("ipif_select_source_v6 cannot lookup ipif %p"
2164 	    " returning null \n", (void *)ipif));
2165 
2166 	return (NULL);
2167 }
2168 
2169 /*
2170  * Pick a source address based on the destination ill and an optional setsrc
2171  * address.
2172  * The result is stored in srcp. If generation is set, then put the source
2173  * generation number there before we look for the source address (to avoid
2174  * missing changes in the set of source addresses.
2175  * If flagsp is set, then us it to pass back ipif_flags.
2176  *
2177  * If the caller wants to cache the returned source address and detect when
2178  * that might be stale, the caller should pass in a generation argument,
2179  * which the caller can later compare against ips_src_generation
2180  *
2181  * The precedence order for selecting an IPv6 source address is:
2182  *  - RTF_SETSRC on the first ire in the recursive lookup always wins.
2183  *  - If usrsrc is set, swap the ill to be the usesrc one.
2184  *  - If IPMP is used on the ill, select a random address from the most
2185  *    preferred ones below:
2186  * That is followed by the long list of IPv6 source address selection rules
2187  * starting with rule_isdst(), rule_scope(), etc.
2188  *
2189  * We have lower preference for ALL_ZONES IP addresses,
2190  * as they pose problems with unlabeled destinations.
2191  *
2192  * Note that when multiple IP addresses match e.g., with rule_scope() we pick
2193  * the first one if IPMP is not in use. With IPMP we randomize.
2194  */
2195 int
ip_select_source_v6(ill_t * ill,const in6_addr_t * setsrc,const in6_addr_t * dst,zoneid_t zoneid,ip_stack_t * ipst,uint_t restrict_ill,uint32_t src_prefs,in6_addr_t * srcp,uint32_t * generation,uint64_t * flagsp)2196 ip_select_source_v6(ill_t *ill, const in6_addr_t *setsrc, const in6_addr_t *dst,
2197     zoneid_t zoneid, ip_stack_t *ipst, uint_t restrict_ill, uint32_t src_prefs,
2198     in6_addr_t *srcp, uint32_t *generation, uint64_t *flagsp)
2199 {
2200 	ipif_t *ipif;
2201 	boolean_t notready = B_FALSE;	/* Set if !ipif_addr_ready found */
2202 
2203 	if (flagsp != NULL)
2204 		*flagsp = 0;
2205 
2206 	/*
2207 	 * Need to grab the generation number before we check to
2208 	 * avoid a race with a change to the set of local addresses.
2209 	 * No lock needed since the thread which updates the set of local
2210 	 * addresses use ipif/ill locks and exit those (hence a store memory
2211 	 * barrier) before doing the atomic increase of ips_src_generation.
2212 	 */
2213 	if (generation != NULL) {
2214 		*generation = ipst->ips_src_generation;
2215 	}
2216 
2217 	/* Was RTF_SETSRC set on the first IRE in the recursive lookup? */
2218 	if (setsrc != NULL && !IN6_IS_ADDR_UNSPECIFIED(setsrc)) {
2219 		*srcp = *setsrc;
2220 		return (0);
2221 	}
2222 
2223 	ipif = ipif_select_source_v6(ill, dst, restrict_ill, src_prefs, zoneid,
2224 	    B_TRUE, &notready);
2225 	if (ipif == NULL) {
2226 		if (notready)
2227 			return (ENETDOWN);
2228 		else
2229 			return (EADDRNOTAVAIL);
2230 	}
2231 	*srcp = ipif->ipif_v6lcl_addr;
2232 	if (flagsp != NULL)
2233 		*flagsp = ipif->ipif_flags;
2234 	ipif_refrele(ipif);
2235 	return (0);
2236 }
2237 
2238 /*
2239  * Perform an attach and bind to get phys addr plus info_req for
2240  * the physical device.
2241  * q and mp represents an ioctl which will be queued waiting for
2242  * completion of the DLPI message exchange.
2243  * MUST be called on an ill queue.
2244  *
2245  * Returns EINPROGRESS when mp has been consumed by queueing it.
2246  * The ioctl will complete in ip_rput.
2247  */
2248 int
ill_dl_phys(ill_t * ill,ipif_t * ipif,mblk_t * mp,queue_t * q)2249 ill_dl_phys(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
2250 {
2251 	mblk_t	*v6token_mp = NULL;
2252 	mblk_t	*v6lla_mp = NULL;
2253 	mblk_t	*dest_mp = NULL;
2254 	mblk_t	*phys_mp = NULL;
2255 	mblk_t	*info_mp = NULL;
2256 	mblk_t	*attach_mp = NULL;
2257 	mblk_t	*bind_mp = NULL;
2258 	mblk_t	*unbind_mp = NULL;
2259 	mblk_t	*notify_mp = NULL;
2260 	mblk_t  *capab_mp = NULL;
2261 
2262 	ip1dbg(("ill_dl_phys(%s:%u)\n", ill->ill_name, ipif->ipif_id));
2263 	ASSERT(ill->ill_dlpi_style_set);
2264 	ASSERT(WR(q)->q_next != NULL);
2265 
2266 	if (ill->ill_isv6) {
2267 		v6token_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) +
2268 		    sizeof (t_scalar_t), DL_PHYS_ADDR_REQ);
2269 		if (v6token_mp == NULL)
2270 			goto bad;
2271 		((dl_phys_addr_req_t *)v6token_mp->b_rptr)->dl_addr_type =
2272 		    DL_IPV6_TOKEN;
2273 
2274 		v6lla_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) +
2275 		    sizeof (t_scalar_t), DL_PHYS_ADDR_REQ);
2276 		if (v6lla_mp == NULL)
2277 			goto bad;
2278 		((dl_phys_addr_req_t *)v6lla_mp->b_rptr)->dl_addr_type =
2279 		    DL_IPV6_LINK_LAYER_ADDR;
2280 	}
2281 
2282 	if (ill->ill_mactype == DL_IPV4 || ill->ill_mactype == DL_IPV6) {
2283 		dest_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) +
2284 		    sizeof (t_scalar_t), DL_PHYS_ADDR_REQ);
2285 		if (dest_mp == NULL)
2286 			goto bad;
2287 		((dl_phys_addr_req_t *)dest_mp->b_rptr)->dl_addr_type =
2288 		    DL_CURR_DEST_ADDR;
2289 	}
2290 
2291 	/*
2292 	 * Allocate a DL_NOTIFY_REQ and set the notifications we want.
2293 	 */
2294 	notify_mp = ip_dlpi_alloc(sizeof (dl_notify_req_t) + sizeof (long),
2295 	    DL_NOTIFY_REQ);
2296 	if (notify_mp == NULL)
2297 		goto bad;
2298 	((dl_notify_req_t *)notify_mp->b_rptr)->dl_notifications =
2299 	    (DL_NOTE_PHYS_ADDR | DL_NOTE_SDU_SIZE | DL_NOTE_FASTPATH_FLUSH |
2300 	    DL_NOTE_LINK_UP | DL_NOTE_LINK_DOWN | DL_NOTE_CAPAB_RENEG |
2301 	    DL_NOTE_PROMISC_ON_PHYS | DL_NOTE_PROMISC_OFF_PHYS |
2302 	    DL_NOTE_REPLUMB | DL_NOTE_ALLOWED_IPS | DL_NOTE_SDU_SIZE2);
2303 
2304 	phys_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) +
2305 	    sizeof (t_scalar_t), DL_PHYS_ADDR_REQ);
2306 	if (phys_mp == NULL)
2307 		goto bad;
2308 	((dl_phys_addr_req_t *)phys_mp->b_rptr)->dl_addr_type =
2309 	    DL_CURR_PHYS_ADDR;
2310 
2311 	info_mp = ip_dlpi_alloc(
2312 	    sizeof (dl_info_req_t) + sizeof (dl_info_ack_t),
2313 	    DL_INFO_REQ);
2314 	if (info_mp == NULL)
2315 		goto bad;
2316 
2317 	ASSERT(ill->ill_dlpi_capab_state == IDCS_UNKNOWN);
2318 	capab_mp = ip_dlpi_alloc(sizeof (dl_capability_req_t),
2319 	    DL_CAPABILITY_REQ);
2320 	if (capab_mp == NULL)
2321 		goto bad;
2322 
2323 	bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
2324 	    DL_BIND_REQ);
2325 	if (bind_mp == NULL)
2326 		goto bad;
2327 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
2328 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;
2329 
2330 	unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ);
2331 	if (unbind_mp == NULL)
2332 		goto bad;
2333 
2334 	/* If we need to attach, pre-alloc and initialize the mblk */
2335 	if (ill->ill_needs_attach) {
2336 		attach_mp = ip_dlpi_alloc(sizeof (dl_attach_req_t),
2337 		    DL_ATTACH_REQ);
2338 		if (attach_mp == NULL)
2339 			goto bad;
2340 		((dl_attach_req_t *)attach_mp->b_rptr)->dl_ppa = ill->ill_ppa;
2341 	}
2342 
2343 	/*
2344 	 * Here we are going to delay the ioctl ack until after
2345 	 * ACKs from DL_PHYS_ADDR_REQ. So need to save the
2346 	 * original ioctl message before sending the requests
2347 	 */
2348 	mutex_enter(&ill->ill_lock);
2349 	/* ipsq_pending_mp_add won't fail since we pass in a NULL connp */
2350 	(void) ipsq_pending_mp_add(NULL, ipif, ill->ill_wq, mp, 0);
2351 	/*
2352 	 * Set ill_phys_addr_pend to zero. It will be set to the addr_type of
2353 	 * the DL_PHYS_ADDR_REQ in ill_dlpi_send() and ill_dlpi_done(). It will
2354 	 * be used to track which DL_PHYS_ADDR_REQ is being ACK'd/NAK'd.
2355 	 */
2356 	ill->ill_phys_addr_pend = 0;
2357 	mutex_exit(&ill->ill_lock);
2358 
2359 	if (attach_mp != NULL) {
2360 		ip1dbg(("ill_dl_phys: attach\n"));
2361 		ill_dlpi_send(ill, attach_mp);
2362 	}
2363 	ill_dlpi_send(ill, bind_mp);
2364 	ill_dlpi_send(ill, info_mp);
2365 
2366 	/*
2367 	 * Send the capability request to get the VRRP capability information.
2368 	 */
2369 	ill_capability_send(ill, capab_mp);
2370 
2371 	if (v6token_mp != NULL)
2372 		ill_dlpi_send(ill, v6token_mp);
2373 	if (v6lla_mp != NULL)
2374 		ill_dlpi_send(ill, v6lla_mp);
2375 	if (dest_mp != NULL)
2376 		ill_dlpi_send(ill, dest_mp);
2377 	ill_dlpi_send(ill, phys_mp);
2378 	ill_dlpi_send(ill, notify_mp);
2379 	ill_dlpi_send(ill, unbind_mp);
2380 
2381 	/*
2382 	 * This operation will complete in ip_rput_dlpi_writer with either
2383 	 * a DL_PHYS_ADDR_ACK or DL_ERROR_ACK.
2384 	 */
2385 	return (EINPROGRESS);
2386 bad:
2387 	freemsg(v6token_mp);
2388 	freemsg(v6lla_mp);
2389 	freemsg(dest_mp);
2390 	freemsg(phys_mp);
2391 	freemsg(info_mp);
2392 	freemsg(attach_mp);
2393 	freemsg(bind_mp);
2394 	freemsg(capab_mp);
2395 	freemsg(unbind_mp);
2396 	freemsg(notify_mp);
2397 	return (ENOMEM);
2398 }
2399 
2400 /* Add room for tcp+ip headers */
2401 uint_t ip_loopback_mtu_v6plus = IP_LOOPBACK_MTU + IPV6_HDR_LEN + 20;
2402 
2403 /*
2404  * DLPI is up.
2405  * Create all the IREs associated with an interface bring up multicast.
2406  * Set the interface flag and finish other initialization
2407  * that potentially had to be differed to after DL_BIND_ACK.
2408  */
2409 int
ipif_up_done_v6(ipif_t * ipif)2410 ipif_up_done_v6(ipif_t *ipif)
2411 {
2412 	ill_t	*ill = ipif->ipif_ill;
2413 	int	err;
2414 	boolean_t loopback = B_FALSE;
2415 
2416 	ip1dbg(("ipif_up_done_v6(%s:%u)\n",
2417 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
2418 	DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done_v6",
2419 	    ill_t *, ill, ipif_t *, ipif);
2420 
2421 	/* Check if this is a loopback interface */
2422 	if (ipif->ipif_ill->ill_wq == NULL)
2423 		loopback = B_TRUE;
2424 
2425 	ASSERT(ipif->ipif_isv6);
2426 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
2427 
2428 	if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) {
2429 		nce_t *loop_nce = NULL;
2430 		uint16_t flags = (NCE_F_MYADDR | NCE_F_NONUD | NCE_F_AUTHORITY);
2431 
2432 		/*
2433 		 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
2434 		 * ipif_lookup_on_name(), but in the case of zones we can have
2435 		 * several loopback addresses on lo0. So all the interfaces with
2436 		 * loopback addresses need to be marked IRE_LOOPBACK.
2437 		 */
2438 		if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, &ipv6_loopback))
2439 			ipif->ipif_ire_type = IRE_LOOPBACK;
2440 		else
2441 			ipif->ipif_ire_type = IRE_LOCAL;
2442 		if (ill->ill_net_type != IRE_LOOPBACK)
2443 			flags |= NCE_F_PUBLISH;
2444 		err = nce_lookup_then_add_v6(ill, NULL,
2445 		    ill->ill_phys_addr_length,
2446 		    &ipif->ipif_v6lcl_addr, flags, ND_REACHABLE, &loop_nce);
2447 
2448 		/* A shared-IP zone sees EEXIST for lo0:N */
2449 		if (err == 0 || err == EEXIST) {
2450 			ipif->ipif_added_nce = 1;
2451 			loop_nce->nce_ipif_cnt++;
2452 			nce_refrele(loop_nce);
2453 			err = 0;
2454 		} else {
2455 			ASSERT(loop_nce == NULL);
2456 			return (err);
2457 		}
2458 	}
2459 
2460 	err = ipif_add_ires_v6(ipif, loopback);
2461 	if (err != 0) {
2462 		/*
2463 		 * See comments about return value from
2464 		 * ipif_addr_availability_check() in ipif_add_ires_v6().
2465 		 */
2466 		if (err != EADDRINUSE) {
2467 			ipif_ndp_down(ipif);
2468 		} else {
2469 			/*
2470 			 * Make IPMP aware of the deleted ipif so that
2471 			 * the needed ipmp cleanup (e.g., of ipif_bound_ill)
2472 			 * can be completed. Note that we do not want to
2473 			 * destroy the nce that was created on the ipmp_ill
2474 			 * for the active copy of the duplicate address in
2475 			 * use.
2476 			 */
2477 			if (IS_IPMP(ill))
2478 				ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
2479 			err = EADDRNOTAVAIL;
2480 		}
2481 		return (err);
2482 	}
2483 
2484 	if (ill->ill_ipif_up_count == 1 && !loopback) {
2485 		/* Recover any additional IREs entries for this ill */
2486 		(void) ill_recover_saved_ire(ill);
2487 	}
2488 
2489 	if (ill->ill_need_recover_multicast) {
2490 		/*
2491 		 * Need to recover all multicast memberships in the driver.
2492 		 * This had to be deferred until we had attached.
2493 		 */
2494 		ill_recover_multicast(ill);
2495 	}
2496 
2497 	if (ill->ill_ipif_up_count == 1) {
2498 		/*
2499 		 * Since the interface is now up, it may now be active.
2500 		 */
2501 		if (IS_UNDER_IPMP(ill))
2502 			ipmp_ill_refresh_active(ill);
2503 	}
2504 
2505 	/* Join the allhosts multicast address and the solicited node MC */
2506 	ipif_multicast_up(ipif);
2507 
2508 	/* Perhaps ilgs should use this ill */
2509 	update_conn_ill(NULL, ill->ill_ipst);
2510 
2511 	if (ipif->ipif_addr_ready)
2512 		ipif_up_notify(ipif);
2513 
2514 	return (0);
2515 }
2516 
2517 /*
2518  * Add the IREs associated with the ipif.
2519  * Those MUST be explicitly removed in ipif_delete_ires_v6.
2520  */
2521 static int
ipif_add_ires_v6(ipif_t * ipif,boolean_t loopback)2522 ipif_add_ires_v6(ipif_t *ipif, boolean_t loopback)
2523 {
2524 	ill_t		*ill = ipif->ipif_ill;
2525 	ip_stack_t	*ipst = ill->ill_ipst;
2526 	in6_addr_t	v6addr;
2527 	in6_addr_t	route_mask;
2528 	int		err;
2529 	char		buf[INET6_ADDRSTRLEN];
2530 	ire_t		*ire_local = NULL;	/* LOCAL or LOOPBACK */
2531 	ire_t		*ire_if = NULL;
2532 	in6_addr_t	*gw;
2533 
2534 	if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
2535 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
2536 
2537 		/*
2538 		 * If we're on a labeled system then make sure that zone-
2539 		 * private addresses have proper remote host database entries.
2540 		 */
2541 		if (is_system_labeled() &&
2542 		    ipif->ipif_ire_type != IRE_LOOPBACK) {
2543 			if (ip6opt_ls == 0) {
2544 				cmn_err(CE_WARN, "IPv6 not enabled "
2545 				    "via /etc/system");
2546 				return (EINVAL);
2547 			}
2548 			if (!tsol_check_interface_address(ipif))
2549 				return (EINVAL);
2550 		}
2551 
2552 		if (loopback)
2553 			gw = &ipif->ipif_v6lcl_addr;
2554 		else
2555 			gw = NULL;
2556 
2557 		/* Register the source address for __sin6_src_id */
2558 		err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
2559 		    ipif->ipif_zoneid, ipst);
2560 		if (err != 0) {
2561 			ip0dbg(("ipif_add_ires_v6: srcid_insert %d\n", err));
2562 			return (err);
2563 		}
2564 		/*
2565 		 * If the interface address is set, create the LOCAL
2566 		 * or LOOPBACK IRE.
2567 		 */
2568 		ip1dbg(("ipif_add_ires_v6: creating IRE %d for %s\n",
2569 		    ipif->ipif_ire_type,
2570 		    inet_ntop(AF_INET6, &ipif->ipif_v6lcl_addr,
2571 		    buf, sizeof (buf))));
2572 
2573 		ire_local = ire_create_v6(
2574 		    &ipif->ipif_v6lcl_addr,		/* dest address */
2575 		    &ipv6_all_ones,			/* mask */
2576 		    gw,					/* gateway */
2577 		    ipif->ipif_ire_type,		/* LOCAL or LOOPBACK */
2578 		    ipif->ipif_ill,			/* interface */
2579 		    ipif->ipif_zoneid,
2580 		    ((ipif->ipif_flags & IPIF_PRIVATE) ?
2581 		    RTF_PRIVATE : 0) | RTF_KERNEL,
2582 		    NULL,
2583 		    ipst);
2584 		if (ire_local == NULL) {
2585 			ip1dbg(("ipif_up_done_v6: NULL ire_local\n"));
2586 			err = ENOMEM;
2587 			goto bad;
2588 		}
2589 	}
2590 
2591 	/* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */
2592 	if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) &&
2593 	    !(IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet) &&
2594 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))) {
2595 		/* ipif_v6subnet is ipif_v6pp_dst_addr for pt-pt */
2596 		v6addr = ipif->ipif_v6subnet;
2597 
2598 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
2599 			route_mask = ipv6_all_ones;
2600 		} else {
2601 			route_mask = ipif->ipif_v6net_mask;
2602 		}
2603 
2604 		ip1dbg(("ipif_add_ires_v6: creating if IRE %d for %s\n",
2605 		    ill->ill_net_type,
2606 		    inet_ntop(AF_INET6, &v6addr, buf, sizeof (buf))));
2607 
2608 		ire_if = ire_create_v6(
2609 		    &v6addr,			/* dest pref */
2610 		    &route_mask,		/* mask */
2611 		    &ipif->ipif_v6lcl_addr,	/* gateway */
2612 		    ill->ill_net_type,		/* IF_[NO]RESOLVER */
2613 		    ipif->ipif_ill,
2614 		    ipif->ipif_zoneid,
2615 		    ((ipif->ipif_flags & IPIF_PRIVATE) ?
2616 		    RTF_PRIVATE : 0) | RTF_KERNEL,
2617 		    NULL,
2618 		    ipst);
2619 		if (ire_if == NULL) {
2620 			ip1dbg(("ipif_up_done: NULL ire_if\n"));
2621 			err = ENOMEM;
2622 			goto bad;
2623 		}
2624 	}
2625 
2626 	/*
2627 	 * Need to atomically check for IP address availability under
2628 	 * ip_addr_avail_lock.  ill_g_lock is held as reader to ensure no new
2629 	 * ills or new ipifs can be added while we are checking availability.
2630 	 */
2631 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
2632 	mutex_enter(&ipst->ips_ip_addr_avail_lock);
2633 	ill->ill_ipif_up_count++;
2634 	ipif->ipif_flags |= IPIF_UP;
2635 	err = ip_addr_availability_check(ipif);
2636 	mutex_exit(&ipst->ips_ip_addr_avail_lock);
2637 	rw_exit(&ipst->ips_ill_g_lock);
2638 
2639 	if (err != 0) {
2640 		/*
2641 		 * Our address may already be up on the same ill. In this case,
2642 		 * the external resolver entry for our ipif replaced the one for
2643 		 * the other ipif. So we don't want to delete it (otherwise the
2644 		 * other ipif would be unable to send packets).
2645 		 * ip_addr_availability_check() identifies this case for us and
2646 		 * returns EADDRINUSE; Caller must  turn it into EADDRNOTAVAIL
2647 		 * which is the expected error code.
2648 		 *
2649 		 * Note that ipif_ndp_down() will only delete the nce in the
2650 		 * case when the nce_ipif_cnt drops to 0.
2651 		 */
2652 		ill->ill_ipif_up_count--;
2653 		ipif->ipif_flags &= ~IPIF_UP;
2654 		goto bad;
2655 	}
2656 
2657 	/*
2658 	 * Add in all newly created IREs.
2659 	 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure
2660 	 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is
2661 	 * a /128 route.
2662 	 */
2663 	if (ire_if != NULL) {
2664 		ire_if = ire_add(ire_if);
2665 		if (ire_if == NULL) {
2666 			err = ENOMEM;
2667 			goto bad2;
2668 		}
2669 #ifdef DEBUG
2670 		ire_refhold_notr(ire_if);
2671 		ire_refrele(ire_if);
2672 #endif
2673 	}
2674 	if (ire_local != NULL) {
2675 		ire_local = ire_add(ire_local);
2676 		if (ire_local == NULL) {
2677 			err = ENOMEM;
2678 			goto bad2;
2679 		}
2680 #ifdef DEBUG
2681 		ire_refhold_notr(ire_local);
2682 		ire_refrele(ire_local);
2683 #endif
2684 	}
2685 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
2686 	if (ire_local != NULL)
2687 		ipif->ipif_ire_local = ire_local;
2688 	if (ire_if != NULL)
2689 		ipif->ipif_ire_if = ire_if;
2690 	rw_exit(&ipst->ips_ill_g_lock);
2691 	ire_local = NULL;
2692 	ire_if = NULL;
2693 
2694 	if (ipif->ipif_addr_ready)
2695 		ipif_up_notify(ipif);
2696 	return (0);
2697 
2698 bad2:
2699 	ill->ill_ipif_up_count--;
2700 	ipif->ipif_flags &= ~IPIF_UP;
2701 
2702 bad:
2703 	if (ire_local != NULL)
2704 		ire_delete(ire_local);
2705 	if (ire_if != NULL)
2706 		ire_delete(ire_if);
2707 
2708 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
2709 	ire_local = ipif->ipif_ire_local;
2710 	ipif->ipif_ire_local = NULL;
2711 	ire_if = ipif->ipif_ire_if;
2712 	ipif->ipif_ire_if = NULL;
2713 	rw_exit(&ipst->ips_ill_g_lock);
2714 	if (ire_local != NULL) {
2715 		ire_delete(ire_local);
2716 		ire_refrele_notr(ire_local);
2717 	}
2718 	if (ire_if != NULL) {
2719 		ire_delete(ire_if);
2720 		ire_refrele_notr(ire_if);
2721 	}
2722 	(void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst);
2723 
2724 	return (err);
2725 }
2726 
2727 /* Remove all the IREs created by ipif_add_ires_v6 */
2728 void
ipif_delete_ires_v6(ipif_t * ipif)2729 ipif_delete_ires_v6(ipif_t *ipif)
2730 {
2731 	ill_t		*ill = ipif->ipif_ill;
2732 	ip_stack_t	*ipst = ill->ill_ipst;
2733 	ire_t		*ire;
2734 
2735 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
2736 	ire = ipif->ipif_ire_local;
2737 	ipif->ipif_ire_local = NULL;
2738 	rw_exit(&ipst->ips_ill_g_lock);
2739 	if (ire != NULL) {
2740 		/*
2741 		 * Move count to ipif so we don't loose the count due to
2742 		 * a down/up dance.
2743 		 */
2744 		atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count);
2745 
2746 		ire_delete(ire);
2747 		ire_refrele_notr(ire);
2748 	}
2749 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
2750 	ire = ipif->ipif_ire_if;
2751 	ipif->ipif_ire_if = NULL;
2752 	rw_exit(&ipst->ips_ill_g_lock);
2753 	if (ire != NULL) {
2754 		ire_delete(ire);
2755 		ire_refrele_notr(ire);
2756 	}
2757 }
2758 
2759 /*
2760  * Delete an ND entry if it exists.
2761  */
2762 /* ARGSUSED */
2763 int
ip_siocdelndp_v6(ipif_t * ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_ifreq)2764 ip_siocdelndp_v6(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
2765     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
2766 {
2767 	sin6_t		*sin6;
2768 	struct lifreq	*lifr;
2769 	lif_nd_req_t	*lnr;
2770 	ill_t		*ill = ipif->ipif_ill;
2771 	nce_t		*nce;
2772 
2773 	lifr = (struct lifreq *)mp->b_cont->b_cont->b_rptr;
2774 	lnr = &lifr->lifr_nd;
2775 	/* Only allow for logical unit zero i.e. not on "le0:17" */
2776 	if (ipif->ipif_id != 0)
2777 		return (EINVAL);
2778 
2779 	if (!ipif->ipif_isv6)
2780 		return (EINVAL);
2781 
2782 	if (lnr->lnr_addr.ss_family != AF_INET6)
2783 		return (EAFNOSUPPORT);
2784 
2785 	sin6 = (sin6_t *)&lnr->lnr_addr;
2786 
2787 	/*
2788 	 * Since ND mappings must be consistent across an IPMP group, prohibit
2789 	 * deleting ND mappings on underlying interfaces.
2790 	 * Don't allow deletion of mappings for local addresses.
2791 	 */
2792 	if (IS_UNDER_IPMP(ill))
2793 		return (EPERM);
2794 
2795 	nce = nce_lookup_v6(ill, &sin6->sin6_addr);
2796 	if (nce == NULL)
2797 		return (ESRCH);
2798 
2799 	if (NCE_MYADDR(nce->nce_common)) {
2800 		nce_refrele(nce);
2801 		return (EPERM);
2802 	}
2803 
2804 	/*
2805 	 * delete the nce_common which will also delete the nces on any
2806 	 * under_ill in the case of ipmp.
2807 	 */
2808 	ncec_delete(nce->nce_common);
2809 	nce_refrele(nce);
2810 	return (0);
2811 }
2812 
2813 /*
2814  * Return nbr cache info.
2815  */
2816 /* ARGSUSED */
2817 int
ip_siocqueryndp_v6(ipif_t * ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_ifreq)2818 ip_siocqueryndp_v6(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
2819     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
2820 {
2821 	ill_t		*ill = ipif->ipif_ill;
2822 	struct lifreq	*lifr;
2823 	lif_nd_req_t	*lnr;
2824 
2825 	lifr = (struct lifreq *)mp->b_cont->b_cont->b_rptr;
2826 	lnr = &lifr->lifr_nd;
2827 	/* Only allow for logical unit zero i.e. not on "le0:17" */
2828 	if (ipif->ipif_id != 0)
2829 		return (EINVAL);
2830 
2831 	if (!ipif->ipif_isv6)
2832 		return (EINVAL);
2833 
2834 	if (lnr->lnr_addr.ss_family != AF_INET6)
2835 		return (EAFNOSUPPORT);
2836 
2837 	if (ill->ill_phys_addr_length > sizeof (lnr->lnr_hdw_addr))
2838 		return (EINVAL);
2839 
2840 	return (ndp_query(ill, lnr));
2841 }
2842 
2843 /*
2844  * Perform an update of the nd entry for the specified address.
2845  */
2846 /* ARGSUSED */
2847 int
ip_siocsetndp_v6(ipif_t * ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_ifreq)2848 ip_siocsetndp_v6(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
2849     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
2850 {
2851 	sin6_t		*sin6;
2852 	ill_t		*ill = ipif->ipif_ill;
2853 	struct	lifreq	*lifr;
2854 	lif_nd_req_t	*lnr;
2855 	ire_t		*ire;
2856 
2857 	lifr = (struct lifreq *)mp->b_cont->b_cont->b_rptr;
2858 	lnr = &lifr->lifr_nd;
2859 	/* Only allow for logical unit zero i.e. not on "le0:17" */
2860 	if (ipif->ipif_id != 0)
2861 		return (EINVAL);
2862 
2863 	if (!ipif->ipif_isv6)
2864 		return (EINVAL);
2865 
2866 	if (lnr->lnr_addr.ss_family != AF_INET6)
2867 		return (EAFNOSUPPORT);
2868 
2869 	sin6 = (sin6_t *)&lnr->lnr_addr;
2870 
2871 	/*
2872 	 * Since ND mappings must be consistent across an IPMP group, prohibit
2873 	 * updating ND mappings on underlying interfaces.  Also, since ND
2874 	 * mappings for IPMP data addresses are owned by IP itself, prohibit
2875 	 * updating them.
2876 	 */
2877 	if (IS_UNDER_IPMP(ill))
2878 		return (EPERM);
2879 
2880 	if (IS_IPMP(ill)) {
2881 		ire = ire_ftable_lookup_v6(&sin6->sin6_addr, NULL, NULL,
2882 		    IRE_LOCAL, ill, ALL_ZONES, NULL,
2883 		    MATCH_IRE_TYPE | MATCH_IRE_ILL, 0, ill->ill_ipst, NULL);
2884 		if (ire != NULL) {
2885 			ire_refrele(ire);
2886 			return (EPERM);
2887 		}
2888 	}
2889 
2890 	return (ndp_sioc_update(ill, lnr));
2891 }
2892