1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28 #include <sys/cdefs.h>
29 /*
30 * The FreeBSD IP packet firewall, main file
31 */
32
33 #include "opt_ipfw.h"
34 #include "opt_ipdivert.h"
35 #include "opt_inet.h"
36 #ifndef INET
37 #error "IPFIREWALL requires INET"
38 #endif /* INET */
39 #include "opt_inet6.h"
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/condvar.h>
44 #include <sys/counter.h>
45 #include <sys/eventhandler.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/kernel.h>
49 #include <sys/lock.h>
50 #include <sys/jail.h>
51 #include <sys/module.h>
52 #include <sys/priv.h>
53 #include <sys/proc.h>
54 #include <sys/rwlock.h>
55 #include <sys/rmlock.h>
56 #include <sys/sdt.h>
57 #include <sys/socket.h>
58 #include <sys/socketvar.h>
59 #include <sys/sysctl.h>
60 #include <sys/syslog.h>
61 #include <sys/ucred.h>
62 #include <net/ethernet.h> /* for ETHERTYPE_IP */
63 #include <net/if.h>
64 #include <net/if_var.h>
65 #include <net/if_private.h>
66 #include <net/route.h>
67 #include <net/route/nhop.h>
68 #include <net/pfil.h>
69 #include <net/vnet.h>
70 #include <net/if_gif.h>
71 #include <net/if_pfsync.h>
72
73 #include <netpfil/pf/pf_mtag.h>
74
75 #include <netinet/in.h>
76 #include <netinet/in_var.h>
77 #include <netinet/in_pcb.h>
78 #include <netinet/ip.h>
79 #include <netinet/ip_var.h>
80 #include <netinet/ip_icmp.h>
81 #include <netinet/ip_fw.h>
82 #include <netinet/ip_carp.h>
83 #include <netinet/pim.h>
84 #include <netinet/tcp_var.h>
85 #include <netinet/udp.h>
86 #include <netinet/udp_var.h>
87 #include <netinet/sctp.h>
88 #include <netinet/sctp_crc32.h>
89 #include <netinet/sctp_header.h>
90
91 #include <netinet/ip6.h>
92 #include <netinet/icmp6.h>
93 #include <netinet/in_fib.h>
94 #ifdef INET6
95 #include <netinet6/in6_fib.h>
96 #include <netinet6/in6_pcb.h>
97 #include <netinet6/scope6_var.h>
98 #include <netinet6/ip6_var.h>
99 #endif
100
101 #include <net/if_gre.h> /* for struct grehdr */
102
103 #include <netpfil/ipfw/ip_fw_private.h>
104
105 #include <machine/in_cksum.h> /* XXX for in_cksum */
106
107 #ifdef MAC
108 #include <security/mac/mac_framework.h>
109 #endif
110
111 #define IPFW_PROBE(probe, arg0, arg1, arg2, arg3, arg4, arg5) \
112 SDT_PROBE6(ipfw, , , probe, arg0, arg1, arg2, arg3, arg4, arg5)
113
114 SDT_PROVIDER_DEFINE(ipfw);
115 SDT_PROBE_DEFINE6(ipfw, , , rule__matched,
116 "int", /* retval */
117 "int", /* af */
118 "void *", /* src addr */
119 "void *", /* dst addr */
120 "struct ip_fw_args *", /* args */
121 "struct ip_fw *" /* rule */);
122
123 /*
124 * static variables followed by global ones.
125 * All ipfw global variables are here.
126 */
127
128 VNET_DEFINE_STATIC(int, fw_deny_unknown_exthdrs);
129 #define V_fw_deny_unknown_exthdrs VNET(fw_deny_unknown_exthdrs)
130
131 VNET_DEFINE_STATIC(int, fw_permit_single_frag6) = 1;
132 #define V_fw_permit_single_frag6 VNET(fw_permit_single_frag6)
133
134 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
135 static int default_to_accept = 1;
136 #else
137 static int default_to_accept;
138 #endif
139
140 VNET_DEFINE(int, autoinc_step);
141 VNET_DEFINE(int, fw_one_pass) = 1;
142
143 VNET_DEFINE(unsigned int, fw_tables_max);
144 VNET_DEFINE(unsigned int, fw_tables_sets) = 0; /* Don't use set-aware tables */
145 /* Use 128 tables by default */
146 static unsigned int default_fw_tables = IPFW_TABLES_DEFAULT;
147
148 #ifndef IPFIREWALL_LINEAR_SKIPTO
149 VNET_DEFINE(int, skipto_cache) = 0;
150 #else
151 VNET_DEFINE(int, skipto_cache) = 1;
152 #endif
153
154 static uint32_t jump(struct ip_fw_chain *chain, struct ip_fw *f,
155 uint32_t num, int tablearg, bool jump_backwards);
156
157 /*
158 * Each rule belongs to one of 32 different sets (0..31).
159 * The variable set_disable contains one bit per set.
160 * If the bit is set, all rules in the corresponding set
161 * are disabled. Set RESVD_SET(31) is reserved for the default rule
162 * and rules that are not deleted by the flush command,
163 * and CANNOT be disabled.
164 * Rules in set RESVD_SET can only be deleted individually.
165 */
166 VNET_DEFINE(u_int32_t, set_disable);
167 #define V_set_disable VNET(set_disable)
168
169 VNET_DEFINE(int, fw_verbose);
170 /* counter for ipfw_log(NULL...) */
171 VNET_DEFINE(u_int64_t, norule_counter);
172 VNET_DEFINE(int, verbose_limit);
173
174 /* layer3_chain contains the list of rules for layer 3 */
175 VNET_DEFINE(struct ip_fw_chain, layer3_chain);
176
177 /* ipfw_vnet_ready controls when we are open for business */
178 VNET_DEFINE(int, ipfw_vnet_ready) = 0;
179
180 VNET_DEFINE(int, ipfw_nat_ready) = 0;
181
182 ipfw_nat_t *ipfw_nat_ptr = NULL;
183 struct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int);
184 ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
185 ipfw_nat_cfg_t *ipfw_nat_del_ptr;
186 ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
187 ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
188
189 #ifdef SYSCTL_NODE
190 uint32_t dummy_def = IPFW_DEFAULT_RULE;
191 static int sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS);
192 static int sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS);
193
194 SYSBEGIN(f3)
195
196 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
197 "Firewall");
198 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
199 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_one_pass), 0,
200 "Only do a single pass through ipfw when using dummynet(4), ipfw_nat or other divert(4)-like interfaces");
201 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step,
202 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(autoinc_step), 0,
203 "Rule number auto-increment step");
204 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
205 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_verbose), 0,
206 "Log matches to ipfw rules");
207 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit,
208 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(verbose_limit), 0,
209 "Set upper limit of matches of ipfw rules logged");
210 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, skipto_cache,
211 CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(skipto_cache), 0,
212 "Status of linear skipto cache: 1 - enabled, 0 - disabled.");
213 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
214 &dummy_def, 0,
215 "The default/max possible rule number.");
216 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, tables_max,
217 CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
218 0, 0, sysctl_ipfw_table_num, "IU",
219 "Maximum number of concurrently used tables");
220 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, tables_sets,
221 CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
222 0, 0, sysctl_ipfw_tables_sets, "IU",
223 "Use per-set namespace for tables");
224 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
225 &default_to_accept, 0,
226 "Make the default rule accept all packets.");
227 TUNABLE_INT("net.inet.ip.fw.tables_max", (int *)&default_fw_tables);
228 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count,
229 CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(layer3_chain.n_rules), 0,
230 "Number of static rules");
231
232 #ifdef INET6
233 SYSCTL_DECL(_net_inet6_ip6);
234 SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, fw, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
235 "Firewall");
236 SYSCTL_INT(_net_inet6_ip6_fw, OID_AUTO, deny_unknown_exthdrs,
237 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
238 &VNET_NAME(fw_deny_unknown_exthdrs), 0,
239 "Deny packets with unknown IPv6 Extension Headers");
240 SYSCTL_INT(_net_inet6_ip6_fw, OID_AUTO, permit_single_frag6,
241 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
242 &VNET_NAME(fw_permit_single_frag6), 0,
243 "Permit single packet IPv6 fragments");
244 #endif /* INET6 */
245
246 SYSEND
247
248 #endif /* SYSCTL_NODE */
249
250 /*
251 * Some macros used in the various matching options.
252 * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
253 * Other macros just cast void * into the appropriate type
254 */
255 #define L3HDR(T, ip) ((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
256 #define TCP(p) ((struct tcphdr *)(p))
257 #define SCTP(p) ((struct sctphdr *)(p))
258 #define UDP(p) ((struct udphdr *)(p))
259 #define ICMP(p) ((struct icmphdr *)(p))
260 #define ICMP6(p) ((struct icmp6_hdr *)(p))
261
262 static __inline int
icmptype_match(struct icmphdr * icmp,ipfw_insn_u32 * cmd)263 icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
264 {
265 int type = icmp->icmp_type;
266
267 return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
268 }
269
270 #define TT ( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
271 (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
272
273 static int
is_icmp_query(struct icmphdr * icmp)274 is_icmp_query(struct icmphdr *icmp)
275 {
276 int type = icmp->icmp_type;
277
278 return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
279 }
280 #undef TT
281
282 /*
283 * The following checks use two arrays of 8 or 16 bits to store the
284 * bits that we want set or clear, respectively. They are in the
285 * low and high half of cmd->arg1 or cmd->d[0].
286 *
287 * We scan options and store the bits we find set. We succeed if
288 *
289 * (want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
290 *
291 * The code is sometimes optimized not to store additional variables.
292 */
293
294 static int
flags_match(ipfw_insn * cmd,u_int8_t bits)295 flags_match(ipfw_insn *cmd, u_int8_t bits)
296 {
297 u_char want_clear;
298 bits = ~bits;
299
300 if ( ((cmd->arg1 & 0xff) & bits) != 0)
301 return 0; /* some bits we want set were clear */
302 want_clear = (cmd->arg1 >> 8) & 0xff;
303 if ( (want_clear & bits) != want_clear)
304 return 0; /* some bits we want clear were set */
305 return 1;
306 }
307
308 static int
ipopts_match(struct ip * ip,ipfw_insn * cmd)309 ipopts_match(struct ip *ip, ipfw_insn *cmd)
310 {
311 int optlen, bits = 0;
312 u_char *cp = (u_char *)(ip + 1);
313 int x = (ip->ip_hl << 2) - sizeof (struct ip);
314
315 for (; x > 0; x -= optlen, cp += optlen) {
316 int opt = cp[IPOPT_OPTVAL];
317
318 if (opt == IPOPT_EOL)
319 break;
320 if (opt == IPOPT_NOP)
321 optlen = 1;
322 else {
323 optlen = cp[IPOPT_OLEN];
324 if (optlen <= 0 || optlen > x)
325 return 0; /* invalid or truncated */
326 }
327 switch (opt) {
328 default:
329 break;
330
331 case IPOPT_LSRR:
332 bits |= IP_FW_IPOPT_LSRR;
333 break;
334
335 case IPOPT_SSRR:
336 bits |= IP_FW_IPOPT_SSRR;
337 break;
338
339 case IPOPT_RR:
340 bits |= IP_FW_IPOPT_RR;
341 break;
342
343 case IPOPT_TS:
344 bits |= IP_FW_IPOPT_TS;
345 break;
346 }
347 }
348 return (flags_match(cmd, bits));
349 }
350
351 /*
352 * Parse TCP options. The logic copied from tcp_dooptions().
353 */
354 static int
tcpopts_parse(const struct tcphdr * tcp,uint16_t * mss)355 tcpopts_parse(const struct tcphdr *tcp, uint16_t *mss)
356 {
357 const u_char *cp = (const u_char *)(tcp + 1);
358 int optlen, bits = 0;
359 int cnt = (tcp->th_off << 2) - sizeof(struct tcphdr);
360
361 for (; cnt > 0; cnt -= optlen, cp += optlen) {
362 int opt = cp[0];
363 if (opt == TCPOPT_EOL)
364 break;
365 if (opt == TCPOPT_NOP)
366 optlen = 1;
367 else {
368 if (cnt < 2)
369 break;
370 optlen = cp[1];
371 if (optlen < 2 || optlen > cnt)
372 break;
373 }
374
375 switch (opt) {
376 default:
377 break;
378
379 case TCPOPT_MAXSEG:
380 if (optlen != TCPOLEN_MAXSEG)
381 break;
382 bits |= IP_FW_TCPOPT_MSS;
383 if (mss != NULL)
384 *mss = be16dec(cp + 2);
385 break;
386
387 case TCPOPT_WINDOW:
388 if (optlen == TCPOLEN_WINDOW)
389 bits |= IP_FW_TCPOPT_WINDOW;
390 break;
391
392 case TCPOPT_SACK_PERMITTED:
393 if (optlen == TCPOLEN_SACK_PERMITTED)
394 bits |= IP_FW_TCPOPT_SACK;
395 break;
396
397 case TCPOPT_SACK:
398 if (optlen > 2 && (optlen - 2) % TCPOLEN_SACK == 0)
399 bits |= IP_FW_TCPOPT_SACK;
400 break;
401
402 case TCPOPT_TIMESTAMP:
403 if (optlen == TCPOLEN_TIMESTAMP)
404 bits |= IP_FW_TCPOPT_TS;
405 break;
406 }
407 }
408 return (bits);
409 }
410
411 static int
tcpopts_match(struct tcphdr * tcp,ipfw_insn * cmd)412 tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
413 {
414
415 return (flags_match(cmd, tcpopts_parse(tcp, NULL)));
416 }
417
418 static int
iface_match(struct ifnet * ifp,ipfw_insn_if * cmd,struct ip_fw_chain * chain,uint32_t * tablearg)419 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd, struct ip_fw_chain *chain,
420 uint32_t *tablearg)
421 {
422
423 if (ifp == NULL) /* no iface with this packet, match fails */
424 return (0);
425
426 /* Check by name or by IP address */
427 if (cmd->name[0] != '\0') { /* match by name */
428 if (cmd->name[0] == '\1') /* use tablearg to match */
429 return ipfw_lookup_table(chain, cmd->p.kidx, 0,
430 &ifp->if_index, tablearg);
431 /* Check name */
432 if (cmd->p.glob) {
433 if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
434 return(1);
435 } else {
436 if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
437 return(1);
438 }
439 } else {
440 #if !defined(USERSPACE) && defined(__FreeBSD__) /* and OSX too ? */
441 struct ifaddr *ia;
442
443 NET_EPOCH_ASSERT();
444
445 CK_STAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
446 if (ia->ifa_addr->sa_family != AF_INET)
447 continue;
448 if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
449 (ia->ifa_addr))->sin_addr.s_addr)
450 return (1); /* match */
451 }
452 #endif /* __FreeBSD__ */
453 }
454 return(0); /* no match, fail ... */
455 }
456
457 /*
458 * The verify_path function checks if a route to the src exists and
459 * if it is reachable via ifp (when provided).
460 *
461 * The 'verrevpath' option checks that the interface that an IP packet
462 * arrives on is the same interface that traffic destined for the
463 * packet's source address would be routed out of.
464 * The 'versrcreach' option just checks that the source address is
465 * reachable via any route (except default) in the routing table.
466 * These two are a measure to block forged packets. This is also
467 * commonly known as "anti-spoofing" or Unicast Reverse Path
468 * Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
469 * is purposely reminiscent of the Cisco IOS command,
470 *
471 * ip verify unicast reverse-path
472 * ip verify unicast source reachable-via any
473 *
474 * which implements the same functionality. But note that the syntax
475 * is misleading, and the check may be performed on all IP packets
476 * whether unicast, multicast, or broadcast.
477 */
478 static int
verify_path(struct in_addr src,struct ifnet * ifp,u_int fib)479 verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
480 {
481 #if defined(USERSPACE) || !defined(__FreeBSD__)
482 return 0;
483 #else
484 struct nhop_object *nh;
485
486 nh = fib4_lookup(fib, src, 0, NHR_NONE, 0);
487 if (nh == NULL)
488 return (0);
489
490 /*
491 * If ifp is provided, check for equality with rtentry.
492 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
493 * in order to pass packets injected back by if_simloop():
494 * routing entry (via lo0) for our own address
495 * may exist, so we need to handle routing assymetry.
496 */
497 if (ifp != NULL && ifp != nh->nh_aifp)
498 return (0);
499
500 /* if no ifp provided, check if rtentry is not default route */
501 if (ifp == NULL && (nh->nh_flags & NHF_DEFAULT) != 0)
502 return (0);
503
504 /* or if this is a blackhole/reject route */
505 if (ifp == NULL && (nh->nh_flags & (NHF_REJECT|NHF_BLACKHOLE)) != 0)
506 return (0);
507
508 /* found valid route */
509 return 1;
510 #endif /* __FreeBSD__ */
511 }
512
513 /*
514 * Generate an SCTP packet containing an ABORT chunk. The verification tag
515 * is given by vtag. The T-bit is set in the ABORT chunk if and only if
516 * reflected is not 0.
517 */
518
519 static struct mbuf *
ipfw_send_abort(struct mbuf * replyto,struct ipfw_flow_id * id,u_int32_t vtag,int reflected)520 ipfw_send_abort(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t vtag,
521 int reflected)
522 {
523 struct mbuf *m;
524 struct ip *ip;
525 #ifdef INET6
526 struct ip6_hdr *ip6;
527 #endif
528 struct sctphdr *sctp;
529 struct sctp_chunkhdr *chunk;
530 u_int16_t hlen, plen, tlen;
531
532 MGETHDR(m, M_NOWAIT, MT_DATA);
533 if (m == NULL)
534 return (NULL);
535
536 M_SETFIB(m, id->fib);
537 #ifdef MAC
538 if (replyto != NULL)
539 mac_netinet_firewall_reply(replyto, m);
540 else
541 mac_netinet_firewall_send(m);
542 #else
543 (void)replyto; /* don't warn about unused arg */
544 #endif
545
546 switch (id->addr_type) {
547 case 4:
548 hlen = sizeof(struct ip);
549 break;
550 #ifdef INET6
551 case 6:
552 hlen = sizeof(struct ip6_hdr);
553 break;
554 #endif
555 default:
556 /* XXX: log me?!? */
557 FREE_PKT(m);
558 return (NULL);
559 }
560 plen = sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr);
561 tlen = hlen + plen;
562 m->m_data += max_linkhdr;
563 m->m_flags |= M_SKIP_FIREWALL;
564 m->m_pkthdr.len = m->m_len = tlen;
565 m->m_pkthdr.rcvif = NULL;
566 bzero(m->m_data, tlen);
567
568 switch (id->addr_type) {
569 case 4:
570 ip = mtod(m, struct ip *);
571
572 ip->ip_v = 4;
573 ip->ip_hl = sizeof(struct ip) >> 2;
574 ip->ip_tos = IPTOS_LOWDELAY;
575 ip->ip_len = htons(tlen);
576 ip->ip_id = htons(0);
577 ip->ip_off = htons(0);
578 ip->ip_ttl = V_ip_defttl;
579 ip->ip_p = IPPROTO_SCTP;
580 ip->ip_sum = 0;
581 ip->ip_src.s_addr = htonl(id->dst_ip);
582 ip->ip_dst.s_addr = htonl(id->src_ip);
583
584 sctp = (struct sctphdr *)(ip + 1);
585 break;
586 #ifdef INET6
587 case 6:
588 ip6 = mtod(m, struct ip6_hdr *);
589
590 ip6->ip6_vfc = IPV6_VERSION;
591 ip6->ip6_plen = htons(plen);
592 ip6->ip6_nxt = IPPROTO_SCTP;
593 ip6->ip6_hlim = IPV6_DEFHLIM;
594 ip6->ip6_src = id->dst_ip6;
595 ip6->ip6_dst = id->src_ip6;
596
597 sctp = (struct sctphdr *)(ip6 + 1);
598 break;
599 #endif
600 }
601
602 sctp->src_port = htons(id->dst_port);
603 sctp->dest_port = htons(id->src_port);
604 sctp->v_tag = htonl(vtag);
605 sctp->checksum = htonl(0);
606
607 chunk = (struct sctp_chunkhdr *)(sctp + 1);
608 chunk->chunk_type = SCTP_ABORT_ASSOCIATION;
609 chunk->chunk_flags = 0;
610 if (reflected != 0) {
611 chunk->chunk_flags |= SCTP_HAD_NO_TCB;
612 }
613 chunk->chunk_length = htons(sizeof(struct sctp_chunkhdr));
614
615 sctp->checksum = sctp_calculate_cksum(m, hlen);
616
617 return (m);
618 }
619
620 /*
621 * Generate a TCP packet, containing either a RST or a keepalive.
622 * When flags & TH_RST, we are sending a RST packet, because of a
623 * "reset" action matched the packet.
624 * Otherwise we are sending a keepalive, and flags & TH_
625 * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
626 * so that MAC can label the reply appropriately.
627 */
628 struct mbuf *
ipfw_send_pkt(struct mbuf * replyto,struct ipfw_flow_id * id,u_int32_t seq,u_int32_t ack,int flags)629 ipfw_send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
630 u_int32_t ack, int flags)
631 {
632 struct mbuf *m = NULL; /* stupid compiler */
633 struct ip *h = NULL; /* stupid compiler */
634 #ifdef INET6
635 struct ip6_hdr *h6 = NULL;
636 #endif
637 struct tcphdr *th = NULL;
638 int len, dir;
639
640 MGETHDR(m, M_NOWAIT, MT_DATA);
641 if (m == NULL)
642 return (NULL);
643
644 M_SETFIB(m, id->fib);
645 #ifdef MAC
646 if (replyto != NULL)
647 mac_netinet_firewall_reply(replyto, m);
648 else
649 mac_netinet_firewall_send(m);
650 #else
651 (void)replyto; /* don't warn about unused arg */
652 #endif
653
654 switch (id->addr_type) {
655 case 4:
656 len = sizeof(struct ip) + sizeof(struct tcphdr);
657 break;
658 #ifdef INET6
659 case 6:
660 len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
661 break;
662 #endif
663 default:
664 /* XXX: log me?!? */
665 FREE_PKT(m);
666 return (NULL);
667 }
668 dir = ((flags & (TH_SYN | TH_RST)) == TH_SYN);
669
670 m->m_data += max_linkhdr;
671 m->m_flags |= M_SKIP_FIREWALL;
672 m->m_pkthdr.len = m->m_len = len;
673 m->m_pkthdr.rcvif = NULL;
674 bzero(m->m_data, len);
675
676 switch (id->addr_type) {
677 case 4:
678 h = mtod(m, struct ip *);
679
680 /* prepare for checksum */
681 h->ip_p = IPPROTO_TCP;
682 h->ip_len = htons(sizeof(struct tcphdr));
683 if (dir) {
684 h->ip_src.s_addr = htonl(id->src_ip);
685 h->ip_dst.s_addr = htonl(id->dst_ip);
686 } else {
687 h->ip_src.s_addr = htonl(id->dst_ip);
688 h->ip_dst.s_addr = htonl(id->src_ip);
689 }
690
691 th = (struct tcphdr *)(h + 1);
692 break;
693 #ifdef INET6
694 case 6:
695 h6 = mtod(m, struct ip6_hdr *);
696
697 /* prepare for checksum */
698 h6->ip6_nxt = IPPROTO_TCP;
699 h6->ip6_plen = htons(sizeof(struct tcphdr));
700 if (dir) {
701 h6->ip6_src = id->src_ip6;
702 h6->ip6_dst = id->dst_ip6;
703 } else {
704 h6->ip6_src = id->dst_ip6;
705 h6->ip6_dst = id->src_ip6;
706 }
707
708 th = (struct tcphdr *)(h6 + 1);
709 break;
710 #endif
711 }
712
713 if (dir) {
714 th->th_sport = htons(id->src_port);
715 th->th_dport = htons(id->dst_port);
716 } else {
717 th->th_sport = htons(id->dst_port);
718 th->th_dport = htons(id->src_port);
719 }
720 th->th_off = sizeof(struct tcphdr) >> 2;
721
722 if (flags & TH_RST) {
723 if (flags & TH_ACK) {
724 th->th_seq = htonl(ack);
725 tcp_set_flags(th, TH_RST);
726 } else {
727 if (flags & TH_SYN)
728 seq++;
729 th->th_ack = htonl(seq);
730 tcp_set_flags(th, TH_RST | TH_ACK);
731 }
732 } else {
733 /*
734 * Keepalive - use caller provided sequence numbers
735 */
736 th->th_seq = htonl(seq);
737 th->th_ack = htonl(ack);
738 tcp_set_flags(th, TH_ACK);
739 }
740
741 switch (id->addr_type) {
742 case 4:
743 th->th_sum = in_cksum(m, len);
744
745 /* finish the ip header */
746 h->ip_v = 4;
747 h->ip_hl = sizeof(*h) >> 2;
748 h->ip_tos = IPTOS_LOWDELAY;
749 h->ip_off = htons(0);
750 h->ip_len = htons(len);
751 h->ip_ttl = V_ip_defttl;
752 h->ip_sum = 0;
753 break;
754 #ifdef INET6
755 case 6:
756 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(*h6),
757 sizeof(struct tcphdr));
758
759 /* finish the ip6 header */
760 h6->ip6_vfc |= IPV6_VERSION;
761 h6->ip6_hlim = IPV6_DEFHLIM;
762 break;
763 #endif
764 }
765
766 return (m);
767 }
768
769 #ifdef INET6
770 /*
771 * ipv6 specific rules here...
772 */
773 static __inline int
icmp6type_match(int type,ipfw_insn_u32 * cmd)774 icmp6type_match(int type, ipfw_insn_u32 *cmd)
775 {
776 return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
777 }
778
779 static int
flow6id_match(int curr_flow,ipfw_insn_u32 * cmd)780 flow6id_match(int curr_flow, ipfw_insn_u32 *cmd)
781 {
782 int i;
783 for (i=0; i <= cmd->o.arg1; ++i)
784 if (curr_flow == cmd->d[i])
785 return 1;
786 return 0;
787 }
788
789 /* support for IP6_*_ME opcodes */
790 static const struct in6_addr lla_mask = {{{
791 0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
792 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
793 }}};
794
795 static int
ipfw_localip6(struct in6_addr * in6)796 ipfw_localip6(struct in6_addr *in6)
797 {
798 struct rm_priotracker in6_ifa_tracker;
799 struct in6_ifaddr *ia;
800
801 if (IN6_IS_ADDR_MULTICAST(in6))
802 return (0);
803
804 if (!IN6_IS_ADDR_LINKLOCAL(in6))
805 return (in6_localip(in6));
806
807 IN6_IFADDR_RLOCK(&in6_ifa_tracker);
808 CK_STAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
809 if (!IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr))
810 continue;
811 if (IN6_ARE_MASKED_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
812 in6, &lla_mask)) {
813 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker);
814 return (1);
815 }
816 }
817 IN6_IFADDR_RUNLOCK(&in6_ifa_tracker);
818 return (0);
819 }
820
821 static int
verify_path6(struct in6_addr * src,struct ifnet * ifp,u_int fib)822 verify_path6(struct in6_addr *src, struct ifnet *ifp, u_int fib)
823 {
824 struct nhop_object *nh;
825
826 if (IN6_IS_SCOPE_LINKLOCAL(src))
827 return (1);
828
829 nh = fib6_lookup(fib, src, 0, NHR_NONE, 0);
830 if (nh == NULL)
831 return (0);
832
833 /* If ifp is provided, check for equality with route table. */
834 if (ifp != NULL && ifp != nh->nh_aifp)
835 return (0);
836
837 /* if no ifp provided, check if rtentry is not default route */
838 if (ifp == NULL && (nh->nh_flags & NHF_DEFAULT) != 0)
839 return (0);
840
841 /* or if this is a blackhole/reject route */
842 if (ifp == NULL && (nh->nh_flags & (NHF_REJECT|NHF_BLACKHOLE)) != 0)
843 return (0);
844
845 /* found valid route */
846 return 1;
847 }
848
849 static int
is_icmp6_query(int icmp6_type)850 is_icmp6_query(int icmp6_type)
851 {
852 if ((icmp6_type <= ICMP6_MAXTYPE) &&
853 (icmp6_type == ICMP6_ECHO_REQUEST ||
854 icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
855 icmp6_type == ICMP6_WRUREQUEST ||
856 icmp6_type == ICMP6_FQDN_QUERY ||
857 icmp6_type == ICMP6_NI_QUERY))
858 return (1);
859
860 return (0);
861 }
862
863 static int
map_icmp_unreach(int code)864 map_icmp_unreach(int code)
865 {
866
867 /* RFC 7915 p4.2 */
868 switch (code) {
869 case ICMP_UNREACH_NET:
870 case ICMP_UNREACH_HOST:
871 case ICMP_UNREACH_SRCFAIL:
872 case ICMP_UNREACH_NET_UNKNOWN:
873 case ICMP_UNREACH_HOST_UNKNOWN:
874 case ICMP_UNREACH_TOSNET:
875 case ICMP_UNREACH_TOSHOST:
876 return (ICMP6_DST_UNREACH_NOROUTE);
877 case ICMP_UNREACH_PORT:
878 return (ICMP6_DST_UNREACH_NOPORT);
879 default:
880 /*
881 * Map the rest of codes into admit prohibited.
882 * XXX: unreach proto should be mapped into ICMPv6
883 * parameter problem, but we use only unreach type.
884 */
885 return (ICMP6_DST_UNREACH_ADMIN);
886 }
887 }
888
889 static void
send_reject6(struct ip_fw_args * args,int code,u_int hlen,const struct ip6_hdr * ip6)890 send_reject6(struct ip_fw_args *args, int code, u_int hlen,
891 const struct ip6_hdr *ip6)
892 {
893 struct mbuf *m;
894
895 m = args->m;
896 if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
897 const struct tcphdr * tcp;
898 tcp = (const struct tcphdr *)((const char *)ip6 + hlen);
899
900 if ((tcp_get_flags(tcp) & TH_RST) == 0) {
901 struct mbuf *m0;
902 m0 = ipfw_send_pkt(args->m, &(args->f_id),
903 ntohl(tcp->th_seq), ntohl(tcp->th_ack),
904 tcp_get_flags(tcp) | TH_RST);
905 if (m0 != NULL)
906 ip6_output(m0, NULL, NULL, 0, NULL, NULL,
907 NULL);
908 }
909 FREE_PKT(m);
910 } else if (code == ICMP6_UNREACH_ABORT &&
911 args->f_id.proto == IPPROTO_SCTP) {
912 struct mbuf *m0;
913 const struct sctphdr *sctp;
914 u_int32_t v_tag;
915 int reflected;
916
917 sctp = (const struct sctphdr *)((const char *)ip6 + hlen);
918 reflected = 1;
919 v_tag = ntohl(sctp->v_tag);
920 /* Investigate the first chunk header if available */
921 if (m->m_len >= hlen + sizeof(struct sctphdr) +
922 sizeof(struct sctp_chunkhdr)) {
923 const struct sctp_chunkhdr *chunk;
924
925 chunk = (const struct sctp_chunkhdr *)(sctp + 1);
926 switch (chunk->chunk_type) {
927 case SCTP_INITIATION:
928 /*
929 * Packets containing an INIT chunk MUST have
930 * a zero v-tag.
931 */
932 if (v_tag != 0) {
933 v_tag = 0;
934 break;
935 }
936 /* INIT chunk MUST NOT be bundled */
937 if (m->m_pkthdr.len >
938 hlen + sizeof(struct sctphdr) +
939 ntohs(chunk->chunk_length) + 3) {
940 break;
941 }
942 /* Use the initiate tag if available */
943 if ((m->m_len >= hlen + sizeof(struct sctphdr) +
944 sizeof(struct sctp_chunkhdr) +
945 offsetof(struct sctp_init, a_rwnd))) {
946 const struct sctp_init *init;
947
948 init = (const struct sctp_init *)(chunk + 1);
949 v_tag = ntohl(init->initiate_tag);
950 reflected = 0;
951 }
952 break;
953 case SCTP_ABORT_ASSOCIATION:
954 /*
955 * If the packet contains an ABORT chunk, don't
956 * reply.
957 * XXX: We should search through all chunks,
958 * but do not do that to avoid attacks.
959 */
960 v_tag = 0;
961 break;
962 }
963 }
964 if (v_tag == 0) {
965 m0 = NULL;
966 } else {
967 m0 = ipfw_send_abort(args->m, &(args->f_id), v_tag,
968 reflected);
969 }
970 if (m0 != NULL)
971 ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL);
972 FREE_PKT(m);
973 } else if (code != ICMP6_UNREACH_RST && code != ICMP6_UNREACH_ABORT) {
974 /* Send an ICMPv6 unreach. */
975 #if 0
976 /*
977 * Unlike above, the mbufs need to line up with the ip6 hdr,
978 * as the contents are read. We need to m_adj() the
979 * needed amount.
980 * The mbuf will however be thrown away so we can adjust it.
981 * Remember we did an m_pullup on it already so we
982 * can make some assumptions about contiguousness.
983 */
984 if (args->L3offset)
985 m_adj(m, args->L3offset);
986 #endif
987 icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
988 } else
989 FREE_PKT(m);
990
991 args->m = NULL;
992 }
993
994 #endif /* INET6 */
995
996 /*
997 * sends a reject message, consuming the mbuf passed as an argument.
998 */
999 static void
send_reject(struct ip_fw_args * args,int code,uint16_t mtu,int iplen,const struct ip * ip)1000 send_reject(struct ip_fw_args *args, int code, uint16_t mtu, int iplen,
1001 const struct ip *ip)
1002 {
1003 #if 0
1004 /* XXX When ip is not guaranteed to be at mtod() we will
1005 * need to account for this */
1006 * The mbuf will however be thrown away so we can adjust it.
1007 * Remember we did an m_pullup on it already so we
1008 * can make some assumptions about contiguousness.
1009 */
1010 if (args->L3offset)
1011 m_adj(m, args->L3offset);
1012 #endif
1013 if (code != ICMP_REJECT_RST && code != ICMP_REJECT_ABORT) {
1014 /* Send an ICMP unreach */
1015 icmp_error(args->m, ICMP_UNREACH, code, 0L, mtu);
1016 } else if (code == ICMP_REJECT_RST && args->f_id.proto == IPPROTO_TCP) {
1017 struct tcphdr *const tcp =
1018 L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1019 if ( (tcp_get_flags(tcp) & TH_RST) == 0) {
1020 struct mbuf *m;
1021 m = ipfw_send_pkt(args->m, &(args->f_id),
1022 ntohl(tcp->th_seq), ntohl(tcp->th_ack),
1023 tcp_get_flags(tcp) | TH_RST);
1024 if (m != NULL)
1025 ip_output(m, NULL, NULL, 0, NULL, NULL);
1026 }
1027 FREE_PKT(args->m);
1028 } else if (code == ICMP_REJECT_ABORT &&
1029 args->f_id.proto == IPPROTO_SCTP) {
1030 struct mbuf *m;
1031 struct sctphdr *sctp;
1032 struct sctp_chunkhdr *chunk;
1033 struct sctp_init *init;
1034 u_int32_t v_tag;
1035 int reflected;
1036
1037 sctp = L3HDR(struct sctphdr, mtod(args->m, struct ip *));
1038 reflected = 1;
1039 v_tag = ntohl(sctp->v_tag);
1040 if (iplen >= (ip->ip_hl << 2) + sizeof(struct sctphdr) +
1041 sizeof(struct sctp_chunkhdr)) {
1042 /* Look at the first chunk header if available */
1043 chunk = (struct sctp_chunkhdr *)(sctp + 1);
1044 switch (chunk->chunk_type) {
1045 case SCTP_INITIATION:
1046 /*
1047 * Packets containing an INIT chunk MUST have
1048 * a zero v-tag.
1049 */
1050 if (v_tag != 0) {
1051 v_tag = 0;
1052 break;
1053 }
1054 /* INIT chunk MUST NOT be bundled */
1055 if (iplen >
1056 (ip->ip_hl << 2) + sizeof(struct sctphdr) +
1057 ntohs(chunk->chunk_length) + 3) {
1058 break;
1059 }
1060 /* Use the initiate tag if available */
1061 if ((iplen >= (ip->ip_hl << 2) +
1062 sizeof(struct sctphdr) +
1063 sizeof(struct sctp_chunkhdr) +
1064 offsetof(struct sctp_init, a_rwnd))) {
1065 init = (struct sctp_init *)(chunk + 1);
1066 v_tag = ntohl(init->initiate_tag);
1067 reflected = 0;
1068 }
1069 break;
1070 case SCTP_ABORT_ASSOCIATION:
1071 /*
1072 * If the packet contains an ABORT chunk, don't
1073 * reply.
1074 * XXX: We should search through all chunks,
1075 * but do not do that to avoid attacks.
1076 */
1077 v_tag = 0;
1078 break;
1079 }
1080 }
1081 if (v_tag == 0) {
1082 m = NULL;
1083 } else {
1084 m = ipfw_send_abort(args->m, &(args->f_id), v_tag,
1085 reflected);
1086 }
1087 if (m != NULL)
1088 ip_output(m, NULL, NULL, 0, NULL, NULL);
1089 FREE_PKT(args->m);
1090 } else
1091 FREE_PKT(args->m);
1092 args->m = NULL;
1093 }
1094
1095 /*
1096 * Support for uid/gid/jail lookup. These tests are expensive
1097 * (because we may need to look into the list of active sockets)
1098 * so we cache the results. ugid_lookupp is 0 if we have not
1099 * yet done a lookup, 1 if we succeeded, and -1 if we tried
1100 * and failed. The function always returns the match value.
1101 * We could actually spare the variable and use *uc, setting
1102 * it to '(void *)check_uidgid if we have no info, NULL if
1103 * we tried and failed, or any other value if successful.
1104 */
1105 static int
check_uidgid(ipfw_insn_u32 * insn,struct ip_fw_args * args,int * ugid_lookupp,struct ucred ** uc)1106 check_uidgid(ipfw_insn_u32 *insn, struct ip_fw_args *args, int *ugid_lookupp,
1107 struct ucred **uc)
1108 {
1109 #if defined(USERSPACE)
1110 return 0; // not supported in userspace
1111 #else
1112 #ifndef __FreeBSD__
1113 /* XXX */
1114 return cred_check(insn, proto, oif,
1115 dst_ip, dst_port, src_ip, src_port,
1116 (struct bsd_ucred *)uc, ugid_lookupp, ((struct mbuf *)inp)->m_skb);
1117 #else /* FreeBSD */
1118 struct in_addr src_ip, dst_ip;
1119 struct inpcbinfo *pi;
1120 struct ipfw_flow_id *id;
1121 struct inpcb *pcb, *inp;
1122 int lookupflags;
1123 int match;
1124
1125 id = &args->f_id;
1126 inp = args->inp;
1127
1128 /*
1129 * Check to see if the UDP or TCP stack supplied us with
1130 * the PCB. If so, rather then holding a lock and looking
1131 * up the PCB, we can use the one that was supplied.
1132 */
1133 if (inp && *ugid_lookupp == 0) {
1134 INP_LOCK_ASSERT(inp);
1135 if (inp->inp_socket != NULL) {
1136 *uc = crhold(inp->inp_cred);
1137 *ugid_lookupp = 1;
1138 } else
1139 *ugid_lookupp = -1;
1140 }
1141 /*
1142 * If we have already been here and the packet has no
1143 * PCB entry associated with it, then we can safely
1144 * assume that this is a no match.
1145 */
1146 if (*ugid_lookupp == -1)
1147 return (0);
1148 if (id->proto == IPPROTO_TCP) {
1149 lookupflags = 0;
1150 pi = &V_tcbinfo;
1151 } else if (id->proto == IPPROTO_UDP) {
1152 lookupflags = INPLOOKUP_WILDCARD;
1153 pi = &V_udbinfo;
1154 } else if (id->proto == IPPROTO_UDPLITE) {
1155 lookupflags = INPLOOKUP_WILDCARD;
1156 pi = &V_ulitecbinfo;
1157 } else
1158 return 0;
1159 lookupflags |= INPLOOKUP_RLOCKPCB;
1160 match = 0;
1161 if (*ugid_lookupp == 0) {
1162 if (id->addr_type == 6) {
1163 #ifdef INET6
1164 if (args->flags & IPFW_ARGS_IN)
1165 pcb = in6_pcblookup_mbuf(pi,
1166 &id->src_ip6, htons(id->src_port),
1167 &id->dst_ip6, htons(id->dst_port),
1168 lookupflags, NULL, args->m);
1169 else
1170 pcb = in6_pcblookup_mbuf(pi,
1171 &id->dst_ip6, htons(id->dst_port),
1172 &id->src_ip6, htons(id->src_port),
1173 lookupflags, args->ifp, args->m);
1174 #else
1175 *ugid_lookupp = -1;
1176 return (0);
1177 #endif
1178 } else {
1179 src_ip.s_addr = htonl(id->src_ip);
1180 dst_ip.s_addr = htonl(id->dst_ip);
1181 if (args->flags & IPFW_ARGS_IN)
1182 pcb = in_pcblookup_mbuf(pi,
1183 src_ip, htons(id->src_port),
1184 dst_ip, htons(id->dst_port),
1185 lookupflags, NULL, args->m);
1186 else
1187 pcb = in_pcblookup_mbuf(pi,
1188 dst_ip, htons(id->dst_port),
1189 src_ip, htons(id->src_port),
1190 lookupflags, args->ifp, args->m);
1191 }
1192 if (pcb != NULL) {
1193 INP_RLOCK_ASSERT(pcb);
1194 *uc = crhold(pcb->inp_cred);
1195 *ugid_lookupp = 1;
1196 INP_RUNLOCK(pcb);
1197 }
1198 if (*ugid_lookupp == 0) {
1199 /*
1200 * We tried and failed, set the variable to -1
1201 * so we will not try again on this packet.
1202 */
1203 *ugid_lookupp = -1;
1204 return (0);
1205 }
1206 }
1207 if (insn->o.opcode == O_UID)
1208 match = ((*uc)->cr_uid == (uid_t)insn->d[0]);
1209 else if (insn->o.opcode == O_GID)
1210 match = groupmember((gid_t)insn->d[0], *uc);
1211 else if (insn->o.opcode == O_JAIL)
1212 match = ((*uc)->cr_prison->pr_id == (int)insn->d[0]);
1213 return (match);
1214 #endif /* __FreeBSD__ */
1215 #endif /* not supported in userspace */
1216 }
1217
1218 /*
1219 * Helper function to set args with info on the rule after the matching
1220 * one. slot is precise, whereas we guess rule_id as they are
1221 * assigned sequentially.
1222 */
1223 static inline void
set_match(struct ip_fw_args * args,int slot,struct ip_fw_chain * chain)1224 set_match(struct ip_fw_args *args, int slot,
1225 struct ip_fw_chain *chain)
1226 {
1227 args->rule.chain_id = chain->id;
1228 args->rule.slot = slot + 1; /* we use 0 as a marker */
1229 args->rule.rule_id = 1 + chain->map[slot]->id;
1230 args->rule.rulenum = chain->map[slot]->rulenum;
1231 args->flags |= IPFW_ARGS_REF;
1232 }
1233
1234 static uint32_t
jump_lookup_pos(struct ip_fw_chain * chain,struct ip_fw * f,uint32_t num,int tablearg,bool jump_backwards)1235 jump_lookup_pos(struct ip_fw_chain *chain, struct ip_fw *f, uint32_t num,
1236 int tablearg, bool jump_backwards)
1237 {
1238 int f_pos, i;
1239
1240 /*
1241 * Make sure we do not jump backward.
1242 */
1243 i = IP_FW_ARG_TABLEARG(chain, num, skipto);
1244 if (!jump_backwards && i <= f->rulenum)
1245 i = f->rulenum + 1;
1246
1247 if (V_skipto_cache == 0)
1248 f_pos = ipfw_find_rule(chain, i, 0);
1249 else {
1250 /*
1251 * Make sure we do not do out of bounds access.
1252 */
1253 if (i >= IPFW_DEFAULT_RULE)
1254 i = IPFW_DEFAULT_RULE - 1;
1255 f_pos = chain->idxmap[i];
1256 }
1257
1258 return (f_pos);
1259 }
1260
1261 static uint32_t
jump(struct ip_fw_chain * chain,struct ip_fw * f,uint32_t num,int tablearg,bool jump_backwards)1262 jump(struct ip_fw_chain *chain, struct ip_fw *f, uint32_t num,
1263 int tablearg, bool jump_backwards)
1264 {
1265 int f_pos;
1266
1267 /* Can't use cache with IP_FW_TARG */
1268 if (num == IP_FW_TARG)
1269 return jump_lookup_pos(chain, f, num, tablearg, jump_backwards);
1270
1271 /*
1272 * If possible use cached f_pos (in f->cache.pos),
1273 * whose version is written in f->cache.id (horrible hacks
1274 * to avoid changing the ABI).
1275 *
1276 * Multiple threads can execute the same rule simultaneously,
1277 * we need to ensure that cache.pos is updated before cache.id.
1278 */
1279
1280 #ifdef __LP64__
1281 struct ip_fw_jump_cache cache;
1282
1283 cache.raw_value = f->cache.raw_value;
1284 if (cache.id == chain->id)
1285 return (cache.pos);
1286
1287 f_pos = jump_lookup_pos(chain, f, num, tablearg, jump_backwards);
1288
1289 cache.pos = f_pos;
1290 cache.id = chain->id;
1291 f->cache.raw_value = cache.raw_value;
1292 #else
1293 if (f->cache.id == chain->id) {
1294 /* Load pos after id */
1295 atomic_thread_fence_acq();
1296 return (f->cache.pos);
1297 }
1298
1299 f_pos = jump_lookup_pos(chain, f, num, tablearg, jump_backwards);
1300
1301 f->cache.pos = f_pos;
1302 /* Store id after pos */
1303 atomic_thread_fence_rel();
1304 f->cache.id = chain->id;
1305 #endif /* !__LP64__ */
1306 return (f_pos);
1307 }
1308
1309 #define TARG(k, f) IP_FW_ARG_TABLEARG(chain, k, f)
1310
1311 static inline int
tvalue_match(struct ip_fw_chain * ch,const ipfw_insn_table * cmd,uint32_t tablearg)1312 tvalue_match(struct ip_fw_chain *ch, const ipfw_insn_table *cmd,
1313 uint32_t tablearg)
1314 {
1315 uint32_t tvalue;
1316
1317 switch (IPFW_TVALUE_TYPE(&cmd->o)) {
1318 case TVALUE_PIPE:
1319 tvalue = TARG_VAL(ch, tablearg, pipe);
1320 break;
1321 case TVALUE_DIVERT:
1322 tvalue = TARG_VAL(ch, tablearg, divert);
1323 break;
1324 case TVALUE_SKIPTO:
1325 tvalue = TARG_VAL(ch, tablearg, skipto);
1326 break;
1327 case TVALUE_NETGRAPH:
1328 tvalue = TARG_VAL(ch, tablearg, netgraph);
1329 break;
1330 case TVALUE_FIB:
1331 tvalue = TARG_VAL(ch, tablearg, fib);
1332 break;
1333 case TVALUE_NAT:
1334 tvalue = TARG_VAL(ch, tablearg, nat);
1335 break;
1336 case TVALUE_NH4:
1337 tvalue = TARG_VAL(ch, tablearg, nh4);
1338 break;
1339 case TVALUE_DSCP:
1340 tvalue = TARG_VAL(ch, tablearg, dscp);
1341 break;
1342 case TVALUE_LIMIT:
1343 tvalue = TARG_VAL(ch, tablearg, limit);
1344 break;
1345 case TVALUE_MARK:
1346 tvalue = TARG_VAL(ch, tablearg, mark);
1347 break;
1348 case TVALUE_TAG:
1349 default:
1350 tvalue = TARG_VAL(ch, tablearg, tag);
1351 break;
1352 }
1353 return (tvalue == cmd->value);
1354 }
1355
1356 /*
1357 * The main check routine for the firewall.
1358 *
1359 * All arguments are in args so we can modify them and return them
1360 * back to the caller.
1361 *
1362 * Parameters:
1363 *
1364 * args->m (in/out) The packet; we set to NULL when/if we nuke it.
1365 * Starts with the IP header.
1366 * args->L3offset Number of bytes bypassed if we came from L2.
1367 * e.g. often sizeof(eh) ** NOTYET **
1368 * args->ifp Incoming or outgoing interface.
1369 * args->divert_rule (in/out)
1370 * Skip up to the first rule past this rule number;
1371 * upon return, non-zero port number for divert or tee.
1372 *
1373 * args->rule Pointer to the last matching rule (in/out)
1374 * args->next_hop Socket we are forwarding to (out).
1375 * args->next_hop6 IPv6 next hop we are forwarding to (out).
1376 * args->f_id Addresses grabbed from the packet (out)
1377 * args->rule.info a cookie depending on rule action
1378 *
1379 * Return value:
1380 *
1381 * IP_FW_PASS the packet must be accepted
1382 * IP_FW_DENY the packet must be dropped
1383 * IP_FW_DIVERT divert packet, port in m_tag
1384 * IP_FW_TEE tee packet, port in m_tag
1385 * IP_FW_DUMMYNET to dummynet, pipe in args->cookie
1386 * IP_FW_NETGRAPH into netgraph, cookie args->cookie
1387 * args->rule contains the matching rule,
1388 * args->rule.info has additional information.
1389 *
1390 */
1391 int
ipfw_chk(struct ip_fw_args * args)1392 ipfw_chk(struct ip_fw_args *args)
1393 {
1394
1395 /*
1396 * Local variables holding state while processing a packet:
1397 *
1398 * IMPORTANT NOTE: to speed up the processing of rules, there
1399 * are some assumption on the values of the variables, which
1400 * are documented here. Should you change them, please check
1401 * the implementation of the various instructions to make sure
1402 * that they still work.
1403 *
1404 * m | args->m Pointer to the mbuf, as received from the caller.
1405 * It may change if ipfw_chk() does an m_pullup, or if it
1406 * consumes the packet because it calls send_reject().
1407 * XXX This has to change, so that ipfw_chk() never modifies
1408 * or consumes the buffer.
1409 * OR
1410 * args->mem Pointer to contigous memory chunk.
1411 * ip Is the beginning of the ip(4 or 6) header.
1412 * eh Ethernet header in case if input is Layer2.
1413 */
1414 struct mbuf *m;
1415 struct ip *ip;
1416 struct ether_header *eh;
1417
1418 /*
1419 * For rules which contain uid/gid or jail constraints, cache
1420 * a copy of the users credentials after the pcb lookup has been
1421 * executed. This will speed up the processing of rules with
1422 * these types of constraints, as well as decrease contention
1423 * on pcb related locks.
1424 */
1425 #ifndef __FreeBSD__
1426 struct bsd_ucred ucred_cache;
1427 #else
1428 struct ucred *ucred_cache = NULL;
1429 #endif
1430 uint32_t f_pos = 0; /* index of current rule in the array */
1431 int ucred_lookup = 0;
1432 int retval = 0;
1433 struct ifnet *oif, *iif;
1434
1435 /*
1436 * hlen The length of the IP header.
1437 */
1438 u_int hlen = 0; /* hlen >0 means we have an IP pkt */
1439
1440 /*
1441 * offset The offset of a fragment. offset != 0 means that
1442 * we have a fragment at this offset of an IPv4 packet.
1443 * offset == 0 means that (if this is an IPv4 packet)
1444 * this is the first or only fragment.
1445 * For IPv6 offset|ip6f_mf == 0 means there is no Fragment Header
1446 * or there is a single packet fragment (fragment header added
1447 * without needed). We will treat a single packet fragment as if
1448 * there was no fragment header (or log/block depending on the
1449 * V_fw_permit_single_frag6 sysctl setting).
1450 */
1451 u_short offset = 0;
1452 u_short ip6f_mf = 0;
1453
1454 /*
1455 * Local copies of addresses. They are only valid if we have
1456 * an IP packet.
1457 *
1458 * proto The protocol. Set to 0 for non-ip packets,
1459 * or to the protocol read from the packet otherwise.
1460 * proto != 0 means that we have an IPv4 packet.
1461 *
1462 * src_port, dst_port port numbers, in HOST format. Only
1463 * valid for TCP and UDP packets.
1464 *
1465 * src_ip, dst_ip ip addresses, in NETWORK format.
1466 * Only valid for IPv4 packets.
1467 */
1468 uint8_t proto;
1469 uint16_t src_port, dst_port; /* NOTE: host format */
1470 struct in_addr src_ip, dst_ip; /* NOTE: network format */
1471 int iplen = 0;
1472 int pktlen;
1473
1474 struct ipfw_dyn_info dyn_info;
1475 struct ip_fw *q = NULL;
1476 struct ip_fw_chain *chain = &V_layer3_chain;
1477
1478 /*
1479 * We store in ulp a pointer to the upper layer protocol header.
1480 * In the ipv4 case this is easy to determine from the header,
1481 * but for ipv6 we might have some additional headers in the middle.
1482 * ulp is NULL if not found.
1483 */
1484 void *ulp = NULL; /* upper layer protocol pointer. */
1485
1486 /* XXX ipv6 variables */
1487 int is_ipv6 = 0;
1488 #ifdef INET6
1489 uint8_t icmp6_type = 0;
1490 #endif
1491 uint16_t ext_hd = 0; /* bits vector for extension header filtering */
1492 /* end of ipv6 variables */
1493
1494 int is_ipv4 = 0;
1495
1496 int done = 0; /* flag to exit the outer loop */
1497 IPFW_RLOCK_TRACKER;
1498 bool mem;
1499 bool need_send_reject = false;
1500 int reject_code;
1501 uint16_t reject_mtu;
1502
1503 if ((mem = (args->flags & IPFW_ARGS_LENMASK))) {
1504 if (args->flags & IPFW_ARGS_ETHER) {
1505 eh = (struct ether_header *)args->mem;
1506 if (eh->ether_type == htons(ETHERTYPE_VLAN))
1507 ip = (struct ip *)
1508 ((struct ether_vlan_header *)eh + 1);
1509 else
1510 ip = (struct ip *)(eh + 1);
1511 } else {
1512 eh = NULL;
1513 ip = (struct ip *)args->mem;
1514 }
1515 pktlen = IPFW_ARGS_LENGTH(args->flags);
1516 args->f_id.fib = args->ifp->if_fib; /* best guess */
1517 } else {
1518 m = args->m;
1519 if (m->m_flags & M_SKIP_FIREWALL || (! V_ipfw_vnet_ready))
1520 return (IP_FW_PASS); /* accept */
1521 if (args->flags & IPFW_ARGS_ETHER) {
1522 /* We need some amount of data to be contiguous. */
1523 if (m->m_len < min(m->m_pkthdr.len, max_protohdr) &&
1524 (args->m = m = m_pullup(m, min(m->m_pkthdr.len,
1525 max_protohdr))) == NULL)
1526 goto pullup_failed;
1527 eh = mtod(m, struct ether_header *);
1528 ip = (struct ip *)(eh + 1);
1529 } else {
1530 eh = NULL;
1531 ip = mtod(m, struct ip *);
1532 }
1533 pktlen = m->m_pkthdr.len;
1534 args->f_id.fib = M_GETFIB(m); /* mbuf not altered */
1535 }
1536
1537 dst_ip.s_addr = 0; /* make sure it is initialized */
1538 src_ip.s_addr = 0; /* make sure it is initialized */
1539 src_port = dst_port = 0;
1540
1541 DYN_INFO_INIT(&dyn_info);
1542 /*
1543 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
1544 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
1545 * pointer might become stale after other pullups (but we never use it
1546 * this way).
1547 */
1548 #define PULLUP_TO(_len, p, T) PULLUP_LEN(_len, p, sizeof(T))
1549 #define EHLEN (eh != NULL ? ((char *)ip - (char *)eh) : 0)
1550 #define _PULLUP_LOCKED(_len, p, T, unlock) \
1551 do { \
1552 int x = (_len) + T + EHLEN; \
1553 if (mem) { \
1554 if (__predict_false(pktlen < x)) { \
1555 unlock; \
1556 goto pullup_failed; \
1557 } \
1558 p = (char *)args->mem + (_len) + EHLEN; \
1559 } else { \
1560 if (__predict_false((m)->m_len < x)) { \
1561 args->m = m = m_pullup(m, x); \
1562 if (m == NULL) { \
1563 unlock; \
1564 goto pullup_failed; \
1565 } \
1566 } \
1567 p = mtod(m, char *) + (_len) + EHLEN; \
1568 } \
1569 } while (0)
1570
1571 #define PULLUP_LEN(_len, p, T) _PULLUP_LOCKED(_len, p, T, )
1572 #define PULLUP_LEN_LOCKED(_len, p, T) \
1573 _PULLUP_LOCKED(_len, p, T, IPFW_PF_RUNLOCK(chain)); \
1574 UPDATE_POINTERS()
1575 /*
1576 * In case pointers got stale after pullups, update them.
1577 */
1578 #define UPDATE_POINTERS() \
1579 do { \
1580 if (!mem) { \
1581 if (eh != NULL) { \
1582 eh = mtod(m, struct ether_header *); \
1583 ip = (struct ip *)(eh + 1); \
1584 } else \
1585 ip = mtod(m, struct ip *); \
1586 args->m = m; \
1587 } \
1588 } while (0)
1589
1590 /* Identify IP packets and fill up variables. */
1591 if (pktlen >= sizeof(struct ip6_hdr) &&
1592 (eh == NULL || eh->ether_type == htons(ETHERTYPE_IPV6)) &&
1593 ip->ip_v == 6) {
1594 struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
1595
1596 is_ipv6 = 1;
1597 args->flags |= IPFW_ARGS_IP6;
1598 hlen = sizeof(struct ip6_hdr);
1599 proto = ip6->ip6_nxt;
1600 /* Search extension headers to find upper layer protocols */
1601 while (ulp == NULL && offset == 0) {
1602 switch (proto) {
1603 case IPPROTO_ICMPV6:
1604 PULLUP_TO(hlen, ulp, struct icmp6_hdr);
1605 #ifdef INET6
1606 icmp6_type = ICMP6(ulp)->icmp6_type;
1607 #endif
1608 break;
1609
1610 case IPPROTO_TCP:
1611 PULLUP_TO(hlen, ulp, struct tcphdr);
1612 dst_port = TCP(ulp)->th_dport;
1613 src_port = TCP(ulp)->th_sport;
1614 /* save flags for dynamic rules */
1615 args->f_id._flags = tcp_get_flags(TCP(ulp));
1616 break;
1617
1618 case IPPROTO_SCTP:
1619 if (pktlen >= hlen + sizeof(struct sctphdr) +
1620 sizeof(struct sctp_chunkhdr) +
1621 offsetof(struct sctp_init, a_rwnd))
1622 PULLUP_LEN(hlen, ulp,
1623 sizeof(struct sctphdr) +
1624 sizeof(struct sctp_chunkhdr) +
1625 offsetof(struct sctp_init, a_rwnd));
1626 else if (pktlen >= hlen + sizeof(struct sctphdr))
1627 PULLUP_LEN(hlen, ulp, pktlen - hlen);
1628 else
1629 PULLUP_LEN(hlen, ulp,
1630 sizeof(struct sctphdr));
1631 src_port = SCTP(ulp)->src_port;
1632 dst_port = SCTP(ulp)->dest_port;
1633 break;
1634
1635 case IPPROTO_UDP:
1636 case IPPROTO_UDPLITE:
1637 PULLUP_TO(hlen, ulp, struct udphdr);
1638 dst_port = UDP(ulp)->uh_dport;
1639 src_port = UDP(ulp)->uh_sport;
1640 break;
1641
1642 case IPPROTO_HOPOPTS: /* RFC 2460 */
1643 PULLUP_TO(hlen, ulp, struct ip6_hbh);
1644 ext_hd |= EXT_HOPOPTS;
1645 hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1646 proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1647 ulp = NULL;
1648 break;
1649
1650 case IPPROTO_ROUTING: /* RFC 2460 */
1651 PULLUP_TO(hlen, ulp, struct ip6_rthdr);
1652 switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
1653 case 0:
1654 ext_hd |= EXT_RTHDR0;
1655 break;
1656 case 2:
1657 ext_hd |= EXT_RTHDR2;
1658 break;
1659 default:
1660 if (V_fw_verbose)
1661 printf("IPFW2: IPV6 - Unknown "
1662 "Routing Header type(%d)\n",
1663 ((struct ip6_rthdr *)
1664 ulp)->ip6r_type);
1665 if (V_fw_deny_unknown_exthdrs)
1666 return (IP_FW_DENY);
1667 break;
1668 }
1669 ext_hd |= EXT_ROUTING;
1670 hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
1671 proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
1672 ulp = NULL;
1673 break;
1674
1675 case IPPROTO_FRAGMENT: /* RFC 2460 */
1676 PULLUP_TO(hlen, ulp, struct ip6_frag);
1677 ext_hd |= EXT_FRAGMENT;
1678 hlen += sizeof (struct ip6_frag);
1679 proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
1680 offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
1681 IP6F_OFF_MASK;
1682 ip6f_mf = ((struct ip6_frag *)ulp)->ip6f_offlg &
1683 IP6F_MORE_FRAG;
1684 if (V_fw_permit_single_frag6 == 0 &&
1685 offset == 0 && ip6f_mf == 0) {
1686 if (V_fw_verbose)
1687 printf("IPFW2: IPV6 - Invalid "
1688 "Fragment Header\n");
1689 if (V_fw_deny_unknown_exthdrs)
1690 return (IP_FW_DENY);
1691 break;
1692 }
1693 args->f_id.extra =
1694 ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
1695 ulp = NULL;
1696 break;
1697
1698 case IPPROTO_DSTOPTS: /* RFC 2460 */
1699 PULLUP_TO(hlen, ulp, struct ip6_hbh);
1700 ext_hd |= EXT_DSTOPTS;
1701 hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1702 proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1703 ulp = NULL;
1704 break;
1705
1706 case IPPROTO_AH: /* RFC 2402 */
1707 PULLUP_TO(hlen, ulp, struct ip6_ext);
1708 ext_hd |= EXT_AH;
1709 hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
1710 proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
1711 ulp = NULL;
1712 break;
1713
1714 case IPPROTO_ESP: /* RFC 2406 */
1715 PULLUP_TO(hlen, ulp, uint32_t); /* SPI, Seq# */
1716 /* Anything past Seq# is variable length and
1717 * data past this ext. header is encrypted. */
1718 ext_hd |= EXT_ESP;
1719 break;
1720
1721 case IPPROTO_NONE: /* RFC 2460 */
1722 /*
1723 * Packet ends here, and IPv6 header has
1724 * already been pulled up. If ip6e_len!=0
1725 * then octets must be ignored.
1726 */
1727 ulp = ip; /* non-NULL to get out of loop. */
1728 break;
1729
1730 case IPPROTO_OSPFIGP:
1731 /* XXX OSPF header check? */
1732 PULLUP_TO(hlen, ulp, struct ip6_ext);
1733 break;
1734
1735 case IPPROTO_PIM:
1736 /* XXX PIM header check? */
1737 PULLUP_TO(hlen, ulp, struct pim);
1738 break;
1739
1740 case IPPROTO_GRE: /* RFC 1701 */
1741 /* XXX GRE header check? */
1742 PULLUP_TO(hlen, ulp, struct grehdr);
1743 break;
1744
1745 case IPPROTO_CARP:
1746 PULLUP_TO(hlen, ulp, offsetof(
1747 struct carp_header, carp_counter));
1748 if (CARP_ADVERTISEMENT !=
1749 ((struct carp_header *)ulp)->carp_type)
1750 return (IP_FW_DENY);
1751 break;
1752
1753 case IPPROTO_IPV6: /* RFC 2893 */
1754 PULLUP_TO(hlen, ulp, struct ip6_hdr);
1755 break;
1756
1757 case IPPROTO_IPV4: /* RFC 2893 */
1758 PULLUP_TO(hlen, ulp, struct ip);
1759 break;
1760
1761 case IPPROTO_ETHERIP: /* RFC 3378 */
1762 PULLUP_LEN(hlen, ulp,
1763 sizeof(struct etherip_header) +
1764 sizeof(struct ether_header));
1765 break;
1766
1767 case IPPROTO_PFSYNC:
1768 PULLUP_TO(hlen, ulp, struct pfsync_header);
1769 break;
1770
1771 default:
1772 if (V_fw_verbose)
1773 printf("IPFW2: IPV6 - Unknown "
1774 "Extension Header(%d), ext_hd=%x\n",
1775 proto, ext_hd);
1776 if (V_fw_deny_unknown_exthdrs)
1777 return (IP_FW_DENY);
1778 PULLUP_TO(hlen, ulp, struct ip6_ext);
1779 break;
1780 } /*switch */
1781 }
1782 UPDATE_POINTERS();
1783 ip6 = (struct ip6_hdr *)ip;
1784 args->f_id.addr_type = 6;
1785 args->f_id.src_ip6 = ip6->ip6_src;
1786 args->f_id.dst_ip6 = ip6->ip6_dst;
1787 args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
1788 iplen = ntohs(ip6->ip6_plen) + sizeof(*ip6);
1789 } else if (pktlen >= sizeof(struct ip) &&
1790 (eh == NULL || eh->ether_type == htons(ETHERTYPE_IP)) &&
1791 ip->ip_v == 4) {
1792 is_ipv4 = 1;
1793 args->flags |= IPFW_ARGS_IP4;
1794 hlen = ip->ip_hl << 2;
1795 /*
1796 * Collect parameters into local variables for faster
1797 * matching.
1798 */
1799 proto = ip->ip_p;
1800 src_ip = ip->ip_src;
1801 dst_ip = ip->ip_dst;
1802 offset = ntohs(ip->ip_off) & IP_OFFMASK;
1803 iplen = ntohs(ip->ip_len);
1804
1805 if (offset == 0) {
1806 switch (proto) {
1807 case IPPROTO_TCP:
1808 PULLUP_TO(hlen, ulp, struct tcphdr);
1809 dst_port = TCP(ulp)->th_dport;
1810 src_port = TCP(ulp)->th_sport;
1811 /* save flags for dynamic rules */
1812 args->f_id._flags = tcp_get_flags(TCP(ulp));
1813 break;
1814
1815 case IPPROTO_SCTP:
1816 if (pktlen >= hlen + sizeof(struct sctphdr) +
1817 sizeof(struct sctp_chunkhdr) +
1818 offsetof(struct sctp_init, a_rwnd))
1819 PULLUP_LEN(hlen, ulp,
1820 sizeof(struct sctphdr) +
1821 sizeof(struct sctp_chunkhdr) +
1822 offsetof(struct sctp_init, a_rwnd));
1823 else if (pktlen >= hlen + sizeof(struct sctphdr))
1824 PULLUP_LEN(hlen, ulp, pktlen - hlen);
1825 else
1826 PULLUP_LEN(hlen, ulp,
1827 sizeof(struct sctphdr));
1828 src_port = SCTP(ulp)->src_port;
1829 dst_port = SCTP(ulp)->dest_port;
1830 break;
1831
1832 case IPPROTO_UDP:
1833 case IPPROTO_UDPLITE:
1834 PULLUP_TO(hlen, ulp, struct udphdr);
1835 dst_port = UDP(ulp)->uh_dport;
1836 src_port = UDP(ulp)->uh_sport;
1837 break;
1838
1839 case IPPROTO_ICMP:
1840 PULLUP_TO(hlen, ulp, struct icmphdr);
1841 //args->f_id.flags = ICMP(ulp)->icmp_type;
1842 break;
1843
1844 default:
1845 break;
1846 }
1847 } else {
1848 if (offset == 1 && proto == IPPROTO_TCP) {
1849 /* RFC 3128 */
1850 goto pullup_failed;
1851 }
1852 }
1853
1854 UPDATE_POINTERS();
1855 args->f_id.addr_type = 4;
1856 args->f_id.src_ip = ntohl(src_ip.s_addr);
1857 args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1858 } else {
1859 proto = 0;
1860 dst_ip.s_addr = src_ip.s_addr = 0;
1861
1862 args->f_id.addr_type = 1; /* XXX */
1863 }
1864 #undef PULLUP_TO
1865 pktlen = iplen < pktlen ? iplen: pktlen;
1866
1867 /* Properly initialize the rest of f_id */
1868 args->f_id.proto = proto;
1869 args->f_id.src_port = src_port = ntohs(src_port);
1870 args->f_id.dst_port = dst_port = ntohs(dst_port);
1871
1872 IPFW_PF_RLOCK(chain);
1873 if (! V_ipfw_vnet_ready) { /* shutting down, leave NOW. */
1874 IPFW_PF_RUNLOCK(chain);
1875 return (IP_FW_PASS); /* accept */
1876 }
1877 if (args->flags & IPFW_ARGS_REF) {
1878 /*
1879 * Packet has already been tagged as a result of a previous
1880 * match on rule args->rule aka args->rule_id (PIPE, QUEUE,
1881 * REASS, NETGRAPH, DIVERT/TEE...)
1882 * Validate the slot and continue from the next one
1883 * if still present, otherwise do a lookup.
1884 */
1885 f_pos = (args->rule.chain_id == chain->id) ?
1886 args->rule.slot :
1887 ipfw_find_rule(chain, args->rule.rulenum,
1888 args->rule.rule_id);
1889 } else {
1890 f_pos = 0;
1891 }
1892
1893 if (args->flags & IPFW_ARGS_IN) {
1894 iif = args->ifp;
1895 oif = NULL;
1896 } else {
1897 MPASS(args->flags & IPFW_ARGS_OUT);
1898 iif = mem ? NULL : m_rcvif(m);
1899 oif = args->ifp;
1900 }
1901
1902 /*
1903 * Now scan the rules, and parse microinstructions for each rule.
1904 * We have two nested loops and an inner switch. Sometimes we
1905 * need to break out of one or both loops, or re-enter one of
1906 * the loops with updated variables. Loop variables are:
1907 *
1908 * f_pos (outer loop) points to the current rule.
1909 * On output it points to the matching rule.
1910 * done (outer loop) is used as a flag to break the loop.
1911 * l (inner loop) residual length of current rule.
1912 * cmd points to the current microinstruction.
1913 *
1914 * We break the inner loop by setting l=0 and possibly
1915 * cmdlen=0 if we don't want to advance cmd.
1916 * We break the outer loop by setting done=1
1917 * We can restart the inner loop by setting l>0 and f_pos, f, cmd
1918 * as needed.
1919 */
1920 for (; f_pos < chain->n_rules; f_pos++) {
1921 ipfw_insn *cmd;
1922 uint32_t tablearg = 0;
1923 int l, cmdlen, skip_or; /* skip rest of OR block */
1924 struct ip_fw *f;
1925
1926 f = chain->map[f_pos];
1927 if (V_set_disable & (1 << f->set) )
1928 continue;
1929
1930 skip_or = 0;
1931 for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1932 l -= cmdlen, cmd += cmdlen) {
1933 int match;
1934
1935 /*
1936 * check_body is a jump target used when we find a
1937 * CHECK_STATE, and need to jump to the body of
1938 * the target rule.
1939 */
1940
1941 /* check_body: */
1942 cmdlen = F_LEN(cmd);
1943 /*
1944 * An OR block (insn_1 || .. || insn_n) has the
1945 * F_OR bit set in all but the last instruction.
1946 * The first match will set "skip_or", and cause
1947 * the following instructions to be skipped until
1948 * past the one with the F_OR bit clear.
1949 */
1950 if (skip_or) { /* skip this instruction */
1951 if ((cmd->len & F_OR) == 0)
1952 skip_or = 0; /* next one is good */
1953 continue;
1954 }
1955 match = 0; /* set to 1 if we succeed */
1956
1957 switch (cmd->opcode) {
1958 /*
1959 * The first set of opcodes compares the packet's
1960 * fields with some pattern, setting 'match' if a
1961 * match is found. At the end of the loop there is
1962 * logic to deal with F_NOT and F_OR flags associated
1963 * with the opcode.
1964 */
1965 case O_NOP:
1966 match = 1;
1967 break;
1968
1969 case O_FORWARD_MAC:
1970 printf("ipfw: opcode %d unimplemented\n",
1971 cmd->opcode);
1972 break;
1973
1974 case O_GID:
1975 case O_UID:
1976 case O_JAIL:
1977 /*
1978 * We only check offset == 0 && proto != 0,
1979 * as this ensures that we have a
1980 * packet with the ports info.
1981 */
1982 if (offset != 0)
1983 break;
1984 if (proto == IPPROTO_TCP ||
1985 proto == IPPROTO_UDP ||
1986 proto == IPPROTO_UDPLITE)
1987 match = check_uidgid(
1988 (ipfw_insn_u32 *)cmd,
1989 args, &ucred_lookup,
1990 #ifdef __FreeBSD__
1991 &ucred_cache);
1992 #else
1993 (void *)&ucred_cache);
1994 #endif
1995 break;
1996
1997 case O_RECV:
1998 match = iface_match(iif, (ipfw_insn_if *)cmd,
1999 chain, &tablearg);
2000 break;
2001
2002 case O_XMIT:
2003 match = iface_match(oif, (ipfw_insn_if *)cmd,
2004 chain, &tablearg);
2005 break;
2006
2007 case O_VIA:
2008 match = iface_match(args->ifp,
2009 (ipfw_insn_if *)cmd, chain, &tablearg);
2010 break;
2011
2012 case O_MACADDR2:
2013 if (args->flags & IPFW_ARGS_ETHER) {
2014 u_int32_t *want = (u_int32_t *)
2015 ((ipfw_insn_mac *)cmd)->addr;
2016 u_int32_t *mask = (u_int32_t *)
2017 ((ipfw_insn_mac *)cmd)->mask;
2018 u_int32_t *hdr = (u_int32_t *)eh;
2019
2020 match =
2021 ( want[0] == (hdr[0] & mask[0]) &&
2022 want[1] == (hdr[1] & mask[1]) &&
2023 want[2] == (hdr[2] & mask[2]) );
2024 }
2025 break;
2026
2027 case O_MAC_TYPE:
2028 if (args->flags & IPFW_ARGS_ETHER) {
2029 u_int16_t *p =
2030 ((ipfw_insn_u16 *)cmd)->ports;
2031 int i;
2032
2033 for (i = cmdlen - 1; !match && i>0;
2034 i--, p += 2)
2035 match =
2036 (ntohs(eh->ether_type) >=
2037 p[0] &&
2038 ntohs(eh->ether_type) <=
2039 p[1]);
2040 }
2041 break;
2042
2043 case O_FRAG:
2044 if (is_ipv4) {
2045 /*
2046 * Since flags_match() works with
2047 * uint8_t we pack ip_off into 8 bits.
2048 * For this match offset is a boolean.
2049 */
2050 match = flags_match(cmd,
2051 ((ntohs(ip->ip_off) & ~IP_OFFMASK)
2052 >> 8) | (offset != 0));
2053 } else {
2054 /*
2055 * Compatibility: historically bare
2056 * "frag" would match IPv6 fragments.
2057 */
2058 match = (cmd->arg1 == 0x1 &&
2059 (offset != 0));
2060 }
2061 break;
2062
2063 case O_IN: /* "out" is "not in" */
2064 match = (oif == NULL);
2065 break;
2066
2067 case O_LAYER2:
2068 match = (args->flags & IPFW_ARGS_ETHER);
2069 break;
2070
2071 case O_DIVERTED:
2072 if ((args->flags & IPFW_ARGS_REF) == 0)
2073 break;
2074 /*
2075 * For diverted packets, args->rule.info
2076 * contains the divert port (in host format)
2077 * reason and direction.
2078 */
2079 match = ((args->rule.info & IPFW_IS_MASK) ==
2080 IPFW_IS_DIVERT) && (
2081 ((args->rule.info & IPFW_INFO_IN) ?
2082 1: 2) & cmd->arg1);
2083 break;
2084
2085 case O_PROTO:
2086 /*
2087 * We do not allow an arg of 0 so the
2088 * check of "proto" only suffices.
2089 */
2090 match = (proto == cmd->arg1);
2091 break;
2092
2093 case O_IP_SRC:
2094 match = is_ipv4 &&
2095 (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2096 src_ip.s_addr);
2097 break;
2098
2099 case O_IP_DST_LOOKUP:
2100 if (IPFW_LOOKUP_TYPE(cmd) != LOOKUP_NONE) {
2101 void *pkey = NULL;
2102 uint32_t key, vidx;
2103 uint16_t keylen = 0; /* zero if can't match the packet */
2104 uint8_t lookup_type;
2105
2106 lookup_type = IPFW_LOOKUP_TYPE(cmd);
2107
2108 switch (lookup_type) {
2109 case LOOKUP_DST_IP:
2110 case LOOKUP_SRC_IP:
2111 if (is_ipv4) {
2112 keylen = sizeof(in_addr_t);
2113 if (lookup_type == LOOKUP_DST_IP)
2114 pkey = &dst_ip;
2115 else
2116 pkey = &src_ip;
2117 } else if (is_ipv6) {
2118 keylen = sizeof(struct in6_addr);
2119 if (lookup_type == LOOKUP_DST_IP)
2120 pkey = &args->f_id.dst_ip6;
2121 else
2122 pkey = &args->f_id.src_ip6;
2123 } else /* only for L3 */
2124 break;
2125 case LOOKUP_DSCP:
2126 if (is_ipv4)
2127 key = ip->ip_tos >> 2;
2128 else if (is_ipv6)
2129 key = IPV6_DSCP(
2130 (struct ip6_hdr *)ip) >> 2;
2131 else
2132 break; /* only for L3 */
2133
2134 key &= 0x3f;
2135 if (cmdlen == F_INSN_SIZE(ipfw_insn_table))
2136 key &= insntod(cmd, table)->value;
2137 pkey = &key;
2138 keylen = sizeof(key);
2139 break;
2140 case LOOKUP_DST_PORT:
2141 case LOOKUP_SRC_PORT:
2142 /* only for L3 */
2143 if (is_ipv6 == 0 && is_ipv4 == 0) {
2144 break;
2145 }
2146 /* Skip fragments */
2147 if (offset != 0) {
2148 break;
2149 }
2150 /* Skip proto without ports */
2151 if (proto != IPPROTO_TCP &&
2152 proto != IPPROTO_UDP &&
2153 proto != IPPROTO_UDPLITE &&
2154 proto != IPPROTO_SCTP)
2155 break;
2156 if (lookup_type == LOOKUP_DST_PORT)
2157 key = dst_port;
2158 else
2159 key = src_port;
2160 pkey = &key;
2161 if (cmdlen == F_INSN_SIZE(ipfw_insn_table))
2162 key &= insntod(cmd, table)->value;
2163 keylen = sizeof(key);
2164 break;
2165 case LOOKUP_DST_MAC:
2166 case LOOKUP_SRC_MAC:
2167 /* only for L2 */
2168 if ((args->flags & IPFW_ARGS_ETHER) == 0)
2169 break;
2170
2171 pkey = lookup_type == LOOKUP_DST_MAC ?
2172 eh->ether_dhost : eh->ether_shost;
2173 keylen = ETHER_ADDR_LEN;
2174 break;
2175 #ifndef USERSPACE
2176 case LOOKUP_UID:
2177 case LOOKUP_JAIL:
2178 check_uidgid(insntod(cmd, u32),
2179 args, &ucred_lookup,
2180 #ifdef __FreeBSD__
2181 &ucred_cache);
2182 if (lookup_type == LOOKUP_UID)
2183 key = ucred_cache->cr_uid;
2184 else if (lookup_type == LOOKUP_JAIL)
2185 key = ucred_cache->cr_prison->pr_id;
2186 #else /* !__FreeBSD__ */
2187 (void *)&ucred_cache);
2188 if (lookup_type == LOOKUP_UID)
2189 key = ucred_cache.uid;
2190 else if (lookup_type == LOOKUP_JAIL)
2191 key = ucred_cache.xid;
2192 #endif /* !__FreeBSD__ */
2193 pkey = &key;
2194 if (cmdlen == F_INSN_SIZE(ipfw_insn_table))
2195 key &= insntod(cmd, table)->value;
2196 keylen = sizeof(key);
2197 break;
2198 #endif /* !USERSPACE */
2199 case LOOKUP_MARK:
2200 key = args->rule.pkt_mark;
2201 if (cmdlen == F_INSN_SIZE(ipfw_insn_table))
2202 key &= insntod(cmd, table)->value;
2203 pkey = &key;
2204 keylen = sizeof(key);
2205 break;
2206 case LOOKUP_RULENUM:
2207 key = f->rulenum;
2208 if (cmdlen == F_INSN_SIZE(ipfw_insn_table))
2209 key &= insntod(cmd, table)->value;
2210 pkey = &key;
2211 keylen = sizeof(key);
2212 break;
2213 }
2214 /* unknown key type */
2215 if (keylen == 0)
2216 break;
2217 match = ipfw_lookup_table(chain,
2218 insntod(cmd, kidx)->kidx, keylen,
2219 pkey, &vidx);
2220
2221 if (match)
2222 tablearg = vidx;
2223 break;
2224 }
2225 /* LOOKUP_NONE */
2226 /* FALLTHROUGH */
2227 case O_IP_SRC_LOOKUP:
2228 {
2229 void *pkey;
2230 uint32_t vidx;
2231 uint16_t keylen;
2232
2233 if (is_ipv4) {
2234 keylen = sizeof(in_addr_t);
2235 if (cmd->opcode == O_IP_DST_LOOKUP)
2236 pkey = &dst_ip;
2237 else
2238 pkey = &src_ip;
2239 } else if (is_ipv6) {
2240 keylen = sizeof(struct in6_addr);
2241 if (cmd->opcode == O_IP_DST_LOOKUP)
2242 pkey = &args->f_id.dst_ip6;
2243 else
2244 pkey = &args->f_id.src_ip6;
2245 } else
2246 break;
2247 match = ipfw_lookup_table(chain,
2248 insntod(cmd, kidx)->kidx,
2249 keylen, pkey, &vidx);
2250 if (!match)
2251 break;
2252 if (cmdlen == F_INSN_SIZE(ipfw_insn_table)) {
2253 match = tvalue_match(chain,
2254 insntod(cmd, table), vidx);
2255 if (!match)
2256 break;
2257 }
2258 tablearg = vidx;
2259 break;
2260 }
2261
2262 case O_MAC_SRC_LOOKUP:
2263 case O_MAC_DST_LOOKUP:
2264 {
2265 void *pkey;
2266 uint32_t vidx;
2267 uint16_t keylen = ETHER_ADDR_LEN;
2268
2269 /* Need ether frame */
2270 if ((args->flags & IPFW_ARGS_ETHER) == 0)
2271 break;
2272
2273 if (cmd->opcode == O_MAC_DST_LOOKUP)
2274 pkey = eh->ether_dhost;
2275 else
2276 pkey = eh->ether_shost;
2277
2278 match = ipfw_lookup_table(chain,
2279 insntod(cmd, kidx)->kidx,
2280 keylen, pkey, &vidx);
2281 if (!match)
2282 break;
2283 if (cmdlen == F_INSN_SIZE(ipfw_insn_table)) {
2284 match = tvalue_match(chain,
2285 insntod(cmd, table), vidx);
2286 if (!match)
2287 break;
2288 }
2289 tablearg = vidx;
2290 break;
2291 }
2292
2293 case O_IP_FLOW_LOOKUP:
2294 {
2295 uint32_t vidx = 0;
2296
2297 match = ipfw_lookup_table(chain,
2298 insntod(cmd, kidx)->kidx, 0,
2299 &args->f_id, &vidx);
2300 if (!match)
2301 break;
2302 if (cmdlen == F_INSN_SIZE(ipfw_insn_table))
2303 match = tvalue_match(chain,
2304 insntod(cmd, table), vidx);
2305 if (match)
2306 tablearg = vidx;
2307 break;
2308 }
2309
2310 case O_IP_SRC_MASK:
2311 case O_IP_DST_MASK:
2312 if (is_ipv4) {
2313 uint32_t a =
2314 (cmd->opcode == O_IP_DST_MASK) ?
2315 dst_ip.s_addr : src_ip.s_addr;
2316 uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2317 int i = cmdlen-1;
2318
2319 for (; !match && i>0; i-= 2, p+= 2)
2320 match = (p[0] == (a & p[1]));
2321 }
2322 break;
2323
2324 case O_IP_SRC_ME:
2325 if (is_ipv4) {
2326 match = in_localip(src_ip);
2327 break;
2328 }
2329 #ifdef INET6
2330 /* FALLTHROUGH */
2331 case O_IP6_SRC_ME:
2332 match = is_ipv6 &&
2333 ipfw_localip6(&args->f_id.src_ip6);
2334 #endif
2335 break;
2336
2337 case O_IP_DST_SET:
2338 case O_IP_SRC_SET:
2339 if (is_ipv4) {
2340 u_int32_t *d = (u_int32_t *)(cmd+1);
2341 u_int32_t addr =
2342 cmd->opcode == O_IP_DST_SET ?
2343 args->f_id.dst_ip :
2344 args->f_id.src_ip;
2345
2346 if (addr < d[0])
2347 break;
2348 addr -= d[0]; /* subtract base */
2349 match = (addr < cmd->arg1) &&
2350 ( d[ 1 + (addr>>5)] &
2351 (1<<(addr & 0x1f)) );
2352 }
2353 break;
2354
2355 case O_IP_DST:
2356 match = is_ipv4 &&
2357 (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2358 dst_ip.s_addr);
2359 break;
2360
2361 case O_IP_DST_ME:
2362 if (is_ipv4) {
2363 match = in_localip(dst_ip);
2364 break;
2365 }
2366 #ifdef INET6
2367 /* FALLTHROUGH */
2368 case O_IP6_DST_ME:
2369 match = is_ipv6 &&
2370 ipfw_localip6(&args->f_id.dst_ip6);
2371 #endif
2372 break;
2373
2374 case O_IP_SRCPORT:
2375 case O_IP_DSTPORT:
2376 /*
2377 * offset == 0 && proto != 0 is enough
2378 * to guarantee that we have a
2379 * packet with port info.
2380 */
2381 if ((proto == IPPROTO_UDP ||
2382 proto == IPPROTO_UDPLITE ||
2383 proto == IPPROTO_TCP ||
2384 proto == IPPROTO_SCTP) && offset == 0) {
2385 u_int16_t x =
2386 (cmd->opcode == O_IP_SRCPORT) ?
2387 src_port : dst_port ;
2388 u_int16_t *p =
2389 ((ipfw_insn_u16 *)cmd)->ports;
2390 int i;
2391
2392 for (i = cmdlen - 1; !match && i>0;
2393 i--, p += 2)
2394 match = (x>=p[0] && x<=p[1]);
2395 }
2396 break;
2397
2398 case O_ICMPTYPE:
2399 match = (offset == 0 && proto==IPPROTO_ICMP &&
2400 icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2401 break;
2402
2403 #ifdef INET6
2404 case O_ICMP6TYPE:
2405 match = is_ipv6 && offset == 0 &&
2406 proto==IPPROTO_ICMPV6 &&
2407 icmp6type_match(
2408 ICMP6(ulp)->icmp6_type,
2409 (ipfw_insn_u32 *)cmd);
2410 break;
2411 #endif /* INET6 */
2412
2413 case O_IPOPT:
2414 match = (is_ipv4 &&
2415 ipopts_match(ip, cmd) );
2416 break;
2417
2418 case O_IPVER:
2419 match = ((is_ipv4 || is_ipv6) &&
2420 cmd->arg1 == ip->ip_v);
2421 break;
2422
2423 case O_IPID:
2424 case O_IPTTL:
2425 if (!is_ipv4)
2426 break;
2427 case O_IPLEN:
2428 { /* only for IP packets */
2429 uint16_t x;
2430 uint16_t *p;
2431 int i;
2432
2433 if (cmd->opcode == O_IPLEN)
2434 x = iplen;
2435 else if (cmd->opcode == O_IPTTL)
2436 x = ip->ip_ttl;
2437 else /* must be IPID */
2438 x = ntohs(ip->ip_id);
2439 if (cmdlen == 1) {
2440 match = (cmd->arg1 == x);
2441 break;
2442 }
2443 /* otherwise we have ranges */
2444 p = ((ipfw_insn_u16 *)cmd)->ports;
2445 i = cmdlen - 1;
2446 for (; !match && i>0; i--, p += 2)
2447 match = (x >= p[0] && x <= p[1]);
2448 }
2449 break;
2450
2451 case O_IPPRECEDENCE:
2452 match = (is_ipv4 &&
2453 (cmd->arg1 == (ip->ip_tos & 0xe0)) );
2454 break;
2455
2456 case O_IPTOS:
2457 match = (is_ipv4 &&
2458 flags_match(cmd, ip->ip_tos));
2459 break;
2460
2461 case O_DSCP:
2462 {
2463 uint32_t *p;
2464 uint16_t x;
2465
2466 p = ((ipfw_insn_u32 *)cmd)->d;
2467
2468 if (is_ipv4)
2469 x = ip->ip_tos >> 2;
2470 else if (is_ipv6) {
2471 x = IPV6_DSCP(
2472 (struct ip6_hdr *)ip) >> 2;
2473 x &= 0x3f;
2474 } else
2475 break;
2476
2477 /* DSCP bitmask is stored as low_u32 high_u32 */
2478 if (x >= 32)
2479 match = *(p + 1) & (1 << (x - 32));
2480 else
2481 match = *p & (1 << x);
2482 }
2483 break;
2484
2485 case O_TCPDATALEN:
2486 if (proto == IPPROTO_TCP && offset == 0) {
2487 struct tcphdr *tcp;
2488 uint16_t x;
2489 uint16_t *p;
2490 int i;
2491 #ifdef INET6
2492 if (is_ipv6) {
2493 struct ip6_hdr *ip6;
2494
2495 ip6 = (struct ip6_hdr *)ip;
2496 if (ip6->ip6_plen == 0) {
2497 /*
2498 * Jumbo payload is not
2499 * supported by this
2500 * opcode.
2501 */
2502 break;
2503 }
2504 x = iplen - hlen;
2505 } else
2506 #endif /* INET6 */
2507 x = iplen - (ip->ip_hl << 2);
2508 tcp = TCP(ulp);
2509 x -= tcp->th_off << 2;
2510 if (cmdlen == 1) {
2511 match = (cmd->arg1 == x);
2512 break;
2513 }
2514 /* otherwise we have ranges */
2515 p = ((ipfw_insn_u16 *)cmd)->ports;
2516 i = cmdlen - 1;
2517 for (; !match && i>0; i--, p += 2)
2518 match = (x >= p[0] && x <= p[1]);
2519 }
2520 break;
2521
2522 case O_TCPFLAGS:
2523 /*
2524 * Note that this is currently only set up to
2525 * match the lower 8 TCP header flag bits, not
2526 * the full compliment of all 12 flags.
2527 */
2528 match = (proto == IPPROTO_TCP && offset == 0 &&
2529 flags_match(cmd, tcp_get_flags(TCP(ulp))));
2530 break;
2531
2532 case O_TCPOPTS:
2533 if (proto == IPPROTO_TCP && offset == 0 && ulp){
2534 PULLUP_LEN_LOCKED(hlen, ulp,
2535 (TCP(ulp)->th_off << 2));
2536 match = tcpopts_match(TCP(ulp), cmd);
2537 }
2538 break;
2539
2540 case O_TCPSEQ:
2541 match = (proto == IPPROTO_TCP && offset == 0 &&
2542 ((ipfw_insn_u32 *)cmd)->d[0] ==
2543 TCP(ulp)->th_seq);
2544 break;
2545
2546 case O_TCPACK:
2547 match = (proto == IPPROTO_TCP && offset == 0 &&
2548 ((ipfw_insn_u32 *)cmd)->d[0] ==
2549 TCP(ulp)->th_ack);
2550 break;
2551
2552 case O_TCPMSS:
2553 if (proto == IPPROTO_TCP &&
2554 (args->f_id._flags & TH_SYN) != 0 &&
2555 ulp != NULL) {
2556 uint16_t mss, *p;
2557 int i;
2558
2559 PULLUP_LEN_LOCKED(hlen, ulp,
2560 (TCP(ulp)->th_off << 2));
2561 if ((tcpopts_parse(TCP(ulp), &mss) &
2562 IP_FW_TCPOPT_MSS) == 0)
2563 break;
2564 if (cmdlen == 1) {
2565 match = (cmd->arg1 == mss);
2566 break;
2567 }
2568 /* Otherwise we have ranges. */
2569 p = ((ipfw_insn_u16 *)cmd)->ports;
2570 i = cmdlen - 1;
2571 for (; !match && i > 0; i--, p += 2)
2572 match = (mss >= p[0] &&
2573 mss <= p[1]);
2574 }
2575 break;
2576
2577 case O_TCPWIN:
2578 if (proto == IPPROTO_TCP && offset == 0) {
2579 uint16_t x;
2580 uint16_t *p;
2581 int i;
2582
2583 x = ntohs(TCP(ulp)->th_win);
2584 if (cmdlen == 1) {
2585 match = (cmd->arg1 == x);
2586 break;
2587 }
2588 /* Otherwise we have ranges. */
2589 p = ((ipfw_insn_u16 *)cmd)->ports;
2590 i = cmdlen - 1;
2591 for (; !match && i > 0; i--, p += 2)
2592 match = (x >= p[0] && x <= p[1]);
2593 }
2594 break;
2595
2596 case O_ESTAB:
2597 /* reject packets which have SYN only */
2598 /* XXX should i also check for TH_ACK ? */
2599 match = (proto == IPPROTO_TCP && offset == 0 &&
2600 (tcp_get_flags(TCP(ulp)) &
2601 (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2602 break;
2603
2604 case O_ALTQ: {
2605 struct pf_mtag *at;
2606 struct m_tag *mtag;
2607 ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2608
2609 /*
2610 * ALTQ uses mbuf tags from another
2611 * packet filtering system - pf(4).
2612 * We allocate a tag in its format
2613 * and fill it in, pretending to be pf(4).
2614 */
2615 match = 1;
2616 at = pf_find_mtag(m);
2617 if (at != NULL && at->qid != 0)
2618 break;
2619 mtag = m_tag_get(PACKET_TAG_PF,
2620 sizeof(struct pf_mtag), M_NOWAIT | M_ZERO);
2621 if (mtag == NULL) {
2622 /*
2623 * Let the packet fall back to the
2624 * default ALTQ.
2625 */
2626 break;
2627 }
2628 m_tag_prepend(m, mtag);
2629 at = (struct pf_mtag *)(mtag + 1);
2630 at->qid = altq->qid;
2631 at->hdr = ip;
2632 break;
2633 }
2634
2635 case O_LOG:
2636 ipfw_log(chain, f, hlen, args,
2637 offset | ip6f_mf, tablearg, ip, eh);
2638 match = 1;
2639 break;
2640
2641 case O_PROB:
2642 match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2643 break;
2644
2645 case O_VERREVPATH:
2646 /* Outgoing packets automatically pass/match */
2647 match = (args->flags & IPFW_ARGS_OUT ||
2648 (
2649 #ifdef INET6
2650 is_ipv6 ?
2651 verify_path6(&(args->f_id.src_ip6),
2652 iif, args->f_id.fib) :
2653 #endif
2654 verify_path(src_ip, iif, args->f_id.fib)));
2655 break;
2656
2657 case O_VERSRCREACH:
2658 /* Outgoing packets automatically pass/match */
2659 match = (hlen > 0 && ((oif != NULL) || (
2660 #ifdef INET6
2661 is_ipv6 ?
2662 verify_path6(&(args->f_id.src_ip6),
2663 NULL, args->f_id.fib) :
2664 #endif
2665 verify_path(src_ip, NULL, args->f_id.fib))));
2666 break;
2667
2668 case O_ANTISPOOF:
2669 /* Outgoing packets automatically pass/match */
2670 if (oif == NULL && hlen > 0 &&
2671 ( (is_ipv4 && in_localaddr(src_ip))
2672 #ifdef INET6
2673 || (is_ipv6 &&
2674 in6_localaddr(&(args->f_id.src_ip6)))
2675 #endif
2676 ))
2677 match =
2678 #ifdef INET6
2679 is_ipv6 ? verify_path6(
2680 &(args->f_id.src_ip6), iif,
2681 args->f_id.fib) :
2682 #endif
2683 verify_path(src_ip, iif,
2684 args->f_id.fib);
2685 else
2686 match = 1;
2687 break;
2688
2689 case O_IPSEC:
2690 match = (m_tag_find(m,
2691 PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
2692 /* otherwise no match */
2693 break;
2694
2695 #ifdef INET6
2696 case O_IP6_SRC:
2697 match = is_ipv6 &&
2698 IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
2699 &((ipfw_insn_ip6 *)cmd)->addr6);
2700 break;
2701
2702 case O_IP6_DST:
2703 match = is_ipv6 &&
2704 IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
2705 &((ipfw_insn_ip6 *)cmd)->addr6);
2706 break;
2707 case O_IP6_SRC_MASK:
2708 case O_IP6_DST_MASK:
2709 if (is_ipv6) {
2710 int i = cmdlen - 1;
2711 struct in6_addr p;
2712 struct in6_addr *d =
2713 &((ipfw_insn_ip6 *)cmd)->addr6;
2714
2715 for (; !match && i > 0; d += 2,
2716 i -= F_INSN_SIZE(struct in6_addr)
2717 * 2) {
2718 p = (cmd->opcode ==
2719 O_IP6_SRC_MASK) ?
2720 args->f_id.src_ip6:
2721 args->f_id.dst_ip6;
2722 APPLY_MASK(&p, &d[1]);
2723 match =
2724 IN6_ARE_ADDR_EQUAL(&d[0],
2725 &p);
2726 }
2727 }
2728 break;
2729
2730 case O_FLOW6ID:
2731 match = is_ipv6 &&
2732 flow6id_match(args->f_id.flow_id6,
2733 (ipfw_insn_u32 *) cmd);
2734 break;
2735
2736 case O_EXT_HDR:
2737 match = is_ipv6 &&
2738 (ext_hd & ((ipfw_insn *) cmd)->arg1);
2739 break;
2740
2741 case O_IP6:
2742 match = is_ipv6;
2743 break;
2744 #endif
2745
2746 case O_IP4:
2747 match = is_ipv4;
2748 break;
2749
2750 case O_TAG: {
2751 struct m_tag *mtag;
2752 uint32_t tag = TARG(cmd->arg1, tag);
2753
2754 /* Packet is already tagged with this tag? */
2755 mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
2756
2757 /* We have `untag' action when F_NOT flag is
2758 * present. And we must remove this mtag from
2759 * mbuf and reset `match' to zero (`match' will
2760 * be inversed later).
2761 * Otherwise we should allocate new mtag and
2762 * push it into mbuf.
2763 */
2764 if (cmd->len & F_NOT) { /* `untag' action */
2765 if (mtag != NULL)
2766 m_tag_delete(m, mtag);
2767 match = 0;
2768 } else {
2769 if (mtag == NULL) {
2770 mtag = m_tag_alloc( MTAG_IPFW,
2771 tag, 0, M_NOWAIT);
2772 if (mtag != NULL)
2773 m_tag_prepend(m, mtag);
2774 }
2775 match = 1;
2776 }
2777 break;
2778 }
2779
2780 case O_FIB: /* try match the specified fib */
2781 if (args->f_id.fib == cmd->arg1)
2782 match = 1;
2783 break;
2784
2785 case O_SOCKARG: {
2786 #ifndef USERSPACE /* not supported in userspace */
2787 struct inpcb *inp = args->inp;
2788 struct inpcbinfo *pi;
2789 bool inp_locked = false;
2790
2791 if (proto == IPPROTO_TCP)
2792 pi = &V_tcbinfo;
2793 else if (proto == IPPROTO_UDP)
2794 pi = &V_udbinfo;
2795 else if (proto == IPPROTO_UDPLITE)
2796 pi = &V_ulitecbinfo;
2797 else
2798 break;
2799
2800 /*
2801 * XXXRW: so_user_cookie should almost
2802 * certainly be inp_user_cookie?
2803 */
2804
2805 /*
2806 * For incoming packet lookup the inpcb
2807 * using the src/dest ip/port tuple.
2808 */
2809 if (is_ipv4 && inp == NULL) {
2810 inp = in_pcblookup(pi,
2811 src_ip, htons(src_port),
2812 dst_ip, htons(dst_port),
2813 INPLOOKUP_RLOCKPCB, NULL);
2814 inp_locked = true;
2815 }
2816 #ifdef INET6
2817 if (is_ipv6 && inp == NULL) {
2818 inp = in6_pcblookup(pi,
2819 &args->f_id.src_ip6,
2820 htons(src_port),
2821 &args->f_id.dst_ip6,
2822 htons(dst_port),
2823 INPLOOKUP_RLOCKPCB, NULL);
2824 inp_locked = true;
2825 }
2826 #endif /* INET6 */
2827 if (inp != NULL) {
2828 if (inp->inp_socket) {
2829 tablearg =
2830 inp->inp_socket->so_user_cookie;
2831 if (tablearg)
2832 match = 1;
2833 }
2834 if (inp_locked)
2835 INP_RUNLOCK(inp);
2836 }
2837 #endif /* !USERSPACE */
2838 break;
2839 }
2840
2841 case O_TAGGED: {
2842 struct m_tag *mtag;
2843 uint32_t tag = TARG(cmd->arg1, tag);
2844
2845 if (cmdlen == 1) {
2846 match = m_tag_locate(m, MTAG_IPFW,
2847 tag, NULL) != NULL;
2848 break;
2849 }
2850
2851 /* we have ranges */
2852 for (mtag = m_tag_first(m);
2853 mtag != NULL && !match;
2854 mtag = m_tag_next(m, mtag)) {
2855 uint16_t *p;
2856 int i;
2857
2858 if (mtag->m_tag_cookie != MTAG_IPFW)
2859 continue;
2860
2861 p = ((ipfw_insn_u16 *)cmd)->ports;
2862 i = cmdlen - 1;
2863 for(; !match && i > 0; i--, p += 2)
2864 match =
2865 mtag->m_tag_id >= p[0] &&
2866 mtag->m_tag_id <= p[1];
2867 }
2868 break;
2869 }
2870
2871 case O_MARK: {
2872 uint32_t mark;
2873 if (cmd->arg1 == IP_FW_TARG)
2874 mark = TARG_VAL(chain, tablearg, mark);
2875 else
2876 mark = insntoc(cmd, u32)->d[0];
2877 match =
2878 (args->rule.pkt_mark &
2879 insntoc(cmd, u32)->d[1]) ==
2880 (mark & insntoc(cmd, u32)->d[1]);
2881 break;
2882 }
2883
2884 /*
2885 * The second set of opcodes represents 'actions',
2886 * i.e. the terminal part of a rule once the packet
2887 * matches all previous patterns.
2888 * Typically there is only one action for each rule,
2889 * and the opcode is stored at the end of the rule
2890 * (but there are exceptions -- see below).
2891 *
2892 * In general, here we set retval and terminate the
2893 * outer loop (would be a 'break 3' in some language,
2894 * but we need to set l=0, done=1)
2895 *
2896 * Exceptions:
2897 * O_COUNT and O_SKIPTO actions:
2898 * instead of terminating, we jump to the next rule
2899 * (setting l=0), or to the SKIPTO target (setting
2900 * f/f_len, cmd and l as needed), respectively.
2901 *
2902 * O_TAG, O_LOG and O_ALTQ action parameters:
2903 * perform some action and set match = 1;
2904 *
2905 * O_LIMIT and O_KEEP_STATE: these opcodes are
2906 * not real 'actions', and are stored right
2907 * before the 'action' part of the rule (one
2908 * exception is O_SKIP_ACTION which could be
2909 * between these opcodes and 'action' one).
2910 * These opcodes try to install an entry in the
2911 * state tables; if successful, we continue with
2912 * the next opcode (match=1; break;), otherwise
2913 * the packet must be dropped (set retval,
2914 * break loops with l=0, done=1)
2915 *
2916 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2917 * cause a lookup of the state table, and a jump
2918 * to the 'action' part of the parent rule
2919 * if an entry is found, or
2920 * (CHECK_STATE only) a jump to the next rule if
2921 * the entry is not found.
2922 * The result of the lookup is cached so that
2923 * further instances of these opcodes become NOPs.
2924 * The jump to the next rule is done by setting
2925 * l=0, cmdlen=0.
2926 *
2927 * O_SKIP_ACTION: this opcode is not a real 'action'
2928 * either, and is stored right before the 'action'
2929 * part of the rule, right after the O_KEEP_STATE
2930 * opcode. It causes match failure so the real
2931 * 'action' could be executed only if the rule
2932 * is checked via dynamic rule from the state
2933 * table, as in such case execution starts
2934 * from the true 'action' opcode directly.
2935 *
2936 */
2937 case O_LIMIT:
2938 case O_KEEP_STATE:
2939 if (ipfw_dyn_install_state(chain, f,
2940 (ipfw_insn_limit *)cmd, args, ulp,
2941 pktlen, &dyn_info, tablearg)) {
2942 /* error or limit violation */
2943 retval = IP_FW_DENY;
2944 l = 0; /* exit inner loop */
2945 done = 1; /* exit outer loop */
2946 }
2947 match = 1;
2948 break;
2949
2950 case O_PROBE_STATE:
2951 case O_CHECK_STATE:
2952 /*
2953 * dynamic rules are checked at the first
2954 * keep-state or check-state occurrence,
2955 * with the result being stored in dyn_info.
2956 * The compiler introduces a PROBE_STATE
2957 * instruction for us when we have a
2958 * KEEP_STATE (because PROBE_STATE needs
2959 * to be run first).
2960 */
2961 if (DYN_LOOKUP_NEEDED(&dyn_info, cmd) &&
2962 (q = ipfw_dyn_lookup_state(args, ulp,
2963 pktlen, cmd, &dyn_info)) != NULL) {
2964 /*
2965 * Found dynamic entry, jump to the
2966 * 'action' part of the parent rule
2967 * by setting f, cmd, l and clearing
2968 * cmdlen.
2969 */
2970 f = q;
2971 f_pos = dyn_info.f_pos;
2972 cmd = ACTION_PTR(f);
2973 l = f->cmd_len - f->act_ofs;
2974 cmdlen = 0;
2975 continue;
2976 }
2977 /*
2978 * Dynamic entry not found. If CHECK_STATE,
2979 * skip to next rule, if PROBE_STATE just
2980 * ignore and continue with next opcode.
2981 */
2982 if (cmd->opcode == O_CHECK_STATE)
2983 l = 0; /* exit inner loop */
2984 match = 1;
2985 break;
2986
2987 case O_SKIP_ACTION:
2988 match = 0; /* skip to the next rule */
2989 l = 0; /* exit inner loop */
2990 break;
2991
2992 case O_ACCEPT:
2993 retval = 0; /* accept */
2994 l = 0; /* exit inner loop */
2995 done = 1; /* exit outer loop */
2996 break;
2997
2998 case O_PIPE:
2999 case O_QUEUE:
3000 set_match(args, f_pos, chain);
3001 args->rule.info = TARG(cmd->arg1, pipe);
3002 if (cmd->opcode == O_PIPE)
3003 args->rule.info |= IPFW_IS_PIPE;
3004 if (V_fw_one_pass)
3005 args->rule.info |= IPFW_ONEPASS;
3006 retval = IP_FW_DUMMYNET;
3007 l = 0; /* exit inner loop */
3008 done = 1; /* exit outer loop */
3009 break;
3010
3011 case O_DIVERT:
3012 case O_TEE:
3013 if (args->flags & IPFW_ARGS_ETHER)
3014 break; /* not on layer 2 */
3015 /* otherwise this is terminal */
3016 l = 0; /* exit inner loop */
3017 done = 1; /* exit outer loop */
3018 retval = (cmd->opcode == O_DIVERT) ?
3019 IP_FW_DIVERT : IP_FW_TEE;
3020 set_match(args, f_pos, chain);
3021 args->rule.info = TARG(cmd->arg1, divert);
3022 break;
3023
3024 case O_COUNT:
3025 IPFW_INC_RULE_COUNTER(f, pktlen);
3026 l = 0; /* exit inner loop */
3027 break;
3028
3029 case O_SKIPTO:
3030 IPFW_INC_RULE_COUNTER(f, pktlen);
3031 f_pos = jump(chain, f,
3032 insntod(cmd, u32)->d[0], tablearg, false);
3033 /*
3034 * Skip disabled rules, and re-enter
3035 * the inner loop with the correct
3036 * f_pos, f, l and cmd.
3037 * Also clear cmdlen and skip_or
3038 */
3039 for (; f_pos < chain->n_rules - 1 &&
3040 (V_set_disable &
3041 (1 << chain->map[f_pos]->set));
3042 f_pos++)
3043 ;
3044 /* Re-enter the inner loop at the skipto rule. */
3045 f = chain->map[f_pos];
3046 l = f->cmd_len;
3047 cmd = f->cmd;
3048 match = 1;
3049 cmdlen = 0;
3050 skip_or = 0;
3051 continue;
3052 break; /* not reached */
3053
3054 case O_CALLRETURN: {
3055 /*
3056 * Implementation of `subroutine' call/return,
3057 * in the stack carried in an mbuf tag. This
3058 * is different from `skipto' in that any call
3059 * address is possible (`skipto' must prevent
3060 * backward jumps to avoid endless loops).
3061 * We have `return' action when F_NOT flag is
3062 * present. The `m_tag_id' field is used as
3063 * stack pointer.
3064 */
3065 struct m_tag *mtag;
3066 uint32_t jmpto, *stack;
3067
3068 #define IS_CALL ((cmd->len & F_NOT) == 0)
3069 #define IS_RETURN ((cmd->len & F_NOT) != 0)
3070 /*
3071 * Hand-rolled version of m_tag_locate() with
3072 * wildcard `type'.
3073 * If not already tagged, allocate new tag.
3074 */
3075 mtag = m_tag_first(m);
3076 while (mtag != NULL) {
3077 if (mtag->m_tag_cookie ==
3078 MTAG_IPFW_CALL)
3079 break;
3080 mtag = m_tag_next(m, mtag);
3081 }
3082
3083 /*
3084 * We keep ruleset id in the first element
3085 * of stack. If it doesn't match chain->id,
3086 * then we can't trust information in the
3087 * stack, since rules were changed.
3088 * We reset stack pointer to be able reuse
3089 * tag if it will be needed.
3090 */
3091 if (mtag != NULL) {
3092 stack = (uint32_t *)(mtag + 1);
3093 if (stack[0] != chain->id) {
3094 stack[0] = chain->id;
3095 mtag->m_tag_id = 0;
3096 }
3097 }
3098
3099 /*
3100 * If there is no mtag or stack is empty,
3101 * `return` continues with next rule.
3102 */
3103 if (IS_RETURN && (mtag == NULL ||
3104 mtag->m_tag_id == 0)) {
3105 l = 0; /* exit inner loop */
3106 break;
3107 }
3108
3109 if (mtag == NULL) {
3110 MPASS(IS_CALL);
3111 mtag = m_tag_alloc(MTAG_IPFW_CALL, 0,
3112 IPFW_CALLSTACK_SIZE *
3113 sizeof(uint32_t), M_NOWAIT);
3114 if (mtag != NULL) {
3115 m_tag_prepend(m, mtag);
3116 stack = (uint32_t *)(mtag + 1);
3117 stack[0] = chain->id;
3118 }
3119 }
3120
3121 if (mtag == NULL) {
3122 printf("ipfw: rule %u: failed to "
3123 "allocate call stack. "
3124 "Denying packet.\n",
3125 f->rulenum);
3126 l = 0; /* exit inner loop */
3127 done = 1; /* exit outer loop */
3128 retval = IP_FW_DENY; /* drop packet */
3129 break;
3130 }
3131
3132 if (IS_CALL && mtag->m_tag_id >=
3133 IPFW_CALLSTACK_SIZE - 1) {
3134 printf("ipfw: rule %u: call stack "
3135 "overflow. Denying packet.\n",
3136 f->rulenum);
3137 l = 0; /* exit inner loop */
3138 done = 1; /* exit outer loop */
3139 retval = IP_FW_DENY; /* drop packet */
3140 break;
3141 }
3142
3143 MPASS(stack == (uint32_t *)(mtag + 1));
3144 IPFW_INC_RULE_COUNTER(f, pktlen);
3145
3146 if (IS_CALL) {
3147 stack[++mtag->m_tag_id] = f_pos;
3148 f_pos = jump(chain, f,
3149 insntod(cmd, u32)->d[0],
3150 tablearg, true);
3151 } else { /* `return' action */
3152 jmpto = stack[mtag->m_tag_id--];
3153 if (cmd->arg1 == RETURN_NEXT_RULE)
3154 f_pos = jmpto + 1;
3155 else /* RETURN_NEXT_RULENUM */
3156 f_pos = ipfw_find_rule(chain,
3157 chain->map[
3158 jmpto]->rulenum + 1, 0);
3159 }
3160
3161 /*
3162 * Skip disabled rules, and re-enter
3163 * the inner loop with the correct
3164 * f_pos, f, l and cmd.
3165 * Also clear cmdlen and skip_or
3166 */
3167 MPASS(f_pos < chain->n_rules - 1);
3168 for (; f_pos < chain->n_rules - 1 &&
3169 (V_set_disable &
3170 (1 << chain->map[f_pos]->set)); f_pos++)
3171 ;
3172 /*
3173 * Re-enter the inner loop at the dest
3174 * rule.
3175 */
3176 f = chain->map[f_pos];
3177 l = f->cmd_len;
3178 cmd = f->cmd;
3179 cmdlen = 0;
3180 skip_or = 0;
3181 continue;
3182 break; /* NOTREACHED */
3183 }
3184 #undef IS_CALL
3185 #undef IS_RETURN
3186
3187 case O_REJECT:
3188 /*
3189 * Drop the packet and send a reject notice
3190 * if the packet is not ICMP (or is an ICMP
3191 * query), and it is not multicast/broadcast.
3192 */
3193 if (hlen > 0 && is_ipv4 && offset == 0 &&
3194 (proto != IPPROTO_ICMP ||
3195 is_icmp_query(ICMP(ulp))) &&
3196 !(m->m_flags & (M_BCAST|M_MCAST)) &&
3197 !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
3198 KASSERT(!need_send_reject,
3199 ("o_reject - need_send_reject was set previously"));
3200 if ((reject_code = cmd->arg1) == ICMP_UNREACH_NEEDFRAG &&
3201 cmd->len == F_INSN_SIZE(ipfw_insn_u16)) {
3202 reject_mtu =
3203 ((ipfw_insn_u16 *)cmd)->ports[0];
3204 } else {
3205 reject_mtu = 0;
3206 }
3207 need_send_reject = true;
3208 }
3209 /* FALLTHROUGH */
3210 #ifdef INET6
3211 case O_UNREACH6:
3212 if (hlen > 0 && is_ipv6 &&
3213 ((offset & IP6F_OFF_MASK) == 0) &&
3214 (proto != IPPROTO_ICMPV6 ||
3215 (is_icmp6_query(icmp6_type) == 1)) &&
3216 !(m->m_flags & (M_BCAST|M_MCAST)) &&
3217 !IN6_IS_ADDR_MULTICAST(
3218 &args->f_id.dst_ip6)) {
3219 KASSERT(!need_send_reject,
3220 ("o_unreach6 - need_send_reject was set previously"));
3221 reject_code = cmd->arg1;
3222 if (cmd->opcode == O_REJECT) {
3223 reject_code =
3224 map_icmp_unreach(reject_code);
3225 }
3226 need_send_reject = true;
3227 }
3228 /* FALLTHROUGH */
3229 #endif
3230 case O_DENY:
3231 retval = IP_FW_DENY;
3232 l = 0; /* exit inner loop */
3233 done = 1; /* exit outer loop */
3234 break;
3235
3236 case O_FORWARD_IP:
3237 if (args->flags & IPFW_ARGS_ETHER)
3238 break; /* not valid on layer2 pkts */
3239 if (q != f ||
3240 dyn_info.direction == MATCH_FORWARD) {
3241 struct sockaddr_in *sa;
3242
3243 sa = &(((ipfw_insn_sa *)cmd)->sa);
3244 if (sa->sin_addr.s_addr == INADDR_ANY) {
3245 #ifdef INET6
3246 /*
3247 * We use O_FORWARD_IP opcode for
3248 * fwd rule with tablearg, but tables
3249 * now support IPv6 addresses. And
3250 * when we are inspecting IPv6 packet,
3251 * we can use nh6 field from
3252 * table_value as next_hop6 address.
3253 */
3254 if (is_ipv6) {
3255 struct ip_fw_nh6 *nh6;
3256
3257 args->flags |= IPFW_ARGS_NH6;
3258 nh6 = &args->hopstore6;
3259 nh6->sin6_addr = TARG_VAL(
3260 chain, tablearg, nh6);
3261 nh6->sin6_port = sa->sin_port;
3262 nh6->sin6_scope_id = TARG_VAL(
3263 chain, tablearg, zoneid);
3264 } else
3265 #endif
3266 {
3267 args->flags |= IPFW_ARGS_NH4;
3268 args->hopstore.sin_port =
3269 sa->sin_port;
3270 sa = &args->hopstore;
3271 sa->sin_family = AF_INET;
3272 sa->sin_len = sizeof(*sa);
3273 sa->sin_addr.s_addr = htonl(
3274 TARG_VAL(chain, tablearg,
3275 nh4));
3276 }
3277 } else {
3278 args->flags |= IPFW_ARGS_NH4PTR;
3279 args->next_hop = sa;
3280 }
3281 }
3282 retval = IP_FW_PASS;
3283 l = 0; /* exit inner loop */
3284 done = 1; /* exit outer loop */
3285 break;
3286
3287 #ifdef INET6
3288 case O_FORWARD_IP6:
3289 if (args->flags & IPFW_ARGS_ETHER)
3290 break; /* not valid on layer2 pkts */
3291 if (q != f ||
3292 dyn_info.direction == MATCH_FORWARD) {
3293 struct sockaddr_in6 *sin6;
3294
3295 sin6 = &(((ipfw_insn_sa6 *)cmd)->sa);
3296 args->flags |= IPFW_ARGS_NH6PTR;
3297 args->next_hop6 = sin6;
3298 }
3299 retval = IP_FW_PASS;
3300 l = 0; /* exit inner loop */
3301 done = 1; /* exit outer loop */
3302 break;
3303 #endif
3304
3305 case O_NETGRAPH:
3306 case O_NGTEE:
3307 set_match(args, f_pos, chain);
3308 args->rule.info = TARG(cmd->arg1, netgraph);
3309 if (V_fw_one_pass)
3310 args->rule.info |= IPFW_ONEPASS;
3311 retval = (cmd->opcode == O_NETGRAPH) ?
3312 IP_FW_NETGRAPH : IP_FW_NGTEE;
3313 l = 0; /* exit inner loop */
3314 done = 1; /* exit outer loop */
3315 break;
3316
3317 case O_SETFIB: {
3318 uint32_t fib;
3319
3320 IPFW_INC_RULE_COUNTER(f, pktlen);
3321 fib = TARG(cmd->arg1, fib) & 0x7FFF;
3322 if (fib >= rt_numfibs)
3323 fib = 0;
3324 M_SETFIB(m, fib);
3325 args->f_id.fib = fib; /* XXX */
3326 l = 0; /* exit inner loop */
3327 break;
3328 }
3329
3330 case O_SETDSCP: {
3331 uint16_t code;
3332
3333 code = TARG(cmd->arg1, dscp) & 0x3F;
3334 l = 0; /* exit inner loop */
3335 if (is_ipv4) {
3336 uint16_t old;
3337
3338 old = *(uint16_t *)ip;
3339 ip->ip_tos = (code << 2) |
3340 (ip->ip_tos & 0x03);
3341 ip->ip_sum = cksum_adjust(ip->ip_sum,
3342 old, *(uint16_t *)ip);
3343 } else if (is_ipv6) {
3344 /* update cached value */
3345 args->f_id.flow_id6 =
3346 ntohl(*(uint32_t *)ip) & ~0x0FC00000;
3347 args->f_id.flow_id6 |= code << 22;
3348
3349 *((uint32_t *)ip) =
3350 htonl(args->f_id.flow_id6);
3351 } else
3352 break;
3353
3354 IPFW_INC_RULE_COUNTER(f, pktlen);
3355 break;
3356 }
3357
3358 case O_NAT:
3359 l = 0; /* exit inner loop */
3360 done = 1; /* exit outer loop */
3361 /*
3362 * Ensure that we do not invoke NAT handler for
3363 * non IPv4 packets. Libalias expects only IPv4.
3364 */
3365 if (!is_ipv4 || !IPFW_NAT_LOADED) {
3366 retval = IP_FW_DENY;
3367 break;
3368 }
3369
3370 struct cfg_nat *t;
3371 int nat_id;
3372
3373 args->rule.info = 0;
3374 set_match(args, f_pos, chain);
3375 /* Check if this is 'global' nat rule */
3376 if (cmd->arg1 == IP_FW_NAT44_GLOBAL) {
3377 retval = ipfw_nat_ptr(args, NULL, m);
3378 break;
3379 }
3380 t = ((ipfw_insn_nat *)cmd)->nat;
3381 if (t == NULL) {
3382 nat_id = TARG(cmd->arg1, nat);
3383 t = (*lookup_nat_ptr)(&chain->nat, nat_id);
3384
3385 if (t == NULL) {
3386 retval = IP_FW_DENY;
3387 break;
3388 }
3389 if (cmd->arg1 != IP_FW_TARG)
3390 ((ipfw_insn_nat *)cmd)->nat = t;
3391 }
3392 retval = ipfw_nat_ptr(args, t, m);
3393 break;
3394
3395 case O_REASS: {
3396 int ip_off;
3397
3398 l = 0; /* in any case exit inner loop */
3399 if (is_ipv6) /* IPv6 is not supported yet */
3400 break;
3401 IPFW_INC_RULE_COUNTER(f, pktlen);
3402 ip_off = ntohs(ip->ip_off);
3403
3404 /* if not fragmented, go to next rule */
3405 if ((ip_off & (IP_MF | IP_OFFMASK)) == 0)
3406 break;
3407
3408 args->m = m = ip_reass(m);
3409
3410 /*
3411 * do IP header checksum fixup.
3412 */
3413 if (m == NULL) { /* fragment got swallowed */
3414 retval = IP_FW_DENY;
3415 } else { /* good, packet complete */
3416 int hlen;
3417
3418 ip = mtod(m, struct ip *);
3419 hlen = ip->ip_hl << 2;
3420 ip->ip_sum = 0;
3421 if (hlen == sizeof(struct ip))
3422 ip->ip_sum = in_cksum_hdr(ip);
3423 else
3424 ip->ip_sum = in_cksum(m, hlen);
3425 retval = IP_FW_REASS;
3426 args->rule.info = 0;
3427 set_match(args, f_pos, chain);
3428 }
3429 done = 1; /* exit outer loop */
3430 break;
3431 }
3432
3433 case O_SETMARK: {
3434 l = 0; /* exit inner loop */
3435 args->rule.pkt_mark = (
3436 (cmd->arg1 == IP_FW_TARG) ?
3437 TARG_VAL(chain, tablearg, mark) :
3438 insntoc(cmd, u32)->d[0]);
3439
3440 IPFW_INC_RULE_COUNTER(f, pktlen);
3441 break;
3442 }
3443
3444 case O_EXTERNAL_ACTION:
3445 l = 0; /* in any case exit inner loop */
3446 retval = ipfw_run_eaction(chain, args,
3447 cmd, &done);
3448 /*
3449 * If both @retval and @done are zero,
3450 * consider this as rule matching and
3451 * update counters.
3452 */
3453 if (retval == 0 && done == 0) {
3454 IPFW_INC_RULE_COUNTER(f, pktlen);
3455 /*
3456 * Reset the result of the last
3457 * dynamic state lookup.
3458 * External action can change
3459 * @args content, and it may be
3460 * used for new state lookup later.
3461 */
3462 DYN_INFO_INIT(&dyn_info);
3463 }
3464 break;
3465
3466 default:
3467 panic("ipfw: rule %u: unknown opcode %d\n",
3468 f->rulenum, cmd->opcode);
3469 } /* end of switch() on opcodes */
3470 /*
3471 * if we get here with l=0, then match is irrelevant.
3472 */
3473
3474 if (cmd->len & F_NOT)
3475 match = !match;
3476
3477 if (match) {
3478 if (cmd->len & F_OR)
3479 skip_or = 1;
3480 } else {
3481 if (!(cmd->len & F_OR)) /* not an OR block, */
3482 break; /* try next rule */
3483 }
3484
3485 } /* end of inner loop, scan opcodes */
3486 #undef PULLUP_LEN
3487 #undef PULLUP_LEN_LOCKED
3488
3489 if (done)
3490 break;
3491
3492 /* next_rule:; */ /* try next rule */
3493
3494 } /* end of outer for, scan rules */
3495
3496 if (done) {
3497 struct ip_fw *rule = chain->map[f_pos];
3498 /* Update statistics */
3499 IPFW_INC_RULE_COUNTER(rule, pktlen);
3500 IPFW_PROBE(rule__matched, retval,
3501 is_ipv4 ? AF_INET : AF_INET6,
3502 is_ipv4 ? (uintptr_t)&src_ip :
3503 (uintptr_t)&args->f_id.src_ip6,
3504 is_ipv4 ? (uintptr_t)&dst_ip :
3505 (uintptr_t)&args->f_id.dst_ip6,
3506 args, rule);
3507 } else {
3508 retval = IP_FW_DENY;
3509 printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3510 }
3511 IPFW_PF_RUNLOCK(chain);
3512 if (need_send_reject) {
3513 #ifdef INET6
3514 if (is_ipv6)
3515 send_reject6(args, reject_code, hlen,
3516 (struct ip6_hdr *)ip);
3517 else
3518 #endif
3519 send_reject(args, reject_code, reject_mtu,
3520 iplen, ip);
3521 }
3522 #ifdef __FreeBSD__
3523 if (ucred_cache != NULL)
3524 crfree(ucred_cache);
3525 #endif
3526 return (retval);
3527
3528 pullup_failed:
3529 if (V_fw_verbose)
3530 printf("ipfw: pullup failed\n");
3531 return (IP_FW_DENY);
3532 }
3533
3534 /*
3535 * Set maximum number of tables that can be used in given VNET ipfw instance.
3536 */
3537 #ifdef SYSCTL_NODE
3538 static int
sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS)3539 sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS)
3540 {
3541 int error;
3542 unsigned int ntables;
3543
3544 ntables = V_fw_tables_max;
3545
3546 error = sysctl_handle_int(oidp, &ntables, 0, req);
3547 /* Read operation or some error */
3548 if ((error != 0) || (req->newptr == NULL))
3549 return (error);
3550
3551 return (ipfw_resize_tables(&V_layer3_chain, ntables));
3552 }
3553
3554 /*
3555 * Switches table namespace between global and per-set.
3556 */
3557 static int
sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS)3558 sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS)
3559 {
3560 int error;
3561 unsigned int sets;
3562
3563 sets = V_fw_tables_sets;
3564
3565 error = sysctl_handle_int(oidp, &sets, 0, req);
3566 /* Read operation or some error */
3567 if ((error != 0) || (req->newptr == NULL))
3568 return (error);
3569
3570 return (ipfw_switch_tables_namespace(&V_layer3_chain, sets));
3571 }
3572 #endif
3573
3574 /*
3575 * Module and VNET glue
3576 */
3577
3578 /*
3579 * Stuff that must be initialised only on boot or module load
3580 */
3581 static int
ipfw_init(void)3582 ipfw_init(void)
3583 {
3584 int error = 0;
3585
3586 /*
3587 * Only print out this stuff the first time around,
3588 * when called from the sysinit code.
3589 */
3590 printf("ipfw2 "
3591 #ifdef INET6
3592 "(+ipv6) "
3593 #endif
3594 "initialized, divert %s, nat %s, "
3595 "default to %s, logging ",
3596 #ifdef IPDIVERT
3597 "enabled",
3598 #else
3599 "loadable",
3600 #endif
3601 #ifdef IPFIREWALL_NAT
3602 "enabled",
3603 #else
3604 "loadable",
3605 #endif
3606 default_to_accept ? "accept" : "deny");
3607
3608 /*
3609 * Note: V_xxx variables can be accessed here but the vnet specific
3610 * initializer may not have been called yet for the VIMAGE case.
3611 * Tuneables will have been processed. We will print out values for
3612 * the default vnet.
3613 * XXX This should all be rationalized AFTER 8.0
3614 */
3615 if (V_fw_verbose == 0)
3616 printf("disabled\n");
3617 else if (V_verbose_limit == 0)
3618 printf("unlimited\n");
3619 else
3620 printf("limited to %d packets/entry by default\n",
3621 V_verbose_limit);
3622
3623 /* Check user-supplied table count for validness */
3624 if (default_fw_tables > IPFW_TABLES_MAX)
3625 default_fw_tables = IPFW_TABLES_MAX;
3626
3627 ipfw_init_sopt_handler();
3628 ipfw_init_obj_rewriter();
3629 ipfw_iface_init();
3630 return (error);
3631 }
3632
3633 /*
3634 * Called for the removal of the last instance only on module unload.
3635 */
3636 static void
ipfw_destroy(void)3637 ipfw_destroy(void)
3638 {
3639
3640 ipfw_iface_destroy();
3641 ipfw_destroy_sopt_handler();
3642 ipfw_destroy_obj_rewriter();
3643 printf("IP firewall unloaded\n");
3644 }
3645
3646 /*
3647 * Stuff that must be initialized for every instance
3648 * (including the first of course).
3649 */
3650 static int
vnet_ipfw_init(const void * unused)3651 vnet_ipfw_init(const void *unused)
3652 {
3653 int error, first;
3654 struct ip_fw *rule = NULL;
3655 struct ip_fw_chain *chain;
3656
3657 chain = &V_layer3_chain;
3658
3659 first = IS_DEFAULT_VNET(curvnet) ? 1 : 0;
3660
3661 /* First set up some values that are compile time options */
3662 V_autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
3663 V_fw_deny_unknown_exthdrs = 1;
3664 #ifdef IPFIREWALL_VERBOSE
3665 V_fw_verbose = 1;
3666 #endif
3667 #ifdef IPFIREWALL_VERBOSE_LIMIT
3668 V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
3669 #endif
3670 #ifdef IPFIREWALL_NAT
3671 LIST_INIT(&chain->nat);
3672 #endif
3673
3674 /* Init shared services hash table */
3675 ipfw_init_srv(chain);
3676
3677 ipfw_init_counters();
3678 /* Set initial number of tables */
3679 V_fw_tables_max = default_fw_tables;
3680 error = ipfw_init_tables(chain, first);
3681 if (error) {
3682 printf("ipfw2: setting up tables failed\n");
3683 free(chain->map, M_IPFW);
3684 free(rule, M_IPFW);
3685 return (ENOSPC);
3686 }
3687
3688 IPFW_LOCK_INIT(chain);
3689
3690 ipfw_dyn_init(chain);
3691 /* fill and insert the default rule */
3692 rule = ipfw_alloc_rule(chain, sizeof(struct ip_fw));
3693 rule->flags |= IPFW_RULE_NOOPT;
3694 rule->cmd_len = 1;
3695 rule->cmd[0].len = 1;
3696 rule->cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
3697 chain->default_rule = rule;
3698 ipfw_add_protected_rule(chain, rule, 0);
3699
3700 ipfw_eaction_init(chain, first);
3701 ipfw_init_skipto_cache(chain);
3702 ipfw_bpf_init(first);
3703
3704 /* First set up some values that are compile time options */
3705 V_ipfw_vnet_ready = 1; /* Open for business */
3706
3707 /*
3708 * Hook the sockopt handler and pfil hooks for ipv4 and ipv6.
3709 * Even if the latter two fail we still keep the module alive
3710 * because the sockopt and layer2 paths are still useful.
3711 * ipfw[6]_hook return 0 on success, ENOENT on failure,
3712 * so we can ignore the exact return value and just set a flag.
3713 *
3714 * Note that V_fw[6]_enable are manipulated by a SYSCTL_PROC so
3715 * changes in the underlying (per-vnet) variables trigger
3716 * immediate hook()/unhook() calls.
3717 * In layer2 we have the same behaviour, except that V_ether_ipfw
3718 * is checked on each packet because there are no pfil hooks.
3719 */
3720 V_ip_fw_ctl_ptr = ipfw_ctl3;
3721 error = ipfw_attach_hooks();
3722 return (error);
3723 }
3724
3725 /*
3726 * Called for the removal of each instance.
3727 */
3728 static int
vnet_ipfw_uninit(const void * unused)3729 vnet_ipfw_uninit(const void *unused)
3730 {
3731 struct ip_fw *reap;
3732 struct ip_fw_chain *chain = &V_layer3_chain;
3733 int i, last;
3734
3735 V_ipfw_vnet_ready = 0; /* tell new callers to go away */
3736 /*
3737 * disconnect from ipv4, ipv6, layer2 and sockopt.
3738 * Then grab, release and grab again the WLOCK so we make
3739 * sure the update is propagated and nobody will be in.
3740 */
3741 ipfw_detach_hooks();
3742 V_ip_fw_ctl_ptr = NULL;
3743
3744 last = IS_DEFAULT_VNET(curvnet) ? 1 : 0;
3745
3746 IPFW_UH_WLOCK(chain);
3747 IPFW_UH_WUNLOCK(chain);
3748
3749 ipfw_dyn_uninit(0); /* run the callout_drain */
3750
3751 IPFW_UH_WLOCK(chain);
3752
3753 reap = NULL;
3754 IPFW_WLOCK(chain);
3755 for (i = 0; i < chain->n_rules; i++)
3756 ipfw_reap_add(chain, &reap, chain->map[i]);
3757 free(chain->map, M_IPFW);
3758 ipfw_destroy_skipto_cache(chain);
3759 IPFW_WUNLOCK(chain);
3760 IPFW_UH_WUNLOCK(chain);
3761 ipfw_destroy_tables(chain, last);
3762 ipfw_eaction_uninit(chain, last);
3763 if (reap != NULL)
3764 ipfw_reap_rules(reap);
3765 vnet_ipfw_iface_destroy(chain);
3766 ipfw_destroy_srv(chain);
3767 IPFW_LOCK_DESTROY(chain);
3768 ipfw_dyn_uninit(1); /* free the remaining parts */
3769 ipfw_destroy_counters();
3770 ipfw_bpf_uninit(last);
3771 return (0);
3772 }
3773
3774 /*
3775 * Module event handler.
3776 * In general we have the choice of handling most of these events by the
3777 * event handler or by the (VNET_)SYS(UN)INIT handlers. I have chosen to
3778 * use the SYSINIT handlers as they are more capable of expressing the
3779 * flow of control during module and vnet operations, so this is just
3780 * a skeleton. Note there is no SYSINIT equivalent of the module
3781 * SHUTDOWN handler, but we don't have anything to do in that case anyhow.
3782 */
3783 static int
ipfw_modevent(module_t mod,int type,void * unused)3784 ipfw_modevent(module_t mod, int type, void *unused)
3785 {
3786 int err = 0;
3787
3788 switch (type) {
3789 case MOD_LOAD:
3790 /* Called once at module load or
3791 * system boot if compiled in. */
3792 break;
3793 case MOD_QUIESCE:
3794 /* Called before unload. May veto unloading. */
3795 break;
3796 case MOD_UNLOAD:
3797 /* Called during unload. */
3798 break;
3799 case MOD_SHUTDOWN:
3800 /* Called during system shutdown. */
3801 break;
3802 default:
3803 err = EOPNOTSUPP;
3804 break;
3805 }
3806 return err;
3807 }
3808
3809 static moduledata_t ipfwmod = {
3810 "ipfw",
3811 ipfw_modevent,
3812 0
3813 };
3814
3815 /* Define startup order. */
3816 #define IPFW_SI_SUB_FIREWALL SI_SUB_PROTO_FIREWALL
3817 #define IPFW_MODEVENT_ORDER (SI_ORDER_ANY - 255) /* On boot slot in here. */
3818 #define IPFW_MODULE_ORDER (IPFW_MODEVENT_ORDER + 1) /* A little later. */
3819 #define IPFW_VNET_ORDER (IPFW_MODEVENT_ORDER + 2) /* Later still. */
3820
3821 DECLARE_MODULE(ipfw, ipfwmod, IPFW_SI_SUB_FIREWALL, IPFW_MODEVENT_ORDER);
3822 FEATURE(ipfw_ctl3, "ipfw new sockopt calls");
3823 MODULE_VERSION(ipfw, 3);
3824 /* should declare some dependencies here */
3825
3826 /*
3827 * Starting up. Done in order after ipfwmod() has been called.
3828 * VNET_SYSINIT is also called for each existing vnet and each new vnet.
3829 */
3830 SYSINIT(ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
3831 ipfw_init, NULL);
3832 VNET_SYSINIT(vnet_ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
3833 vnet_ipfw_init, NULL);
3834
3835 /*
3836 * Closing up shop. These are done in REVERSE ORDER, but still
3837 * after ipfwmod() has been called. Not called on reboot.
3838 * VNET_SYSUNINIT is also called for each exiting vnet as it exits.
3839 * or when the module is unloaded.
3840 */
3841 SYSUNINIT(ipfw_destroy, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
3842 ipfw_destroy, NULL);
3843 VNET_SYSUNINIT(vnet_ipfw_uninit, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
3844 vnet_ipfw_uninit, NULL);
3845 /* end of file */
3846