xref: /freebsd/sys/netpfil/ipfw/ip_fw2.c (revision 0418e6690e91aa6c38dd9af9da43c4c5a9dc1cd2)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 /*
30  * The FreeBSD IP packet firewall, main file
31  */
32 
33 #include "opt_ipfw.h"
34 #include "opt_ipdivert.h"
35 #include "opt_inet.h"
36 #ifndef INET
37 #error "IPFIREWALL requires INET"
38 #endif /* INET */
39 #include "opt_inet6.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/condvar.h>
44 #include <sys/counter.h>
45 #include <sys/eventhandler.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/kernel.h>
49 #include <sys/lock.h>
50 #include <sys/jail.h>
51 #include <sys/module.h>
52 #include <sys/priv.h>
53 #include <sys/proc.h>
54 #include <sys/rwlock.h>
55 #include <sys/rmlock.h>
56 #include <sys/sdt.h>
57 #include <sys/socket.h>
58 #include <sys/socketvar.h>
59 #include <sys/sysctl.h>
60 #include <sys/syslog.h>
61 #include <sys/ucred.h>
62 #include <net/ethernet.h> /* for ETHERTYPE_IP */
63 #include <net/if.h>
64 #include <net/if_var.h>
65 #include <net/if_private.h>
66 #include <net/route.h>
67 #include <net/route/nhop.h>
68 #include <net/pfil.h>
69 #include <net/vnet.h>
70 #include <net/if_gif.h>
71 #include <net/if_pfsync.h>
72 
73 #include <netpfil/pf/pf_mtag.h>
74 
75 #include <netinet/in.h>
76 #include <netinet/in_var.h>
77 #include <netinet/in_pcb.h>
78 #include <netinet/ip.h>
79 #include <netinet/ip_var.h>
80 #include <netinet/ip_icmp.h>
81 #include <netinet/ip_fw.h>
82 #include <netinet/ip_carp.h>
83 #include <netinet/pim.h>
84 #include <netinet/tcp_var.h>
85 #include <netinet/udp.h>
86 #include <netinet/udp_var.h>
87 #include <netinet/sctp.h>
88 #include <netinet/sctp_crc32.h>
89 #include <netinet/sctp_header.h>
90 
91 #include <netinet/ip6.h>
92 #include <netinet/icmp6.h>
93 #include <netinet/in_fib.h>
94 #ifdef INET6
95 #include <netinet6/in6_fib.h>
96 #include <netinet6/in6_pcb.h>
97 #include <netinet6/scope6_var.h>
98 #include <netinet6/ip6_var.h>
99 #endif
100 
101 #include <net/if_gre.h> /* for struct grehdr */
102 
103 #include <netpfil/ipfw/ip_fw_private.h>
104 
105 #include <machine/in_cksum.h>	/* XXX for in_cksum */
106 
107 #ifdef MAC
108 #include <security/mac/mac_framework.h>
109 #endif
110 
111 #define	IPFW_PROBE(probe, arg0, arg1, arg2, arg3, arg4, arg5)		\
112     SDT_PROBE6(ipfw, , , probe, arg0, arg1, arg2, arg3, arg4, arg5)
113 
114 SDT_PROVIDER_DEFINE(ipfw);
115 SDT_PROBE_DEFINE6(ipfw, , , rule__matched,
116     "int",			/* retval */
117     "int",			/* af */
118     "void *",			/* src addr */
119     "void *",			/* dst addr */
120     "struct ip_fw_args *",	/* args */
121     "struct ip_fw *"		/* rule */);
122 
123 /*
124  * static variables followed by global ones.
125  * All ipfw global variables are here.
126  */
127 
128 VNET_DEFINE_STATIC(int, fw_deny_unknown_exthdrs);
129 #define	V_fw_deny_unknown_exthdrs	VNET(fw_deny_unknown_exthdrs)
130 
131 VNET_DEFINE_STATIC(int, fw_permit_single_frag6) = 1;
132 #define	V_fw_permit_single_frag6	VNET(fw_permit_single_frag6)
133 
134 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
135 static int default_to_accept = 1;
136 #else
137 static int default_to_accept;
138 #endif
139 
140 VNET_DEFINE(int, autoinc_step);
141 VNET_DEFINE(int, fw_one_pass) = 1;
142 
143 VNET_DEFINE(unsigned int, fw_tables_max);
144 VNET_DEFINE(unsigned int, fw_tables_sets) = 0;	/* Don't use set-aware tables */
145 /* Use 128 tables by default */
146 static unsigned int default_fw_tables = IPFW_TABLES_DEFAULT;
147 
148 #ifndef IPFIREWALL_LINEAR_SKIPTO
149 VNET_DEFINE(int, skipto_cache) = 0;
150 #else
151 VNET_DEFINE(int, skipto_cache) = 1;
152 #endif
153 
154 static uint32_t jump(struct ip_fw_chain *chain, struct ip_fw *f,
155     uint32_t num, int tablearg, bool jump_backwards);
156 
157 /*
158  * Each rule belongs to one of 32 different sets (0..31).
159  * The variable set_disable contains one bit per set.
160  * If the bit is set, all rules in the corresponding set
161  * are disabled. Set RESVD_SET(31) is reserved for the default rule
162  * and rules that are not deleted by the flush command,
163  * and CANNOT be disabled.
164  * Rules in set RESVD_SET can only be deleted individually.
165  */
166 VNET_DEFINE(u_int32_t, set_disable);
167 #define	V_set_disable			VNET(set_disable)
168 
169 VNET_DEFINE(int, fw_verbose);
170 /* counter for ipfw_log(NULL...) */
171 VNET_DEFINE(u_int64_t, norule_counter);
172 VNET_DEFINE(int, verbose_limit);
173 
174 /* layer3_chain contains the list of rules for layer 3 */
175 VNET_DEFINE(struct ip_fw_chain, layer3_chain);
176 
177 /* ipfw_vnet_ready controls when we are open for business */
178 VNET_DEFINE(int, ipfw_vnet_ready) = 0;
179 
180 VNET_DEFINE(int, ipfw_nat_ready) = 0;
181 
182 ipfw_nat_t *ipfw_nat_ptr = NULL;
183 struct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int);
184 ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
185 ipfw_nat_cfg_t *ipfw_nat_del_ptr;
186 ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
187 ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
188 
189 #ifdef SYSCTL_NODE
190 uint32_t dummy_def = IPFW_DEFAULT_RULE;
191 static int sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS);
192 static int sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS);
193 
194 SYSBEGIN(f3)
195 
196 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
197     "Firewall");
198 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
199     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_one_pass), 0,
200     "Only do a single pass through ipfw when using dummynet(4), ipfw_nat or other divert(4)-like interfaces");
201 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step,
202     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(autoinc_step), 0,
203     "Rule number auto-increment step");
204 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
205     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_verbose), 0,
206     "Log matches to ipfw rules");
207 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit,
208     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(verbose_limit), 0,
209     "Set upper limit of matches of ipfw rules logged");
210 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, skipto_cache,
211     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(skipto_cache), 0,
212     "Status of linear skipto cache: 1 - enabled, 0 - disabled.");
213 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
214     &dummy_def, 0,
215     "The default/max possible rule number.");
216 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, tables_max,
217     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
218     0, 0, sysctl_ipfw_table_num, "IU",
219     "Maximum number of concurrently used tables");
220 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, tables_sets,
221     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
222     0, 0, sysctl_ipfw_tables_sets, "IU",
223     "Use per-set namespace for tables");
224 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
225     &default_to_accept, 0,
226     "Make the default rule accept all packets.");
227 TUNABLE_INT("net.inet.ip.fw.tables_max", (int *)&default_fw_tables);
228 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count,
229     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(layer3_chain.n_rules), 0,
230     "Number of static rules");
231 
232 #ifdef INET6
233 SYSCTL_DECL(_net_inet6_ip6);
234 SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, fw, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
235     "Firewall");
236 SYSCTL_INT(_net_inet6_ip6_fw, OID_AUTO, deny_unknown_exthdrs,
237     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
238     &VNET_NAME(fw_deny_unknown_exthdrs), 0,
239     "Deny packets with unknown IPv6 Extension Headers");
240 SYSCTL_INT(_net_inet6_ip6_fw, OID_AUTO, permit_single_frag6,
241     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
242     &VNET_NAME(fw_permit_single_frag6), 0,
243     "Permit single packet IPv6 fragments");
244 #endif /* INET6 */
245 
246 SYSEND
247 
248 #endif /* SYSCTL_NODE */
249 
250 /*
251  * Some macros used in the various matching options.
252  * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
253  * Other macros just cast void * into the appropriate type
254  */
255 #define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
256 #define	TCP(p)		((struct tcphdr *)(p))
257 #define	SCTP(p)		((struct sctphdr *)(p))
258 #define	UDP(p)		((struct udphdr *)(p))
259 #define	ICMP(p)		((struct icmphdr *)(p))
260 #define	ICMP6(p)	((struct icmp6_hdr *)(p))
261 
262 static __inline int
icmptype_match(struct icmphdr * icmp,ipfw_insn_u32 * cmd)263 icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
264 {
265 	int type = icmp->icmp_type;
266 
267 	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
268 }
269 
270 #define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
271     (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
272 
273 static int
is_icmp_query(struct icmphdr * icmp)274 is_icmp_query(struct icmphdr *icmp)
275 {
276 	int type = icmp->icmp_type;
277 
278 	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
279 }
280 #undef TT
281 
282 /*
283  * The following checks use two arrays of 8 or 16 bits to store the
284  * bits that we want set or clear, respectively. They are in the
285  * low and high half of cmd->arg1 or cmd->d[0].
286  *
287  * We scan options and store the bits we find set. We succeed if
288  *
289  *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
290  *
291  * The code is sometimes optimized not to store additional variables.
292  */
293 
294 static int
flags_match(ipfw_insn * cmd,u_int8_t bits)295 flags_match(ipfw_insn *cmd, u_int8_t bits)
296 {
297 	u_char want_clear;
298 	bits = ~bits;
299 
300 	if ( ((cmd->arg1 & 0xff) & bits) != 0)
301 		return 0; /* some bits we want set were clear */
302 	want_clear = (cmd->arg1 >> 8) & 0xff;
303 	if ( (want_clear & bits) != want_clear)
304 		return 0; /* some bits we want clear were set */
305 	return 1;
306 }
307 
308 static int
ipopts_match(struct ip * ip,ipfw_insn * cmd)309 ipopts_match(struct ip *ip, ipfw_insn *cmd)
310 {
311 	int optlen, bits = 0;
312 	u_char *cp = (u_char *)(ip + 1);
313 	int x = (ip->ip_hl << 2) - sizeof (struct ip);
314 
315 	for (; x > 0; x -= optlen, cp += optlen) {
316 		int opt = cp[IPOPT_OPTVAL];
317 
318 		if (opt == IPOPT_EOL)
319 			break;
320 		if (opt == IPOPT_NOP)
321 			optlen = 1;
322 		else {
323 			optlen = cp[IPOPT_OLEN];
324 			if (optlen <= 0 || optlen > x)
325 				return 0; /* invalid or truncated */
326 		}
327 		switch (opt) {
328 		default:
329 			break;
330 
331 		case IPOPT_LSRR:
332 			bits |= IP_FW_IPOPT_LSRR;
333 			break;
334 
335 		case IPOPT_SSRR:
336 			bits |= IP_FW_IPOPT_SSRR;
337 			break;
338 
339 		case IPOPT_RR:
340 			bits |= IP_FW_IPOPT_RR;
341 			break;
342 
343 		case IPOPT_TS:
344 			bits |= IP_FW_IPOPT_TS;
345 			break;
346 		}
347 	}
348 	return (flags_match(cmd, bits));
349 }
350 
351 /*
352  * Parse TCP options. The logic copied from tcp_dooptions().
353  */
354 static int
tcpopts_parse(const struct tcphdr * tcp,uint16_t * mss)355 tcpopts_parse(const struct tcphdr *tcp, uint16_t *mss)
356 {
357 	const u_char *cp = (const u_char *)(tcp + 1);
358 	int optlen, bits = 0;
359 	int cnt = (tcp->th_off << 2) - sizeof(struct tcphdr);
360 
361 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
362 		int opt = cp[0];
363 		if (opt == TCPOPT_EOL)
364 			break;
365 		if (opt == TCPOPT_NOP)
366 			optlen = 1;
367 		else {
368 			if (cnt < 2)
369 				break;
370 			optlen = cp[1];
371 			if (optlen < 2 || optlen > cnt)
372 				break;
373 		}
374 
375 		switch (opt) {
376 		default:
377 			break;
378 
379 		case TCPOPT_MAXSEG:
380 			if (optlen != TCPOLEN_MAXSEG)
381 				break;
382 			bits |= IP_FW_TCPOPT_MSS;
383 			if (mss != NULL)
384 				*mss = be16dec(cp + 2);
385 			break;
386 
387 		case TCPOPT_WINDOW:
388 			if (optlen == TCPOLEN_WINDOW)
389 				bits |= IP_FW_TCPOPT_WINDOW;
390 			break;
391 
392 		case TCPOPT_SACK_PERMITTED:
393 			if (optlen == TCPOLEN_SACK_PERMITTED)
394 				bits |= IP_FW_TCPOPT_SACK;
395 			break;
396 
397 		case TCPOPT_SACK:
398 			if (optlen > 2 && (optlen - 2) % TCPOLEN_SACK == 0)
399 				bits |= IP_FW_TCPOPT_SACK;
400 			break;
401 
402 		case TCPOPT_TIMESTAMP:
403 			if (optlen == TCPOLEN_TIMESTAMP)
404 				bits |= IP_FW_TCPOPT_TS;
405 			break;
406 		}
407 	}
408 	return (bits);
409 }
410 
411 static int
tcpopts_match(struct tcphdr * tcp,ipfw_insn * cmd)412 tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
413 {
414 
415 	return (flags_match(cmd, tcpopts_parse(tcp, NULL)));
416 }
417 
418 static int
iface_match(struct ifnet * ifp,ipfw_insn_if * cmd,struct ip_fw_chain * chain,uint32_t * tablearg)419 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd, struct ip_fw_chain *chain,
420     uint32_t *tablearg)
421 {
422 
423 	if (ifp == NULL)	/* no iface with this packet, match fails */
424 		return (0);
425 
426 	/* Check by name or by IP address */
427 	if (cmd->name[0] != '\0') { /* match by name */
428 		if (cmd->name[0] == '\1') /* use tablearg to match */
429 			return ipfw_lookup_table(chain, cmd->p.kidx, 0,
430 			    &ifp->if_index, tablearg);
431 		/* Check name */
432 		if (cmd->p.glob) {
433 			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
434 				return(1);
435 		} else {
436 			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
437 				return(1);
438 		}
439 	} else {
440 #if !defined(USERSPACE) && defined(__FreeBSD__)	/* and OSX too ? */
441 		struct ifaddr *ia;
442 
443 		NET_EPOCH_ASSERT();
444 
445 		CK_STAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
446 			if (ia->ifa_addr->sa_family != AF_INET)
447 				continue;
448 			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
449 			    (ia->ifa_addr))->sin_addr.s_addr)
450 				return (1);	/* match */
451 		}
452 #endif /* __FreeBSD__ */
453 	}
454 	return(0);	/* no match, fail ... */
455 }
456 
457 /*
458  * The verify_path function checks if a route to the src exists and
459  * if it is reachable via ifp (when provided).
460  *
461  * The 'verrevpath' option checks that the interface that an IP packet
462  * arrives on is the same interface that traffic destined for the
463  * packet's source address would be routed out of.
464  * The 'versrcreach' option just checks that the source address is
465  * reachable via any route (except default) in the routing table.
466  * These two are a measure to block forged packets. This is also
467  * commonly known as "anti-spoofing" or Unicast Reverse Path
468  * Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
469  * is purposely reminiscent of the Cisco IOS command,
470  *
471  *   ip verify unicast reverse-path
472  *   ip verify unicast source reachable-via any
473  *
474  * which implements the same functionality. But note that the syntax
475  * is misleading, and the check may be performed on all IP packets
476  * whether unicast, multicast, or broadcast.
477  */
478 static int
verify_path(struct in_addr src,struct ifnet * ifp,u_int fib)479 verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
480 {
481 #if defined(USERSPACE) || !defined(__FreeBSD__)
482 	return 0;
483 #else
484 	struct nhop_object *nh;
485 
486 	nh = fib4_lookup(fib, src, 0, NHR_NONE, 0);
487 	if (nh == NULL)
488 		return (0);
489 
490 	/*
491 	 * If ifp is provided, check for equality with rtentry.
492 	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
493 	 * in order to pass packets injected back by if_simloop():
494 	 * routing entry (via lo0) for our own address
495 	 * may exist, so we need to handle routing assymetry.
496 	 */
497 	if (ifp != NULL && ifp != nh->nh_aifp)
498 		return (0);
499 
500 	/* if no ifp provided, check if rtentry is not default route */
501 	if (ifp == NULL && (nh->nh_flags & NHF_DEFAULT) != 0)
502 		return (0);
503 
504 	/* or if this is a blackhole/reject route */
505 	if (ifp == NULL && (nh->nh_flags & (NHF_REJECT|NHF_BLACKHOLE)) != 0)
506 		return (0);
507 
508 	/* found valid route */
509 	return 1;
510 #endif /* __FreeBSD__ */
511 }
512 
513 /*
514  * Generate an SCTP packet containing an ABORT chunk. The verification tag
515  * is given by vtag. The T-bit is set in the ABORT chunk if and only if
516  * reflected is not 0.
517  */
518 
519 static struct mbuf *
ipfw_send_abort(struct mbuf * replyto,struct ipfw_flow_id * id,u_int32_t vtag,int reflected)520 ipfw_send_abort(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t vtag,
521     int reflected)
522 {
523 	struct mbuf *m;
524 	struct ip *ip;
525 #ifdef INET6
526 	struct ip6_hdr *ip6;
527 #endif
528 	struct sctphdr *sctp;
529 	struct sctp_chunkhdr *chunk;
530 	u_int16_t hlen, plen, tlen;
531 
532 	MGETHDR(m, M_NOWAIT, MT_DATA);
533 	if (m == NULL)
534 		return (NULL);
535 
536 	M_SETFIB(m, id->fib);
537 #ifdef MAC
538 	if (replyto != NULL)
539 		mac_netinet_firewall_reply(replyto, m);
540 	else
541 		mac_netinet_firewall_send(m);
542 #else
543 	(void)replyto;		/* don't warn about unused arg */
544 #endif
545 
546 	switch (id->addr_type) {
547 	case 4:
548 		hlen = sizeof(struct ip);
549 		break;
550 #ifdef INET6
551 	case 6:
552 		hlen = sizeof(struct ip6_hdr);
553 		break;
554 #endif
555 	default:
556 		/* XXX: log me?!? */
557 		FREE_PKT(m);
558 		return (NULL);
559 	}
560 	plen = sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr);
561 	tlen = hlen + plen;
562 	m->m_data += max_linkhdr;
563 	m->m_flags |= M_SKIP_FIREWALL;
564 	m->m_pkthdr.len = m->m_len = tlen;
565 	m->m_pkthdr.rcvif = NULL;
566 	bzero(m->m_data, tlen);
567 
568 	switch (id->addr_type) {
569 	case 4:
570 		ip = mtod(m, struct ip *);
571 
572 		ip->ip_v = 4;
573 		ip->ip_hl = sizeof(struct ip) >> 2;
574 		ip->ip_tos = IPTOS_LOWDELAY;
575 		ip->ip_len = htons(tlen);
576 		ip->ip_id = htons(0);
577 		ip->ip_off = htons(0);
578 		ip->ip_ttl = V_ip_defttl;
579 		ip->ip_p = IPPROTO_SCTP;
580 		ip->ip_sum = 0;
581 		ip->ip_src.s_addr = htonl(id->dst_ip);
582 		ip->ip_dst.s_addr = htonl(id->src_ip);
583 
584 		sctp = (struct sctphdr *)(ip + 1);
585 		break;
586 #ifdef INET6
587 	case 6:
588 		ip6 = mtod(m, struct ip6_hdr *);
589 
590 		ip6->ip6_vfc = IPV6_VERSION;
591 		ip6->ip6_plen = htons(plen);
592 		ip6->ip6_nxt = IPPROTO_SCTP;
593 		ip6->ip6_hlim = IPV6_DEFHLIM;
594 		ip6->ip6_src = id->dst_ip6;
595 		ip6->ip6_dst = id->src_ip6;
596 
597 		sctp = (struct sctphdr *)(ip6 + 1);
598 		break;
599 #endif
600 	}
601 
602 	sctp->src_port = htons(id->dst_port);
603 	sctp->dest_port = htons(id->src_port);
604 	sctp->v_tag = htonl(vtag);
605 	sctp->checksum = htonl(0);
606 
607 	chunk = (struct sctp_chunkhdr *)(sctp + 1);
608 	chunk->chunk_type = SCTP_ABORT_ASSOCIATION;
609 	chunk->chunk_flags = 0;
610 	if (reflected != 0) {
611 		chunk->chunk_flags |= SCTP_HAD_NO_TCB;
612 	}
613 	chunk->chunk_length = htons(sizeof(struct sctp_chunkhdr));
614 
615 	sctp->checksum = sctp_calculate_cksum(m, hlen);
616 
617 	return (m);
618 }
619 
620 /*
621  * Generate a TCP packet, containing either a RST or a keepalive.
622  * When flags & TH_RST, we are sending a RST packet, because of a
623  * "reset" action matched the packet.
624  * Otherwise we are sending a keepalive, and flags & TH_
625  * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
626  * so that MAC can label the reply appropriately.
627  */
628 struct mbuf *
ipfw_send_pkt(struct mbuf * replyto,struct ipfw_flow_id * id,u_int32_t seq,u_int32_t ack,int flags)629 ipfw_send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
630     u_int32_t ack, int flags)
631 {
632 	struct mbuf *m = NULL;		/* stupid compiler */
633 	struct ip *h = NULL;		/* stupid compiler */
634 #ifdef INET6
635 	struct ip6_hdr *h6 = NULL;
636 #endif
637 	struct tcphdr *th = NULL;
638 	int len, dir;
639 
640 	MGETHDR(m, M_NOWAIT, MT_DATA);
641 	if (m == NULL)
642 		return (NULL);
643 
644 	M_SETFIB(m, id->fib);
645 #ifdef MAC
646 	if (replyto != NULL)
647 		mac_netinet_firewall_reply(replyto, m);
648 	else
649 		mac_netinet_firewall_send(m);
650 #else
651 	(void)replyto;		/* don't warn about unused arg */
652 #endif
653 
654 	switch (id->addr_type) {
655 	case 4:
656 		len = sizeof(struct ip) + sizeof(struct tcphdr);
657 		break;
658 #ifdef INET6
659 	case 6:
660 		len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
661 		break;
662 #endif
663 	default:
664 		/* XXX: log me?!? */
665 		FREE_PKT(m);
666 		return (NULL);
667 	}
668 	dir = ((flags & (TH_SYN | TH_RST)) == TH_SYN);
669 
670 	m->m_data += max_linkhdr;
671 	m->m_flags |= M_SKIP_FIREWALL;
672 	m->m_pkthdr.len = m->m_len = len;
673 	m->m_pkthdr.rcvif = NULL;
674 	bzero(m->m_data, len);
675 
676 	switch (id->addr_type) {
677 	case 4:
678 		h = mtod(m, struct ip *);
679 
680 		/* prepare for checksum */
681 		h->ip_p = IPPROTO_TCP;
682 		h->ip_len = htons(sizeof(struct tcphdr));
683 		if (dir) {
684 			h->ip_src.s_addr = htonl(id->src_ip);
685 			h->ip_dst.s_addr = htonl(id->dst_ip);
686 		} else {
687 			h->ip_src.s_addr = htonl(id->dst_ip);
688 			h->ip_dst.s_addr = htonl(id->src_ip);
689 		}
690 
691 		th = (struct tcphdr *)(h + 1);
692 		break;
693 #ifdef INET6
694 	case 6:
695 		h6 = mtod(m, struct ip6_hdr *);
696 
697 		/* prepare for checksum */
698 		h6->ip6_nxt = IPPROTO_TCP;
699 		h6->ip6_plen = htons(sizeof(struct tcphdr));
700 		if (dir) {
701 			h6->ip6_src = id->src_ip6;
702 			h6->ip6_dst = id->dst_ip6;
703 		} else {
704 			h6->ip6_src = id->dst_ip6;
705 			h6->ip6_dst = id->src_ip6;
706 		}
707 
708 		th = (struct tcphdr *)(h6 + 1);
709 		break;
710 #endif
711 	}
712 
713 	if (dir) {
714 		th->th_sport = htons(id->src_port);
715 		th->th_dport = htons(id->dst_port);
716 	} else {
717 		th->th_sport = htons(id->dst_port);
718 		th->th_dport = htons(id->src_port);
719 	}
720 	th->th_off = sizeof(struct tcphdr) >> 2;
721 
722 	if (flags & TH_RST) {
723 		if (flags & TH_ACK) {
724 			th->th_seq = htonl(ack);
725 			tcp_set_flags(th, TH_RST);
726 		} else {
727 			if (flags & TH_SYN)
728 				seq++;
729 			th->th_ack = htonl(seq);
730 			tcp_set_flags(th, TH_RST | TH_ACK);
731 		}
732 	} else {
733 		/*
734 		 * Keepalive - use caller provided sequence numbers
735 		 */
736 		th->th_seq = htonl(seq);
737 		th->th_ack = htonl(ack);
738 		tcp_set_flags(th, TH_ACK);
739 	}
740 
741 	switch (id->addr_type) {
742 	case 4:
743 		th->th_sum = in_cksum(m, len);
744 
745 		/* finish the ip header */
746 		h->ip_v = 4;
747 		h->ip_hl = sizeof(*h) >> 2;
748 		h->ip_tos = IPTOS_LOWDELAY;
749 		h->ip_off = htons(0);
750 		h->ip_len = htons(len);
751 		h->ip_ttl = V_ip_defttl;
752 		h->ip_sum = 0;
753 		break;
754 #ifdef INET6
755 	case 6:
756 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(*h6),
757 		    sizeof(struct tcphdr));
758 
759 		/* finish the ip6 header */
760 		h6->ip6_vfc |= IPV6_VERSION;
761 		h6->ip6_hlim = IPV6_DEFHLIM;
762 		break;
763 #endif
764 	}
765 
766 	return (m);
767 }
768 
769 #ifdef INET6
770 /*
771  * ipv6 specific rules here...
772  */
773 static __inline int
icmp6type_match(int type,ipfw_insn_u32 * cmd)774 icmp6type_match(int type, ipfw_insn_u32 *cmd)
775 {
776 	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
777 }
778 
779 static int
flow6id_match(int curr_flow,ipfw_insn_u32 * cmd)780 flow6id_match(int curr_flow, ipfw_insn_u32 *cmd)
781 {
782 	int i;
783 	for (i=0; i <= cmd->o.arg1; ++i)
784 		if (curr_flow == cmd->d[i])
785 			return 1;
786 	return 0;
787 }
788 
789 /* support for IP6_*_ME opcodes */
790 static const struct in6_addr lla_mask = {{{
791 	0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
792 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
793 }}};
794 
795 static int
ipfw_localip6(struct in6_addr * in6)796 ipfw_localip6(struct in6_addr *in6)
797 {
798 	struct rm_priotracker in6_ifa_tracker;
799 	struct in6_ifaddr *ia;
800 
801 	if (IN6_IS_ADDR_MULTICAST(in6))
802 		return (0);
803 
804 	if (!IN6_IS_ADDR_LINKLOCAL(in6))
805 		return (in6_localip(in6));
806 
807 	IN6_IFADDR_RLOCK(&in6_ifa_tracker);
808 	CK_STAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
809 		if (!IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr))
810 			continue;
811 		if (IN6_ARE_MASKED_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
812 		    in6, &lla_mask)) {
813 			IN6_IFADDR_RUNLOCK(&in6_ifa_tracker);
814 			return (1);
815 		}
816 	}
817 	IN6_IFADDR_RUNLOCK(&in6_ifa_tracker);
818 	return (0);
819 }
820 
821 static int
verify_path6(struct in6_addr * src,struct ifnet * ifp,u_int fib)822 verify_path6(struct in6_addr *src, struct ifnet *ifp, u_int fib)
823 {
824 	struct nhop_object *nh;
825 
826 	if (IN6_IS_SCOPE_LINKLOCAL(src))
827 		return (1);
828 
829 	nh = fib6_lookup(fib, src, 0, NHR_NONE, 0);
830 	if (nh == NULL)
831 		return (0);
832 
833 	/* If ifp is provided, check for equality with route table. */
834 	if (ifp != NULL && ifp != nh->nh_aifp)
835 		return (0);
836 
837 	/* if no ifp provided, check if rtentry is not default route */
838 	if (ifp == NULL && (nh->nh_flags & NHF_DEFAULT) != 0)
839 		return (0);
840 
841 	/* or if this is a blackhole/reject route */
842 	if (ifp == NULL && (nh->nh_flags & (NHF_REJECT|NHF_BLACKHOLE)) != 0)
843 		return (0);
844 
845 	/* found valid route */
846 	return 1;
847 }
848 
849 static int
is_icmp6_query(int icmp6_type)850 is_icmp6_query(int icmp6_type)
851 {
852 	if ((icmp6_type <= ICMP6_MAXTYPE) &&
853 	    (icmp6_type == ICMP6_ECHO_REQUEST ||
854 	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
855 	    icmp6_type == ICMP6_WRUREQUEST ||
856 	    icmp6_type == ICMP6_FQDN_QUERY ||
857 	    icmp6_type == ICMP6_NI_QUERY))
858 		return (1);
859 
860 	return (0);
861 }
862 
863 static int
map_icmp_unreach(int code)864 map_icmp_unreach(int code)
865 {
866 
867 	/* RFC 7915 p4.2 */
868 	switch (code) {
869 	case ICMP_UNREACH_NET:
870 	case ICMP_UNREACH_HOST:
871 	case ICMP_UNREACH_SRCFAIL:
872 	case ICMP_UNREACH_NET_UNKNOWN:
873 	case ICMP_UNREACH_HOST_UNKNOWN:
874 	case ICMP_UNREACH_TOSNET:
875 	case ICMP_UNREACH_TOSHOST:
876 		return (ICMP6_DST_UNREACH_NOROUTE);
877 	case ICMP_UNREACH_PORT:
878 		return (ICMP6_DST_UNREACH_NOPORT);
879 	default:
880 		/*
881 		 * Map the rest of codes into admit prohibited.
882 		 * XXX: unreach proto should be mapped into ICMPv6
883 		 * parameter problem, but we use only unreach type.
884 		 */
885 		return (ICMP6_DST_UNREACH_ADMIN);
886 	}
887 }
888 
889 static void
send_reject6(struct ip_fw_args * args,int code,u_int hlen,const struct ip6_hdr * ip6)890 send_reject6(struct ip_fw_args *args, int code, u_int hlen,
891     const struct ip6_hdr *ip6)
892 {
893 	struct mbuf *m;
894 
895 	m = args->m;
896 	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
897 		const struct tcphdr * tcp;
898 		tcp = (const struct tcphdr *)((const char *)ip6 + hlen);
899 
900 		if ((tcp_get_flags(tcp) & TH_RST) == 0) {
901 			struct mbuf *m0;
902 			m0 = ipfw_send_pkt(args->m, &(args->f_id),
903 			    ntohl(tcp->th_seq), ntohl(tcp->th_ack),
904 			    tcp_get_flags(tcp) | TH_RST);
905 			if (m0 != NULL)
906 				ip6_output(m0, NULL, NULL, 0, NULL, NULL,
907 				    NULL);
908 		}
909 		FREE_PKT(m);
910 	} else if (code == ICMP6_UNREACH_ABORT &&
911 	    args->f_id.proto == IPPROTO_SCTP) {
912 		struct mbuf *m0;
913 		const struct sctphdr *sctp;
914 		u_int32_t v_tag;
915 		int reflected;
916 
917 		sctp = (const struct sctphdr *)((const char *)ip6 + hlen);
918 		reflected = 1;
919 		v_tag = ntohl(sctp->v_tag);
920 		/* Investigate the first chunk header if available */
921 		if (m->m_len >= hlen + sizeof(struct sctphdr) +
922 		    sizeof(struct sctp_chunkhdr)) {
923 			const struct sctp_chunkhdr *chunk;
924 
925 			chunk = (const struct sctp_chunkhdr *)(sctp + 1);
926 			switch (chunk->chunk_type) {
927 			case SCTP_INITIATION:
928 				/*
929 				 * Packets containing an INIT chunk MUST have
930 				 * a zero v-tag.
931 				 */
932 				if (v_tag != 0) {
933 					v_tag = 0;
934 					break;
935 				}
936 				/* INIT chunk MUST NOT be bundled */
937 				if (m->m_pkthdr.len >
938 				    hlen + sizeof(struct sctphdr) +
939 				    ntohs(chunk->chunk_length) + 3) {
940 					break;
941 				}
942 				/* Use the initiate tag if available */
943 				if ((m->m_len >= hlen + sizeof(struct sctphdr) +
944 				    sizeof(struct sctp_chunkhdr) +
945 				    offsetof(struct sctp_init, a_rwnd))) {
946 					const struct sctp_init *init;
947 
948 					init = (const struct sctp_init *)(chunk + 1);
949 					v_tag = ntohl(init->initiate_tag);
950 					reflected = 0;
951 				}
952 				break;
953 			case SCTP_ABORT_ASSOCIATION:
954 				/*
955 				 * If the packet contains an ABORT chunk, don't
956 				 * reply.
957 				 * XXX: We should search through all chunks,
958 				 * but do not do that to avoid attacks.
959 				 */
960 				v_tag = 0;
961 				break;
962 			}
963 		}
964 		if (v_tag == 0) {
965 			m0 = NULL;
966 		} else {
967 			m0 = ipfw_send_abort(args->m, &(args->f_id), v_tag,
968 			    reflected);
969 		}
970 		if (m0 != NULL)
971 			ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL);
972 		FREE_PKT(m);
973 	} else if (code != ICMP6_UNREACH_RST && code != ICMP6_UNREACH_ABORT) {
974 		/* Send an ICMPv6 unreach. */
975 #if 0
976 		/*
977 		 * Unlike above, the mbufs need to line up with the ip6 hdr,
978 		 * as the contents are read. We need to m_adj() the
979 		 * needed amount.
980 		 * The mbuf will however be thrown away so we can adjust it.
981 		 * Remember we did an m_pullup on it already so we
982 		 * can make some assumptions about contiguousness.
983 		 */
984 		if (args->L3offset)
985 			m_adj(m, args->L3offset);
986 #endif
987 		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
988 	} else
989 		FREE_PKT(m);
990 
991 	args->m = NULL;
992 }
993 
994 #endif /* INET6 */
995 
996 /*
997  * sends a reject message, consuming the mbuf passed as an argument.
998  */
999 static void
send_reject(struct ip_fw_args * args,int code,uint16_t mtu,int iplen,const struct ip * ip)1000 send_reject(struct ip_fw_args *args, int code, uint16_t mtu, int iplen,
1001     const struct ip *ip)
1002 {
1003 #if 0
1004 	/* XXX When ip is not guaranteed to be at mtod() we will
1005 	 * need to account for this */
1006 	 * The mbuf will however be thrown away so we can adjust it.
1007 	 * Remember we did an m_pullup on it already so we
1008 	 * can make some assumptions about contiguousness.
1009 	 */
1010 	if (args->L3offset)
1011 		m_adj(m, args->L3offset);
1012 #endif
1013 	if (code != ICMP_REJECT_RST && code != ICMP_REJECT_ABORT) {
1014 		/* Send an ICMP unreach */
1015 		icmp_error(args->m, ICMP_UNREACH, code, 0L, mtu);
1016 	} else if (code == ICMP_REJECT_RST && args->f_id.proto == IPPROTO_TCP) {
1017 		struct tcphdr *const tcp =
1018 		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1019 		if ( (tcp_get_flags(tcp) & TH_RST) == 0) {
1020 			struct mbuf *m;
1021 			m = ipfw_send_pkt(args->m, &(args->f_id),
1022 				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
1023 				tcp_get_flags(tcp) | TH_RST);
1024 			if (m != NULL)
1025 				ip_output(m, NULL, NULL, 0, NULL, NULL);
1026 		}
1027 		FREE_PKT(args->m);
1028 	} else if (code == ICMP_REJECT_ABORT &&
1029 	    args->f_id.proto == IPPROTO_SCTP) {
1030 		struct mbuf *m;
1031 		struct sctphdr *sctp;
1032 		struct sctp_chunkhdr *chunk;
1033 		struct sctp_init *init;
1034 		u_int32_t v_tag;
1035 		int reflected;
1036 
1037 		sctp = L3HDR(struct sctphdr, mtod(args->m, struct ip *));
1038 		reflected = 1;
1039 		v_tag = ntohl(sctp->v_tag);
1040 		if (iplen >= (ip->ip_hl << 2) + sizeof(struct sctphdr) +
1041 		    sizeof(struct sctp_chunkhdr)) {
1042 			/* Look at the first chunk header if available */
1043 			chunk = (struct sctp_chunkhdr *)(sctp + 1);
1044 			switch (chunk->chunk_type) {
1045 			case SCTP_INITIATION:
1046 				/*
1047 				 * Packets containing an INIT chunk MUST have
1048 				 * a zero v-tag.
1049 				 */
1050 				if (v_tag != 0) {
1051 					v_tag = 0;
1052 					break;
1053 				}
1054 				/* INIT chunk MUST NOT be bundled */
1055 				if (iplen >
1056 				    (ip->ip_hl << 2) + sizeof(struct sctphdr) +
1057 				    ntohs(chunk->chunk_length) + 3) {
1058 					break;
1059 				}
1060 				/* Use the initiate tag if available */
1061 				if ((iplen >= (ip->ip_hl << 2) +
1062 				    sizeof(struct sctphdr) +
1063 				    sizeof(struct sctp_chunkhdr) +
1064 				    offsetof(struct sctp_init, a_rwnd))) {
1065 					init = (struct sctp_init *)(chunk + 1);
1066 					v_tag = ntohl(init->initiate_tag);
1067 					reflected = 0;
1068 				}
1069 				break;
1070 			case SCTP_ABORT_ASSOCIATION:
1071 				/*
1072 				 * If the packet contains an ABORT chunk, don't
1073 				 * reply.
1074 				 * XXX: We should search through all chunks,
1075 				 * but do not do that to avoid attacks.
1076 				 */
1077 				v_tag = 0;
1078 				break;
1079 			}
1080 		}
1081 		if (v_tag == 0) {
1082 			m = NULL;
1083 		} else {
1084 			m = ipfw_send_abort(args->m, &(args->f_id), v_tag,
1085 			    reflected);
1086 		}
1087 		if (m != NULL)
1088 			ip_output(m, NULL, NULL, 0, NULL, NULL);
1089 		FREE_PKT(args->m);
1090 	} else
1091 		FREE_PKT(args->m);
1092 	args->m = NULL;
1093 }
1094 
1095 /*
1096  * Support for uid/gid/jail lookup. These tests are expensive
1097  * (because we may need to look into the list of active sockets)
1098  * so we cache the results. ugid_lookupp is 0 if we have not
1099  * yet done a lookup, 1 if we succeeded, and -1 if we tried
1100  * and failed. The function always returns the match value.
1101  * We could actually spare the variable and use *uc, setting
1102  * it to '(void *)check_uidgid if we have no info, NULL if
1103  * we tried and failed, or any other value if successful.
1104  */
1105 static int
check_uidgid(ipfw_insn_u32 * insn,struct ip_fw_args * args,int * ugid_lookupp,struct ucred ** uc)1106 check_uidgid(ipfw_insn_u32 *insn, struct ip_fw_args *args, int *ugid_lookupp,
1107     struct ucred **uc)
1108 {
1109 #if defined(USERSPACE)
1110 	return 0;	// not supported in userspace
1111 #else
1112 #ifndef __FreeBSD__
1113 	/* XXX */
1114 	return cred_check(insn, proto, oif,
1115 	    dst_ip, dst_port, src_ip, src_port,
1116 	    (struct bsd_ucred *)uc, ugid_lookupp, ((struct mbuf *)inp)->m_skb);
1117 #else  /* FreeBSD */
1118 	struct in_addr src_ip, dst_ip;
1119 	struct inpcbinfo *pi;
1120 	struct ipfw_flow_id *id;
1121 	struct inpcb *pcb, *inp;
1122 	int lookupflags;
1123 	int match;
1124 
1125 	id = &args->f_id;
1126 	inp = args->inp;
1127 
1128 	/*
1129 	 * Check to see if the UDP or TCP stack supplied us with
1130 	 * the PCB. If so, rather then holding a lock and looking
1131 	 * up the PCB, we can use the one that was supplied.
1132 	 */
1133 	if (inp && *ugid_lookupp == 0) {
1134 		INP_LOCK_ASSERT(inp);
1135 		if (inp->inp_socket != NULL) {
1136 			*uc = crhold(inp->inp_cred);
1137 			*ugid_lookupp = 1;
1138 		} else
1139 			*ugid_lookupp = -1;
1140 	}
1141 	/*
1142 	 * If we have already been here and the packet has no
1143 	 * PCB entry associated with it, then we can safely
1144 	 * assume that this is a no match.
1145 	 */
1146 	if (*ugid_lookupp == -1)
1147 		return (0);
1148 	if (id->proto == IPPROTO_TCP) {
1149 		lookupflags = 0;
1150 		pi = &V_tcbinfo;
1151 	} else if (id->proto == IPPROTO_UDP) {
1152 		lookupflags = INPLOOKUP_WILDCARD;
1153 		pi = &V_udbinfo;
1154 	} else if (id->proto == IPPROTO_UDPLITE) {
1155 		lookupflags = INPLOOKUP_WILDCARD;
1156 		pi = &V_ulitecbinfo;
1157 	} else
1158 		return 0;
1159 	lookupflags |= INPLOOKUP_RLOCKPCB;
1160 	match = 0;
1161 	if (*ugid_lookupp == 0) {
1162 		if (id->addr_type == 6) {
1163 #ifdef INET6
1164 			if (args->flags & IPFW_ARGS_IN)
1165 				pcb = in6_pcblookup_mbuf(pi,
1166 				    &id->src_ip6, htons(id->src_port),
1167 				    &id->dst_ip6, htons(id->dst_port),
1168 				    lookupflags, NULL, args->m);
1169 			else
1170 				pcb = in6_pcblookup_mbuf(pi,
1171 				    &id->dst_ip6, htons(id->dst_port),
1172 				    &id->src_ip6, htons(id->src_port),
1173 				    lookupflags, args->ifp, args->m);
1174 #else
1175 			*ugid_lookupp = -1;
1176 			return (0);
1177 #endif
1178 		} else {
1179 			src_ip.s_addr = htonl(id->src_ip);
1180 			dst_ip.s_addr = htonl(id->dst_ip);
1181 			if (args->flags & IPFW_ARGS_IN)
1182 				pcb = in_pcblookup_mbuf(pi,
1183 				    src_ip, htons(id->src_port),
1184 				    dst_ip, htons(id->dst_port),
1185 				    lookupflags, NULL, args->m);
1186 			else
1187 				pcb = in_pcblookup_mbuf(pi,
1188 				    dst_ip, htons(id->dst_port),
1189 				    src_ip, htons(id->src_port),
1190 				    lookupflags, args->ifp, args->m);
1191 		}
1192 		if (pcb != NULL) {
1193 			INP_RLOCK_ASSERT(pcb);
1194 			*uc = crhold(pcb->inp_cred);
1195 			*ugid_lookupp = 1;
1196 			INP_RUNLOCK(pcb);
1197 		}
1198 		if (*ugid_lookupp == 0) {
1199 			/*
1200 			 * We tried and failed, set the variable to -1
1201 			 * so we will not try again on this packet.
1202 			 */
1203 			*ugid_lookupp = -1;
1204 			return (0);
1205 		}
1206 	}
1207 	if (insn->o.opcode == O_UID)
1208 		match = ((*uc)->cr_uid == (uid_t)insn->d[0]);
1209 	else if (insn->o.opcode == O_GID)
1210 		match = groupmember((gid_t)insn->d[0], *uc);
1211 	else if (insn->o.opcode == O_JAIL)
1212 		match = ((*uc)->cr_prison->pr_id == (int)insn->d[0]);
1213 	return (match);
1214 #endif /* __FreeBSD__ */
1215 #endif /* not supported in userspace */
1216 }
1217 
1218 /*
1219  * Helper function to set args with info on the rule after the matching
1220  * one. slot is precise, whereas we guess rule_id as they are
1221  * assigned sequentially.
1222  */
1223 static inline void
set_match(struct ip_fw_args * args,int slot,struct ip_fw_chain * chain)1224 set_match(struct ip_fw_args *args, int slot,
1225 	struct ip_fw_chain *chain)
1226 {
1227 	args->rule.chain_id = chain->id;
1228 	args->rule.slot = slot + 1; /* we use 0 as a marker */
1229 	args->rule.rule_id = 1 + chain->map[slot]->id;
1230 	args->rule.rulenum = chain->map[slot]->rulenum;
1231 	args->flags |= IPFW_ARGS_REF;
1232 }
1233 
1234 static uint32_t
jump_lookup_pos(struct ip_fw_chain * chain,struct ip_fw * f,uint32_t num,int tablearg,bool jump_backwards)1235 jump_lookup_pos(struct ip_fw_chain *chain, struct ip_fw *f, uint32_t num,
1236     int tablearg, bool jump_backwards)
1237 {
1238 	int f_pos, i;
1239 
1240 	/*
1241 	 * Make sure we do not jump backward.
1242 	 */
1243 	i = IP_FW_ARG_TABLEARG(chain, num, skipto);
1244 	if (!jump_backwards && i <= f->rulenum)
1245 		i = f->rulenum + 1;
1246 
1247 	if (V_skipto_cache == 0)
1248 		f_pos = ipfw_find_rule(chain, i, 0);
1249 	else {
1250 		/*
1251 		 * Make sure we do not do out of bounds access.
1252 		 */
1253 		if (i >= IPFW_DEFAULT_RULE)
1254 			i = IPFW_DEFAULT_RULE - 1;
1255 		f_pos = chain->idxmap[i];
1256 	}
1257 
1258 	return (f_pos);
1259 }
1260 
1261 static uint32_t
jump(struct ip_fw_chain * chain,struct ip_fw * f,uint32_t num,int tablearg,bool jump_backwards)1262 jump(struct ip_fw_chain *chain, struct ip_fw *f, uint32_t num,
1263     int tablearg, bool jump_backwards)
1264 {
1265 	int f_pos;
1266 
1267 	/* Can't use cache with IP_FW_TARG */
1268 	if (num == IP_FW_TARG)
1269 		return jump_lookup_pos(chain, f, num, tablearg, jump_backwards);
1270 
1271 	/*
1272 	 * If possible use cached f_pos (in f->cache.pos),
1273 	 * whose version is written in f->cache.id (horrible hacks
1274 	 * to avoid changing the ABI).
1275 	 *
1276 	 * Multiple threads can execute the same rule simultaneously,
1277 	 * we need to ensure that cache.pos is updated before cache.id.
1278 	 */
1279 
1280 #ifdef __LP64__
1281 	struct ip_fw_jump_cache cache;
1282 
1283 	cache.raw_value = f->cache.raw_value;
1284 	if (cache.id == chain->id)
1285 		return (cache.pos);
1286 
1287 	f_pos = jump_lookup_pos(chain, f, num, tablearg, jump_backwards);
1288 
1289 	cache.pos = f_pos;
1290 	cache.id = chain->id;
1291 	f->cache.raw_value = cache.raw_value;
1292 #else
1293 	if (f->cache.id == chain->id) {
1294 		/* Load pos after id */
1295 		atomic_thread_fence_acq();
1296 		return (f->cache.pos);
1297 	}
1298 
1299 	f_pos = jump_lookup_pos(chain, f, num, tablearg, jump_backwards);
1300 
1301 	f->cache.pos = f_pos;
1302 	/* Store id after pos */
1303 	atomic_thread_fence_rel();
1304 	f->cache.id = chain->id;
1305 #endif /* !__LP64__ */
1306 	return (f_pos);
1307 }
1308 
1309 #define	TARG(k, f)	IP_FW_ARG_TABLEARG(chain, k, f)
1310 
1311 static inline int
tvalue_match(struct ip_fw_chain * ch,const ipfw_insn_table * cmd,uint32_t tablearg)1312 tvalue_match(struct ip_fw_chain *ch, const ipfw_insn_table *cmd,
1313     uint32_t tablearg)
1314 {
1315 	uint32_t tvalue;
1316 
1317 	switch (IPFW_TVALUE_TYPE(&cmd->o)) {
1318 	case TVALUE_PIPE:
1319 		tvalue = TARG_VAL(ch, tablearg, pipe);
1320 		break;
1321 	case TVALUE_DIVERT:
1322 		tvalue = TARG_VAL(ch, tablearg, divert);
1323 		break;
1324 	case TVALUE_SKIPTO:
1325 		tvalue = TARG_VAL(ch, tablearg, skipto);
1326 		break;
1327 	case TVALUE_NETGRAPH:
1328 		tvalue = TARG_VAL(ch, tablearg, netgraph);
1329 		break;
1330 	case TVALUE_FIB:
1331 		tvalue = TARG_VAL(ch, tablearg, fib);
1332 		break;
1333 	case TVALUE_NAT:
1334 		tvalue = TARG_VAL(ch, tablearg, nat);
1335 		break;
1336 	case TVALUE_NH4:
1337 		tvalue = TARG_VAL(ch, tablearg, nh4);
1338 		break;
1339 	case TVALUE_DSCP:
1340 		tvalue = TARG_VAL(ch, tablearg, dscp);
1341 		break;
1342 	case TVALUE_LIMIT:
1343 		tvalue = TARG_VAL(ch, tablearg, limit);
1344 		break;
1345 	case TVALUE_MARK:
1346 		tvalue = TARG_VAL(ch, tablearg, mark);
1347 		break;
1348 	case TVALUE_TAG:
1349 	default:
1350 		tvalue = TARG_VAL(ch, tablearg, tag);
1351 		break;
1352 	}
1353 	return (tvalue == cmd->value);
1354 }
1355 
1356 /*
1357  * The main check routine for the firewall.
1358  *
1359  * All arguments are in args so we can modify them and return them
1360  * back to the caller.
1361  *
1362  * Parameters:
1363  *
1364  *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
1365  *		Starts with the IP header.
1366  *	args->L3offset	Number of bytes bypassed if we came from L2.
1367  *			e.g. often sizeof(eh)  ** NOTYET **
1368  *	args->ifp	Incoming or outgoing interface.
1369  *	args->divert_rule (in/out)
1370  *		Skip up to the first rule past this rule number;
1371  *		upon return, non-zero port number for divert or tee.
1372  *
1373  *	args->rule	Pointer to the last matching rule (in/out)
1374  *	args->next_hop	Socket we are forwarding to (out).
1375  *	args->next_hop6	IPv6 next hop we are forwarding to (out).
1376  *	args->f_id	Addresses grabbed from the packet (out)
1377  * 	args->rule.info	a cookie depending on rule action
1378  *
1379  * Return value:
1380  *
1381  *	IP_FW_PASS	the packet must be accepted
1382  *	IP_FW_DENY	the packet must be dropped
1383  *	IP_FW_DIVERT	divert packet, port in m_tag
1384  *	IP_FW_TEE	tee packet, port in m_tag
1385  *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
1386  *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
1387  *		args->rule contains the matching rule,
1388  *		args->rule.info has additional information.
1389  *
1390  */
1391 int
ipfw_chk(struct ip_fw_args * args)1392 ipfw_chk(struct ip_fw_args *args)
1393 {
1394 
1395 	/*
1396 	 * Local variables holding state while processing a packet:
1397 	 *
1398 	 * IMPORTANT NOTE: to speed up the processing of rules, there
1399 	 * are some assumption on the values of the variables, which
1400 	 * are documented here. Should you change them, please check
1401 	 * the implementation of the various instructions to make sure
1402 	 * that they still work.
1403 	 *
1404 	 * m | args->m	Pointer to the mbuf, as received from the caller.
1405 	 *	It may change if ipfw_chk() does an m_pullup, or if it
1406 	 *	consumes the packet because it calls send_reject().
1407 	 *	XXX This has to change, so that ipfw_chk() never modifies
1408 	 *	or consumes the buffer.
1409 	 *	OR
1410 	 * args->mem	Pointer to contigous memory chunk.
1411 	 * ip	Is the beginning of the ip(4 or 6) header.
1412 	 * eh	Ethernet header in case if input is Layer2.
1413 	 */
1414 	struct mbuf *m;
1415 	struct ip *ip;
1416 	struct ether_header *eh;
1417 
1418 	/*
1419 	 * For rules which contain uid/gid or jail constraints, cache
1420 	 * a copy of the users credentials after the pcb lookup has been
1421 	 * executed. This will speed up the processing of rules with
1422 	 * these types of constraints, as well as decrease contention
1423 	 * on pcb related locks.
1424 	 */
1425 #ifndef __FreeBSD__
1426 	struct bsd_ucred ucred_cache;
1427 #else
1428 	struct ucred *ucred_cache = NULL;
1429 #endif
1430 	uint32_t f_pos = 0;	/* index of current rule in the array */
1431 	int ucred_lookup = 0;
1432 	int retval = 0;
1433 	struct ifnet *oif, *iif;
1434 
1435 	/*
1436 	 * hlen	The length of the IP header.
1437 	 */
1438 	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
1439 
1440 	/*
1441 	 * offset	The offset of a fragment. offset != 0 means that
1442 	 *	we have a fragment at this offset of an IPv4 packet.
1443 	 *	offset == 0 means that (if this is an IPv4 packet)
1444 	 *	this is the first or only fragment.
1445 	 *	For IPv6 offset|ip6f_mf == 0 means there is no Fragment Header
1446 	 *	or there is a single packet fragment (fragment header added
1447 	 *	without needed).  We will treat a single packet fragment as if
1448 	 *	there was no fragment header (or log/block depending on the
1449 	 *	V_fw_permit_single_frag6 sysctl setting).
1450 	 */
1451 	u_short offset = 0;
1452 	u_short ip6f_mf = 0;
1453 
1454 	/*
1455 	 * Local copies of addresses. They are only valid if we have
1456 	 * an IP packet.
1457 	 *
1458 	 * proto	The protocol. Set to 0 for non-ip packets,
1459 	 *	or to the protocol read from the packet otherwise.
1460 	 *	proto != 0 means that we have an IPv4 packet.
1461 	 *
1462 	 * src_port, dst_port	port numbers, in HOST format. Only
1463 	 *	valid for TCP and UDP packets.
1464 	 *
1465 	 * src_ip, dst_ip	ip addresses, in NETWORK format.
1466 	 *	Only valid for IPv4 packets.
1467 	 */
1468 	uint8_t proto;
1469 	uint16_t src_port, dst_port;		/* NOTE: host format	*/
1470 	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
1471 	int iplen = 0;
1472 	int pktlen;
1473 
1474 	struct ipfw_dyn_info dyn_info;
1475 	struct ip_fw *q = NULL;
1476 	struct ip_fw_chain *chain = &V_layer3_chain;
1477 
1478 	/*
1479 	 * We store in ulp a pointer to the upper layer protocol header.
1480 	 * In the ipv4 case this is easy to determine from the header,
1481 	 * but for ipv6 we might have some additional headers in the middle.
1482 	 * ulp is NULL if not found.
1483 	 */
1484 	void *ulp = NULL;		/* upper layer protocol pointer. */
1485 
1486 	/* XXX ipv6 variables */
1487 	int is_ipv6 = 0;
1488 #ifdef INET6
1489 	uint8_t	icmp6_type = 0;
1490 #endif
1491 	uint16_t ext_hd = 0;	/* bits vector for extension header filtering */
1492 	/* end of ipv6 variables */
1493 
1494 	int is_ipv4 = 0;
1495 
1496 	int done = 0;		/* flag to exit the outer loop */
1497 	IPFW_RLOCK_TRACKER;
1498 	bool mem;
1499 	bool need_send_reject = false;
1500 	int reject_code;
1501 	uint16_t reject_mtu;
1502 
1503 	if ((mem = (args->flags & IPFW_ARGS_LENMASK))) {
1504 		if (args->flags & IPFW_ARGS_ETHER) {
1505 			eh = (struct ether_header *)args->mem;
1506 			if (eh->ether_type == htons(ETHERTYPE_VLAN))
1507 				ip = (struct ip *)
1508 				    ((struct ether_vlan_header *)eh + 1);
1509 			else
1510 				ip = (struct ip *)(eh + 1);
1511 		} else {
1512 			eh = NULL;
1513 			ip = (struct ip *)args->mem;
1514 		}
1515 		pktlen = IPFW_ARGS_LENGTH(args->flags);
1516 		args->f_id.fib = args->ifp->if_fib;	/* best guess */
1517 	} else {
1518 		m = args->m;
1519 		if (m->m_flags & M_SKIP_FIREWALL || (! V_ipfw_vnet_ready))
1520 			return (IP_FW_PASS);	/* accept */
1521 		if (args->flags & IPFW_ARGS_ETHER) {
1522 	                /* We need some amount of data to be contiguous. */
1523 			if (m->m_len < min(m->m_pkthdr.len, max_protohdr) &&
1524 			    (args->m = m = m_pullup(m, min(m->m_pkthdr.len,
1525 			    max_protohdr))) == NULL)
1526 				goto pullup_failed;
1527 			eh = mtod(m, struct ether_header *);
1528 			ip = (struct ip *)(eh + 1);
1529 		} else {
1530 			eh = NULL;
1531 			ip = mtod(m, struct ip *);
1532 		}
1533 		pktlen = m->m_pkthdr.len;
1534 		args->f_id.fib = M_GETFIB(m); /* mbuf not altered */
1535 	}
1536 
1537 	dst_ip.s_addr = 0;		/* make sure it is initialized */
1538 	src_ip.s_addr = 0;		/* make sure it is initialized */
1539 	src_port = dst_port = 0;
1540 
1541 	DYN_INFO_INIT(&dyn_info);
1542 /*
1543  * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
1544  * then it sets p to point at the offset "len" in the mbuf. WARNING: the
1545  * pointer might become stale after other pullups (but we never use it
1546  * this way).
1547  */
1548 #define	PULLUP_TO(_len, p, T)	PULLUP_LEN(_len, p, sizeof(T))
1549 #define	EHLEN	(eh != NULL ? ((char *)ip - (char *)eh) : 0)
1550 #define	_PULLUP_LOCKED(_len, p, T, unlock)			\
1551 do {								\
1552 	int x = (_len) + T + EHLEN;				\
1553 	if (mem) {						\
1554 		if (__predict_false(pktlen < x)) {		\
1555 			unlock;					\
1556 			goto pullup_failed;			\
1557 		}						\
1558 		p = (char *)args->mem + (_len) + EHLEN;		\
1559 	} else {						\
1560 		if (__predict_false((m)->m_len < x)) {		\
1561 			args->m = m = m_pullup(m, x);		\
1562 			if (m == NULL) {			\
1563 				unlock;				\
1564 				goto pullup_failed;		\
1565 			}					\
1566 		}						\
1567 		p = mtod(m, char *) + (_len) + EHLEN;		\
1568 	}							\
1569 } while (0)
1570 
1571 #define	PULLUP_LEN(_len, p, T)	_PULLUP_LOCKED(_len, p, T, )
1572 #define	PULLUP_LEN_LOCKED(_len, p, T)	\
1573     _PULLUP_LOCKED(_len, p, T, IPFW_PF_RUNLOCK(chain));	\
1574     UPDATE_POINTERS()
1575 /*
1576  * In case pointers got stale after pullups, update them.
1577  */
1578 #define	UPDATE_POINTERS()					\
1579 do {								\
1580 	if (!mem) {						\
1581 		if (eh != NULL) {				\
1582 			eh = mtod(m, struct ether_header *);	\
1583 			ip = (struct ip *)(eh + 1);		\
1584 		} else						\
1585 			ip = mtod(m, struct ip *);		\
1586 		args->m = m;					\
1587 	}							\
1588 } while (0)
1589 
1590 	/* Identify IP packets and fill up variables. */
1591 	if (pktlen >= sizeof(struct ip6_hdr) &&
1592 	    (eh == NULL || eh->ether_type == htons(ETHERTYPE_IPV6)) &&
1593 	    ip->ip_v == 6) {
1594 		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
1595 
1596 		is_ipv6 = 1;
1597 		args->flags |= IPFW_ARGS_IP6;
1598 		hlen = sizeof(struct ip6_hdr);
1599 		proto = ip6->ip6_nxt;
1600 		/* Search extension headers to find upper layer protocols */
1601 		while (ulp == NULL && offset == 0) {
1602 			switch (proto) {
1603 			case IPPROTO_ICMPV6:
1604 				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
1605 #ifdef INET6
1606 				icmp6_type = ICMP6(ulp)->icmp6_type;
1607 #endif
1608 				break;
1609 
1610 			case IPPROTO_TCP:
1611 				PULLUP_TO(hlen, ulp, struct tcphdr);
1612 				dst_port = TCP(ulp)->th_dport;
1613 				src_port = TCP(ulp)->th_sport;
1614 				/* save flags for dynamic rules */
1615 				args->f_id._flags = tcp_get_flags(TCP(ulp));
1616 				break;
1617 
1618 			case IPPROTO_SCTP:
1619 				if (pktlen >= hlen + sizeof(struct sctphdr) +
1620 				    sizeof(struct sctp_chunkhdr) +
1621 				    offsetof(struct sctp_init, a_rwnd))
1622 					PULLUP_LEN(hlen, ulp,
1623 					    sizeof(struct sctphdr) +
1624 					    sizeof(struct sctp_chunkhdr) +
1625 					    offsetof(struct sctp_init, a_rwnd));
1626 				else if (pktlen >= hlen + sizeof(struct sctphdr))
1627 					PULLUP_LEN(hlen, ulp, pktlen - hlen);
1628 				else
1629 					PULLUP_LEN(hlen, ulp,
1630 					    sizeof(struct sctphdr));
1631 				src_port = SCTP(ulp)->src_port;
1632 				dst_port = SCTP(ulp)->dest_port;
1633 				break;
1634 
1635 			case IPPROTO_UDP:
1636 			case IPPROTO_UDPLITE:
1637 				PULLUP_TO(hlen, ulp, struct udphdr);
1638 				dst_port = UDP(ulp)->uh_dport;
1639 				src_port = UDP(ulp)->uh_sport;
1640 				break;
1641 
1642 			case IPPROTO_HOPOPTS:	/* RFC 2460 */
1643 				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1644 				ext_hd |= EXT_HOPOPTS;
1645 				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1646 				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1647 				ulp = NULL;
1648 				break;
1649 
1650 			case IPPROTO_ROUTING:	/* RFC 2460 */
1651 				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
1652 				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
1653 				case 0:
1654 					ext_hd |= EXT_RTHDR0;
1655 					break;
1656 				case 2:
1657 					ext_hd |= EXT_RTHDR2;
1658 					break;
1659 				default:
1660 					if (V_fw_verbose)
1661 						printf("IPFW2: IPV6 - Unknown "
1662 						    "Routing Header type(%d)\n",
1663 						    ((struct ip6_rthdr *)
1664 						    ulp)->ip6r_type);
1665 					if (V_fw_deny_unknown_exthdrs)
1666 					    return (IP_FW_DENY);
1667 					break;
1668 				}
1669 				ext_hd |= EXT_ROUTING;
1670 				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
1671 				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
1672 				ulp = NULL;
1673 				break;
1674 
1675 			case IPPROTO_FRAGMENT:	/* RFC 2460 */
1676 				PULLUP_TO(hlen, ulp, struct ip6_frag);
1677 				ext_hd |= EXT_FRAGMENT;
1678 				hlen += sizeof (struct ip6_frag);
1679 				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
1680 				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
1681 					IP6F_OFF_MASK;
1682 				ip6f_mf = ((struct ip6_frag *)ulp)->ip6f_offlg &
1683 					IP6F_MORE_FRAG;
1684 				if (V_fw_permit_single_frag6 == 0 &&
1685 				    offset == 0 && ip6f_mf == 0) {
1686 					if (V_fw_verbose)
1687 						printf("IPFW2: IPV6 - Invalid "
1688 						    "Fragment Header\n");
1689 					if (V_fw_deny_unknown_exthdrs)
1690 					    return (IP_FW_DENY);
1691 					break;
1692 				}
1693 				args->f_id.extra =
1694 				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
1695 				ulp = NULL;
1696 				break;
1697 
1698 			case IPPROTO_DSTOPTS:	/* RFC 2460 */
1699 				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1700 				ext_hd |= EXT_DSTOPTS;
1701 				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1702 				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1703 				ulp = NULL;
1704 				break;
1705 
1706 			case IPPROTO_AH:	/* RFC 2402 */
1707 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1708 				ext_hd |= EXT_AH;
1709 				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
1710 				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
1711 				ulp = NULL;
1712 				break;
1713 
1714 			case IPPROTO_ESP:	/* RFC 2406 */
1715 				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
1716 				/* Anything past Seq# is variable length and
1717 				 * data past this ext. header is encrypted. */
1718 				ext_hd |= EXT_ESP;
1719 				break;
1720 
1721 			case IPPROTO_NONE:	/* RFC 2460 */
1722 				/*
1723 				 * Packet ends here, and IPv6 header has
1724 				 * already been pulled up. If ip6e_len!=0
1725 				 * then octets must be ignored.
1726 				 */
1727 				ulp = ip; /* non-NULL to get out of loop. */
1728 				break;
1729 
1730 			case IPPROTO_OSPFIGP:
1731 				/* XXX OSPF header check? */
1732 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1733 				break;
1734 
1735 			case IPPROTO_PIM:
1736 				/* XXX PIM header check? */
1737 				PULLUP_TO(hlen, ulp, struct pim);
1738 				break;
1739 
1740 			case IPPROTO_GRE:	/* RFC 1701 */
1741 				/* XXX GRE header check? */
1742 				PULLUP_TO(hlen, ulp, struct grehdr);
1743 				break;
1744 
1745 			case IPPROTO_CARP:
1746 				PULLUP_TO(hlen, ulp, offsetof(
1747 				    struct carp_header, carp_counter));
1748 				if (CARP_ADVERTISEMENT !=
1749 				    ((struct carp_header *)ulp)->carp_type)
1750 					return (IP_FW_DENY);
1751 				break;
1752 
1753 			case IPPROTO_IPV6:	/* RFC 2893 */
1754 				PULLUP_TO(hlen, ulp, struct ip6_hdr);
1755 				break;
1756 
1757 			case IPPROTO_IPV4:	/* RFC 2893 */
1758 				PULLUP_TO(hlen, ulp, struct ip);
1759 				break;
1760 
1761 			case IPPROTO_ETHERIP:	/* RFC 3378 */
1762 				PULLUP_LEN(hlen, ulp,
1763 				    sizeof(struct etherip_header) +
1764 				    sizeof(struct ether_header));
1765 				break;
1766 
1767 			case IPPROTO_PFSYNC:
1768 				PULLUP_TO(hlen, ulp, struct pfsync_header);
1769 				break;
1770 
1771 			default:
1772 				if (V_fw_verbose)
1773 					printf("IPFW2: IPV6 - Unknown "
1774 					    "Extension Header(%d), ext_hd=%x\n",
1775 					     proto, ext_hd);
1776 				if (V_fw_deny_unknown_exthdrs)
1777 				    return (IP_FW_DENY);
1778 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1779 				break;
1780 			} /*switch */
1781 		}
1782 		UPDATE_POINTERS();
1783 		ip6 = (struct ip6_hdr *)ip;
1784 		args->f_id.addr_type = 6;
1785 		args->f_id.src_ip6 = ip6->ip6_src;
1786 		args->f_id.dst_ip6 = ip6->ip6_dst;
1787 		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
1788 		iplen = ntohs(ip6->ip6_plen) + sizeof(*ip6);
1789 	} else if (pktlen >= sizeof(struct ip) &&
1790 	    (eh == NULL || eh->ether_type == htons(ETHERTYPE_IP)) &&
1791 	    ip->ip_v == 4) {
1792 		is_ipv4 = 1;
1793 		args->flags |= IPFW_ARGS_IP4;
1794 		hlen = ip->ip_hl << 2;
1795 		/*
1796 		 * Collect parameters into local variables for faster
1797 		 * matching.
1798 		 */
1799 		proto = ip->ip_p;
1800 		src_ip = ip->ip_src;
1801 		dst_ip = ip->ip_dst;
1802 		offset = ntohs(ip->ip_off) & IP_OFFMASK;
1803 		iplen = ntohs(ip->ip_len);
1804 
1805 		if (offset == 0) {
1806 			switch (proto) {
1807 			case IPPROTO_TCP:
1808 				PULLUP_TO(hlen, ulp, struct tcphdr);
1809 				dst_port = TCP(ulp)->th_dport;
1810 				src_port = TCP(ulp)->th_sport;
1811 				/* save flags for dynamic rules */
1812 				args->f_id._flags = tcp_get_flags(TCP(ulp));
1813 				break;
1814 
1815 			case IPPROTO_SCTP:
1816 				if (pktlen >= hlen + sizeof(struct sctphdr) +
1817 				    sizeof(struct sctp_chunkhdr) +
1818 				    offsetof(struct sctp_init, a_rwnd))
1819 					PULLUP_LEN(hlen, ulp,
1820 					    sizeof(struct sctphdr) +
1821 					    sizeof(struct sctp_chunkhdr) +
1822 					    offsetof(struct sctp_init, a_rwnd));
1823 				else if (pktlen >= hlen + sizeof(struct sctphdr))
1824 					PULLUP_LEN(hlen, ulp, pktlen - hlen);
1825 				else
1826 					PULLUP_LEN(hlen, ulp,
1827 					    sizeof(struct sctphdr));
1828 				src_port = SCTP(ulp)->src_port;
1829 				dst_port = SCTP(ulp)->dest_port;
1830 				break;
1831 
1832 			case IPPROTO_UDP:
1833 			case IPPROTO_UDPLITE:
1834 				PULLUP_TO(hlen, ulp, struct udphdr);
1835 				dst_port = UDP(ulp)->uh_dport;
1836 				src_port = UDP(ulp)->uh_sport;
1837 				break;
1838 
1839 			case IPPROTO_ICMP:
1840 				PULLUP_TO(hlen, ulp, struct icmphdr);
1841 				//args->f_id.flags = ICMP(ulp)->icmp_type;
1842 				break;
1843 
1844 			default:
1845 				break;
1846 			}
1847 		} else {
1848 			if (offset == 1 && proto == IPPROTO_TCP) {
1849 				/* RFC 3128 */
1850 				goto pullup_failed;
1851 			}
1852 		}
1853 
1854 		UPDATE_POINTERS();
1855 		args->f_id.addr_type = 4;
1856 		args->f_id.src_ip = ntohl(src_ip.s_addr);
1857 		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1858 	} else {
1859 		proto = 0;
1860 		dst_ip.s_addr = src_ip.s_addr = 0;
1861 
1862 		args->f_id.addr_type = 1; /* XXX */
1863 	}
1864 #undef PULLUP_TO
1865 	pktlen = iplen < pktlen ? iplen: pktlen;
1866 
1867 	/* Properly initialize the rest of f_id */
1868 	args->f_id.proto = proto;
1869 	args->f_id.src_port = src_port = ntohs(src_port);
1870 	args->f_id.dst_port = dst_port = ntohs(dst_port);
1871 
1872 	IPFW_PF_RLOCK(chain);
1873 	if (! V_ipfw_vnet_ready) { /* shutting down, leave NOW. */
1874 		IPFW_PF_RUNLOCK(chain);
1875 		return (IP_FW_PASS);	/* accept */
1876 	}
1877 	if (args->flags & IPFW_ARGS_REF) {
1878 		/*
1879 		 * Packet has already been tagged as a result of a previous
1880 		 * match on rule args->rule aka args->rule_id (PIPE, QUEUE,
1881 		 * REASS, NETGRAPH, DIVERT/TEE...)
1882 		 * Validate the slot and continue from the next one
1883 		 * if still present, otherwise do a lookup.
1884 		 */
1885 		f_pos = (args->rule.chain_id == chain->id) ?
1886 		    args->rule.slot :
1887 		    ipfw_find_rule(chain, args->rule.rulenum,
1888 			args->rule.rule_id);
1889 	} else {
1890 		f_pos = 0;
1891 	}
1892 
1893 	if (args->flags & IPFW_ARGS_IN) {
1894 		iif = args->ifp;
1895 		oif = NULL;
1896 	} else {
1897 		MPASS(args->flags & IPFW_ARGS_OUT);
1898 		iif = mem ? NULL : m_rcvif(m);
1899 		oif = args->ifp;
1900 	}
1901 
1902 	/*
1903 	 * Now scan the rules, and parse microinstructions for each rule.
1904 	 * We have two nested loops and an inner switch. Sometimes we
1905 	 * need to break out of one or both loops, or re-enter one of
1906 	 * the loops with updated variables. Loop variables are:
1907 	 *
1908 	 *	f_pos (outer loop) points to the current rule.
1909 	 *		On output it points to the matching rule.
1910 	 *	done (outer loop) is used as a flag to break the loop.
1911 	 *	l (inner loop)	residual length of current rule.
1912 	 *		cmd points to the current microinstruction.
1913 	 *
1914 	 * We break the inner loop by setting l=0 and possibly
1915 	 * cmdlen=0 if we don't want to advance cmd.
1916 	 * We break the outer loop by setting done=1
1917 	 * We can restart the inner loop by setting l>0 and f_pos, f, cmd
1918 	 * as needed.
1919 	 */
1920 	for (; f_pos < chain->n_rules; f_pos++) {
1921 		ipfw_insn *cmd;
1922 		uint32_t tablearg = 0;
1923 		int l, cmdlen, skip_or; /* skip rest of OR block */
1924 		struct ip_fw *f;
1925 
1926 		f = chain->map[f_pos];
1927 		if (V_set_disable & (1 << f->set) )
1928 			continue;
1929 
1930 		skip_or = 0;
1931 		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1932 		    l -= cmdlen, cmd += cmdlen) {
1933 			int match;
1934 
1935 			/*
1936 			 * check_body is a jump target used when we find a
1937 			 * CHECK_STATE, and need to jump to the body of
1938 			 * the target rule.
1939 			 */
1940 
1941 /* check_body: */
1942 			cmdlen = F_LEN(cmd);
1943 			/*
1944 			 * An OR block (insn_1 || .. || insn_n) has the
1945 			 * F_OR bit set in all but the last instruction.
1946 			 * The first match will set "skip_or", and cause
1947 			 * the following instructions to be skipped until
1948 			 * past the one with the F_OR bit clear.
1949 			 */
1950 			if (skip_or) {		/* skip this instruction */
1951 				if ((cmd->len & F_OR) == 0)
1952 					skip_or = 0;	/* next one is good */
1953 				continue;
1954 			}
1955 			match = 0; /* set to 1 if we succeed */
1956 
1957 			switch (cmd->opcode) {
1958 			/*
1959 			 * The first set of opcodes compares the packet's
1960 			 * fields with some pattern, setting 'match' if a
1961 			 * match is found. At the end of the loop there is
1962 			 * logic to deal with F_NOT and F_OR flags associated
1963 			 * with the opcode.
1964 			 */
1965 			case O_NOP:
1966 				match = 1;
1967 				break;
1968 
1969 			case O_FORWARD_MAC:
1970 				printf("ipfw: opcode %d unimplemented\n",
1971 				    cmd->opcode);
1972 				break;
1973 
1974 			case O_GID:
1975 			case O_UID:
1976 			case O_JAIL:
1977 				/*
1978 				 * We only check offset == 0 && proto != 0,
1979 				 * as this ensures that we have a
1980 				 * packet with the ports info.
1981 				 */
1982 				if (offset != 0)
1983 					break;
1984 				if (proto == IPPROTO_TCP ||
1985 				    proto == IPPROTO_UDP ||
1986 				    proto == IPPROTO_UDPLITE)
1987 					match = check_uidgid(
1988 						    (ipfw_insn_u32 *)cmd,
1989 						    args, &ucred_lookup,
1990 #ifdef __FreeBSD__
1991 						    &ucred_cache);
1992 #else
1993 						    (void *)&ucred_cache);
1994 #endif
1995 				break;
1996 
1997 			case O_RECV:
1998 				match = iface_match(iif, (ipfw_insn_if *)cmd,
1999 				    chain, &tablearg);
2000 				break;
2001 
2002 			case O_XMIT:
2003 				match = iface_match(oif, (ipfw_insn_if *)cmd,
2004 				    chain, &tablearg);
2005 				break;
2006 
2007 			case O_VIA:
2008 				match = iface_match(args->ifp,
2009 				    (ipfw_insn_if *)cmd, chain, &tablearg);
2010 				break;
2011 
2012 			case O_MACADDR2:
2013 				if (args->flags & IPFW_ARGS_ETHER) {
2014 					u_int32_t *want = (u_int32_t *)
2015 						((ipfw_insn_mac *)cmd)->addr;
2016 					u_int32_t *mask = (u_int32_t *)
2017 						((ipfw_insn_mac *)cmd)->mask;
2018 					u_int32_t *hdr = (u_int32_t *)eh;
2019 
2020 					match =
2021 					    ( want[0] == (hdr[0] & mask[0]) &&
2022 					      want[1] == (hdr[1] & mask[1]) &&
2023 					      want[2] == (hdr[2] & mask[2]) );
2024 				}
2025 				break;
2026 
2027 			case O_MAC_TYPE:
2028 				if (args->flags & IPFW_ARGS_ETHER) {
2029 					u_int16_t *p =
2030 					    ((ipfw_insn_u16 *)cmd)->ports;
2031 					int i;
2032 
2033 					for (i = cmdlen - 1; !match && i>0;
2034 					    i--, p += 2)
2035 						match =
2036 						    (ntohs(eh->ether_type) >=
2037 						    p[0] &&
2038 						    ntohs(eh->ether_type) <=
2039 						    p[1]);
2040 				}
2041 				break;
2042 
2043 			case O_FRAG:
2044 				if (is_ipv4) {
2045 					/*
2046 					 * Since flags_match() works with
2047 					 * uint8_t we pack ip_off into 8 bits.
2048 					 * For this match offset is a boolean.
2049 					 */
2050 					match = flags_match(cmd,
2051 					    ((ntohs(ip->ip_off) & ~IP_OFFMASK)
2052 					    >> 8) | (offset != 0));
2053 				} else {
2054 					/*
2055 					 * Compatibility: historically bare
2056 					 * "frag" would match IPv6 fragments.
2057 					 */
2058 					match = (cmd->arg1 == 0x1 &&
2059 					    (offset != 0));
2060 				}
2061 				break;
2062 
2063 			case O_IN:	/* "out" is "not in" */
2064 				match = (oif == NULL);
2065 				break;
2066 
2067 			case O_LAYER2:
2068 				match = (args->flags & IPFW_ARGS_ETHER);
2069 				break;
2070 
2071 			case O_DIVERTED:
2072 				if ((args->flags & IPFW_ARGS_REF) == 0)
2073 					break;
2074 				/*
2075 				 * For diverted packets, args->rule.info
2076 				 * contains the divert port (in host format)
2077 				 * reason and direction.
2078 				 */
2079 				match = ((args->rule.info & IPFW_IS_MASK) ==
2080 				    IPFW_IS_DIVERT) && (
2081 				    ((args->rule.info & IPFW_INFO_IN) ?
2082 					1: 2) & cmd->arg1);
2083 				break;
2084 
2085 			case O_PROTO:
2086 				/*
2087 				 * We do not allow an arg of 0 so the
2088 				 * check of "proto" only suffices.
2089 				 */
2090 				match = (proto == cmd->arg1);
2091 				break;
2092 
2093 			case O_IP_SRC:
2094 				match = is_ipv4 &&
2095 				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2096 				    src_ip.s_addr);
2097 				break;
2098 
2099 			case O_IP_DST_LOOKUP:
2100 				if (IPFW_LOOKUP_TYPE(cmd) != LOOKUP_NONE) {
2101 				  void *pkey = NULL;
2102 				  uint32_t key, vidx;
2103 				  uint16_t keylen = 0; /* zero if can't match the packet */
2104 				  uint8_t lookup_type;
2105 
2106 				lookup_type = IPFW_LOOKUP_TYPE(cmd);
2107 
2108 				switch (lookup_type) {
2109 				case LOOKUP_DST_IP:
2110 				case LOOKUP_SRC_IP:
2111 					if (is_ipv4) {
2112 						keylen = sizeof(in_addr_t);
2113 						if (lookup_type == LOOKUP_DST_IP)
2114 							pkey = &dst_ip;
2115 						else
2116 							pkey = &src_ip;
2117 					} else if (is_ipv6) {
2118 						keylen = sizeof(struct in6_addr);
2119 						if (lookup_type == LOOKUP_DST_IP)
2120 							pkey = &args->f_id.dst_ip6;
2121 						else
2122 							pkey = &args->f_id.src_ip6;
2123 					} else /* only for L3 */
2124 						break;
2125 				case LOOKUP_DSCP:
2126 					if (is_ipv4)
2127 						key = ip->ip_tos >> 2;
2128 					else if (is_ipv6)
2129 						key = IPV6_DSCP(
2130 						    (struct ip6_hdr *)ip) >> 2;
2131 					else
2132 						break; /* only for L3 */
2133 
2134 					key &= 0x3f;
2135 					if (cmdlen == F_INSN_SIZE(ipfw_insn_table))
2136 						key &= insntod(cmd, table)->value;
2137 					pkey = &key;
2138 					keylen = sizeof(key);
2139 					break;
2140 				case LOOKUP_DST_PORT:
2141 				case LOOKUP_SRC_PORT:
2142 					/* only for L3 */
2143 					if (is_ipv6 == 0 && is_ipv4 == 0) {
2144 						break;
2145 					}
2146 					/* Skip fragments */
2147 					if (offset != 0) {
2148 						break;
2149 					}
2150 					/* Skip proto without ports */
2151 					if (proto != IPPROTO_TCP &&
2152 					    proto != IPPROTO_UDP &&
2153 					    proto != IPPROTO_UDPLITE &&
2154 					    proto != IPPROTO_SCTP)
2155 						break;
2156 					if (lookup_type == LOOKUP_DST_PORT)
2157 						key = dst_port;
2158 					else
2159 						key = src_port;
2160 					pkey = &key;
2161 					if (cmdlen == F_INSN_SIZE(ipfw_insn_table))
2162 						key &= insntod(cmd, table)->value;
2163 					keylen = sizeof(key);
2164 					break;
2165 				case LOOKUP_DST_MAC:
2166 				case LOOKUP_SRC_MAC:
2167 					/* only for L2 */
2168 					if ((args->flags & IPFW_ARGS_ETHER) == 0)
2169 						break;
2170 
2171 					pkey = lookup_type == LOOKUP_DST_MAC ?
2172 					    eh->ether_dhost : eh->ether_shost;
2173 					keylen = ETHER_ADDR_LEN;
2174 					break;
2175 #ifndef USERSPACE
2176 				case LOOKUP_UID:
2177 				case LOOKUP_JAIL:
2178 					check_uidgid(insntod(cmd, u32),
2179 					    args, &ucred_lookup,
2180 #ifdef __FreeBSD__
2181 					    &ucred_cache);
2182 					if (lookup_type == LOOKUP_UID)
2183 						key = ucred_cache->cr_uid;
2184 					else if (lookup_type == LOOKUP_JAIL)
2185 						key = ucred_cache->cr_prison->pr_id;
2186 #else /* !__FreeBSD__ */
2187 					    (void *)&ucred_cache);
2188 					if (lookup_type == LOOKUP_UID)
2189 						key = ucred_cache.uid;
2190 					else if (lookup_type == LOOKUP_JAIL)
2191 						key = ucred_cache.xid;
2192 #endif /* !__FreeBSD__ */
2193 					pkey = &key;
2194 					if (cmdlen == F_INSN_SIZE(ipfw_insn_table))
2195 						key &= insntod(cmd, table)->value;
2196 					keylen = sizeof(key);
2197 					break;
2198 #endif /* !USERSPACE */
2199 				case LOOKUP_MARK:
2200 					key = args->rule.pkt_mark;
2201 					if (cmdlen == F_INSN_SIZE(ipfw_insn_table))
2202 						key &= insntod(cmd, table)->value;
2203 					pkey = &key;
2204 					keylen = sizeof(key);
2205 					break;
2206 				case LOOKUP_RULENUM:
2207 					key = f->rulenum;
2208 					if (cmdlen == F_INSN_SIZE(ipfw_insn_table))
2209 						key &= insntod(cmd, table)->value;
2210 					pkey = &key;
2211 					keylen = sizeof(key);
2212 					break;
2213 				}
2214 				/* unknown key type */
2215 				if (keylen == 0)
2216 					break;
2217 				match = ipfw_lookup_table(chain,
2218 				    insntod(cmd, kidx)->kidx, keylen,
2219 				    pkey, &vidx);
2220 
2221 				if (match)
2222 					tablearg = vidx;
2223 				break;
2224 			}
2225 				/* LOOKUP_NONE */
2226 				/* FALLTHROUGH */
2227 			case O_IP_SRC_LOOKUP:
2228 			{
2229 				void *pkey;
2230 				uint32_t vidx;
2231 				uint16_t keylen;
2232 
2233 				if (is_ipv4) {
2234 					keylen = sizeof(in_addr_t);
2235 					if (cmd->opcode == O_IP_DST_LOOKUP)
2236 						pkey = &dst_ip;
2237 					else
2238 						pkey = &src_ip;
2239 				} else if (is_ipv6) {
2240 					keylen = sizeof(struct in6_addr);
2241 					if (cmd->opcode == O_IP_DST_LOOKUP)
2242 						pkey = &args->f_id.dst_ip6;
2243 					else
2244 						pkey = &args->f_id.src_ip6;
2245 				} else
2246 					break;
2247 				match = ipfw_lookup_table(chain,
2248 				    insntod(cmd, kidx)->kidx,
2249 				    keylen, pkey, &vidx);
2250 				if (!match)
2251 					break;
2252 				if (cmdlen == F_INSN_SIZE(ipfw_insn_table)) {
2253 					match = tvalue_match(chain,
2254 					    insntod(cmd, table), vidx);
2255 					if (!match)
2256 						break;
2257 				}
2258 				tablearg = vidx;
2259 				break;
2260 			}
2261 
2262 			case O_MAC_SRC_LOOKUP:
2263 			case O_MAC_DST_LOOKUP:
2264 			{
2265 				void *pkey;
2266 				uint32_t vidx;
2267 				uint16_t keylen = ETHER_ADDR_LEN;
2268 
2269 				/* Need ether frame */
2270 				if ((args->flags & IPFW_ARGS_ETHER) == 0)
2271 					break;
2272 
2273 				if (cmd->opcode == O_MAC_DST_LOOKUP)
2274 					pkey = eh->ether_dhost;
2275 				else
2276 					pkey = eh->ether_shost;
2277 
2278 				match = ipfw_lookup_table(chain,
2279 				    insntod(cmd, kidx)->kidx,
2280 				    keylen, pkey, &vidx);
2281 				if (!match)
2282 					break;
2283 				if (cmdlen == F_INSN_SIZE(ipfw_insn_table)) {
2284 					match = tvalue_match(chain,
2285 					    insntod(cmd, table), vidx);
2286 					if (!match)
2287 						break;
2288 				}
2289 				tablearg = vidx;
2290 				break;
2291 			}
2292 
2293 			case O_IP_FLOW_LOOKUP:
2294 			{
2295 				uint32_t vidx = 0;
2296 
2297 				match = ipfw_lookup_table(chain,
2298 				    insntod(cmd, kidx)->kidx, 0,
2299 				    &args->f_id, &vidx);
2300 				if (!match)
2301 					break;
2302 				if (cmdlen == F_INSN_SIZE(ipfw_insn_table))
2303 					match = tvalue_match(chain,
2304 					    insntod(cmd, table), vidx);
2305 				if (match)
2306 					tablearg = vidx;
2307 				break;
2308 			}
2309 
2310 			case O_IP_SRC_MASK:
2311 			case O_IP_DST_MASK:
2312 				if (is_ipv4) {
2313 				    uint32_t a =
2314 					(cmd->opcode == O_IP_DST_MASK) ?
2315 					    dst_ip.s_addr : src_ip.s_addr;
2316 				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2317 				    int i = cmdlen-1;
2318 
2319 				    for (; !match && i>0; i-= 2, p+= 2)
2320 					match = (p[0] == (a & p[1]));
2321 				}
2322 				break;
2323 
2324 			case O_IP_SRC_ME:
2325 				if (is_ipv4) {
2326 					match = in_localip(src_ip);
2327 					break;
2328 				}
2329 #ifdef INET6
2330 				/* FALLTHROUGH */
2331 			case O_IP6_SRC_ME:
2332 				match = is_ipv6 &&
2333 				    ipfw_localip6(&args->f_id.src_ip6);
2334 #endif
2335 				break;
2336 
2337 			case O_IP_DST_SET:
2338 			case O_IP_SRC_SET:
2339 				if (is_ipv4) {
2340 					u_int32_t *d = (u_int32_t *)(cmd+1);
2341 					u_int32_t addr =
2342 					    cmd->opcode == O_IP_DST_SET ?
2343 						args->f_id.dst_ip :
2344 						args->f_id.src_ip;
2345 
2346 					    if (addr < d[0])
2347 						    break;
2348 					    addr -= d[0]; /* subtract base */
2349 					    match = (addr < cmd->arg1) &&
2350 						( d[ 1 + (addr>>5)] &
2351 						  (1<<(addr & 0x1f)) );
2352 				}
2353 				break;
2354 
2355 			case O_IP_DST:
2356 				match = is_ipv4 &&
2357 				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2358 				    dst_ip.s_addr);
2359 				break;
2360 
2361 			case O_IP_DST_ME:
2362 				if (is_ipv4) {
2363 					match = in_localip(dst_ip);
2364 					break;
2365 				}
2366 #ifdef INET6
2367 				/* FALLTHROUGH */
2368 			case O_IP6_DST_ME:
2369 				match = is_ipv6 &&
2370 				    ipfw_localip6(&args->f_id.dst_ip6);
2371 #endif
2372 				break;
2373 
2374 			case O_IP_SRCPORT:
2375 			case O_IP_DSTPORT:
2376 				/*
2377 				 * offset == 0 && proto != 0 is enough
2378 				 * to guarantee that we have a
2379 				 * packet with port info.
2380 				 */
2381 				if ((proto == IPPROTO_UDP ||
2382 				    proto == IPPROTO_UDPLITE ||
2383 				    proto == IPPROTO_TCP ||
2384 				    proto == IPPROTO_SCTP) && offset == 0) {
2385 					u_int16_t x =
2386 					    (cmd->opcode == O_IP_SRCPORT) ?
2387 						src_port : dst_port ;
2388 					u_int16_t *p =
2389 					    ((ipfw_insn_u16 *)cmd)->ports;
2390 					int i;
2391 
2392 					for (i = cmdlen - 1; !match && i>0;
2393 					    i--, p += 2)
2394 						match = (x>=p[0] && x<=p[1]);
2395 				}
2396 				break;
2397 
2398 			case O_ICMPTYPE:
2399 				match = (offset == 0 && proto==IPPROTO_ICMP &&
2400 				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2401 				break;
2402 
2403 #ifdef INET6
2404 			case O_ICMP6TYPE:
2405 				match = is_ipv6 && offset == 0 &&
2406 				    proto==IPPROTO_ICMPV6 &&
2407 				    icmp6type_match(
2408 					ICMP6(ulp)->icmp6_type,
2409 					(ipfw_insn_u32 *)cmd);
2410 				break;
2411 #endif /* INET6 */
2412 
2413 			case O_IPOPT:
2414 				match = (is_ipv4 &&
2415 				    ipopts_match(ip, cmd) );
2416 				break;
2417 
2418 			case O_IPVER:
2419 				match = ((is_ipv4 || is_ipv6) &&
2420 				    cmd->arg1 == ip->ip_v);
2421 				break;
2422 
2423 			case O_IPID:
2424 			case O_IPTTL:
2425 				if (!is_ipv4)
2426 					break;
2427 			case O_IPLEN:
2428 				{	/* only for IP packets */
2429 				    uint16_t x;
2430 				    uint16_t *p;
2431 				    int i;
2432 
2433 				    if (cmd->opcode == O_IPLEN)
2434 					x = iplen;
2435 				    else if (cmd->opcode == O_IPTTL)
2436 					x = ip->ip_ttl;
2437 				    else /* must be IPID */
2438 					x = ntohs(ip->ip_id);
2439 				    if (cmdlen == 1) {
2440 					match = (cmd->arg1 == x);
2441 					break;
2442 				    }
2443 				    /* otherwise we have ranges */
2444 				    p = ((ipfw_insn_u16 *)cmd)->ports;
2445 				    i = cmdlen - 1;
2446 				    for (; !match && i>0; i--, p += 2)
2447 					match = (x >= p[0] && x <= p[1]);
2448 				}
2449 				break;
2450 
2451 			case O_IPPRECEDENCE:
2452 				match = (is_ipv4 &&
2453 				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
2454 				break;
2455 
2456 			case O_IPTOS:
2457 				match = (is_ipv4 &&
2458 				    flags_match(cmd, ip->ip_tos));
2459 				break;
2460 
2461 			case O_DSCP:
2462 			    {
2463 				uint32_t *p;
2464 				uint16_t x;
2465 
2466 				p = ((ipfw_insn_u32 *)cmd)->d;
2467 
2468 				if (is_ipv4)
2469 					x = ip->ip_tos >> 2;
2470 				else if (is_ipv6) {
2471 					x = IPV6_DSCP(
2472 					    (struct ip6_hdr *)ip) >> 2;
2473 					x &= 0x3f;
2474 				} else
2475 					break;
2476 
2477 				/* DSCP bitmask is stored as low_u32 high_u32 */
2478 				if (x >= 32)
2479 					match = *(p + 1) & (1 << (x - 32));
2480 				else
2481 					match = *p & (1 << x);
2482 			    }
2483 				break;
2484 
2485 			case O_TCPDATALEN:
2486 				if (proto == IPPROTO_TCP && offset == 0) {
2487 				    struct tcphdr *tcp;
2488 				    uint16_t x;
2489 				    uint16_t *p;
2490 				    int i;
2491 #ifdef INET6
2492 				    if (is_ipv6) {
2493 					    struct ip6_hdr *ip6;
2494 
2495 					    ip6 = (struct ip6_hdr *)ip;
2496 					    if (ip6->ip6_plen == 0) {
2497 						    /*
2498 						     * Jumbo payload is not
2499 						     * supported by this
2500 						     * opcode.
2501 						     */
2502 						    break;
2503 					    }
2504 					    x = iplen - hlen;
2505 				    } else
2506 #endif /* INET6 */
2507 					    x = iplen - (ip->ip_hl << 2);
2508 				    tcp = TCP(ulp);
2509 				    x -= tcp->th_off << 2;
2510 				    if (cmdlen == 1) {
2511 					match = (cmd->arg1 == x);
2512 					break;
2513 				    }
2514 				    /* otherwise we have ranges */
2515 				    p = ((ipfw_insn_u16 *)cmd)->ports;
2516 				    i = cmdlen - 1;
2517 				    for (; !match && i>0; i--, p += 2)
2518 					match = (x >= p[0] && x <= p[1]);
2519 				}
2520 				break;
2521 
2522 			case O_TCPFLAGS:
2523 				/*
2524 				 * Note that this is currently only set up to
2525 				 * match the lower 8 TCP header flag bits, not
2526 				 * the full compliment of all 12 flags.
2527 				 */
2528 				match = (proto == IPPROTO_TCP && offset == 0 &&
2529 				    flags_match(cmd, tcp_get_flags(TCP(ulp))));
2530 				break;
2531 
2532 			case O_TCPOPTS:
2533 				if (proto == IPPROTO_TCP && offset == 0 && ulp){
2534 					PULLUP_LEN_LOCKED(hlen, ulp,
2535 					    (TCP(ulp)->th_off << 2));
2536 					match = tcpopts_match(TCP(ulp), cmd);
2537 				}
2538 				break;
2539 
2540 			case O_TCPSEQ:
2541 				match = (proto == IPPROTO_TCP && offset == 0 &&
2542 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2543 					TCP(ulp)->th_seq);
2544 				break;
2545 
2546 			case O_TCPACK:
2547 				match = (proto == IPPROTO_TCP && offset == 0 &&
2548 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2549 					TCP(ulp)->th_ack);
2550 				break;
2551 
2552 			case O_TCPMSS:
2553 				if (proto == IPPROTO_TCP &&
2554 				    (args->f_id._flags & TH_SYN) != 0 &&
2555 				    ulp != NULL) {
2556 					uint16_t mss, *p;
2557 					int i;
2558 
2559 					PULLUP_LEN_LOCKED(hlen, ulp,
2560 					    (TCP(ulp)->th_off << 2));
2561 					if ((tcpopts_parse(TCP(ulp), &mss) &
2562 					    IP_FW_TCPOPT_MSS) == 0)
2563 						break;
2564 					if (cmdlen == 1) {
2565 						match = (cmd->arg1 == mss);
2566 						break;
2567 					}
2568 					/* Otherwise we have ranges. */
2569 					p = ((ipfw_insn_u16 *)cmd)->ports;
2570 					i = cmdlen - 1;
2571 					for (; !match && i > 0; i--, p += 2)
2572 						match = (mss >= p[0] &&
2573 						    mss <= p[1]);
2574 				}
2575 				break;
2576 
2577 			case O_TCPWIN:
2578 				if (proto == IPPROTO_TCP && offset == 0) {
2579 				    uint16_t x;
2580 				    uint16_t *p;
2581 				    int i;
2582 
2583 				    x = ntohs(TCP(ulp)->th_win);
2584 				    if (cmdlen == 1) {
2585 					match = (cmd->arg1 == x);
2586 					break;
2587 				    }
2588 				    /* Otherwise we have ranges. */
2589 				    p = ((ipfw_insn_u16 *)cmd)->ports;
2590 				    i = cmdlen - 1;
2591 				    for (; !match && i > 0; i--, p += 2)
2592 					match = (x >= p[0] && x <= p[1]);
2593 				}
2594 				break;
2595 
2596 			case O_ESTAB:
2597 				/* reject packets which have SYN only */
2598 				/* XXX should i also check for TH_ACK ? */
2599 				match = (proto == IPPROTO_TCP && offset == 0 &&
2600 				    (tcp_get_flags(TCP(ulp)) &
2601 				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2602 				break;
2603 
2604 			case O_ALTQ: {
2605 				struct pf_mtag *at;
2606 				struct m_tag *mtag;
2607 				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2608 
2609 				/*
2610 				 * ALTQ uses mbuf tags from another
2611 				 * packet filtering system - pf(4).
2612 				 * We allocate a tag in its format
2613 				 * and fill it in, pretending to be pf(4).
2614 				 */
2615 				match = 1;
2616 				at = pf_find_mtag(m);
2617 				if (at != NULL && at->qid != 0)
2618 					break;
2619 				mtag = m_tag_get(PACKET_TAG_PF,
2620 				    sizeof(struct pf_mtag), M_NOWAIT | M_ZERO);
2621 				if (mtag == NULL) {
2622 					/*
2623 					 * Let the packet fall back to the
2624 					 * default ALTQ.
2625 					 */
2626 					break;
2627 				}
2628 				m_tag_prepend(m, mtag);
2629 				at = (struct pf_mtag *)(mtag + 1);
2630 				at->qid = altq->qid;
2631 				at->hdr = ip;
2632 				break;
2633 			}
2634 
2635 			case O_LOG:
2636 				ipfw_log(chain, f, hlen, args,
2637 				    offset | ip6f_mf, tablearg, ip, eh);
2638 				match = 1;
2639 				break;
2640 
2641 			case O_PROB:
2642 				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2643 				break;
2644 
2645 			case O_VERREVPATH:
2646 				/* Outgoing packets automatically pass/match */
2647 				match = (args->flags & IPFW_ARGS_OUT ||
2648 				    (
2649 #ifdef INET6
2650 				    is_ipv6 ?
2651 					verify_path6(&(args->f_id.src_ip6),
2652 					    iif, args->f_id.fib) :
2653 #endif
2654 				    verify_path(src_ip, iif, args->f_id.fib)));
2655 				break;
2656 
2657 			case O_VERSRCREACH:
2658 				/* Outgoing packets automatically pass/match */
2659 				match = (hlen > 0 && ((oif != NULL) || (
2660 #ifdef INET6
2661 				    is_ipv6 ?
2662 				        verify_path6(&(args->f_id.src_ip6),
2663 				            NULL, args->f_id.fib) :
2664 #endif
2665 				    verify_path(src_ip, NULL, args->f_id.fib))));
2666 				break;
2667 
2668 			case O_ANTISPOOF:
2669 				/* Outgoing packets automatically pass/match */
2670 				if (oif == NULL && hlen > 0 &&
2671 				    (  (is_ipv4 && in_localaddr(src_ip))
2672 #ifdef INET6
2673 				    || (is_ipv6 &&
2674 				        in6_localaddr(&(args->f_id.src_ip6)))
2675 #endif
2676 				    ))
2677 					match =
2678 #ifdef INET6
2679 					    is_ipv6 ? verify_path6(
2680 					        &(args->f_id.src_ip6), iif,
2681 						args->f_id.fib) :
2682 #endif
2683 					    verify_path(src_ip, iif,
2684 					        args->f_id.fib);
2685 				else
2686 					match = 1;
2687 				break;
2688 
2689 			case O_IPSEC:
2690 				match = (m_tag_find(m,
2691 				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
2692 				/* otherwise no match */
2693 				break;
2694 
2695 #ifdef INET6
2696 			case O_IP6_SRC:
2697 				match = is_ipv6 &&
2698 				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
2699 				    &((ipfw_insn_ip6 *)cmd)->addr6);
2700 				break;
2701 
2702 			case O_IP6_DST:
2703 				match = is_ipv6 &&
2704 				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
2705 				    &((ipfw_insn_ip6 *)cmd)->addr6);
2706 				break;
2707 			case O_IP6_SRC_MASK:
2708 			case O_IP6_DST_MASK:
2709 				if (is_ipv6) {
2710 					int i = cmdlen - 1;
2711 					struct in6_addr p;
2712 					struct in6_addr *d =
2713 					    &((ipfw_insn_ip6 *)cmd)->addr6;
2714 
2715 					for (; !match && i > 0; d += 2,
2716 					    i -= F_INSN_SIZE(struct in6_addr)
2717 					    * 2) {
2718 						p = (cmd->opcode ==
2719 						    O_IP6_SRC_MASK) ?
2720 						    args->f_id.src_ip6:
2721 						    args->f_id.dst_ip6;
2722 						APPLY_MASK(&p, &d[1]);
2723 						match =
2724 						    IN6_ARE_ADDR_EQUAL(&d[0],
2725 						    &p);
2726 					}
2727 				}
2728 				break;
2729 
2730 			case O_FLOW6ID:
2731 				match = is_ipv6 &&
2732 				    flow6id_match(args->f_id.flow_id6,
2733 				    (ipfw_insn_u32 *) cmd);
2734 				break;
2735 
2736 			case O_EXT_HDR:
2737 				match = is_ipv6 &&
2738 				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
2739 				break;
2740 
2741 			case O_IP6:
2742 				match = is_ipv6;
2743 				break;
2744 #endif
2745 
2746 			case O_IP4:
2747 				match = is_ipv4;
2748 				break;
2749 
2750 			case O_TAG: {
2751 				struct m_tag *mtag;
2752 				uint32_t tag = TARG(cmd->arg1, tag);
2753 
2754 				/* Packet is already tagged with this tag? */
2755 				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
2756 
2757 				/* We have `untag' action when F_NOT flag is
2758 				 * present. And we must remove this mtag from
2759 				 * mbuf and reset `match' to zero (`match' will
2760 				 * be inversed later).
2761 				 * Otherwise we should allocate new mtag and
2762 				 * push it into mbuf.
2763 				 */
2764 				if (cmd->len & F_NOT) { /* `untag' action */
2765 					if (mtag != NULL)
2766 						m_tag_delete(m, mtag);
2767 					match = 0;
2768 				} else {
2769 					if (mtag == NULL) {
2770 						mtag = m_tag_alloc( MTAG_IPFW,
2771 						    tag, 0, M_NOWAIT);
2772 						if (mtag != NULL)
2773 							m_tag_prepend(m, mtag);
2774 					}
2775 					match = 1;
2776 				}
2777 				break;
2778 			}
2779 
2780 			case O_FIB: /* try match the specified fib */
2781 				if (args->f_id.fib == cmd->arg1)
2782 					match = 1;
2783 				break;
2784 
2785 			case O_SOCKARG:	{
2786 #ifndef USERSPACE	/* not supported in userspace */
2787 				struct inpcb *inp = args->inp;
2788 				struct inpcbinfo *pi;
2789 				bool inp_locked = false;
2790 
2791 				if (proto == IPPROTO_TCP)
2792 					pi = &V_tcbinfo;
2793 				else if (proto == IPPROTO_UDP)
2794 					pi = &V_udbinfo;
2795 				else if (proto == IPPROTO_UDPLITE)
2796 					pi = &V_ulitecbinfo;
2797 				else
2798 					break;
2799 
2800 				/*
2801 				 * XXXRW: so_user_cookie should almost
2802 				 * certainly be inp_user_cookie?
2803 				 */
2804 
2805 				/*
2806 				 * For incoming packet lookup the inpcb
2807 				 * using the src/dest ip/port tuple.
2808 				 */
2809 				if (is_ipv4 && inp == NULL) {
2810 					inp = in_pcblookup(pi,
2811 					    src_ip, htons(src_port),
2812 					    dst_ip, htons(dst_port),
2813 					    INPLOOKUP_RLOCKPCB, NULL);
2814 					inp_locked = true;
2815 				}
2816 #ifdef INET6
2817 				if (is_ipv6 && inp == NULL) {
2818 					inp = in6_pcblookup(pi,
2819 					    &args->f_id.src_ip6,
2820 					    htons(src_port),
2821 					    &args->f_id.dst_ip6,
2822 					    htons(dst_port),
2823 					    INPLOOKUP_RLOCKPCB, NULL);
2824 					inp_locked = true;
2825 				}
2826 #endif /* INET6 */
2827 				if (inp != NULL) {
2828 					if (inp->inp_socket) {
2829 						tablearg =
2830 						    inp->inp_socket->so_user_cookie;
2831 						if (tablearg)
2832 							match = 1;
2833 					}
2834 					if (inp_locked)
2835 						INP_RUNLOCK(inp);
2836 				}
2837 #endif /* !USERSPACE */
2838 				break;
2839 			}
2840 
2841 			case O_TAGGED: {
2842 				struct m_tag *mtag;
2843 				uint32_t tag = TARG(cmd->arg1, tag);
2844 
2845 				if (cmdlen == 1) {
2846 					match = m_tag_locate(m, MTAG_IPFW,
2847 					    tag, NULL) != NULL;
2848 					break;
2849 				}
2850 
2851 				/* we have ranges */
2852 				for (mtag = m_tag_first(m);
2853 				    mtag != NULL && !match;
2854 				    mtag = m_tag_next(m, mtag)) {
2855 					uint16_t *p;
2856 					int i;
2857 
2858 					if (mtag->m_tag_cookie != MTAG_IPFW)
2859 						continue;
2860 
2861 					p = ((ipfw_insn_u16 *)cmd)->ports;
2862 					i = cmdlen - 1;
2863 					for(; !match && i > 0; i--, p += 2)
2864 						match =
2865 						    mtag->m_tag_id >= p[0] &&
2866 						    mtag->m_tag_id <= p[1];
2867 				}
2868 				break;
2869 			}
2870 
2871 			case O_MARK: {
2872 				uint32_t mark;
2873 				if (cmd->arg1 == IP_FW_TARG)
2874 					mark = TARG_VAL(chain, tablearg, mark);
2875 				else
2876 					mark = insntoc(cmd, u32)->d[0];
2877 				match =
2878 				    (args->rule.pkt_mark &
2879 				    insntoc(cmd, u32)->d[1]) ==
2880 				    (mark & insntoc(cmd, u32)->d[1]);
2881 				break;
2882 			}
2883 
2884 			/*
2885 			 * The second set of opcodes represents 'actions',
2886 			 * i.e. the terminal part of a rule once the packet
2887 			 * matches all previous patterns.
2888 			 * Typically there is only one action for each rule,
2889 			 * and the opcode is stored at the end of the rule
2890 			 * (but there are exceptions -- see below).
2891 			 *
2892 			 * In general, here we set retval and terminate the
2893 			 * outer loop (would be a 'break 3' in some language,
2894 			 * but we need to set l=0, done=1)
2895 			 *
2896 			 * Exceptions:
2897 			 * O_COUNT and O_SKIPTO actions:
2898 			 *   instead of terminating, we jump to the next rule
2899 			 *   (setting l=0), or to the SKIPTO target (setting
2900 			 *   f/f_len, cmd and l as needed), respectively.
2901 			 *
2902 			 * O_TAG, O_LOG and O_ALTQ action parameters:
2903 			 *   perform some action and set match = 1;
2904 			 *
2905 			 * O_LIMIT and O_KEEP_STATE: these opcodes are
2906 			 *   not real 'actions', and are stored right
2907 			 *   before the 'action' part of the rule (one
2908 			 *   exception is O_SKIP_ACTION which could be
2909 			 *   between these opcodes and 'action' one).
2910 			 *   These opcodes try to install an entry in the
2911 			 *   state tables; if successful, we continue with
2912 			 *   the next opcode (match=1; break;), otherwise
2913 			 *   the packet must be dropped (set retval,
2914 			 *   break loops with l=0, done=1)
2915 			 *
2916 			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2917 			 *   cause a lookup of the state table, and a jump
2918 			 *   to the 'action' part of the parent rule
2919 			 *   if an entry is found, or
2920 			 *   (CHECK_STATE only) a jump to the next rule if
2921 			 *   the entry is not found.
2922 			 *   The result of the lookup is cached so that
2923 			 *   further instances of these opcodes become NOPs.
2924 			 *   The jump to the next rule is done by setting
2925 			 *   l=0, cmdlen=0.
2926 			 *
2927 			 * O_SKIP_ACTION: this opcode is not a real 'action'
2928 			 *  either, and is stored right before the 'action'
2929 			 *  part of the rule, right after the O_KEEP_STATE
2930 			 *  opcode. It causes match failure so the real
2931 			 *  'action' could be executed only if the rule
2932 			 *  is checked via dynamic rule from the state
2933 			 *  table, as in such case execution starts
2934 			 *  from the true 'action' opcode directly.
2935 			 *
2936 			 */
2937 			case O_LIMIT:
2938 			case O_KEEP_STATE:
2939 				if (ipfw_dyn_install_state(chain, f,
2940 				    (ipfw_insn_limit *)cmd, args, ulp,
2941 				    pktlen, &dyn_info, tablearg)) {
2942 					/* error or limit violation */
2943 					retval = IP_FW_DENY;
2944 					l = 0;	/* exit inner loop */
2945 					done = 1; /* exit outer loop */
2946 				}
2947 				match = 1;
2948 				break;
2949 
2950 			case O_PROBE_STATE:
2951 			case O_CHECK_STATE:
2952 				/*
2953 				 * dynamic rules are checked at the first
2954 				 * keep-state or check-state occurrence,
2955 				 * with the result being stored in dyn_info.
2956 				 * The compiler introduces a PROBE_STATE
2957 				 * instruction for us when we have a
2958 				 * KEEP_STATE (because PROBE_STATE needs
2959 				 * to be run first).
2960 				 */
2961 				if (DYN_LOOKUP_NEEDED(&dyn_info, cmd) &&
2962 				    (q = ipfw_dyn_lookup_state(args, ulp,
2963 				    pktlen, cmd, &dyn_info)) != NULL) {
2964 					/*
2965 					 * Found dynamic entry, jump to the
2966 					 * 'action' part of the parent rule
2967 					 * by setting f, cmd, l and clearing
2968 					 * cmdlen.
2969 					 */
2970 					f = q;
2971 					f_pos = dyn_info.f_pos;
2972 					cmd = ACTION_PTR(f);
2973 					l = f->cmd_len - f->act_ofs;
2974 					cmdlen = 0;
2975 					continue;
2976 				}
2977 				/*
2978 				 * Dynamic entry not found. If CHECK_STATE,
2979 				 * skip to next rule, if PROBE_STATE just
2980 				 * ignore and continue with next opcode.
2981 				 */
2982 				if (cmd->opcode == O_CHECK_STATE)
2983 					l = 0;	/* exit inner loop */
2984 				match = 1;
2985 				break;
2986 
2987 			case O_SKIP_ACTION:
2988 				match = 0;	/* skip to the next rule */
2989 				l = 0;		/* exit inner loop */
2990 				break;
2991 
2992 			case O_ACCEPT:
2993 				retval = 0;	/* accept */
2994 				l = 0;		/* exit inner loop */
2995 				done = 1;	/* exit outer loop */
2996 				break;
2997 
2998 			case O_PIPE:
2999 			case O_QUEUE:
3000 				set_match(args, f_pos, chain);
3001 				args->rule.info = TARG(cmd->arg1, pipe);
3002 				if (cmd->opcode == O_PIPE)
3003 					args->rule.info |= IPFW_IS_PIPE;
3004 				if (V_fw_one_pass)
3005 					args->rule.info |= IPFW_ONEPASS;
3006 				retval = IP_FW_DUMMYNET;
3007 				l = 0;          /* exit inner loop */
3008 				done = 1;       /* exit outer loop */
3009 				break;
3010 
3011 			case O_DIVERT:
3012 			case O_TEE:
3013 				if (args->flags & IPFW_ARGS_ETHER)
3014 					break;	/* not on layer 2 */
3015 				/* otherwise this is terminal */
3016 				l = 0;		/* exit inner loop */
3017 				done = 1;	/* exit outer loop */
3018 				retval = (cmd->opcode == O_DIVERT) ?
3019 					IP_FW_DIVERT : IP_FW_TEE;
3020 				set_match(args, f_pos, chain);
3021 				args->rule.info = TARG(cmd->arg1, divert);
3022 				break;
3023 
3024 			case O_COUNT:
3025 				IPFW_INC_RULE_COUNTER(f, pktlen);
3026 				l = 0;		/* exit inner loop */
3027 				break;
3028 
3029 			case O_SKIPTO:
3030 			    IPFW_INC_RULE_COUNTER(f, pktlen);
3031 			    f_pos = jump(chain, f,
3032 				insntod(cmd, u32)->d[0], tablearg, false);
3033 			    /*
3034 			     * Skip disabled rules, and re-enter
3035 			     * the inner loop with the correct
3036 			     * f_pos, f, l and cmd.
3037 			     * Also clear cmdlen and skip_or
3038 			     */
3039 			    for (; f_pos < chain->n_rules - 1 &&
3040 				    (V_set_disable &
3041 				     (1 << chain->map[f_pos]->set));
3042 				    f_pos++)
3043 				;
3044 			    /* Re-enter the inner loop at the skipto rule. */
3045 			    f = chain->map[f_pos];
3046 			    l = f->cmd_len;
3047 			    cmd = f->cmd;
3048 			    match = 1;
3049 			    cmdlen = 0;
3050 			    skip_or = 0;
3051 			    continue;
3052 			    break;	/* not reached */
3053 
3054 			case O_CALLRETURN: {
3055 				/*
3056 				 * Implementation of `subroutine' call/return,
3057 				 * in the stack carried in an mbuf tag. This
3058 				 * is different from `skipto' in that any call
3059 				 * address is possible (`skipto' must prevent
3060 				 * backward jumps to avoid endless loops).
3061 				 * We have `return' action when F_NOT flag is
3062 				 * present. The `m_tag_id' field is used as
3063 				 * stack pointer.
3064 				 */
3065 				struct m_tag *mtag;
3066 				uint32_t jmpto, *stack;
3067 
3068 #define	IS_CALL		((cmd->len & F_NOT) == 0)
3069 #define	IS_RETURN	((cmd->len & F_NOT) != 0)
3070 				/*
3071 				 * Hand-rolled version of m_tag_locate() with
3072 				 * wildcard `type'.
3073 				 * If not already tagged, allocate new tag.
3074 				 */
3075 				mtag = m_tag_first(m);
3076 				while (mtag != NULL) {
3077 					if (mtag->m_tag_cookie ==
3078 					    MTAG_IPFW_CALL)
3079 						break;
3080 					mtag = m_tag_next(m, mtag);
3081 				}
3082 
3083 				/*
3084 				 * We keep ruleset id in the first element
3085 				 * of stack. If it doesn't match chain->id,
3086 				 * then we can't trust information in the
3087 				 * stack, since rules were changed.
3088 				 * We reset stack pointer to be able reuse
3089 				 * tag if it will be needed.
3090 				 */
3091 				if (mtag != NULL) {
3092 					stack = (uint32_t *)(mtag + 1);
3093 					if (stack[0] != chain->id) {
3094 						stack[0] = chain->id;
3095 						mtag->m_tag_id = 0;
3096 					}
3097 				}
3098 
3099 				/*
3100 				 * If there is no mtag or stack is empty,
3101 				 * `return` continues with next rule.
3102 				 */
3103 				if (IS_RETURN && (mtag == NULL ||
3104 				    mtag->m_tag_id == 0)) {
3105 					l = 0;		/* exit inner loop */
3106 					break;
3107 				}
3108 
3109 				if (mtag == NULL) {
3110 					MPASS(IS_CALL);
3111 					mtag = m_tag_alloc(MTAG_IPFW_CALL, 0,
3112 					    IPFW_CALLSTACK_SIZE *
3113 					    sizeof(uint32_t), M_NOWAIT);
3114 					if (mtag != NULL) {
3115 						m_tag_prepend(m, mtag);
3116 						stack = (uint32_t *)(mtag + 1);
3117 						stack[0] = chain->id;
3118 					}
3119 				}
3120 
3121 				if (mtag == NULL) {
3122 					printf("ipfw: rule %u: failed to "
3123 					    "allocate call stack. "
3124 					    "Denying packet.\n",
3125 					    f->rulenum);
3126 					l = 0;		/* exit inner loop */
3127 					done = 1;	/* exit outer loop */
3128 					retval = IP_FW_DENY; /* drop packet */
3129 					break;
3130 				}
3131 
3132 				if (IS_CALL && mtag->m_tag_id >=
3133 				    IPFW_CALLSTACK_SIZE - 1) {
3134 					printf("ipfw: rule %u: call stack "
3135 					    "overflow. Denying packet.\n",
3136 					    f->rulenum);
3137 					l = 0;		/* exit inner loop */
3138 					done = 1;	/* exit outer loop */
3139 					retval = IP_FW_DENY; /* drop packet */
3140 					break;
3141 				}
3142 
3143 				MPASS(stack == (uint32_t *)(mtag + 1));
3144 				IPFW_INC_RULE_COUNTER(f, pktlen);
3145 
3146 				if (IS_CALL) {
3147 					stack[++mtag->m_tag_id] = f_pos;
3148 					f_pos = jump(chain, f,
3149 					    insntod(cmd, u32)->d[0],
3150 					    tablearg, true);
3151 				} else {	/* `return' action */
3152 					jmpto = stack[mtag->m_tag_id--];
3153 					if (cmd->arg1 == RETURN_NEXT_RULE)
3154 						f_pos = jmpto + 1;
3155 					else /* RETURN_NEXT_RULENUM */
3156 						f_pos = ipfw_find_rule(chain,
3157 						    chain->map[
3158 						    jmpto]->rulenum + 1, 0);
3159 				}
3160 
3161 				/*
3162 				 * Skip disabled rules, and re-enter
3163 				 * the inner loop with the correct
3164 				 * f_pos, f, l and cmd.
3165 				 * Also clear cmdlen and skip_or
3166 				 */
3167 				MPASS(f_pos < chain->n_rules - 1);
3168 				for (; f_pos < chain->n_rules - 1 &&
3169 				    (V_set_disable &
3170 				    (1 << chain->map[f_pos]->set)); f_pos++)
3171 					;
3172 				/*
3173 				 * Re-enter the inner loop at the dest
3174 				 * rule.
3175 				 */
3176 				f = chain->map[f_pos];
3177 				l = f->cmd_len;
3178 				cmd = f->cmd;
3179 				cmdlen = 0;
3180 				skip_or = 0;
3181 				continue;
3182 				break;	/* NOTREACHED */
3183 			}
3184 #undef IS_CALL
3185 #undef IS_RETURN
3186 
3187 			case O_REJECT:
3188 				/*
3189 				 * Drop the packet and send a reject notice
3190 				 * if the packet is not ICMP (or is an ICMP
3191 				 * query), and it is not multicast/broadcast.
3192 				 */
3193 				if (hlen > 0 && is_ipv4 && offset == 0 &&
3194 				    (proto != IPPROTO_ICMP ||
3195 				     is_icmp_query(ICMP(ulp))) &&
3196 				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3197 				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
3198 					KASSERT(!need_send_reject,
3199 					    ("o_reject - need_send_reject was set previously"));
3200 					if ((reject_code = cmd->arg1) == ICMP_UNREACH_NEEDFRAG &&
3201 					    cmd->len == F_INSN_SIZE(ipfw_insn_u16)) {
3202 						reject_mtu =
3203 						    ((ipfw_insn_u16 *)cmd)->ports[0];
3204 					} else {
3205 						reject_mtu = 0;
3206 					}
3207 					need_send_reject = true;
3208 				}
3209 				/* FALLTHROUGH */
3210 #ifdef INET6
3211 			case O_UNREACH6:
3212 				if (hlen > 0 && is_ipv6 &&
3213 				    ((offset & IP6F_OFF_MASK) == 0) &&
3214 				    (proto != IPPROTO_ICMPV6 ||
3215 				     (is_icmp6_query(icmp6_type) == 1)) &&
3216 				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3217 				    !IN6_IS_ADDR_MULTICAST(
3218 					&args->f_id.dst_ip6)) {
3219 					KASSERT(!need_send_reject,
3220 					    ("o_unreach6 - need_send_reject was set previously"));
3221 					reject_code = cmd->arg1;
3222 					if (cmd->opcode == O_REJECT) {
3223 						reject_code =
3224 						    map_icmp_unreach(reject_code);
3225 					}
3226 					need_send_reject = true;
3227 				}
3228 				/* FALLTHROUGH */
3229 #endif
3230 			case O_DENY:
3231 				retval = IP_FW_DENY;
3232 				l = 0;		/* exit inner loop */
3233 				done = 1;	/* exit outer loop */
3234 				break;
3235 
3236 			case O_FORWARD_IP:
3237 				if (args->flags & IPFW_ARGS_ETHER)
3238 					break;	/* not valid on layer2 pkts */
3239 				if (q != f ||
3240 				    dyn_info.direction == MATCH_FORWARD) {
3241 				    struct sockaddr_in *sa;
3242 
3243 				    sa = &(((ipfw_insn_sa *)cmd)->sa);
3244 				    if (sa->sin_addr.s_addr == INADDR_ANY) {
3245 #ifdef INET6
3246 					/*
3247 					 * We use O_FORWARD_IP opcode for
3248 					 * fwd rule with tablearg, but tables
3249 					 * now support IPv6 addresses. And
3250 					 * when we are inspecting IPv6 packet,
3251 					 * we can use nh6 field from
3252 					 * table_value as next_hop6 address.
3253 					 */
3254 					if (is_ipv6) {
3255 						struct ip_fw_nh6 *nh6;
3256 
3257 						args->flags |= IPFW_ARGS_NH6;
3258 						nh6 = &args->hopstore6;
3259 						nh6->sin6_addr = TARG_VAL(
3260 						    chain, tablearg, nh6);
3261 						nh6->sin6_port = sa->sin_port;
3262 						nh6->sin6_scope_id = TARG_VAL(
3263 						    chain, tablearg, zoneid);
3264 					} else
3265 #endif
3266 					{
3267 						args->flags |= IPFW_ARGS_NH4;
3268 						args->hopstore.sin_port =
3269 						    sa->sin_port;
3270 						sa = &args->hopstore;
3271 						sa->sin_family = AF_INET;
3272 						sa->sin_len = sizeof(*sa);
3273 						sa->sin_addr.s_addr = htonl(
3274 						    TARG_VAL(chain, tablearg,
3275 						    nh4));
3276 					}
3277 				    } else {
3278 					    args->flags |= IPFW_ARGS_NH4PTR;
3279 					    args->next_hop = sa;
3280 				    }
3281 				}
3282 				retval = IP_FW_PASS;
3283 				l = 0;          /* exit inner loop */
3284 				done = 1;       /* exit outer loop */
3285 				break;
3286 
3287 #ifdef INET6
3288 			case O_FORWARD_IP6:
3289 				if (args->flags & IPFW_ARGS_ETHER)
3290 					break;	/* not valid on layer2 pkts */
3291 				if (q != f ||
3292 				    dyn_info.direction == MATCH_FORWARD) {
3293 					struct sockaddr_in6 *sin6;
3294 
3295 					sin6 = &(((ipfw_insn_sa6 *)cmd)->sa);
3296 					args->flags |= IPFW_ARGS_NH6PTR;
3297 					args->next_hop6 = sin6;
3298 				}
3299 				retval = IP_FW_PASS;
3300 				l = 0;		/* exit inner loop */
3301 				done = 1;	/* exit outer loop */
3302 				break;
3303 #endif
3304 
3305 			case O_NETGRAPH:
3306 			case O_NGTEE:
3307 				set_match(args, f_pos, chain);
3308 				args->rule.info = TARG(cmd->arg1, netgraph);
3309 				if (V_fw_one_pass)
3310 					args->rule.info |= IPFW_ONEPASS;
3311 				retval = (cmd->opcode == O_NETGRAPH) ?
3312 				    IP_FW_NETGRAPH : IP_FW_NGTEE;
3313 				l = 0;          /* exit inner loop */
3314 				done = 1;       /* exit outer loop */
3315 				break;
3316 
3317 			case O_SETFIB: {
3318 				uint32_t fib;
3319 
3320 				IPFW_INC_RULE_COUNTER(f, pktlen);
3321 				fib = TARG(cmd->arg1, fib) & 0x7FFF;
3322 				if (fib >= rt_numfibs)
3323 					fib = 0;
3324 				M_SETFIB(m, fib);
3325 				args->f_id.fib = fib; /* XXX */
3326 				l = 0;		/* exit inner loop */
3327 				break;
3328 		        }
3329 
3330 			case O_SETDSCP: {
3331 				uint16_t code;
3332 
3333 				code = TARG(cmd->arg1, dscp) & 0x3F;
3334 				l = 0;		/* exit inner loop */
3335 				if (is_ipv4) {
3336 					uint16_t old;
3337 
3338 					old = *(uint16_t *)ip;
3339 					ip->ip_tos = (code << 2) |
3340 					    (ip->ip_tos & 0x03);
3341 					ip->ip_sum = cksum_adjust(ip->ip_sum,
3342 					    old, *(uint16_t *)ip);
3343 				} else if (is_ipv6) {
3344 					/* update cached value */
3345 					args->f_id.flow_id6 =
3346 					    ntohl(*(uint32_t *)ip) & ~0x0FC00000;
3347 					args->f_id.flow_id6 |= code << 22;
3348 
3349 					*((uint32_t *)ip) =
3350 					    htonl(args->f_id.flow_id6);
3351 				} else
3352 					break;
3353 
3354 				IPFW_INC_RULE_COUNTER(f, pktlen);
3355 				break;
3356 			}
3357 
3358 			case O_NAT:
3359 				l = 0;          /* exit inner loop */
3360 				done = 1;       /* exit outer loop */
3361 				/*
3362 				 * Ensure that we do not invoke NAT handler for
3363 				 * non IPv4 packets. Libalias expects only IPv4.
3364 				 */
3365 				if (!is_ipv4 || !IPFW_NAT_LOADED) {
3366 				    retval = IP_FW_DENY;
3367 				    break;
3368 				}
3369 
3370 				struct cfg_nat *t;
3371 				int nat_id;
3372 
3373 				args->rule.info = 0;
3374 				set_match(args, f_pos, chain);
3375 				/* Check if this is 'global' nat rule */
3376 				if (cmd->arg1 == IP_FW_NAT44_GLOBAL) {
3377 					retval = ipfw_nat_ptr(args, NULL, m);
3378 					break;
3379 				}
3380 				t = ((ipfw_insn_nat *)cmd)->nat;
3381 				if (t == NULL) {
3382 					nat_id = TARG(cmd->arg1, nat);
3383 					t = (*lookup_nat_ptr)(&chain->nat, nat_id);
3384 
3385 					if (t == NULL) {
3386 					    retval = IP_FW_DENY;
3387 					    break;
3388 					}
3389 					if (cmd->arg1 != IP_FW_TARG)
3390 					    ((ipfw_insn_nat *)cmd)->nat = t;
3391 				}
3392 				retval = ipfw_nat_ptr(args, t, m);
3393 				break;
3394 
3395 			case O_REASS: {
3396 				int ip_off;
3397 
3398 				l = 0;	/* in any case exit inner loop */
3399 				if (is_ipv6) /* IPv6 is not supported yet */
3400 					break;
3401 				IPFW_INC_RULE_COUNTER(f, pktlen);
3402 				ip_off = ntohs(ip->ip_off);
3403 
3404 				/* if not fragmented, go to next rule */
3405 				if ((ip_off & (IP_MF | IP_OFFMASK)) == 0)
3406 				    break;
3407 
3408 				args->m = m = ip_reass(m);
3409 
3410 				/*
3411 				 * do IP header checksum fixup.
3412 				 */
3413 				if (m == NULL) { /* fragment got swallowed */
3414 				    retval = IP_FW_DENY;
3415 				} else { /* good, packet complete */
3416 				    int hlen;
3417 
3418 				    ip = mtod(m, struct ip *);
3419 				    hlen = ip->ip_hl << 2;
3420 				    ip->ip_sum = 0;
3421 				    if (hlen == sizeof(struct ip))
3422 					ip->ip_sum = in_cksum_hdr(ip);
3423 				    else
3424 					ip->ip_sum = in_cksum(m, hlen);
3425 				    retval = IP_FW_REASS;
3426 				    args->rule.info = 0;
3427 				    set_match(args, f_pos, chain);
3428 				}
3429 				done = 1;	/* exit outer loop */
3430 				break;
3431 			}
3432 
3433 			case O_SETMARK: {
3434 				l = 0;		/* exit inner loop */
3435 				args->rule.pkt_mark = (
3436 				    (cmd->arg1 == IP_FW_TARG) ?
3437 				    TARG_VAL(chain, tablearg, mark) :
3438 				    insntoc(cmd, u32)->d[0]);
3439 
3440 				IPFW_INC_RULE_COUNTER(f, pktlen);
3441 				break;
3442 			}
3443 
3444 			case O_EXTERNAL_ACTION:
3445 				l = 0; /* in any case exit inner loop */
3446 				retval = ipfw_run_eaction(chain, args,
3447 				    cmd, &done);
3448 				/*
3449 				 * If both @retval and @done are zero,
3450 				 * consider this as rule matching and
3451 				 * update counters.
3452 				 */
3453 				if (retval == 0 && done == 0) {
3454 					IPFW_INC_RULE_COUNTER(f, pktlen);
3455 					/*
3456 					 * Reset the result of the last
3457 					 * dynamic state lookup.
3458 					 * External action can change
3459 					 * @args content, and it may be
3460 					 * used for new state lookup later.
3461 					 */
3462 					DYN_INFO_INIT(&dyn_info);
3463 				}
3464 				break;
3465 
3466 			default:
3467 				panic("ipfw: rule %u: unknown opcode %d\n",
3468 				    f->rulenum, cmd->opcode);
3469 			} /* end of switch() on opcodes */
3470 			/*
3471 			 * if we get here with l=0, then match is irrelevant.
3472 			 */
3473 
3474 			if (cmd->len & F_NOT)
3475 				match = !match;
3476 
3477 			if (match) {
3478 				if (cmd->len & F_OR)
3479 					skip_or = 1;
3480 			} else {
3481 				if (!(cmd->len & F_OR)) /* not an OR block, */
3482 					break;		/* try next rule    */
3483 			}
3484 
3485 		}	/* end of inner loop, scan opcodes */
3486 #undef PULLUP_LEN
3487 #undef PULLUP_LEN_LOCKED
3488 
3489 		if (done)
3490 			break;
3491 
3492 /* next_rule:; */	/* try next rule		*/
3493 
3494 	}		/* end of outer for, scan rules */
3495 
3496 	if (done) {
3497 		struct ip_fw *rule = chain->map[f_pos];
3498 		/* Update statistics */
3499 		IPFW_INC_RULE_COUNTER(rule, pktlen);
3500 		IPFW_PROBE(rule__matched, retval,
3501 		    is_ipv4 ? AF_INET : AF_INET6,
3502 		    is_ipv4 ? (uintptr_t)&src_ip :
3503 		        (uintptr_t)&args->f_id.src_ip6,
3504 		    is_ipv4 ? (uintptr_t)&dst_ip :
3505 		        (uintptr_t)&args->f_id.dst_ip6,
3506 		    args, rule);
3507 	} else {
3508 		retval = IP_FW_DENY;
3509 		printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3510 	}
3511 	IPFW_PF_RUNLOCK(chain);
3512 	if (need_send_reject) {
3513 #ifdef INET6
3514 		if (is_ipv6)
3515 			send_reject6(args, reject_code, hlen,
3516 				     (struct ip6_hdr *)ip);
3517 		else
3518 #endif
3519 			send_reject(args, reject_code, reject_mtu,
3520 				    iplen, ip);
3521 	}
3522 #ifdef __FreeBSD__
3523 	if (ucred_cache != NULL)
3524 		crfree(ucred_cache);
3525 #endif
3526 	return (retval);
3527 
3528 pullup_failed:
3529 	if (V_fw_verbose)
3530 		printf("ipfw: pullup failed\n");
3531 	return (IP_FW_DENY);
3532 }
3533 
3534 /*
3535  * Set maximum number of tables that can be used in given VNET ipfw instance.
3536  */
3537 #ifdef SYSCTL_NODE
3538 static int
sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS)3539 sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS)
3540 {
3541 	int error;
3542 	unsigned int ntables;
3543 
3544 	ntables = V_fw_tables_max;
3545 
3546 	error = sysctl_handle_int(oidp, &ntables, 0, req);
3547 	/* Read operation or some error */
3548 	if ((error != 0) || (req->newptr == NULL))
3549 		return (error);
3550 
3551 	return (ipfw_resize_tables(&V_layer3_chain, ntables));
3552 }
3553 
3554 /*
3555  * Switches table namespace between global and per-set.
3556  */
3557 static int
sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS)3558 sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS)
3559 {
3560 	int error;
3561 	unsigned int sets;
3562 
3563 	sets = V_fw_tables_sets;
3564 
3565 	error = sysctl_handle_int(oidp, &sets, 0, req);
3566 	/* Read operation or some error */
3567 	if ((error != 0) || (req->newptr == NULL))
3568 		return (error);
3569 
3570 	return (ipfw_switch_tables_namespace(&V_layer3_chain, sets));
3571 }
3572 #endif
3573 
3574 /*
3575  * Module and VNET glue
3576  */
3577 
3578 /*
3579  * Stuff that must be initialised only on boot or module load
3580  */
3581 static int
ipfw_init(void)3582 ipfw_init(void)
3583 {
3584 	int error = 0;
3585 
3586 	/*
3587  	 * Only print out this stuff the first time around,
3588 	 * when called from the sysinit code.
3589 	 */
3590 	printf("ipfw2 "
3591 #ifdef INET6
3592 		"(+ipv6) "
3593 #endif
3594 		"initialized, divert %s, nat %s, "
3595 		"default to %s, logging ",
3596 #ifdef IPDIVERT
3597 		"enabled",
3598 #else
3599 		"loadable",
3600 #endif
3601 #ifdef IPFIREWALL_NAT
3602 		"enabled",
3603 #else
3604 		"loadable",
3605 #endif
3606 		default_to_accept ? "accept" : "deny");
3607 
3608 	/*
3609 	 * Note: V_xxx variables can be accessed here but the vnet specific
3610 	 * initializer may not have been called yet for the VIMAGE case.
3611 	 * Tuneables will have been processed. We will print out values for
3612 	 * the default vnet.
3613 	 * XXX This should all be rationalized AFTER 8.0
3614 	 */
3615 	if (V_fw_verbose == 0)
3616 		printf("disabled\n");
3617 	else if (V_verbose_limit == 0)
3618 		printf("unlimited\n");
3619 	else
3620 		printf("limited to %d packets/entry by default\n",
3621 		    V_verbose_limit);
3622 
3623 	/* Check user-supplied table count for validness */
3624 	if (default_fw_tables > IPFW_TABLES_MAX)
3625 	  default_fw_tables = IPFW_TABLES_MAX;
3626 
3627 	ipfw_init_sopt_handler();
3628 	ipfw_init_obj_rewriter();
3629 	ipfw_iface_init();
3630 	return (error);
3631 }
3632 
3633 /*
3634  * Called for the removal of the last instance only on module unload.
3635  */
3636 static void
ipfw_destroy(void)3637 ipfw_destroy(void)
3638 {
3639 
3640 	ipfw_iface_destroy();
3641 	ipfw_destroy_sopt_handler();
3642 	ipfw_destroy_obj_rewriter();
3643 	printf("IP firewall unloaded\n");
3644 }
3645 
3646 /*
3647  * Stuff that must be initialized for every instance
3648  * (including the first of course).
3649  */
3650 static int
vnet_ipfw_init(const void * unused)3651 vnet_ipfw_init(const void *unused)
3652 {
3653 	int error, first;
3654 	struct ip_fw *rule = NULL;
3655 	struct ip_fw_chain *chain;
3656 
3657 	chain = &V_layer3_chain;
3658 
3659 	first = IS_DEFAULT_VNET(curvnet) ? 1 : 0;
3660 
3661 	/* First set up some values that are compile time options */
3662 	V_autoinc_step = 100;	/* bounded to 1..1000 in add_rule() */
3663 	V_fw_deny_unknown_exthdrs = 1;
3664 #ifdef IPFIREWALL_VERBOSE
3665 	V_fw_verbose = 1;
3666 #endif
3667 #ifdef IPFIREWALL_VERBOSE_LIMIT
3668 	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
3669 #endif
3670 #ifdef IPFIREWALL_NAT
3671 	LIST_INIT(&chain->nat);
3672 #endif
3673 
3674 	/* Init shared services hash table */
3675 	ipfw_init_srv(chain);
3676 
3677 	ipfw_init_counters();
3678 	/* Set initial number of tables */
3679 	V_fw_tables_max = default_fw_tables;
3680 	error = ipfw_init_tables(chain, first);
3681 	if (error) {
3682 		printf("ipfw2: setting up tables failed\n");
3683 		free(chain->map, M_IPFW);
3684 		free(rule, M_IPFW);
3685 		return (ENOSPC);
3686 	}
3687 
3688 	IPFW_LOCK_INIT(chain);
3689 
3690 	ipfw_dyn_init(chain);
3691 	/* fill and insert the default rule */
3692 	rule = ipfw_alloc_rule(chain, sizeof(struct ip_fw));
3693 	rule->flags |= IPFW_RULE_NOOPT;
3694 	rule->cmd_len = 1;
3695 	rule->cmd[0].len = 1;
3696 	rule->cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
3697 	chain->default_rule = rule;
3698 	ipfw_add_protected_rule(chain, rule, 0);
3699 
3700 	ipfw_eaction_init(chain, first);
3701 	ipfw_init_skipto_cache(chain);
3702 	ipfw_bpf_init(first);
3703 
3704 	/* First set up some values that are compile time options */
3705 	V_ipfw_vnet_ready = 1;		/* Open for business */
3706 
3707 	/*
3708 	 * Hook the sockopt handler and pfil hooks for ipv4 and ipv6.
3709 	 * Even if the latter two fail we still keep the module alive
3710 	 * because the sockopt and layer2 paths are still useful.
3711 	 * ipfw[6]_hook return 0 on success, ENOENT on failure,
3712 	 * so we can ignore the exact return value and just set a flag.
3713 	 *
3714 	 * Note that V_fw[6]_enable are manipulated by a SYSCTL_PROC so
3715 	 * changes in the underlying (per-vnet) variables trigger
3716 	 * immediate hook()/unhook() calls.
3717 	 * In layer2 we have the same behaviour, except that V_ether_ipfw
3718 	 * is checked on each packet because there are no pfil hooks.
3719 	 */
3720 	V_ip_fw_ctl_ptr = ipfw_ctl3;
3721 	error = ipfw_attach_hooks();
3722 	return (error);
3723 }
3724 
3725 /*
3726  * Called for the removal of each instance.
3727  */
3728 static int
vnet_ipfw_uninit(const void * unused)3729 vnet_ipfw_uninit(const void *unused)
3730 {
3731 	struct ip_fw *reap;
3732 	struct ip_fw_chain *chain = &V_layer3_chain;
3733 	int i, last;
3734 
3735 	V_ipfw_vnet_ready = 0; /* tell new callers to go away */
3736 	/*
3737 	 * disconnect from ipv4, ipv6, layer2 and sockopt.
3738 	 * Then grab, release and grab again the WLOCK so we make
3739 	 * sure the update is propagated and nobody will be in.
3740 	 */
3741 	ipfw_detach_hooks();
3742 	V_ip_fw_ctl_ptr = NULL;
3743 
3744 	last = IS_DEFAULT_VNET(curvnet) ? 1 : 0;
3745 
3746 	IPFW_UH_WLOCK(chain);
3747 	IPFW_UH_WUNLOCK(chain);
3748 
3749 	ipfw_dyn_uninit(0);	/* run the callout_drain */
3750 
3751 	IPFW_UH_WLOCK(chain);
3752 
3753 	reap = NULL;
3754 	IPFW_WLOCK(chain);
3755 	for (i = 0; i < chain->n_rules; i++)
3756 		ipfw_reap_add(chain, &reap, chain->map[i]);
3757 	free(chain->map, M_IPFW);
3758 	ipfw_destroy_skipto_cache(chain);
3759 	IPFW_WUNLOCK(chain);
3760 	IPFW_UH_WUNLOCK(chain);
3761 	ipfw_destroy_tables(chain, last);
3762 	ipfw_eaction_uninit(chain, last);
3763 	if (reap != NULL)
3764 		ipfw_reap_rules(reap);
3765 	vnet_ipfw_iface_destroy(chain);
3766 	ipfw_destroy_srv(chain);
3767 	IPFW_LOCK_DESTROY(chain);
3768 	ipfw_dyn_uninit(1);	/* free the remaining parts */
3769 	ipfw_destroy_counters();
3770 	ipfw_bpf_uninit(last);
3771 	return (0);
3772 }
3773 
3774 /*
3775  * Module event handler.
3776  * In general we have the choice of handling most of these events by the
3777  * event handler or by the (VNET_)SYS(UN)INIT handlers. I have chosen to
3778  * use the SYSINIT handlers as they are more capable of expressing the
3779  * flow of control during module and vnet operations, so this is just
3780  * a skeleton. Note there is no SYSINIT equivalent of the module
3781  * SHUTDOWN handler, but we don't have anything to do in that case anyhow.
3782  */
3783 static int
ipfw_modevent(module_t mod,int type,void * unused)3784 ipfw_modevent(module_t mod, int type, void *unused)
3785 {
3786 	int err = 0;
3787 
3788 	switch (type) {
3789 	case MOD_LOAD:
3790 		/* Called once at module load or
3791 	 	 * system boot if compiled in. */
3792 		break;
3793 	case MOD_QUIESCE:
3794 		/* Called before unload. May veto unloading. */
3795 		break;
3796 	case MOD_UNLOAD:
3797 		/* Called during unload. */
3798 		break;
3799 	case MOD_SHUTDOWN:
3800 		/* Called during system shutdown. */
3801 		break;
3802 	default:
3803 		err = EOPNOTSUPP;
3804 		break;
3805 	}
3806 	return err;
3807 }
3808 
3809 static moduledata_t ipfwmod = {
3810 	"ipfw",
3811 	ipfw_modevent,
3812 	0
3813 };
3814 
3815 /* Define startup order. */
3816 #define	IPFW_SI_SUB_FIREWALL	SI_SUB_PROTO_FIREWALL
3817 #define	IPFW_MODEVENT_ORDER	(SI_ORDER_ANY - 255) /* On boot slot in here. */
3818 #define	IPFW_MODULE_ORDER	(IPFW_MODEVENT_ORDER + 1) /* A little later. */
3819 #define	IPFW_VNET_ORDER		(IPFW_MODEVENT_ORDER + 2) /* Later still. */
3820 
3821 DECLARE_MODULE(ipfw, ipfwmod, IPFW_SI_SUB_FIREWALL, IPFW_MODEVENT_ORDER);
3822 FEATURE(ipfw_ctl3, "ipfw new sockopt calls");
3823 MODULE_VERSION(ipfw, 3);
3824 /* should declare some dependencies here */
3825 
3826 /*
3827  * Starting up. Done in order after ipfwmod() has been called.
3828  * VNET_SYSINIT is also called for each existing vnet and each new vnet.
3829  */
3830 SYSINIT(ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
3831 	    ipfw_init, NULL);
3832 VNET_SYSINIT(vnet_ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
3833 	    vnet_ipfw_init, NULL);
3834 
3835 /*
3836  * Closing up shop. These are done in REVERSE ORDER, but still
3837  * after ipfwmod() has been called. Not called on reboot.
3838  * VNET_SYSUNINIT is also called for each exiting vnet as it exits.
3839  * or when the module is unloaded.
3840  */
3841 SYSUNINIT(ipfw_destroy, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
3842 	    ipfw_destroy, NULL);
3843 VNET_SYSUNINIT(vnet_ipfw_uninit, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
3844 	    vnet_ipfw_uninit, NULL);
3845 /* end of file */
3846