1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2004 Ruslan Ermilov and Vsevolod Lobko.
5 * Copyright (c) 2014 Yandex LLC
6 * Copyright (c) 2014 Alexander V. Chernikov
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 /*
32 * Lookup table support for ipfw.
33 *
34 * This file contains handlers for all generic tables' operations:
35 * add/del/flush entries, list/dump tables etc..
36 *
37 * Table data modification is protected by both UH and runtime lock
38 * while reading configuration/data is protected by UH lock.
39 *
40 * Lookup algorithms for all table types are located in ip_fw_table_algo.c
41 */
42
43 #include "opt_ipfw.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/malloc.h>
48 #include <sys/kernel.h>
49 #include <sys/lock.h>
50 #include <sys/rwlock.h>
51 #include <sys/rmlock.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/queue.h>
55 #include <net/if.h> /* ip_fw.h requires IFNAMSIZ */
56
57 #include <netinet/in.h>
58 #include <netinet/ip_var.h> /* struct ipfw_rule_ref */
59 #include <netinet/ip_fw.h>
60
61 #include <netpfil/ipfw/ip_fw_private.h>
62 #include <netpfil/ipfw/ip_fw_table.h>
63
64 /*
65 * Table has the following `type` concepts:
66 *
67 * `no.type` represents lookup key type (addr, ifp, uid, etc..)
68 * vmask represents bitmask of table values which are present at the moment.
69 * Special IPFW_VTYPE_LEGACY ( (uint32_t)-1 ) represents old
70 * single-value-for-all approach.
71 */
72 struct table_config {
73 struct named_object no;
74 uint8_t tflags; /* type flags */
75 uint8_t locked; /* 1 if locked from changes */
76 uint8_t linked; /* 1 if already linked */
77 uint8_t ochanged; /* used by set swapping */
78 uint8_t vshared; /* 1 if using shared value array */
79 uint8_t spare[3];
80 uint32_t count; /* Number of records */
81 uint32_t limit; /* Max number of records */
82 uint32_t vmask; /* bitmask with supported values */
83 uint32_t ocount; /* used by set swapping */
84 uint64_t gencnt; /* generation count */
85 char tablename[64]; /* table name */
86 struct table_algo *ta; /* Callbacks for given algo */
87 void *astate; /* algorithm state */
88 struct table_info ti_copy; /* data to put to table_info */
89 struct namedobj_instance *vi;
90 };
91
92 static int find_table_err(struct namedobj_instance *ni, struct tid_info *ti,
93 struct table_config **tc);
94 static struct table_config *find_table(struct namedobj_instance *ni,
95 struct tid_info *ti);
96 static struct table_config *alloc_table_config(struct ip_fw_chain *ch,
97 struct tid_info *ti, struct table_algo *ta, char *adata, uint8_t tflags);
98 static void free_table_config(struct namedobj_instance *ni,
99 struct table_config *tc);
100 static int create_table_internal(struct ip_fw_chain *ch, struct tid_info *ti,
101 char *aname, ipfw_xtable_info *i, uint16_t *pkidx, int ref);
102 static void link_table(struct ip_fw_chain *ch, struct table_config *tc);
103 static void unlink_table(struct ip_fw_chain *ch, struct table_config *tc);
104 static int find_ref_table(struct ip_fw_chain *ch, struct tid_info *ti,
105 struct tentry_info *tei, uint32_t count, int op, struct table_config **ptc);
106 #define OP_ADD 1
107 #define OP_DEL 0
108 static int export_tables(struct ip_fw_chain *ch, ipfw_obj_lheader *olh,
109 struct sockopt_data *sd);
110 static void export_table_info(struct ip_fw_chain *ch, struct table_config *tc,
111 ipfw_xtable_info *i);
112 static int dump_table_tentry(void *e, void *arg);
113 static int dump_table_xentry(void *e, void *arg);
114
115 static int swap_tables(struct ip_fw_chain *ch, struct tid_info *a,
116 struct tid_info *b);
117
118 static int check_table_name(const char *name);
119 static int check_table_space(struct ip_fw_chain *ch, struct tableop_state *ts,
120 struct table_config *tc, struct table_info *ti, uint32_t count);
121 static int destroy_table(struct ip_fw_chain *ch, struct tid_info *ti);
122
123 static struct table_algo *find_table_algo(struct tables_config *tableconf,
124 struct tid_info *ti, char *name);
125
126 static void objheader_to_ti(struct _ipfw_obj_header *oh, struct tid_info *ti);
127 static void ntlv_to_ti(struct _ipfw_obj_ntlv *ntlv, struct tid_info *ti);
128
129 #define CHAIN_TO_NI(chain) (CHAIN_TO_TCFG(chain)->namehash)
130 #define KIDX_TO_TI(ch, k) (&(((struct table_info *)(ch)->tablestate)[k]))
131
132 #define TA_BUF_SZ 128 /* On-stack buffer for add/delete state */
133
134 void
rollback_toperation_state(struct ip_fw_chain * ch,void * object)135 rollback_toperation_state(struct ip_fw_chain *ch, void *object)
136 {
137 struct tables_config *tcfg;
138 struct op_state *os;
139
140 tcfg = CHAIN_TO_TCFG(ch);
141 TAILQ_FOREACH(os, &tcfg->state_list, next)
142 os->func(object, os);
143 }
144
145 void
add_toperation_state(struct ip_fw_chain * ch,struct tableop_state * ts)146 add_toperation_state(struct ip_fw_chain *ch, struct tableop_state *ts)
147 {
148 struct tables_config *tcfg;
149
150 tcfg = CHAIN_TO_TCFG(ch);
151 TAILQ_INSERT_HEAD(&tcfg->state_list, &ts->opstate, next);
152 }
153
154 void
del_toperation_state(struct ip_fw_chain * ch,struct tableop_state * ts)155 del_toperation_state(struct ip_fw_chain *ch, struct tableop_state *ts)
156 {
157 struct tables_config *tcfg;
158
159 tcfg = CHAIN_TO_TCFG(ch);
160 TAILQ_REMOVE(&tcfg->state_list, &ts->opstate, next);
161 }
162
163 void
tc_ref(struct table_config * tc)164 tc_ref(struct table_config *tc)
165 {
166
167 tc->no.refcnt++;
168 }
169
170 void
tc_unref(struct table_config * tc)171 tc_unref(struct table_config *tc)
172 {
173
174 tc->no.refcnt--;
175 }
176
177 static struct table_value *
get_table_value(struct ip_fw_chain * ch,struct table_config * tc,uint32_t kidx)178 get_table_value(struct ip_fw_chain *ch, struct table_config *tc, uint32_t kidx)
179 {
180 struct table_value *pval;
181
182 pval = (struct table_value *)ch->valuestate;
183
184 return (&pval[kidx]);
185 }
186
187 /*
188 * Checks if we're able to insert/update entry @tei into table
189 * w.r.t @tc limits.
190 * May alter @tei to indicate insertion error / insert
191 * options.
192 *
193 * Returns 0 if operation can be performed/
194 */
195 static int
check_table_limit(struct table_config * tc,struct tentry_info * tei)196 check_table_limit(struct table_config *tc, struct tentry_info *tei)
197 {
198
199 if (tc->limit == 0 || tc->count < tc->limit)
200 return (0);
201
202 if ((tei->flags & TEI_FLAGS_UPDATE) == 0) {
203 /* Notify userland on error cause */
204 tei->flags |= TEI_FLAGS_LIMIT;
205 return (EFBIG);
206 }
207
208 /*
209 * We have UPDATE flag set.
210 * Permit updating record (if found),
211 * but restrict adding new one since we've
212 * already hit the limit.
213 */
214 tei->flags |= TEI_FLAGS_DONTADD;
215
216 return (0);
217 }
218
219 /*
220 * Convert algorithm callback return code into
221 * one of pre-defined states known by userland.
222 */
223 static void
store_tei_result(struct tentry_info * tei,int op,int error,uint32_t num)224 store_tei_result(struct tentry_info *tei, int op, int error, uint32_t num)
225 {
226 int flag;
227
228 flag = 0;
229
230 switch (error) {
231 case 0:
232 if (op == OP_ADD && num != 0)
233 flag = TEI_FLAGS_ADDED;
234 if (op == OP_DEL)
235 flag = TEI_FLAGS_DELETED;
236 break;
237 case ENOENT:
238 flag = TEI_FLAGS_NOTFOUND;
239 break;
240 case EEXIST:
241 flag = TEI_FLAGS_EXISTS;
242 break;
243 default:
244 flag = TEI_FLAGS_ERROR;
245 }
246
247 tei->flags |= flag;
248 }
249
250 /*
251 * Creates and references table with default parameters.
252 * Saves table config, algo and allocated kidx info @ptc, @pta and
253 * @pkidx if non-zero.
254 * Used for table auto-creation to support old binaries.
255 *
256 * Returns 0 on success.
257 */
258 static int
create_table_compat(struct ip_fw_chain * ch,struct tid_info * ti,uint16_t * pkidx)259 create_table_compat(struct ip_fw_chain *ch, struct tid_info *ti,
260 uint16_t *pkidx)
261 {
262 ipfw_xtable_info xi;
263 int error;
264
265 memset(&xi, 0, sizeof(xi));
266 /* Set default value mask for legacy clients */
267 xi.vmask = IPFW_VTYPE_LEGACY;
268
269 error = create_table_internal(ch, ti, NULL, &xi, pkidx, 1);
270 if (error != 0)
271 return (error);
272
273 return (0);
274 }
275
276 /*
277 * Find and reference existing table optionally
278 * creating new one.
279 *
280 * Saves found table config into @ptc.
281 * Note function may drop/acquire UH_WLOCK.
282 * Returns 0 if table was found/created and referenced
283 * or non-zero return code.
284 */
285 static int
find_ref_table(struct ip_fw_chain * ch,struct tid_info * ti,struct tentry_info * tei,uint32_t count,int op,struct table_config ** ptc)286 find_ref_table(struct ip_fw_chain *ch, struct tid_info *ti,
287 struct tentry_info *tei, uint32_t count, int op,
288 struct table_config **ptc)
289 {
290 struct namedobj_instance *ni;
291 struct table_config *tc;
292 uint16_t kidx;
293 int error;
294
295 IPFW_UH_WLOCK_ASSERT(ch);
296
297 ni = CHAIN_TO_NI(ch);
298 tc = NULL;
299 if ((tc = find_table(ni, ti)) != NULL) {
300 /* check table type */
301 if (tc->no.subtype != ti->type)
302 return (EINVAL);
303
304 if (tc->locked != 0)
305 return (EACCES);
306
307 /* Try to exit early on limit hit */
308 if (op == OP_ADD && count == 1 &&
309 check_table_limit(tc, tei) != 0)
310 return (EFBIG);
311
312 /* Reference and return */
313 tc->no.refcnt++;
314 *ptc = tc;
315 return (0);
316 }
317
318 if (op == OP_DEL)
319 return (ESRCH);
320
321 /* Compatibility mode: create new table for old clients */
322 if ((tei->flags & TEI_FLAGS_COMPAT) == 0)
323 return (ESRCH);
324
325 IPFW_UH_WUNLOCK(ch);
326 error = create_table_compat(ch, ti, &kidx);
327 IPFW_UH_WLOCK(ch);
328
329 if (error != 0)
330 return (error);
331
332 tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, kidx);
333 KASSERT(tc != NULL, ("create_table_compat returned bad idx %d", kidx));
334
335 /* OK, now we've got referenced table. */
336 *ptc = tc;
337 return (0);
338 }
339
340 /*
341 * Rolls back already @added to @tc entries using state array @ta_buf_m.
342 * Assume the following layout:
343 * 1) ADD state (ta_buf_m[0] ... t_buf_m[added - 1]) for handling update cases
344 * 2) DEL state (ta_buf_m[count[ ... t_buf_m[count + added - 1])
345 * for storing deleted state
346 */
347 static void
rollback_added_entries(struct ip_fw_chain * ch,struct table_config * tc,struct table_info * tinfo,struct tentry_info * tei,caddr_t ta_buf_m,uint32_t count,uint32_t added)348 rollback_added_entries(struct ip_fw_chain *ch, struct table_config *tc,
349 struct table_info *tinfo, struct tentry_info *tei, caddr_t ta_buf_m,
350 uint32_t count, uint32_t added)
351 {
352 struct table_algo *ta;
353 struct tentry_info *ptei;
354 caddr_t v, vv;
355 size_t ta_buf_sz;
356 int error __diagused, i;
357 uint32_t num;
358
359 IPFW_UH_WLOCK_ASSERT(ch);
360
361 ta = tc->ta;
362 ta_buf_sz = ta->ta_buf_size;
363 v = ta_buf_m;
364 vv = v + count * ta_buf_sz;
365 for (i = 0; i < added; i++, v += ta_buf_sz, vv += ta_buf_sz) {
366 ptei = &tei[i];
367 if ((ptei->flags & TEI_FLAGS_UPDATED) != 0) {
368 /*
369 * We have old value stored by previous
370 * call in @ptei->value. Do add once again
371 * to restore it.
372 */
373 error = ta->add(tc->astate, tinfo, ptei, v, &num);
374 KASSERT(error == 0, ("rollback UPDATE fail"));
375 KASSERT(num == 0, ("rollback UPDATE fail2"));
376 continue;
377 }
378
379 error = ta->prepare_del(ch, ptei, vv);
380 KASSERT(error == 0, ("pre-rollback INSERT failed"));
381 error = ta->del(tc->astate, tinfo, ptei, vv, &num);
382 KASSERT(error == 0, ("rollback INSERT failed"));
383 tc->count -= num;
384 }
385 }
386
387 /*
388 * Prepares add/del state for all @count entries in @tei.
389 * Uses either stack buffer (@ta_buf) or allocates a new one.
390 * Stores pointer to allocated buffer back to @ta_buf.
391 *
392 * Returns 0 on success.
393 */
394 static int
prepare_batch_buffer(struct ip_fw_chain * ch,struct table_algo * ta,struct tentry_info * tei,uint32_t count,int op,caddr_t * ta_buf)395 prepare_batch_buffer(struct ip_fw_chain *ch, struct table_algo *ta,
396 struct tentry_info *tei, uint32_t count, int op, caddr_t *ta_buf)
397 {
398 caddr_t ta_buf_m, v;
399 size_t ta_buf_sz, sz;
400 struct tentry_info *ptei;
401 int error, i;
402
403 error = 0;
404 ta_buf_sz = ta->ta_buf_size;
405 if (count == 1) {
406 /* Single add/delete, use on-stack buffer */
407 memset(*ta_buf, 0, TA_BUF_SZ);
408 ta_buf_m = *ta_buf;
409 } else {
410 /*
411 * Multiple adds/deletes, allocate larger buffer
412 *
413 * Note we need 2xcount buffer for add case:
414 * we have hold both ADD state
415 * and DELETE state (this may be needed
416 * if we need to rollback all changes)
417 */
418 sz = count * ta_buf_sz;
419 ta_buf_m = malloc((op == OP_ADD) ? sz * 2 : sz, M_TEMP,
420 M_WAITOK | M_ZERO);
421 }
422
423 v = ta_buf_m;
424 for (i = 0; i < count; i++, v += ta_buf_sz) {
425 ptei = &tei[i];
426 error = (op == OP_ADD) ?
427 ta->prepare_add(ch, ptei, v) : ta->prepare_del(ch, ptei, v);
428
429 /*
430 * Some syntax error (incorrect mask, or address, or
431 * anything). Return error regardless of atomicity
432 * settings.
433 */
434 if (error != 0)
435 break;
436 }
437
438 *ta_buf = ta_buf_m;
439 return (error);
440 }
441
442 /*
443 * Flushes allocated state for each @count entries in @tei.
444 * Frees @ta_buf_m if differs from stack buffer @ta_buf.
445 */
446 static void
flush_batch_buffer(struct ip_fw_chain * ch,struct table_algo * ta,struct tentry_info * tei,uint32_t count,int rollback,caddr_t ta_buf_m,caddr_t ta_buf)447 flush_batch_buffer(struct ip_fw_chain *ch, struct table_algo *ta,
448 struct tentry_info *tei, uint32_t count, int rollback,
449 caddr_t ta_buf_m, caddr_t ta_buf)
450 {
451 caddr_t v;
452 struct tentry_info *ptei;
453 size_t ta_buf_sz;
454 int i;
455
456 ta_buf_sz = ta->ta_buf_size;
457
458 /* Run cleaning callback anyway */
459 v = ta_buf_m;
460 for (i = 0; i < count; i++, v += ta_buf_sz) {
461 ptei = &tei[i];
462 ta->flush_entry(ch, ptei, v);
463 if (ptei->ptv != NULL) {
464 free(ptei->ptv, M_IPFW);
465 ptei->ptv = NULL;
466 }
467 }
468
469 /* Clean up "deleted" state in case of rollback */
470 if (rollback != 0) {
471 v = ta_buf_m + count * ta_buf_sz;
472 for (i = 0; i < count; i++, v += ta_buf_sz)
473 ta->flush_entry(ch, &tei[i], v);
474 }
475
476 if (ta_buf_m != ta_buf)
477 free(ta_buf_m, M_TEMP);
478 }
479
480 static void
rollback_add_entry(void * object,struct op_state * _state)481 rollback_add_entry(void *object, struct op_state *_state)
482 {
483 struct ip_fw_chain *ch __diagused;
484 struct tableop_state *ts;
485
486 ts = (struct tableop_state *)_state;
487
488 if (ts->tc != object && ts->ch != object)
489 return;
490
491 ch = ts->ch;
492
493 IPFW_UH_WLOCK_ASSERT(ch);
494
495 /* Call specifid unlockers */
496 rollback_table_values(ts);
497
498 /* Indicate we've called */
499 ts->modified = 1;
500 }
501
502 /*
503 * Adds/updates one or more entries in table @ti.
504 *
505 * Function may drop/reacquire UH wlock multiple times due to
506 * items alloc, algorithm callbacks (check_space), value linkage
507 * (new values, value storage realloc), etc..
508 * Other processes like other adds (which may involve storage resize),
509 * table swaps (which changes table data and may change algo type),
510 * table modify (which may change value mask) may be executed
511 * simultaneously so we need to deal with it.
512 *
513 * The following approach was implemented:
514 * we have per-chain linked list, protected with UH lock.
515 * add_table_entry prepares special on-stack structure wthich is passed
516 * to its descendants. Users add this structure to this list before unlock.
517 * After performing needed operations and acquiring UH lock back, each user
518 * checks if structure has changed. If true, it rolls local state back and
519 * returns without error to the caller.
520 * add_table_entry() on its own checks if structure has changed and restarts
521 * its operation from the beginning (goto restart).
522 *
523 * Functions which are modifying fields of interest (currently
524 * resize_shared_value_storage() and swap_tables() )
525 * traverses given list while holding UH lock immediately before
526 * performing their operations calling function provided be list entry
527 * ( currently rollback_add_entry ) which performs rollback for all necessary
528 * state and sets appropriate values in structure indicating rollback
529 * has happened.
530 *
531 * Algo interaction:
532 * Function references @ti first to ensure table won't
533 * disappear or change its type.
534 * After that, prepare_add callback is called for each @tei entry.
535 * Next, we try to add each entry under UH+WHLOCK
536 * using add() callback.
537 * Finally, we free all state by calling flush_entry callback
538 * for each @tei.
539 *
540 * Returns 0 on success.
541 */
542 int
add_table_entry(struct ip_fw_chain * ch,struct tid_info * ti,struct tentry_info * tei,uint8_t flags,uint32_t count)543 add_table_entry(struct ip_fw_chain *ch, struct tid_info *ti,
544 struct tentry_info *tei, uint8_t flags, uint32_t count)
545 {
546 struct table_config *tc;
547 struct table_algo *ta;
548 uint16_t kidx;
549 int error, first_error, i, rollback;
550 uint32_t num, numadd;
551 struct tentry_info *ptei;
552 struct tableop_state ts;
553 char ta_buf[TA_BUF_SZ];
554 caddr_t ta_buf_m, v;
555
556 memset(&ts, 0, sizeof(ts));
557 ta = NULL;
558 IPFW_UH_WLOCK(ch);
559
560 /*
561 * Find and reference existing table.
562 */
563 restart:
564 if (ts.modified != 0) {
565 IPFW_UH_WUNLOCK(ch);
566 flush_batch_buffer(ch, ta, tei, count, rollback,
567 ta_buf_m, ta_buf);
568 memset(&ts, 0, sizeof(ts));
569 ta = NULL;
570 IPFW_UH_WLOCK(ch);
571 }
572
573 error = find_ref_table(ch, ti, tei, count, OP_ADD, &tc);
574 if (error != 0) {
575 IPFW_UH_WUNLOCK(ch);
576 return (error);
577 }
578 ta = tc->ta;
579
580 /* Fill in tablestate */
581 ts.ch = ch;
582 ts.opstate.func = rollback_add_entry;
583 ts.tc = tc;
584 ts.vshared = tc->vshared;
585 ts.vmask = tc->vmask;
586 ts.ta = ta;
587 ts.tei = tei;
588 ts.count = count;
589 rollback = 0;
590 add_toperation_state(ch, &ts);
591 IPFW_UH_WUNLOCK(ch);
592
593 /* Allocate memory and prepare record(s) */
594 /* Pass stack buffer by default */
595 ta_buf_m = ta_buf;
596 error = prepare_batch_buffer(ch, ta, tei, count, OP_ADD, &ta_buf_m);
597
598 IPFW_UH_WLOCK(ch);
599 del_toperation_state(ch, &ts);
600 /* Drop reference we've used in first search */
601 tc->no.refcnt--;
602
603 /* Check prepare_batch_buffer() error */
604 if (error != 0)
605 goto cleanup;
606
607 /*
608 * Check if table swap has happened.
609 * (so table algo might be changed).
610 * Restart operation to achieve consistent behavior.
611 */
612 if (ts.modified != 0)
613 goto restart;
614
615 /*
616 * Link all values values to shared/per-table value array.
617 *
618 * May release/reacquire UH_WLOCK.
619 */
620 error = ipfw_link_table_values(ch, &ts, flags);
621 if (error != 0)
622 goto cleanup;
623 if (ts.modified != 0)
624 goto restart;
625
626 /*
627 * Ensure we are able to add all entries without additional
628 * memory allocations. May release/reacquire UH_WLOCK.
629 */
630 kidx = tc->no.kidx;
631 error = check_table_space(ch, &ts, tc, KIDX_TO_TI(ch, kidx), count);
632 if (error != 0)
633 goto cleanup;
634 if (ts.modified != 0)
635 goto restart;
636
637 /* We've got valid table in @tc. Let's try to add data */
638 kidx = tc->no.kidx;
639 ta = tc->ta;
640 numadd = 0;
641 first_error = 0;
642
643 IPFW_WLOCK(ch);
644
645 v = ta_buf_m;
646 for (i = 0; i < count; i++, v += ta->ta_buf_size) {
647 ptei = &tei[i];
648 num = 0;
649 /* check limit before adding */
650 if ((error = check_table_limit(tc, ptei)) == 0) {
651 /*
652 * It should be safe to insert a record w/o
653 * a properly-linked value if atomicity is
654 * not required.
655 *
656 * If the added item does not have a valid value
657 * index, it would get rejected by ta->add().
658 * */
659 error = ta->add(tc->astate, KIDX_TO_TI(ch, kidx),
660 ptei, v, &num);
661 /* Set status flag to inform userland */
662 store_tei_result(ptei, OP_ADD, error, num);
663 }
664 if (error == 0) {
665 /* Update number of records to ease limit checking */
666 tc->count += num;
667 numadd += num;
668 continue;
669 }
670
671 if (first_error == 0)
672 first_error = error;
673
674 /*
675 * Some error have happened. Check our atomicity
676 * settings: continue if atomicity is not required,
677 * rollback changes otherwise.
678 */
679 if ((flags & IPFW_CTF_ATOMIC) == 0)
680 continue;
681
682 rollback_added_entries(ch, tc, KIDX_TO_TI(ch, kidx),
683 tei, ta_buf_m, count, i);
684
685 rollback = 1;
686 break;
687 }
688
689 IPFW_WUNLOCK(ch);
690
691 ipfw_garbage_table_values(ch, tc, tei, count, rollback);
692
693 /* Permit post-add algorithm grow/rehash. */
694 if (numadd != 0)
695 check_table_space(ch, NULL, tc, KIDX_TO_TI(ch, kidx), 0);
696
697 /* Return first error to user, if any */
698 error = first_error;
699
700 cleanup:
701 IPFW_UH_WUNLOCK(ch);
702
703 flush_batch_buffer(ch, ta, tei, count, rollback, ta_buf_m, ta_buf);
704
705 return (error);
706 }
707
708 /*
709 * Deletes one or more entries in table @ti.
710 *
711 * Returns 0 on success.
712 */
713 int
del_table_entry(struct ip_fw_chain * ch,struct tid_info * ti,struct tentry_info * tei,uint8_t flags,uint32_t count)714 del_table_entry(struct ip_fw_chain *ch, struct tid_info *ti,
715 struct tentry_info *tei, uint8_t flags, uint32_t count)
716 {
717 struct table_config *tc;
718 struct table_algo *ta;
719 struct tentry_info *ptei;
720 uint16_t kidx;
721 int error, first_error, i;
722 uint32_t num, numdel;
723 char ta_buf[TA_BUF_SZ];
724 caddr_t ta_buf_m, v;
725
726 /*
727 * Find and reference existing table.
728 */
729 IPFW_UH_WLOCK(ch);
730 error = find_ref_table(ch, ti, tei, count, OP_DEL, &tc);
731 if (error != 0) {
732 IPFW_UH_WUNLOCK(ch);
733 return (error);
734 }
735 ta = tc->ta;
736 IPFW_UH_WUNLOCK(ch);
737
738 /* Allocate memory and prepare record(s) */
739 /* Pass stack buffer by default */
740 ta_buf_m = ta_buf;
741 error = prepare_batch_buffer(ch, ta, tei, count, OP_DEL, &ta_buf_m);
742 if (error != 0)
743 goto cleanup;
744
745 IPFW_UH_WLOCK(ch);
746
747 /* Drop reference we've used in first search */
748 tc->no.refcnt--;
749
750 /*
751 * Check if table algo is still the same.
752 * (changed ta may be the result of table swap).
753 */
754 if (ta != tc->ta) {
755 IPFW_UH_WUNLOCK(ch);
756 error = EINVAL;
757 goto cleanup;
758 }
759
760 kidx = tc->no.kidx;
761 numdel = 0;
762 first_error = 0;
763
764 IPFW_WLOCK(ch);
765 v = ta_buf_m;
766 for (i = 0; i < count; i++, v += ta->ta_buf_size) {
767 ptei = &tei[i];
768 num = 0;
769 error = ta->del(tc->astate, KIDX_TO_TI(ch, kidx), ptei, v,
770 &num);
771 /* Save state for userland */
772 store_tei_result(ptei, OP_DEL, error, num);
773 if (error != 0 && first_error == 0)
774 first_error = error;
775 tc->count -= num;
776 numdel += num;
777 }
778 IPFW_WUNLOCK(ch);
779
780 /* Unlink non-used values */
781 ipfw_garbage_table_values(ch, tc, tei, count, 0);
782
783 if (numdel != 0) {
784 /* Run post-del hook to permit shrinking */
785 check_table_space(ch, NULL, tc, KIDX_TO_TI(ch, kidx), 0);
786 }
787
788 IPFW_UH_WUNLOCK(ch);
789
790 /* Return first error to user, if any */
791 error = first_error;
792
793 cleanup:
794 flush_batch_buffer(ch, ta, tei, count, 0, ta_buf_m, ta_buf);
795
796 return (error);
797 }
798
799 /*
800 * Ensure that table @tc has enough space to add @count entries without
801 * need for reallocation.
802 *
803 * Callbacks order:
804 * 0) need_modify() (UH_WLOCK) - checks if @count items can be added w/o resize.
805 *
806 * 1) alloc_modify (no locks, M_WAITOK) - alloc new state based on @pflags.
807 * 2) prepare_modifyt (UH_WLOCK) - copy old data into new storage
808 * 3) modify (UH_WLOCK + WLOCK) - switch pointers
809 * 4) flush_modify (UH_WLOCK) - free state, if needed
810 *
811 * Returns 0 on success.
812 */
813 static int
check_table_space(struct ip_fw_chain * ch,struct tableop_state * ts,struct table_config * tc,struct table_info * ti,uint32_t count)814 check_table_space(struct ip_fw_chain *ch, struct tableop_state *ts,
815 struct table_config *tc, struct table_info *ti, uint32_t count)
816 {
817 struct table_algo *ta;
818 uint64_t pflags;
819 char ta_buf[TA_BUF_SZ];
820 int error;
821
822 IPFW_UH_WLOCK_ASSERT(ch);
823
824 error = 0;
825 ta = tc->ta;
826 if (ta->need_modify == NULL)
827 return (0);
828
829 /* Acquire reference not to loose @tc between locks/unlocks */
830 tc->no.refcnt++;
831
832 /*
833 * TODO: think about avoiding race between large add/large delete
834 * operation on algorithm which implements shrinking along with
835 * growing.
836 */
837 while (true) {
838 pflags = 0;
839 if (ta->need_modify(tc->astate, ti, count, &pflags) == 0) {
840 error = 0;
841 break;
842 }
843
844 /* We have to shrink/grow table */
845 if (ts != NULL)
846 add_toperation_state(ch, ts);
847 IPFW_UH_WUNLOCK(ch);
848
849 memset(&ta_buf, 0, sizeof(ta_buf));
850 error = ta->prepare_mod(ta_buf, &pflags);
851
852 IPFW_UH_WLOCK(ch);
853 if (ts != NULL)
854 del_toperation_state(ch, ts);
855
856 if (error != 0)
857 break;
858
859 if (ts != NULL && ts->modified != 0) {
860 /*
861 * Swap operation has happened
862 * so we're currently operating on other
863 * table data. Stop doing this.
864 */
865 ta->flush_mod(ta_buf);
866 break;
867 }
868
869 /* Check if we still need to alter table */
870 ti = KIDX_TO_TI(ch, tc->no.kidx);
871 if (ta->need_modify(tc->astate, ti, count, &pflags) == 0) {
872 IPFW_UH_WUNLOCK(ch);
873
874 /*
875 * Other thread has already performed resize.
876 * Flush our state and return.
877 */
878 ta->flush_mod(ta_buf);
879 break;
880 }
881
882 error = ta->fill_mod(tc->astate, ti, ta_buf, &pflags);
883 if (error == 0) {
884 /* Do actual modification */
885 IPFW_WLOCK(ch);
886 ta->modify(tc->astate, ti, ta_buf, pflags);
887 IPFW_WUNLOCK(ch);
888 }
889
890 /* Anyway, flush data and retry */
891 ta->flush_mod(ta_buf);
892 }
893
894 tc->no.refcnt--;
895 return (error);
896 }
897
898 /*
899 * Adds or deletes record in table.
900 * Data layout (v0):
901 * Request: [ ip_fw3_opheader ipfw_table_xentry ]
902 *
903 * Returns 0 on success
904 */
905 static int
manage_table_ent_v0(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)906 manage_table_ent_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
907 struct sockopt_data *sd)
908 {
909 ipfw_table_xentry *xent;
910 struct tentry_info tei;
911 struct tid_info ti;
912 struct table_value v;
913 int error, hdrlen, read;
914
915 hdrlen = offsetof(ipfw_table_xentry, k);
916
917 /* Check minimum header size */
918 if (sd->valsize < (sizeof(*op3) + hdrlen))
919 return (EINVAL);
920
921 read = sizeof(ip_fw3_opheader);
922
923 /* Check if xentry len field is valid */
924 xent = (ipfw_table_xentry *)(op3 + 1);
925 if (xent->len < hdrlen || xent->len + read > sd->valsize)
926 return (EINVAL);
927
928 memset(&tei, 0, sizeof(tei));
929 tei.paddr = &xent->k;
930 tei.masklen = xent->masklen;
931 ipfw_import_table_value_legacy(xent->value, &v);
932 tei.pvalue = &v;
933 /* Old requests compatibility */
934 tei.flags = TEI_FLAGS_COMPAT;
935 if (xent->type == IPFW_TABLE_ADDR) {
936 if (xent->len - hdrlen == sizeof(in_addr_t))
937 tei.subtype = AF_INET;
938 else
939 tei.subtype = AF_INET6;
940 }
941
942 memset(&ti, 0, sizeof(ti));
943 ti.uidx = xent->tbl;
944 ti.type = xent->type;
945
946 error = (op3->opcode == IP_FW_TABLE_XADD) ?
947 add_table_entry(ch, &ti, &tei, 0, 1) :
948 del_table_entry(ch, &ti, &tei, 0, 1);
949
950 return (error);
951 }
952
953 /*
954 * Adds or deletes record in table.
955 * Data layout (v1)(current):
956 * Request: [ ipfw_obj_header
957 * ipfw_obj_ctlv(IPFW_TLV_TBLENT_LIST) [ ipfw_obj_tentry x N ]
958 * ]
959 *
960 * Returns 0 on success
961 */
962 static int
manage_table_ent_v1(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)963 manage_table_ent_v1(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
964 struct sockopt_data *sd)
965 {
966 ipfw_obj_tentry *tent, *ptent;
967 ipfw_obj_ctlv *ctlv;
968 ipfw_obj_header *oh;
969 struct tentry_info *ptei, tei, *tei_buf;
970 struct tid_info ti;
971 int error, i, kidx, read;
972
973 /* Check minimum header size */
974 if (sd->valsize < (sizeof(*oh) + sizeof(*ctlv)))
975 return (EINVAL);
976
977 /* Check if passed data is too long */
978 if (sd->valsize != sd->kavail)
979 return (EINVAL);
980
981 oh = (ipfw_obj_header *)sd->kbuf;
982
983 /* Basic length checks for TLVs */
984 if (oh->ntlv.head.length != sizeof(oh->ntlv))
985 return (EINVAL);
986
987 read = sizeof(*oh);
988
989 ctlv = (ipfw_obj_ctlv *)(oh + 1);
990 if (ctlv->head.length + read != sd->valsize)
991 return (EINVAL);
992
993 read += sizeof(*ctlv);
994 tent = (ipfw_obj_tentry *)(ctlv + 1);
995 if (ctlv->count * sizeof(*tent) + read != sd->valsize)
996 return (EINVAL);
997
998 if (ctlv->count == 0)
999 return (0);
1000
1001 /*
1002 * Mark entire buffer as "read".
1003 * This instructs sopt api write it back
1004 * after function return.
1005 */
1006 ipfw_get_sopt_header(sd, sd->valsize);
1007
1008 /* Perform basic checks for each entry */
1009 ptent = tent;
1010 kidx = tent->idx;
1011 for (i = 0; i < ctlv->count; i++, ptent++) {
1012 if (ptent->head.length != sizeof(*ptent))
1013 return (EINVAL);
1014 if (ptent->idx != kidx)
1015 return (ENOTSUP);
1016 }
1017
1018 /* Convert data into kernel request objects */
1019 objheader_to_ti(oh, &ti);
1020 ti.type = oh->ntlv.type;
1021 ti.uidx = kidx;
1022
1023 /* Use on-stack buffer for single add/del */
1024 if (ctlv->count == 1) {
1025 memset(&tei, 0, sizeof(tei));
1026 tei_buf = &tei;
1027 } else
1028 tei_buf = malloc(ctlv->count * sizeof(tei), M_TEMP,
1029 M_WAITOK | M_ZERO);
1030
1031 ptei = tei_buf;
1032 ptent = tent;
1033 for (i = 0; i < ctlv->count; i++, ptent++, ptei++) {
1034 ptei->paddr = &ptent->k;
1035 ptei->subtype = ptent->subtype;
1036 ptei->masklen = ptent->masklen;
1037 if (ptent->head.flags & IPFW_TF_UPDATE)
1038 ptei->flags |= TEI_FLAGS_UPDATE;
1039
1040 ipfw_import_table_value_v1(&ptent->v.value);
1041 ptei->pvalue = (struct table_value *)&ptent->v.value;
1042 }
1043
1044 error = (oh->opheader.opcode == IP_FW_TABLE_XADD) ?
1045 add_table_entry(ch, &ti, tei_buf, ctlv->flags, ctlv->count) :
1046 del_table_entry(ch, &ti, tei_buf, ctlv->flags, ctlv->count);
1047
1048 /* Translate result back to userland */
1049 ptei = tei_buf;
1050 ptent = tent;
1051 for (i = 0; i < ctlv->count; i++, ptent++, ptei++) {
1052 if (ptei->flags & TEI_FLAGS_ADDED)
1053 ptent->result = IPFW_TR_ADDED;
1054 else if (ptei->flags & TEI_FLAGS_DELETED)
1055 ptent->result = IPFW_TR_DELETED;
1056 else if (ptei->flags & TEI_FLAGS_UPDATED)
1057 ptent->result = IPFW_TR_UPDATED;
1058 else if (ptei->flags & TEI_FLAGS_LIMIT)
1059 ptent->result = IPFW_TR_LIMIT;
1060 else if (ptei->flags & TEI_FLAGS_ERROR)
1061 ptent->result = IPFW_TR_ERROR;
1062 else if (ptei->flags & TEI_FLAGS_NOTFOUND)
1063 ptent->result = IPFW_TR_NOTFOUND;
1064 else if (ptei->flags & TEI_FLAGS_EXISTS)
1065 ptent->result = IPFW_TR_EXISTS;
1066 ipfw_export_table_value_v1(ptei->pvalue, &ptent->v.value);
1067 }
1068
1069 if (tei_buf != &tei)
1070 free(tei_buf, M_TEMP);
1071
1072 return (error);
1073 }
1074
1075 /*
1076 * Looks up an entry in given table.
1077 * Data layout (v0)(current):
1078 * Request: [ ipfw_obj_header ipfw_obj_tentry ]
1079 * Reply: [ ipfw_obj_header ipfw_obj_tentry ]
1080 *
1081 * Returns 0 on success
1082 */
1083 static int
find_table_entry(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)1084 find_table_entry(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1085 struct sockopt_data *sd)
1086 {
1087 ipfw_obj_tentry *tent;
1088 ipfw_obj_header *oh;
1089 struct tid_info ti;
1090 struct table_config *tc;
1091 struct table_algo *ta;
1092 struct table_info *kti;
1093 struct table_value *pval;
1094 struct namedobj_instance *ni;
1095 int error;
1096 size_t sz;
1097
1098 /* Check minimum header size */
1099 sz = sizeof(*oh) + sizeof(*tent);
1100 if (sd->valsize != sz)
1101 return (EINVAL);
1102
1103 oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz);
1104 tent = (ipfw_obj_tentry *)(oh + 1);
1105
1106 /* Basic length checks for TLVs */
1107 if (oh->ntlv.head.length != sizeof(oh->ntlv))
1108 return (EINVAL);
1109
1110 objheader_to_ti(oh, &ti);
1111 ti.type = oh->ntlv.type;
1112 ti.uidx = tent->idx;
1113
1114 IPFW_UH_RLOCK(ch);
1115 ni = CHAIN_TO_NI(ch);
1116
1117 /*
1118 * Find existing table and check its type .
1119 */
1120 ta = NULL;
1121 if ((tc = find_table(ni, &ti)) == NULL) {
1122 IPFW_UH_RUNLOCK(ch);
1123 return (ESRCH);
1124 }
1125
1126 /* check table type */
1127 if (tc->no.subtype != ti.type) {
1128 IPFW_UH_RUNLOCK(ch);
1129 return (EINVAL);
1130 }
1131
1132 kti = KIDX_TO_TI(ch, tc->no.kidx);
1133 ta = tc->ta;
1134
1135 if (ta->find_tentry == NULL)
1136 return (ENOTSUP);
1137
1138 error = ta->find_tentry(tc->astate, kti, tent);
1139 if (error == 0) {
1140 pval = get_table_value(ch, tc, tent->v.kidx);
1141 ipfw_export_table_value_v1(pval, &tent->v.value);
1142 }
1143 IPFW_UH_RUNLOCK(ch);
1144
1145 return (error);
1146 }
1147
1148 /*
1149 * Flushes all entries or destroys given table.
1150 * Data layout (v0)(current):
1151 * Request: [ ipfw_obj_header ]
1152 *
1153 * Returns 0 on success
1154 */
1155 static int
flush_table_v0(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)1156 flush_table_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1157 struct sockopt_data *sd)
1158 {
1159 int error;
1160 struct _ipfw_obj_header *oh;
1161 struct tid_info ti;
1162
1163 if (sd->valsize != sizeof(*oh))
1164 return (EINVAL);
1165
1166 oh = (struct _ipfw_obj_header *)op3;
1167 objheader_to_ti(oh, &ti);
1168
1169 if (op3->opcode == IP_FW_TABLE_XDESTROY)
1170 error = destroy_table(ch, &ti);
1171 else if (op3->opcode == IP_FW_TABLE_XFLUSH)
1172 error = flush_table(ch, &ti);
1173 else
1174 return (ENOTSUP);
1175
1176 return (error);
1177 }
1178
1179 static void
restart_flush(void * object,struct op_state * _state)1180 restart_flush(void *object, struct op_state *_state)
1181 {
1182 struct tableop_state *ts;
1183
1184 ts = (struct tableop_state *)_state;
1185
1186 if (ts->tc != object)
1187 return;
1188
1189 /* Indicate we've called */
1190 ts->modified = 1;
1191 }
1192
1193 /*
1194 * Flushes given table.
1195 *
1196 * Function create new table instance with the same
1197 * parameters, swaps it with old one and
1198 * flushes state without holding runtime WLOCK.
1199 *
1200 * Returns 0 on success.
1201 */
1202 int
flush_table(struct ip_fw_chain * ch,struct tid_info * ti)1203 flush_table(struct ip_fw_chain *ch, struct tid_info *ti)
1204 {
1205 struct namedobj_instance *ni;
1206 struct table_config *tc;
1207 struct table_algo *ta;
1208 struct table_info ti_old, ti_new, *tablestate;
1209 void *astate_old, *astate_new;
1210 char algostate[64], *pstate;
1211 struct tableop_state ts;
1212 int error, need_gc;
1213 uint16_t kidx;
1214 uint8_t tflags;
1215
1216 /*
1217 * Stage 1: save table algorithm.
1218 * Reference found table to ensure it won't disappear.
1219 */
1220 IPFW_UH_WLOCK(ch);
1221 ni = CHAIN_TO_NI(ch);
1222 if ((tc = find_table(ni, ti)) == NULL) {
1223 IPFW_UH_WUNLOCK(ch);
1224 return (ESRCH);
1225 }
1226 need_gc = 0;
1227 astate_new = NULL;
1228 memset(&ti_new, 0, sizeof(ti_new));
1229 restart:
1230 /* Set up swap handler */
1231 memset(&ts, 0, sizeof(ts));
1232 ts.opstate.func = restart_flush;
1233 ts.tc = tc;
1234
1235 ta = tc->ta;
1236 /* Do not flush readonly tables */
1237 if ((ta->flags & TA_FLAG_READONLY) != 0) {
1238 IPFW_UH_WUNLOCK(ch);
1239 return (EACCES);
1240 }
1241 /* Save startup algo parameters */
1242 if (ta->print_config != NULL) {
1243 ta->print_config(tc->astate, KIDX_TO_TI(ch, tc->no.kidx),
1244 algostate, sizeof(algostate));
1245 pstate = algostate;
1246 } else
1247 pstate = NULL;
1248 tflags = tc->tflags;
1249 tc->no.refcnt++;
1250 add_toperation_state(ch, &ts);
1251 IPFW_UH_WUNLOCK(ch);
1252
1253 /*
1254 * Stage 1.5: if this is not the first attempt, destroy previous state
1255 */
1256 if (need_gc != 0) {
1257 ta->destroy(astate_new, &ti_new);
1258 need_gc = 0;
1259 }
1260
1261 /*
1262 * Stage 2: allocate new table instance using same algo.
1263 */
1264 memset(&ti_new, 0, sizeof(struct table_info));
1265 error = ta->init(ch, &astate_new, &ti_new, pstate, tflags);
1266
1267 /*
1268 * Stage 3: swap old state pointers with newly-allocated ones.
1269 * Decrease refcount.
1270 */
1271 IPFW_UH_WLOCK(ch);
1272 tc->no.refcnt--;
1273 del_toperation_state(ch, &ts);
1274
1275 if (error != 0) {
1276 IPFW_UH_WUNLOCK(ch);
1277 return (error);
1278 }
1279
1280 /*
1281 * Restart operation if table swap has happened:
1282 * even if algo may be the same, algo init parameters
1283 * may change. Restart operation instead of doing
1284 * complex checks.
1285 */
1286 if (ts.modified != 0) {
1287 /* Delay destroying data since we're holding UH lock */
1288 need_gc = 1;
1289 goto restart;
1290 }
1291
1292 ni = CHAIN_TO_NI(ch);
1293 kidx = tc->no.kidx;
1294 tablestate = (struct table_info *)ch->tablestate;
1295
1296 IPFW_WLOCK(ch);
1297 ti_old = tablestate[kidx];
1298 tablestate[kidx] = ti_new;
1299 IPFW_WUNLOCK(ch);
1300
1301 astate_old = tc->astate;
1302 tc->astate = astate_new;
1303 tc->ti_copy = ti_new;
1304 tc->count = 0;
1305
1306 /* Notify algo on real @ti address */
1307 if (ta->change_ti != NULL)
1308 ta->change_ti(tc->astate, &tablestate[kidx]);
1309
1310 /*
1311 * Stage 4: unref values.
1312 */
1313 ipfw_unref_table_values(ch, tc, ta, astate_old, &ti_old);
1314 IPFW_UH_WUNLOCK(ch);
1315
1316 /*
1317 * Stage 5: perform real flush/destroy.
1318 */
1319 ta->destroy(astate_old, &ti_old);
1320
1321 return (0);
1322 }
1323
1324 /*
1325 * Swaps two tables.
1326 * Data layout (v0)(current):
1327 * Request: [ ipfw_obj_header ipfw_obj_ntlv ]
1328 *
1329 * Returns 0 on success
1330 */
1331 static int
swap_table(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)1332 swap_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1333 struct sockopt_data *sd)
1334 {
1335 int error;
1336 struct _ipfw_obj_header *oh;
1337 struct tid_info ti_a, ti_b;
1338
1339 if (sd->valsize != sizeof(*oh) + sizeof(ipfw_obj_ntlv))
1340 return (EINVAL);
1341
1342 oh = (struct _ipfw_obj_header *)op3;
1343 ntlv_to_ti(&oh->ntlv, &ti_a);
1344 ntlv_to_ti((ipfw_obj_ntlv *)(oh + 1), &ti_b);
1345
1346 error = swap_tables(ch, &ti_a, &ti_b);
1347
1348 return (error);
1349 }
1350
1351 /*
1352 * Swaps two tables of the same type/valtype.
1353 *
1354 * Checks if tables are compatible and limits
1355 * permits swap, than actually perform swap.
1356 *
1357 * Each table consists of 2 different parts:
1358 * config:
1359 * @tc (with name, set, kidx) and rule bindings, which is "stable".
1360 * number of items
1361 * table algo
1362 * runtime:
1363 * runtime data @ti (ch->tablestate)
1364 * runtime cache in @tc
1365 * algo-specific data (@tc->astate)
1366 *
1367 * So we switch:
1368 * all runtime data
1369 * number of items
1370 * table algo
1371 *
1372 * After that we call @ti change handler for each table.
1373 *
1374 * Note that referencing @tc won't protect tc->ta from change.
1375 * XXX: Do we need to restrict swap between locked tables?
1376 * XXX: Do we need to exchange ftype?
1377 *
1378 * Returns 0 on success.
1379 */
1380 static int
swap_tables(struct ip_fw_chain * ch,struct tid_info * a,struct tid_info * b)1381 swap_tables(struct ip_fw_chain *ch, struct tid_info *a,
1382 struct tid_info *b)
1383 {
1384 struct namedobj_instance *ni;
1385 struct table_config *tc_a, *tc_b;
1386 struct table_algo *ta;
1387 struct table_info ti, *tablestate;
1388 void *astate;
1389 uint32_t count;
1390
1391 /*
1392 * Stage 1: find both tables and ensure they are of
1393 * the same type.
1394 */
1395 IPFW_UH_WLOCK(ch);
1396 ni = CHAIN_TO_NI(ch);
1397 if ((tc_a = find_table(ni, a)) == NULL) {
1398 IPFW_UH_WUNLOCK(ch);
1399 return (ESRCH);
1400 }
1401 if ((tc_b = find_table(ni, b)) == NULL) {
1402 IPFW_UH_WUNLOCK(ch);
1403 return (ESRCH);
1404 }
1405
1406 /* It is very easy to swap between the same table */
1407 if (tc_a == tc_b) {
1408 IPFW_UH_WUNLOCK(ch);
1409 return (0);
1410 }
1411
1412 /* Check type and value are the same */
1413 if (tc_a->no.subtype!=tc_b->no.subtype || tc_a->tflags!=tc_b->tflags) {
1414 IPFW_UH_WUNLOCK(ch);
1415 return (EINVAL);
1416 }
1417
1418 /* Check limits before swap */
1419 if ((tc_a->limit != 0 && tc_b->count > tc_a->limit) ||
1420 (tc_b->limit != 0 && tc_a->count > tc_b->limit)) {
1421 IPFW_UH_WUNLOCK(ch);
1422 return (EFBIG);
1423 }
1424
1425 /* Check if one of the tables is readonly */
1426 if (((tc_a->ta->flags | tc_b->ta->flags) & TA_FLAG_READONLY) != 0) {
1427 IPFW_UH_WUNLOCK(ch);
1428 return (EACCES);
1429 }
1430
1431 /* Notify we're going to swap */
1432 rollback_toperation_state(ch, tc_a);
1433 rollback_toperation_state(ch, tc_b);
1434
1435 /* Everything is fine, prepare to swap */
1436 tablestate = (struct table_info *)ch->tablestate;
1437 ti = tablestate[tc_a->no.kidx];
1438 ta = tc_a->ta;
1439 astate = tc_a->astate;
1440 count = tc_a->count;
1441
1442 IPFW_WLOCK(ch);
1443 /* a <- b */
1444 tablestate[tc_a->no.kidx] = tablestate[tc_b->no.kidx];
1445 tc_a->ta = tc_b->ta;
1446 tc_a->astate = tc_b->astate;
1447 tc_a->count = tc_b->count;
1448 /* b <- a */
1449 tablestate[tc_b->no.kidx] = ti;
1450 tc_b->ta = ta;
1451 tc_b->astate = astate;
1452 tc_b->count = count;
1453 IPFW_WUNLOCK(ch);
1454
1455 /* Ensure tc.ti copies are in sync */
1456 tc_a->ti_copy = tablestate[tc_a->no.kidx];
1457 tc_b->ti_copy = tablestate[tc_b->no.kidx];
1458
1459 /* Notify both tables on @ti change */
1460 if (tc_a->ta->change_ti != NULL)
1461 tc_a->ta->change_ti(tc_a->astate, &tablestate[tc_a->no.kidx]);
1462 if (tc_b->ta->change_ti != NULL)
1463 tc_b->ta->change_ti(tc_b->astate, &tablestate[tc_b->no.kidx]);
1464
1465 IPFW_UH_WUNLOCK(ch);
1466
1467 return (0);
1468 }
1469
1470 /*
1471 * Destroys table specified by @ti.
1472 * Data layout (v0)(current):
1473 * Request: [ ip_fw3_opheader ]
1474 *
1475 * Returns 0 on success
1476 */
1477 static int
destroy_table(struct ip_fw_chain * ch,struct tid_info * ti)1478 destroy_table(struct ip_fw_chain *ch, struct tid_info *ti)
1479 {
1480 struct namedobj_instance *ni;
1481 struct table_config *tc;
1482
1483 IPFW_UH_WLOCK(ch);
1484
1485 ni = CHAIN_TO_NI(ch);
1486 if ((tc = find_table(ni, ti)) == NULL) {
1487 IPFW_UH_WUNLOCK(ch);
1488 return (ESRCH);
1489 }
1490
1491 /* Do not permit destroying referenced tables */
1492 if (tc->no.refcnt > 0) {
1493 IPFW_UH_WUNLOCK(ch);
1494 return (EBUSY);
1495 }
1496
1497 IPFW_WLOCK(ch);
1498 unlink_table(ch, tc);
1499 IPFW_WUNLOCK(ch);
1500
1501 /* Free obj index */
1502 if (ipfw_objhash_free_idx(ni, tc->no.kidx) != 0)
1503 printf("Error unlinking kidx %d from table %s\n",
1504 tc->no.kidx, tc->tablename);
1505
1506 /* Unref values used in tables while holding UH lock */
1507 ipfw_unref_table_values(ch, tc, tc->ta, tc->astate, &tc->ti_copy);
1508 IPFW_UH_WUNLOCK(ch);
1509
1510 free_table_config(ni, tc);
1511
1512 return (0);
1513 }
1514
1515 /*
1516 * Grow tables index.
1517 *
1518 * Returns 0 on success.
1519 */
1520 int
ipfw_resize_tables(struct ip_fw_chain * ch,unsigned int ntables)1521 ipfw_resize_tables(struct ip_fw_chain *ch, unsigned int ntables)
1522 {
1523 unsigned int tbl;
1524 struct namedobj_instance *ni;
1525 void *new_idx, *old_tablestate, *tablestate;
1526 struct table_info *ti;
1527 struct table_config *tc;
1528 int i, new_blocks;
1529
1530 /* Check new value for validity */
1531 if (ntables == 0)
1532 return (EINVAL);
1533 if (ntables > IPFW_TABLES_MAX)
1534 ntables = IPFW_TABLES_MAX;
1535 /* Alight to nearest power of 2 */
1536 ntables = roundup_pow_of_two(ntables);
1537
1538 /* Allocate new pointers */
1539 tablestate = malloc(ntables * sizeof(struct table_info),
1540 M_IPFW, M_WAITOK | M_ZERO);
1541
1542 ipfw_objhash_bitmap_alloc(ntables, (void *)&new_idx, &new_blocks);
1543
1544 IPFW_UH_WLOCK(ch);
1545
1546 tbl = (ntables >= V_fw_tables_max) ? V_fw_tables_max : ntables;
1547 ni = CHAIN_TO_NI(ch);
1548
1549 /* Temporary restrict decreasing max_tables */
1550 if (ntables < V_fw_tables_max) {
1551 /*
1552 * FIXME: Check if we really can shrink
1553 */
1554 IPFW_UH_WUNLOCK(ch);
1555 return (EINVAL);
1556 }
1557
1558 /* Copy table info/indices */
1559 memcpy(tablestate, ch->tablestate, sizeof(struct table_info) * tbl);
1560 ipfw_objhash_bitmap_merge(ni, &new_idx, &new_blocks);
1561
1562 IPFW_WLOCK(ch);
1563
1564 /* Change pointers */
1565 old_tablestate = ch->tablestate;
1566 ch->tablestate = tablestate;
1567 ipfw_objhash_bitmap_swap(ni, &new_idx, &new_blocks);
1568
1569 V_fw_tables_max = ntables;
1570
1571 IPFW_WUNLOCK(ch);
1572
1573 /* Notify all consumers that their @ti pointer has changed */
1574 ti = (struct table_info *)ch->tablestate;
1575 for (i = 0; i < tbl; i++, ti++) {
1576 if (ti->lookup == NULL)
1577 continue;
1578 tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, i);
1579 if (tc == NULL || tc->ta->change_ti == NULL)
1580 continue;
1581
1582 tc->ta->change_ti(tc->astate, ti);
1583 }
1584
1585 IPFW_UH_WUNLOCK(ch);
1586
1587 /* Free old pointers */
1588 free(old_tablestate, M_IPFW);
1589 ipfw_objhash_bitmap_free(new_idx, new_blocks);
1590
1591 return (0);
1592 }
1593
1594 /*
1595 * Lookup table's named object by its @kidx.
1596 */
1597 struct named_object *
ipfw_objhash_lookup_table_kidx(struct ip_fw_chain * ch,uint16_t kidx)1598 ipfw_objhash_lookup_table_kidx(struct ip_fw_chain *ch, uint16_t kidx)
1599 {
1600
1601 return (ipfw_objhash_lookup_kidx(CHAIN_TO_NI(ch), kidx));
1602 }
1603
1604 /*
1605 * Take reference to table specified in @ntlv.
1606 * On success return its @kidx.
1607 */
1608 int
ipfw_ref_table(struct ip_fw_chain * ch,ipfw_obj_ntlv * ntlv,uint16_t * kidx)1609 ipfw_ref_table(struct ip_fw_chain *ch, ipfw_obj_ntlv *ntlv, uint16_t *kidx)
1610 {
1611 struct tid_info ti;
1612 struct table_config *tc;
1613 int error;
1614
1615 IPFW_UH_WLOCK_ASSERT(ch);
1616
1617 ntlv_to_ti(ntlv, &ti);
1618 error = find_table_err(CHAIN_TO_NI(ch), &ti, &tc);
1619 if (error != 0)
1620 return (error);
1621
1622 if (tc == NULL)
1623 return (ESRCH);
1624
1625 tc_ref(tc);
1626 *kidx = tc->no.kidx;
1627
1628 return (0);
1629 }
1630
1631 void
ipfw_unref_table(struct ip_fw_chain * ch,uint16_t kidx)1632 ipfw_unref_table(struct ip_fw_chain *ch, uint16_t kidx)
1633 {
1634
1635 struct namedobj_instance *ni;
1636 struct named_object *no;
1637
1638 IPFW_UH_WLOCK_ASSERT(ch);
1639 ni = CHAIN_TO_NI(ch);
1640 no = ipfw_objhash_lookup_kidx(ni, kidx);
1641 KASSERT(no != NULL, ("Table with index %d not found", kidx));
1642 no->refcnt--;
1643 }
1644
1645 /*
1646 * Lookup an arbitrary key @paddr of length @plen in table @tbl.
1647 * Stores found value in @val.
1648 *
1649 * Returns 1 if key was found.
1650 */
1651 int
ipfw_lookup_table(struct ip_fw_chain * ch,uint16_t tbl,uint16_t plen,void * paddr,uint32_t * val)1652 ipfw_lookup_table(struct ip_fw_chain *ch, uint16_t tbl, uint16_t plen,
1653 void *paddr, uint32_t *val)
1654 {
1655 struct table_info *ti;
1656
1657 ti = KIDX_TO_TI(ch, tbl);
1658
1659 return (ti->lookup(ti, paddr, plen, val));
1660 }
1661
1662 /*
1663 * Info/List/dump support for tables.
1664 *
1665 */
1666
1667 /*
1668 * High-level 'get' cmds sysctl handlers
1669 */
1670
1671 /*
1672 * Lists all tables currently available in kernel.
1673 * Data layout (v0)(current):
1674 * Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size
1675 * Reply: [ ipfw_obj_lheader ipfw_xtable_info x N ]
1676 *
1677 * Returns 0 on success
1678 */
1679 static int
list_tables(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)1680 list_tables(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1681 struct sockopt_data *sd)
1682 {
1683 struct _ipfw_obj_lheader *olh;
1684 int error;
1685
1686 olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,sizeof(*olh));
1687 if (olh == NULL)
1688 return (EINVAL);
1689 if (sd->valsize < olh->size)
1690 return (EINVAL);
1691
1692 IPFW_UH_RLOCK(ch);
1693 error = export_tables(ch, olh, sd);
1694 IPFW_UH_RUNLOCK(ch);
1695
1696 return (error);
1697 }
1698
1699 /*
1700 * Store table info to buffer provided by @sd.
1701 * Data layout (v0)(current):
1702 * Request: [ ipfw_obj_header ipfw_xtable_info(empty)]
1703 * Reply: [ ipfw_obj_header ipfw_xtable_info ]
1704 *
1705 * Returns 0 on success.
1706 */
1707 static int
describe_table(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)1708 describe_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1709 struct sockopt_data *sd)
1710 {
1711 struct _ipfw_obj_header *oh;
1712 struct table_config *tc;
1713 struct tid_info ti;
1714 size_t sz;
1715
1716 sz = sizeof(*oh) + sizeof(ipfw_xtable_info);
1717 oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz);
1718 if (oh == NULL)
1719 return (EINVAL);
1720
1721 objheader_to_ti(oh, &ti);
1722
1723 IPFW_UH_RLOCK(ch);
1724 if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) {
1725 IPFW_UH_RUNLOCK(ch);
1726 return (ESRCH);
1727 }
1728
1729 export_table_info(ch, tc, (ipfw_xtable_info *)(oh + 1));
1730 IPFW_UH_RUNLOCK(ch);
1731
1732 return (0);
1733 }
1734
1735 /*
1736 * Modifies existing table.
1737 * Data layout (v0)(current):
1738 * Request: [ ipfw_obj_header ipfw_xtable_info ]
1739 *
1740 * Returns 0 on success
1741 */
1742 static int
modify_table(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)1743 modify_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1744 struct sockopt_data *sd)
1745 {
1746 struct _ipfw_obj_header *oh;
1747 ipfw_xtable_info *i;
1748 char *tname;
1749 struct tid_info ti;
1750 struct namedobj_instance *ni;
1751 struct table_config *tc;
1752
1753 if (sd->valsize != sizeof(*oh) + sizeof(ipfw_xtable_info))
1754 return (EINVAL);
1755
1756 oh = (struct _ipfw_obj_header *)sd->kbuf;
1757 i = (ipfw_xtable_info *)(oh + 1);
1758
1759 /*
1760 * Verify user-supplied strings.
1761 * Check for null-terminated/zero-length strings/
1762 */
1763 tname = oh->ntlv.name;
1764 if (check_table_name(tname) != 0)
1765 return (EINVAL);
1766
1767 objheader_to_ti(oh, &ti);
1768 ti.type = i->type;
1769
1770 IPFW_UH_WLOCK(ch);
1771 ni = CHAIN_TO_NI(ch);
1772 if ((tc = find_table(ni, &ti)) == NULL) {
1773 IPFW_UH_WUNLOCK(ch);
1774 return (ESRCH);
1775 }
1776
1777 /* Do not support any modifications for readonly tables */
1778 if ((tc->ta->flags & TA_FLAG_READONLY) != 0) {
1779 IPFW_UH_WUNLOCK(ch);
1780 return (EACCES);
1781 }
1782
1783 if ((i->mflags & IPFW_TMFLAGS_LIMIT) != 0)
1784 tc->limit = i->limit;
1785 if ((i->mflags & IPFW_TMFLAGS_LOCK) != 0)
1786 tc->locked = ((i->flags & IPFW_TGFLAGS_LOCKED) != 0);
1787 IPFW_UH_WUNLOCK(ch);
1788
1789 return (0);
1790 }
1791
1792 /*
1793 * Creates new table.
1794 * Data layout (v0)(current):
1795 * Request: [ ipfw_obj_header ipfw_xtable_info ]
1796 *
1797 * Returns 0 on success
1798 */
1799 static int
create_table(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)1800 create_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1801 struct sockopt_data *sd)
1802 {
1803 struct _ipfw_obj_header *oh;
1804 ipfw_xtable_info *i;
1805 char *tname, *aname;
1806 struct tid_info ti;
1807 struct namedobj_instance *ni;
1808
1809 if (sd->valsize != sizeof(*oh) + sizeof(ipfw_xtable_info))
1810 return (EINVAL);
1811
1812 oh = (struct _ipfw_obj_header *)sd->kbuf;
1813 i = (ipfw_xtable_info *)(oh + 1);
1814
1815 /*
1816 * Verify user-supplied strings.
1817 * Check for null-terminated/zero-length strings/
1818 */
1819 tname = oh->ntlv.name;
1820 aname = i->algoname;
1821 if (check_table_name(tname) != 0 ||
1822 strnlen(aname, sizeof(i->algoname)) == sizeof(i->algoname))
1823 return (EINVAL);
1824
1825 if (aname[0] == '\0') {
1826 /* Use default algorithm */
1827 aname = NULL;
1828 }
1829
1830 objheader_to_ti(oh, &ti);
1831 ti.type = i->type;
1832
1833 ni = CHAIN_TO_NI(ch);
1834
1835 IPFW_UH_RLOCK(ch);
1836 if (find_table(ni, &ti) != NULL) {
1837 IPFW_UH_RUNLOCK(ch);
1838 return (EEXIST);
1839 }
1840 IPFW_UH_RUNLOCK(ch);
1841
1842 return (create_table_internal(ch, &ti, aname, i, NULL, 0));
1843 }
1844
1845 /*
1846 * Creates new table based on @ti and @aname.
1847 *
1848 * Assume @aname to be checked and valid.
1849 * Stores allocated table kidx inside @pkidx (if non-NULL).
1850 * Reference created table if @compat is non-zero.
1851 *
1852 * Returns 0 on success.
1853 */
1854 static int
create_table_internal(struct ip_fw_chain * ch,struct tid_info * ti,char * aname,ipfw_xtable_info * i,uint16_t * pkidx,int compat)1855 create_table_internal(struct ip_fw_chain *ch, struct tid_info *ti,
1856 char *aname, ipfw_xtable_info *i, uint16_t *pkidx, int compat)
1857 {
1858 struct namedobj_instance *ni;
1859 struct table_config *tc, *tc_new, *tmp;
1860 struct table_algo *ta;
1861 uint16_t kidx;
1862
1863 ni = CHAIN_TO_NI(ch);
1864
1865 ta = find_table_algo(CHAIN_TO_TCFG(ch), ti, aname);
1866 if (ta == NULL)
1867 return (ENOTSUP);
1868
1869 tc = alloc_table_config(ch, ti, ta, aname, i->tflags);
1870 if (tc == NULL)
1871 return (ENOMEM);
1872
1873 tc->vmask = i->vmask;
1874 tc->limit = i->limit;
1875 if (ta->flags & TA_FLAG_READONLY)
1876 tc->locked = 1;
1877 else
1878 tc->locked = (i->flags & IPFW_TGFLAGS_LOCKED) != 0;
1879
1880 IPFW_UH_WLOCK(ch);
1881
1882 /* Check if table has been already created */
1883 tc_new = find_table(ni, ti);
1884 if (tc_new != NULL) {
1885 /*
1886 * Compat: do not fail if we're
1887 * requesting to create existing table
1888 * which has the same type
1889 */
1890 if (compat == 0 || tc_new->no.subtype != tc->no.subtype) {
1891 IPFW_UH_WUNLOCK(ch);
1892 free_table_config(ni, tc);
1893 return (EEXIST);
1894 }
1895
1896 /* Exchange tc and tc_new for proper refcounting & freeing */
1897 tmp = tc;
1898 tc = tc_new;
1899 tc_new = tmp;
1900 } else {
1901 /* New table */
1902 if (ipfw_objhash_alloc_idx(ni, &kidx) != 0) {
1903 IPFW_UH_WUNLOCK(ch);
1904 printf("Unable to allocate table index."
1905 " Consider increasing net.inet.ip.fw.tables_max");
1906 free_table_config(ni, tc);
1907 return (EBUSY);
1908 }
1909 tc->no.kidx = kidx;
1910 tc->no.etlv = IPFW_TLV_TBL_NAME;
1911
1912 link_table(ch, tc);
1913 }
1914
1915 if (compat != 0)
1916 tc->no.refcnt++;
1917 if (pkidx != NULL)
1918 *pkidx = tc->no.kidx;
1919
1920 IPFW_UH_WUNLOCK(ch);
1921
1922 if (tc_new != NULL)
1923 free_table_config(ni, tc_new);
1924
1925 return (0);
1926 }
1927
1928 static void
ntlv_to_ti(ipfw_obj_ntlv * ntlv,struct tid_info * ti)1929 ntlv_to_ti(ipfw_obj_ntlv *ntlv, struct tid_info *ti)
1930 {
1931
1932 memset(ti, 0, sizeof(struct tid_info));
1933 ti->set = ntlv->set;
1934 ti->uidx = ntlv->idx;
1935 ti->tlvs = ntlv;
1936 ti->tlen = ntlv->head.length;
1937 }
1938
1939 static void
objheader_to_ti(struct _ipfw_obj_header * oh,struct tid_info * ti)1940 objheader_to_ti(struct _ipfw_obj_header *oh, struct tid_info *ti)
1941 {
1942
1943 ntlv_to_ti(&oh->ntlv, ti);
1944 }
1945
1946 struct namedobj_instance *
ipfw_get_table_objhash(struct ip_fw_chain * ch)1947 ipfw_get_table_objhash(struct ip_fw_chain *ch)
1948 {
1949
1950 return (CHAIN_TO_NI(ch));
1951 }
1952
1953 /*
1954 * Exports basic table info as name TLV.
1955 * Used inside dump_static_rules() to provide info
1956 * about all tables referenced by current ruleset.
1957 *
1958 * Returns 0 on success.
1959 */
1960 int
ipfw_export_table_ntlv(struct ip_fw_chain * ch,uint16_t kidx,struct sockopt_data * sd)1961 ipfw_export_table_ntlv(struct ip_fw_chain *ch, uint16_t kidx,
1962 struct sockopt_data *sd)
1963 {
1964 struct namedobj_instance *ni;
1965 struct named_object *no;
1966 ipfw_obj_ntlv *ntlv;
1967
1968 ni = CHAIN_TO_NI(ch);
1969
1970 no = ipfw_objhash_lookup_kidx(ni, kidx);
1971 KASSERT(no != NULL, ("invalid table kidx passed"));
1972
1973 ntlv = (ipfw_obj_ntlv *)ipfw_get_sopt_space(sd, sizeof(*ntlv));
1974 if (ntlv == NULL)
1975 return (ENOMEM);
1976
1977 ntlv->head.type = IPFW_TLV_TBL_NAME;
1978 ntlv->head.length = sizeof(*ntlv);
1979 ntlv->idx = no->kidx;
1980 strlcpy(ntlv->name, no->name, sizeof(ntlv->name));
1981
1982 return (0);
1983 }
1984
1985 struct dump_args {
1986 struct ip_fw_chain *ch;
1987 struct table_info *ti;
1988 struct table_config *tc;
1989 struct sockopt_data *sd;
1990 uint32_t cnt;
1991 uint16_t uidx;
1992 int error;
1993 uint32_t size;
1994 ipfw_table_entry *ent;
1995 ta_foreach_f *f;
1996 void *farg;
1997 ipfw_obj_tentry tent;
1998 };
1999
2000 static int
count_ext_entries(void * e,void * arg)2001 count_ext_entries(void *e, void *arg)
2002 {
2003 struct dump_args *da;
2004
2005 da = (struct dump_args *)arg;
2006 da->cnt++;
2007
2008 return (0);
2009 }
2010
2011 /*
2012 * Gets number of items from table either using
2013 * internal counter or calling algo callback for
2014 * externally-managed tables.
2015 *
2016 * Returns number of records.
2017 */
2018 static uint32_t
table_get_count(struct ip_fw_chain * ch,struct table_config * tc)2019 table_get_count(struct ip_fw_chain *ch, struct table_config *tc)
2020 {
2021 struct table_info *ti;
2022 struct table_algo *ta;
2023 struct dump_args da;
2024
2025 ti = KIDX_TO_TI(ch, tc->no.kidx);
2026 ta = tc->ta;
2027
2028 /* Use internal counter for self-managed tables */
2029 if ((ta->flags & TA_FLAG_READONLY) == 0)
2030 return (tc->count);
2031
2032 /* Use callback to quickly get number of items */
2033 if ((ta->flags & TA_FLAG_EXTCOUNTER) != 0)
2034 return (ta->get_count(tc->astate, ti));
2035
2036 /* Count number of iterms ourselves */
2037 memset(&da, 0, sizeof(da));
2038 ta->foreach(tc->astate, ti, count_ext_entries, &da);
2039
2040 return (da.cnt);
2041 }
2042
2043 /*
2044 * Exports table @tc info into standard ipfw_xtable_info format.
2045 */
2046 static void
export_table_info(struct ip_fw_chain * ch,struct table_config * tc,ipfw_xtable_info * i)2047 export_table_info(struct ip_fw_chain *ch, struct table_config *tc,
2048 ipfw_xtable_info *i)
2049 {
2050 struct table_info *ti;
2051 struct table_algo *ta;
2052
2053 i->type = tc->no.subtype;
2054 i->tflags = tc->tflags;
2055 i->vmask = tc->vmask;
2056 i->set = tc->no.set;
2057 i->kidx = tc->no.kidx;
2058 i->refcnt = tc->no.refcnt;
2059 i->count = table_get_count(ch, tc);
2060 i->limit = tc->limit;
2061 i->flags |= (tc->locked != 0) ? IPFW_TGFLAGS_LOCKED : 0;
2062 i->size = i->count * sizeof(ipfw_obj_tentry);
2063 i->size += sizeof(ipfw_obj_header) + sizeof(ipfw_xtable_info);
2064 strlcpy(i->tablename, tc->tablename, sizeof(i->tablename));
2065 ti = KIDX_TO_TI(ch, tc->no.kidx);
2066 ta = tc->ta;
2067 if (ta->print_config != NULL) {
2068 /* Use algo function to print table config to string */
2069 ta->print_config(tc->astate, ti, i->algoname,
2070 sizeof(i->algoname));
2071 } else
2072 strlcpy(i->algoname, ta->name, sizeof(i->algoname));
2073 /* Dump algo-specific data, if possible */
2074 if (ta->dump_tinfo != NULL) {
2075 ta->dump_tinfo(tc->astate, ti, &i->ta_info);
2076 i->ta_info.flags |= IPFW_TATFLAGS_DATA;
2077 }
2078 }
2079
2080 struct dump_table_args {
2081 struct ip_fw_chain *ch;
2082 struct sockopt_data *sd;
2083 };
2084
2085 static int
export_table_internal(struct namedobj_instance * ni,struct named_object * no,void * arg)2086 export_table_internal(struct namedobj_instance *ni, struct named_object *no,
2087 void *arg)
2088 {
2089 ipfw_xtable_info *i;
2090 struct dump_table_args *dta;
2091
2092 dta = (struct dump_table_args *)arg;
2093
2094 i = (ipfw_xtable_info *)ipfw_get_sopt_space(dta->sd, sizeof(*i));
2095 KASSERT(i != NULL, ("previously checked buffer is not enough"));
2096
2097 export_table_info(dta->ch, (struct table_config *)no, i);
2098 return (0);
2099 }
2100
2101 /*
2102 * Export all tables as ipfw_xtable_info structures to
2103 * storage provided by @sd.
2104 *
2105 * If supplied buffer is too small, fills in required size
2106 * and returns ENOMEM.
2107 * Returns 0 on success.
2108 */
2109 static int
export_tables(struct ip_fw_chain * ch,ipfw_obj_lheader * olh,struct sockopt_data * sd)2110 export_tables(struct ip_fw_chain *ch, ipfw_obj_lheader *olh,
2111 struct sockopt_data *sd)
2112 {
2113 uint32_t size;
2114 uint32_t count;
2115 struct dump_table_args dta;
2116
2117 count = ipfw_objhash_count(CHAIN_TO_NI(ch));
2118 size = count * sizeof(ipfw_xtable_info) + sizeof(ipfw_obj_lheader);
2119
2120 /* Fill in header regadless of buffer size */
2121 olh->count = count;
2122 olh->objsize = sizeof(ipfw_xtable_info);
2123
2124 if (size > olh->size) {
2125 olh->size = size;
2126 return (ENOMEM);
2127 }
2128
2129 olh->size = size;
2130
2131 dta.ch = ch;
2132 dta.sd = sd;
2133
2134 ipfw_objhash_foreach(CHAIN_TO_NI(ch), export_table_internal, &dta);
2135
2136 return (0);
2137 }
2138
2139 /*
2140 * Dumps all table data
2141 * Data layout (v1)(current):
2142 * Request: [ ipfw_obj_header ], size = ipfw_xtable_info.size
2143 * Reply: [ ipfw_obj_header ipfw_xtable_info ipfw_obj_tentry x N ]
2144 *
2145 * Returns 0 on success
2146 */
2147 static int
dump_table_v1(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)2148 dump_table_v1(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
2149 struct sockopt_data *sd)
2150 {
2151 struct _ipfw_obj_header *oh;
2152 ipfw_xtable_info *i;
2153 struct tid_info ti;
2154 struct table_config *tc;
2155 struct table_algo *ta;
2156 struct dump_args da;
2157 uint32_t sz;
2158
2159 sz = sizeof(ipfw_obj_header) + sizeof(ipfw_xtable_info);
2160 oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz);
2161 if (oh == NULL)
2162 return (EINVAL);
2163
2164 i = (ipfw_xtable_info *)(oh + 1);
2165 objheader_to_ti(oh, &ti);
2166
2167 IPFW_UH_RLOCK(ch);
2168 if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) {
2169 IPFW_UH_RUNLOCK(ch);
2170 return (ESRCH);
2171 }
2172 export_table_info(ch, tc, i);
2173
2174 if (sd->valsize < i->size) {
2175 /*
2176 * Submitted buffer size is not enough.
2177 * WE've already filled in @i structure with
2178 * relevant table info including size, so we
2179 * can return. Buffer will be flushed automatically.
2180 */
2181 IPFW_UH_RUNLOCK(ch);
2182 return (ENOMEM);
2183 }
2184
2185 /*
2186 * Do the actual dump in eXtended format
2187 */
2188 memset(&da, 0, sizeof(da));
2189 da.ch = ch;
2190 da.ti = KIDX_TO_TI(ch, tc->no.kidx);
2191 da.tc = tc;
2192 da.sd = sd;
2193
2194 ta = tc->ta;
2195
2196 ta->foreach(tc->astate, da.ti, dump_table_tentry, &da);
2197 IPFW_UH_RUNLOCK(ch);
2198
2199 return (da.error);
2200 }
2201
2202 /*
2203 * Dumps all table data
2204 * Data layout (version 0)(legacy):
2205 * Request: [ ipfw_xtable ], size = IP_FW_TABLE_XGETSIZE()
2206 * Reply: [ ipfw_xtable ipfw_table_xentry x N ]
2207 *
2208 * Returns 0 on success
2209 */
2210 static int
dump_table_v0(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)2211 dump_table_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
2212 struct sockopt_data *sd)
2213 {
2214 ipfw_xtable *xtbl;
2215 struct tid_info ti;
2216 struct table_config *tc;
2217 struct table_algo *ta;
2218 struct dump_args da;
2219 size_t sz, count;
2220
2221 xtbl = (ipfw_xtable *)ipfw_get_sopt_header(sd, sizeof(ipfw_xtable));
2222 if (xtbl == NULL)
2223 return (EINVAL);
2224
2225 memset(&ti, 0, sizeof(ti));
2226 ti.uidx = xtbl->tbl;
2227
2228 IPFW_UH_RLOCK(ch);
2229 if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) {
2230 IPFW_UH_RUNLOCK(ch);
2231 return (0);
2232 }
2233 count = table_get_count(ch, tc);
2234 sz = count * sizeof(ipfw_table_xentry) + sizeof(ipfw_xtable);
2235
2236 xtbl->cnt = count;
2237 xtbl->size = sz;
2238 xtbl->type = tc->no.subtype;
2239 xtbl->tbl = ti.uidx;
2240
2241 if (sd->valsize < sz) {
2242 /*
2243 * Submitted buffer size is not enough.
2244 * WE've already filled in @i structure with
2245 * relevant table info including size, so we
2246 * can return. Buffer will be flushed automatically.
2247 */
2248 IPFW_UH_RUNLOCK(ch);
2249 return (ENOMEM);
2250 }
2251
2252 /* Do the actual dump in eXtended format */
2253 memset(&da, 0, sizeof(da));
2254 da.ch = ch;
2255 da.ti = KIDX_TO_TI(ch, tc->no.kidx);
2256 da.tc = tc;
2257 da.sd = sd;
2258
2259 ta = tc->ta;
2260
2261 ta->foreach(tc->astate, da.ti, dump_table_xentry, &da);
2262 IPFW_UH_RUNLOCK(ch);
2263
2264 return (0);
2265 }
2266
2267 /*
2268 * Legacy function to retrieve number of items in table.
2269 */
2270 static int
get_table_size(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)2271 get_table_size(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
2272 struct sockopt_data *sd)
2273 {
2274 uint32_t *tbl;
2275 struct tid_info ti;
2276 size_t sz;
2277 int error;
2278
2279 sz = sizeof(*op3) + sizeof(uint32_t);
2280 op3 = (ip_fw3_opheader *)ipfw_get_sopt_header(sd, sz);
2281 if (op3 == NULL)
2282 return (EINVAL);
2283
2284 tbl = (uint32_t *)(op3 + 1);
2285 memset(&ti, 0, sizeof(ti));
2286 ti.uidx = *tbl;
2287 IPFW_UH_RLOCK(ch);
2288 error = ipfw_count_xtable(ch, &ti, tbl);
2289 IPFW_UH_RUNLOCK(ch);
2290 return (error);
2291 }
2292
2293 /*
2294 * Legacy IP_FW_TABLE_GETSIZE handler
2295 */
2296 int
ipfw_count_table(struct ip_fw_chain * ch,struct tid_info * ti,uint32_t * cnt)2297 ipfw_count_table(struct ip_fw_chain *ch, struct tid_info *ti, uint32_t *cnt)
2298 {
2299 struct table_config *tc;
2300
2301 if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL)
2302 return (ESRCH);
2303 *cnt = table_get_count(ch, tc);
2304 return (0);
2305 }
2306
2307 /*
2308 * Legacy IP_FW_TABLE_XGETSIZE handler
2309 */
2310 int
ipfw_count_xtable(struct ip_fw_chain * ch,struct tid_info * ti,uint32_t * cnt)2311 ipfw_count_xtable(struct ip_fw_chain *ch, struct tid_info *ti, uint32_t *cnt)
2312 {
2313 struct table_config *tc;
2314 uint32_t count;
2315
2316 if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL) {
2317 *cnt = 0;
2318 return (0); /* 'table all list' requires success */
2319 }
2320
2321 count = table_get_count(ch, tc);
2322 *cnt = count * sizeof(ipfw_table_xentry);
2323 if (count > 0)
2324 *cnt += sizeof(ipfw_xtable);
2325 return (0);
2326 }
2327
2328 static int
dump_table_entry(void * e,void * arg)2329 dump_table_entry(void *e, void *arg)
2330 {
2331 struct dump_args *da;
2332 struct table_config *tc;
2333 struct table_algo *ta;
2334 ipfw_table_entry *ent;
2335 struct table_value *pval;
2336 int error;
2337
2338 da = (struct dump_args *)arg;
2339
2340 tc = da->tc;
2341 ta = tc->ta;
2342
2343 /* Out of memory, returning */
2344 if (da->cnt == da->size)
2345 return (1);
2346 ent = da->ent++;
2347 ent->tbl = da->uidx;
2348 da->cnt++;
2349
2350 error = ta->dump_tentry(tc->astate, da->ti, e, &da->tent);
2351 if (error != 0)
2352 return (error);
2353
2354 ent->addr = da->tent.k.addr.s_addr;
2355 ent->masklen = da->tent.masklen;
2356 pval = get_table_value(da->ch, da->tc, da->tent.v.kidx);
2357 ent->value = ipfw_export_table_value_legacy(pval);
2358
2359 return (0);
2360 }
2361
2362 /*
2363 * Dumps table in pre-8.1 legacy format.
2364 */
2365 int
ipfw_dump_table_legacy(struct ip_fw_chain * ch,struct tid_info * ti,ipfw_table * tbl)2366 ipfw_dump_table_legacy(struct ip_fw_chain *ch, struct tid_info *ti,
2367 ipfw_table *tbl)
2368 {
2369 struct table_config *tc;
2370 struct table_algo *ta;
2371 struct dump_args da;
2372
2373 tbl->cnt = 0;
2374
2375 if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL)
2376 return (0); /* XXX: We should return ESRCH */
2377
2378 ta = tc->ta;
2379
2380 /* This dump format supports IPv4 only */
2381 if (tc->no.subtype != IPFW_TABLE_ADDR)
2382 return (0);
2383
2384 memset(&da, 0, sizeof(da));
2385 da.ch = ch;
2386 da.ti = KIDX_TO_TI(ch, tc->no.kidx);
2387 da.tc = tc;
2388 da.ent = &tbl->ent[0];
2389 da.size = tbl->size;
2390
2391 tbl->cnt = 0;
2392 ta->foreach(tc->astate, da.ti, dump_table_entry, &da);
2393 tbl->cnt = da.cnt;
2394
2395 return (0);
2396 }
2397
2398 /*
2399 * Dumps table entry in eXtended format (v1)(current).
2400 */
2401 static int
dump_table_tentry(void * e,void * arg)2402 dump_table_tentry(void *e, void *arg)
2403 {
2404 struct dump_args *da;
2405 struct table_config *tc;
2406 struct table_algo *ta;
2407 struct table_value *pval;
2408 ipfw_obj_tentry *tent;
2409 int error;
2410
2411 da = (struct dump_args *)arg;
2412
2413 tc = da->tc;
2414 ta = tc->ta;
2415
2416 tent = (ipfw_obj_tentry *)ipfw_get_sopt_space(da->sd, sizeof(*tent));
2417 /* Out of memory, returning */
2418 if (tent == NULL) {
2419 da->error = ENOMEM;
2420 return (1);
2421 }
2422 tent->head.length = sizeof(ipfw_obj_tentry);
2423 tent->idx = da->uidx;
2424
2425 error = ta->dump_tentry(tc->astate, da->ti, e, tent);
2426 if (error != 0)
2427 return (error);
2428
2429 pval = get_table_value(da->ch, da->tc, tent->v.kidx);
2430 ipfw_export_table_value_v1(pval, &tent->v.value);
2431
2432 return (0);
2433 }
2434
2435 /*
2436 * Dumps table entry in eXtended format (v0).
2437 */
2438 static int
dump_table_xentry(void * e,void * arg)2439 dump_table_xentry(void *e, void *arg)
2440 {
2441 struct dump_args *da;
2442 struct table_config *tc;
2443 struct table_algo *ta;
2444 ipfw_table_xentry *xent;
2445 ipfw_obj_tentry *tent;
2446 struct table_value *pval;
2447 int error;
2448
2449 da = (struct dump_args *)arg;
2450
2451 tc = da->tc;
2452 ta = tc->ta;
2453
2454 xent = (ipfw_table_xentry *)ipfw_get_sopt_space(da->sd, sizeof(*xent));
2455 /* Out of memory, returning */
2456 if (xent == NULL)
2457 return (1);
2458 xent->len = sizeof(ipfw_table_xentry);
2459 xent->tbl = da->uidx;
2460
2461 memset(&da->tent, 0, sizeof(da->tent));
2462 tent = &da->tent;
2463 error = ta->dump_tentry(tc->astate, da->ti, e, tent);
2464 if (error != 0)
2465 return (error);
2466
2467 /* Convert current format to previous one */
2468 xent->masklen = tent->masklen;
2469 pval = get_table_value(da->ch, da->tc, da->tent.v.kidx);
2470 xent->value = ipfw_export_table_value_legacy(pval);
2471 /* Apply some hacks */
2472 if (tc->no.subtype == IPFW_TABLE_ADDR && tent->subtype == AF_INET) {
2473 xent->k.addr6.s6_addr32[3] = tent->k.addr.s_addr;
2474 xent->flags = IPFW_TCF_INET;
2475 } else
2476 memcpy(&xent->k, &tent->k, sizeof(xent->k));
2477
2478 return (0);
2479 }
2480
2481 /*
2482 * Helper function to export table algo data
2483 * to tentry format before calling user function.
2484 *
2485 * Returns 0 on success.
2486 */
2487 static int
prepare_table_tentry(void * e,void * arg)2488 prepare_table_tentry(void *e, void *arg)
2489 {
2490 struct dump_args *da;
2491 struct table_config *tc;
2492 struct table_algo *ta;
2493 int error;
2494
2495 da = (struct dump_args *)arg;
2496
2497 tc = da->tc;
2498 ta = tc->ta;
2499
2500 error = ta->dump_tentry(tc->astate, da->ti, e, &da->tent);
2501 if (error != 0)
2502 return (error);
2503
2504 da->f(&da->tent, da->farg);
2505
2506 return (0);
2507 }
2508
2509 /*
2510 * Allow external consumers to read table entries in standard format.
2511 */
2512 int
ipfw_foreach_table_tentry(struct ip_fw_chain * ch,uint16_t kidx,ta_foreach_f * f,void * arg)2513 ipfw_foreach_table_tentry(struct ip_fw_chain *ch, uint16_t kidx,
2514 ta_foreach_f *f, void *arg)
2515 {
2516 struct namedobj_instance *ni;
2517 struct table_config *tc;
2518 struct table_algo *ta;
2519 struct dump_args da;
2520
2521 ni = CHAIN_TO_NI(ch);
2522
2523 tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, kidx);
2524 if (tc == NULL)
2525 return (ESRCH);
2526
2527 ta = tc->ta;
2528
2529 memset(&da, 0, sizeof(da));
2530 da.ch = ch;
2531 da.ti = KIDX_TO_TI(ch, tc->no.kidx);
2532 da.tc = tc;
2533 da.f = f;
2534 da.farg = arg;
2535
2536 ta->foreach(tc->astate, da.ti, prepare_table_tentry, &da);
2537
2538 return (0);
2539 }
2540
2541 /*
2542 * Table algorithms
2543 */
2544
2545 /*
2546 * Finds algorithm by index, table type or supplied name.
2547 *
2548 * Returns pointer to algo or NULL.
2549 */
2550 static struct table_algo *
find_table_algo(struct tables_config * tcfg,struct tid_info * ti,char * name)2551 find_table_algo(struct tables_config *tcfg, struct tid_info *ti, char *name)
2552 {
2553 int i, l;
2554 struct table_algo *ta;
2555
2556 if (ti->type > IPFW_TABLE_MAXTYPE)
2557 return (NULL);
2558
2559 /* Search by index */
2560 if (ti->atype != 0) {
2561 if (ti->atype > tcfg->algo_count)
2562 return (NULL);
2563 return (tcfg->algo[ti->atype]);
2564 }
2565
2566 if (name == NULL) {
2567 /* Return default algorithm for given type if set */
2568 return (tcfg->def_algo[ti->type]);
2569 }
2570
2571 /* Search by name */
2572 /* TODO: better search */
2573 for (i = 1; i <= tcfg->algo_count; i++) {
2574 ta = tcfg->algo[i];
2575
2576 /*
2577 * One can supply additional algorithm
2578 * parameters so we compare only the first word
2579 * of supplied name:
2580 * 'addr:chash hsize=32'
2581 * '^^^^^^^^^'
2582 *
2583 */
2584 l = strlen(ta->name);
2585 if (strncmp(name, ta->name, l) != 0)
2586 continue;
2587 if (name[l] != '\0' && name[l] != ' ')
2588 continue;
2589 /* Check if we're requesting proper table type */
2590 if (ti->type != 0 && ti->type != ta->type)
2591 return (NULL);
2592 return (ta);
2593 }
2594
2595 return (NULL);
2596 }
2597
2598 /*
2599 * Register new table algo @ta.
2600 * Stores algo id inside @idx.
2601 *
2602 * Returns 0 on success.
2603 */
2604 int
ipfw_add_table_algo(struct ip_fw_chain * ch,struct table_algo * ta,size_t size,int * idx)2605 ipfw_add_table_algo(struct ip_fw_chain *ch, struct table_algo *ta, size_t size,
2606 int *idx)
2607 {
2608 struct tables_config *tcfg;
2609 struct table_algo *ta_new;
2610 size_t sz;
2611
2612 if (size > sizeof(struct table_algo))
2613 return (EINVAL);
2614
2615 /* Check for the required on-stack size for add/del */
2616 sz = roundup2(ta->ta_buf_size, sizeof(void *));
2617 if (sz > TA_BUF_SZ)
2618 return (EINVAL);
2619
2620 KASSERT(ta->type <= IPFW_TABLE_MAXTYPE,("Increase IPFW_TABLE_MAXTYPE"));
2621
2622 /* Copy algorithm data to stable storage. */
2623 ta_new = malloc(sizeof(struct table_algo), M_IPFW, M_WAITOK | M_ZERO);
2624 memcpy(ta_new, ta, size);
2625
2626 tcfg = CHAIN_TO_TCFG(ch);
2627
2628 KASSERT(tcfg->algo_count < 255, ("Increase algo array size"));
2629
2630 tcfg->algo[++tcfg->algo_count] = ta_new;
2631 ta_new->idx = tcfg->algo_count;
2632
2633 /* Set algorithm as default one for given type */
2634 if ((ta_new->flags & TA_FLAG_DEFAULT) != 0 &&
2635 tcfg->def_algo[ta_new->type] == NULL)
2636 tcfg->def_algo[ta_new->type] = ta_new;
2637
2638 *idx = ta_new->idx;
2639
2640 return (0);
2641 }
2642
2643 /*
2644 * Unregisters table algo using @idx as id.
2645 * XXX: It is NOT safe to call this function in any place
2646 * other than ipfw instance destroy handler.
2647 */
2648 void
ipfw_del_table_algo(struct ip_fw_chain * ch,int idx)2649 ipfw_del_table_algo(struct ip_fw_chain *ch, int idx)
2650 {
2651 struct tables_config *tcfg;
2652 struct table_algo *ta;
2653
2654 tcfg = CHAIN_TO_TCFG(ch);
2655
2656 KASSERT(idx <= tcfg->algo_count, ("algo idx %d out of range 1..%d",
2657 idx, tcfg->algo_count));
2658
2659 ta = tcfg->algo[idx];
2660 KASSERT(ta != NULL, ("algo idx %d is NULL", idx));
2661
2662 if (tcfg->def_algo[ta->type] == ta)
2663 tcfg->def_algo[ta->type] = NULL;
2664
2665 free(ta, M_IPFW);
2666 }
2667
2668 /*
2669 * Lists all table algorithms currently available.
2670 * Data layout (v0)(current):
2671 * Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size
2672 * Reply: [ ipfw_obj_lheader ipfw_ta_info x N ]
2673 *
2674 * Returns 0 on success
2675 */
2676 static int
list_table_algo(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)2677 list_table_algo(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
2678 struct sockopt_data *sd)
2679 {
2680 struct _ipfw_obj_lheader *olh;
2681 struct tables_config *tcfg;
2682 ipfw_ta_info *i;
2683 struct table_algo *ta;
2684 uint32_t count, n, size;
2685
2686 olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,sizeof(*olh));
2687 if (olh == NULL)
2688 return (EINVAL);
2689 if (sd->valsize < olh->size)
2690 return (EINVAL);
2691
2692 IPFW_UH_RLOCK(ch);
2693 tcfg = CHAIN_TO_TCFG(ch);
2694 count = tcfg->algo_count;
2695 size = count * sizeof(ipfw_ta_info) + sizeof(ipfw_obj_lheader);
2696
2697 /* Fill in header regadless of buffer size */
2698 olh->count = count;
2699 olh->objsize = sizeof(ipfw_ta_info);
2700
2701 if (size > olh->size) {
2702 olh->size = size;
2703 IPFW_UH_RUNLOCK(ch);
2704 return (ENOMEM);
2705 }
2706 olh->size = size;
2707
2708 for (n = 1; n <= count; n++) {
2709 i = (ipfw_ta_info *)ipfw_get_sopt_space(sd, sizeof(*i));
2710 KASSERT(i != NULL, ("previously checked buffer is not enough"));
2711 ta = tcfg->algo[n];
2712 strlcpy(i->algoname, ta->name, sizeof(i->algoname));
2713 i->type = ta->type;
2714 i->refcnt = ta->refcnt;
2715 }
2716
2717 IPFW_UH_RUNLOCK(ch);
2718
2719 return (0);
2720 }
2721
2722 static int
classify_srcdst(ipfw_insn * cmd,uint16_t * puidx,uint8_t * ptype)2723 classify_srcdst(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
2724 {
2725 /* Basic IPv4/IPv6 or u32 lookups */
2726 *puidx = cmd->arg1;
2727 /* Assume ADDR by default */
2728 *ptype = IPFW_TABLE_ADDR;
2729 int v;
2730
2731 if (F_LEN(cmd) > F_INSN_SIZE(ipfw_insn_u32)) {
2732 /*
2733 * generic lookup. The key must be
2734 * in 32bit big-endian format.
2735 */
2736 v = ((ipfw_insn_u32 *)cmd)->d[1];
2737 switch (v) {
2738 case LOOKUP_DST_IP:
2739 case LOOKUP_SRC_IP:
2740 break;
2741 case LOOKUP_DST_PORT:
2742 case LOOKUP_SRC_PORT:
2743 case LOOKUP_UID:
2744 case LOOKUP_JAIL:
2745 case LOOKUP_DSCP:
2746 case LOOKUP_MARK:
2747 *ptype = IPFW_TABLE_NUMBER;
2748 break;
2749 case LOOKUP_DST_MAC:
2750 case LOOKUP_SRC_MAC:
2751 *ptype = IPFW_TABLE_MAC;
2752 break;
2753 }
2754 }
2755
2756 return (0);
2757 }
2758
2759 static int
classify_via(ipfw_insn * cmd,uint16_t * puidx,uint8_t * ptype)2760 classify_via(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
2761 {
2762 ipfw_insn_if *cmdif;
2763
2764 /* Interface table, possibly */
2765 cmdif = (ipfw_insn_if *)cmd;
2766 if (cmdif->name[0] != '\1')
2767 return (1);
2768
2769 *ptype = IPFW_TABLE_INTERFACE;
2770 *puidx = cmdif->p.kidx;
2771
2772 return (0);
2773 }
2774
2775 static int
classify_flow(ipfw_insn * cmd,uint16_t * puidx,uint8_t * ptype)2776 classify_flow(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
2777 {
2778
2779 *puidx = cmd->arg1;
2780 *ptype = IPFW_TABLE_FLOW;
2781
2782 return (0);
2783 }
2784
2785 static int
classify_mac_lookup(ipfw_insn * cmd,uint16_t * puidx,uint8_t * ptype)2786 classify_mac_lookup(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
2787 {
2788 *puidx = cmd->arg1;
2789 *ptype = IPFW_TABLE_MAC;
2790 return (0);
2791 }
2792
2793 static void
update_arg1(ipfw_insn * cmd,uint16_t idx)2794 update_arg1(ipfw_insn *cmd, uint16_t idx)
2795 {
2796
2797 cmd->arg1 = idx;
2798 }
2799
2800 static void
update_via(ipfw_insn * cmd,uint16_t idx)2801 update_via(ipfw_insn *cmd, uint16_t idx)
2802 {
2803 ipfw_insn_if *cmdif;
2804
2805 cmdif = (ipfw_insn_if *)cmd;
2806 cmdif->p.kidx = idx;
2807 }
2808
2809 static int
table_findbyname(struct ip_fw_chain * ch,struct tid_info * ti,struct named_object ** pno)2810 table_findbyname(struct ip_fw_chain *ch, struct tid_info *ti,
2811 struct named_object **pno)
2812 {
2813 struct table_config *tc;
2814 int error;
2815
2816 IPFW_UH_WLOCK_ASSERT(ch);
2817
2818 error = find_table_err(CHAIN_TO_NI(ch), ti, &tc);
2819 if (error != 0)
2820 return (error);
2821
2822 *pno = &tc->no;
2823 return (0);
2824 }
2825
2826 /* XXX: sets-sets! */
2827 static struct named_object *
table_findbykidx(struct ip_fw_chain * ch,uint16_t idx)2828 table_findbykidx(struct ip_fw_chain *ch, uint16_t idx)
2829 {
2830 struct namedobj_instance *ni;
2831 struct table_config *tc;
2832
2833 IPFW_UH_WLOCK_ASSERT(ch);
2834 ni = CHAIN_TO_NI(ch);
2835 tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, idx);
2836 KASSERT(tc != NULL, ("Table with index %d not found", idx));
2837
2838 return (&tc->no);
2839 }
2840
2841 static int
table_manage_sets(struct ip_fw_chain * ch,uint16_t set,uint8_t new_set,enum ipfw_sets_cmd cmd)2842 table_manage_sets(struct ip_fw_chain *ch, uint16_t set, uint8_t new_set,
2843 enum ipfw_sets_cmd cmd)
2844 {
2845
2846 switch (cmd) {
2847 case SWAP_ALL:
2848 case TEST_ALL:
2849 case MOVE_ALL:
2850 /*
2851 * Always return success, the real action and decision
2852 * should make table_manage_sets_all().
2853 */
2854 return (0);
2855 case TEST_ONE:
2856 case MOVE_ONE:
2857 /*
2858 * NOTE: we need to use ipfw_objhash_del/ipfw_objhash_add
2859 * if set number will be used in hash function. Currently
2860 * we can just use generic handler that replaces set value.
2861 */
2862 if (V_fw_tables_sets == 0)
2863 return (0);
2864 break;
2865 case COUNT_ONE:
2866 /*
2867 * Return EOPNOTSUPP for COUNT_ONE when per-set sysctl is
2868 * disabled. This allow skip table's opcodes from additional
2869 * checks when specific rules moved to another set.
2870 */
2871 if (V_fw_tables_sets == 0)
2872 return (EOPNOTSUPP);
2873 }
2874 /* Use generic sets handler when per-set sysctl is enabled. */
2875 return (ipfw_obj_manage_sets(CHAIN_TO_NI(ch), IPFW_TLV_TBL_NAME,
2876 set, new_set, cmd));
2877 }
2878
2879 /*
2880 * We register several opcode rewriters for lookup tables.
2881 * All tables opcodes have the same ETLV type, but different subtype.
2882 * To avoid invoking sets handler several times for XXX_ALL commands,
2883 * we use separate manage_sets handler. O_RECV has the lowest value,
2884 * so it should be called first.
2885 */
2886 static int
table_manage_sets_all(struct ip_fw_chain * ch,uint16_t set,uint8_t new_set,enum ipfw_sets_cmd cmd)2887 table_manage_sets_all(struct ip_fw_chain *ch, uint16_t set, uint8_t new_set,
2888 enum ipfw_sets_cmd cmd)
2889 {
2890
2891 switch (cmd) {
2892 case SWAP_ALL:
2893 case TEST_ALL:
2894 /*
2895 * Return success for TEST_ALL, since nothing prevents
2896 * move rules from one set to another. All tables are
2897 * accessible from all sets when per-set tables sysctl
2898 * is disabled.
2899 */
2900 case MOVE_ALL:
2901 if (V_fw_tables_sets == 0)
2902 return (0);
2903 break;
2904 default:
2905 return (table_manage_sets(ch, set, new_set, cmd));
2906 }
2907 /* Use generic sets handler when per-set sysctl is enabled. */
2908 return (ipfw_obj_manage_sets(CHAIN_TO_NI(ch), IPFW_TLV_TBL_NAME,
2909 set, new_set, cmd));
2910 }
2911
2912 static struct opcode_obj_rewrite opcodes[] = {
2913 {
2914 .opcode = O_IP_SRC_LOOKUP,
2915 .etlv = IPFW_TLV_TBL_NAME,
2916 .classifier = classify_srcdst,
2917 .update = update_arg1,
2918 .find_byname = table_findbyname,
2919 .find_bykidx = table_findbykidx,
2920 .create_object = create_table_compat,
2921 .manage_sets = table_manage_sets,
2922 },
2923 {
2924 .opcode = O_IP_DST_LOOKUP,
2925 .etlv = IPFW_TLV_TBL_NAME,
2926 .classifier = classify_srcdst,
2927 .update = update_arg1,
2928 .find_byname = table_findbyname,
2929 .find_bykidx = table_findbykidx,
2930 .create_object = create_table_compat,
2931 .manage_sets = table_manage_sets,
2932 },
2933 {
2934 .opcode = O_IP_FLOW_LOOKUP,
2935 .etlv = IPFW_TLV_TBL_NAME,
2936 .classifier = classify_flow,
2937 .update = update_arg1,
2938 .find_byname = table_findbyname,
2939 .find_bykidx = table_findbykidx,
2940 .create_object = create_table_compat,
2941 .manage_sets = table_manage_sets,
2942 },
2943 {
2944 .opcode = O_MAC_SRC_LOOKUP,
2945 .etlv = IPFW_TLV_TBL_NAME,
2946 .classifier = classify_mac_lookup,
2947 .update = update_arg1,
2948 .find_byname = table_findbyname,
2949 .find_bykidx = table_findbykidx,
2950 .create_object = create_table_compat,
2951 .manage_sets = table_manage_sets,
2952 },
2953 {
2954 .opcode = O_MAC_DST_LOOKUP,
2955 .etlv = IPFW_TLV_TBL_NAME,
2956 .classifier = classify_mac_lookup,
2957 .update = update_arg1,
2958 .find_byname = table_findbyname,
2959 .find_bykidx = table_findbykidx,
2960 .create_object = create_table_compat,
2961 .manage_sets = table_manage_sets,
2962 },
2963 {
2964 .opcode = O_XMIT,
2965 .etlv = IPFW_TLV_TBL_NAME,
2966 .classifier = classify_via,
2967 .update = update_via,
2968 .find_byname = table_findbyname,
2969 .find_bykidx = table_findbykidx,
2970 .create_object = create_table_compat,
2971 .manage_sets = table_manage_sets,
2972 },
2973 {
2974 .opcode = O_RECV,
2975 .etlv = IPFW_TLV_TBL_NAME,
2976 .classifier = classify_via,
2977 .update = update_via,
2978 .find_byname = table_findbyname,
2979 .find_bykidx = table_findbykidx,
2980 .create_object = create_table_compat,
2981 .manage_sets = table_manage_sets_all,
2982 },
2983 {
2984 .opcode = O_VIA,
2985 .etlv = IPFW_TLV_TBL_NAME,
2986 .classifier = classify_via,
2987 .update = update_via,
2988 .find_byname = table_findbyname,
2989 .find_bykidx = table_findbykidx,
2990 .create_object = create_table_compat,
2991 .manage_sets = table_manage_sets,
2992 },
2993 };
2994
2995 static int
test_sets_cb(struct namedobj_instance * ni __unused,struct named_object * no,void * arg __unused)2996 test_sets_cb(struct namedobj_instance *ni __unused, struct named_object *no,
2997 void *arg __unused)
2998 {
2999
3000 /* Check that there aren't any tables in not default set */
3001 if (no->set != 0)
3002 return (EBUSY);
3003 return (0);
3004 }
3005
3006 /*
3007 * Switch between "set 0" and "rule's set" table binding,
3008 * Check all ruleset bindings and permits changing
3009 * IFF each binding has both rule AND table in default set (set 0).
3010 *
3011 * Returns 0 on success.
3012 */
3013 int
ipfw_switch_tables_namespace(struct ip_fw_chain * ch,unsigned int sets)3014 ipfw_switch_tables_namespace(struct ip_fw_chain *ch, unsigned int sets)
3015 {
3016 struct opcode_obj_rewrite *rw;
3017 struct namedobj_instance *ni;
3018 struct named_object *no;
3019 struct ip_fw *rule;
3020 ipfw_insn *cmd;
3021 int cmdlen, i, l;
3022 uint16_t kidx;
3023 uint8_t subtype;
3024
3025 IPFW_UH_WLOCK(ch);
3026
3027 if (V_fw_tables_sets == sets) {
3028 IPFW_UH_WUNLOCK(ch);
3029 return (0);
3030 }
3031 ni = CHAIN_TO_NI(ch);
3032 if (sets == 0) {
3033 /*
3034 * Prevent disabling sets support if we have some tables
3035 * in not default sets.
3036 */
3037 if (ipfw_objhash_foreach_type(ni, test_sets_cb,
3038 NULL, IPFW_TLV_TBL_NAME) != 0) {
3039 IPFW_UH_WUNLOCK(ch);
3040 return (EBUSY);
3041 }
3042 }
3043 /*
3044 * Scan all rules and examine tables opcodes.
3045 */
3046 for (i = 0; i < ch->n_rules; i++) {
3047 rule = ch->map[i];
3048
3049 l = rule->cmd_len;
3050 cmd = rule->cmd;
3051 cmdlen = 0;
3052 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) {
3053 cmdlen = F_LEN(cmd);
3054 /* Check only tables opcodes */
3055 for (kidx = 0, rw = opcodes;
3056 rw < opcodes + nitems(opcodes); rw++) {
3057 if (rw->opcode != cmd->opcode)
3058 continue;
3059 if (rw->classifier(cmd, &kidx, &subtype) == 0)
3060 break;
3061 }
3062 if (kidx == 0)
3063 continue;
3064 no = ipfw_objhash_lookup_kidx(ni, kidx);
3065 /* Check if both table object and rule has the set 0 */
3066 if (no->set != 0 || rule->set != 0) {
3067 IPFW_UH_WUNLOCK(ch);
3068 return (EBUSY);
3069 }
3070 }
3071 }
3072 V_fw_tables_sets = sets;
3073 IPFW_UH_WUNLOCK(ch);
3074 return (0);
3075 }
3076
3077 /*
3078 * Checks table name for validity.
3079 * Enforce basic length checks, the rest
3080 * should be done in userland.
3081 *
3082 * Returns 0 if name is considered valid.
3083 */
3084 static int
check_table_name(const char * name)3085 check_table_name(const char *name)
3086 {
3087
3088 /*
3089 * TODO: do some more complicated checks
3090 */
3091 return (ipfw_check_object_name_generic(name));
3092 }
3093
3094 /*
3095 * Finds table config based on either legacy index
3096 * or name in ntlv.
3097 * Note @ti structure contains unchecked data from userland.
3098 *
3099 * Returns 0 in success and fills in @tc with found config
3100 */
3101 static int
find_table_err(struct namedobj_instance * ni,struct tid_info * ti,struct table_config ** tc)3102 find_table_err(struct namedobj_instance *ni, struct tid_info *ti,
3103 struct table_config **tc)
3104 {
3105 char *name, bname[16];
3106 struct named_object *no;
3107 ipfw_obj_ntlv *ntlv;
3108 uint32_t set;
3109
3110 if (ti->tlvs != NULL) {
3111 ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
3112 IPFW_TLV_TBL_NAME);
3113 if (ntlv == NULL)
3114 return (EINVAL);
3115 name = ntlv->name;
3116
3117 /*
3118 * Use set provided by @ti instead of @ntlv one.
3119 * This is needed due to different sets behavior
3120 * controlled by V_fw_tables_sets.
3121 */
3122 set = (V_fw_tables_sets != 0) ? ti->set : 0;
3123 } else {
3124 snprintf(bname, sizeof(bname), "%d", ti->uidx);
3125 name = bname;
3126 set = 0;
3127 }
3128
3129 no = ipfw_objhash_lookup_name(ni, set, name);
3130 *tc = (struct table_config *)no;
3131
3132 return (0);
3133 }
3134
3135 /*
3136 * Finds table config based on either legacy index
3137 * or name in ntlv.
3138 * Note @ti structure contains unchecked data from userland.
3139 *
3140 * Returns pointer to table_config or NULL.
3141 */
3142 static struct table_config *
find_table(struct namedobj_instance * ni,struct tid_info * ti)3143 find_table(struct namedobj_instance *ni, struct tid_info *ti)
3144 {
3145 struct table_config *tc;
3146
3147 if (find_table_err(ni, ti, &tc) != 0)
3148 return (NULL);
3149
3150 return (tc);
3151 }
3152
3153 /*
3154 * Allocate new table config structure using
3155 * specified @algo and @aname.
3156 *
3157 * Returns pointer to config or NULL.
3158 */
3159 static struct table_config *
alloc_table_config(struct ip_fw_chain * ch,struct tid_info * ti,struct table_algo * ta,char * aname,uint8_t tflags)3160 alloc_table_config(struct ip_fw_chain *ch, struct tid_info *ti,
3161 struct table_algo *ta, char *aname, uint8_t tflags)
3162 {
3163 char *name, bname[16];
3164 struct table_config *tc;
3165 int error;
3166 ipfw_obj_ntlv *ntlv;
3167 uint32_t set;
3168
3169 if (ti->tlvs != NULL) {
3170 ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
3171 IPFW_TLV_TBL_NAME);
3172 if (ntlv == NULL)
3173 return (NULL);
3174 name = ntlv->name;
3175 set = (V_fw_tables_sets == 0) ? 0 : ntlv->set;
3176 } else {
3177 /* Compat part: convert number to string representation */
3178 snprintf(bname, sizeof(bname), "%d", ti->uidx);
3179 name = bname;
3180 set = 0;
3181 }
3182
3183 tc = malloc(sizeof(struct table_config), M_IPFW, M_WAITOK | M_ZERO);
3184 tc->no.name = tc->tablename;
3185 tc->no.subtype = ta->type;
3186 tc->no.set = set;
3187 tc->tflags = tflags;
3188 tc->ta = ta;
3189 strlcpy(tc->tablename, name, sizeof(tc->tablename));
3190 /* Set "shared" value type by default */
3191 tc->vshared = 1;
3192
3193 /* Preallocate data structures for new tables */
3194 error = ta->init(ch, &tc->astate, &tc->ti_copy, aname, tflags);
3195 if (error != 0) {
3196 free(tc, M_IPFW);
3197 return (NULL);
3198 }
3199
3200 return (tc);
3201 }
3202
3203 /*
3204 * Destroys table state and config.
3205 */
3206 static void
free_table_config(struct namedobj_instance * ni,struct table_config * tc)3207 free_table_config(struct namedobj_instance *ni, struct table_config *tc)
3208 {
3209
3210 KASSERT(tc->linked == 0, ("free() on linked config"));
3211 /* UH lock MUST NOT be held */
3212
3213 /*
3214 * We're using ta without any locking/referencing.
3215 * TODO: fix this if we're going to use unloadable algos.
3216 */
3217 tc->ta->destroy(tc->astate, &tc->ti_copy);
3218 free(tc, M_IPFW);
3219 }
3220
3221 /*
3222 * Links @tc to @chain table named instance.
3223 * Sets appropriate type/states in @chain table info.
3224 */
3225 static void
link_table(struct ip_fw_chain * ch,struct table_config * tc)3226 link_table(struct ip_fw_chain *ch, struct table_config *tc)
3227 {
3228 struct namedobj_instance *ni;
3229 struct table_info *ti;
3230 uint16_t kidx;
3231
3232 IPFW_UH_WLOCK_ASSERT(ch);
3233
3234 ni = CHAIN_TO_NI(ch);
3235 kidx = tc->no.kidx;
3236
3237 ipfw_objhash_add(ni, &tc->no);
3238
3239 ti = KIDX_TO_TI(ch, kidx);
3240 *ti = tc->ti_copy;
3241
3242 /* Notify algo on real @ti address */
3243 if (tc->ta->change_ti != NULL)
3244 tc->ta->change_ti(tc->astate, ti);
3245
3246 tc->linked = 1;
3247 tc->ta->refcnt++;
3248 }
3249
3250 /*
3251 * Unlinks @tc from @chain table named instance.
3252 * Zeroes states in @chain and stores them in @tc.
3253 */
3254 static void
unlink_table(struct ip_fw_chain * ch,struct table_config * tc)3255 unlink_table(struct ip_fw_chain *ch, struct table_config *tc)
3256 {
3257 struct namedobj_instance *ni;
3258 struct table_info *ti;
3259 uint16_t kidx;
3260
3261 IPFW_UH_WLOCK_ASSERT(ch);
3262 IPFW_WLOCK_ASSERT(ch);
3263
3264 ni = CHAIN_TO_NI(ch);
3265 kidx = tc->no.kidx;
3266
3267 /* Clear state. @ti copy is already saved inside @tc */
3268 ipfw_objhash_del(ni, &tc->no);
3269 ti = KIDX_TO_TI(ch, kidx);
3270 memset(ti, 0, sizeof(struct table_info));
3271 tc->linked = 0;
3272 tc->ta->refcnt--;
3273
3274 /* Notify algo on real @ti address */
3275 if (tc->ta->change_ti != NULL)
3276 tc->ta->change_ti(tc->astate, NULL);
3277 }
3278
3279 static struct ipfw_sopt_handler scodes[] = {
3280 { IP_FW_TABLE_XCREATE, 0, HDIR_SET, create_table },
3281 { IP_FW_TABLE_XDESTROY, 0, HDIR_SET, flush_table_v0 },
3282 { IP_FW_TABLE_XFLUSH, 0, HDIR_SET, flush_table_v0 },
3283 { IP_FW_TABLE_XMODIFY, 0, HDIR_BOTH, modify_table },
3284 { IP_FW_TABLE_XINFO, 0, HDIR_GET, describe_table },
3285 { IP_FW_TABLES_XLIST, 0, HDIR_GET, list_tables },
3286 { IP_FW_TABLE_XLIST, 0, HDIR_GET, dump_table_v0 },
3287 { IP_FW_TABLE_XLIST, 1, HDIR_GET, dump_table_v1 },
3288 { IP_FW_TABLE_XADD, 0, HDIR_BOTH, manage_table_ent_v0 },
3289 { IP_FW_TABLE_XADD, 1, HDIR_BOTH, manage_table_ent_v1 },
3290 { IP_FW_TABLE_XDEL, 0, HDIR_BOTH, manage_table_ent_v0 },
3291 { IP_FW_TABLE_XDEL, 1, HDIR_BOTH, manage_table_ent_v1 },
3292 { IP_FW_TABLE_XFIND, 0, HDIR_GET, find_table_entry },
3293 { IP_FW_TABLE_XSWAP, 0, HDIR_SET, swap_table },
3294 { IP_FW_TABLES_ALIST, 0, HDIR_GET, list_table_algo },
3295 { IP_FW_TABLE_XGETSIZE, 0, HDIR_GET, get_table_size },
3296 };
3297
3298 static int
destroy_table_locked(struct namedobj_instance * ni,struct named_object * no,void * arg)3299 destroy_table_locked(struct namedobj_instance *ni, struct named_object *no,
3300 void *arg)
3301 {
3302
3303 unlink_table((struct ip_fw_chain *)arg, (struct table_config *)no);
3304 if (ipfw_objhash_free_idx(ni, no->kidx) != 0)
3305 printf("Error unlinking kidx %d from table %s\n",
3306 no->kidx, no->name);
3307 free_table_config(ni, (struct table_config *)no);
3308 return (0);
3309 }
3310
3311 /*
3312 * Shuts tables module down.
3313 */
3314 void
ipfw_destroy_tables(struct ip_fw_chain * ch,int last)3315 ipfw_destroy_tables(struct ip_fw_chain *ch, int last)
3316 {
3317
3318 IPFW_DEL_SOPT_HANDLER(last, scodes);
3319 IPFW_DEL_OBJ_REWRITER(last, opcodes);
3320
3321 /* Remove all tables from working set */
3322 IPFW_UH_WLOCK(ch);
3323 IPFW_WLOCK(ch);
3324 ipfw_objhash_foreach(CHAIN_TO_NI(ch), destroy_table_locked, ch);
3325 IPFW_WUNLOCK(ch);
3326 IPFW_UH_WUNLOCK(ch);
3327
3328 /* Free pointers itself */
3329 free(ch->tablestate, M_IPFW);
3330
3331 ipfw_table_value_destroy(ch, last);
3332 ipfw_table_algo_destroy(ch);
3333
3334 ipfw_objhash_destroy(CHAIN_TO_NI(ch));
3335 free(CHAIN_TO_TCFG(ch), M_IPFW);
3336 }
3337
3338 /*
3339 * Starts tables module.
3340 */
3341 int
ipfw_init_tables(struct ip_fw_chain * ch,int first)3342 ipfw_init_tables(struct ip_fw_chain *ch, int first)
3343 {
3344 struct tables_config *tcfg;
3345
3346 /* Allocate pointers */
3347 ch->tablestate = malloc(V_fw_tables_max * sizeof(struct table_info),
3348 M_IPFW, M_WAITOK | M_ZERO);
3349
3350 tcfg = malloc(sizeof(struct tables_config), M_IPFW, M_WAITOK | M_ZERO);
3351 tcfg->namehash = ipfw_objhash_create(V_fw_tables_max);
3352 ch->tblcfg = tcfg;
3353
3354 ipfw_table_value_init(ch, first);
3355 ipfw_table_algo_init(ch);
3356
3357 IPFW_ADD_OBJ_REWRITER(first, opcodes);
3358 IPFW_ADD_SOPT_HANDLER(first, scodes);
3359 return (0);
3360 }
3361