1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2017-2018 Yandex LLC
5 * Copyright (c) 2017-2018 Andrey V. Elsukov <ae@FreeBSD.org>
6 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 #include "opt_ipfw.h"
34 #ifndef INET
35 #error IPFIREWALL requires INET.
36 #endif /* INET */
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/hash.h>
41 #include <sys/mbuf.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/pcpu.h>
45 #include <sys/queue.h>
46 #include <sys/rmlock.h>
47 #include <sys/smp.h>
48 #include <sys/socket.h>
49 #include <sys/sysctl.h>
50 #include <sys/syslog.h>
51 #include <net/ethernet.h>
52 #include <net/if.h>
53 #include <net/if_var.h>
54 #include <net/vnet.h>
55
56 #include <netinet/in.h>
57 #include <netinet/ip.h>
58 #include <netinet/ip_var.h>
59 #include <netinet/ip_fw.h>
60 #include <netinet/udp.h>
61 #include <netinet/tcp.h>
62
63 #include <netinet/ip6.h> /* IN6_ARE_ADDR_EQUAL */
64 #ifdef INET6
65 #include <netinet6/in6_var.h>
66 #include <netinet6/ip6_var.h>
67 #include <netinet6/scope6_var.h>
68 #endif
69
70 #include <netpfil/ipfw/ip_fw_private.h>
71
72 #include <machine/in_cksum.h> /* XXX for in_cksum */
73
74 #ifdef MAC
75 #include <security/mac/mac_framework.h>
76 #endif
77
78 /*
79 * Description of dynamic states.
80 *
81 * Dynamic states are stored in lists accessed through a hash tables
82 * whose size is curr_dyn_buckets. This value can be modified through
83 * the sysctl variable dyn_buckets.
84 *
85 * Currently there are four tables: dyn_ipv4, dyn_ipv6, dyn_ipv4_parent,
86 * and dyn_ipv6_parent.
87 *
88 * When a packet is received, its address fields hashed, then matched
89 * against the entries in the corresponding list by addr_type.
90 * Dynamic states can be used for different purposes:
91 * + stateful rules;
92 * + enforcing limits on the number of sessions;
93 * + in-kernel NAT (not implemented yet)
94 *
95 * The lifetime of dynamic states is regulated by dyn_*_lifetime,
96 * measured in seconds and depending on the flags.
97 *
98 * The total number of dynamic states is equal to UMA zone items count.
99 * The max number of dynamic states is dyn_max. When we reach
100 * the maximum number of rules we do not create anymore. This is
101 * done to avoid consuming too much memory, but also too much
102 * time when searching on each packet (ideally, we should try instead
103 * to put a limit on the length of the list on each bucket...).
104 *
105 * Each state holds a pointer to the parent ipfw rule so we know what
106 * action to perform. Dynamic rules are removed when the parent rule is
107 * deleted.
108 *
109 * There are some limitations with dynamic rules -- we do not
110 * obey the 'randomized match', and we do not do multiple
111 * passes through the firewall. XXX check the latter!!!
112 */
113
114 /* By default use jenkins hash function */
115 #define IPFIREWALL_JENKINSHASH
116
117 #define DYN_COUNTER_INC(d, dir, pktlen) do { \
118 (d)->pcnt_ ## dir++; \
119 (d)->bcnt_ ## dir += pktlen; \
120 } while (0)
121
122 #define DYN_REFERENCED 0x01
123 /*
124 * DYN_REFERENCED flag is used to show that state keeps reference to named
125 * object, and this reference should be released when state becomes expired.
126 */
127
128 struct dyn_data {
129 void *parent; /* pointer to parent rule */
130 uint32_t chain_id; /* cached ruleset id */
131 uint32_t f_pos; /* cached rule index */
132
133 uint32_t hashval; /* hash value used for hash resize */
134 uint16_t fibnum; /* fib used to send keepalives */
135 uint8_t _pad[3];
136 uint8_t flags; /* internal flags */
137 uint16_t rulenum; /* parent rule number */
138 uint32_t ruleid; /* parent rule id */
139
140 uint32_t state; /* TCP session state and flags */
141 uint32_t ack_fwd; /* most recent ACKs in forward */
142 uint32_t ack_rev; /* and reverse direction (used */
143 /* to generate keepalives) */
144 uint32_t sync; /* synchronization time */
145 uint32_t expire; /* expire time */
146
147 uint64_t pcnt_fwd; /* packets counter in forward */
148 uint64_t bcnt_fwd; /* bytes counter in forward */
149 uint64_t pcnt_rev; /* packets counter in reverse */
150 uint64_t bcnt_rev; /* bytes counter in reverse */
151 };
152
153 #define DPARENT_COUNT_DEC(p) do { \
154 MPASS(p->count > 0); \
155 ck_pr_dec_32(&(p)->count); \
156 } while (0)
157 #define DPARENT_COUNT_INC(p) ck_pr_inc_32(&(p)->count)
158 #define DPARENT_COUNT(p) ck_pr_load_32(&(p)->count)
159 struct dyn_parent {
160 void *parent; /* pointer to parent rule */
161 uint32_t count; /* number of linked states */
162 uint8_t _pad[2];
163 uint16_t rulenum; /* parent rule number */
164 uint32_t ruleid; /* parent rule id */
165 uint32_t hashval; /* hash value used for hash resize */
166 uint32_t expire; /* expire time */
167 };
168
169 struct dyn_ipv4_state {
170 uint8_t type; /* State type */
171 uint8_t proto; /* UL Protocol */
172 uint16_t kidx; /* named object index */
173 uint16_t sport, dport; /* ULP source and destination ports */
174 in_addr_t src, dst; /* IPv4 source and destination */
175
176 union {
177 struct dyn_data *data;
178 struct dyn_parent *limit;
179 };
180 CK_SLIST_ENTRY(dyn_ipv4_state) entry;
181 SLIST_ENTRY(dyn_ipv4_state) expired;
182 };
183 CK_SLIST_HEAD(dyn_ipv4ck_slist, dyn_ipv4_state);
184 VNET_DEFINE_STATIC(struct dyn_ipv4ck_slist *, dyn_ipv4);
185 VNET_DEFINE_STATIC(struct dyn_ipv4ck_slist *, dyn_ipv4_parent);
186
187 SLIST_HEAD(dyn_ipv4_slist, dyn_ipv4_state);
188 VNET_DEFINE_STATIC(struct dyn_ipv4_slist, dyn_expired_ipv4);
189 #define V_dyn_ipv4 VNET(dyn_ipv4)
190 #define V_dyn_ipv4_parent VNET(dyn_ipv4_parent)
191 #define V_dyn_expired_ipv4 VNET(dyn_expired_ipv4)
192
193 #ifdef INET6
194 struct dyn_ipv6_state {
195 uint8_t type; /* State type */
196 uint8_t proto; /* UL Protocol */
197 uint16_t kidx; /* named object index */
198 uint16_t sport, dport; /* ULP source and destination ports */
199 struct in6_addr src, dst; /* IPv6 source and destination */
200 uint32_t zoneid; /* IPv6 scope zone id */
201 union {
202 struct dyn_data *data;
203 struct dyn_parent *limit;
204 };
205 CK_SLIST_ENTRY(dyn_ipv6_state) entry;
206 SLIST_ENTRY(dyn_ipv6_state) expired;
207 };
208 CK_SLIST_HEAD(dyn_ipv6ck_slist, dyn_ipv6_state);
209 VNET_DEFINE_STATIC(struct dyn_ipv6ck_slist *, dyn_ipv6);
210 VNET_DEFINE_STATIC(struct dyn_ipv6ck_slist *, dyn_ipv6_parent);
211
212 SLIST_HEAD(dyn_ipv6_slist, dyn_ipv6_state);
213 VNET_DEFINE_STATIC(struct dyn_ipv6_slist, dyn_expired_ipv6);
214 #define V_dyn_ipv6 VNET(dyn_ipv6)
215 #define V_dyn_ipv6_parent VNET(dyn_ipv6_parent)
216 #define V_dyn_expired_ipv6 VNET(dyn_expired_ipv6)
217 #endif /* INET6 */
218
219 /*
220 * Per-CPU pointer indicates that specified state is currently in use
221 * and must not be reclaimed by expiration callout.
222 */
223 static void **dyn_hp_cache;
224 DPCPU_DEFINE_STATIC(void *, dyn_hp);
225 #define DYNSTATE_GET(cpu) ck_pr_load_ptr(DPCPU_ID_PTR((cpu), dyn_hp))
226 #define DYNSTATE_PROTECT(v) ck_pr_store_ptr(DPCPU_PTR(dyn_hp), (v))
227 #define DYNSTATE_RELEASE() DYNSTATE_PROTECT(NULL)
228 #define DYNSTATE_CRITICAL_ENTER() critical_enter()
229 #define DYNSTATE_CRITICAL_EXIT() do { \
230 DYNSTATE_RELEASE(); \
231 critical_exit(); \
232 } while (0);
233
234 /*
235 * We keep two version numbers, one is updated when new entry added to
236 * the list. Second is updated when an entry deleted from the list.
237 * Versions are updated under bucket lock.
238 *
239 * Bucket "add" version number is used to know, that in the time between
240 * state lookup (i.e. ipfw_dyn_lookup_state()) and the followed state
241 * creation (i.e. ipfw_dyn_install_state()) another concurrent thread did
242 * not install some state in this bucket. Using this info we can avoid
243 * additional state lookup, because we are sure that we will not install
244 * the state twice.
245 *
246 * Also doing the tracking of bucket "del" version during lookup we can
247 * be sure, that state entry was not unlinked and freed in time between
248 * we read the state pointer and protect it with hazard pointer.
249 *
250 * An entry unlinked from CK list keeps unchanged until it is freed.
251 * Unlinked entries are linked into expired lists using "expired" field.
252 */
253
254 /*
255 * dyn_expire_lock is used to protect access to dyn_expired_xxx lists.
256 * dyn_bucket_lock is used to get write access to lists in specific bucket.
257 * Currently one dyn_bucket_lock is used for all ipv4, ipv4_parent, ipv6,
258 * and ipv6_parent lists.
259 */
260 VNET_DEFINE_STATIC(struct mtx, dyn_expire_lock);
261 VNET_DEFINE_STATIC(struct mtx *, dyn_bucket_lock);
262 #define V_dyn_expire_lock VNET(dyn_expire_lock)
263 #define V_dyn_bucket_lock VNET(dyn_bucket_lock)
264
265 /*
266 * Bucket's add/delete generation versions.
267 */
268 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_add);
269 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_del);
270 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_parent_add);
271 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_parent_del);
272 #define V_dyn_ipv4_add VNET(dyn_ipv4_add)
273 #define V_dyn_ipv4_del VNET(dyn_ipv4_del)
274 #define V_dyn_ipv4_parent_add VNET(dyn_ipv4_parent_add)
275 #define V_dyn_ipv4_parent_del VNET(dyn_ipv4_parent_del)
276
277 #ifdef INET6
278 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_add);
279 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_del);
280 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_parent_add);
281 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_parent_del);
282 #define V_dyn_ipv6_add VNET(dyn_ipv6_add)
283 #define V_dyn_ipv6_del VNET(dyn_ipv6_del)
284 #define V_dyn_ipv6_parent_add VNET(dyn_ipv6_parent_add)
285 #define V_dyn_ipv6_parent_del VNET(dyn_ipv6_parent_del)
286 #endif /* INET6 */
287
288 #define DYN_BUCKET(h, b) ((h) & (b - 1))
289 #define DYN_BUCKET_VERSION(b, v) ck_pr_load_32(&V_dyn_ ## v[(b)])
290 #define DYN_BUCKET_VERSION_BUMP(b, v) ck_pr_inc_32(&V_dyn_ ## v[(b)])
291
292 #define DYN_BUCKET_LOCK_INIT(lock, b) \
293 mtx_init(&lock[(b)], "IPFW dynamic bucket", NULL, MTX_DEF)
294 #define DYN_BUCKET_LOCK_DESTROY(lock, b) mtx_destroy(&lock[(b)])
295 #define DYN_BUCKET_LOCK(b) mtx_lock(&V_dyn_bucket_lock[(b)])
296 #define DYN_BUCKET_UNLOCK(b) mtx_unlock(&V_dyn_bucket_lock[(b)])
297 #define DYN_BUCKET_ASSERT(b) mtx_assert(&V_dyn_bucket_lock[(b)], MA_OWNED)
298
299 #define DYN_EXPIRED_LOCK_INIT() \
300 mtx_init(&V_dyn_expire_lock, "IPFW expired states list", NULL, MTX_DEF)
301 #define DYN_EXPIRED_LOCK_DESTROY() mtx_destroy(&V_dyn_expire_lock)
302 #define DYN_EXPIRED_LOCK() mtx_lock(&V_dyn_expire_lock)
303 #define DYN_EXPIRED_UNLOCK() mtx_unlock(&V_dyn_expire_lock)
304
305 VNET_DEFINE_STATIC(uint32_t, dyn_buckets_max);
306 VNET_DEFINE_STATIC(uint32_t, curr_dyn_buckets);
307 VNET_DEFINE_STATIC(struct callout, dyn_timeout);
308 #define V_dyn_buckets_max VNET(dyn_buckets_max)
309 #define V_curr_dyn_buckets VNET(curr_dyn_buckets)
310 #define V_dyn_timeout VNET(dyn_timeout)
311
312 /* Maximum length of states chain in a bucket */
313 VNET_DEFINE_STATIC(uint32_t, curr_max_length);
314 #define V_curr_max_length VNET(curr_max_length)
315
316 VNET_DEFINE_STATIC(uint32_t, dyn_keep_states);
317 #define V_dyn_keep_states VNET(dyn_keep_states)
318
319 VNET_DEFINE_STATIC(uma_zone_t, dyn_data_zone);
320 VNET_DEFINE_STATIC(uma_zone_t, dyn_parent_zone);
321 VNET_DEFINE_STATIC(uma_zone_t, dyn_ipv4_zone);
322 #ifdef INET6
323 VNET_DEFINE_STATIC(uma_zone_t, dyn_ipv6_zone);
324 #define V_dyn_ipv6_zone VNET(dyn_ipv6_zone)
325 #endif /* INET6 */
326 #define V_dyn_data_zone VNET(dyn_data_zone)
327 #define V_dyn_parent_zone VNET(dyn_parent_zone)
328 #define V_dyn_ipv4_zone VNET(dyn_ipv4_zone)
329
330 /*
331 * Timeouts for various events in handing dynamic rules.
332 */
333 VNET_DEFINE_STATIC(uint32_t, dyn_ack_lifetime);
334 VNET_DEFINE_STATIC(uint32_t, dyn_syn_lifetime);
335 VNET_DEFINE_STATIC(uint32_t, dyn_fin_lifetime);
336 VNET_DEFINE_STATIC(uint32_t, dyn_rst_lifetime);
337 VNET_DEFINE_STATIC(uint32_t, dyn_udp_lifetime);
338 VNET_DEFINE_STATIC(uint32_t, dyn_short_lifetime);
339
340 #define V_dyn_ack_lifetime VNET(dyn_ack_lifetime)
341 #define V_dyn_syn_lifetime VNET(dyn_syn_lifetime)
342 #define V_dyn_fin_lifetime VNET(dyn_fin_lifetime)
343 #define V_dyn_rst_lifetime VNET(dyn_rst_lifetime)
344 #define V_dyn_udp_lifetime VNET(dyn_udp_lifetime)
345 #define V_dyn_short_lifetime VNET(dyn_short_lifetime)
346
347 /*
348 * Keepalives are sent if dyn_keepalive is set. They are sent every
349 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
350 * seconds of lifetime of a rule.
351 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
352 * than dyn_keepalive_period.
353 */
354 VNET_DEFINE_STATIC(uint32_t, dyn_keepalive_interval);
355 VNET_DEFINE_STATIC(uint32_t, dyn_keepalive_period);
356 VNET_DEFINE_STATIC(uint32_t, dyn_keepalive);
357 VNET_DEFINE_STATIC(time_t, dyn_keepalive_last);
358
359 #define V_dyn_keepalive_interval VNET(dyn_keepalive_interval)
360 #define V_dyn_keepalive_period VNET(dyn_keepalive_period)
361 #define V_dyn_keepalive VNET(dyn_keepalive)
362 #define V_dyn_keepalive_last VNET(dyn_keepalive_last)
363
364 VNET_DEFINE_STATIC(uint32_t, dyn_max); /* max # of dynamic states */
365 VNET_DEFINE_STATIC(uint32_t, dyn_count); /* number of states */
366 VNET_DEFINE_STATIC(uint32_t, dyn_parent_max); /* max # of parent states */
367 VNET_DEFINE_STATIC(uint32_t, dyn_parent_count); /* number of parent states */
368
369 #define V_dyn_max VNET(dyn_max)
370 #define V_dyn_count VNET(dyn_count)
371 #define V_dyn_parent_max VNET(dyn_parent_max)
372 #define V_dyn_parent_count VNET(dyn_parent_count)
373
374 #define DYN_COUNT_DEC(name) do { \
375 MPASS((V_ ## name) > 0); \
376 ck_pr_dec_32(&(V_ ## name)); \
377 } while (0)
378 #define DYN_COUNT_INC(name) ck_pr_inc_32(&(V_ ## name))
379 #define DYN_COUNT(name) ck_pr_load_32(&(V_ ## name))
380
381 static time_t last_log; /* Log ratelimiting */
382
383 /*
384 * Get/set maximum number of dynamic states in given VNET instance.
385 */
386 static int
sysctl_dyn_max(SYSCTL_HANDLER_ARGS)387 sysctl_dyn_max(SYSCTL_HANDLER_ARGS)
388 {
389 uint32_t nstates;
390 int error;
391
392 nstates = V_dyn_max;
393 error = sysctl_handle_32(oidp, &nstates, 0, req);
394 /* Read operation or some error */
395 if ((error != 0) || (req->newptr == NULL))
396 return (error);
397
398 V_dyn_max = nstates;
399 uma_zone_set_max(V_dyn_data_zone, V_dyn_max);
400 return (0);
401 }
402
403 static int
sysctl_dyn_parent_max(SYSCTL_HANDLER_ARGS)404 sysctl_dyn_parent_max(SYSCTL_HANDLER_ARGS)
405 {
406 uint32_t nstates;
407 int error;
408
409 nstates = V_dyn_parent_max;
410 error = sysctl_handle_32(oidp, &nstates, 0, req);
411 /* Read operation or some error */
412 if ((error != 0) || (req->newptr == NULL))
413 return (error);
414
415 V_dyn_parent_max = nstates;
416 uma_zone_set_max(V_dyn_parent_zone, V_dyn_parent_max);
417 return (0);
418 }
419
420 static int
sysctl_dyn_buckets(SYSCTL_HANDLER_ARGS)421 sysctl_dyn_buckets(SYSCTL_HANDLER_ARGS)
422 {
423 uint32_t nbuckets;
424 int error;
425
426 nbuckets = V_dyn_buckets_max;
427 error = sysctl_handle_32(oidp, &nbuckets, 0, req);
428 /* Read operation or some error */
429 if ((error != 0) || (req->newptr == NULL))
430 return (error);
431
432 if (nbuckets > 256)
433 V_dyn_buckets_max = 1 << fls(nbuckets - 1);
434 else
435 return (EINVAL);
436 return (0);
437 }
438
439 SYSCTL_DECL(_net_inet_ip_fw);
440
441 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_count,
442 CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(dyn_count), 0,
443 "Current number of dynamic states.");
444 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_parent_count,
445 CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(dyn_parent_count), 0,
446 "Current number of parent states. ");
447 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
448 CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_dyn_buckets), 0,
449 "Current number of buckets for states hash table.");
450 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, curr_max_length,
451 CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_max_length), 0,
452 "Current maximum length of states chains in hash buckets.");
453 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_buckets,
454 CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
455 0, 0, sysctl_dyn_buckets, "IU",
456 "Max number of buckets for dynamic states hash table.");
457 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_max,
458 CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
459 0, 0, sysctl_dyn_max, "IU",
460 "Max number of dynamic states.");
461 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_parent_max,
462 CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
463 0, 0, sysctl_dyn_parent_max, "IU",
464 "Max number of parent dynamic states.");
465 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
466 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_ack_lifetime), 0,
467 "Lifetime of dynamic states for TCP ACK.");
468 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
469 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_syn_lifetime), 0,
470 "Lifetime of dynamic states for TCP SYN.");
471 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
472 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_fin_lifetime), 0,
473 "Lifetime of dynamic states for TCP FIN.");
474 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
475 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_rst_lifetime), 0,
476 "Lifetime of dynamic states for TCP RST.");
477 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
478 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_udp_lifetime), 0,
479 "Lifetime of dynamic states for UDP.");
480 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
481 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_short_lifetime), 0,
482 "Lifetime of dynamic states for other situations.");
483 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_keepalive,
484 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keepalive), 0,
485 "Enable keepalives for dynamic states.");
486 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_keep_states,
487 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keep_states), 0,
488 "Do not flush dynamic states on rule deletion");
489
490 #ifdef IPFIREWALL_DYNDEBUG
491 #define DYN_DEBUG(fmt, ...) do { \
492 printf("%s: " fmt "\n", __func__, __VA_ARGS__); \
493 } while (0)
494 #else
495 #define DYN_DEBUG(fmt, ...)
496 #endif /* !IPFIREWALL_DYNDEBUG */
497
498 #ifdef INET6
499 /* Functions to work with IPv6 states */
500 static struct dyn_ipv6_state *dyn_lookup_ipv6_state(
501 const struct ipfw_flow_id *, uint32_t, const void *,
502 struct ipfw_dyn_info *, int);
503 static int dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id *,
504 uint32_t, const void *, int, uint32_t, uint16_t);
505 static struct dyn_ipv6_state *dyn_alloc_ipv6_state(
506 const struct ipfw_flow_id *, uint32_t, uint16_t, uint8_t);
507 static int dyn_add_ipv6_state(void *, uint32_t, uint16_t,
508 const struct ipfw_flow_id *, uint32_t, const void *, int, uint32_t,
509 struct ipfw_dyn_info *, uint16_t, uint16_t, uint8_t);
510 static void dyn_export_ipv6_state(const struct dyn_ipv6_state *,
511 ipfw_dyn_rule *);
512
513 static uint32_t dyn_getscopeid(const struct ip_fw_args *);
514 static void dyn_make_keepalive_ipv6(struct mbuf *, const struct in6_addr *,
515 const struct in6_addr *, uint32_t, uint32_t, uint32_t, uint16_t,
516 uint16_t);
517 static void dyn_enqueue_keepalive_ipv6(struct mbufq *,
518 const struct dyn_ipv6_state *);
519 static void dyn_send_keepalive_ipv6(struct ip_fw_chain *);
520
521 static struct dyn_ipv6_state *dyn_lookup_ipv6_parent(
522 const struct ipfw_flow_id *, uint32_t, const void *, uint32_t, uint16_t,
523 uint32_t);
524 static struct dyn_ipv6_state *dyn_lookup_ipv6_parent_locked(
525 const struct ipfw_flow_id *, uint32_t, const void *, uint32_t, uint16_t,
526 uint32_t);
527 static struct dyn_ipv6_state *dyn_add_ipv6_parent(void *, uint32_t, uint16_t,
528 const struct ipfw_flow_id *, uint32_t, uint32_t, uint32_t, uint16_t);
529 #endif /* INET6 */
530
531 /* Functions to work with limit states */
532 static void *dyn_get_parent_state(const struct ipfw_flow_id *, uint32_t,
533 struct ip_fw *, uint32_t, uint32_t, uint16_t);
534 static struct dyn_ipv4_state *dyn_lookup_ipv4_parent(
535 const struct ipfw_flow_id *, const void *, uint32_t, uint16_t, uint32_t);
536 static struct dyn_ipv4_state *dyn_lookup_ipv4_parent_locked(
537 const struct ipfw_flow_id *, const void *, uint32_t, uint16_t, uint32_t);
538 static struct dyn_parent *dyn_alloc_parent(void *, uint32_t, uint16_t,
539 uint32_t);
540 static struct dyn_ipv4_state *dyn_add_ipv4_parent(void *, uint32_t, uint16_t,
541 const struct ipfw_flow_id *, uint32_t, uint32_t, uint16_t);
542
543 static void dyn_tick(void *);
544 static void dyn_expire_states(struct ip_fw_chain *, ipfw_range_tlv *);
545 static void dyn_free_states(struct ip_fw_chain *);
546 static void dyn_export_parent(const struct dyn_parent *, uint16_t, uint8_t,
547 ipfw_dyn_rule *);
548 static void dyn_export_data(const struct dyn_data *, uint16_t, uint8_t,
549 uint8_t, ipfw_dyn_rule *);
550 static uint32_t dyn_update_tcp_state(struct dyn_data *,
551 const struct ipfw_flow_id *, const struct tcphdr *, int);
552 static void dyn_update_proto_state(struct dyn_data *,
553 const struct ipfw_flow_id *, const void *, int, int);
554
555 /* Functions to work with IPv4 states */
556 struct dyn_ipv4_state *dyn_lookup_ipv4_state(const struct ipfw_flow_id *,
557 const void *, struct ipfw_dyn_info *, int);
558 static int dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id *,
559 const void *, int, uint32_t, uint16_t);
560 static struct dyn_ipv4_state *dyn_alloc_ipv4_state(
561 const struct ipfw_flow_id *, uint16_t, uint8_t);
562 static int dyn_add_ipv4_state(void *, uint32_t, uint16_t,
563 const struct ipfw_flow_id *, const void *, int, uint32_t,
564 struct ipfw_dyn_info *, uint16_t, uint16_t, uint8_t);
565 static void dyn_export_ipv4_state(const struct dyn_ipv4_state *,
566 ipfw_dyn_rule *);
567
568 /*
569 * Named states support.
570 */
571 static char *default_state_name = "default";
572 struct dyn_state_obj {
573 struct named_object no;
574 char name[64];
575 };
576
577 #define DYN_STATE_OBJ(ch, cmd) \
578 ((struct dyn_state_obj *)SRV_OBJECT(ch, (cmd)->arg1))
579 /*
580 * Classifier callback.
581 * Return 0 if opcode contains object that should be referenced
582 * or rewritten.
583 */
584 static int
dyn_classify(ipfw_insn * cmd,uint16_t * puidx,uint8_t * ptype)585 dyn_classify(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
586 {
587
588 DYN_DEBUG("opcode %d, arg1 %d", cmd->opcode, cmd->arg1);
589 /* Don't rewrite "check-state any" */
590 if (cmd->arg1 == 0 &&
591 cmd->opcode == O_CHECK_STATE)
592 return (1);
593
594 *puidx = cmd->arg1;
595 *ptype = 0;
596 return (0);
597 }
598
599 static void
dyn_update(ipfw_insn * cmd,uint16_t idx)600 dyn_update(ipfw_insn *cmd, uint16_t idx)
601 {
602
603 cmd->arg1 = idx;
604 DYN_DEBUG("opcode %d, arg1 %d", cmd->opcode, cmd->arg1);
605 }
606
607 static int
dyn_findbyname(struct ip_fw_chain * ch,struct tid_info * ti,struct named_object ** pno)608 dyn_findbyname(struct ip_fw_chain *ch, struct tid_info *ti,
609 struct named_object **pno)
610 {
611 ipfw_obj_ntlv *ntlv;
612 const char *name;
613
614 DYN_DEBUG("uidx %d", ti->uidx);
615 if (ti->uidx != 0) {
616 if (ti->tlvs == NULL)
617 return (EINVAL);
618 /* Search ntlv in the buffer provided by user */
619 ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
620 IPFW_TLV_STATE_NAME);
621 if (ntlv == NULL)
622 return (EINVAL);
623 name = ntlv->name;
624 } else
625 name = default_state_name;
626 /*
627 * Search named object with corresponding name.
628 * Since states objects are global - ignore the set value
629 * and use zero instead.
630 */
631 *pno = ipfw_objhash_lookup_name_type(CHAIN_TO_SRV(ch), 0,
632 IPFW_TLV_STATE_NAME, name);
633 /*
634 * We always return success here.
635 * The caller will check *pno and mark object as unresolved,
636 * then it will automatically create "default" object.
637 */
638 return (0);
639 }
640
641 static struct named_object *
dyn_findbykidx(struct ip_fw_chain * ch,uint16_t idx)642 dyn_findbykidx(struct ip_fw_chain *ch, uint16_t idx)
643 {
644
645 DYN_DEBUG("kidx %d", idx);
646 return (ipfw_objhash_lookup_kidx(CHAIN_TO_SRV(ch), idx));
647 }
648
649 static int
dyn_create(struct ip_fw_chain * ch,struct tid_info * ti,uint16_t * pkidx)650 dyn_create(struct ip_fw_chain *ch, struct tid_info *ti,
651 uint16_t *pkidx)
652 {
653 struct namedobj_instance *ni;
654 struct dyn_state_obj *obj;
655 struct named_object *no;
656 ipfw_obj_ntlv *ntlv;
657 char *name;
658
659 DYN_DEBUG("uidx %d", ti->uidx);
660 if (ti->uidx != 0) {
661 if (ti->tlvs == NULL)
662 return (EINVAL);
663 ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
664 IPFW_TLV_STATE_NAME);
665 if (ntlv == NULL)
666 return (EINVAL);
667 name = ntlv->name;
668 } else
669 name = default_state_name;
670
671 ni = CHAIN_TO_SRV(ch);
672 obj = malloc(sizeof(*obj), M_IPFW, M_WAITOK | M_ZERO);
673 obj->no.name = obj->name;
674 obj->no.etlv = IPFW_TLV_STATE_NAME;
675 strlcpy(obj->name, name, sizeof(obj->name));
676
677 IPFW_UH_WLOCK(ch);
678 no = ipfw_objhash_lookup_name_type(ni, 0,
679 IPFW_TLV_STATE_NAME, name);
680 if (no != NULL) {
681 /*
682 * Object is already created.
683 * Just return its kidx and bump refcount.
684 */
685 *pkidx = no->kidx;
686 no->refcnt++;
687 IPFW_UH_WUNLOCK(ch);
688 free(obj, M_IPFW);
689 DYN_DEBUG("\tfound kidx %d", *pkidx);
690 return (0);
691 }
692 if (ipfw_objhash_alloc_idx(ni, &obj->no.kidx) != 0) {
693 DYN_DEBUG("\talloc_idx failed for %s", name);
694 IPFW_UH_WUNLOCK(ch);
695 free(obj, M_IPFW);
696 return (ENOSPC);
697 }
698 ipfw_objhash_add(ni, &obj->no);
699 SRV_OBJECT(ch, obj->no.kidx) = obj;
700 obj->no.refcnt++;
701 *pkidx = obj->no.kidx;
702 IPFW_UH_WUNLOCK(ch);
703 DYN_DEBUG("\tcreated kidx %d", *pkidx);
704 return (0);
705 }
706
707 static void
dyn_destroy(struct ip_fw_chain * ch,struct named_object * no)708 dyn_destroy(struct ip_fw_chain *ch, struct named_object *no)
709 {
710 struct dyn_state_obj *obj;
711
712 IPFW_UH_WLOCK_ASSERT(ch);
713
714 KASSERT(no->etlv == IPFW_TLV_STATE_NAME,
715 ("%s: wrong object type %u", __func__, no->etlv));
716 KASSERT(no->refcnt == 1,
717 ("Destroying object '%s' (type %u, idx %u) with refcnt %u",
718 no->name, no->etlv, no->kidx, no->refcnt));
719 DYN_DEBUG("kidx %d", no->kidx);
720 obj = SRV_OBJECT(ch, no->kidx);
721 SRV_OBJECT(ch, no->kidx) = NULL;
722 ipfw_objhash_del(CHAIN_TO_SRV(ch), no);
723 ipfw_objhash_free_idx(CHAIN_TO_SRV(ch), no->kidx);
724
725 free(obj, M_IPFW);
726 }
727
728 static struct opcode_obj_rewrite dyn_opcodes[] = {
729 {
730 O_KEEP_STATE, IPFW_TLV_STATE_NAME,
731 dyn_classify, dyn_update,
732 dyn_findbyname, dyn_findbykidx,
733 dyn_create, dyn_destroy
734 },
735 {
736 O_CHECK_STATE, IPFW_TLV_STATE_NAME,
737 dyn_classify, dyn_update,
738 dyn_findbyname, dyn_findbykidx,
739 dyn_create, dyn_destroy
740 },
741 {
742 O_PROBE_STATE, IPFW_TLV_STATE_NAME,
743 dyn_classify, dyn_update,
744 dyn_findbyname, dyn_findbykidx,
745 dyn_create, dyn_destroy
746 },
747 {
748 O_LIMIT, IPFW_TLV_STATE_NAME,
749 dyn_classify, dyn_update,
750 dyn_findbyname, dyn_findbykidx,
751 dyn_create, dyn_destroy
752 },
753 };
754
755 /*
756 * IMPORTANT: the hash function for dynamic rules must be commutative
757 * in source and destination (ip,port), because rules are bidirectional
758 * and we want to find both in the same bucket.
759 */
760 #ifndef IPFIREWALL_JENKINSHASH
761 static __inline uint32_t
hash_packet(const struct ipfw_flow_id * id)762 hash_packet(const struct ipfw_flow_id *id)
763 {
764 uint32_t i;
765
766 #ifdef INET6
767 if (IS_IP6_FLOW_ID(id))
768 i = ntohl((id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
769 (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
770 (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
771 (id->src_ip6.__u6_addr.__u6_addr32[3]));
772 else
773 #endif /* INET6 */
774 i = (id->dst_ip) ^ (id->src_ip);
775 i ^= (id->dst_port) ^ (id->src_port);
776 return (i);
777 }
778
779 static __inline uint32_t
hash_parent(const struct ipfw_flow_id * id,const void * rule)780 hash_parent(const struct ipfw_flow_id *id, const void *rule)
781 {
782
783 return (hash_packet(id) ^ ((uintptr_t)rule));
784 }
785
786 #else /* IPFIREWALL_JENKINSHASH */
787
788 VNET_DEFINE_STATIC(uint32_t, dyn_hashseed);
789 #define V_dyn_hashseed VNET(dyn_hashseed)
790
791 static __inline int
addrcmp4(const struct ipfw_flow_id * id)792 addrcmp4(const struct ipfw_flow_id *id)
793 {
794
795 if (id->src_ip < id->dst_ip)
796 return (0);
797 if (id->src_ip > id->dst_ip)
798 return (1);
799 if (id->src_port <= id->dst_port)
800 return (0);
801 return (1);
802 }
803
804 #ifdef INET6
805 static __inline int
addrcmp6(const struct ipfw_flow_id * id)806 addrcmp6(const struct ipfw_flow_id *id)
807 {
808 int ret;
809
810 ret = memcmp(&id->src_ip6, &id->dst_ip6, sizeof(struct in6_addr));
811 if (ret < 0)
812 return (0);
813 if (ret > 0)
814 return (1);
815 if (id->src_port <= id->dst_port)
816 return (0);
817 return (1);
818 }
819
820 static __inline uint32_t
hash_packet6(const struct ipfw_flow_id * id)821 hash_packet6(const struct ipfw_flow_id *id)
822 {
823 struct tuple6 {
824 struct in6_addr addr[2];
825 uint16_t port[2];
826 } t6;
827
828 if (addrcmp6(id) == 0) {
829 t6.addr[0] = id->src_ip6;
830 t6.addr[1] = id->dst_ip6;
831 t6.port[0] = id->src_port;
832 t6.port[1] = id->dst_port;
833 } else {
834 t6.addr[0] = id->dst_ip6;
835 t6.addr[1] = id->src_ip6;
836 t6.port[0] = id->dst_port;
837 t6.port[1] = id->src_port;
838 }
839 return (jenkins_hash32((const uint32_t *)&t6,
840 sizeof(t6) / sizeof(uint32_t), V_dyn_hashseed));
841 }
842 #endif
843
844 static __inline uint32_t
hash_packet(const struct ipfw_flow_id * id)845 hash_packet(const struct ipfw_flow_id *id)
846 {
847 struct tuple4 {
848 in_addr_t addr[2];
849 uint16_t port[2];
850 } t4;
851
852 if (IS_IP4_FLOW_ID(id)) {
853 /* All fields are in host byte order */
854 if (addrcmp4(id) == 0) {
855 t4.addr[0] = id->src_ip;
856 t4.addr[1] = id->dst_ip;
857 t4.port[0] = id->src_port;
858 t4.port[1] = id->dst_port;
859 } else {
860 t4.addr[0] = id->dst_ip;
861 t4.addr[1] = id->src_ip;
862 t4.port[0] = id->dst_port;
863 t4.port[1] = id->src_port;
864 }
865 return (jenkins_hash32((const uint32_t *)&t4,
866 sizeof(t4) / sizeof(uint32_t), V_dyn_hashseed));
867 } else
868 #ifdef INET6
869 if (IS_IP6_FLOW_ID(id))
870 return (hash_packet6(id));
871 #endif
872 return (0);
873 }
874
875 static __inline uint32_t
hash_parent(const struct ipfw_flow_id * id,const void * rule)876 hash_parent(const struct ipfw_flow_id *id, const void *rule)
877 {
878
879 return (jenkins_hash32((const uint32_t *)&rule,
880 sizeof(rule) / sizeof(uint32_t), hash_packet(id)));
881 }
882 #endif /* IPFIREWALL_JENKINSHASH */
883
884 /*
885 * Print customizable flow id description via log(9) facility.
886 */
887 static void
print_dyn_rule_flags(const struct ipfw_flow_id * id,int dyn_type,int log_flags,char * prefix,char * postfix)888 print_dyn_rule_flags(const struct ipfw_flow_id *id, int dyn_type,
889 int log_flags, char *prefix, char *postfix)
890 {
891 struct in_addr da;
892 #ifdef INET6
893 char src[INET6_ADDRSTRLEN], dst[INET6_ADDRSTRLEN];
894 #else
895 char src[INET_ADDRSTRLEN], dst[INET_ADDRSTRLEN];
896 #endif
897
898 #ifdef INET6
899 if (IS_IP6_FLOW_ID(id)) {
900 ip6_sprintf(src, &id->src_ip6);
901 ip6_sprintf(dst, &id->dst_ip6);
902 } else
903 #endif
904 {
905 da.s_addr = htonl(id->src_ip);
906 inet_ntop(AF_INET, &da, src, sizeof(src));
907 da.s_addr = htonl(id->dst_ip);
908 inet_ntop(AF_INET, &da, dst, sizeof(dst));
909 }
910 log(log_flags, "ipfw: %s type %d %s %d -> %s %d, %d %s\n",
911 prefix, dyn_type, src, id->src_port, dst,
912 id->dst_port, V_dyn_count, postfix);
913 }
914
915 #define print_dyn_rule(id, dtype, prefix, postfix) \
916 print_dyn_rule_flags(id, dtype, LOG_DEBUG, prefix, postfix)
917
918 #define TIME_LEQ(a,b) ((int)((a)-(b)) <= 0)
919 #define TIME_LE(a,b) ((int)((a)-(b)) < 0)
920 #define _SEQ_GE(a,b) ((int)((a)-(b)) >= 0)
921 #define BOTH_SYN (TH_SYN | (TH_SYN << 8))
922 #define BOTH_FIN (TH_FIN | (TH_FIN << 8))
923 #define BOTH_RST (TH_RST | (TH_RST << 8))
924 #define TCP_FLAGS (BOTH_SYN | BOTH_FIN | BOTH_RST)
925 #define ACK_FWD 0x00010000 /* fwd ack seen */
926 #define ACK_REV 0x00020000 /* rev ack seen */
927 #define ACK_BOTH (ACK_FWD | ACK_REV)
928
929 static uint32_t
dyn_update_tcp_state(struct dyn_data * data,const struct ipfw_flow_id * pkt,const struct tcphdr * tcp,int dir)930 dyn_update_tcp_state(struct dyn_data *data, const struct ipfw_flow_id *pkt,
931 const struct tcphdr *tcp, int dir)
932 {
933 uint32_t ack, expire;
934 uint32_t state, old;
935 uint8_t th_flags;
936
937 expire = data->expire;
938 old = state = data->state;
939 th_flags = pkt->_flags & (TH_FIN | TH_SYN | TH_RST);
940 state |= (dir == MATCH_FORWARD) ? th_flags: (th_flags << 8);
941 switch (state & TCP_FLAGS) {
942 case TH_SYN: /* opening */
943 expire = time_uptime + V_dyn_syn_lifetime;
944 break;
945
946 case BOTH_SYN: /* move to established */
947 case BOTH_SYN | TH_FIN: /* one side tries to close */
948 case BOTH_SYN | (TH_FIN << 8):
949 if (tcp == NULL)
950 break;
951 ack = ntohl(tcp->th_ack);
952 if (dir == MATCH_FORWARD) {
953 if (data->ack_fwd == 0 ||
954 _SEQ_GE(ack, data->ack_fwd)) {
955 state |= ACK_FWD;
956 if (data->ack_fwd != ack)
957 ck_pr_store_32(&data->ack_fwd, ack);
958 }
959 } else {
960 if (data->ack_rev == 0 ||
961 _SEQ_GE(ack, data->ack_rev)) {
962 state |= ACK_REV;
963 if (data->ack_rev != ack)
964 ck_pr_store_32(&data->ack_rev, ack);
965 }
966 }
967 if ((state & ACK_BOTH) == ACK_BOTH) {
968 /*
969 * Set expire time to V_dyn_ack_lifetime only if
970 * we got ACKs for both directions.
971 * We use XOR here to avoid possible state
972 * overwriting in concurrent thread.
973 */
974 expire = time_uptime + V_dyn_ack_lifetime;
975 ck_pr_xor_32(&data->state, ACK_BOTH);
976 } else if ((data->state & ACK_BOTH) != (state & ACK_BOTH))
977 ck_pr_or_32(&data->state, state & ACK_BOTH);
978 break;
979
980 case BOTH_SYN | BOTH_FIN: /* both sides closed */
981 if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
982 V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
983 expire = time_uptime + V_dyn_fin_lifetime;
984 break;
985
986 default:
987 if (V_dyn_keepalive != 0 &&
988 V_dyn_rst_lifetime >= V_dyn_keepalive_period)
989 V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
990 expire = time_uptime + V_dyn_rst_lifetime;
991 }
992 /* Save TCP state if it was changed */
993 if ((state & TCP_FLAGS) != (old & TCP_FLAGS))
994 ck_pr_or_32(&data->state, state & TCP_FLAGS);
995 return (expire);
996 }
997
998 /*
999 * Update ULP specific state.
1000 * For TCP we keep sequence numbers and flags. For other protocols
1001 * currently we update only expire time. Packets and bytes counters
1002 * are also updated here.
1003 */
1004 static void
dyn_update_proto_state(struct dyn_data * data,const struct ipfw_flow_id * pkt,const void * ulp,int pktlen,int dir)1005 dyn_update_proto_state(struct dyn_data *data, const struct ipfw_flow_id *pkt,
1006 const void *ulp, int pktlen, int dir)
1007 {
1008 uint32_t expire;
1009
1010 /* NOTE: we are in critical section here. */
1011 switch (pkt->proto) {
1012 case IPPROTO_UDP:
1013 case IPPROTO_UDPLITE:
1014 expire = time_uptime + V_dyn_udp_lifetime;
1015 break;
1016 case IPPROTO_TCP:
1017 expire = dyn_update_tcp_state(data, pkt, ulp, dir);
1018 break;
1019 default:
1020 expire = time_uptime + V_dyn_short_lifetime;
1021 }
1022 /*
1023 * Expiration timer has the per-second granularity, no need to update
1024 * it every time when state is matched.
1025 */
1026 if (data->expire != expire)
1027 ck_pr_store_32(&data->expire, expire);
1028
1029 if (dir == MATCH_FORWARD)
1030 DYN_COUNTER_INC(data, fwd, pktlen);
1031 else
1032 DYN_COUNTER_INC(data, rev, pktlen);
1033 }
1034
1035 /*
1036 * Lookup IPv4 state.
1037 * Must be called in critical section.
1038 */
1039 struct dyn_ipv4_state *
dyn_lookup_ipv4_state(const struct ipfw_flow_id * pkt,const void * ulp,struct ipfw_dyn_info * info,int pktlen)1040 dyn_lookup_ipv4_state(const struct ipfw_flow_id *pkt, const void *ulp,
1041 struct ipfw_dyn_info *info, int pktlen)
1042 {
1043 struct dyn_ipv4_state *s;
1044 uint32_t version, bucket;
1045
1046 bucket = DYN_BUCKET(info->hashval, V_curr_dyn_buckets);
1047 info->version = DYN_BUCKET_VERSION(bucket, ipv4_add);
1048 restart:
1049 version = DYN_BUCKET_VERSION(bucket, ipv4_del);
1050 CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
1051 DYNSTATE_PROTECT(s);
1052 if (version != DYN_BUCKET_VERSION(bucket, ipv4_del))
1053 goto restart;
1054 if (s->proto != pkt->proto)
1055 continue;
1056 if (info->kidx != 0 && s->kidx != info->kidx)
1057 continue;
1058 if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1059 s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1060 info->direction = MATCH_FORWARD;
1061 break;
1062 }
1063 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1064 s->src == pkt->dst_ip && s->dst == pkt->src_ip) {
1065 info->direction = MATCH_REVERSE;
1066 break;
1067 }
1068 }
1069
1070 if (s != NULL)
1071 dyn_update_proto_state(s->data, pkt, ulp, pktlen,
1072 info->direction);
1073 return (s);
1074 }
1075
1076 /*
1077 * Lookup IPv4 state.
1078 * Simplifed version is used to check that matching state doesn't exist.
1079 */
1080 static int
dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id * pkt,const void * ulp,int pktlen,uint32_t bucket,uint16_t kidx)1081 dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id *pkt,
1082 const void *ulp, int pktlen, uint32_t bucket, uint16_t kidx)
1083 {
1084 struct dyn_ipv4_state *s;
1085 int dir;
1086
1087 dir = MATCH_NONE;
1088 DYN_BUCKET_ASSERT(bucket);
1089 CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
1090 if (s->proto != pkt->proto ||
1091 s->kidx != kidx)
1092 continue;
1093 if (s->sport == pkt->src_port &&
1094 s->dport == pkt->dst_port &&
1095 s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1096 dir = MATCH_FORWARD;
1097 break;
1098 }
1099 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1100 s->src == pkt->dst_ip && s->dst == pkt->src_ip) {
1101 dir = MATCH_REVERSE;
1102 break;
1103 }
1104 }
1105 if (s != NULL)
1106 dyn_update_proto_state(s->data, pkt, ulp, pktlen, dir);
1107 return (s != NULL);
1108 }
1109
1110 struct dyn_ipv4_state *
dyn_lookup_ipv4_parent(const struct ipfw_flow_id * pkt,const void * rule,uint32_t ruleid,uint16_t rulenum,uint32_t hashval)1111 dyn_lookup_ipv4_parent(const struct ipfw_flow_id *pkt, const void *rule,
1112 uint32_t ruleid, uint16_t rulenum, uint32_t hashval)
1113 {
1114 struct dyn_ipv4_state *s;
1115 uint32_t version, bucket;
1116
1117 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1118 restart:
1119 version = DYN_BUCKET_VERSION(bucket, ipv4_parent_del);
1120 CK_SLIST_FOREACH(s, &V_dyn_ipv4_parent[bucket], entry) {
1121 DYNSTATE_PROTECT(s);
1122 if (version != DYN_BUCKET_VERSION(bucket, ipv4_parent_del))
1123 goto restart;
1124 /*
1125 * NOTE: we do not need to check kidx, because parent rule
1126 * can not create states with different kidx.
1127 * And parent rule always created for forward direction.
1128 */
1129 if (s->limit->parent == rule &&
1130 s->limit->ruleid == ruleid &&
1131 s->limit->rulenum == rulenum &&
1132 s->proto == pkt->proto &&
1133 s->sport == pkt->src_port &&
1134 s->dport == pkt->dst_port &&
1135 s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1136 if (s->limit->expire != time_uptime +
1137 V_dyn_short_lifetime)
1138 ck_pr_store_32(&s->limit->expire,
1139 time_uptime + V_dyn_short_lifetime);
1140 break;
1141 }
1142 }
1143 return (s);
1144 }
1145
1146 static struct dyn_ipv4_state *
dyn_lookup_ipv4_parent_locked(const struct ipfw_flow_id * pkt,const void * rule,uint32_t ruleid,uint16_t rulenum,uint32_t bucket)1147 dyn_lookup_ipv4_parent_locked(const struct ipfw_flow_id *pkt,
1148 const void *rule, uint32_t ruleid, uint16_t rulenum, uint32_t bucket)
1149 {
1150 struct dyn_ipv4_state *s;
1151
1152 DYN_BUCKET_ASSERT(bucket);
1153 CK_SLIST_FOREACH(s, &V_dyn_ipv4_parent[bucket], entry) {
1154 if (s->limit->parent == rule &&
1155 s->limit->ruleid == ruleid &&
1156 s->limit->rulenum == rulenum &&
1157 s->proto == pkt->proto &&
1158 s->sport == pkt->src_port &&
1159 s->dport == pkt->dst_port &&
1160 s->src == pkt->src_ip && s->dst == pkt->dst_ip)
1161 break;
1162 }
1163 return (s);
1164 }
1165
1166 #ifdef INET6
1167 static uint32_t
dyn_getscopeid(const struct ip_fw_args * args)1168 dyn_getscopeid(const struct ip_fw_args *args)
1169 {
1170
1171 /*
1172 * If source or destination address is an scopeid address, we need
1173 * determine the scope zone id to resolve address scope ambiguity.
1174 */
1175 if (IN6_IS_ADDR_LINKLOCAL(&args->f_id.src_ip6) ||
1176 IN6_IS_ADDR_LINKLOCAL(&args->f_id.dst_ip6))
1177 return (in6_getscopezone(args->ifp, IPV6_ADDR_SCOPE_LINKLOCAL));
1178
1179 return (0);
1180 }
1181
1182 /*
1183 * Lookup IPv6 state.
1184 * Must be called in critical section.
1185 */
1186 static struct dyn_ipv6_state *
dyn_lookup_ipv6_state(const struct ipfw_flow_id * pkt,uint32_t zoneid,const void * ulp,struct ipfw_dyn_info * info,int pktlen)1187 dyn_lookup_ipv6_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1188 const void *ulp, struct ipfw_dyn_info *info, int pktlen)
1189 {
1190 struct dyn_ipv6_state *s;
1191 uint32_t version, bucket;
1192
1193 bucket = DYN_BUCKET(info->hashval, V_curr_dyn_buckets);
1194 info->version = DYN_BUCKET_VERSION(bucket, ipv6_add);
1195 restart:
1196 version = DYN_BUCKET_VERSION(bucket, ipv6_del);
1197 CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
1198 DYNSTATE_PROTECT(s);
1199 if (version != DYN_BUCKET_VERSION(bucket, ipv6_del))
1200 goto restart;
1201 if (s->proto != pkt->proto || s->zoneid != zoneid)
1202 continue;
1203 if (info->kidx != 0 && s->kidx != info->kidx)
1204 continue;
1205 if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1206 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1207 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1208 info->direction = MATCH_FORWARD;
1209 break;
1210 }
1211 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1212 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->dst_ip6) &&
1213 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->src_ip6)) {
1214 info->direction = MATCH_REVERSE;
1215 break;
1216 }
1217 }
1218 if (s != NULL)
1219 dyn_update_proto_state(s->data, pkt, ulp, pktlen,
1220 info->direction);
1221 return (s);
1222 }
1223
1224 /*
1225 * Lookup IPv6 state.
1226 * Simplifed version is used to check that matching state doesn't exist.
1227 */
1228 static int
dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id * pkt,uint32_t zoneid,const void * ulp,int pktlen,uint32_t bucket,uint16_t kidx)1229 dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1230 const void *ulp, int pktlen, uint32_t bucket, uint16_t kidx)
1231 {
1232 struct dyn_ipv6_state *s;
1233 int dir;
1234
1235 dir = MATCH_NONE;
1236 DYN_BUCKET_ASSERT(bucket);
1237 CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
1238 if (s->proto != pkt->proto || s->kidx != kidx ||
1239 s->zoneid != zoneid)
1240 continue;
1241 if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1242 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1243 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1244 dir = MATCH_FORWARD;
1245 break;
1246 }
1247 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1248 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->dst_ip6) &&
1249 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->src_ip6)) {
1250 dir = MATCH_REVERSE;
1251 break;
1252 }
1253 }
1254 if (s != NULL)
1255 dyn_update_proto_state(s->data, pkt, ulp, pktlen, dir);
1256 return (s != NULL);
1257 }
1258
1259 static struct dyn_ipv6_state *
dyn_lookup_ipv6_parent(const struct ipfw_flow_id * pkt,uint32_t zoneid,const void * rule,uint32_t ruleid,uint16_t rulenum,uint32_t hashval)1260 dyn_lookup_ipv6_parent(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1261 const void *rule, uint32_t ruleid, uint16_t rulenum, uint32_t hashval)
1262 {
1263 struct dyn_ipv6_state *s;
1264 uint32_t version, bucket;
1265
1266 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1267 restart:
1268 version = DYN_BUCKET_VERSION(bucket, ipv6_parent_del);
1269 CK_SLIST_FOREACH(s, &V_dyn_ipv6_parent[bucket], entry) {
1270 DYNSTATE_PROTECT(s);
1271 if (version != DYN_BUCKET_VERSION(bucket, ipv6_parent_del))
1272 goto restart;
1273 /*
1274 * NOTE: we do not need to check kidx, because parent rule
1275 * can not create states with different kidx.
1276 * Also parent rule always created for forward direction.
1277 */
1278 if (s->limit->parent == rule &&
1279 s->limit->ruleid == ruleid &&
1280 s->limit->rulenum == rulenum &&
1281 s->proto == pkt->proto &&
1282 s->sport == pkt->src_port &&
1283 s->dport == pkt->dst_port && s->zoneid == zoneid &&
1284 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1285 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1286 if (s->limit->expire != time_uptime +
1287 V_dyn_short_lifetime)
1288 ck_pr_store_32(&s->limit->expire,
1289 time_uptime + V_dyn_short_lifetime);
1290 break;
1291 }
1292 }
1293 return (s);
1294 }
1295
1296 static struct dyn_ipv6_state *
dyn_lookup_ipv6_parent_locked(const struct ipfw_flow_id * pkt,uint32_t zoneid,const void * rule,uint32_t ruleid,uint16_t rulenum,uint32_t bucket)1297 dyn_lookup_ipv6_parent_locked(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1298 const void *rule, uint32_t ruleid, uint16_t rulenum, uint32_t bucket)
1299 {
1300 struct dyn_ipv6_state *s;
1301
1302 DYN_BUCKET_ASSERT(bucket);
1303 CK_SLIST_FOREACH(s, &V_dyn_ipv6_parent[bucket], entry) {
1304 if (s->limit->parent == rule &&
1305 s->limit->ruleid == ruleid &&
1306 s->limit->rulenum == rulenum &&
1307 s->proto == pkt->proto &&
1308 s->sport == pkt->src_port &&
1309 s->dport == pkt->dst_port && s->zoneid == zoneid &&
1310 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1311 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6))
1312 break;
1313 }
1314 return (s);
1315 }
1316
1317 #endif /* INET6 */
1318
1319 /*
1320 * Lookup dynamic state.
1321 * pkt - filled by ipfw_chk() ipfw_flow_id;
1322 * ulp - determined by ipfw_chk() upper level protocol header;
1323 * dyn_info - info about matched state to return back;
1324 * Returns pointer to state's parent rule and dyn_info. If there is
1325 * no state, NULL is returned.
1326 * On match ipfw_dyn_lookup() updates state's counters.
1327 */
1328 struct ip_fw *
ipfw_dyn_lookup_state(const struct ip_fw_args * args,const void * ulp,int pktlen,const ipfw_insn * cmd,struct ipfw_dyn_info * info)1329 ipfw_dyn_lookup_state(const struct ip_fw_args *args, const void *ulp,
1330 int pktlen, const ipfw_insn *cmd, struct ipfw_dyn_info *info)
1331 {
1332 struct dyn_data *data;
1333 struct ip_fw *rule;
1334
1335 IPFW_RLOCK_ASSERT(&V_layer3_chain);
1336
1337 data = NULL;
1338 rule = NULL;
1339 info->kidx = cmd->arg1;
1340 info->direction = MATCH_NONE;
1341 info->hashval = hash_packet(&args->f_id);
1342
1343 DYNSTATE_CRITICAL_ENTER();
1344 if (IS_IP4_FLOW_ID(&args->f_id)) {
1345 struct dyn_ipv4_state *s;
1346
1347 s = dyn_lookup_ipv4_state(&args->f_id, ulp, info, pktlen);
1348 if (s != NULL) {
1349 /*
1350 * Dynamic states are created using the same 5-tuple,
1351 * so it is assumed, that parent rule for O_LIMIT
1352 * state has the same address family.
1353 */
1354 data = s->data;
1355 if (s->type == O_LIMIT) {
1356 s = data->parent;
1357 rule = s->limit->parent;
1358 } else
1359 rule = data->parent;
1360 }
1361 }
1362 #ifdef INET6
1363 else if (IS_IP6_FLOW_ID(&args->f_id)) {
1364 struct dyn_ipv6_state *s;
1365
1366 s = dyn_lookup_ipv6_state(&args->f_id, dyn_getscopeid(args),
1367 ulp, info, pktlen);
1368 if (s != NULL) {
1369 data = s->data;
1370 if (s->type == O_LIMIT) {
1371 s = data->parent;
1372 rule = s->limit->parent;
1373 } else
1374 rule = data->parent;
1375 }
1376 }
1377 #endif
1378 if (data != NULL) {
1379 /*
1380 * If cached chain id is the same, we can avoid rule index
1381 * lookup. Otherwise do lookup and update chain_id and f_pos.
1382 * It is safe even if there is concurrent thread that want
1383 * update the same state, because chain->id can be changed
1384 * only under IPFW_WLOCK().
1385 */
1386 if (data->chain_id != V_layer3_chain.id) {
1387 data->f_pos = ipfw_find_rule(&V_layer3_chain,
1388 data->rulenum, data->ruleid);
1389 /*
1390 * Check that found state has not orphaned.
1391 * When chain->id being changed the parent
1392 * rule can be deleted. If found rule doesn't
1393 * match the parent pointer, consider this
1394 * result as MATCH_NONE and return NULL.
1395 *
1396 * This will lead to creation of new similar state
1397 * that will be added into head of this bucket.
1398 * And the state that we currently have matched
1399 * should be deleted by dyn_expire_states().
1400 *
1401 * In case when dyn_keep_states is enabled, return
1402 * pointer to deleted rule and f_pos value
1403 * corresponding to penultimate rule.
1404 * When we have enabled V_dyn_keep_states, states
1405 * that become orphaned will get the DYN_REFERENCED
1406 * flag and rule will keep around. So we can return
1407 * it. But since it is not in the rules map, we need
1408 * return such f_pos value, so after the state
1409 * handling if the search will continue, the next rule
1410 * will be the last one - the default rule.
1411 */
1412 if (V_layer3_chain.map[data->f_pos] == rule) {
1413 data->chain_id = V_layer3_chain.id;
1414 info->f_pos = data->f_pos;
1415 } else if (V_dyn_keep_states != 0) {
1416 /*
1417 * The original rule pointer is still usable.
1418 * So, we return it, but f_pos need to be
1419 * changed to point to the penultimate rule.
1420 */
1421 MPASS(V_layer3_chain.n_rules > 1);
1422 data->chain_id = V_layer3_chain.id;
1423 data->f_pos = V_layer3_chain.n_rules - 2;
1424 info->f_pos = data->f_pos;
1425 } else {
1426 rule = NULL;
1427 info->direction = MATCH_NONE;
1428 DYN_DEBUG("rule %p [%u, %u] is considered "
1429 "invalid in data %p", rule, data->ruleid,
1430 data->rulenum, data);
1431 /* info->f_pos doesn't matter here. */
1432 }
1433 } else
1434 info->f_pos = data->f_pos;
1435 }
1436 DYNSTATE_CRITICAL_EXIT();
1437 #if 0
1438 /*
1439 * Return MATCH_NONE if parent rule is in disabled set.
1440 * This will lead to creation of new similar state that
1441 * will be added into head of this bucket.
1442 *
1443 * XXXAE: we need to be able update state's set when parent
1444 * rule set is changed.
1445 */
1446 if (rule != NULL && (V_set_disable & (1 << rule->set))) {
1447 rule = NULL;
1448 info->direction = MATCH_NONE;
1449 }
1450 #endif
1451 return (rule);
1452 }
1453
1454 static struct dyn_parent *
dyn_alloc_parent(void * parent,uint32_t ruleid,uint16_t rulenum,uint32_t hashval)1455 dyn_alloc_parent(void *parent, uint32_t ruleid, uint16_t rulenum,
1456 uint32_t hashval)
1457 {
1458 struct dyn_parent *limit;
1459
1460 limit = uma_zalloc(V_dyn_parent_zone, M_NOWAIT | M_ZERO);
1461 if (limit == NULL) {
1462 if (last_log != time_uptime) {
1463 last_log = time_uptime;
1464 log(LOG_DEBUG,
1465 "ipfw: Cannot allocate parent dynamic state, "
1466 "consider increasing "
1467 "net.inet.ip.fw.dyn_parent_max\n");
1468 }
1469 return (NULL);
1470 }
1471
1472 limit->parent = parent;
1473 limit->ruleid = ruleid;
1474 limit->rulenum = rulenum;
1475 limit->hashval = hashval;
1476 limit->expire = time_uptime + V_dyn_short_lifetime;
1477 return (limit);
1478 }
1479
1480 static struct dyn_data *
dyn_alloc_dyndata(void * parent,uint32_t ruleid,uint16_t rulenum,const struct ipfw_flow_id * pkt,const void * ulp,int pktlen,uint32_t hashval,uint16_t fibnum)1481 dyn_alloc_dyndata(void *parent, uint32_t ruleid, uint16_t rulenum,
1482 const struct ipfw_flow_id *pkt, const void *ulp, int pktlen,
1483 uint32_t hashval, uint16_t fibnum)
1484 {
1485 struct dyn_data *data;
1486
1487 data = uma_zalloc(V_dyn_data_zone, M_NOWAIT | M_ZERO);
1488 if (data == NULL) {
1489 if (last_log != time_uptime) {
1490 last_log = time_uptime;
1491 log(LOG_DEBUG,
1492 "ipfw: Cannot allocate dynamic state, "
1493 "consider increasing net.inet.ip.fw.dyn_max\n");
1494 }
1495 return (NULL);
1496 }
1497
1498 data->parent = parent;
1499 data->ruleid = ruleid;
1500 data->rulenum = rulenum;
1501 data->fibnum = fibnum;
1502 data->hashval = hashval;
1503 data->expire = time_uptime + V_dyn_syn_lifetime;
1504 dyn_update_proto_state(data, pkt, ulp, pktlen, MATCH_FORWARD);
1505 return (data);
1506 }
1507
1508 static struct dyn_ipv4_state *
dyn_alloc_ipv4_state(const struct ipfw_flow_id * pkt,uint16_t kidx,uint8_t type)1509 dyn_alloc_ipv4_state(const struct ipfw_flow_id *pkt, uint16_t kidx,
1510 uint8_t type)
1511 {
1512 struct dyn_ipv4_state *s;
1513
1514 s = uma_zalloc(V_dyn_ipv4_zone, M_NOWAIT | M_ZERO);
1515 if (s == NULL)
1516 return (NULL);
1517
1518 s->type = type;
1519 s->kidx = kidx;
1520 s->proto = pkt->proto;
1521 s->sport = pkt->src_port;
1522 s->dport = pkt->dst_port;
1523 s->src = pkt->src_ip;
1524 s->dst = pkt->dst_ip;
1525 return (s);
1526 }
1527
1528 /*
1529 * Add IPv4 parent state.
1530 * Returns pointer to parent state. When it is not NULL we are in
1531 * critical section and pointer protected by hazard pointer.
1532 * When some error occurs, it returns NULL and exit from critical section
1533 * is not needed.
1534 */
1535 static struct dyn_ipv4_state *
dyn_add_ipv4_parent(void * rule,uint32_t ruleid,uint16_t rulenum,const struct ipfw_flow_id * pkt,uint32_t hashval,uint32_t version,uint16_t kidx)1536 dyn_add_ipv4_parent(void *rule, uint32_t ruleid, uint16_t rulenum,
1537 const struct ipfw_flow_id *pkt, uint32_t hashval, uint32_t version,
1538 uint16_t kidx)
1539 {
1540 struct dyn_ipv4_state *s;
1541 struct dyn_parent *limit;
1542 uint32_t bucket;
1543
1544 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1545 DYN_BUCKET_LOCK(bucket);
1546 if (version != DYN_BUCKET_VERSION(bucket, ipv4_parent_add)) {
1547 /*
1548 * Bucket version has been changed since last lookup,
1549 * do lookup again to be sure that state does not exist.
1550 */
1551 s = dyn_lookup_ipv4_parent_locked(pkt, rule, ruleid,
1552 rulenum, bucket);
1553 if (s != NULL) {
1554 /*
1555 * Simultaneous thread has already created this
1556 * state. Just return it.
1557 */
1558 DYNSTATE_CRITICAL_ENTER();
1559 DYNSTATE_PROTECT(s);
1560 DYN_BUCKET_UNLOCK(bucket);
1561 return (s);
1562 }
1563 }
1564
1565 limit = dyn_alloc_parent(rule, ruleid, rulenum, hashval);
1566 if (limit == NULL) {
1567 DYN_BUCKET_UNLOCK(bucket);
1568 return (NULL);
1569 }
1570
1571 s = dyn_alloc_ipv4_state(pkt, kidx, O_LIMIT_PARENT);
1572 if (s == NULL) {
1573 DYN_BUCKET_UNLOCK(bucket);
1574 uma_zfree(V_dyn_parent_zone, limit);
1575 return (NULL);
1576 }
1577
1578 s->limit = limit;
1579 CK_SLIST_INSERT_HEAD(&V_dyn_ipv4_parent[bucket], s, entry);
1580 DYN_COUNT_INC(dyn_parent_count);
1581 DYN_BUCKET_VERSION_BUMP(bucket, ipv4_parent_add);
1582 DYNSTATE_CRITICAL_ENTER();
1583 DYNSTATE_PROTECT(s);
1584 DYN_BUCKET_UNLOCK(bucket);
1585 return (s);
1586 }
1587
1588 static int
dyn_add_ipv4_state(void * parent,uint32_t ruleid,uint16_t rulenum,const struct ipfw_flow_id * pkt,const void * ulp,int pktlen,uint32_t hashval,struct ipfw_dyn_info * info,uint16_t fibnum,uint16_t kidx,uint8_t type)1589 dyn_add_ipv4_state(void *parent, uint32_t ruleid, uint16_t rulenum,
1590 const struct ipfw_flow_id *pkt, const void *ulp, int pktlen,
1591 uint32_t hashval, struct ipfw_dyn_info *info, uint16_t fibnum,
1592 uint16_t kidx, uint8_t type)
1593 {
1594 struct dyn_ipv4_state *s;
1595 void *data;
1596 uint32_t bucket;
1597
1598 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1599 DYN_BUCKET_LOCK(bucket);
1600 if (info->direction == MATCH_UNKNOWN ||
1601 info->kidx != kidx ||
1602 info->hashval != hashval ||
1603 info->version != DYN_BUCKET_VERSION(bucket, ipv4_add)) {
1604 /*
1605 * Bucket version has been changed since last lookup,
1606 * do lookup again to be sure that state does not exist.
1607 */
1608 if (dyn_lookup_ipv4_state_locked(pkt, ulp, pktlen,
1609 bucket, kidx) != 0) {
1610 DYN_BUCKET_UNLOCK(bucket);
1611 return (EEXIST);
1612 }
1613 }
1614
1615 data = dyn_alloc_dyndata(parent, ruleid, rulenum, pkt, ulp,
1616 pktlen, hashval, fibnum);
1617 if (data == NULL) {
1618 DYN_BUCKET_UNLOCK(bucket);
1619 return (ENOMEM);
1620 }
1621
1622 s = dyn_alloc_ipv4_state(pkt, kidx, type);
1623 if (s == NULL) {
1624 DYN_BUCKET_UNLOCK(bucket);
1625 uma_zfree(V_dyn_data_zone, data);
1626 return (ENOMEM);
1627 }
1628
1629 s->data = data;
1630 CK_SLIST_INSERT_HEAD(&V_dyn_ipv4[bucket], s, entry);
1631 DYN_COUNT_INC(dyn_count);
1632 DYN_BUCKET_VERSION_BUMP(bucket, ipv4_add);
1633 DYN_BUCKET_UNLOCK(bucket);
1634 return (0);
1635 }
1636
1637 #ifdef INET6
1638 static struct dyn_ipv6_state *
dyn_alloc_ipv6_state(const struct ipfw_flow_id * pkt,uint32_t zoneid,uint16_t kidx,uint8_t type)1639 dyn_alloc_ipv6_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1640 uint16_t kidx, uint8_t type)
1641 {
1642 struct dyn_ipv6_state *s;
1643
1644 s = uma_zalloc(V_dyn_ipv6_zone, M_NOWAIT | M_ZERO);
1645 if (s == NULL)
1646 return (NULL);
1647
1648 s->type = type;
1649 s->kidx = kidx;
1650 s->zoneid = zoneid;
1651 s->proto = pkt->proto;
1652 s->sport = pkt->src_port;
1653 s->dport = pkt->dst_port;
1654 s->src = pkt->src_ip6;
1655 s->dst = pkt->dst_ip6;
1656 return (s);
1657 }
1658
1659 /*
1660 * Add IPv6 parent state.
1661 * Returns pointer to parent state. When it is not NULL we are in
1662 * critical section and pointer protected by hazard pointer.
1663 * When some error occurs, it return NULL and exit from critical section
1664 * is not needed.
1665 */
1666 static struct dyn_ipv6_state *
dyn_add_ipv6_parent(void * rule,uint32_t ruleid,uint16_t rulenum,const struct ipfw_flow_id * pkt,uint32_t zoneid,uint32_t hashval,uint32_t version,uint16_t kidx)1667 dyn_add_ipv6_parent(void *rule, uint32_t ruleid, uint16_t rulenum,
1668 const struct ipfw_flow_id *pkt, uint32_t zoneid, uint32_t hashval,
1669 uint32_t version, uint16_t kidx)
1670 {
1671 struct dyn_ipv6_state *s;
1672 struct dyn_parent *limit;
1673 uint32_t bucket;
1674
1675 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1676 DYN_BUCKET_LOCK(bucket);
1677 if (version != DYN_BUCKET_VERSION(bucket, ipv6_parent_add)) {
1678 /*
1679 * Bucket version has been changed since last lookup,
1680 * do lookup again to be sure that state does not exist.
1681 */
1682 s = dyn_lookup_ipv6_parent_locked(pkt, zoneid, rule, ruleid,
1683 rulenum, bucket);
1684 if (s != NULL) {
1685 /*
1686 * Simultaneous thread has already created this
1687 * state. Just return it.
1688 */
1689 DYNSTATE_CRITICAL_ENTER();
1690 DYNSTATE_PROTECT(s);
1691 DYN_BUCKET_UNLOCK(bucket);
1692 return (s);
1693 }
1694 }
1695
1696 limit = dyn_alloc_parent(rule, ruleid, rulenum, hashval);
1697 if (limit == NULL) {
1698 DYN_BUCKET_UNLOCK(bucket);
1699 return (NULL);
1700 }
1701
1702 s = dyn_alloc_ipv6_state(pkt, zoneid, kidx, O_LIMIT_PARENT);
1703 if (s == NULL) {
1704 DYN_BUCKET_UNLOCK(bucket);
1705 uma_zfree(V_dyn_parent_zone, limit);
1706 return (NULL);
1707 }
1708
1709 s->limit = limit;
1710 CK_SLIST_INSERT_HEAD(&V_dyn_ipv6_parent[bucket], s, entry);
1711 DYN_COUNT_INC(dyn_parent_count);
1712 DYN_BUCKET_VERSION_BUMP(bucket, ipv6_parent_add);
1713 DYNSTATE_CRITICAL_ENTER();
1714 DYNSTATE_PROTECT(s);
1715 DYN_BUCKET_UNLOCK(bucket);
1716 return (s);
1717 }
1718
1719 static int
dyn_add_ipv6_state(void * parent,uint32_t ruleid,uint16_t rulenum,const struct ipfw_flow_id * pkt,uint32_t zoneid,const void * ulp,int pktlen,uint32_t hashval,struct ipfw_dyn_info * info,uint16_t fibnum,uint16_t kidx,uint8_t type)1720 dyn_add_ipv6_state(void *parent, uint32_t ruleid, uint16_t rulenum,
1721 const struct ipfw_flow_id *pkt, uint32_t zoneid, const void *ulp,
1722 int pktlen, uint32_t hashval, struct ipfw_dyn_info *info,
1723 uint16_t fibnum, uint16_t kidx, uint8_t type)
1724 {
1725 struct dyn_ipv6_state *s;
1726 struct dyn_data *data;
1727 uint32_t bucket;
1728
1729 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1730 DYN_BUCKET_LOCK(bucket);
1731 if (info->direction == MATCH_UNKNOWN ||
1732 info->kidx != kidx ||
1733 info->hashval != hashval ||
1734 info->version != DYN_BUCKET_VERSION(bucket, ipv6_add)) {
1735 /*
1736 * Bucket version has been changed since last lookup,
1737 * do lookup again to be sure that state does not exist.
1738 */
1739 if (dyn_lookup_ipv6_state_locked(pkt, zoneid, ulp, pktlen,
1740 bucket, kidx) != 0) {
1741 DYN_BUCKET_UNLOCK(bucket);
1742 return (EEXIST);
1743 }
1744 }
1745
1746 data = dyn_alloc_dyndata(parent, ruleid, rulenum, pkt, ulp,
1747 pktlen, hashval, fibnum);
1748 if (data == NULL) {
1749 DYN_BUCKET_UNLOCK(bucket);
1750 return (ENOMEM);
1751 }
1752
1753 s = dyn_alloc_ipv6_state(pkt, zoneid, kidx, type);
1754 if (s == NULL) {
1755 DYN_BUCKET_UNLOCK(bucket);
1756 uma_zfree(V_dyn_data_zone, data);
1757 return (ENOMEM);
1758 }
1759
1760 s->data = data;
1761 CK_SLIST_INSERT_HEAD(&V_dyn_ipv6[bucket], s, entry);
1762 DYN_COUNT_INC(dyn_count);
1763 DYN_BUCKET_VERSION_BUMP(bucket, ipv6_add);
1764 DYN_BUCKET_UNLOCK(bucket);
1765 return (0);
1766 }
1767 #endif /* INET6 */
1768
1769 static void *
dyn_get_parent_state(const struct ipfw_flow_id * pkt,uint32_t zoneid,struct ip_fw * rule,uint32_t hashval,uint32_t limit,uint16_t kidx)1770 dyn_get_parent_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1771 struct ip_fw *rule, uint32_t hashval, uint32_t limit, uint16_t kidx)
1772 {
1773 char sbuf[24];
1774 struct dyn_parent *p;
1775 void *ret;
1776 uint32_t bucket, version;
1777
1778 p = NULL;
1779 ret = NULL;
1780 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1781 DYNSTATE_CRITICAL_ENTER();
1782 if (IS_IP4_FLOW_ID(pkt)) {
1783 struct dyn_ipv4_state *s;
1784
1785 version = DYN_BUCKET_VERSION(bucket, ipv4_parent_add);
1786 s = dyn_lookup_ipv4_parent(pkt, rule, rule->id,
1787 rule->rulenum, bucket);
1788 if (s == NULL) {
1789 /*
1790 * Exit from critical section because dyn_add_parent()
1791 * will acquire bucket lock.
1792 */
1793 DYNSTATE_CRITICAL_EXIT();
1794
1795 s = dyn_add_ipv4_parent(rule, rule->id,
1796 rule->rulenum, pkt, hashval, version, kidx);
1797 if (s == NULL)
1798 return (NULL);
1799 /* Now we are in critical section again. */
1800 }
1801 ret = s;
1802 p = s->limit;
1803 }
1804 #ifdef INET6
1805 else if (IS_IP6_FLOW_ID(pkt)) {
1806 struct dyn_ipv6_state *s;
1807
1808 version = DYN_BUCKET_VERSION(bucket, ipv6_parent_add);
1809 s = dyn_lookup_ipv6_parent(pkt, zoneid, rule, rule->id,
1810 rule->rulenum, bucket);
1811 if (s == NULL) {
1812 /*
1813 * Exit from critical section because dyn_add_parent()
1814 * can acquire bucket mutex.
1815 */
1816 DYNSTATE_CRITICAL_EXIT();
1817
1818 s = dyn_add_ipv6_parent(rule, rule->id,
1819 rule->rulenum, pkt, zoneid, hashval, version,
1820 kidx);
1821 if (s == NULL)
1822 return (NULL);
1823 /* Now we are in critical section again. */
1824 }
1825 ret = s;
1826 p = s->limit;
1827 }
1828 #endif
1829 else {
1830 DYNSTATE_CRITICAL_EXIT();
1831 return (NULL);
1832 }
1833
1834 /* Check the limit */
1835 if (DPARENT_COUNT(p) >= limit) {
1836 DYNSTATE_CRITICAL_EXIT();
1837 if (V_fw_verbose && last_log != time_uptime) {
1838 last_log = time_uptime;
1839 snprintf(sbuf, sizeof(sbuf), "%u drop session",
1840 rule->rulenum);
1841 print_dyn_rule_flags(pkt, O_LIMIT,
1842 LOG_SECURITY | LOG_DEBUG, sbuf,
1843 "too many entries");
1844 }
1845 return (NULL);
1846 }
1847
1848 /* Take new session into account. */
1849 DPARENT_COUNT_INC(p);
1850 /*
1851 * We must exit from critical section because the following code
1852 * can acquire bucket mutex.
1853 * We rely on the 'count' field. The state will not expire
1854 * until it has some child states, i.e. 'count' field is not zero.
1855 * Return state pointer, it will be used by child states as parent.
1856 */
1857 DYNSTATE_CRITICAL_EXIT();
1858 return (ret);
1859 }
1860
1861 static int
dyn_install_state(const struct ipfw_flow_id * pkt,uint32_t zoneid,uint16_t fibnum,const void * ulp,int pktlen,struct ip_fw * rule,struct ipfw_dyn_info * info,uint32_t limit,uint16_t limit_mask,uint16_t kidx,uint8_t type)1862 dyn_install_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1863 uint16_t fibnum, const void *ulp, int pktlen, struct ip_fw *rule,
1864 struct ipfw_dyn_info *info, uint32_t limit, uint16_t limit_mask,
1865 uint16_t kidx, uint8_t type)
1866 {
1867 struct ipfw_flow_id id;
1868 uint32_t hashval, parent_hashval, ruleid, rulenum;
1869 int ret;
1870
1871 MPASS(type == O_LIMIT || type == O_KEEP_STATE);
1872
1873 ruleid = rule->id;
1874 rulenum = rule->rulenum;
1875 if (type == O_LIMIT) {
1876 /* Create masked flow id and calculate bucket */
1877 id.addr_type = pkt->addr_type;
1878 id.proto = pkt->proto;
1879 id.fib = fibnum; /* unused */
1880 id.src_port = (limit_mask & DYN_SRC_PORT) ?
1881 pkt->src_port: 0;
1882 id.dst_port = (limit_mask & DYN_DST_PORT) ?
1883 pkt->dst_port: 0;
1884 if (IS_IP4_FLOW_ID(pkt)) {
1885 id.src_ip = (limit_mask & DYN_SRC_ADDR) ?
1886 pkt->src_ip: 0;
1887 id.dst_ip = (limit_mask & DYN_DST_ADDR) ?
1888 pkt->dst_ip: 0;
1889 }
1890 #ifdef INET6
1891 else if (IS_IP6_FLOW_ID(pkt)) {
1892 if (limit_mask & DYN_SRC_ADDR)
1893 id.src_ip6 = pkt->src_ip6;
1894 else
1895 memset(&id.src_ip6, 0, sizeof(id.src_ip6));
1896 if (limit_mask & DYN_DST_ADDR)
1897 id.dst_ip6 = pkt->dst_ip6;
1898 else
1899 memset(&id.dst_ip6, 0, sizeof(id.dst_ip6));
1900 }
1901 #endif
1902 else
1903 return (EAFNOSUPPORT);
1904
1905 parent_hashval = hash_parent(&id, rule);
1906 rule = dyn_get_parent_state(&id, zoneid, rule, parent_hashval,
1907 limit, kidx);
1908 if (rule == NULL) {
1909 #if 0
1910 if (V_fw_verbose && last_log != time_uptime) {
1911 last_log = time_uptime;
1912 snprintf(sbuf, sizeof(sbuf),
1913 "%u drop session", rule->rulenum);
1914 print_dyn_rule_flags(pkt, O_LIMIT,
1915 LOG_SECURITY | LOG_DEBUG, sbuf,
1916 "too many entries");
1917 }
1918 #endif
1919 return (EACCES);
1920 }
1921 /*
1922 * Limit is not reached, create new state.
1923 * Now rule points to parent state.
1924 */
1925 }
1926
1927 hashval = hash_packet(pkt);
1928 if (IS_IP4_FLOW_ID(pkt))
1929 ret = dyn_add_ipv4_state(rule, ruleid, rulenum, pkt,
1930 ulp, pktlen, hashval, info, fibnum, kidx, type);
1931 #ifdef INET6
1932 else if (IS_IP6_FLOW_ID(pkt))
1933 ret = dyn_add_ipv6_state(rule, ruleid, rulenum, pkt,
1934 zoneid, ulp, pktlen, hashval, info, fibnum, kidx, type);
1935 #endif /* INET6 */
1936 else
1937 ret = EAFNOSUPPORT;
1938
1939 if (type == O_LIMIT) {
1940 if (ret != 0) {
1941 /*
1942 * We failed to create child state for O_LIMIT
1943 * opcode. Since we already counted it in the parent,
1944 * we must revert counter back. The 'rule' points to
1945 * parent state, use it to get dyn_parent.
1946 *
1947 * XXXAE: it should be safe to use 'rule' pointer
1948 * without extra lookup, parent state is referenced
1949 * and should not be freed.
1950 */
1951 if (IS_IP4_FLOW_ID(&id))
1952 DPARENT_COUNT_DEC(
1953 ((struct dyn_ipv4_state *)rule)->limit);
1954 #ifdef INET6
1955 else if (IS_IP6_FLOW_ID(&id))
1956 DPARENT_COUNT_DEC(
1957 ((struct dyn_ipv6_state *)rule)->limit);
1958 #endif
1959 }
1960 }
1961 /*
1962 * EEXIST means that simultaneous thread has created this
1963 * state. Consider this as success.
1964 *
1965 * XXXAE: should we invalidate 'info' content here?
1966 */
1967 if (ret == EEXIST)
1968 return (0);
1969 return (ret);
1970 }
1971
1972 /*
1973 * Install dynamic state.
1974 * chain - ipfw's instance;
1975 * rule - the parent rule that installs the state;
1976 * cmd - opcode that installs the state;
1977 * args - ipfw arguments;
1978 * ulp - upper level protocol header;
1979 * pktlen - packet length;
1980 * info - dynamic state lookup info;
1981 * tablearg - tablearg id.
1982 *
1983 * Returns non-zero value (failure) if state is not installed because
1984 * of errors or because session limitations are enforced.
1985 */
1986 int
ipfw_dyn_install_state(struct ip_fw_chain * chain,struct ip_fw * rule,const ipfw_insn_limit * cmd,const struct ip_fw_args * args,const void * ulp,int pktlen,struct ipfw_dyn_info * info,uint32_t tablearg)1987 ipfw_dyn_install_state(struct ip_fw_chain *chain, struct ip_fw *rule,
1988 const ipfw_insn_limit *cmd, const struct ip_fw_args *args,
1989 const void *ulp, int pktlen, struct ipfw_dyn_info *info,
1990 uint32_t tablearg)
1991 {
1992 uint32_t limit;
1993 uint16_t limit_mask;
1994
1995 if (cmd->o.opcode == O_LIMIT) {
1996 limit = IP_FW_ARG_TABLEARG(chain, cmd->conn_limit, limit);
1997 limit_mask = cmd->limit_mask;
1998 } else {
1999 limit = 0;
2000 limit_mask = 0;
2001 }
2002 return (dyn_install_state(&args->f_id,
2003 #ifdef INET6
2004 IS_IP6_FLOW_ID(&args->f_id) ? dyn_getscopeid(args):
2005 #endif
2006 0, M_GETFIB(args->m), ulp, pktlen, rule, info, limit,
2007 limit_mask, cmd->o.arg1, cmd->o.opcode));
2008 }
2009
2010 /*
2011 * Free safe to remove state entries from expired lists.
2012 */
2013 static void
dyn_free_states(struct ip_fw_chain * chain)2014 dyn_free_states(struct ip_fw_chain *chain)
2015 {
2016 struct dyn_ipv4_state *s4, *s4n;
2017 #ifdef INET6
2018 struct dyn_ipv6_state *s6, *s6n;
2019 #endif
2020 int cached_count, i;
2021
2022 /*
2023 * We keep pointers to objects that are in use on each CPU
2024 * in the per-cpu dyn_hp pointer. When object is going to be
2025 * removed, first of it is unlinked from the corresponding
2026 * list. This leads to changing of dyn_bucket_xxx_delver version.
2027 * Unlinked objects is placed into corresponding dyn_expired_xxx
2028 * list. Reader that is going to dereference object pointer checks
2029 * dyn_bucket_xxx_delver version before and after storing pointer
2030 * into dyn_hp. If version is the same, the object is protected
2031 * from freeing and it is safe to dereference. Othervise reader
2032 * tries to iterate list again from the beginning, but this object
2033 * now unlinked and thus will not be accessible.
2034 *
2035 * Copy dyn_hp pointers for each CPU into dyn_hp_cache array.
2036 * It does not matter that some pointer can be changed in
2037 * time while we are copying. We need to check, that objects
2038 * removed in the previous pass are not in use. And if dyn_hp
2039 * pointer does not contain it in the time when we are copying,
2040 * it will not appear there, because it is already unlinked.
2041 * And for new pointers we will not free objects that will be
2042 * unlinked in this pass.
2043 */
2044 cached_count = 0;
2045 CPU_FOREACH(i) {
2046 dyn_hp_cache[cached_count] = DYNSTATE_GET(i);
2047 if (dyn_hp_cache[cached_count] != NULL)
2048 cached_count++;
2049 }
2050
2051 /*
2052 * Free expired states that are safe to free.
2053 * Check each entry from previous pass in the dyn_expired_xxx
2054 * list, if pointer to the object is in the dyn_hp_cache array,
2055 * keep it until next pass. Otherwise it is safe to free the
2056 * object.
2057 *
2058 * XXXAE: optimize this to use SLIST_REMOVE_AFTER.
2059 */
2060 #define DYN_FREE_STATES(s, next, name) do { \
2061 s = SLIST_FIRST(&V_dyn_expired_ ## name); \
2062 while (s != NULL) { \
2063 next = SLIST_NEXT(s, expired); \
2064 for (i = 0; i < cached_count; i++) \
2065 if (dyn_hp_cache[i] == s) \
2066 break; \
2067 if (i == cached_count) { \
2068 if (s->type == O_LIMIT_PARENT && \
2069 s->limit->count != 0) { \
2070 s = next; \
2071 continue; \
2072 } \
2073 SLIST_REMOVE(&V_dyn_expired_ ## name, \
2074 s, dyn_ ## name ## _state, expired); \
2075 if (s->type == O_LIMIT_PARENT) \
2076 uma_zfree(V_dyn_parent_zone, s->limit); \
2077 else \
2078 uma_zfree(V_dyn_data_zone, s->data); \
2079 uma_zfree(V_dyn_ ## name ## _zone, s); \
2080 } \
2081 s = next; \
2082 } \
2083 } while (0)
2084
2085 /*
2086 * Protect access to expired lists with DYN_EXPIRED_LOCK.
2087 * Userland can invoke ipfw_expire_dyn_states() to delete
2088 * specific states, this will lead to modification of expired
2089 * lists.
2090 *
2091 * XXXAE: do we need DYN_EXPIRED_LOCK? We can just use
2092 * IPFW_UH_WLOCK to protect access to these lists.
2093 */
2094 DYN_EXPIRED_LOCK();
2095 DYN_FREE_STATES(s4, s4n, ipv4);
2096 #ifdef INET6
2097 DYN_FREE_STATES(s6, s6n, ipv6);
2098 #endif
2099 DYN_EXPIRED_UNLOCK();
2100 #undef DYN_FREE_STATES
2101 }
2102
2103 /*
2104 * Returns:
2105 * 0 when state is not matched by specified range;
2106 * 1 when state is matched by specified range;
2107 * 2 when state is matched by specified range and requested deletion of
2108 * dynamic states.
2109 */
2110 static int
dyn_match_range(uint16_t rulenum,uint8_t set,const ipfw_range_tlv * rt)2111 dyn_match_range(uint16_t rulenum, uint8_t set, const ipfw_range_tlv *rt)
2112 {
2113
2114 MPASS(rt != NULL);
2115 /* flush all states */
2116 if (rt->flags & IPFW_RCFLAG_ALL) {
2117 if (rt->flags & IPFW_RCFLAG_DYNAMIC)
2118 return (2); /* forced */
2119 return (1);
2120 }
2121 if ((rt->flags & IPFW_RCFLAG_SET) != 0 && set != rt->set)
2122 return (0);
2123 if ((rt->flags & IPFW_RCFLAG_RANGE) != 0 &&
2124 (rulenum < rt->start_rule || rulenum > rt->end_rule))
2125 return (0);
2126 if (rt->flags & IPFW_RCFLAG_DYNAMIC)
2127 return (2);
2128 return (1);
2129 }
2130
2131 static void
dyn_acquire_rule(struct ip_fw_chain * ch,struct dyn_data * data,struct ip_fw * rule,uint16_t kidx)2132 dyn_acquire_rule(struct ip_fw_chain *ch, struct dyn_data *data,
2133 struct ip_fw *rule, uint16_t kidx)
2134 {
2135 struct dyn_state_obj *obj;
2136
2137 /*
2138 * Do not acquire reference twice.
2139 * This can happen when rule deletion executed for
2140 * the same range, but different ruleset id.
2141 */
2142 if (data->flags & DYN_REFERENCED)
2143 return;
2144
2145 IPFW_UH_WLOCK_ASSERT(ch);
2146 MPASS(kidx != 0);
2147
2148 data->flags |= DYN_REFERENCED;
2149 /* Reference the named object */
2150 obj = SRV_OBJECT(ch, kidx);
2151 obj->no.refcnt++;
2152 MPASS(obj->no.etlv == IPFW_TLV_STATE_NAME);
2153
2154 /* Reference the parent rule */
2155 rule->refcnt++;
2156 }
2157
2158 static void
dyn_release_rule(struct ip_fw_chain * ch,struct dyn_data * data,struct ip_fw * rule,uint16_t kidx)2159 dyn_release_rule(struct ip_fw_chain *ch, struct dyn_data *data,
2160 struct ip_fw *rule, uint16_t kidx)
2161 {
2162 struct dyn_state_obj *obj;
2163
2164 IPFW_UH_WLOCK_ASSERT(ch);
2165 MPASS(kidx != 0);
2166
2167 obj = SRV_OBJECT(ch, kidx);
2168 if (obj->no.refcnt == 1)
2169 dyn_destroy(ch, &obj->no);
2170 else
2171 obj->no.refcnt--;
2172
2173 if (--rule->refcnt == 1)
2174 ipfw_free_rule(rule);
2175 }
2176
2177 /*
2178 * We do not keep O_LIMIT_PARENT states when V_dyn_keep_states is enabled.
2179 * O_LIMIT state is created when new connection is going to be established
2180 * and there is no matching state. So, since the old parent rule was deleted
2181 * we can't create new states with old parent, and thus we can not account
2182 * new connections with already established connections, and can not do
2183 * proper limiting.
2184 */
2185 static int
dyn_match_ipv4_state(struct ip_fw_chain * ch,struct dyn_ipv4_state * s,const ipfw_range_tlv * rt)2186 dyn_match_ipv4_state(struct ip_fw_chain *ch, struct dyn_ipv4_state *s,
2187 const ipfw_range_tlv *rt)
2188 {
2189 struct ip_fw *rule;
2190 int ret;
2191
2192 if (s->type == O_LIMIT_PARENT) {
2193 rule = s->limit->parent;
2194 return (dyn_match_range(s->limit->rulenum, rule->set, rt));
2195 }
2196
2197 rule = s->data->parent;
2198 if (s->type == O_LIMIT)
2199 rule = ((struct dyn_ipv4_state *)rule)->limit->parent;
2200
2201 ret = dyn_match_range(s->data->rulenum, rule->set, rt);
2202 if (ret == 0 || V_dyn_keep_states == 0 || ret > 1)
2203 return (ret);
2204
2205 dyn_acquire_rule(ch, s->data, rule, s->kidx);
2206 return (0);
2207 }
2208
2209 #ifdef INET6
2210 static int
dyn_match_ipv6_state(struct ip_fw_chain * ch,struct dyn_ipv6_state * s,const ipfw_range_tlv * rt)2211 dyn_match_ipv6_state(struct ip_fw_chain *ch, struct dyn_ipv6_state *s,
2212 const ipfw_range_tlv *rt)
2213 {
2214 struct ip_fw *rule;
2215 int ret;
2216
2217 if (s->type == O_LIMIT_PARENT) {
2218 rule = s->limit->parent;
2219 return (dyn_match_range(s->limit->rulenum, rule->set, rt));
2220 }
2221
2222 rule = s->data->parent;
2223 if (s->type == O_LIMIT)
2224 rule = ((struct dyn_ipv6_state *)rule)->limit->parent;
2225
2226 ret = dyn_match_range(s->data->rulenum, rule->set, rt);
2227 if (ret == 0 || V_dyn_keep_states == 0 || ret > 1)
2228 return (ret);
2229
2230 dyn_acquire_rule(ch, s->data, rule, s->kidx);
2231 return (0);
2232 }
2233 #endif
2234
2235 /*
2236 * Unlink expired entries from states lists.
2237 * @rt can be used to specify the range of states for deletion.
2238 */
2239 static void
dyn_expire_states(struct ip_fw_chain * ch,ipfw_range_tlv * rt)2240 dyn_expire_states(struct ip_fw_chain *ch, ipfw_range_tlv *rt)
2241 {
2242 struct dyn_ipv4_slist expired_ipv4;
2243 #ifdef INET6
2244 struct dyn_ipv6_slist expired_ipv6;
2245 struct dyn_ipv6_state *s6, *s6n, *s6p;
2246 #endif
2247 struct dyn_ipv4_state *s4, *s4n, *s4p;
2248 void *rule;
2249 int bucket, removed, length, max_length;
2250
2251 IPFW_UH_WLOCK_ASSERT(ch);
2252
2253 /*
2254 * Unlink expired states from each bucket.
2255 * With acquired bucket lock iterate entries of each lists:
2256 * ipv4, ipv4_parent, ipv6, and ipv6_parent. Check expired time
2257 * and unlink entry from the list, link entry into temporary
2258 * expired_xxx lists then bump "del" bucket version.
2259 *
2260 * When an entry is removed, corresponding states counter is
2261 * decremented. If entry has O_LIMIT type, parent's reference
2262 * counter is decremented.
2263 *
2264 * NOTE: this function can be called from userspace context
2265 * when user deletes rules. In this case all matched states
2266 * will be forcedly unlinked. O_LIMIT_PARENT states will be kept
2267 * in the expired lists until reference counter become zero.
2268 */
2269 #define DYN_UNLINK_STATES(s, prev, next, exp, af, name, extra) do { \
2270 length = 0; \
2271 removed = 0; \
2272 prev = NULL; \
2273 s = CK_SLIST_FIRST(&V_dyn_ ## name [bucket]); \
2274 while (s != NULL) { \
2275 next = CK_SLIST_NEXT(s, entry); \
2276 if ((TIME_LEQ((s)->exp, time_uptime) && extra) || \
2277 (rt != NULL && \
2278 dyn_match_ ## af ## _state(ch, s, rt))) { \
2279 if (prev != NULL) \
2280 CK_SLIST_REMOVE_AFTER(prev, entry); \
2281 else \
2282 CK_SLIST_REMOVE_HEAD( \
2283 &V_dyn_ ## name [bucket], entry); \
2284 removed++; \
2285 SLIST_INSERT_HEAD(&expired_ ## af, s, expired); \
2286 if (s->type == O_LIMIT_PARENT) \
2287 DYN_COUNT_DEC(dyn_parent_count); \
2288 else { \
2289 DYN_COUNT_DEC(dyn_count); \
2290 if (s->data->flags & DYN_REFERENCED) { \
2291 rule = s->data->parent; \
2292 if (s->type == O_LIMIT) \
2293 rule = ((__typeof(s)) \
2294 rule)->limit->parent;\
2295 dyn_release_rule(ch, s->data, \
2296 rule, s->kidx); \
2297 } \
2298 if (s->type == O_LIMIT) { \
2299 s = s->data->parent; \
2300 DPARENT_COUNT_DEC(s->limit); \
2301 } \
2302 } \
2303 } else { \
2304 prev = s; \
2305 length++; \
2306 } \
2307 s = next; \
2308 } \
2309 if (removed != 0) \
2310 DYN_BUCKET_VERSION_BUMP(bucket, name ## _del); \
2311 if (length > max_length) \
2312 max_length = length; \
2313 } while (0)
2314
2315 SLIST_INIT(&expired_ipv4);
2316 #ifdef INET6
2317 SLIST_INIT(&expired_ipv6);
2318 #endif
2319 max_length = 0;
2320 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2321 DYN_BUCKET_LOCK(bucket);
2322 DYN_UNLINK_STATES(s4, s4p, s4n, data->expire, ipv4, ipv4, 1);
2323 DYN_UNLINK_STATES(s4, s4p, s4n, limit->expire, ipv4,
2324 ipv4_parent, (s4->limit->count == 0));
2325 #ifdef INET6
2326 DYN_UNLINK_STATES(s6, s6p, s6n, data->expire, ipv6, ipv6, 1);
2327 DYN_UNLINK_STATES(s6, s6p, s6n, limit->expire, ipv6,
2328 ipv6_parent, (s6->limit->count == 0));
2329 #endif
2330 DYN_BUCKET_UNLOCK(bucket);
2331 }
2332 /* Update curr_max_length for statistics. */
2333 V_curr_max_length = max_length;
2334 /*
2335 * Concatenate temporary lists with global expired lists.
2336 */
2337 DYN_EXPIRED_LOCK();
2338 SLIST_CONCAT(&V_dyn_expired_ipv4, &expired_ipv4,
2339 dyn_ipv4_state, expired);
2340 #ifdef INET6
2341 SLIST_CONCAT(&V_dyn_expired_ipv6, &expired_ipv6,
2342 dyn_ipv6_state, expired);
2343 #endif
2344 DYN_EXPIRED_UNLOCK();
2345 #undef DYN_UNLINK_STATES
2346 #undef DYN_UNREF_STATES
2347 }
2348
2349 static struct mbuf *
dyn_mgethdr(int len,uint16_t fibnum)2350 dyn_mgethdr(int len, uint16_t fibnum)
2351 {
2352 struct mbuf *m;
2353
2354 m = m_gethdr(M_NOWAIT, MT_DATA);
2355 if (m == NULL)
2356 return (NULL);
2357 #ifdef MAC
2358 mac_netinet_firewall_send(m);
2359 #endif
2360 M_SETFIB(m, fibnum);
2361 m->m_data += max_linkhdr;
2362 m->m_flags |= M_SKIP_FIREWALL;
2363 m->m_len = m->m_pkthdr.len = len;
2364 bzero(m->m_data, len);
2365 return (m);
2366 }
2367
2368 static void
dyn_make_keepalive_ipv4(struct mbuf * m,in_addr_t src,in_addr_t dst,uint32_t seq,uint32_t ack,uint16_t sport,uint16_t dport)2369 dyn_make_keepalive_ipv4(struct mbuf *m, in_addr_t src, in_addr_t dst,
2370 uint32_t seq, uint32_t ack, uint16_t sport, uint16_t dport)
2371 {
2372 struct tcphdr *tcp;
2373 struct ip *ip;
2374
2375 ip = mtod(m, struct ip *);
2376 ip->ip_v = 4;
2377 ip->ip_hl = sizeof(*ip) >> 2;
2378 ip->ip_tos = IPTOS_LOWDELAY;
2379 ip->ip_len = htons(m->m_len);
2380 ip->ip_off |= htons(IP_DF);
2381 ip->ip_ttl = V_ip_defttl;
2382 ip->ip_p = IPPROTO_TCP;
2383 ip->ip_src.s_addr = htonl(src);
2384 ip->ip_dst.s_addr = htonl(dst);
2385
2386 tcp = mtodo(m, sizeof(struct ip));
2387 tcp->th_sport = htons(sport);
2388 tcp->th_dport = htons(dport);
2389 tcp->th_off = sizeof(struct tcphdr) >> 2;
2390 tcp->th_seq = htonl(seq);
2391 tcp->th_ack = htonl(ack);
2392 tcp_set_flags(tcp, TH_ACK);
2393 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2394 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
2395
2396 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2397 m->m_pkthdr.csum_flags = CSUM_TCP;
2398 }
2399
2400 static void
dyn_enqueue_keepalive_ipv4(struct mbufq * q,const struct dyn_ipv4_state * s)2401 dyn_enqueue_keepalive_ipv4(struct mbufq *q, const struct dyn_ipv4_state *s)
2402 {
2403 struct mbuf *m;
2404
2405 if ((s->data->state & ACK_FWD) == 0 && s->data->ack_fwd > 0) {
2406 m = dyn_mgethdr(sizeof(struct ip) + sizeof(struct tcphdr),
2407 s->data->fibnum);
2408 if (m != NULL) {
2409 dyn_make_keepalive_ipv4(m, s->dst, s->src,
2410 s->data->ack_fwd - 1, s->data->ack_rev,
2411 s->dport, s->sport);
2412 if (mbufq_enqueue(q, m)) {
2413 m_freem(m);
2414 log(LOG_DEBUG, "ipfw: limit for IPv4 "
2415 "keepalive queue is reached.\n");
2416 return;
2417 }
2418 }
2419 }
2420
2421 if ((s->data->state & ACK_REV) == 0 && s->data->ack_rev > 0) {
2422 m = dyn_mgethdr(sizeof(struct ip) + sizeof(struct tcphdr),
2423 s->data->fibnum);
2424 if (m != NULL) {
2425 dyn_make_keepalive_ipv4(m, s->src, s->dst,
2426 s->data->ack_rev - 1, s->data->ack_fwd,
2427 s->sport, s->dport);
2428 if (mbufq_enqueue(q, m)) {
2429 m_freem(m);
2430 log(LOG_DEBUG, "ipfw: limit for IPv4 "
2431 "keepalive queue is reached.\n");
2432 return;
2433 }
2434 }
2435 }
2436 }
2437
2438 /*
2439 * Prepare and send keep-alive packets.
2440 */
2441 static void
dyn_send_keepalive_ipv4(struct ip_fw_chain * chain)2442 dyn_send_keepalive_ipv4(struct ip_fw_chain *chain)
2443 {
2444 struct mbufq q;
2445 struct mbuf *m;
2446 struct dyn_ipv4_state *s;
2447 uint32_t bucket;
2448
2449 mbufq_init(&q, INT_MAX);
2450 IPFW_UH_RLOCK(chain);
2451 /*
2452 * It is safe to not use hazard pointer and just do lockless
2453 * access to the lists, because states entries can not be deleted
2454 * while we hold IPFW_UH_RLOCK.
2455 */
2456 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2457 CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
2458 /*
2459 * Only established TCP connections that will
2460 * become expired within dyn_keepalive_interval.
2461 */
2462 if (s->proto != IPPROTO_TCP ||
2463 (s->data->state & BOTH_SYN) != BOTH_SYN ||
2464 TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
2465 s->data->expire))
2466 continue;
2467 dyn_enqueue_keepalive_ipv4(&q, s);
2468 }
2469 }
2470 IPFW_UH_RUNLOCK(chain);
2471 while ((m = mbufq_dequeue(&q)) != NULL)
2472 ip_output(m, NULL, NULL, 0, NULL, NULL);
2473 }
2474
2475 #ifdef INET6
2476 static void
dyn_make_keepalive_ipv6(struct mbuf * m,const struct in6_addr * src,const struct in6_addr * dst,uint32_t zoneid,uint32_t seq,uint32_t ack,uint16_t sport,uint16_t dport)2477 dyn_make_keepalive_ipv6(struct mbuf *m, const struct in6_addr *src,
2478 const struct in6_addr *dst, uint32_t zoneid, uint32_t seq, uint32_t ack,
2479 uint16_t sport, uint16_t dport)
2480 {
2481 struct tcphdr *tcp;
2482 struct ip6_hdr *ip6;
2483
2484 ip6 = mtod(m, struct ip6_hdr *);
2485 ip6->ip6_vfc |= IPV6_VERSION;
2486 ip6->ip6_plen = htons(sizeof(struct tcphdr));
2487 ip6->ip6_nxt = IPPROTO_TCP;
2488 ip6->ip6_hlim = IPV6_DEFHLIM;
2489 ip6->ip6_src = *src;
2490 if (IN6_IS_ADDR_LINKLOCAL(src))
2491 ip6->ip6_src.s6_addr16[1] = htons(zoneid & 0xffff);
2492 ip6->ip6_dst = *dst;
2493 if (IN6_IS_ADDR_LINKLOCAL(dst))
2494 ip6->ip6_dst.s6_addr16[1] = htons(zoneid & 0xffff);
2495
2496 tcp = mtodo(m, sizeof(struct ip6_hdr));
2497 tcp->th_sport = htons(sport);
2498 tcp->th_dport = htons(dport);
2499 tcp->th_off = sizeof(struct tcphdr) >> 2;
2500 tcp->th_seq = htonl(seq);
2501 tcp->th_ack = htonl(ack);
2502 tcp_set_flags(tcp, TH_ACK);
2503 tcp->th_sum = in6_cksum_pseudo(ip6, sizeof(struct tcphdr),
2504 IPPROTO_TCP, 0);
2505
2506 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2507 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
2508 }
2509
2510 static void
dyn_enqueue_keepalive_ipv6(struct mbufq * q,const struct dyn_ipv6_state * s)2511 dyn_enqueue_keepalive_ipv6(struct mbufq *q, const struct dyn_ipv6_state *s)
2512 {
2513 struct mbuf *m;
2514
2515 if ((s->data->state & ACK_FWD) == 0 && s->data->ack_fwd > 0) {
2516 m = dyn_mgethdr(sizeof(struct ip6_hdr) +
2517 sizeof(struct tcphdr), s->data->fibnum);
2518 if (m != NULL) {
2519 dyn_make_keepalive_ipv6(m, &s->dst, &s->src,
2520 s->zoneid, s->data->ack_fwd - 1, s->data->ack_rev,
2521 s->dport, s->sport);
2522 if (mbufq_enqueue(q, m)) {
2523 m_freem(m);
2524 log(LOG_DEBUG, "ipfw: limit for IPv6 "
2525 "keepalive queue is reached.\n");
2526 return;
2527 }
2528 }
2529 }
2530
2531 if ((s->data->state & ACK_REV) == 0 && s->data->ack_rev > 0) {
2532 m = dyn_mgethdr(sizeof(struct ip6_hdr) +
2533 sizeof(struct tcphdr), s->data->fibnum);
2534 if (m != NULL) {
2535 dyn_make_keepalive_ipv6(m, &s->src, &s->dst,
2536 s->zoneid, s->data->ack_rev - 1, s->data->ack_fwd,
2537 s->sport, s->dport);
2538 if (mbufq_enqueue(q, m)) {
2539 m_freem(m);
2540 log(LOG_DEBUG, "ipfw: limit for IPv6 "
2541 "keepalive queue is reached.\n");
2542 return;
2543 }
2544 }
2545 }
2546 }
2547
2548 static void
dyn_send_keepalive_ipv6(struct ip_fw_chain * chain)2549 dyn_send_keepalive_ipv6(struct ip_fw_chain *chain)
2550 {
2551 struct mbufq q;
2552 struct mbuf *m;
2553 struct dyn_ipv6_state *s;
2554 uint32_t bucket;
2555
2556 mbufq_init(&q, INT_MAX);
2557 IPFW_UH_RLOCK(chain);
2558 /*
2559 * It is safe to not use hazard pointer and just do lockless
2560 * access to the lists, because states entries can not be deleted
2561 * while we hold IPFW_UH_RLOCK.
2562 */
2563 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2564 CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
2565 /*
2566 * Only established TCP connections that will
2567 * become expired within dyn_keepalive_interval.
2568 */
2569 if (s->proto != IPPROTO_TCP ||
2570 (s->data->state & BOTH_SYN) != BOTH_SYN ||
2571 TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
2572 s->data->expire))
2573 continue;
2574 dyn_enqueue_keepalive_ipv6(&q, s);
2575 }
2576 }
2577 IPFW_UH_RUNLOCK(chain);
2578 while ((m = mbufq_dequeue(&q)) != NULL)
2579 ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
2580 }
2581 #endif /* INET6 */
2582
2583 static void
dyn_grow_hashtable(struct ip_fw_chain * chain,uint32_t new,int flags)2584 dyn_grow_hashtable(struct ip_fw_chain *chain, uint32_t new, int flags)
2585 {
2586 #ifdef INET6
2587 struct dyn_ipv6ck_slist *ipv6, *ipv6_parent;
2588 uint32_t *ipv6_add, *ipv6_del, *ipv6_parent_add, *ipv6_parent_del;
2589 struct dyn_ipv6_state *s6;
2590 #endif
2591 struct dyn_ipv4ck_slist *ipv4, *ipv4_parent;
2592 uint32_t *ipv4_add, *ipv4_del, *ipv4_parent_add, *ipv4_parent_del;
2593 struct dyn_ipv4_state *s4;
2594 struct mtx *bucket_lock;
2595 void *tmp;
2596 uint32_t bucket;
2597
2598 MPASS(powerof2(new));
2599 DYN_DEBUG("grow hash size %u -> %u", V_curr_dyn_buckets, new);
2600 /*
2601 * Allocate and initialize new lists.
2602 */
2603 bucket_lock = malloc(new * sizeof(struct mtx), M_IPFW,
2604 flags | M_ZERO);
2605 if (bucket_lock == NULL)
2606 return;
2607
2608 ipv4 = ipv4_parent = NULL;
2609 ipv4_add = ipv4_del = ipv4_parent_add = ipv4_parent_del = NULL;
2610 #ifdef INET6
2611 ipv6 = ipv6_parent = NULL;
2612 ipv6_add = ipv6_del = ipv6_parent_add = ipv6_parent_del = NULL;
2613 #endif
2614
2615 ipv4 = malloc(new * sizeof(struct dyn_ipv4ck_slist), M_IPFW,
2616 flags | M_ZERO);
2617 if (ipv4 == NULL)
2618 goto bad;
2619 ipv4_parent = malloc(new * sizeof(struct dyn_ipv4ck_slist), M_IPFW,
2620 flags | M_ZERO);
2621 if (ipv4_parent == NULL)
2622 goto bad;
2623 ipv4_add = malloc(new * sizeof(uint32_t), M_IPFW, flags | M_ZERO);
2624 if (ipv4_add == NULL)
2625 goto bad;
2626 ipv4_del = malloc(new * sizeof(uint32_t), M_IPFW, flags | M_ZERO);
2627 if (ipv4_del == NULL)
2628 goto bad;
2629 ipv4_parent_add = malloc(new * sizeof(uint32_t), M_IPFW,
2630 flags | M_ZERO);
2631 if (ipv4_parent_add == NULL)
2632 goto bad;
2633 ipv4_parent_del = malloc(new * sizeof(uint32_t), M_IPFW,
2634 flags | M_ZERO);
2635 if (ipv4_parent_del == NULL)
2636 goto bad;
2637 #ifdef INET6
2638 ipv6 = malloc(new * sizeof(struct dyn_ipv6ck_slist), M_IPFW,
2639 flags | M_ZERO);
2640 if (ipv6 == NULL)
2641 goto bad;
2642 ipv6_parent = malloc(new * sizeof(struct dyn_ipv6ck_slist), M_IPFW,
2643 flags | M_ZERO);
2644 if (ipv6_parent == NULL)
2645 goto bad;
2646 ipv6_add = malloc(new * sizeof(uint32_t), M_IPFW, flags | M_ZERO);
2647 if (ipv6_add == NULL)
2648 goto bad;
2649 ipv6_del = malloc(new * sizeof(uint32_t), M_IPFW, flags | M_ZERO);
2650 if (ipv6_del == NULL)
2651 goto bad;
2652 ipv6_parent_add = malloc(new * sizeof(uint32_t), M_IPFW,
2653 flags | M_ZERO);
2654 if (ipv6_parent_add == NULL)
2655 goto bad;
2656 ipv6_parent_del = malloc(new * sizeof(uint32_t), M_IPFW,
2657 flags | M_ZERO);
2658 if (ipv6_parent_del == NULL)
2659 goto bad;
2660 #endif
2661 for (bucket = 0; bucket < new; bucket++) {
2662 DYN_BUCKET_LOCK_INIT(bucket_lock, bucket);
2663 CK_SLIST_INIT(&ipv4[bucket]);
2664 CK_SLIST_INIT(&ipv4_parent[bucket]);
2665 #ifdef INET6
2666 CK_SLIST_INIT(&ipv6[bucket]);
2667 CK_SLIST_INIT(&ipv6_parent[bucket]);
2668 #endif
2669 }
2670
2671 #define DYN_RELINK_STATES(s, hval, i, head, ohead) do { \
2672 while ((s = CK_SLIST_FIRST(&V_dyn_ ## ohead[i])) != NULL) { \
2673 CK_SLIST_REMOVE_HEAD(&V_dyn_ ## ohead[i], entry); \
2674 CK_SLIST_INSERT_HEAD(&head[DYN_BUCKET(s->hval, new)], \
2675 s, entry); \
2676 } \
2677 } while (0)
2678 /*
2679 * Prevent rules changing from userland.
2680 */
2681 IPFW_UH_WLOCK(chain);
2682 /*
2683 * Hold traffic processing until we finish resize to
2684 * prevent access to states lists.
2685 */
2686 IPFW_WLOCK(chain);
2687 /* Re-link all dynamic states */
2688 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2689 DYN_RELINK_STATES(s4, data->hashval, bucket, ipv4, ipv4);
2690 DYN_RELINK_STATES(s4, limit->hashval, bucket, ipv4_parent,
2691 ipv4_parent);
2692 #ifdef INET6
2693 DYN_RELINK_STATES(s6, data->hashval, bucket, ipv6, ipv6);
2694 DYN_RELINK_STATES(s6, limit->hashval, bucket, ipv6_parent,
2695 ipv6_parent);
2696 #endif
2697 }
2698
2699 #define DYN_SWAP_PTR(old, new, tmp) do { \
2700 tmp = old; \
2701 old = new; \
2702 new = tmp; \
2703 } while (0)
2704 /* Swap pointers */
2705 DYN_SWAP_PTR(V_dyn_bucket_lock, bucket_lock, tmp);
2706 DYN_SWAP_PTR(V_dyn_ipv4, ipv4, tmp);
2707 DYN_SWAP_PTR(V_dyn_ipv4_parent, ipv4_parent, tmp);
2708 DYN_SWAP_PTR(V_dyn_ipv4_add, ipv4_add, tmp);
2709 DYN_SWAP_PTR(V_dyn_ipv4_parent_add, ipv4_parent_add, tmp);
2710 DYN_SWAP_PTR(V_dyn_ipv4_del, ipv4_del, tmp);
2711 DYN_SWAP_PTR(V_dyn_ipv4_parent_del, ipv4_parent_del, tmp);
2712
2713 #ifdef INET6
2714 DYN_SWAP_PTR(V_dyn_ipv6, ipv6, tmp);
2715 DYN_SWAP_PTR(V_dyn_ipv6_parent, ipv6_parent, tmp);
2716 DYN_SWAP_PTR(V_dyn_ipv6_add, ipv6_add, tmp);
2717 DYN_SWAP_PTR(V_dyn_ipv6_parent_add, ipv6_parent_add, tmp);
2718 DYN_SWAP_PTR(V_dyn_ipv6_del, ipv6_del, tmp);
2719 DYN_SWAP_PTR(V_dyn_ipv6_parent_del, ipv6_parent_del, tmp);
2720 #endif
2721 bucket = V_curr_dyn_buckets;
2722 V_curr_dyn_buckets = new;
2723
2724 IPFW_WUNLOCK(chain);
2725 IPFW_UH_WUNLOCK(chain);
2726
2727 /* Release old resources */
2728 while (bucket-- != 0)
2729 DYN_BUCKET_LOCK_DESTROY(bucket_lock, bucket);
2730 bad:
2731 free(bucket_lock, M_IPFW);
2732 free(ipv4, M_IPFW);
2733 free(ipv4_parent, M_IPFW);
2734 free(ipv4_add, M_IPFW);
2735 free(ipv4_parent_add, M_IPFW);
2736 free(ipv4_del, M_IPFW);
2737 free(ipv4_parent_del, M_IPFW);
2738 #ifdef INET6
2739 free(ipv6, M_IPFW);
2740 free(ipv6_parent, M_IPFW);
2741 free(ipv6_add, M_IPFW);
2742 free(ipv6_parent_add, M_IPFW);
2743 free(ipv6_del, M_IPFW);
2744 free(ipv6_parent_del, M_IPFW);
2745 #endif
2746 }
2747
2748 /*
2749 * This function is used to perform various maintenance
2750 * on dynamic hash lists. Currently it is called every second.
2751 */
2752 static void
dyn_tick(void * vnetx)2753 dyn_tick(void *vnetx)
2754 {
2755 struct epoch_tracker et;
2756 uint32_t buckets;
2757
2758 CURVNET_SET((struct vnet *)vnetx);
2759 /*
2760 * First free states unlinked in previous passes.
2761 */
2762 dyn_free_states(&V_layer3_chain);
2763 /*
2764 * Now unlink others expired states.
2765 * We use IPFW_UH_WLOCK to avoid concurrent call of
2766 * dyn_expire_states(). It is the only function that does
2767 * deletion of state entries from states lists.
2768 */
2769 IPFW_UH_WLOCK(&V_layer3_chain);
2770 dyn_expire_states(&V_layer3_chain, NULL);
2771 IPFW_UH_WUNLOCK(&V_layer3_chain);
2772 /*
2773 * Send keepalives if they are enabled and the time has come.
2774 */
2775 if (V_dyn_keepalive != 0 &&
2776 V_dyn_keepalive_last + V_dyn_keepalive_period <= time_uptime) {
2777 V_dyn_keepalive_last = time_uptime;
2778 NET_EPOCH_ENTER(et);
2779 dyn_send_keepalive_ipv4(&V_layer3_chain);
2780 #ifdef INET6
2781 dyn_send_keepalive_ipv6(&V_layer3_chain);
2782 #endif
2783 NET_EPOCH_EXIT(et);
2784 }
2785 /*
2786 * Check if we need to resize the hash:
2787 * if current number of states exceeds number of buckets in hash,
2788 * and dyn_buckets_max permits to grow the number of buckets, then
2789 * do it. Grow hash size to the minimum power of 2 which is bigger
2790 * than current states count.
2791 */
2792 if (V_curr_dyn_buckets < V_dyn_buckets_max &&
2793 (V_curr_dyn_buckets < V_dyn_count / 2 || (
2794 V_curr_dyn_buckets < V_dyn_count && V_curr_max_length > 8))) {
2795 buckets = 1 << fls(V_dyn_count);
2796 if (buckets > V_dyn_buckets_max)
2797 buckets = V_dyn_buckets_max;
2798 dyn_grow_hashtable(&V_layer3_chain, buckets, M_NOWAIT);
2799 }
2800
2801 callout_reset_on(&V_dyn_timeout, hz, dyn_tick, vnetx, 0);
2802 CURVNET_RESTORE();
2803 }
2804
2805 void
ipfw_expire_dyn_states(struct ip_fw_chain * chain,ipfw_range_tlv * rt)2806 ipfw_expire_dyn_states(struct ip_fw_chain *chain, ipfw_range_tlv *rt)
2807 {
2808 /*
2809 * Do not perform any checks if we currently have no dynamic states
2810 */
2811 if (V_dyn_count == 0)
2812 return;
2813
2814 IPFW_UH_WLOCK_ASSERT(chain);
2815 dyn_expire_states(chain, rt);
2816 }
2817
2818 /*
2819 * Pass through all states and reset eaction for orphaned rules.
2820 */
2821 void
ipfw_dyn_reset_eaction(struct ip_fw_chain * ch,uint16_t eaction_id,uint16_t default_id,uint16_t instance_id)2822 ipfw_dyn_reset_eaction(struct ip_fw_chain *ch, uint16_t eaction_id,
2823 uint16_t default_id, uint16_t instance_id)
2824 {
2825 #ifdef INET6
2826 struct dyn_ipv6_state *s6;
2827 #endif
2828 struct dyn_ipv4_state *s4;
2829 struct ip_fw *rule;
2830 uint32_t bucket;
2831
2832 #define DYN_RESET_EACTION(s, h, b) \
2833 CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) { \
2834 if ((s->data->flags & DYN_REFERENCED) == 0) \
2835 continue; \
2836 rule = s->data->parent; \
2837 if (s->type == O_LIMIT) \
2838 rule = ((__typeof(s))rule)->limit->parent; \
2839 ipfw_reset_eaction(ch, rule, eaction_id, \
2840 default_id, instance_id); \
2841 }
2842
2843 IPFW_UH_WLOCK_ASSERT(ch);
2844 if (V_dyn_count == 0)
2845 return;
2846 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2847 DYN_RESET_EACTION(s4, ipv4, bucket);
2848 #ifdef INET6
2849 DYN_RESET_EACTION(s6, ipv6, bucket);
2850 #endif
2851 }
2852 }
2853
2854 /*
2855 * Returns size of dynamic states in legacy format
2856 */
2857 int
ipfw_dyn_len(void)2858 ipfw_dyn_len(void)
2859 {
2860
2861 return ((V_dyn_count + V_dyn_parent_count) * sizeof(ipfw_dyn_rule));
2862 }
2863
2864 /*
2865 * Returns number of dynamic states.
2866 * Marks every named object index used by dynamic states with bit in @bmask.
2867 * Returns number of named objects accounted in bmask via @nocnt.
2868 * Used by dump format v1 (current).
2869 */
2870 uint32_t
ipfw_dyn_get_count(uint32_t * bmask,int * nocnt)2871 ipfw_dyn_get_count(uint32_t *bmask, int *nocnt)
2872 {
2873 #ifdef INET6
2874 struct dyn_ipv6_state *s6;
2875 #endif
2876 struct dyn_ipv4_state *s4;
2877 uint32_t bucket;
2878
2879 #define DYN_COUNT_OBJECTS(s, h, b) \
2880 CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) { \
2881 MPASS(s->kidx != 0); \
2882 if (ipfw_mark_object_kidx(bmask, IPFW_TLV_STATE_NAME, \
2883 s->kidx) != 0) \
2884 (*nocnt)++; \
2885 }
2886
2887 IPFW_UH_RLOCK_ASSERT(&V_layer3_chain);
2888
2889 /* No need to pass through all the buckets. */
2890 *nocnt = 0;
2891 if (V_dyn_count + V_dyn_parent_count == 0)
2892 return (0);
2893
2894 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2895 DYN_COUNT_OBJECTS(s4, ipv4, bucket);
2896 #ifdef INET6
2897 DYN_COUNT_OBJECTS(s6, ipv6, bucket);
2898 #endif
2899 }
2900
2901 return (V_dyn_count + V_dyn_parent_count);
2902 }
2903
2904 /*
2905 * Check if rule contains at least one dynamic opcode.
2906 *
2907 * Returns 1 if such opcode is found, 0 otherwise.
2908 */
2909 int
ipfw_is_dyn_rule(struct ip_fw * rule)2910 ipfw_is_dyn_rule(struct ip_fw *rule)
2911 {
2912 int cmdlen, l;
2913 ipfw_insn *cmd;
2914
2915 l = rule->cmd_len;
2916 cmd = rule->cmd;
2917 cmdlen = 0;
2918 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) {
2919 cmdlen = F_LEN(cmd);
2920
2921 switch (cmd->opcode) {
2922 case O_LIMIT:
2923 case O_KEEP_STATE:
2924 case O_PROBE_STATE:
2925 case O_CHECK_STATE:
2926 return (1);
2927 }
2928 }
2929
2930 return (0);
2931 }
2932
2933 static void
dyn_export_parent(const struct dyn_parent * p,uint16_t kidx,uint8_t set,ipfw_dyn_rule * dst)2934 dyn_export_parent(const struct dyn_parent *p, uint16_t kidx, uint8_t set,
2935 ipfw_dyn_rule *dst)
2936 {
2937
2938 dst->dyn_type = O_LIMIT_PARENT;
2939 dst->kidx = kidx;
2940 dst->count = (uint16_t)DPARENT_COUNT(p);
2941 dst->expire = TIME_LEQ(p->expire, time_uptime) ? 0:
2942 p->expire - time_uptime;
2943
2944 /* 'rule' is used to pass up the rule number and set */
2945 memcpy(&dst->rule, &p->rulenum, sizeof(p->rulenum));
2946
2947 /* store set number into high word of dst->rule pointer. */
2948 memcpy((char *)&dst->rule + sizeof(p->rulenum), &set, sizeof(set));
2949
2950 /* unused fields */
2951 dst->pcnt = 0;
2952 dst->bcnt = 0;
2953 dst->parent = NULL;
2954 dst->state = 0;
2955 dst->ack_fwd = 0;
2956 dst->ack_rev = 0;
2957 dst->bucket = p->hashval;
2958 /*
2959 * The legacy userland code will interpret a NULL here as a marker
2960 * for the last dynamic rule.
2961 */
2962 dst->next = (ipfw_dyn_rule *)1;
2963 }
2964
2965 static void
dyn_export_data(const struct dyn_data * data,uint16_t kidx,uint8_t type,uint8_t set,ipfw_dyn_rule * dst)2966 dyn_export_data(const struct dyn_data *data, uint16_t kidx, uint8_t type,
2967 uint8_t set, ipfw_dyn_rule *dst)
2968 {
2969
2970 dst->dyn_type = type;
2971 dst->kidx = kidx;
2972 dst->pcnt = data->pcnt_fwd + data->pcnt_rev;
2973 dst->bcnt = data->bcnt_fwd + data->bcnt_rev;
2974 dst->expire = TIME_LEQ(data->expire, time_uptime) ? 0:
2975 data->expire - time_uptime;
2976
2977 /* 'rule' is used to pass up the rule number and set */
2978 memcpy(&dst->rule, &data->rulenum, sizeof(data->rulenum));
2979
2980 /* store set number into high word of dst->rule pointer. */
2981 memcpy((char *)&dst->rule + sizeof(data->rulenum), &set, sizeof(set));
2982
2983 dst->state = data->state;
2984 if (data->flags & DYN_REFERENCED)
2985 dst->state |= IPFW_DYN_ORPHANED;
2986
2987 /* unused fields */
2988 dst->parent = NULL;
2989 dst->ack_fwd = data->ack_fwd;
2990 dst->ack_rev = data->ack_rev;
2991 dst->count = 0;
2992 dst->bucket = data->hashval;
2993 /*
2994 * The legacy userland code will interpret a NULL here as a marker
2995 * for the last dynamic rule.
2996 */
2997 dst->next = (ipfw_dyn_rule *)1;
2998 }
2999
3000 static void
dyn_export_ipv4_state(const struct dyn_ipv4_state * s,ipfw_dyn_rule * dst)3001 dyn_export_ipv4_state(const struct dyn_ipv4_state *s, ipfw_dyn_rule *dst)
3002 {
3003 struct ip_fw *rule;
3004
3005 switch (s->type) {
3006 case O_LIMIT_PARENT:
3007 rule = s->limit->parent;
3008 dyn_export_parent(s->limit, s->kidx, rule->set, dst);
3009 break;
3010 default:
3011 rule = s->data->parent;
3012 if (s->type == O_LIMIT)
3013 rule = ((struct dyn_ipv4_state *)rule)->limit->parent;
3014 dyn_export_data(s->data, s->kidx, s->type, rule->set, dst);
3015 }
3016
3017 dst->id.dst_ip = s->dst;
3018 dst->id.src_ip = s->src;
3019 dst->id.dst_port = s->dport;
3020 dst->id.src_port = s->sport;
3021 dst->id.fib = s->data->fibnum;
3022 dst->id.proto = s->proto;
3023 dst->id._flags = 0;
3024 dst->id.addr_type = 4;
3025
3026 memset(&dst->id.dst_ip6, 0, sizeof(dst->id.dst_ip6));
3027 memset(&dst->id.src_ip6, 0, sizeof(dst->id.src_ip6));
3028 dst->id.flow_id6 = dst->id.extra = 0;
3029 }
3030
3031 #ifdef INET6
3032 static void
dyn_export_ipv6_state(const struct dyn_ipv6_state * s,ipfw_dyn_rule * dst)3033 dyn_export_ipv6_state(const struct dyn_ipv6_state *s, ipfw_dyn_rule *dst)
3034 {
3035 struct ip_fw *rule;
3036
3037 switch (s->type) {
3038 case O_LIMIT_PARENT:
3039 rule = s->limit->parent;
3040 dyn_export_parent(s->limit, s->kidx, rule->set, dst);
3041 break;
3042 default:
3043 rule = s->data->parent;
3044 if (s->type == O_LIMIT)
3045 rule = ((struct dyn_ipv6_state *)rule)->limit->parent;
3046 dyn_export_data(s->data, s->kidx, s->type, rule->set, dst);
3047 }
3048
3049 dst->id.src_ip6 = s->src;
3050 dst->id.dst_ip6 = s->dst;
3051 dst->id.dst_port = s->dport;
3052 dst->id.src_port = s->sport;
3053 dst->id.fib = s->data->fibnum;
3054 dst->id.proto = s->proto;
3055 dst->id._flags = 0;
3056 dst->id.addr_type = 6;
3057
3058 dst->id.dst_ip = dst->id.src_ip = 0;
3059 dst->id.flow_id6 = dst->id.extra = 0;
3060 }
3061 #endif /* INET6 */
3062
3063 /*
3064 * Fills the buffer given by @sd with dynamic states.
3065 * Used by dump format v1 (current).
3066 *
3067 * Returns 0 on success.
3068 */
3069 int
ipfw_dump_states(struct ip_fw_chain * chain,struct sockopt_data * sd)3070 ipfw_dump_states(struct ip_fw_chain *chain, struct sockopt_data *sd)
3071 {
3072 #ifdef INET6
3073 struct dyn_ipv6_state *s6;
3074 #endif
3075 struct dyn_ipv4_state *s4;
3076 ipfw_obj_dyntlv *dst, *last;
3077 ipfw_obj_ctlv *ctlv;
3078 uint32_t bucket;
3079
3080 if (V_dyn_count == 0)
3081 return (0);
3082
3083 /*
3084 * IPFW_UH_RLOCK garantees that another userland request
3085 * and callout thread will not delete entries from states
3086 * lists.
3087 */
3088 IPFW_UH_RLOCK_ASSERT(chain);
3089
3090 ctlv = (ipfw_obj_ctlv *)ipfw_get_sopt_space(sd, sizeof(*ctlv));
3091 if (ctlv == NULL)
3092 return (ENOMEM);
3093 ctlv->head.type = IPFW_TLV_DYNSTATE_LIST;
3094 ctlv->objsize = sizeof(ipfw_obj_dyntlv);
3095 last = NULL;
3096
3097 #define DYN_EXPORT_STATES(s, af, h, b) \
3098 CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) { \
3099 dst = (ipfw_obj_dyntlv *)ipfw_get_sopt_space(sd, \
3100 sizeof(ipfw_obj_dyntlv)); \
3101 if (dst == NULL) \
3102 return (ENOMEM); \
3103 dyn_export_ ## af ## _state(s, &dst->state); \
3104 dst->head.length = sizeof(ipfw_obj_dyntlv); \
3105 dst->head.type = IPFW_TLV_DYN_ENT; \
3106 last = dst; \
3107 }
3108
3109 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3110 DYN_EXPORT_STATES(s4, ipv4, ipv4_parent, bucket);
3111 DYN_EXPORT_STATES(s4, ipv4, ipv4, bucket);
3112 #ifdef INET6
3113 DYN_EXPORT_STATES(s6, ipv6, ipv6_parent, bucket);
3114 DYN_EXPORT_STATES(s6, ipv6, ipv6, bucket);
3115 #endif /* INET6 */
3116 }
3117
3118 /* mark last dynamic rule */
3119 if (last != NULL)
3120 last->head.flags = IPFW_DF_LAST; /* XXX: unused */
3121 return (0);
3122 #undef DYN_EXPORT_STATES
3123 }
3124
3125 /*
3126 * Fill given buffer with dynamic states (legacy format).
3127 * IPFW_UH_RLOCK has to be held while calling.
3128 */
3129 void
ipfw_get_dynamic(struct ip_fw_chain * chain,char ** pbp,const char * ep)3130 ipfw_get_dynamic(struct ip_fw_chain *chain, char **pbp, const char *ep)
3131 {
3132 #ifdef INET6
3133 struct dyn_ipv6_state *s6;
3134 #endif
3135 struct dyn_ipv4_state *s4;
3136 ipfw_dyn_rule *p, *last = NULL;
3137 char *bp;
3138 uint32_t bucket;
3139
3140 if (V_dyn_count == 0)
3141 return;
3142 bp = *pbp;
3143
3144 IPFW_UH_RLOCK_ASSERT(chain);
3145
3146 #define DYN_EXPORT_STATES(s, af, head, b) \
3147 CK_SLIST_FOREACH(s, &V_dyn_ ## head[b], entry) { \
3148 if (bp + sizeof(*p) > ep) \
3149 break; \
3150 p = (ipfw_dyn_rule *)bp; \
3151 dyn_export_ ## af ## _state(s, p); \
3152 last = p; \
3153 bp += sizeof(*p); \
3154 }
3155
3156 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3157 DYN_EXPORT_STATES(s4, ipv4, ipv4_parent, bucket);
3158 DYN_EXPORT_STATES(s4, ipv4, ipv4, bucket);
3159 #ifdef INET6
3160 DYN_EXPORT_STATES(s6, ipv6, ipv6_parent, bucket);
3161 DYN_EXPORT_STATES(s6, ipv6, ipv6, bucket);
3162 #endif /* INET6 */
3163 }
3164
3165 if (last != NULL) /* mark last dynamic rule */
3166 last->next = NULL;
3167 *pbp = bp;
3168 #undef DYN_EXPORT_STATES
3169 }
3170
3171 void
ipfw_dyn_init(struct ip_fw_chain * chain)3172 ipfw_dyn_init(struct ip_fw_chain *chain)
3173 {
3174
3175 #ifdef IPFIREWALL_JENKINSHASH
3176 V_dyn_hashseed = arc4random();
3177 #endif
3178 V_dyn_max = 16384; /* max # of states */
3179 V_dyn_parent_max = 4096; /* max # of parent states */
3180 V_dyn_buckets_max = 8192; /* must be power of 2 */
3181
3182 V_dyn_ack_lifetime = 300;
3183 V_dyn_syn_lifetime = 20;
3184 V_dyn_fin_lifetime = 1;
3185 V_dyn_rst_lifetime = 1;
3186 V_dyn_udp_lifetime = 10;
3187 V_dyn_short_lifetime = 5;
3188
3189 V_dyn_keepalive_interval = 20;
3190 V_dyn_keepalive_period = 5;
3191 V_dyn_keepalive = 1; /* send keepalives */
3192 V_dyn_keepalive_last = time_uptime;
3193
3194 V_dyn_data_zone = uma_zcreate("IPFW dynamic states data",
3195 sizeof(struct dyn_data), NULL, NULL, NULL, NULL,
3196 UMA_ALIGN_PTR, 0);
3197 uma_zone_set_max(V_dyn_data_zone, V_dyn_max);
3198
3199 V_dyn_parent_zone = uma_zcreate("IPFW parent dynamic states",
3200 sizeof(struct dyn_parent), NULL, NULL, NULL, NULL,
3201 UMA_ALIGN_PTR, 0);
3202 uma_zone_set_max(V_dyn_parent_zone, V_dyn_parent_max);
3203
3204 SLIST_INIT(&V_dyn_expired_ipv4);
3205 V_dyn_ipv4 = NULL;
3206 V_dyn_ipv4_parent = NULL;
3207 V_dyn_ipv4_zone = uma_zcreate("IPFW IPv4 dynamic states",
3208 sizeof(struct dyn_ipv4_state), NULL, NULL, NULL, NULL,
3209 UMA_ALIGN_PTR, 0);
3210
3211 #ifdef INET6
3212 SLIST_INIT(&V_dyn_expired_ipv6);
3213 V_dyn_ipv6 = NULL;
3214 V_dyn_ipv6_parent = NULL;
3215 V_dyn_ipv6_zone = uma_zcreate("IPFW IPv6 dynamic states",
3216 sizeof(struct dyn_ipv6_state), NULL, NULL, NULL, NULL,
3217 UMA_ALIGN_PTR, 0);
3218 #endif
3219
3220 /* Initialize buckets. */
3221 V_curr_dyn_buckets = 0;
3222 V_dyn_bucket_lock = NULL;
3223 dyn_grow_hashtable(chain, 256, M_WAITOK);
3224
3225 if (IS_DEFAULT_VNET(curvnet))
3226 dyn_hp_cache = malloc(mp_ncpus * sizeof(void *), M_IPFW,
3227 M_WAITOK | M_ZERO);
3228
3229 DYN_EXPIRED_LOCK_INIT();
3230 callout_init(&V_dyn_timeout, 1);
3231 callout_reset(&V_dyn_timeout, hz, dyn_tick, curvnet);
3232 IPFW_ADD_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
3233 }
3234
3235 void
ipfw_dyn_uninit(int pass)3236 ipfw_dyn_uninit(int pass)
3237 {
3238 #ifdef INET6
3239 struct dyn_ipv6_state *s6;
3240 #endif
3241 struct dyn_ipv4_state *s4;
3242 int bucket;
3243
3244 if (pass == 0) {
3245 callout_drain(&V_dyn_timeout);
3246 return;
3247 }
3248 IPFW_DEL_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
3249 DYN_EXPIRED_LOCK_DESTROY();
3250
3251 #define DYN_FREE_STATES_FORCED(CK, s, af, name, en) do { \
3252 while ((s = CK ## SLIST_FIRST(&V_dyn_ ## name)) != NULL) { \
3253 CK ## SLIST_REMOVE_HEAD(&V_dyn_ ## name, en); \
3254 if (s->type == O_LIMIT_PARENT) \
3255 uma_zfree(V_dyn_parent_zone, s->limit); \
3256 else \
3257 uma_zfree(V_dyn_data_zone, s->data); \
3258 uma_zfree(V_dyn_ ## af ## _zone, s); \
3259 } \
3260 } while (0)
3261 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3262 DYN_BUCKET_LOCK_DESTROY(V_dyn_bucket_lock, bucket);
3263
3264 DYN_FREE_STATES_FORCED(CK_, s4, ipv4, ipv4[bucket], entry);
3265 DYN_FREE_STATES_FORCED(CK_, s4, ipv4, ipv4_parent[bucket],
3266 entry);
3267 #ifdef INET6
3268 DYN_FREE_STATES_FORCED(CK_, s6, ipv6, ipv6[bucket], entry);
3269 DYN_FREE_STATES_FORCED(CK_, s6, ipv6, ipv6_parent[bucket],
3270 entry);
3271 #endif /* INET6 */
3272 }
3273 DYN_FREE_STATES_FORCED(, s4, ipv4, expired_ipv4, expired);
3274 #ifdef INET6
3275 DYN_FREE_STATES_FORCED(, s6, ipv6, expired_ipv6, expired);
3276 #endif
3277 #undef DYN_FREE_STATES_FORCED
3278
3279 uma_zdestroy(V_dyn_ipv4_zone);
3280 uma_zdestroy(V_dyn_data_zone);
3281 uma_zdestroy(V_dyn_parent_zone);
3282 #ifdef INET6
3283 uma_zdestroy(V_dyn_ipv6_zone);
3284 free(V_dyn_ipv6, M_IPFW);
3285 free(V_dyn_ipv6_parent, M_IPFW);
3286 free(V_dyn_ipv6_add, M_IPFW);
3287 free(V_dyn_ipv6_parent_add, M_IPFW);
3288 free(V_dyn_ipv6_del, M_IPFW);
3289 free(V_dyn_ipv6_parent_del, M_IPFW);
3290 #endif
3291 free(V_dyn_bucket_lock, M_IPFW);
3292 free(V_dyn_ipv4, M_IPFW);
3293 free(V_dyn_ipv4_parent, M_IPFW);
3294 free(V_dyn_ipv4_add, M_IPFW);
3295 free(V_dyn_ipv4_parent_add, M_IPFW);
3296 free(V_dyn_ipv4_del, M_IPFW);
3297 free(V_dyn_ipv4_parent_del, M_IPFW);
3298 if (IS_DEFAULT_VNET(curvnet))
3299 free(dyn_hp_cache, M_IPFW);
3300 }
3301