1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
5 * Copyright (c) 2014-2025 Yandex LLC
6 * Copyright (c) 2014 Alexander V. Chernikov
7 *
8 * Supported by: Valeria Paoli
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 /*
34 * Control socket and rule management routines for ipfw.
35 * Control is currently implemented via IP_FW3 setsockopt() code.
36 */
37
38 #include "opt_ipfw.h"
39 #include "opt_inet.h"
40 #ifndef INET
41 #error IPFIREWALL requires INET.
42 #endif /* INET */
43 #include "opt_inet6.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h> /* struct m_tag used by nested headers */
49 #include <sys/kernel.h>
50 #include <sys/lock.h>
51 #include <sys/priv.h>
52 #include <sys/proc.h>
53 #include <sys/rwlock.h>
54 #include <sys/rmlock.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/syslog.h>
59 #include <sys/fnv_hash.h>
60 #include <net/if.h>
61 #include <net/route.h>
62 #include <net/vnet.h>
63 #include <vm/vm.h>
64 #include <vm/vm_extern.h>
65
66 #include <netinet/in.h>
67 #include <netinet/ip_var.h> /* hooks */
68 #include <netinet/ip_fw.h>
69
70 #include <netpfil/ipfw/ip_fw_private.h>
71 #include <netpfil/ipfw/ip_fw_table.h>
72
73 #ifdef MAC
74 #include <security/mac/mac_framework.h>
75 #endif
76
77 static enum ipfw_opcheck_result
check_opcode_compat_nop(ipfw_insn ** pcmd,int * plen,struct rule_check_info * ci)78 check_opcode_compat_nop(ipfw_insn **pcmd, int *plen,
79 struct rule_check_info *ci)
80 {
81 /* Compatibility code is not registered */
82 return (FAILED);
83 }
84
85 static ipfw_check_opcode_t check_opcode_f = check_opcode_compat_nop;
86
87 static int check_ipfw_rule_body(ipfw_insn *cmd, int cmd_len,
88 struct rule_check_info *ci);
89 static int rewrite_rule_uidx(struct ip_fw_chain *chain,
90 struct rule_check_info *ci);
91
92 struct namedobj_instance {
93 struct namedobjects_head *names;
94 struct namedobjects_head *values;
95 uint32_t nn_size; /* names hash size */
96 uint32_t nv_size; /* number hash size */
97 u_long *idx_mask; /* used items bitmask */
98 uint32_t max_blocks; /* number of "long" blocks in bitmask */
99 uint32_t count; /* number of items */
100 uint16_t free_off[IPFW_MAX_SETS]; /* first possible free offset */
101 objhash_hash_f *hash_f;
102 objhash_cmp_f *cmp_f;
103 };
104 #define BLOCK_ITEMS (8 * sizeof(u_long)) /* Number of items for ffsl() */
105
106 static uint32_t objhash_hash_name(struct namedobj_instance *ni,
107 const void *key, uint32_t kopt);
108 static uint32_t objhash_hash_idx(struct namedobj_instance *ni, uint32_t val);
109 static int objhash_cmp_name(struct named_object *no, const void *name,
110 uint32_t set);
111
112 MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
113
114 /* ctl3 handler data */
115 static struct mtx ctl3_lock;
116 #define CTL3_LOCK_INIT() mtx_init(&ctl3_lock, "ctl3_lock", NULL, MTX_DEF)
117 #define CTL3_LOCK_DESTROY() mtx_destroy(&ctl3_lock)
118 #define CTL3_LOCK() mtx_lock(&ctl3_lock)
119 #define CTL3_UNLOCK() mtx_unlock(&ctl3_lock)
120
121 static struct ipfw_sopt_handler *ctl3_handlers;
122 static size_t ctl3_hsize;
123 static uint64_t ctl3_refct, ctl3_gencnt;
124 #define CTL3_SMALLBUF 4096 /* small page-size write buffer */
125 #define CTL3_LARGEBUF (16 * 1024 * 1024) /* handle large rulesets */
126
127 static int ipfw_flush_sopt_data(struct sockopt_data *sd);
128
129 static sopt_handler_f dump_config, add_rules, del_rules, clear_rules,
130 move_rules, manage_sets, dump_soptcodes, dump_srvobjects,
131 manage_skiptocache;
132
133 static struct ipfw_sopt_handler scodes[] = {
134 { IP_FW_XGET, IP_FW3_OPVER, HDIR_GET, dump_config },
135 { IP_FW_XADD, IP_FW3_OPVER, HDIR_BOTH, add_rules },
136 { IP_FW_XDEL, IP_FW3_OPVER, HDIR_BOTH, del_rules },
137 { IP_FW_XZERO, IP_FW3_OPVER, HDIR_SET, clear_rules },
138 { IP_FW_XRESETLOG, IP_FW3_OPVER, HDIR_SET, clear_rules },
139 { IP_FW_XMOVE, IP_FW3_OPVER, HDIR_SET, move_rules },
140 { IP_FW_SET_SWAP, IP_FW3_OPVER, HDIR_SET, manage_sets },
141 { IP_FW_SET_MOVE, IP_FW3_OPVER, HDIR_SET, manage_sets },
142 { IP_FW_SET_ENABLE, IP_FW3_OPVER, HDIR_SET, manage_sets },
143 { IP_FW_DUMP_SOPTCODES, IP_FW3_OPVER, HDIR_GET, dump_soptcodes },
144 { IP_FW_DUMP_SRVOBJECTS, IP_FW3_OPVER, HDIR_GET, dump_srvobjects },
145 { IP_FW_SKIPTO_CACHE, IP_FW3_OPVER, HDIR_BOTH, manage_skiptocache },
146 };
147
148 static struct opcode_obj_rewrite *find_op_rw(ipfw_insn *cmd,
149 uint32_t *puidx, uint8_t *ptype);
150 static int ref_rule_objects(struct ip_fw_chain *ch, struct ip_fw *rule,
151 struct rule_check_info *ci, struct obj_idx *oib, struct tid_info *ti);
152 static int ref_opcode_object(struct ip_fw_chain *ch, ipfw_insn *cmd,
153 struct tid_info *ti, struct obj_idx *pidx, int *unresolved);
154 static void unref_rule_objects(struct ip_fw_chain *chain, struct ip_fw *rule);
155 static void unref_oib_objects(struct ip_fw_chain *ch, ipfw_insn *cmd,
156 struct obj_idx *oib, struct obj_idx *end);
157 static int export_objhash_ntlv(struct namedobj_instance *ni, uint32_t kidx,
158 struct sockopt_data *sd);
159
160 /*
161 * Opcode object rewriter variables
162 */
163 struct opcode_obj_rewrite *ctl3_rewriters;
164 static size_t ctl3_rsize;
165
166 /*
167 * static variables followed by global ones
168 */
169
170 VNET_DEFINE_STATIC(uma_zone_t, ipfw_cntr_zone);
171 #define V_ipfw_cntr_zone VNET(ipfw_cntr_zone)
172
173 void
ipfw_init_counters(void)174 ipfw_init_counters(void)
175 {
176
177 V_ipfw_cntr_zone = uma_zcreate("IPFW counters",
178 IPFW_RULE_CNTR_SIZE, NULL, NULL, NULL, NULL,
179 UMA_ALIGN_PTR, UMA_ZONE_PCPU);
180 }
181
182 void
ipfw_destroy_counters(void)183 ipfw_destroy_counters(void)
184 {
185
186 uma_zdestroy(V_ipfw_cntr_zone);
187 }
188
189 struct ip_fw *
ipfw_alloc_rule(struct ip_fw_chain * chain,size_t rulesize)190 ipfw_alloc_rule(struct ip_fw_chain *chain, size_t rulesize)
191 {
192 struct ip_fw *rule;
193
194 rule = malloc(rulesize, M_IPFW, M_WAITOK | M_ZERO);
195 rule->cntr = uma_zalloc_pcpu(V_ipfw_cntr_zone, M_WAITOK | M_ZERO);
196 rule->refcnt = 1;
197
198 return (rule);
199 }
200
201 void
ipfw_free_rule(struct ip_fw * rule)202 ipfw_free_rule(struct ip_fw *rule)
203 {
204
205 /*
206 * We don't release refcnt here, since this function
207 * can be called without any locks held. The caller
208 * must release reference under IPFW_UH_WLOCK, and then
209 * call this function if refcount becomes 1.
210 */
211 if (rule->refcnt > 1)
212 return;
213 uma_zfree_pcpu(V_ipfw_cntr_zone, rule->cntr);
214 free(rule, M_IPFW);
215 }
216
217 /*
218 * Find the smallest rule >= key, id.
219 * We could use bsearch but it is so simple that we code it directly
220 */
221 int
ipfw_find_rule(struct ip_fw_chain * chain,uint32_t key,uint32_t id)222 ipfw_find_rule(struct ip_fw_chain *chain, uint32_t key, uint32_t id)
223 {
224 int i, lo, hi;
225 struct ip_fw *r;
226
227 for (lo = 0, hi = chain->n_rules - 1; lo < hi;) {
228 i = (lo + hi) / 2;
229 r = chain->map[i];
230 if (r->rulenum < key)
231 lo = i + 1; /* continue from the next one */
232 else if (r->rulenum > key)
233 hi = i; /* this might be good */
234 else if (r->id < id)
235 lo = i + 1; /* continue from the next one */
236 else /* r->id >= id */
237 hi = i; /* this might be good */
238 }
239 return hi;
240 }
241
242 /*
243 * Builds skipto cache on rule set @map.
244 */
245 static void
update_skipto_cache(struct ip_fw_chain * chain,struct ip_fw ** map)246 update_skipto_cache(struct ip_fw_chain *chain, struct ip_fw **map)
247 {
248 uint32_t *smap, rulenum;
249 int i, mi;
250
251 IPFW_UH_WLOCK_ASSERT(chain);
252
253 mi = 0;
254 rulenum = map[mi]->rulenum;
255 smap = chain->idxmap_back;
256
257 if (smap == NULL)
258 return;
259
260 for (i = 0; i <= IPFW_DEFAULT_RULE; i++) {
261 smap[i] = mi;
262 /* Use the same rule index until i < rulenum */
263 if (i != rulenum || i == IPFW_DEFAULT_RULE)
264 continue;
265 /* Find next rule with num > i */
266 rulenum = map[++mi]->rulenum;
267 while (rulenum == i)
268 rulenum = map[++mi]->rulenum;
269 }
270 }
271
272 /*
273 * Swaps prepared (backup) index with current one.
274 */
275 static void
swap_skipto_cache(struct ip_fw_chain * chain)276 swap_skipto_cache(struct ip_fw_chain *chain)
277 {
278 uint32_t *map;
279
280 IPFW_UH_WLOCK_ASSERT(chain);
281 IPFW_WLOCK_ASSERT(chain);
282
283 map = chain->idxmap;
284 chain->idxmap = chain->idxmap_back;
285 chain->idxmap_back = map;
286 }
287
288 /*
289 * Allocate and initialize skipto cache.
290 */
291 void
ipfw_init_skipto_cache(struct ip_fw_chain * chain)292 ipfw_init_skipto_cache(struct ip_fw_chain *chain)
293 {
294 uint32_t *idxmap, *idxmap_back;
295
296 idxmap = malloc((IPFW_DEFAULT_RULE + 1) * sizeof(uint32_t),
297 M_IPFW, M_WAITOK | M_ZERO);
298 idxmap_back = malloc((IPFW_DEFAULT_RULE + 1) * sizeof(uint32_t),
299 M_IPFW, M_WAITOK | M_ZERO);
300
301 /*
302 * Note we may be called at any time after initialization,
303 * for example, on first skipto rule, so we need to
304 * provide valid chain->idxmap on return
305 */
306
307 IPFW_UH_WLOCK(chain);
308 if (chain->idxmap != NULL) {
309 IPFW_UH_WUNLOCK(chain);
310 free(idxmap, M_IPFW);
311 free(idxmap_back, M_IPFW);
312 return;
313 }
314
315 /* Set backup pointer first to permit building cache */
316 chain->idxmap_back = idxmap_back;
317 if (V_skipto_cache != 0)
318 update_skipto_cache(chain, chain->map);
319 IPFW_WLOCK(chain);
320 /* It is now safe to set chain->idxmap ptr */
321 chain->idxmap = idxmap;
322 swap_skipto_cache(chain);
323 IPFW_WUNLOCK(chain);
324 IPFW_UH_WUNLOCK(chain);
325 }
326
327 /*
328 * Destroys skipto cache.
329 */
330 void
ipfw_destroy_skipto_cache(struct ip_fw_chain * chain)331 ipfw_destroy_skipto_cache(struct ip_fw_chain *chain)
332 {
333 free(chain->idxmap, M_IPFW);
334 free(chain->idxmap_back, M_IPFW);
335 }
336
337 /*
338 * allocate a new map, returns the chain locked. extra is the number
339 * of entries to add or delete.
340 */
341 static struct ip_fw **
get_map(struct ip_fw_chain * chain,int extra,int locked)342 get_map(struct ip_fw_chain *chain, int extra, int locked)
343 {
344
345 for (;;) {
346 struct ip_fw **map;
347 u_int i, mflags;
348
349 mflags = M_ZERO | ((locked != 0) ? M_NOWAIT : M_WAITOK);
350
351 i = chain->n_rules + extra;
352 map = malloc(i * sizeof(struct ip_fw *), M_IPFW, mflags);
353 if (map == NULL) {
354 printf("%s: cannot allocate map\n", __FUNCTION__);
355 return NULL;
356 }
357 if (!locked)
358 IPFW_UH_WLOCK(chain);
359 if (i >= chain->n_rules + extra) /* good */
360 return map;
361 /* otherwise we lost the race, free and retry */
362 if (!locked)
363 IPFW_UH_WUNLOCK(chain);
364 free(map, M_IPFW);
365 }
366 }
367
368 /*
369 * swap the maps. It is supposed to be called with IPFW_UH_WLOCK
370 */
371 static struct ip_fw **
swap_map(struct ip_fw_chain * chain,struct ip_fw ** new_map,int new_len)372 swap_map(struct ip_fw_chain *chain, struct ip_fw **new_map, int new_len)
373 {
374 struct ip_fw **old_map;
375
376 IPFW_WLOCK(chain);
377 chain->id++;
378 chain->n_rules = new_len;
379 old_map = chain->map;
380 chain->map = new_map;
381 swap_skipto_cache(chain);
382 IPFW_WUNLOCK(chain);
383 return old_map;
384 }
385
386 static void
export_cntr1_base(struct ip_fw * krule,struct ip_fw_bcounter * cntr)387 export_cntr1_base(struct ip_fw *krule, struct ip_fw_bcounter *cntr)
388 {
389 struct timeval boottime;
390
391 cntr->size = sizeof(*cntr);
392
393 if (krule->cntr != NULL) {
394 cntr->pcnt = counter_u64_fetch(krule->cntr);
395 cntr->bcnt = counter_u64_fetch(krule->cntr + 1);
396 cntr->timestamp = krule->timestamp;
397 }
398 if (cntr->timestamp > 0) {
399 getboottime(&boottime);
400 cntr->timestamp += boottime.tv_sec;
401 }
402 }
403
404 /*
405 * Export rule into v1 format (Current).
406 * Layout:
407 * [ ipfw_obj_tlv(IPFW_TLV_RULE_ENT)
408 * [ ip_fw_rule ] OR
409 * [ ip_fw_bcounter ip_fw_rule] (depends on rcntrs).
410 * ]
411 * Assume @data is zeroed.
412 */
413 static void
export_rule1(struct ip_fw * krule,caddr_t data,int len,int rcntrs)414 export_rule1(struct ip_fw *krule, caddr_t data, int len, int rcntrs)
415 {
416 struct ip_fw_bcounter *cntr;
417 struct ip_fw_rule *urule;
418 ipfw_obj_tlv *tlv;
419
420 /* Fill in TLV header */
421 tlv = (ipfw_obj_tlv *)data;
422 tlv->type = IPFW_TLV_RULE_ENT;
423 tlv->length = len;
424
425 if (rcntrs != 0) {
426 /* Copy counters */
427 cntr = (struct ip_fw_bcounter *)(tlv + 1);
428 urule = (struct ip_fw_rule *)(cntr + 1);
429 export_cntr1_base(krule, cntr);
430 } else
431 urule = (struct ip_fw_rule *)(tlv + 1);
432
433 /* copy header */
434 urule->act_ofs = krule->act_ofs;
435 urule->cmd_len = krule->cmd_len;
436 urule->rulenum = krule->rulenum;
437 urule->set = krule->set;
438 urule->flags = krule->flags;
439 urule->id = krule->id;
440
441 /* Copy opcodes */
442 memcpy(urule->cmd, krule->cmd, krule->cmd_len * sizeof(uint32_t));
443 }
444
445 /*
446 * Add new rule(s) to the list possibly creating rule number for each.
447 * Update the rule_number in the input struct so the caller knows it as well.
448 * Must be called without IPFW_UH held
449 */
450 int
ipfw_commit_rules(struct ip_fw_chain * chain,struct rule_check_info * rci,int count)451 ipfw_commit_rules(struct ip_fw_chain *chain, struct rule_check_info *rci,
452 int count)
453 {
454 int error, i, insert_before, tcount, rule_idx, last_rule_idx;
455 uint32_t rulenum;
456 struct rule_check_info *ci;
457 struct ip_fw *krule;
458 struct ip_fw **map; /* the new array of pointers */
459
460 /* Check if we need to do table/obj index remap */
461 tcount = 0;
462 for (ci = rci, i = 0; i < count; ci++, i++) {
463 if (ci->object_opcodes == 0)
464 continue;
465
466 /*
467 * Rule has some object opcodes.
468 * We need to find (and create non-existing)
469 * kernel objects, and reference existing ones.
470 */
471 error = rewrite_rule_uidx(chain, ci);
472 if (error != 0) {
473
474 /*
475 * rewrite failed, state for current rule
476 * has been reverted. Check if we need to
477 * revert more.
478 */
479 if (tcount > 0) {
480
481 /*
482 * We have some more table rules
483 * we need to rollback.
484 */
485
486 IPFW_UH_WLOCK(chain);
487 while (ci != rci) {
488 ci--;
489 if (ci->object_opcodes == 0)
490 continue;
491 unref_rule_objects(chain,ci->krule);
492
493 }
494 IPFW_UH_WUNLOCK(chain);
495
496 }
497
498 return (error);
499 }
500
501 tcount++;
502 }
503
504 /* get_map returns with IPFW_UH_WLOCK if successful */
505 map = get_map(chain, count, 0 /* not locked */);
506 if (map == NULL) {
507 if (tcount > 0) {
508 /* Unbind tables */
509 IPFW_UH_WLOCK(chain);
510 for (ci = rci, i = 0; i < count; ci++, i++) {
511 if (ci->object_opcodes == 0)
512 continue;
513
514 unref_rule_objects(chain, ci->krule);
515 }
516 IPFW_UH_WUNLOCK(chain);
517 }
518
519 return (ENOSPC);
520 }
521
522 if (V_autoinc_step < 1)
523 V_autoinc_step = 1;
524 else if (V_autoinc_step > 1000)
525 V_autoinc_step = 1000;
526
527 last_rule_idx = 0;
528 for (ci = rci, i = 0; i < count; ci++, i++) {
529 krule = ci->krule;
530 rulenum = krule->rulenum;
531
532 krule->id = chain->id + 1;
533
534 /* find the insertion point, we will insert before */
535 insert_before = rulenum ? rulenum + 1 : IPFW_DEFAULT_RULE;
536 rule_idx = ipfw_find_rule(chain, insert_before, 0);
537 /* duplicate the previous part */
538 if (last_rule_idx < rule_idx)
539 bcopy(chain->map + last_rule_idx, map + last_rule_idx + i,
540 (rule_idx - last_rule_idx) * sizeof(struct ip_fw *));
541 last_rule_idx = rule_idx;
542 map[rule_idx + i] = krule;
543 if (rulenum == 0) {
544 /* Compute rule number and write it back */
545 rulenum = rule_idx + i > 0 ? map[rule_idx + i - 1]->rulenum : 0;
546 if (rulenum < IPFW_DEFAULT_RULE - V_autoinc_step)
547 rulenum += V_autoinc_step;
548 krule->rulenum = rulenum;
549 /* Save number to userland rule */
550 memcpy((char *)ci->urule + ci->urule_numoff, &rulenum,
551 sizeof(rulenum));
552 }
553 }
554
555 /* duplicate the remaining part, we always have the default rule */
556 bcopy(chain->map + last_rule_idx, map + last_rule_idx + count,
557 (chain->n_rules - last_rule_idx) * sizeof(struct ip_fw *));
558
559 if (V_skipto_cache != 0)
560 update_skipto_cache(chain, map);
561 map = swap_map(chain, map, chain->n_rules + count);
562 IPFW_UH_WUNLOCK(chain);
563 if (map)
564 free(map, M_IPFW);
565 return (0);
566 }
567
568 int
ipfw_add_protected_rule(struct ip_fw_chain * chain,struct ip_fw * rule,int locked)569 ipfw_add_protected_rule(struct ip_fw_chain *chain, struct ip_fw *rule,
570 int locked)
571 {
572 struct ip_fw **map;
573
574 map = get_map(chain, 1, locked);
575 if (map == NULL)
576 return (ENOMEM);
577 if (chain->n_rules > 0)
578 bcopy(chain->map, map,
579 chain->n_rules * sizeof(struct ip_fw *));
580 map[chain->n_rules] = rule;
581 rule->rulenum = IPFW_DEFAULT_RULE;
582 rule->set = RESVD_SET;
583 rule->id = chain->id + 1;
584 /* We add rule in the end of chain, no need to update skipto cache */
585 map = swap_map(chain, map, chain->n_rules + 1);
586 IPFW_UH_WUNLOCK(chain);
587 free(map, M_IPFW);
588 return (0);
589 }
590
591 /*
592 * Adds @rule to the list of rules to reap
593 */
594 void
ipfw_reap_add(struct ip_fw_chain * chain,struct ip_fw ** head,struct ip_fw * rule)595 ipfw_reap_add(struct ip_fw_chain *chain, struct ip_fw **head,
596 struct ip_fw *rule)
597 {
598
599 IPFW_UH_WLOCK_ASSERT(chain);
600
601 /* Unlink rule from everywhere */
602 unref_rule_objects(chain, rule);
603
604 rule->next = *head;
605 *head = rule;
606 }
607
608 /*
609 * Reclaim storage associated with a list of rules. This is
610 * typically the list created using remove_rule.
611 * A NULL pointer on input is handled correctly.
612 */
613 void
ipfw_reap_rules(struct ip_fw * head)614 ipfw_reap_rules(struct ip_fw *head)
615 {
616 struct ip_fw *rule;
617
618 while ((rule = head) != NULL) {
619 head = head->next;
620 ipfw_free_rule(rule);
621 }
622 }
623
624 /*
625 * Rules to keep are
626 * (default || reserved || !match_set || !match_number)
627 * where
628 * default ::= (rule->rulenum == IPFW_DEFAULT_RULE)
629 * // the default rule is always protected
630 *
631 * reserved ::= (cmd == 0 && n == 0 && rule->set == RESVD_SET)
632 * // RESVD_SET is protected only if cmd == 0 and n == 0 ("ipfw flush")
633 *
634 * match_set ::= (cmd == 0 || rule->set == set)
635 * // set number is ignored for cmd == 0
636 *
637 * match_number ::= (cmd == 1 || n == 0 || n == rule->rulenum)
638 * // number is ignored for cmd == 1 or n == 0
639 *
640 */
641 int
ipfw_match_range(struct ip_fw * rule,ipfw_range_tlv * rt)642 ipfw_match_range(struct ip_fw *rule, ipfw_range_tlv *rt)
643 {
644
645 /* Don't match default rule for modification queries */
646 if (rule->rulenum == IPFW_DEFAULT_RULE &&
647 (rt->flags & IPFW_RCFLAG_DEFAULT) == 0)
648 return (0);
649
650 /* Don't match rules in reserved set for flush requests */
651 if ((rt->flags & IPFW_RCFLAG_ALL) != 0 && rule->set == RESVD_SET)
652 return (0);
653
654 /* If we're filtering by set, don't match other sets */
655 if ((rt->flags & IPFW_RCFLAG_SET) != 0 && rule->set != rt->set)
656 return (0);
657
658 if ((rt->flags & IPFW_RCFLAG_RANGE) != 0 &&
659 (rule->rulenum < rt->start_rule || rule->rulenum > rt->end_rule))
660 return (0);
661
662 return (1);
663 }
664
665 struct manage_sets_args {
666 uint32_t set;
667 uint8_t new_set;
668 };
669
670 static int
swap_sets_cb(struct namedobj_instance * ni,struct named_object * no,void * arg)671 swap_sets_cb(struct namedobj_instance *ni, struct named_object *no,
672 void *arg)
673 {
674 struct manage_sets_args *args;
675
676 args = (struct manage_sets_args *)arg;
677 if (no->set == (uint8_t)args->set)
678 no->set = args->new_set;
679 else if (no->set == args->new_set)
680 no->set = (uint8_t)args->set;
681 return (0);
682 }
683
684 static int
move_sets_cb(struct namedobj_instance * ni,struct named_object * no,void * arg)685 move_sets_cb(struct namedobj_instance *ni, struct named_object *no,
686 void *arg)
687 {
688 struct manage_sets_args *args;
689
690 args = (struct manage_sets_args *)arg;
691 if (no->set == (uint8_t)args->set)
692 no->set = args->new_set;
693 return (0);
694 }
695
696 static int
test_sets_cb(struct namedobj_instance * ni,struct named_object * no,void * arg)697 test_sets_cb(struct namedobj_instance *ni, struct named_object *no,
698 void *arg)
699 {
700 struct manage_sets_args *args;
701
702 args = (struct manage_sets_args *)arg;
703 if (no->set != (uint8_t)args->set)
704 return (0);
705 if (ipfw_objhash_lookup_name_type(ni, args->new_set,
706 no->etlv, no->name) != NULL)
707 return (EEXIST);
708 return (0);
709 }
710
711 /*
712 * Generic function to handler moving and swapping sets.
713 */
714 int
ipfw_obj_manage_sets(struct namedobj_instance * ni,uint16_t type,uint32_t set,uint8_t new_set,enum ipfw_sets_cmd cmd)715 ipfw_obj_manage_sets(struct namedobj_instance *ni, uint16_t type,
716 uint32_t set, uint8_t new_set, enum ipfw_sets_cmd cmd)
717 {
718 struct manage_sets_args args;
719 struct named_object *no;
720
721 args.set = set;
722 args.new_set = new_set;
723 switch (cmd) {
724 case SWAP_ALL:
725 return (ipfw_objhash_foreach_type(ni, swap_sets_cb,
726 &args, type));
727 case TEST_ALL:
728 return (ipfw_objhash_foreach_type(ni, test_sets_cb,
729 &args, type));
730 case MOVE_ALL:
731 return (ipfw_objhash_foreach_type(ni, move_sets_cb,
732 &args, type));
733 case COUNT_ONE:
734 /*
735 * @set used to pass kidx.
736 * When @new_set is zero - reset object counter,
737 * otherwise increment it.
738 */
739 no = ipfw_objhash_lookup_kidx(ni, set);
740 if (new_set != 0)
741 no->ocnt++;
742 else
743 no->ocnt = 0;
744 return (0);
745 case TEST_ONE:
746 /* @set used to pass kidx */
747 no = ipfw_objhash_lookup_kidx(ni, set);
748 /*
749 * First check number of references:
750 * when it differs, this mean other rules are holding
751 * reference to given object, so it is not possible to
752 * change its set. Note that refcnt may account references
753 * to some going-to-be-added rules. Since we don't know
754 * their numbers (and even if they will be added) it is
755 * perfectly OK to return error here.
756 */
757 if (no->ocnt != no->refcnt)
758 return (EBUSY);
759 if (ipfw_objhash_lookup_name_type(ni, new_set, type,
760 no->name) != NULL)
761 return (EEXIST);
762 return (0);
763 case MOVE_ONE:
764 /* @set used to pass kidx */
765 no = ipfw_objhash_lookup_kidx(ni, set);
766 no->set = new_set;
767 return (0);
768 }
769 return (EINVAL);
770 }
771
772 /*
773 * Delete rules matching range @rt.
774 * Saves number of deleted rules in @ndel.
775 *
776 * Returns 0 on success.
777 */
778 int
delete_range(struct ip_fw_chain * chain,ipfw_range_tlv * rt,int * ndel)779 delete_range(struct ip_fw_chain *chain, ipfw_range_tlv *rt, int *ndel)
780 {
781 struct ip_fw *reap, *rule, **map;
782 uint32_t end, start;
783 int i, n, ndyn, ofs;
784
785 reap = NULL;
786 IPFW_UH_WLOCK(chain); /* arbitrate writers */
787
788 /*
789 * Stage 1: Determine range to inspect.
790 * Range is half-inclusive, e.g [start, end).
791 */
792 start = 0;
793 end = chain->n_rules - 1;
794
795 if ((rt->flags & IPFW_RCFLAG_RANGE) != 0) {
796 start = ipfw_find_rule(chain, rt->start_rule, 0);
797
798 if (rt->end_rule >= IPFW_DEFAULT_RULE)
799 rt->end_rule = IPFW_DEFAULT_RULE - 1;
800 end = ipfw_find_rule(chain, rt->end_rule, UINT32_MAX);
801 }
802
803 if (rt->flags & IPFW_RCFLAG_DYNAMIC) {
804 /*
805 * Requested deleting only for dynamic states.
806 */
807 *ndel = 0;
808 ipfw_expire_dyn_states(chain, rt);
809 IPFW_UH_WUNLOCK(chain);
810 return (0);
811 }
812
813 /* Allocate new map of the same size */
814 map = get_map(chain, 0, 1 /* locked */);
815 if (map == NULL) {
816 IPFW_UH_WUNLOCK(chain);
817 return (ENOMEM);
818 }
819
820 n = 0;
821 ndyn = 0;
822 ofs = start;
823 /* 1. bcopy the initial part of the map */
824 if (start > 0)
825 bcopy(chain->map, map, start * sizeof(struct ip_fw *));
826 /* 2. copy active rules between start and end */
827 for (i = start; i < end; i++) {
828 rule = chain->map[i];
829 if (ipfw_match_range(rule, rt) == 0) {
830 map[ofs++] = rule;
831 continue;
832 }
833
834 n++;
835 if (ipfw_is_dyn_rule(rule) != 0)
836 ndyn++;
837 }
838 /* 3. copy the final part of the map */
839 bcopy(chain->map + end, map + ofs,
840 (chain->n_rules - end) * sizeof(struct ip_fw *));
841 /* 4. recalculate skipto cache */
842 update_skipto_cache(chain, map);
843 /* 5. swap the maps (under UH_WLOCK + WHLOCK) */
844 map = swap_map(chain, map, chain->n_rules - n);
845 /* 6. Remove all dynamic states originated by deleted rules */
846 if (ndyn > 0)
847 ipfw_expire_dyn_states(chain, rt);
848 /* 7. now remove the rules deleted from the old map */
849 for (i = start; i < end; i++) {
850 rule = map[i];
851 if (ipfw_match_range(rule, rt) == 0)
852 continue;
853 ipfw_reap_add(chain, &reap, rule);
854 }
855 IPFW_UH_WUNLOCK(chain);
856
857 ipfw_reap_rules(reap);
858 if (map != NULL)
859 free(map, M_IPFW);
860 *ndel = n;
861 return (0);
862 }
863
864 static int
move_objects(struct ip_fw_chain * ch,ipfw_range_tlv * rt)865 move_objects(struct ip_fw_chain *ch, ipfw_range_tlv *rt)
866 {
867 struct opcode_obj_rewrite *rw;
868 struct ip_fw *rule;
869 ipfw_insn *cmd;
870 uint32_t kidx;
871 int cmdlen, i, l, c;
872
873 IPFW_UH_WLOCK_ASSERT(ch);
874
875 /* Stage 1: count number of references by given rules */
876 for (c = 0, i = 0; i < ch->n_rules - 1; i++) {
877 rule = ch->map[i];
878 if (ipfw_match_range(rule, rt) == 0)
879 continue;
880 if (rule->set == rt->new_set) /* nothing to do */
881 continue;
882 /* Search opcodes with named objects */
883 for (l = rule->cmd_len, cmdlen = 0, cmd = rule->cmd;
884 l > 0; l -= cmdlen, cmd += cmdlen) {
885 cmdlen = F_LEN(cmd);
886 rw = find_op_rw(cmd, &kidx, NULL);
887 if (rw == NULL || rw->manage_sets == NULL)
888 continue;
889 /*
890 * When manage_sets() returns non-zero value to
891 * COUNT_ONE command, consider this as an object
892 * doesn't support sets (e.g. disabled with sysctl).
893 * So, skip checks for this object.
894 */
895 if (rw->manage_sets(ch, kidx, 1, COUNT_ONE) != 0)
896 continue;
897 c++;
898 }
899 }
900 if (c == 0) /* No objects found */
901 return (0);
902 /* Stage 2: verify "ownership" */
903 for (c = 0, i = 0; (i < ch->n_rules - 1) && c == 0; i++) {
904 rule = ch->map[i];
905 if (ipfw_match_range(rule, rt) == 0)
906 continue;
907 if (rule->set == rt->new_set) /* nothing to do */
908 continue;
909 /* Search opcodes with named objects */
910 for (l = rule->cmd_len, cmdlen = 0, cmd = rule->cmd;
911 l > 0 && c == 0; l -= cmdlen, cmd += cmdlen) {
912 cmdlen = F_LEN(cmd);
913 rw = find_op_rw(cmd, &kidx, NULL);
914 if (rw == NULL || rw->manage_sets == NULL)
915 continue;
916 /* Test for ownership and conflicting names */
917 c = rw->manage_sets(ch, kidx,
918 (uint8_t)rt->new_set, TEST_ONE);
919 }
920 }
921 /* Stage 3: change set and cleanup */
922 for (i = 0; i < ch->n_rules - 1; i++) {
923 rule = ch->map[i];
924 if (ipfw_match_range(rule, rt) == 0)
925 continue;
926 if (rule->set == rt->new_set) /* nothing to do */
927 continue;
928 /* Search opcodes with named objects */
929 for (l = rule->cmd_len, cmdlen = 0, cmd = rule->cmd;
930 l > 0; l -= cmdlen, cmd += cmdlen) {
931 cmdlen = F_LEN(cmd);
932 rw = find_op_rw(cmd, &kidx, NULL);
933 if (rw == NULL || rw->manage_sets == NULL)
934 continue;
935 /* cleanup object counter */
936 rw->manage_sets(ch, kidx,
937 0 /* reset counter */, COUNT_ONE);
938 if (c != 0)
939 continue;
940 /* change set */
941 rw->manage_sets(ch, kidx,
942 (uint8_t)rt->new_set, MOVE_ONE);
943 }
944 }
945 return (c);
946 }
947
948 /*
949 * Changes set of given rule rannge @rt
950 * with each other.
951 *
952 * Returns 0 on success.
953 */
954 static int
move_range(struct ip_fw_chain * chain,ipfw_range_tlv * rt)955 move_range(struct ip_fw_chain *chain, ipfw_range_tlv *rt)
956 {
957 struct ip_fw *rule;
958 int i;
959
960 IPFW_UH_WLOCK(chain);
961
962 /*
963 * Move rules with matching paramenerts to a new set.
964 * This one is much more complex. We have to ensure
965 * that all referenced tables (if any) are referenced
966 * by given rule subset only. Otherwise, we can't move
967 * them to new set and have to return error.
968 */
969 if ((i = move_objects(chain, rt)) != 0) {
970 IPFW_UH_WUNLOCK(chain);
971 return (i);
972 }
973
974 /* XXX: We have to do swap holding WLOCK */
975 for (i = 0; i < chain->n_rules; i++) {
976 rule = chain->map[i];
977 if (ipfw_match_range(rule, rt) == 0)
978 continue;
979 rule->set = rt->new_set;
980 }
981
982 IPFW_UH_WUNLOCK(chain);
983
984 return (0);
985 }
986
987 /*
988 * Returns pointer to action instruction, skips all possible rule
989 * modifiers like O_LOG, O_TAG, O_ALTQ.
990 */
991 ipfw_insn *
ipfw_get_action(struct ip_fw * rule)992 ipfw_get_action(struct ip_fw *rule)
993 {
994 ipfw_insn *cmd;
995 int l, cmdlen;
996
997 cmd = ACTION_PTR(rule);
998 l = rule->cmd_len - rule->act_ofs;
999 while (l > 0) {
1000 switch (cmd->opcode) {
1001 case O_ALTQ:
1002 case O_LOG:
1003 case O_TAG:
1004 break;
1005 default:
1006 return (cmd);
1007 }
1008 cmdlen = F_LEN(cmd);
1009 l -= cmdlen;
1010 cmd += cmdlen;
1011 }
1012 panic("%s: rule (%p) has not action opcode", __func__, rule);
1013 return (NULL);
1014 }
1015
1016 /*
1017 * Clear counters for a specific rule.
1018 * Normally run under IPFW_UH_RLOCK, but these are idempotent ops
1019 * so we only care that rules do not disappear.
1020 */
1021 static void
clear_counters(struct ip_fw * rule,int log_only)1022 clear_counters(struct ip_fw *rule, int log_only)
1023 {
1024 ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
1025
1026 if (log_only == 0)
1027 IPFW_ZERO_RULE_COUNTER(rule);
1028 if (l->o.opcode == O_LOG)
1029 l->log_left = l->max_log;
1030 }
1031
1032 /*
1033 * Flushes rules counters and/or log values on matching range.
1034 *
1035 * Returns number of items cleared.
1036 */
1037 static int
clear_range(struct ip_fw_chain * chain,ipfw_range_tlv * rt,int log_only)1038 clear_range(struct ip_fw_chain *chain, ipfw_range_tlv *rt, int log_only)
1039 {
1040 struct ip_fw *rule;
1041 int num;
1042 int i;
1043
1044 num = 0;
1045 rt->flags |= IPFW_RCFLAG_DEFAULT;
1046
1047 IPFW_UH_WLOCK(chain); /* arbitrate writers */
1048 for (i = 0; i < chain->n_rules; i++) {
1049 rule = chain->map[i];
1050 if (ipfw_match_range(rule, rt) == 0)
1051 continue;
1052 clear_counters(rule, log_only);
1053 num++;
1054 }
1055 IPFW_UH_WUNLOCK(chain);
1056
1057 return (num);
1058 }
1059
1060 static int
check_range_tlv(ipfw_range_tlv * rt)1061 check_range_tlv(ipfw_range_tlv *rt)
1062 {
1063
1064 if (rt->head.length != sizeof(*rt))
1065 return (1);
1066 if (rt->start_rule > rt->end_rule)
1067 return (1);
1068 if (rt->set >= IPFW_MAX_SETS || rt->new_set >= IPFW_MAX_SETS)
1069 return (1);
1070
1071 if ((rt->flags & IPFW_RCFLAG_USER) != rt->flags)
1072 return (1);
1073
1074 return (0);
1075 }
1076
1077 /*
1078 * Delete rules matching specified parameters
1079 * Data layout (v0)(current):
1080 * Request: [ ipfw_obj_header ipfw_range_tlv ]
1081 * Reply: [ ipfw_obj_header ipfw_range_tlv ]
1082 *
1083 * Saves number of deleted rules in ipfw_range_tlv->new_set.
1084 *
1085 * Returns 0 on success.
1086 */
1087 static int
del_rules(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)1088 del_rules(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
1089 struct sockopt_data *sd)
1090 {
1091 ipfw_range_header *rh;
1092 int error, ndel;
1093
1094 if (sd->valsize != sizeof(*rh))
1095 return (EINVAL);
1096
1097 rh = (ipfw_range_header *)ipfw_get_sopt_space(sd, sd->valsize);
1098
1099 if (check_range_tlv(&rh->range) != 0)
1100 return (EINVAL);
1101
1102 ndel = 0;
1103 if ((error = delete_range(chain, &rh->range, &ndel)) != 0)
1104 return (error);
1105
1106 /* Save number of rules deleted */
1107 rh->range.new_set = ndel;
1108 return (0);
1109 }
1110
1111 /*
1112 * Move rules/sets matching specified parameters
1113 * Data layout (v0)(current):
1114 * Request: [ ipfw_obj_header ipfw_range_tlv ]
1115 *
1116 * Returns 0 on success.
1117 */
1118 static int
move_rules(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)1119 move_rules(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
1120 struct sockopt_data *sd)
1121 {
1122 ipfw_range_header *rh;
1123
1124 if (sd->valsize != sizeof(*rh))
1125 return (EINVAL);
1126
1127 rh = (ipfw_range_header *)ipfw_get_sopt_space(sd, sd->valsize);
1128
1129 if (check_range_tlv(&rh->range) != 0)
1130 return (EINVAL);
1131
1132 return (move_range(chain, &rh->range));
1133 }
1134
1135 /*
1136 * Clear rule accounting data matching specified parameters
1137 * Data layout (v0)(current):
1138 * Request: [ ipfw_obj_header ipfw_range_tlv ]
1139 * Reply: [ ipfw_obj_header ipfw_range_tlv ]
1140 *
1141 * Saves number of cleared rules in ipfw_range_tlv->new_set.
1142 *
1143 * Returns 0 on success.
1144 */
1145 static int
clear_rules(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)1146 clear_rules(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
1147 struct sockopt_data *sd)
1148 {
1149 ipfw_range_header *rh;
1150 int log_only, num;
1151 char *msg;
1152
1153 if (sd->valsize != sizeof(*rh))
1154 return (EINVAL);
1155
1156 rh = (ipfw_range_header *)ipfw_get_sopt_space(sd, sd->valsize);
1157
1158 if (check_range_tlv(&rh->range) != 0)
1159 return (EINVAL);
1160
1161 log_only = (op3->opcode == IP_FW_XRESETLOG);
1162
1163 num = clear_range(chain, &rh->range, log_only);
1164
1165 if (rh->range.flags & IPFW_RCFLAG_ALL)
1166 msg = log_only ? "All logging counts reset" :
1167 "Accounting cleared";
1168 else
1169 msg = log_only ? "logging count reset" : "cleared";
1170
1171 if (V_fw_verbose) {
1172 int lev = LOG_SECURITY | LOG_NOTICE;
1173 log(lev, "ipfw: %s.\n", msg);
1174 }
1175
1176 /* Save number of rules cleared */
1177 rh->range.new_set = num;
1178 return (0);
1179 }
1180
1181 static void
enable_sets(struct ip_fw_chain * chain,ipfw_range_tlv * rt)1182 enable_sets(struct ip_fw_chain *chain, ipfw_range_tlv *rt)
1183 {
1184 uint32_t v_set;
1185
1186 IPFW_UH_WLOCK_ASSERT(chain);
1187
1188 /* Change enabled/disabled sets mask */
1189 v_set = (V_set_disable | rt->set) & ~rt->new_set;
1190 v_set &= ~(1 << RESVD_SET); /* set RESVD_SET always enabled */
1191 IPFW_WLOCK(chain);
1192 V_set_disable = v_set;
1193 IPFW_WUNLOCK(chain);
1194 }
1195
1196 static int
swap_sets(struct ip_fw_chain * chain,ipfw_range_tlv * rt,int mv)1197 swap_sets(struct ip_fw_chain *chain, ipfw_range_tlv *rt, int mv)
1198 {
1199 struct opcode_obj_rewrite *rw;
1200 struct ip_fw *rule;
1201 int i;
1202
1203 IPFW_UH_WLOCK_ASSERT(chain);
1204
1205 if (rt->set == rt->new_set) /* nothing to do */
1206 return (0);
1207
1208 if (mv != 0) {
1209 /*
1210 * Berfore moving the rules we need to check that
1211 * there aren't any conflicting named objects.
1212 */
1213 for (rw = ctl3_rewriters;
1214 rw < ctl3_rewriters + ctl3_rsize; rw++) {
1215 if (rw->manage_sets == NULL)
1216 continue;
1217 i = rw->manage_sets(chain, (uint8_t)rt->set,
1218 (uint8_t)rt->new_set, TEST_ALL);
1219 if (i != 0)
1220 return (EEXIST);
1221 }
1222 }
1223 /* Swap or move two sets */
1224 for (i = 0; i < chain->n_rules - 1; i++) {
1225 rule = chain->map[i];
1226 if (rule->set == (uint8_t)rt->set)
1227 rule->set = (uint8_t)rt->new_set;
1228 else if (rule->set == (uint8_t)rt->new_set && mv == 0)
1229 rule->set = (uint8_t)rt->set;
1230 }
1231 for (rw = ctl3_rewriters; rw < ctl3_rewriters + ctl3_rsize; rw++) {
1232 if (rw->manage_sets == NULL)
1233 continue;
1234 rw->manage_sets(chain, (uint8_t)rt->set,
1235 (uint8_t)rt->new_set, mv != 0 ? MOVE_ALL: SWAP_ALL);
1236 }
1237 return (0);
1238 }
1239
1240 /*
1241 * Swaps or moves set
1242 * Data layout (v0)(current):
1243 * Request: [ ipfw_obj_header ipfw_range_tlv ]
1244 *
1245 * Returns 0 on success.
1246 */
1247 static int
manage_sets(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)1248 manage_sets(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
1249 struct sockopt_data *sd)
1250 {
1251 ipfw_range_header *rh;
1252 int ret;
1253
1254 if (sd->valsize != sizeof(*rh))
1255 return (EINVAL);
1256
1257 rh = (ipfw_range_header *)ipfw_get_sopt_space(sd, sd->valsize);
1258
1259 if (rh->range.head.length != sizeof(ipfw_range_tlv))
1260 return (1);
1261 /* enable_sets() expects bitmasks. */
1262 if (op3->opcode != IP_FW_SET_ENABLE &&
1263 (rh->range.set >= IPFW_MAX_SETS ||
1264 rh->range.new_set >= IPFW_MAX_SETS))
1265 return (EINVAL);
1266
1267 ret = 0;
1268 IPFW_UH_WLOCK(chain);
1269 switch (op3->opcode) {
1270 case IP_FW_SET_SWAP:
1271 case IP_FW_SET_MOVE:
1272 ret = swap_sets(chain, &rh->range,
1273 op3->opcode == IP_FW_SET_MOVE);
1274 break;
1275 case IP_FW_SET_ENABLE:
1276 enable_sets(chain, &rh->range);
1277 break;
1278 }
1279 IPFW_UH_WUNLOCK(chain);
1280
1281 return (ret);
1282 }
1283
1284 /* Check rule format */
1285 int
ipfw_check_rule(struct ip_fw_rule * rule,size_t size,struct rule_check_info * ci)1286 ipfw_check_rule(struct ip_fw_rule *rule, size_t size,
1287 struct rule_check_info *ci)
1288 {
1289 int l;
1290
1291 if (size < sizeof(*rule)) {
1292 printf("ipfw: rule too short\n");
1293 return (EINVAL);
1294 }
1295
1296 /* Check for valid cmd_len */
1297 l = roundup2(RULESIZE(rule), sizeof(uint64_t));
1298 if (l != size) {
1299 printf("ipfw: size mismatch (have %zu want %d)\n", size, l);
1300 return (EINVAL);
1301 }
1302 if (rule->act_ofs >= rule->cmd_len) {
1303 printf("ipfw: bogus action offset (%u > %u)\n",
1304 rule->act_ofs, rule->cmd_len - 1);
1305 return (EINVAL);
1306 }
1307
1308 if (rule->rulenum > IPFW_DEFAULT_RULE - 1)
1309 return (EINVAL);
1310
1311 return (check_ipfw_rule_body(rule->cmd, rule->cmd_len, ci));
1312 }
1313
1314 #define CHECK_TARG(a, c) \
1315 ((a) == IP_FW_TARG && ((c)->flags & IPFW_RCIFLAG_HAS_STATE))
1316
1317 enum ipfw_opcheck_result
ipfw_check_opcode(ipfw_insn ** pcmd,int * plen,struct rule_check_info * ci)1318 ipfw_check_opcode(ipfw_insn **pcmd, int *plen, struct rule_check_info *ci)
1319 {
1320 ipfw_insn *cmd;
1321 size_t cmdlen;
1322
1323 cmd = *pcmd;
1324 cmdlen = F_LEN(cmd);
1325
1326 switch (cmd->opcode) {
1327 case O_PROBE_STATE:
1328 case O_KEEP_STATE:
1329 if (cmdlen != F_INSN_SIZE(ipfw_insn_kidx))
1330 return (BAD_SIZE);
1331 ci->object_opcodes++;
1332 ci->flags |= IPFW_RCIFLAG_HAS_STATE;
1333 break;
1334 case O_PROTO:
1335 case O_IP_SRC_ME:
1336 case O_IP_DST_ME:
1337 case O_LAYER2:
1338 case O_IN:
1339 case O_FRAG:
1340 case O_DIVERTED:
1341 case O_IPOPT:
1342 case O_IPTOS:
1343 case O_IPPRECEDENCE:
1344 case O_IPVER:
1345 case O_SOCKARG:
1346 case O_TCPFLAGS:
1347 case O_TCPOPTS:
1348 case O_ESTAB:
1349 case O_VERREVPATH:
1350 case O_VERSRCREACH:
1351 case O_ANTISPOOF:
1352 case O_IPSEC:
1353 #ifdef INET6
1354 case O_IP6_SRC_ME:
1355 case O_IP6_DST_ME:
1356 case O_EXT_HDR:
1357 case O_IP6:
1358 #endif
1359 case O_IP4:
1360 case O_TAG:
1361 case O_SKIP_ACTION:
1362 if (cmdlen != F_INSN_SIZE(ipfw_insn))
1363 return (BAD_SIZE);
1364 break;
1365
1366 case O_EXTERNAL_ACTION:
1367 if (cmdlen != F_INSN_SIZE(ipfw_insn_kidx))
1368 return (BAD_SIZE);
1369
1370 if (insntod(cmd, kidx)->kidx == 0)
1371 return (FAILED);
1372 ci->object_opcodes++;
1373 /*
1374 * Do we have O_EXTERNAL_INSTANCE or O_EXTERNAL_DATA
1375 * opcode?
1376 */
1377 if (*plen != cmdlen) {
1378 *plen -= cmdlen;
1379 cmd += cmdlen;
1380 *pcmd = cmd;
1381 cmdlen = F_LEN(cmd);
1382 if (cmd->opcode == O_EXTERNAL_DATA)
1383 return (CHECK_ACTION);
1384 if (cmd->opcode != O_EXTERNAL_INSTANCE) {
1385 printf("ipfw: invalid opcode "
1386 "next to external action %u\n",
1387 cmd->opcode);
1388 return (FAILED);
1389 }
1390 if (cmdlen != F_INSN_SIZE(ipfw_insn_kidx))
1391 return (BAD_SIZE);
1392 if (insntod(cmd, kidx)->kidx == 0)
1393 return (FAILED);
1394 ci->object_opcodes++;
1395 }
1396 return (CHECK_ACTION);
1397
1398 case O_FIB:
1399 if (cmdlen != F_INSN_SIZE(ipfw_insn))
1400 return (BAD_SIZE);
1401 if (cmd->arg1 >= rt_numfibs) {
1402 printf("ipfw: invalid fib number %d\n",
1403 cmd->arg1);
1404 return (FAILED);
1405 }
1406 break;
1407
1408 case O_SETFIB:
1409 if (cmdlen != F_INSN_SIZE(ipfw_insn))
1410 return (BAD_SIZE);
1411 if ((cmd->arg1 != IP_FW_TARG) &&
1412 ((cmd->arg1 & 0x7FFF) >= rt_numfibs)) {
1413 printf("ipfw: invalid fib number %d\n",
1414 cmd->arg1 & 0x7FFF);
1415 return (FAILED);
1416 }
1417 if (CHECK_TARG(cmd->arg1, ci))
1418 goto bad_targ;
1419 return (CHECK_ACTION);
1420
1421 case O_UID:
1422 case O_GID:
1423 case O_JAIL:
1424 case O_IP_SRC:
1425 case O_IP_DST:
1426 case O_TCPSEQ:
1427 case O_TCPACK:
1428 case O_PROB:
1429 case O_ICMPTYPE:
1430 if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
1431 return (BAD_SIZE);
1432 break;
1433
1434 case O_LIMIT:
1435 if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
1436 return (BAD_SIZE);
1437 ci->object_opcodes++;
1438 break;
1439
1440 case O_LOG:
1441 if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
1442 return (BAD_SIZE);
1443 insntod(cmd, log)->log_left = insntod(cmd, log)->max_log;
1444 break;
1445
1446 case O_IP_SRC_MASK:
1447 case O_IP_DST_MASK:
1448 /* only odd command lengths */
1449 if ((cmdlen & 1) == 0)
1450 return (BAD_SIZE);
1451 break;
1452
1453 case O_IP_SRC_SET:
1454 case O_IP_DST_SET:
1455 if (cmd->arg1 == 0 || cmd->arg1 > 256) {
1456 printf("ipfw: invalid set size %d\n",
1457 cmd->arg1);
1458 return (FAILED);
1459 }
1460 if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
1461 (cmd->arg1+31)/32 )
1462 return (BAD_SIZE);
1463 break;
1464
1465 case O_IP_SRC_LOOKUP:
1466 case O_IP_DST_LOOKUP:
1467 case O_IP_FLOW_LOOKUP:
1468 case O_MAC_SRC_LOOKUP:
1469 case O_MAC_DST_LOOKUP:
1470 if (cmdlen != F_INSN_SIZE(ipfw_insn_kidx) &&
1471 cmdlen != F_INSN_SIZE(ipfw_insn_table))
1472 return (BAD_SIZE);
1473 if (insntod(cmd, kidx)->kidx >= V_fw_tables_max) {
1474 printf("ipfw: invalid table index %u\n",
1475 insntod(cmd, kidx)->kidx);
1476 return (FAILED);
1477 }
1478 ci->object_opcodes++;
1479 break;
1480 case O_MACADDR2:
1481 if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
1482 return (BAD_SIZE);
1483 break;
1484
1485 case O_NOP:
1486 case O_IPID:
1487 case O_IPTTL:
1488 case O_IPLEN:
1489 case O_TCPDATALEN:
1490 case O_TCPMSS:
1491 case O_TCPWIN:
1492 case O_TAGGED:
1493 if (cmdlen < 1 || cmdlen > 31)
1494 return (BAD_SIZE);
1495 break;
1496
1497 case O_DSCP:
1498 case O_MARK:
1499 if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) + 1)
1500 return (BAD_SIZE);
1501 break;
1502
1503 case O_MAC_TYPE:
1504 case O_IP_SRCPORT:
1505 case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
1506 if (cmdlen < 2 || cmdlen > 31)
1507 return (BAD_SIZE);
1508 break;
1509
1510 case O_RECV:
1511 case O_XMIT:
1512 case O_VIA:
1513 if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
1514 return (BAD_SIZE);
1515 ci->object_opcodes++;
1516 break;
1517
1518 case O_ALTQ:
1519 if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
1520 return (BAD_SIZE);
1521 break;
1522
1523 case O_PIPE:
1524 case O_QUEUE:
1525 if (cmdlen != F_INSN_SIZE(ipfw_insn))
1526 return (BAD_SIZE);
1527 if (CHECK_TARG(cmd->arg1, ci))
1528 goto bad_targ;
1529 return (CHECK_ACTION);
1530
1531 case O_FORWARD_IP:
1532 if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
1533 return (BAD_SIZE);
1534 if (insntoc(cmd, sa)->sa.sin_addr.s_addr == INADDR_ANY &&
1535 (ci->flags & IPFW_RCIFLAG_HAS_STATE))
1536 goto bad_targ;
1537 return (CHECK_ACTION);
1538 #ifdef INET6
1539 case O_FORWARD_IP6:
1540 if (cmdlen != F_INSN_SIZE(ipfw_insn_sa6))
1541 return (BAD_SIZE);
1542 return (CHECK_ACTION);
1543 #endif /* INET6 */
1544
1545 case O_DIVERT:
1546 case O_TEE:
1547 if (ip_divert_ptr == NULL)
1548 return (FAILED);
1549 if (cmdlen != F_INSN_SIZE(ipfw_insn))
1550 return (BAD_SIZE);
1551 if (CHECK_TARG(cmd->arg1, ci))
1552 goto bad_targ;
1553 return (CHECK_ACTION);
1554 case O_NETGRAPH:
1555 case O_NGTEE:
1556 if (ng_ipfw_input_p == NULL)
1557 return (FAILED);
1558 if (cmdlen != F_INSN_SIZE(ipfw_insn))
1559 return (BAD_SIZE);
1560 if (CHECK_TARG(cmd->arg1, ci))
1561 goto bad_targ;
1562 return (CHECK_ACTION);
1563 case O_NAT:
1564 if (!IPFW_NAT_LOADED)
1565 return (FAILED);
1566 if (cmdlen != F_INSN_SIZE(ipfw_insn_nat))
1567 return (BAD_SIZE);
1568 if (CHECK_TARG(cmd->arg1, ci))
1569 goto bad_targ;
1570 return (CHECK_ACTION);
1571
1572 case O_SKIPTO:
1573 case O_CALLRETURN:
1574 case O_SETMARK:
1575 if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
1576 return (BAD_SIZE);
1577 /* O_CALLRETURN + F_NOT means 'return' opcode. */
1578 if (cmd->opcode != O_CALLRETURN || (cmd->len & F_NOT) == 0) {
1579 if (CHECK_TARG(insntoc(cmd, u32)->d[0], ci))
1580 goto bad_targ;
1581 }
1582 return (CHECK_ACTION);
1583
1584 case O_CHECK_STATE:
1585 if (cmdlen != F_INSN_SIZE(ipfw_insn_kidx))
1586 return (BAD_SIZE);
1587 ci->object_opcodes++;
1588 return (CHECK_ACTION);
1589
1590 case O_FORWARD_MAC: /* XXX not implemented yet */
1591 case O_COUNT:
1592 case O_ACCEPT:
1593 case O_DENY:
1594 case O_REJECT:
1595 case O_SETDSCP:
1596 #ifdef INET6
1597 case O_UNREACH6:
1598 #endif
1599 case O_REASS:
1600 if (cmdlen != F_INSN_SIZE(ipfw_insn))
1601 return (BAD_SIZE);
1602 if (cmd->opcode == O_SETDSCP && CHECK_TARG(cmd->arg1, ci))
1603 goto bad_targ;
1604 return (CHECK_ACTION);
1605 #ifdef INET6
1606 case O_IP6_SRC:
1607 case O_IP6_DST:
1608 if (cmdlen != F_INSN_SIZE(struct in6_addr) +
1609 F_INSN_SIZE(ipfw_insn))
1610 return (BAD_SIZE);
1611 break;
1612
1613 case O_FLOW6ID:
1614 if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
1615 ((ipfw_insn_u32 *)cmd)->o.arg1)
1616 return (BAD_SIZE);
1617 break;
1618
1619 case O_IP6_SRC_MASK:
1620 case O_IP6_DST_MASK:
1621 if ( !(cmdlen & 1) || cmdlen > 127)
1622 return (BAD_SIZE);
1623 break;
1624 case O_ICMP6TYPE:
1625 if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) )
1626 return (BAD_SIZE);
1627 break;
1628 #endif
1629
1630 default:
1631 switch (cmd->opcode) {
1632 #ifndef INET6
1633 case O_IP6_SRC_ME:
1634 case O_IP6_DST_ME:
1635 case O_EXT_HDR:
1636 case O_IP6:
1637 case O_UNREACH6:
1638 case O_IP6_SRC:
1639 case O_IP6_DST:
1640 case O_FLOW6ID:
1641 case O_IP6_SRC_MASK:
1642 case O_IP6_DST_MASK:
1643 case O_ICMP6TYPE:
1644 printf("ipfw: no IPv6 support in kernel\n");
1645 return (FAILED);
1646 #endif
1647 default:
1648 printf("ipfw: opcode %d: unknown opcode\n",
1649 cmd->opcode);
1650 return (FAILED);
1651 }
1652 }
1653 return (SUCCESS);
1654 bad_targ:
1655 /*
1656 * For dynamic states we can not correctly initialize tablearg value,
1657 * because we don't go through rule's opcodes except rule action.
1658 */
1659 printf("ipfw: tablearg is not allowed with dynamic states\n");
1660 return (FAILED);
1661 }
1662
1663 static __noinline int
check_ipfw_rule_body(ipfw_insn * cmd,int cmd_len,struct rule_check_info * ci)1664 check_ipfw_rule_body(ipfw_insn *cmd, int cmd_len, struct rule_check_info *ci)
1665 {
1666 int cmdlen, l;
1667 int have_action, ret;
1668
1669 /*
1670 * Now go for the individual checks. Very simple ones, basically only
1671 * instruction sizes.
1672 */
1673 have_action = 0;
1674 for (l = cmd_len; l > 0 ; l -= cmdlen, cmd += cmdlen) {
1675 cmdlen = F_LEN(cmd);
1676 if (cmdlen > l) {
1677 printf("ipfw: opcode %d: size truncated\n",
1678 cmd->opcode);
1679 return (EINVAL);
1680 }
1681 if (ci->version != IP_FW3_OPVER)
1682 ret = (*check_opcode_f)(&cmd, &l, ci);
1683 else
1684 ret = ipfw_check_opcode(&cmd, &l, ci);
1685
1686 if (ret == CHECK_ACTION) {
1687 if (have_action != 0) {
1688 printf("ipfw: opcode %d: multiple actions"
1689 " not allowed\n", cmd->opcode);
1690 ret = FAILED;
1691 } else
1692 have_action = 1;
1693
1694 if (l != F_LEN(cmd)) {
1695 printf("ipfw: opcode %d: action must be"
1696 " last opcode\n", cmd->opcode);
1697 ret = FAILED;
1698 }
1699 }
1700 switch (ret) {
1701 case SUCCESS:
1702 continue;
1703 case BAD_SIZE:
1704 printf("ipfw: opcode %d: wrong size %d\n",
1705 cmd->opcode, cmdlen);
1706 /* FALLTHROUGH */
1707 case FAILED:
1708 return (EINVAL);
1709 }
1710 }
1711 if (have_action == 0) {
1712 printf("ipfw: missing action\n");
1713 return (EINVAL);
1714 }
1715 return (0);
1716 }
1717
1718 struct dump_args {
1719 uint32_t b; /* start rule */
1720 uint32_t e; /* end rule */
1721 uint32_t rcount; /* number of rules */
1722 uint32_t rsize; /* rules size */
1723 uint32_t tcount; /* number of tables */
1724 int rcounters; /* counters */
1725 uint32_t *bmask; /* index bitmask of used named objects */
1726 };
1727
1728 void
ipfw_export_obj_ntlv(struct named_object * no,ipfw_obj_ntlv * ntlv)1729 ipfw_export_obj_ntlv(struct named_object *no, ipfw_obj_ntlv *ntlv)
1730 {
1731
1732 ntlv->head.type = no->etlv;
1733 ntlv->head.length = sizeof(*ntlv);
1734 ntlv->idx = no->kidx;
1735 strlcpy(ntlv->name, no->name, sizeof(ntlv->name));
1736 }
1737
1738 /*
1739 * Export named object info in instance @ni, identified by @kidx
1740 * to ipfw_obj_ntlv. TLV is allocated from @sd space.
1741 *
1742 * Returns 0 on success.
1743 */
1744 static int
export_objhash_ntlv(struct namedobj_instance * ni,uint32_t kidx,struct sockopt_data * sd)1745 export_objhash_ntlv(struct namedobj_instance *ni, uint32_t kidx,
1746 struct sockopt_data *sd)
1747 {
1748 struct named_object *no;
1749 ipfw_obj_ntlv *ntlv;
1750
1751 no = ipfw_objhash_lookup_kidx(ni, kidx);
1752 KASSERT(no != NULL, ("invalid object kernel index passed"));
1753
1754 ntlv = (ipfw_obj_ntlv *)ipfw_get_sopt_space(sd, sizeof(*ntlv));
1755 if (ntlv == NULL)
1756 return (ENOMEM);
1757
1758 ipfw_export_obj_ntlv(no, ntlv);
1759 return (0);
1760 }
1761
1762 static int
export_named_objects(struct namedobj_instance * ni,struct dump_args * da,struct sockopt_data * sd)1763 export_named_objects(struct namedobj_instance *ni, struct dump_args *da,
1764 struct sockopt_data *sd)
1765 {
1766 uint32_t i;
1767 int error;
1768
1769 for (i = 0; i < IPFW_TABLES_MAX && da->tcount > 0; i++) {
1770 if ((da->bmask[i / 32] & (1 << (i % 32))) == 0)
1771 continue;
1772 if ((error = export_objhash_ntlv(ni, i, sd)) != 0)
1773 return (error);
1774 da->tcount--;
1775 }
1776 return (0);
1777 }
1778
1779 static int
dump_named_objects(struct ip_fw_chain * ch,struct dump_args * da,struct sockopt_data * sd)1780 dump_named_objects(struct ip_fw_chain *ch, struct dump_args *da,
1781 struct sockopt_data *sd)
1782 {
1783 ipfw_obj_ctlv *ctlv;
1784 int error;
1785
1786 MPASS(da->tcount > 0);
1787 /* Header first */
1788 ctlv = (ipfw_obj_ctlv *)ipfw_get_sopt_space(sd, sizeof(*ctlv));
1789 if (ctlv == NULL)
1790 return (ENOMEM);
1791 ctlv->head.type = IPFW_TLV_TBLNAME_LIST;
1792 ctlv->head.length = da->tcount * sizeof(ipfw_obj_ntlv) +
1793 sizeof(*ctlv);
1794 ctlv->count = da->tcount;
1795 ctlv->objsize = sizeof(ipfw_obj_ntlv);
1796
1797 /* Dump table names first (if any) */
1798 error = export_named_objects(ipfw_get_table_objhash(ch), da, sd);
1799 if (error != 0)
1800 return (error);
1801 /* Then dump another named objects */
1802 da->bmask += IPFW_TABLES_MAX / 32;
1803 return (export_named_objects(CHAIN_TO_SRV(ch), da, sd));
1804 }
1805
1806 /*
1807 * Dumps static rules with table TLVs in buffer @sd.
1808 *
1809 * Returns 0 on success.
1810 */
1811 static int
dump_static_rules(struct ip_fw_chain * chain,struct dump_args * da,struct sockopt_data * sd)1812 dump_static_rules(struct ip_fw_chain *chain, struct dump_args *da,
1813 struct sockopt_data *sd)
1814 {
1815 ipfw_obj_ctlv *ctlv;
1816 struct ip_fw *krule;
1817 caddr_t dst;
1818 int i, l;
1819
1820 /* Dump rules */
1821 ctlv = (ipfw_obj_ctlv *)ipfw_get_sopt_space(sd, sizeof(*ctlv));
1822 if (ctlv == NULL)
1823 return (ENOMEM);
1824 ctlv->head.type = IPFW_TLV_RULE_LIST;
1825 ctlv->head.length = da->rsize + sizeof(*ctlv);
1826 ctlv->count = da->rcount;
1827
1828 for (i = da->b; i < da->e; i++) {
1829 krule = chain->map[i];
1830
1831 l = RULEUSIZE1(krule) + sizeof(ipfw_obj_tlv);
1832 if (da->rcounters != 0)
1833 l += sizeof(struct ip_fw_bcounter);
1834 dst = (caddr_t)ipfw_get_sopt_space(sd, l);
1835 if (dst == NULL)
1836 return (ENOMEM);
1837
1838 export_rule1(krule, dst, l, da->rcounters);
1839 }
1840
1841 return (0);
1842 }
1843
1844 int
ipfw_mark_object_kidx(uint32_t * bmask,uint16_t etlv,uint32_t kidx)1845 ipfw_mark_object_kidx(uint32_t *bmask, uint16_t etlv, uint32_t kidx)
1846 {
1847 uint32_t bidx;
1848
1849 /*
1850 * Maintain separate bitmasks for table and non-table objects.
1851 */
1852 bidx = (etlv == IPFW_TLV_TBL_NAME) ? 0: IPFW_TABLES_MAX / 32;
1853 bidx += kidx / 32;
1854 if ((bmask[bidx] & (1 << (kidx % 32))) != 0)
1855 return (0);
1856
1857 bmask[bidx] |= 1 << (kidx % 32);
1858 return (1);
1859 }
1860
1861 /*
1862 * Marks every object index used in @rule with bit in @bmask.
1863 * Used to generate bitmask of referenced tables/objects for given ruleset
1864 * or its part.
1865 */
1866 static void
mark_rule_objects(struct ip_fw_chain * ch,struct ip_fw * rule,struct dump_args * da)1867 mark_rule_objects(struct ip_fw_chain *ch, struct ip_fw *rule,
1868 struct dump_args *da)
1869 {
1870 struct opcode_obj_rewrite *rw;
1871 ipfw_insn *cmd;
1872 uint32_t kidx;
1873 int cmdlen, l;
1874 uint8_t subtype;
1875
1876 l = rule->cmd_len;
1877 cmd = rule->cmd;
1878 cmdlen = 0;
1879 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) {
1880 cmdlen = F_LEN(cmd);
1881
1882 rw = find_op_rw(cmd, &kidx, &subtype);
1883 if (rw == NULL)
1884 continue;
1885
1886 if (ipfw_mark_object_kidx(da->bmask, rw->etlv, kidx))
1887 da->tcount++;
1888 }
1889 }
1890
1891 /*
1892 * Dumps requested objects data
1893 * Data layout (version 0)(current):
1894 * Request: [ ipfw_cfg_lheader ] + IPFW_CFG_GET_* flags
1895 * size = ipfw_cfg_lheader.size
1896 * Reply: [ ipfw_cfg_lheader
1897 * [ ipfw_obj_ctlv(IPFW_TLV_TBL_LIST) ipfw_obj_ntlv x N ] (optional)
1898 * [ ipfw_obj_ctlv(IPFW_TLV_RULE_LIST)
1899 * ipfw_obj_tlv(IPFW_TLV_RULE_ENT) [ ip_fw_bcounter (optional) ip_fw_rule ]
1900 * ] (optional)
1901 * [ ipfw_obj_ctlv(IPFW_TLV_STATE_LIST) ipfw_obj_dyntlv x N ] (optional)
1902 * ]
1903 * * NOTE IPFW_TLV_STATE_LIST has the single valid field: objsize.
1904 * The rest (size, count) are set to zero and needs to be ignored.
1905 *
1906 * Returns 0 on success.
1907 */
1908 static int
dump_config(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)1909 dump_config(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
1910 struct sockopt_data *sd)
1911 {
1912 struct dump_args da;
1913 ipfw_cfg_lheader *hdr;
1914 struct ip_fw *rule;
1915 size_t sz, rnum;
1916 uint32_t hdr_flags, *bmask;
1917 int error, i;
1918
1919 hdr = (ipfw_cfg_lheader *)ipfw_get_sopt_header(sd, sizeof(*hdr));
1920 if (hdr == NULL)
1921 return (EINVAL);
1922
1923 error = 0;
1924 bmask = NULL;
1925 memset(&da, 0, sizeof(da));
1926 /*
1927 * Allocate needed state.
1928 * Note we allocate 2xspace mask, for table & srv
1929 */
1930 if (hdr->flags & (IPFW_CFG_GET_STATIC | IPFW_CFG_GET_STATES))
1931 da.bmask = bmask = malloc(
1932 sizeof(uint32_t) * IPFW_TABLES_MAX * 2 / 32, M_TEMP,
1933 M_WAITOK | M_ZERO);
1934 IPFW_UH_RLOCK(chain);
1935
1936 /*
1937 * STAGE 1: Determine size/count for objects in range.
1938 * Prepare used tables bitmask.
1939 */
1940 sz = sizeof(ipfw_cfg_lheader);
1941 da.e = chain->n_rules;
1942
1943 if (hdr->end_rule != 0) {
1944 /* Handle custom range */
1945 if ((rnum = hdr->start_rule) > IPFW_DEFAULT_RULE)
1946 rnum = IPFW_DEFAULT_RULE;
1947 da.b = ipfw_find_rule(chain, rnum, 0);
1948 rnum = (hdr->end_rule < IPFW_DEFAULT_RULE) ?
1949 hdr->end_rule + 1: IPFW_DEFAULT_RULE;
1950 da.e = ipfw_find_rule(chain, rnum, UINT32_MAX) + 1;
1951 }
1952
1953 if (hdr->flags & IPFW_CFG_GET_STATIC) {
1954 for (i = da.b; i < da.e; i++) {
1955 rule = chain->map[i];
1956 da.rsize += RULEUSIZE1(rule) + sizeof(ipfw_obj_tlv);
1957 da.rcount++;
1958 /* Update bitmask of used objects for given range */
1959 mark_rule_objects(chain, rule, &da);
1960 }
1961 /* Add counters if requested */
1962 if (hdr->flags & IPFW_CFG_GET_COUNTERS) {
1963 da.rsize += sizeof(struct ip_fw_bcounter) * da.rcount;
1964 da.rcounters = 1;
1965 }
1966 sz += da.rsize + sizeof(ipfw_obj_ctlv);
1967 }
1968
1969 if (hdr->flags & IPFW_CFG_GET_STATES) {
1970 sz += sizeof(ipfw_obj_ctlv) +
1971 ipfw_dyn_get_count(bmask, &i) * sizeof(ipfw_obj_dyntlv);
1972 da.tcount += i;
1973 }
1974
1975 if (da.tcount > 0)
1976 sz += da.tcount * sizeof(ipfw_obj_ntlv) +
1977 sizeof(ipfw_obj_ctlv);
1978
1979 /*
1980 * Fill header anyway.
1981 * Note we have to save header fields to stable storage
1982 * buffer inside @sd can be flushed after dumping rules
1983 */
1984 hdr->size = sz;
1985 hdr->set_mask = ~V_set_disable;
1986 hdr_flags = hdr->flags;
1987 hdr = NULL;
1988
1989 if (sd->valsize < sz) {
1990 error = ENOMEM;
1991 goto cleanup;
1992 }
1993
1994 /* STAGE2: Store actual data */
1995 if (da.tcount > 0) {
1996 error = dump_named_objects(chain, &da, sd);
1997 if (error != 0)
1998 goto cleanup;
1999 }
2000
2001 if (hdr_flags & IPFW_CFG_GET_STATIC) {
2002 error = dump_static_rules(chain, &da, sd);
2003 if (error != 0)
2004 goto cleanup;
2005 }
2006
2007 if (hdr_flags & IPFW_CFG_GET_STATES)
2008 error = ipfw_dump_states(chain, sd);
2009
2010 cleanup:
2011 IPFW_UH_RUNLOCK(chain);
2012
2013 if (bmask != NULL)
2014 free(bmask, M_TEMP);
2015
2016 return (error);
2017 }
2018
2019 int
ipfw_check_object_name_generic(const char * name)2020 ipfw_check_object_name_generic(const char *name)
2021 {
2022 int nsize;
2023
2024 nsize = sizeof(((ipfw_obj_ntlv *)0)->name);
2025 if (strnlen(name, nsize) == nsize)
2026 return (EINVAL);
2027 if (name[0] == '\0')
2028 return (EINVAL);
2029 return (0);
2030 }
2031
2032 /*
2033 * Creates non-existent objects referenced by rule.
2034 *
2035 * Return 0 on success.
2036 */
2037 int
create_objects_compat(struct ip_fw_chain * ch,ipfw_insn * cmd,struct obj_idx * oib,struct obj_idx * pidx,struct tid_info * ti)2038 create_objects_compat(struct ip_fw_chain *ch, ipfw_insn *cmd,
2039 struct obj_idx *oib, struct obj_idx *pidx, struct tid_info *ti)
2040 {
2041 struct opcode_obj_rewrite *rw;
2042 struct obj_idx *p;
2043 uint32_t kidx;
2044 int error;
2045
2046 /*
2047 * Compatibility stuff: do actual creation for non-existing,
2048 * but referenced objects.
2049 */
2050 for (p = oib; p < pidx; p++) {
2051 if (p->kidx != 0)
2052 continue;
2053
2054 ti->uidx = p->uidx;
2055 ti->type = p->type;
2056 ti->atype = 0;
2057
2058 rw = find_op_rw(cmd + p->off, NULL, NULL);
2059 KASSERT(rw != NULL, ("Unable to find handler for op %d",
2060 (cmd + p->off)->opcode));
2061
2062 if (rw->create_object == NULL)
2063 error = EOPNOTSUPP;
2064 else
2065 error = rw->create_object(ch, ti, &kidx);
2066 if (error == 0) {
2067 p->kidx = kidx;
2068 continue;
2069 }
2070
2071 /*
2072 * Error happened. We have to rollback everything.
2073 * Drop all already acquired references.
2074 */
2075 IPFW_UH_WLOCK(ch);
2076 unref_oib_objects(ch, cmd, oib, pidx);
2077 IPFW_UH_WUNLOCK(ch);
2078
2079 return (error);
2080 }
2081
2082 return (0);
2083 }
2084
2085 /*
2086 * Unreferences all already-referenced objects in given @cmd rule,
2087 * using information in @oib.
2088 *
2089 * Used to rollback partially converted rule on error.
2090 */
2091 static void
unref_oib_objects(struct ip_fw_chain * ch,ipfw_insn * cmd,struct obj_idx * oib,struct obj_idx * end)2092 unref_oib_objects(struct ip_fw_chain *ch, ipfw_insn *cmd, struct obj_idx *oib,
2093 struct obj_idx *end)
2094 {
2095 struct opcode_obj_rewrite *rw;
2096 struct named_object *no;
2097 struct obj_idx *p;
2098
2099 IPFW_UH_WLOCK_ASSERT(ch);
2100
2101 for (p = oib; p < end; p++) {
2102 if (p->kidx == 0)
2103 continue;
2104
2105 rw = find_op_rw(cmd + p->off, NULL, NULL);
2106 KASSERT(rw != NULL, ("Unable to find handler for op %d",
2107 (cmd + p->off)->opcode));
2108
2109 /* Find & unref by existing idx */
2110 no = rw->find_bykidx(ch, p->kidx);
2111 KASSERT(no != NULL, ("Ref'd object %d disappeared", p->kidx));
2112 no->refcnt--;
2113 }
2114 }
2115
2116 /*
2117 * Remove references from every object used in @rule.
2118 * Used at rule removal code.
2119 */
2120 static void
unref_rule_objects(struct ip_fw_chain * ch,struct ip_fw * rule)2121 unref_rule_objects(struct ip_fw_chain *ch, struct ip_fw *rule)
2122 {
2123 struct opcode_obj_rewrite *rw;
2124 struct named_object *no;
2125 ipfw_insn *cmd;
2126 uint32_t kidx;
2127 int cmdlen, l;
2128 uint8_t subtype;
2129
2130 IPFW_UH_WLOCK_ASSERT(ch);
2131
2132 l = rule->cmd_len;
2133 cmd = rule->cmd;
2134 cmdlen = 0;
2135 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) {
2136 cmdlen = F_LEN(cmd);
2137
2138 rw = find_op_rw(cmd, &kidx, &subtype);
2139 if (rw == NULL)
2140 continue;
2141 no = rw->find_bykidx(ch, kidx);
2142
2143 KASSERT(no != NULL, ("object id %d not found", kidx));
2144 KASSERT(no->subtype == subtype,
2145 ("wrong type %d (%d) for object id %d",
2146 no->subtype, subtype, kidx));
2147 KASSERT(no->refcnt > 0, ("refcount for object %d is %d",
2148 kidx, no->refcnt));
2149
2150 if (no->refcnt == 1 && rw->destroy_object != NULL)
2151 rw->destroy_object(ch, no);
2152 else
2153 no->refcnt--;
2154 }
2155 }
2156
2157 /*
2158 * Find and reference object (if any) stored in instruction @cmd.
2159 *
2160 * Saves object info in @pidx, sets
2161 * - @unresolved to 1 if object should exists but not found
2162 *
2163 * Returns non-zero value in case of error.
2164 */
2165 static int
ref_opcode_object(struct ip_fw_chain * ch,ipfw_insn * cmd,struct tid_info * ti,struct obj_idx * pidx,int * unresolved)2166 ref_opcode_object(struct ip_fw_chain *ch, ipfw_insn *cmd, struct tid_info *ti,
2167 struct obj_idx *pidx, int *unresolved)
2168 {
2169 struct named_object *no;
2170 struct opcode_obj_rewrite *rw;
2171 int error;
2172
2173 /* Check if this opcode is candidate for rewrite */
2174 rw = find_op_rw(cmd, &ti->uidx, &ti->type);
2175 if (rw == NULL)
2176 return (0);
2177
2178 /* Need to rewrite. Save necessary fields */
2179 pidx->uidx = ti->uidx;
2180 pidx->type = ti->type;
2181
2182 /* Try to find referenced kernel object */
2183 error = rw->find_byname(ch, ti, &no);
2184 if (error != 0)
2185 return (error);
2186 if (no == NULL) {
2187 /*
2188 * Report about unresolved object for automaic
2189 * creation.
2190 */
2191 *unresolved = 1;
2192 return (0);
2193 }
2194
2195 /*
2196 * Object is already exist.
2197 * Its subtype should match with expected value.
2198 */
2199 if (ti->type != no->subtype)
2200 return (EINVAL);
2201
2202 /* Bump refcount and update kidx. */
2203 no->refcnt++;
2204 rw->update(cmd, no->kidx);
2205 return (0);
2206 }
2207
2208 /*
2209 * Finds and bumps refcount for objects referenced by given @rule.
2210 * Auto-creates non-existing tables.
2211 * Fills in @oib array with userland/kernel indexes.
2212 *
2213 * Returns 0 on success.
2214 */
2215 static int
ref_rule_objects(struct ip_fw_chain * ch,struct ip_fw * rule,struct rule_check_info * ci,struct obj_idx * oib,struct tid_info * ti)2216 ref_rule_objects(struct ip_fw_chain *ch, struct ip_fw *rule,
2217 struct rule_check_info *ci, struct obj_idx *oib, struct tid_info *ti)
2218 {
2219 struct obj_idx *pidx;
2220 ipfw_insn *cmd;
2221 int cmdlen, error, l, unresolved;
2222
2223 pidx = oib;
2224 l = rule->cmd_len;
2225 cmd = rule->cmd;
2226 cmdlen = 0;
2227 error = 0;
2228
2229 IPFW_UH_WLOCK(ch);
2230
2231 /* Increase refcount on each existing referenced table. */
2232 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) {
2233 cmdlen = F_LEN(cmd);
2234 unresolved = 0;
2235
2236 error = ref_opcode_object(ch, cmd, ti, pidx, &unresolved);
2237 if (error != 0)
2238 break;
2239 /*
2240 * Compatibility stuff for old clients:
2241 * prepare to automaitcally create non-existing objects.
2242 */
2243 if (unresolved != 0) {
2244 pidx->off = rule->cmd_len - l;
2245 pidx++;
2246 }
2247 }
2248
2249 if (error != 0) {
2250 /* Unref everything we have already done */
2251 unref_oib_objects(ch, rule->cmd, oib, pidx);
2252 IPFW_UH_WUNLOCK(ch);
2253 return (error);
2254 }
2255 IPFW_UH_WUNLOCK(ch);
2256
2257 /* Perform auto-creation for non-existing objects */
2258 if (pidx != oib)
2259 error = create_objects_compat(ch, rule->cmd, oib, pidx, ti);
2260
2261 /* Calculate real number of dynamic objects */
2262 ci->object_opcodes = (uint16_t)(pidx - oib);
2263
2264 return (error);
2265 }
2266
2267 /*
2268 * Checks is opcode is referencing table of appropriate type.
2269 * Adds reference count for found table if true.
2270 * Rewrites user-supplied opcode values with kernel ones.
2271 *
2272 * Returns 0 on success and appropriate error code otherwise.
2273 */
2274 static int
rewrite_rule_uidx(struct ip_fw_chain * chain,struct rule_check_info * ci)2275 rewrite_rule_uidx(struct ip_fw_chain *chain, struct rule_check_info *ci)
2276 {
2277 int error;
2278 ipfw_insn *cmd;
2279 struct obj_idx *p, *pidx_first, *pidx_last;
2280 struct tid_info ti;
2281
2282 /*
2283 * Prepare an array for storing opcode indices.
2284 * Use stack allocation by default.
2285 */
2286 if (ci->object_opcodes <= (sizeof(ci->obuf)/sizeof(ci->obuf[0]))) {
2287 /* Stack */
2288 pidx_first = ci->obuf;
2289 } else
2290 pidx_first = malloc(
2291 ci->object_opcodes * sizeof(struct obj_idx),
2292 M_IPFW, M_WAITOK | M_ZERO);
2293
2294 error = 0;
2295 memset(&ti, 0, sizeof(ti));
2296
2297 /* Use set rule is assigned to. */
2298 ti.set = ci->krule->set;
2299 if (ci->ctlv != NULL) {
2300 ti.tlvs = (void *)(ci->ctlv + 1);
2301 ti.tlen = ci->ctlv->head.length - sizeof(ipfw_obj_ctlv);
2302 }
2303
2304 /* Reference all used tables and other objects */
2305 error = ref_rule_objects(chain, ci->krule, ci, pidx_first, &ti);
2306 if (error != 0)
2307 goto free;
2308 /*
2309 * Note that ref_rule_objects() might have updated ci->object_opcodes
2310 * to reflect actual number of object opcodes.
2311 */
2312
2313 /* Perform rewrite of remaining opcodes */
2314 p = pidx_first;
2315 pidx_last = pidx_first + ci->object_opcodes;
2316 for (p = pidx_first; p < pidx_last; p++) {
2317 cmd = ci->krule->cmd + p->off;
2318 update_opcode_kidx(cmd, p->kidx);
2319 }
2320
2321 free:
2322 if (pidx_first != ci->obuf)
2323 free(pidx_first, M_IPFW);
2324
2325 return (error);
2326 }
2327
2328 /*
2329 * Parses one or more rules from userland.
2330 * Data layout (version 1)(current):
2331 * Request:
2332 * [
2333 * ip_fw3_opheader
2334 * [ ipfw_obj_ctlv(IPFW_TLV_TBL_LIST) ipfw_obj_ntlv x N ] (optional *1)
2335 * [ ipfw_obj_ctlv(IPFW_TLV_RULE_LIST) ip_fw x N ] (*2) (*3)
2336 * ]
2337 * Reply:
2338 * [
2339 * ip_fw3_opheader
2340 * [ ipfw_obj_ctlv(IPFW_TLV_TBL_LIST) ipfw_obj_ntlv x N ] (optional)
2341 * [ ipfw_obj_ctlv(IPFW_TLV_RULE_LIST) ip_fw x N ]
2342 * ]
2343 *
2344 * Rules in reply are modified to store their actual ruleset number.
2345 *
2346 * (*1) TLVs inside IPFW_TLV_TBL_LIST needs to be sorted ascending
2347 * according to their idx field and there has to be no duplicates.
2348 * (*2) Numbered rules inside IPFW_TLV_RULE_LIST needs to be sorted ascending.
2349 * (*3) Each ip_fw structure needs to be aligned to u64 boundary.
2350 *
2351 * Returns 0 on success.
2352 */
2353 static __noinline int
parse_rules_v1(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd,ipfw_obj_ctlv ** prtlv,struct rule_check_info ** pci)2354 parse_rules_v1(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
2355 struct sockopt_data *sd, ipfw_obj_ctlv **prtlv,
2356 struct rule_check_info **pci)
2357 {
2358 ipfw_obj_ctlv *ctlv, *rtlv, *tstate;
2359 ipfw_obj_ntlv *ntlv;
2360 struct rule_check_info *ci, *cbuf;
2361 struct ip_fw_rule *r;
2362 size_t count, clen, read, rsize;
2363 uint32_t idx, rulenum;
2364 int error;
2365
2366 op3 = (ip_fw3_opheader *)ipfw_get_sopt_space(sd, sd->valsize);
2367 ctlv = (ipfw_obj_ctlv *)(op3 + 1);
2368 read = sizeof(ip_fw3_opheader);
2369 if (read + sizeof(*ctlv) > sd->valsize)
2370 return (EINVAL);
2371
2372 rtlv = NULL;
2373 tstate = NULL;
2374 cbuf = NULL;
2375 /* Table names or other named objects. */
2376 if (ctlv->head.type == IPFW_TLV_TBLNAME_LIST) {
2377 /* Check size and alignment. */
2378 clen = ctlv->head.length;
2379 if (read + clen > sd->valsize || clen < sizeof(*ctlv) ||
2380 (clen % sizeof(uint64_t)) != 0)
2381 return (EINVAL);
2382 /* Check for validness. */
2383 count = (ctlv->head.length - sizeof(*ctlv)) / sizeof(*ntlv);
2384 if (ctlv->count != count || ctlv->objsize != sizeof(*ntlv))
2385 return (EINVAL);
2386 /*
2387 * Check each TLV.
2388 * Ensure TLVs are sorted ascending and
2389 * there are no duplicates.
2390 */
2391 idx = 0;
2392 ntlv = (ipfw_obj_ntlv *)(ctlv + 1);
2393 while (count > 0) {
2394 if (ntlv->head.length != sizeof(ipfw_obj_ntlv))
2395 return (EINVAL);
2396
2397 error = ipfw_check_object_name_generic(ntlv->name);
2398 if (error != 0)
2399 return (error);
2400
2401 if (ntlv->idx <= idx)
2402 return (EINVAL);
2403
2404 idx = ntlv->idx;
2405 count--;
2406 ntlv++;
2407 }
2408
2409 tstate = ctlv;
2410 read += ctlv->head.length;
2411 ctlv = (ipfw_obj_ctlv *)((caddr_t)ctlv + ctlv->head.length);
2412
2413 if (read + sizeof(*ctlv) > sd->valsize)
2414 return (EINVAL);
2415 }
2416
2417 /* List of rules. */
2418 if (ctlv->head.type == IPFW_TLV_RULE_LIST) {
2419 clen = ctlv->head.length;
2420 if (read + clen > sd->valsize || clen < sizeof(*ctlv) ||
2421 (clen % sizeof(uint64_t)) != 0)
2422 return (EINVAL);
2423
2424 clen -= sizeof(*ctlv);
2425 if (ctlv->count == 0 ||
2426 ctlv->count > clen / sizeof(struct ip_fw_rule))
2427 return (EINVAL);
2428
2429 /* Allocate state for each rule */
2430 cbuf = malloc(ctlv->count * sizeof(struct rule_check_info),
2431 M_TEMP, M_WAITOK | M_ZERO);
2432
2433 /*
2434 * Check each rule for validness.
2435 * Ensure numbered rules are sorted ascending
2436 * and properly aligned
2437 */
2438 rulenum = 0;
2439 count = 0;
2440 error = 0;
2441 ci = cbuf;
2442 r = (struct ip_fw_rule *)(ctlv + 1);
2443 while (clen > 0) {
2444 rsize = RULEUSIZE1(r);
2445 if (rsize > clen || count > ctlv->count) {
2446 error = EINVAL;
2447 break;
2448 }
2449 ci->ctlv = tstate;
2450 ci->version = IP_FW3_OPVER;
2451 error = ipfw_check_rule(r, rsize, ci);
2452 if (error != 0)
2453 break;
2454
2455 /* Check sorting */
2456 if (count != 0 && ((rulenum == 0) != (r->rulenum == 0) ||
2457 r->rulenum < rulenum)) {
2458 printf("ipfw: wrong order: rulenum %u"
2459 " vs %u\n", r->rulenum, rulenum);
2460 error = EINVAL;
2461 break;
2462 }
2463 rulenum = r->rulenum;
2464 ci->urule = (caddr_t)r;
2465 clen -= rsize;
2466 r = (struct ip_fw_rule *)((caddr_t)r + rsize);
2467 count++;
2468 ci++;
2469 }
2470
2471 if (ctlv->count != count || error != 0) {
2472 free(cbuf, M_TEMP);
2473 return (EINVAL);
2474 }
2475
2476 rtlv = ctlv;
2477 read += ctlv->head.length;
2478 ctlv = (ipfw_obj_ctlv *)((caddr_t)ctlv + ctlv->head.length);
2479 }
2480
2481 if (read != sd->valsize || rtlv == NULL) {
2482 free(cbuf, M_TEMP);
2483 return (EINVAL);
2484 }
2485
2486 *prtlv = rtlv;
2487 *pci = cbuf;
2488 return (0);
2489 }
2490
2491 /*
2492 * Copy rule @urule from v1 userland format (current) to kernel @krule.
2493 */
2494 static void
import_rule_v1(struct ip_fw_chain * chain,struct rule_check_info * ci)2495 import_rule_v1(struct ip_fw_chain *chain, struct rule_check_info *ci)
2496 {
2497 struct ip_fw_rule *urule;
2498 struct ip_fw *krule;
2499
2500 urule = (struct ip_fw_rule *)ci->urule;
2501 krule = ci->krule = ipfw_alloc_rule(chain, RULEKSIZE1(urule));
2502
2503 krule->act_ofs = urule->act_ofs;
2504 krule->cmd_len = urule->cmd_len;
2505 krule->rulenum = urule->rulenum;
2506 krule->set = urule->set;
2507 krule->flags = urule->flags;
2508
2509 /* Save rulenum offset */
2510 ci->urule_numoff = offsetof(struct ip_fw_rule, rulenum);
2511
2512 /* Copy opcodes */
2513 memcpy(krule->cmd, urule->cmd, krule->cmd_len * sizeof(uint32_t));
2514 }
2515
2516 /*
2517 * Adds one or more rules to ipfw @chain.
2518 */
2519 static int
add_rules(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)2520 add_rules(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
2521 struct sockopt_data *sd)
2522 {
2523 ipfw_obj_ctlv *rtlv;
2524 struct rule_check_info *ci, *nci;
2525 int i, ret;
2526
2527 /*
2528 * Check rules buffer for validness.
2529 */
2530 ret = parse_rules_v1(chain, op3, sd, &rtlv, &nci);
2531 if (ret != 0)
2532 return (ret);
2533 /*
2534 * Allocate storage for the kernel representation of rules.
2535 */
2536 for (i = 0, ci = nci; i < rtlv->count; i++, ci++)
2537 import_rule_v1(chain, ci);
2538 /*
2539 * Try to add new rules to the chain.
2540 */
2541 if ((ret = ipfw_commit_rules(chain, nci, rtlv->count)) != 0) {
2542 for (i = 0, ci = nci; i < rtlv->count; i++, ci++)
2543 ipfw_free_rule(ci->krule);
2544 }
2545 /* Cleanup after parse_rules() */
2546 free(nci, M_TEMP);
2547 return (ret);
2548 }
2549
2550 /*
2551 * Lists all sopts currently registered.
2552 * Data layout (v1)(current):
2553 * Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size
2554 * Reply: [ ipfw_obj_lheader ipfw_sopt_info x N ]
2555 *
2556 * Returns 0 on success
2557 */
2558 static int
dump_soptcodes(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)2559 dump_soptcodes(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
2560 struct sockopt_data *sd)
2561 {
2562 struct _ipfw_obj_lheader *olh;
2563 ipfw_sopt_info *i;
2564 struct ipfw_sopt_handler *sh;
2565 uint32_t count, n, size;
2566
2567 olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,
2568 sizeof(*olh));
2569 if (olh == NULL)
2570 return (EINVAL);
2571 if (sd->valsize < olh->size)
2572 return (EINVAL);
2573
2574 CTL3_LOCK();
2575 count = ctl3_hsize;
2576 size = count * sizeof(ipfw_sopt_info) + sizeof(ipfw_obj_lheader);
2577
2578 /* Fill in header regadless of buffer size */
2579 olh->count = count;
2580 olh->objsize = sizeof(ipfw_sopt_info);
2581
2582 if (size > olh->size) {
2583 olh->size = size;
2584 CTL3_UNLOCK();
2585 return (ENOMEM);
2586 }
2587 olh->size = size;
2588
2589 for (n = 0; n < count; n++) {
2590 i = (ipfw_sopt_info *)ipfw_get_sopt_space(sd, sizeof(*i));
2591 KASSERT(i != NULL, ("previously checked buffer is not enough"));
2592 sh = &ctl3_handlers[n];
2593 i->opcode = sh->opcode;
2594 i->version = sh->version;
2595 i->refcnt = sh->refcnt;
2596 }
2597 CTL3_UNLOCK();
2598
2599 return (0);
2600 }
2601
2602 /*
2603 * Compares two opcodes.
2604 * Used both in qsort() and bsearch().
2605 *
2606 * Returns 0 if match is found.
2607 */
2608 static int
compare_opcodes(const void * _a,const void * _b)2609 compare_opcodes(const void *_a, const void *_b)
2610 {
2611 const struct opcode_obj_rewrite *a, *b;
2612
2613 a = (const struct opcode_obj_rewrite *)_a;
2614 b = (const struct opcode_obj_rewrite *)_b;
2615
2616 if (a->opcode < b->opcode)
2617 return (-1);
2618 else if (a->opcode > b->opcode)
2619 return (1);
2620
2621 return (0);
2622 }
2623
2624 /*
2625 * XXX: Rewrite bsearch()
2626 */
2627 static int
find_op_rw_range(uint16_t op,struct opcode_obj_rewrite ** plo,struct opcode_obj_rewrite ** phi)2628 find_op_rw_range(uint16_t op, struct opcode_obj_rewrite **plo,
2629 struct opcode_obj_rewrite **phi)
2630 {
2631 struct opcode_obj_rewrite *ctl3_max, *lo, *hi, h, *rw;
2632
2633 memset(&h, 0, sizeof(h));
2634 h.opcode = op;
2635
2636 rw = (struct opcode_obj_rewrite *)bsearch(&h, ctl3_rewriters,
2637 ctl3_rsize, sizeof(h), compare_opcodes);
2638 if (rw == NULL)
2639 return (1);
2640
2641 /* Find the first element matching the same opcode */
2642 lo = rw;
2643 for ( ; lo > ctl3_rewriters && (lo - 1)->opcode == op; lo--)
2644 ;
2645
2646 /* Find the last element matching the same opcode */
2647 hi = rw;
2648 ctl3_max = ctl3_rewriters + ctl3_rsize;
2649 for ( ; (hi + 1) < ctl3_max && (hi + 1)->opcode == op; hi++)
2650 ;
2651
2652 *plo = lo;
2653 *phi = hi;
2654
2655 return (0);
2656 }
2657
2658 /*
2659 * Finds opcode object rewriter based on @code.
2660 *
2661 * Returns pointer to handler or NULL.
2662 */
2663 static struct opcode_obj_rewrite *
find_op_rw(ipfw_insn * cmd,uint32_t * puidx,uint8_t * ptype)2664 find_op_rw(ipfw_insn *cmd, uint32_t *puidx, uint8_t *ptype)
2665 {
2666 struct opcode_obj_rewrite *rw, *lo, *hi;
2667 uint32_t uidx;
2668 uint8_t subtype;
2669
2670 if (find_op_rw_range(cmd->opcode, &lo, &hi) != 0)
2671 return (NULL);
2672
2673 for (rw = lo; rw <= hi; rw++) {
2674 if (rw->classifier(cmd, &uidx, &subtype) == 0) {
2675 if (puidx != NULL)
2676 *puidx = uidx;
2677 if (ptype != NULL)
2678 *ptype = subtype;
2679 return (rw);
2680 }
2681 }
2682
2683 return (NULL);
2684 }
2685 int
classify_opcode_kidx(ipfw_insn * cmd,uint32_t * puidx)2686 classify_opcode_kidx(ipfw_insn *cmd, uint32_t *puidx)
2687 {
2688
2689 if (find_op_rw(cmd, puidx, NULL) == NULL)
2690 return (1);
2691 return (0);
2692 }
2693
2694 void
update_opcode_kidx(ipfw_insn * cmd,uint32_t idx)2695 update_opcode_kidx(ipfw_insn *cmd, uint32_t idx)
2696 {
2697 struct opcode_obj_rewrite *rw;
2698
2699 rw = find_op_rw(cmd, NULL, NULL);
2700 KASSERT(rw != NULL, ("No handler to update opcode %d", cmd->opcode));
2701 rw->update(cmd, idx);
2702 }
2703
2704 void
ipfw_init_obj_rewriter(void)2705 ipfw_init_obj_rewriter(void)
2706 {
2707 ctl3_rewriters = NULL;
2708 ctl3_rsize = 0;
2709 }
2710
2711 void
ipfw_destroy_obj_rewriter(void)2712 ipfw_destroy_obj_rewriter(void)
2713 {
2714 if (ctl3_rewriters != NULL)
2715 free(ctl3_rewriters, M_IPFW);
2716 ctl3_rewriters = NULL;
2717 ctl3_rsize = 0;
2718 }
2719
2720 /*
2721 * Adds one or more opcode object rewrite handlers to the global array.
2722 * Function may sleep.
2723 */
2724 void
ipfw_add_obj_rewriter(struct opcode_obj_rewrite * rw,size_t count)2725 ipfw_add_obj_rewriter(struct opcode_obj_rewrite *rw, size_t count)
2726 {
2727 size_t sz;
2728 struct opcode_obj_rewrite *tmp;
2729
2730 CTL3_LOCK();
2731
2732 for (;;) {
2733 sz = ctl3_rsize + count;
2734 CTL3_UNLOCK();
2735 tmp = malloc(sizeof(*rw) * sz, M_IPFW, M_WAITOK | M_ZERO);
2736 CTL3_LOCK();
2737 if (ctl3_rsize + count <= sz)
2738 break;
2739
2740 /* Retry */
2741 free(tmp, M_IPFW);
2742 }
2743
2744 /* Merge old & new arrays */
2745 sz = ctl3_rsize + count;
2746 memcpy(tmp, ctl3_rewriters, ctl3_rsize * sizeof(*rw));
2747 memcpy(&tmp[ctl3_rsize], rw, count * sizeof(*rw));
2748 qsort(tmp, sz, sizeof(*rw), compare_opcodes);
2749 /* Switch new and free old */
2750 if (ctl3_rewriters != NULL)
2751 free(ctl3_rewriters, M_IPFW);
2752 ctl3_rewriters = tmp;
2753 ctl3_rsize = sz;
2754
2755 CTL3_UNLOCK();
2756 }
2757
2758 /*
2759 * Removes one or more object rewrite handlers from the global array.
2760 */
2761 int
ipfw_del_obj_rewriter(struct opcode_obj_rewrite * rw,size_t count)2762 ipfw_del_obj_rewriter(struct opcode_obj_rewrite *rw, size_t count)
2763 {
2764 size_t sz;
2765 struct opcode_obj_rewrite *ctl3_max, *ktmp, *lo, *hi;
2766 int i;
2767
2768 CTL3_LOCK();
2769
2770 for (i = 0; i < count; i++) {
2771 if (find_op_rw_range(rw[i].opcode, &lo, &hi) != 0)
2772 continue;
2773
2774 for (ktmp = lo; ktmp <= hi; ktmp++) {
2775 if (ktmp->classifier != rw[i].classifier)
2776 continue;
2777
2778 ctl3_max = ctl3_rewriters + ctl3_rsize;
2779 sz = (ctl3_max - (ktmp + 1)) * sizeof(*ktmp);
2780 memmove(ktmp, ktmp + 1, sz);
2781 ctl3_rsize--;
2782 break;
2783 }
2784 }
2785
2786 if (ctl3_rsize == 0) {
2787 if (ctl3_rewriters != NULL)
2788 free(ctl3_rewriters, M_IPFW);
2789 ctl3_rewriters = NULL;
2790 }
2791
2792 CTL3_UNLOCK();
2793
2794 return (0);
2795 }
2796
2797 static int
export_objhash_ntlv_internal(struct namedobj_instance * ni,struct named_object * no,void * arg)2798 export_objhash_ntlv_internal(struct namedobj_instance *ni,
2799 struct named_object *no, void *arg)
2800 {
2801 struct sockopt_data *sd;
2802 ipfw_obj_ntlv *ntlv;
2803
2804 sd = (struct sockopt_data *)arg;
2805 ntlv = (ipfw_obj_ntlv *)ipfw_get_sopt_space(sd, sizeof(*ntlv));
2806 if (ntlv == NULL)
2807 return (ENOMEM);
2808 ipfw_export_obj_ntlv(no, ntlv);
2809 return (0);
2810 }
2811
2812 /*
2813 * Lists all service objects.
2814 * Data layout (v0)(current):
2815 * Request: [ ipfw_obj_lheader ] size = ipfw_obj_lheader.size
2816 * Reply: [ ipfw_obj_lheader [ ipfw_obj_ntlv x N ] (optional) ]
2817 * Returns 0 on success
2818 */
2819 static int
dump_srvobjects(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)2820 dump_srvobjects(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
2821 struct sockopt_data *sd)
2822 {
2823 ipfw_obj_lheader *hdr;
2824 int count;
2825
2826 hdr = (ipfw_obj_lheader *)ipfw_get_sopt_header(sd, sizeof(*hdr));
2827 if (hdr == NULL)
2828 return (EINVAL);
2829
2830 IPFW_UH_RLOCK(chain);
2831 count = ipfw_objhash_count(CHAIN_TO_SRV(chain));
2832 hdr->size = sizeof(ipfw_obj_lheader) + count * sizeof(ipfw_obj_ntlv);
2833 if (sd->valsize < hdr->size) {
2834 IPFW_UH_RUNLOCK(chain);
2835 return (ENOMEM);
2836 }
2837 hdr->count = count;
2838 hdr->objsize = sizeof(ipfw_obj_ntlv);
2839 if (count > 0)
2840 ipfw_objhash_foreach(CHAIN_TO_SRV(chain),
2841 export_objhash_ntlv_internal, sd);
2842 IPFW_UH_RUNLOCK(chain);
2843 return (0);
2844 }
2845
2846 void
ipfw_enable_skipto_cache(struct ip_fw_chain * chain)2847 ipfw_enable_skipto_cache(struct ip_fw_chain *chain)
2848 {
2849
2850 IPFW_UH_WLOCK_ASSERT(chain);
2851 update_skipto_cache(chain, chain->map);
2852
2853 IPFW_WLOCK(chain);
2854 swap_skipto_cache(chain);
2855 V_skipto_cache = 1;
2856 IPFW_WUNLOCK(chain);
2857 }
2858
2859 /*
2860 * Enables or disable skipto cache.
2861 * Request: [ ipfw_cmd_header ] size = ipfw_cmd_header.size
2862 * Reply: [ ipfw_cmd_header ]
2863 * Returns 0 on success
2864 */
2865 static int
manage_skiptocache(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)2866 manage_skiptocache(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
2867 struct sockopt_data *sd)
2868 {
2869 ipfw_cmd_header *hdr;
2870
2871 if (sd->valsize != sizeof(*hdr))
2872 return (EINVAL);
2873
2874 hdr = (ipfw_cmd_header *)ipfw_get_sopt_space(sd, sd->valsize);
2875 if (hdr->cmd != SKIPTO_CACHE_DISABLE &&
2876 hdr->cmd != SKIPTO_CACHE_ENABLE)
2877 return (EOPNOTSUPP);
2878
2879 IPFW_UH_WLOCK(chain);
2880 if (hdr->cmd != V_skipto_cache) {
2881 if (hdr->cmd == SKIPTO_CACHE_ENABLE)
2882 ipfw_enable_skipto_cache(chain);
2883 V_skipto_cache = hdr->cmd;
2884 }
2885 IPFW_UH_WUNLOCK(chain);
2886 return (0);
2887 }
2888
2889 /*
2890 * Compares two sopt handlers (code, version and handler ptr).
2891 * Used both as qsort() and bsearch().
2892 * Does not compare handler for latter case.
2893 *
2894 * Returns 0 if match is found.
2895 */
2896 static int
compare_sh(const void * _a,const void * _b)2897 compare_sh(const void *_a, const void *_b)
2898 {
2899 const struct ipfw_sopt_handler *a, *b;
2900
2901 a = (const struct ipfw_sopt_handler *)_a;
2902 b = (const struct ipfw_sopt_handler *)_b;
2903
2904 if (a->opcode < b->opcode)
2905 return (-1);
2906 else if (a->opcode > b->opcode)
2907 return (1);
2908
2909 if (a->version < b->version)
2910 return (-1);
2911 else if (a->version > b->version)
2912 return (1);
2913
2914 /* bsearch helper */
2915 if (a->handler == NULL)
2916 return (0);
2917
2918 if ((uintptr_t)a->handler < (uintptr_t)b->handler)
2919 return (-1);
2920 else if ((uintptr_t)a->handler > (uintptr_t)b->handler)
2921 return (1);
2922
2923 return (0);
2924 }
2925
2926 /*
2927 * Finds sopt handler based on @code and @version.
2928 *
2929 * Returns pointer to handler or NULL.
2930 */
2931 static struct ipfw_sopt_handler *
find_sh(uint16_t code,uint8_t version,sopt_handler_f * handler)2932 find_sh(uint16_t code, uint8_t version, sopt_handler_f *handler)
2933 {
2934 struct ipfw_sopt_handler *sh, h;
2935
2936 memset(&h, 0, sizeof(h));
2937 h.opcode = code;
2938 h.version = version;
2939 h.handler = handler;
2940
2941 sh = (struct ipfw_sopt_handler *)bsearch(&h, ctl3_handlers,
2942 ctl3_hsize, sizeof(h), compare_sh);
2943
2944 return (sh);
2945 }
2946
2947 static int
find_ref_sh(uint16_t opcode,uint8_t version,struct ipfw_sopt_handler * psh)2948 find_ref_sh(uint16_t opcode, uint8_t version, struct ipfw_sopt_handler *psh)
2949 {
2950 struct ipfw_sopt_handler *sh;
2951
2952 CTL3_LOCK();
2953 if ((sh = find_sh(opcode, version, NULL)) == NULL) {
2954 CTL3_UNLOCK();
2955 printf("ipfw: ipfw_ctl3 invalid option %d""v""%d\n",
2956 opcode, version);
2957 return (EINVAL);
2958 }
2959 sh->refcnt++;
2960 ctl3_refct++;
2961 /* Copy handler data to requested buffer */
2962 *psh = *sh;
2963 CTL3_UNLOCK();
2964
2965 return (0);
2966 }
2967
2968 static void
find_unref_sh(struct ipfw_sopt_handler * psh)2969 find_unref_sh(struct ipfw_sopt_handler *psh)
2970 {
2971 struct ipfw_sopt_handler *sh;
2972
2973 CTL3_LOCK();
2974 sh = find_sh(psh->opcode, psh->version, NULL);
2975 KASSERT(sh != NULL, ("ctl3 handler disappeared"));
2976 sh->refcnt--;
2977 ctl3_refct--;
2978 CTL3_UNLOCK();
2979 }
2980
2981 void
ipfw_init_sopt_handler(void)2982 ipfw_init_sopt_handler(void)
2983 {
2984 CTL3_LOCK_INIT();
2985 IPFW_ADD_SOPT_HANDLER(1, scodes);
2986 }
2987
2988 void
ipfw_destroy_sopt_handler(void)2989 ipfw_destroy_sopt_handler(void)
2990 {
2991 IPFW_DEL_SOPT_HANDLER(1, scodes);
2992 CTL3_LOCK_DESTROY();
2993 }
2994
2995 void
ipfw_register_compat(ipfw_check_opcode_t f)2996 ipfw_register_compat(ipfw_check_opcode_t f)
2997 {
2998 check_opcode_f = f;
2999 }
3000
3001 void
ipfw_unregister_compat(void)3002 ipfw_unregister_compat(void)
3003 {
3004 check_opcode_f = check_opcode_compat_nop;
3005 }
3006
3007 /*
3008 * Adds one or more sockopt handlers to the global array.
3009 * Function may sleep.
3010 */
3011 void
ipfw_add_sopt_handler(struct ipfw_sopt_handler * sh,size_t count)3012 ipfw_add_sopt_handler(struct ipfw_sopt_handler *sh, size_t count)
3013 {
3014 size_t sz;
3015 struct ipfw_sopt_handler *tmp;
3016
3017 CTL3_LOCK();
3018
3019 for (;;) {
3020 sz = ctl3_hsize + count;
3021 CTL3_UNLOCK();
3022 tmp = malloc(sizeof(*sh) * sz, M_IPFW, M_WAITOK | M_ZERO);
3023 CTL3_LOCK();
3024 if (ctl3_hsize + count <= sz)
3025 break;
3026
3027 /* Retry */
3028 free(tmp, M_IPFW);
3029 }
3030
3031 /* Merge old & new arrays */
3032 sz = ctl3_hsize + count;
3033 memcpy(tmp, ctl3_handlers, ctl3_hsize * sizeof(*sh));
3034 memcpy(&tmp[ctl3_hsize], sh, count * sizeof(*sh));
3035 qsort(tmp, sz, sizeof(*sh), compare_sh);
3036 /* Switch new and free old */
3037 if (ctl3_handlers != NULL)
3038 free(ctl3_handlers, M_IPFW);
3039 ctl3_handlers = tmp;
3040 ctl3_hsize = sz;
3041 ctl3_gencnt++;
3042
3043 CTL3_UNLOCK();
3044 }
3045
3046 /*
3047 * Removes one or more sockopt handlers from the global array.
3048 */
3049 int
ipfw_del_sopt_handler(struct ipfw_sopt_handler * sh,size_t count)3050 ipfw_del_sopt_handler(struct ipfw_sopt_handler *sh, size_t count)
3051 {
3052 size_t sz;
3053 struct ipfw_sopt_handler *tmp, *h;
3054 int i;
3055
3056 CTL3_LOCK();
3057
3058 for (i = 0; i < count; i++) {
3059 tmp = &sh[i];
3060 h = find_sh(tmp->opcode, tmp->version, tmp->handler);
3061 if (h == NULL)
3062 continue;
3063
3064 sz = (ctl3_handlers + ctl3_hsize - (h + 1)) * sizeof(*h);
3065 memmove(h, h + 1, sz);
3066 ctl3_hsize--;
3067 }
3068
3069 if (ctl3_hsize == 0) {
3070 if (ctl3_handlers != NULL)
3071 free(ctl3_handlers, M_IPFW);
3072 ctl3_handlers = NULL;
3073 }
3074
3075 ctl3_gencnt++;
3076
3077 CTL3_UNLOCK();
3078
3079 return (0);
3080 }
3081
3082 /*
3083 * Writes data accumulated in @sd to sockopt buffer.
3084 * Zeroes internal @sd buffer.
3085 */
3086 static int
ipfw_flush_sopt_data(struct sockopt_data * sd)3087 ipfw_flush_sopt_data(struct sockopt_data *sd)
3088 {
3089 struct sockopt *sopt;
3090 int error;
3091 size_t sz;
3092
3093 sz = sd->koff;
3094 if (sz == 0)
3095 return (0);
3096
3097 sopt = sd->sopt;
3098
3099 if (sopt->sopt_dir == SOPT_GET) {
3100 error = copyout(sd->kbuf, sopt->sopt_val, sz);
3101 if (error != 0)
3102 return (error);
3103 }
3104
3105 memset(sd->kbuf, 0, sd->ksize);
3106 sd->ktotal += sz;
3107 sd->koff = 0;
3108 if (sd->ktotal + sd->ksize < sd->valsize)
3109 sd->kavail = sd->ksize;
3110 else
3111 sd->kavail = sd->valsize - sd->ktotal;
3112
3113 /* Update sopt buffer data */
3114 sopt->sopt_valsize = sd->ktotal;
3115 sopt->sopt_val = sd->sopt_val + sd->ktotal;
3116
3117 return (0);
3118 }
3119
3120 /*
3121 * Ensures that @sd buffer has contiguous @neeeded number of
3122 * bytes.
3123 *
3124 * Returns pointer to requested space or NULL.
3125 */
3126 caddr_t
ipfw_get_sopt_space(struct sockopt_data * sd,size_t needed)3127 ipfw_get_sopt_space(struct sockopt_data *sd, size_t needed)
3128 {
3129 int error;
3130 caddr_t addr;
3131
3132 if (sd->kavail < needed) {
3133 /*
3134 * Flush data and try another time.
3135 */
3136 error = ipfw_flush_sopt_data(sd);
3137
3138 if (sd->kavail < needed || error != 0)
3139 return (NULL);
3140 }
3141
3142 addr = sd->kbuf + sd->koff;
3143 sd->koff += needed;
3144 sd->kavail -= needed;
3145 return (addr);
3146 }
3147
3148 /*
3149 * Requests @needed contiguous bytes from @sd buffer.
3150 * Function is used to notify subsystem that we are
3151 * interesed in first @needed bytes (request header)
3152 * and the rest buffer can be safely zeroed.
3153 *
3154 * Returns pointer to requested space or NULL.
3155 */
3156 caddr_t
ipfw_get_sopt_header(struct sockopt_data * sd,size_t needed)3157 ipfw_get_sopt_header(struct sockopt_data *sd, size_t needed)
3158 {
3159 caddr_t addr;
3160
3161 if ((addr = ipfw_get_sopt_space(sd, needed)) == NULL)
3162 return (NULL);
3163
3164 if (sd->kavail > 0)
3165 memset(sd->kbuf + sd->koff, 0, sd->kavail);
3166
3167 return (addr);
3168 }
3169
3170 /*
3171 * New sockopt handler.
3172 */
3173 int
ipfw_ctl3(struct sockopt * sopt)3174 ipfw_ctl3(struct sockopt *sopt)
3175 {
3176 int error, locked;
3177 size_t size, valsize;
3178 struct ip_fw_chain *chain;
3179 char xbuf[256];
3180 struct sockopt_data sdata;
3181 struct ipfw_sopt_handler h;
3182 ip_fw3_opheader *op3 = NULL;
3183
3184 error = priv_check(sopt->sopt_td, PRIV_NETINET_IPFW);
3185 if (error != 0)
3186 return (error);
3187
3188 if (sopt->sopt_name != IP_FW3)
3189 return (EOPNOTSUPP);
3190
3191 chain = &V_layer3_chain;
3192 error = 0;
3193
3194 /* Save original valsize before it is altered via sooptcopyin() */
3195 valsize = sopt->sopt_valsize;
3196 memset(&sdata, 0, sizeof(sdata));
3197 /* Read op3 header first to determine actual operation */
3198 op3 = (ip_fw3_opheader *)xbuf;
3199 error = sooptcopyin(sopt, op3, sizeof(*op3), sizeof(*op3));
3200 if (error != 0)
3201 return (error);
3202 sopt->sopt_valsize = valsize;
3203
3204 /*
3205 * Find and reference command.
3206 */
3207 error = find_ref_sh(op3->opcode, op3->version, &h);
3208 if (error != 0)
3209 return (error);
3210
3211 /*
3212 * Disallow modifications in really-really secure mode, but still allow
3213 * the logging counters to be reset.
3214 */
3215 if ((h.dir & HDIR_SET) != 0 && h.opcode != IP_FW_XRESETLOG) {
3216 error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
3217 if (error != 0) {
3218 find_unref_sh(&h);
3219 return (error);
3220 }
3221 }
3222
3223 /*
3224 * Fill in sockopt_data structure that may be useful for
3225 * IP_FW3 get requests.
3226 */
3227 locked = 0;
3228 if (valsize <= sizeof(xbuf)) {
3229 /* use on-stack buffer */
3230 sdata.kbuf = xbuf;
3231 sdata.ksize = sizeof(xbuf);
3232 sdata.kavail = valsize;
3233 } else {
3234 /*
3235 * Determine opcode type/buffer size:
3236 * allocate sliding-window buf for data export or
3237 * contiguous buffer for special ops.
3238 */
3239 if ((h.dir & HDIR_SET) != 0) {
3240 /* Set request. Allocate contigous buffer. */
3241 if (valsize > CTL3_LARGEBUF) {
3242 find_unref_sh(&h);
3243 return (EFBIG);
3244 }
3245
3246 size = valsize;
3247 } else {
3248 /* Get request. Allocate sliding window buffer */
3249 size = (valsize<CTL3_SMALLBUF) ? valsize:CTL3_SMALLBUF;
3250
3251 if (size < valsize) {
3252 /* We have to wire user buffer */
3253 error = vslock(sopt->sopt_val, valsize);
3254 if (error != 0)
3255 return (error);
3256 locked = 1;
3257 }
3258 }
3259
3260 sdata.kbuf = malloc(size, M_TEMP, M_WAITOK | M_ZERO);
3261 sdata.ksize = size;
3262 sdata.kavail = size;
3263 }
3264
3265 sdata.sopt = sopt;
3266 sdata.sopt_val = sopt->sopt_val;
3267 sdata.valsize = valsize;
3268
3269 /*
3270 * Copy either all request (if valsize < bsize_max)
3271 * or first bsize_max bytes to guarantee most consumers
3272 * that all necessary data has been copied).
3273 * Anyway, copy not less than sizeof(ip_fw3_opheader).
3274 */
3275 if ((error = sooptcopyin(sopt, sdata.kbuf, sdata.ksize,
3276 sizeof(ip_fw3_opheader))) != 0)
3277 return (error);
3278 op3 = (ip_fw3_opheader *)sdata.kbuf;
3279
3280 /* Finally, run handler */
3281 error = h.handler(chain, op3, &sdata);
3282 find_unref_sh(&h);
3283
3284 /* Flush state and free buffers */
3285 if (error == 0)
3286 error = ipfw_flush_sopt_data(&sdata);
3287 else
3288 ipfw_flush_sopt_data(&sdata);
3289
3290 if (locked != 0)
3291 vsunlock(sdata.sopt_val, valsize);
3292
3293 /* Restore original pointer and set number of bytes written */
3294 sopt->sopt_val = sdata.sopt_val;
3295 sopt->sopt_valsize = sdata.ktotal;
3296 if (sdata.kbuf != xbuf)
3297 free(sdata.kbuf, M_TEMP);
3298
3299 return (error);
3300 }
3301
3302 /*
3303 * Named object api
3304 *
3305 */
3306
3307 void
ipfw_init_srv(struct ip_fw_chain * ch)3308 ipfw_init_srv(struct ip_fw_chain *ch)
3309 {
3310 ch->srvmap = ipfw_objhash_create(IPFW_OBJECTS_DEFAULT,
3311 DEFAULT_OBJHASH_SIZE);
3312 ch->srvstate = malloc(sizeof(void *) * IPFW_OBJECTS_DEFAULT,
3313 M_IPFW, M_WAITOK | M_ZERO);
3314 }
3315
3316 void
ipfw_destroy_srv(struct ip_fw_chain * ch)3317 ipfw_destroy_srv(struct ip_fw_chain *ch)
3318 {
3319 free(ch->srvstate, M_IPFW);
3320 ipfw_objhash_destroy(ch->srvmap);
3321 }
3322
3323 /*
3324 * Allocate new bitmask which can be used to enlarge/shrink
3325 * named instance index.
3326 */
3327 void
ipfw_objhash_bitmap_alloc(uint32_t items,void ** idx,int * pblocks)3328 ipfw_objhash_bitmap_alloc(uint32_t items, void **idx, int *pblocks)
3329 {
3330 size_t size;
3331 int max_blocks;
3332 u_long *idx_mask;
3333
3334 KASSERT((items % BLOCK_ITEMS) == 0,
3335 ("bitmask size needs to power of 2 and greater or equal to %zu",
3336 BLOCK_ITEMS));
3337
3338 max_blocks = items / BLOCK_ITEMS;
3339 size = items / 8;
3340 idx_mask = malloc(size * IPFW_MAX_SETS, M_IPFW, M_WAITOK);
3341 /* Mark all as free */
3342 memset(idx_mask, 0xFF, size * IPFW_MAX_SETS);
3343 *idx_mask &= ~(u_long)1; /* Skip index 0 */
3344
3345 *idx = idx_mask;
3346 *pblocks = max_blocks;
3347 }
3348
3349 /*
3350 * Copy current bitmask index to new one.
3351 */
3352 void
ipfw_objhash_bitmap_merge(struct namedobj_instance * ni,void ** idx,int * blocks)3353 ipfw_objhash_bitmap_merge(struct namedobj_instance *ni, void **idx, int *blocks)
3354 {
3355 int old_blocks, new_blocks;
3356 u_long *old_idx, *new_idx;
3357 int i;
3358
3359 old_idx = ni->idx_mask;
3360 old_blocks = ni->max_blocks;
3361 new_idx = *idx;
3362 new_blocks = *blocks;
3363
3364 for (i = 0; i < IPFW_MAX_SETS; i++) {
3365 memcpy(&new_idx[new_blocks * i], &old_idx[old_blocks * i],
3366 old_blocks * sizeof(u_long));
3367 }
3368 }
3369
3370 /*
3371 * Swaps current @ni index with new one.
3372 */
3373 void
ipfw_objhash_bitmap_swap(struct namedobj_instance * ni,void ** idx,int * blocks)3374 ipfw_objhash_bitmap_swap(struct namedobj_instance *ni, void **idx, int *blocks)
3375 {
3376 int old_blocks;
3377 u_long *old_idx;
3378
3379 old_idx = ni->idx_mask;
3380 old_blocks = ni->max_blocks;
3381
3382 ni->idx_mask = *idx;
3383 ni->max_blocks = *blocks;
3384
3385 /* Save old values */
3386 *idx = old_idx;
3387 *blocks = old_blocks;
3388 }
3389
3390 void
ipfw_objhash_bitmap_free(void * idx,int blocks)3391 ipfw_objhash_bitmap_free(void *idx, int blocks)
3392 {
3393 free(idx, M_IPFW);
3394 }
3395
3396 /*
3397 * Creates named hash instance.
3398 * Must be called without holding any locks.
3399 * Return pointer to new instance.
3400 */
3401 struct namedobj_instance *
ipfw_objhash_create(uint32_t items,size_t hash_size)3402 ipfw_objhash_create(uint32_t items, size_t hash_size)
3403 {
3404 struct namedobj_instance *ni;
3405 int i;
3406 size_t size;
3407
3408 size = sizeof(struct namedobj_instance) +
3409 sizeof(struct namedobjects_head) * hash_size +
3410 sizeof(struct namedobjects_head) * hash_size;
3411
3412 ni = malloc(size, M_IPFW, M_WAITOK | M_ZERO);
3413 ni->nn_size = hash_size;
3414 ni->nv_size = hash_size;
3415
3416 ni->names = (struct namedobjects_head *)(ni +1);
3417 ni->values = &ni->names[ni->nn_size];
3418
3419 for (i = 0; i < ni->nn_size; i++)
3420 TAILQ_INIT(&ni->names[i]);
3421
3422 for (i = 0; i < ni->nv_size; i++)
3423 TAILQ_INIT(&ni->values[i]);
3424
3425 /* Set default hashing/comparison functions */
3426 ni->hash_f = objhash_hash_name;
3427 ni->cmp_f = objhash_cmp_name;
3428
3429 /* Allocate bitmask separately due to possible resize */
3430 ipfw_objhash_bitmap_alloc(items, (void*)&ni->idx_mask, &ni->max_blocks);
3431
3432 return (ni);
3433 }
3434
3435 void
ipfw_objhash_destroy(struct namedobj_instance * ni)3436 ipfw_objhash_destroy(struct namedobj_instance *ni)
3437 {
3438 free(ni->idx_mask, M_IPFW);
3439 free(ni, M_IPFW);
3440 }
3441
3442 void
ipfw_objhash_set_funcs(struct namedobj_instance * ni,objhash_hash_f * hash_f,objhash_cmp_f * cmp_f)3443 ipfw_objhash_set_funcs(struct namedobj_instance *ni, objhash_hash_f *hash_f,
3444 objhash_cmp_f *cmp_f)
3445 {
3446
3447 ni->hash_f = hash_f;
3448 ni->cmp_f = cmp_f;
3449 }
3450
3451 static uint32_t
objhash_hash_name(struct namedobj_instance * ni,const void * name,uint32_t set)3452 objhash_hash_name(struct namedobj_instance *ni, const void *name, uint32_t set)
3453 {
3454
3455 return (fnv_32_str((const char *)name, FNV1_32_INIT));
3456 }
3457
3458 static int
objhash_cmp_name(struct named_object * no,const void * name,uint32_t set)3459 objhash_cmp_name(struct named_object *no, const void *name, uint32_t set)
3460 {
3461
3462 if ((strcmp(no->name, (const char *)name) == 0) && (no->set == set))
3463 return (0);
3464
3465 return (1);
3466 }
3467
3468 static uint32_t
objhash_hash_idx(struct namedobj_instance * ni,uint32_t val)3469 objhash_hash_idx(struct namedobj_instance *ni, uint32_t val)
3470 {
3471 uint32_t v;
3472
3473 v = val % (ni->nv_size - 1);
3474
3475 return (v);
3476 }
3477
3478 struct named_object *
ipfw_objhash_lookup_name(struct namedobj_instance * ni,uint32_t set,const char * name)3479 ipfw_objhash_lookup_name(struct namedobj_instance *ni, uint32_t set,
3480 const char *name)
3481 {
3482 struct named_object *no;
3483 uint32_t hash;
3484
3485 hash = ni->hash_f(ni, name, set) % ni->nn_size;
3486
3487 TAILQ_FOREACH(no, &ni->names[hash], nn_next) {
3488 if (ni->cmp_f(no, name, set) == 0)
3489 return (no);
3490 }
3491
3492 return (NULL);
3493 }
3494
3495 /*
3496 * Find named object by @uid.
3497 * Check @tlvs for valid data inside.
3498 *
3499 * Returns pointer to found TLV or NULL.
3500 */
3501 ipfw_obj_ntlv *
ipfw_find_name_tlv_type(void * tlvs,int len,uint32_t uidx,uint32_t etlv)3502 ipfw_find_name_tlv_type(void *tlvs, int len, uint32_t uidx, uint32_t etlv)
3503 {
3504 ipfw_obj_ntlv *ntlv;
3505 uintptr_t pa, pe;
3506 int l;
3507
3508 pa = (uintptr_t)tlvs;
3509 pe = pa + len;
3510 l = 0;
3511 for (; pa < pe; pa += l) {
3512 ntlv = (ipfw_obj_ntlv *)pa;
3513 l = ntlv->head.length;
3514
3515 if (l != sizeof(*ntlv))
3516 return (NULL);
3517
3518 if (ntlv->idx != uidx)
3519 continue;
3520 /*
3521 * When userland has specified zero TLV type, do
3522 * not compare it with eltv. In some cases userland
3523 * doesn't know what type should it have. Use only
3524 * uidx and name for search named_object.
3525 */
3526 if (ntlv->head.type != 0 &&
3527 ntlv->head.type != (uint16_t)etlv)
3528 continue;
3529
3530 if (ipfw_check_object_name_generic(ntlv->name) != 0)
3531 return (NULL);
3532
3533 return (ntlv);
3534 }
3535
3536 return (NULL);
3537 }
3538
3539 /*
3540 * Finds object config based on either legacy index
3541 * or name in ntlv.
3542 * Note @ti structure contains unchecked data from userland.
3543 *
3544 * Returns 0 in success and fills in @pno with found config
3545 */
3546 int
ipfw_objhash_find_type(struct namedobj_instance * ni,struct tid_info * ti,uint32_t etlv,struct named_object ** pno)3547 ipfw_objhash_find_type(struct namedobj_instance *ni, struct tid_info *ti,
3548 uint32_t etlv, struct named_object **pno)
3549 {
3550 char *name;
3551 ipfw_obj_ntlv *ntlv;
3552 uint32_t set;
3553
3554 if (ti->tlvs == NULL)
3555 return (EINVAL);
3556
3557 ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx, etlv);
3558 if (ntlv == NULL)
3559 return (EINVAL);
3560 name = ntlv->name;
3561
3562 /*
3563 * Use set provided by @ti instead of @ntlv one.
3564 * This is needed due to different sets behavior
3565 * controlled by V_fw_tables_sets.
3566 */
3567 set = ti->set;
3568 *pno = ipfw_objhash_lookup_name(ni, set, name);
3569 if (*pno == NULL)
3570 return (ESRCH);
3571 return (0);
3572 }
3573
3574 /*
3575 * Find named object by name, considering also its TLV type.
3576 */
3577 struct named_object *
ipfw_objhash_lookup_name_type(struct namedobj_instance * ni,uint32_t set,uint32_t type,const char * name)3578 ipfw_objhash_lookup_name_type(struct namedobj_instance *ni, uint32_t set,
3579 uint32_t type, const char *name)
3580 {
3581 struct named_object *no;
3582 uint32_t hash;
3583
3584 hash = ni->hash_f(ni, name, set) % ni->nn_size;
3585
3586 TAILQ_FOREACH(no, &ni->names[hash], nn_next) {
3587 if (ni->cmp_f(no, name, set) == 0 &&
3588 no->etlv == (uint16_t)type)
3589 return (no);
3590 }
3591
3592 return (NULL);
3593 }
3594
3595 struct named_object *
ipfw_objhash_lookup_kidx(struct namedobj_instance * ni,uint32_t kidx)3596 ipfw_objhash_lookup_kidx(struct namedobj_instance *ni, uint32_t kidx)
3597 {
3598 struct named_object *no;
3599 uint32_t hash;
3600
3601 hash = objhash_hash_idx(ni, kidx);
3602
3603 TAILQ_FOREACH(no, &ni->values[hash], nv_next) {
3604 if (no->kidx == kidx)
3605 return (no);
3606 }
3607
3608 return (NULL);
3609 }
3610
3611 int
ipfw_objhash_same_name(struct namedobj_instance * ni,struct named_object * a,struct named_object * b)3612 ipfw_objhash_same_name(struct namedobj_instance *ni, struct named_object *a,
3613 struct named_object *b)
3614 {
3615
3616 if ((strcmp(a->name, b->name) == 0) && a->set == b->set)
3617 return (1);
3618
3619 return (0);
3620 }
3621
3622 void
ipfw_objhash_add(struct namedobj_instance * ni,struct named_object * no)3623 ipfw_objhash_add(struct namedobj_instance *ni, struct named_object *no)
3624 {
3625 uint32_t hash;
3626
3627 hash = ni->hash_f(ni, no->name, no->set) % ni->nn_size;
3628 TAILQ_INSERT_HEAD(&ni->names[hash], no, nn_next);
3629
3630 hash = objhash_hash_idx(ni, no->kidx);
3631 TAILQ_INSERT_HEAD(&ni->values[hash], no, nv_next);
3632
3633 ni->count++;
3634 }
3635
3636 void
ipfw_objhash_del(struct namedobj_instance * ni,struct named_object * no)3637 ipfw_objhash_del(struct namedobj_instance *ni, struct named_object *no)
3638 {
3639 uint32_t hash;
3640
3641 hash = ni->hash_f(ni, no->name, no->set) % ni->nn_size;
3642 TAILQ_REMOVE(&ni->names[hash], no, nn_next);
3643
3644 hash = objhash_hash_idx(ni, no->kidx);
3645 TAILQ_REMOVE(&ni->values[hash], no, nv_next);
3646
3647 ni->count--;
3648 }
3649
3650 uint32_t
ipfw_objhash_count(struct namedobj_instance * ni)3651 ipfw_objhash_count(struct namedobj_instance *ni)
3652 {
3653
3654 return (ni->count);
3655 }
3656
3657 uint32_t
ipfw_objhash_count_type(struct namedobj_instance * ni,uint16_t type)3658 ipfw_objhash_count_type(struct namedobj_instance *ni, uint16_t type)
3659 {
3660 struct named_object *no;
3661 uint32_t count;
3662 int i;
3663
3664 count = 0;
3665 for (i = 0; i < ni->nn_size; i++) {
3666 TAILQ_FOREACH(no, &ni->names[i], nn_next) {
3667 if (no->etlv == type)
3668 count++;
3669 }
3670 }
3671 return (count);
3672 }
3673
3674 /*
3675 * Runs @func for each found named object.
3676 * It is safe to delete objects from callback
3677 */
3678 int
ipfw_objhash_foreach(struct namedobj_instance * ni,objhash_cb_t * f,void * arg)3679 ipfw_objhash_foreach(struct namedobj_instance *ni, objhash_cb_t *f, void *arg)
3680 {
3681 struct named_object *no, *no_tmp;
3682 int i, ret;
3683
3684 for (i = 0; i < ni->nn_size; i++) {
3685 TAILQ_FOREACH_SAFE(no, &ni->names[i], nn_next, no_tmp) {
3686 ret = f(ni, no, arg);
3687 if (ret != 0)
3688 return (ret);
3689 }
3690 }
3691 return (0);
3692 }
3693
3694 /*
3695 * Runs @f for each found named object with type @type.
3696 * It is safe to delete objects from callback
3697 */
3698 int
ipfw_objhash_foreach_type(struct namedobj_instance * ni,objhash_cb_t * f,void * arg,uint16_t type)3699 ipfw_objhash_foreach_type(struct namedobj_instance *ni, objhash_cb_t *f,
3700 void *arg, uint16_t type)
3701 {
3702 struct named_object *no, *no_tmp;
3703 int i, ret;
3704
3705 for (i = 0; i < ni->nn_size; i++) {
3706 TAILQ_FOREACH_SAFE(no, &ni->names[i], nn_next, no_tmp) {
3707 if (no->etlv != type)
3708 continue;
3709 ret = f(ni, no, arg);
3710 if (ret != 0)
3711 return (ret);
3712 }
3713 }
3714 return (0);
3715 }
3716
3717 /*
3718 * Removes index from given set.
3719 * Returns 0 on success.
3720 */
3721 int
ipfw_objhash_free_idx(struct namedobj_instance * ni,uint32_t idx)3722 ipfw_objhash_free_idx(struct namedobj_instance *ni, uint32_t idx)
3723 {
3724 u_long *mask;
3725 int i, v;
3726
3727 i = idx / BLOCK_ITEMS;
3728 v = idx % BLOCK_ITEMS;
3729
3730 if (i >= ni->max_blocks)
3731 return (1);
3732
3733 mask = &ni->idx_mask[i];
3734
3735 if ((*mask & ((u_long)1 << v)) != 0)
3736 return (1);
3737
3738 /* Mark as free */
3739 *mask |= (u_long)1 << v;
3740
3741 /* Update free offset */
3742 if (ni->free_off[0] > i)
3743 ni->free_off[0] = i;
3744
3745 return (0);
3746 }
3747
3748 /*
3749 * Allocate new index in given instance and stores in in @pidx.
3750 * Returns 0 on success.
3751 */
3752 int
ipfw_objhash_alloc_idx(void * n,uint32_t * pidx)3753 ipfw_objhash_alloc_idx(void *n, uint32_t *pidx)
3754 {
3755 struct namedobj_instance *ni;
3756 u_long *mask;
3757 int i, off, v;
3758
3759 ni = (struct namedobj_instance *)n;
3760
3761 off = ni->free_off[0];
3762 mask = &ni->idx_mask[off];
3763
3764 for (i = off; i < ni->max_blocks; i++, mask++) {
3765 if ((v = ffsl(*mask)) == 0)
3766 continue;
3767
3768 /* Mark as busy */
3769 *mask &= ~ ((u_long)1 << (v - 1));
3770
3771 ni->free_off[0] = i;
3772
3773 v = BLOCK_ITEMS * i + v - 1;
3774
3775 *pidx = v;
3776 return (0);
3777 }
3778
3779 return (1);
3780 }
3781
3782 /* end of file */
3783