xref: /freebsd/sys/netpfil/ipfw/ip_fw_sockopt.c (revision 91ed876385d4531b6ab2f9176be969318e1aefc1)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
5  * Copyright (c) 2014-2025 Yandex LLC
6  * Copyright (c) 2014 Alexander V. Chernikov
7  *
8  * Supported by: Valeria Paoli
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 /*
34  * Control socket and rule management routines for ipfw.
35  * Control is currently implemented via IP_FW3 setsockopt() code.
36  */
37 
38 #include "opt_ipfw.h"
39 #include "opt_inet.h"
40 #ifndef INET
41 #error IPFIREWALL requires INET.
42 #endif /* INET */
43 #include "opt_inet6.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>	/* struct m_tag used by nested headers */
49 #include <sys/kernel.h>
50 #include <sys/lock.h>
51 #include <sys/priv.h>
52 #include <sys/proc.h>
53 #include <sys/rwlock.h>
54 #include <sys/rmlock.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/syslog.h>
59 #include <sys/fnv_hash.h>
60 #include <net/if.h>
61 #include <net/route.h>
62 #include <net/vnet.h>
63 #include <vm/vm.h>
64 #include <vm/vm_extern.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/ip_var.h> /* hooks */
68 #include <netinet/ip_fw.h>
69 
70 #include <netpfil/ipfw/ip_fw_private.h>
71 #include <netpfil/ipfw/ip_fw_table.h>
72 
73 #ifdef MAC
74 #include <security/mac/mac_framework.h>
75 #endif
76 
77 static enum ipfw_opcheck_result
check_opcode_compat_nop(ipfw_insn ** pcmd,int * plen,struct rule_check_info * ci)78 check_opcode_compat_nop(ipfw_insn **pcmd, int *plen,
79     struct rule_check_info *ci)
80 {
81 	/* Compatibility code is not registered */
82 	return (FAILED);
83 }
84 
85 static ipfw_check_opcode_t check_opcode_f = check_opcode_compat_nop;
86 
87 static int check_ipfw_rule_body(ipfw_insn *cmd, int cmd_len,
88     struct rule_check_info *ci);
89 static int rewrite_rule_uidx(struct ip_fw_chain *chain,
90     struct rule_check_info *ci);
91 
92 struct namedobj_instance {
93 	struct namedobjects_head	*names;
94 	struct namedobjects_head	*values;
95 	uint32_t nn_size;		/* names hash size */
96 	uint32_t nv_size;		/* number hash size */
97 	u_long *idx_mask;		/* used items bitmask */
98 	uint32_t max_blocks;		/* number of "long" blocks in bitmask */
99 	uint32_t count;			/* number of items */
100 	uint16_t free_off[IPFW_MAX_SETS];	/* first possible free offset */
101 	objhash_hash_f	*hash_f;
102 	objhash_cmp_f	*cmp_f;
103 };
104 #define	BLOCK_ITEMS	(8 * sizeof(u_long))	/* Number of items for ffsl() */
105 
106 static uint32_t objhash_hash_name(struct namedobj_instance *ni,
107     const void *key, uint32_t kopt);
108 static uint32_t objhash_hash_idx(struct namedobj_instance *ni, uint32_t val);
109 static int objhash_cmp_name(struct named_object *no, const void *name,
110     uint32_t set);
111 
112 MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
113 
114 /* ctl3 handler data */
115 static struct mtx ctl3_lock;
116 #define	CTL3_LOCK_INIT()	mtx_init(&ctl3_lock, "ctl3_lock", NULL, MTX_DEF)
117 #define	CTL3_LOCK_DESTROY()	mtx_destroy(&ctl3_lock)
118 #define	CTL3_LOCK()		mtx_lock(&ctl3_lock)
119 #define	CTL3_UNLOCK()		mtx_unlock(&ctl3_lock)
120 
121 static struct ipfw_sopt_handler *ctl3_handlers;
122 static size_t ctl3_hsize;
123 static uint64_t ctl3_refct, ctl3_gencnt;
124 #define	CTL3_SMALLBUF	4096			/* small page-size write buffer */
125 #define	CTL3_LARGEBUF	(16 * 1024 * 1024)	/* handle large rulesets */
126 
127 static int ipfw_flush_sopt_data(struct sockopt_data *sd);
128 
129 static sopt_handler_f dump_config, add_rules, del_rules, clear_rules,
130     move_rules, manage_sets, dump_soptcodes, dump_srvobjects,
131     manage_skiptocache;
132 
133 static struct ipfw_sopt_handler scodes[] = {
134     { IP_FW_XGET,		IP_FW3_OPVER, HDIR_GET, dump_config },
135     { IP_FW_XADD,		IP_FW3_OPVER, HDIR_BOTH, add_rules },
136     { IP_FW_XDEL,		IP_FW3_OPVER, HDIR_BOTH, del_rules },
137     { IP_FW_XZERO,		IP_FW3_OPVER, HDIR_SET, clear_rules },
138     { IP_FW_XRESETLOG,		IP_FW3_OPVER, HDIR_SET, clear_rules },
139     { IP_FW_XMOVE,		IP_FW3_OPVER, HDIR_SET, move_rules },
140     { IP_FW_SET_SWAP,		IP_FW3_OPVER, HDIR_SET, manage_sets },
141     { IP_FW_SET_MOVE,		IP_FW3_OPVER, HDIR_SET, manage_sets },
142     { IP_FW_SET_ENABLE,		IP_FW3_OPVER, HDIR_SET, manage_sets },
143     { IP_FW_DUMP_SOPTCODES,	IP_FW3_OPVER, HDIR_GET, dump_soptcodes },
144     { IP_FW_DUMP_SRVOBJECTS,	IP_FW3_OPVER, HDIR_GET, dump_srvobjects },
145     { IP_FW_SKIPTO_CACHE,	IP_FW3_OPVER, HDIR_BOTH, manage_skiptocache },
146 };
147 
148 static struct opcode_obj_rewrite *find_op_rw(ipfw_insn *cmd,
149     uint32_t *puidx, uint8_t *ptype);
150 static int ref_rule_objects(struct ip_fw_chain *ch, struct ip_fw *rule,
151     struct rule_check_info *ci, struct obj_idx *oib, struct tid_info *ti);
152 static int ref_opcode_object(struct ip_fw_chain *ch, ipfw_insn *cmd,
153     struct tid_info *ti, struct obj_idx *pidx, int *unresolved);
154 static void unref_rule_objects(struct ip_fw_chain *chain, struct ip_fw *rule);
155 static void unref_oib_objects(struct ip_fw_chain *ch, ipfw_insn *cmd,
156     struct obj_idx *oib, struct obj_idx *end);
157 static int export_objhash_ntlv(struct namedobj_instance *ni, uint32_t kidx,
158     struct sockopt_data *sd);
159 
160 /*
161  * Opcode object rewriter variables
162  */
163 struct opcode_obj_rewrite *ctl3_rewriters;
164 static size_t ctl3_rsize;
165 
166 /*
167  * static variables followed by global ones
168  */
169 
170 VNET_DEFINE_STATIC(uma_zone_t, ipfw_cntr_zone);
171 #define	V_ipfw_cntr_zone		VNET(ipfw_cntr_zone)
172 
173 void
ipfw_init_counters(void)174 ipfw_init_counters(void)
175 {
176 
177 	V_ipfw_cntr_zone = uma_zcreate("IPFW counters",
178 	    IPFW_RULE_CNTR_SIZE, NULL, NULL, NULL, NULL,
179 	    UMA_ALIGN_PTR, UMA_ZONE_PCPU);
180 }
181 
182 void
ipfw_destroy_counters(void)183 ipfw_destroy_counters(void)
184 {
185 
186 	uma_zdestroy(V_ipfw_cntr_zone);
187 }
188 
189 struct ip_fw *
ipfw_alloc_rule(struct ip_fw_chain * chain,size_t rulesize)190 ipfw_alloc_rule(struct ip_fw_chain *chain, size_t rulesize)
191 {
192 	struct ip_fw *rule;
193 
194 	rule = malloc(rulesize, M_IPFW, M_WAITOK | M_ZERO);
195 	rule->cntr = uma_zalloc_pcpu(V_ipfw_cntr_zone, M_WAITOK | M_ZERO);
196 	rule->refcnt = 1;
197 
198 	return (rule);
199 }
200 
201 void
ipfw_free_rule(struct ip_fw * rule)202 ipfw_free_rule(struct ip_fw *rule)
203 {
204 
205 	/*
206 	 * We don't release refcnt here, since this function
207 	 * can be called without any locks held. The caller
208 	 * must release reference under IPFW_UH_WLOCK, and then
209 	 * call this function if refcount becomes 1.
210 	 */
211 	if (rule->refcnt > 1)
212 		return;
213 	uma_zfree_pcpu(V_ipfw_cntr_zone, rule->cntr);
214 	free(rule, M_IPFW);
215 }
216 
217 /*
218  * Find the smallest rule >= key, id.
219  * We could use bsearch but it is so simple that we code it directly
220  */
221 int
ipfw_find_rule(struct ip_fw_chain * chain,uint32_t key,uint32_t id)222 ipfw_find_rule(struct ip_fw_chain *chain, uint32_t key, uint32_t id)
223 {
224 	int i, lo, hi;
225 	struct ip_fw *r;
226 
227   	for (lo = 0, hi = chain->n_rules - 1; lo < hi;) {
228 		i = (lo + hi) / 2;
229 		r = chain->map[i];
230 		if (r->rulenum < key)
231 			lo = i + 1;	/* continue from the next one */
232 		else if (r->rulenum > key)
233 			hi = i;		/* this might be good */
234 		else if (r->id < id)
235 			lo = i + 1;	/* continue from the next one */
236 		else /* r->id >= id */
237 			hi = i;		/* this might be good */
238 	}
239 	return hi;
240 }
241 
242 /*
243  * Builds skipto cache on rule set @map.
244  */
245 static void
update_skipto_cache(struct ip_fw_chain * chain,struct ip_fw ** map)246 update_skipto_cache(struct ip_fw_chain *chain, struct ip_fw **map)
247 {
248 	uint32_t *smap, rulenum;
249 	int i, mi;
250 
251 	IPFW_UH_WLOCK_ASSERT(chain);
252 
253 	mi = 0;
254 	rulenum = map[mi]->rulenum;
255 	smap = chain->idxmap_back;
256 
257 	if (smap == NULL)
258 		return;
259 
260 	for (i = 0; i <= IPFW_DEFAULT_RULE; i++) {
261 		smap[i] = mi;
262 		/* Use the same rule index until i < rulenum */
263 		if (i != rulenum || i == IPFW_DEFAULT_RULE)
264 			continue;
265 		/* Find next rule with num > i */
266 		rulenum = map[++mi]->rulenum;
267 		while (rulenum == i)
268 			rulenum = map[++mi]->rulenum;
269 	}
270 }
271 
272 /*
273  * Swaps prepared (backup) index with current one.
274  */
275 static void
swap_skipto_cache(struct ip_fw_chain * chain)276 swap_skipto_cache(struct ip_fw_chain *chain)
277 {
278 	uint32_t *map;
279 
280 	IPFW_UH_WLOCK_ASSERT(chain);
281 	IPFW_WLOCK_ASSERT(chain);
282 
283 	map = chain->idxmap;
284 	chain->idxmap = chain->idxmap_back;
285 	chain->idxmap_back = map;
286 }
287 
288 /*
289  * Allocate and initialize skipto cache.
290  */
291 void
ipfw_init_skipto_cache(struct ip_fw_chain * chain)292 ipfw_init_skipto_cache(struct ip_fw_chain *chain)
293 {
294 	uint32_t *idxmap, *idxmap_back;
295 
296 	idxmap = malloc((IPFW_DEFAULT_RULE + 1) * sizeof(uint32_t),
297 	    M_IPFW, M_WAITOK | M_ZERO);
298 	idxmap_back = malloc((IPFW_DEFAULT_RULE + 1) * sizeof(uint32_t),
299 	    M_IPFW, M_WAITOK | M_ZERO);
300 
301 	/*
302 	 * Note we may be called at any time after initialization,
303 	 * for example, on first skipto rule, so we need to
304 	 * provide valid chain->idxmap on return
305 	 */
306 
307 	IPFW_UH_WLOCK(chain);
308 	if (chain->idxmap != NULL) {
309 		IPFW_UH_WUNLOCK(chain);
310 		free(idxmap, M_IPFW);
311 		free(idxmap_back, M_IPFW);
312 		return;
313 	}
314 
315 	/* Set backup pointer first to permit building cache */
316 	chain->idxmap_back = idxmap_back;
317 	if (V_skipto_cache != 0)
318 		update_skipto_cache(chain, chain->map);
319 	IPFW_WLOCK(chain);
320 	/* It is now safe to set chain->idxmap ptr */
321 	chain->idxmap = idxmap;
322 	swap_skipto_cache(chain);
323 	IPFW_WUNLOCK(chain);
324 	IPFW_UH_WUNLOCK(chain);
325 }
326 
327 /*
328  * Destroys skipto cache.
329  */
330 void
ipfw_destroy_skipto_cache(struct ip_fw_chain * chain)331 ipfw_destroy_skipto_cache(struct ip_fw_chain *chain)
332 {
333 	free(chain->idxmap, M_IPFW);
334 	free(chain->idxmap_back, M_IPFW);
335 }
336 
337 /*
338  * allocate a new map, returns the chain locked. extra is the number
339  * of entries to add or delete.
340  */
341 static struct ip_fw **
get_map(struct ip_fw_chain * chain,int extra,int locked)342 get_map(struct ip_fw_chain *chain, int extra, int locked)
343 {
344 
345 	for (;;) {
346 		struct ip_fw **map;
347 		u_int i, mflags;
348 
349 		mflags = M_ZERO | ((locked != 0) ? M_NOWAIT : M_WAITOK);
350 
351 		i = chain->n_rules + extra;
352 		map = malloc(i * sizeof(struct ip_fw *), M_IPFW, mflags);
353 		if (map == NULL) {
354 			printf("%s: cannot allocate map\n", __FUNCTION__);
355 			return NULL;
356 		}
357 		if (!locked)
358 			IPFW_UH_WLOCK(chain);
359 		if (i >= chain->n_rules + extra) /* good */
360 			return map;
361 		/* otherwise we lost the race, free and retry */
362 		if (!locked)
363 			IPFW_UH_WUNLOCK(chain);
364 		free(map, M_IPFW);
365 	}
366 }
367 
368 /*
369  * swap the maps. It is supposed to be called with IPFW_UH_WLOCK
370  */
371 static struct ip_fw **
swap_map(struct ip_fw_chain * chain,struct ip_fw ** new_map,int new_len)372 swap_map(struct ip_fw_chain *chain, struct ip_fw **new_map, int new_len)
373 {
374 	struct ip_fw **old_map;
375 
376 	IPFW_WLOCK(chain);
377 	chain->id++;
378 	chain->n_rules = new_len;
379 	old_map = chain->map;
380 	chain->map = new_map;
381 	swap_skipto_cache(chain);
382 	IPFW_WUNLOCK(chain);
383 	return old_map;
384 }
385 
386 static void
export_cntr1_base(struct ip_fw * krule,struct ip_fw_bcounter * cntr)387 export_cntr1_base(struct ip_fw *krule, struct ip_fw_bcounter *cntr)
388 {
389 	struct timeval boottime;
390 
391 	cntr->size = sizeof(*cntr);
392 
393 	if (krule->cntr != NULL) {
394 		cntr->pcnt = counter_u64_fetch(krule->cntr);
395 		cntr->bcnt = counter_u64_fetch(krule->cntr + 1);
396 		cntr->timestamp = krule->timestamp;
397 	}
398 	if (cntr->timestamp > 0) {
399 		getboottime(&boottime);
400 		cntr->timestamp += boottime.tv_sec;
401 	}
402 }
403 
404 /*
405  * Export rule into v1 format (Current).
406  * Layout:
407  * [ ipfw_obj_tlv(IPFW_TLV_RULE_ENT)
408  *     [ ip_fw_rule ] OR
409  *     [ ip_fw_bcounter ip_fw_rule] (depends on rcntrs).
410  * ]
411  * Assume @data is zeroed.
412  */
413 static void
export_rule1(struct ip_fw * krule,caddr_t data,int len,int rcntrs)414 export_rule1(struct ip_fw *krule, caddr_t data, int len, int rcntrs)
415 {
416 	struct ip_fw_bcounter *cntr;
417 	struct ip_fw_rule *urule;
418 	ipfw_obj_tlv *tlv;
419 
420 	/* Fill in TLV header */
421 	tlv = (ipfw_obj_tlv *)data;
422 	tlv->type = IPFW_TLV_RULE_ENT;
423 	tlv->length = len;
424 
425 	if (rcntrs != 0) {
426 		/* Copy counters */
427 		cntr = (struct ip_fw_bcounter *)(tlv + 1);
428 		urule = (struct ip_fw_rule *)(cntr + 1);
429 		export_cntr1_base(krule, cntr);
430 	} else
431 		urule = (struct ip_fw_rule *)(tlv + 1);
432 
433 	/* copy header */
434 	urule->act_ofs = krule->act_ofs;
435 	urule->cmd_len = krule->cmd_len;
436 	urule->rulenum = krule->rulenum;
437 	urule->set = krule->set;
438 	urule->flags = krule->flags;
439 	urule->id = krule->id;
440 
441 	/* Copy opcodes */
442 	memcpy(urule->cmd, krule->cmd, krule->cmd_len * sizeof(uint32_t));
443 }
444 
445 /*
446  * Add new rule(s) to the list possibly creating rule number for each.
447  * Update the rule_number in the input struct so the caller knows it as well.
448  * Must be called without IPFW_UH held
449  */
450 int
ipfw_commit_rules(struct ip_fw_chain * chain,struct rule_check_info * rci,int count)451 ipfw_commit_rules(struct ip_fw_chain *chain, struct rule_check_info *rci,
452     int count)
453 {
454 	int error, i, insert_before, tcount, rule_idx, last_rule_idx;
455 	uint32_t rulenum;
456 	struct rule_check_info *ci;
457 	struct ip_fw *krule;
458 	struct ip_fw **map;	/* the new array of pointers */
459 
460 	/* Check if we need to do table/obj index remap */
461 	tcount = 0;
462 	for (ci = rci, i = 0; i < count; ci++, i++) {
463 		if (ci->object_opcodes == 0)
464 			continue;
465 
466 		/*
467 		 * Rule has some object opcodes.
468 		 * We need to find (and create non-existing)
469 		 * kernel objects, and reference existing ones.
470 		 */
471 		error = rewrite_rule_uidx(chain, ci);
472 		if (error != 0) {
473 
474 			/*
475 			 * rewrite failed, state for current rule
476 			 * has been reverted. Check if we need to
477 			 * revert more.
478 			 */
479 			if (tcount > 0) {
480 
481 				/*
482 				 * We have some more table rules
483 				 * we need to rollback.
484 				 */
485 
486 				IPFW_UH_WLOCK(chain);
487 				while (ci != rci) {
488 					ci--;
489 					if (ci->object_opcodes == 0)
490 						continue;
491 					unref_rule_objects(chain,ci->krule);
492 
493 				}
494 				IPFW_UH_WUNLOCK(chain);
495 
496 			}
497 
498 			return (error);
499 		}
500 
501 		tcount++;
502 	}
503 
504 	/* get_map returns with IPFW_UH_WLOCK if successful */
505 	map = get_map(chain, count, 0 /* not locked */);
506 	if (map == NULL) {
507 		if (tcount > 0) {
508 			/* Unbind tables */
509 			IPFW_UH_WLOCK(chain);
510 			for (ci = rci, i = 0; i < count; ci++, i++) {
511 				if (ci->object_opcodes == 0)
512 					continue;
513 
514 				unref_rule_objects(chain, ci->krule);
515 			}
516 			IPFW_UH_WUNLOCK(chain);
517 		}
518 
519 		return (ENOSPC);
520 	}
521 
522 	if (V_autoinc_step < 1)
523 		V_autoinc_step = 1;
524 	else if (V_autoinc_step > 1000)
525 		V_autoinc_step = 1000;
526 
527 	last_rule_idx = 0;
528 	for (ci = rci, i = 0; i < count; ci++, i++) {
529 		krule = ci->krule;
530 		rulenum = krule->rulenum;
531 
532 		krule->id = chain->id + 1;
533 
534 		/* find the insertion point, we will insert before */
535 		insert_before = rulenum ? rulenum + 1 : IPFW_DEFAULT_RULE;
536 		rule_idx = ipfw_find_rule(chain, insert_before, 0);
537 		/* duplicate the previous part */
538 		if (last_rule_idx < rule_idx)
539 			bcopy(chain->map + last_rule_idx, map + last_rule_idx + i,
540 			    (rule_idx - last_rule_idx) * sizeof(struct ip_fw *));
541 		last_rule_idx = rule_idx;
542 		map[rule_idx + i] = krule;
543 		if (rulenum == 0) {
544 			/* Compute rule number and write it back */
545 			rulenum = rule_idx + i > 0 ? map[rule_idx + i - 1]->rulenum : 0;
546 			if (rulenum < IPFW_DEFAULT_RULE - V_autoinc_step)
547 				rulenum += V_autoinc_step;
548 			krule->rulenum = rulenum;
549 			/* Save number to userland rule */
550 			memcpy((char *)ci->urule + ci->urule_numoff, &rulenum,
551 			    sizeof(rulenum));
552 		}
553 	}
554 
555 	/* duplicate the remaining part, we always have the default rule */
556 	bcopy(chain->map + last_rule_idx, map + last_rule_idx + count,
557 	    (chain->n_rules - last_rule_idx) * sizeof(struct ip_fw *));
558 
559 	if (V_skipto_cache != 0)
560 		update_skipto_cache(chain, map);
561 	map = swap_map(chain, map, chain->n_rules + count);
562 	IPFW_UH_WUNLOCK(chain);
563 	if (map)
564 		free(map, M_IPFW);
565 	return (0);
566 }
567 
568 int
ipfw_add_protected_rule(struct ip_fw_chain * chain,struct ip_fw * rule,int locked)569 ipfw_add_protected_rule(struct ip_fw_chain *chain, struct ip_fw *rule,
570     int locked)
571 {
572 	struct ip_fw **map;
573 
574 	map = get_map(chain, 1, locked);
575 	if (map == NULL)
576 		return (ENOMEM);
577 	if (chain->n_rules > 0)
578 		bcopy(chain->map, map,
579 		    chain->n_rules * sizeof(struct ip_fw *));
580 	map[chain->n_rules] = rule;
581 	rule->rulenum = IPFW_DEFAULT_RULE;
582 	rule->set = RESVD_SET;
583 	rule->id = chain->id + 1;
584 	/* We add rule in the end of chain, no need to update skipto cache */
585 	map = swap_map(chain, map, chain->n_rules + 1);
586 	IPFW_UH_WUNLOCK(chain);
587 	free(map, M_IPFW);
588 	return (0);
589 }
590 
591 /*
592  * Adds @rule to the list of rules to reap
593  */
594 void
ipfw_reap_add(struct ip_fw_chain * chain,struct ip_fw ** head,struct ip_fw * rule)595 ipfw_reap_add(struct ip_fw_chain *chain, struct ip_fw **head,
596     struct ip_fw *rule)
597 {
598 
599 	IPFW_UH_WLOCK_ASSERT(chain);
600 
601 	/* Unlink rule from everywhere */
602 	unref_rule_objects(chain, rule);
603 
604 	rule->next = *head;
605 	*head = rule;
606 }
607 
608 /*
609  * Reclaim storage associated with a list of rules.  This is
610  * typically the list created using remove_rule.
611  * A NULL pointer on input is handled correctly.
612  */
613 void
ipfw_reap_rules(struct ip_fw * head)614 ipfw_reap_rules(struct ip_fw *head)
615 {
616 	struct ip_fw *rule;
617 
618 	while ((rule = head) != NULL) {
619 		head = head->next;
620 		ipfw_free_rule(rule);
621 	}
622 }
623 
624 /*
625  * Rules to keep are
626  *	(default || reserved || !match_set || !match_number)
627  * where
628  *   default ::= (rule->rulenum == IPFW_DEFAULT_RULE)
629  *	// the default rule is always protected
630  *
631  *   reserved ::= (cmd == 0 && n == 0 && rule->set == RESVD_SET)
632  *	// RESVD_SET is protected only if cmd == 0 and n == 0 ("ipfw flush")
633  *
634  *   match_set ::= (cmd == 0 || rule->set == set)
635  *	// set number is ignored for cmd == 0
636  *
637  *   match_number ::= (cmd == 1 || n == 0 || n == rule->rulenum)
638  *	// number is ignored for cmd == 1 or n == 0
639  *
640  */
641 int
ipfw_match_range(struct ip_fw * rule,ipfw_range_tlv * rt)642 ipfw_match_range(struct ip_fw *rule, ipfw_range_tlv *rt)
643 {
644 
645 	/* Don't match default rule for modification queries */
646 	if (rule->rulenum == IPFW_DEFAULT_RULE &&
647 	    (rt->flags & IPFW_RCFLAG_DEFAULT) == 0)
648 		return (0);
649 
650 	/* Don't match rules in reserved set for flush requests */
651 	if ((rt->flags & IPFW_RCFLAG_ALL) != 0 && rule->set == RESVD_SET)
652 		return (0);
653 
654 	/* If we're filtering by set, don't match other sets */
655 	if ((rt->flags & IPFW_RCFLAG_SET) != 0 && rule->set != rt->set)
656 		return (0);
657 
658 	if ((rt->flags & IPFW_RCFLAG_RANGE) != 0 &&
659 	    (rule->rulenum < rt->start_rule || rule->rulenum > rt->end_rule))
660 		return (0);
661 
662 	return (1);
663 }
664 
665 struct manage_sets_args {
666 	uint32_t	set;
667 	uint8_t		new_set;
668 };
669 
670 static int
swap_sets_cb(struct namedobj_instance * ni,struct named_object * no,void * arg)671 swap_sets_cb(struct namedobj_instance *ni, struct named_object *no,
672     void *arg)
673 {
674 	struct manage_sets_args *args;
675 
676 	args = (struct manage_sets_args *)arg;
677 	if (no->set == (uint8_t)args->set)
678 		no->set = args->new_set;
679 	else if (no->set == args->new_set)
680 		no->set = (uint8_t)args->set;
681 	return (0);
682 }
683 
684 static int
move_sets_cb(struct namedobj_instance * ni,struct named_object * no,void * arg)685 move_sets_cb(struct namedobj_instance *ni, struct named_object *no,
686     void *arg)
687 {
688 	struct manage_sets_args *args;
689 
690 	args = (struct manage_sets_args *)arg;
691 	if (no->set == (uint8_t)args->set)
692 		no->set = args->new_set;
693 	return (0);
694 }
695 
696 static int
test_sets_cb(struct namedobj_instance * ni,struct named_object * no,void * arg)697 test_sets_cb(struct namedobj_instance *ni, struct named_object *no,
698     void *arg)
699 {
700 	struct manage_sets_args *args;
701 
702 	args = (struct manage_sets_args *)arg;
703 	if (no->set != (uint8_t)args->set)
704 		return (0);
705 	if (ipfw_objhash_lookup_name_type(ni, args->new_set,
706 	    no->etlv, no->name) != NULL)
707 		return (EEXIST);
708 	return (0);
709 }
710 
711 /*
712  * Generic function to handler moving and swapping sets.
713  */
714 int
ipfw_obj_manage_sets(struct namedobj_instance * ni,uint16_t type,uint32_t set,uint8_t new_set,enum ipfw_sets_cmd cmd)715 ipfw_obj_manage_sets(struct namedobj_instance *ni, uint16_t type,
716     uint32_t set, uint8_t new_set, enum ipfw_sets_cmd cmd)
717 {
718 	struct manage_sets_args args;
719 	struct named_object *no;
720 
721 	args.set = set;
722 	args.new_set = new_set;
723 	switch (cmd) {
724 	case SWAP_ALL:
725 		return (ipfw_objhash_foreach_type(ni, swap_sets_cb,
726 		    &args, type));
727 	case TEST_ALL:
728 		return (ipfw_objhash_foreach_type(ni, test_sets_cb,
729 		    &args, type));
730 	case MOVE_ALL:
731 		return (ipfw_objhash_foreach_type(ni, move_sets_cb,
732 		    &args, type));
733 	case COUNT_ONE:
734 		/*
735 		 * @set used to pass kidx.
736 		 * When @new_set is zero - reset object counter,
737 		 * otherwise increment it.
738 		 */
739 		no = ipfw_objhash_lookup_kidx(ni, set);
740 		if (new_set != 0)
741 			no->ocnt++;
742 		else
743 			no->ocnt = 0;
744 		return (0);
745 	case TEST_ONE:
746 		/* @set used to pass kidx */
747 		no = ipfw_objhash_lookup_kidx(ni, set);
748 		/*
749 		 * First check number of references:
750 		 * when it differs, this mean other rules are holding
751 		 * reference to given object, so it is not possible to
752 		 * change its set. Note that refcnt may account references
753 		 * to some going-to-be-added rules. Since we don't know
754 		 * their numbers (and even if they will be added) it is
755 		 * perfectly OK to return error here.
756 		 */
757 		if (no->ocnt != no->refcnt)
758 			return (EBUSY);
759 		if (ipfw_objhash_lookup_name_type(ni, new_set, type,
760 		    no->name) != NULL)
761 			return (EEXIST);
762 		return (0);
763 	case MOVE_ONE:
764 		/* @set used to pass kidx */
765 		no = ipfw_objhash_lookup_kidx(ni, set);
766 		no->set = new_set;
767 		return (0);
768 	}
769 	return (EINVAL);
770 }
771 
772 /*
773  * Delete rules matching range @rt.
774  * Saves number of deleted rules in @ndel.
775  *
776  * Returns 0 on success.
777  */
778 int
delete_range(struct ip_fw_chain * chain,ipfw_range_tlv * rt,int * ndel)779 delete_range(struct ip_fw_chain *chain, ipfw_range_tlv *rt, int *ndel)
780 {
781 	struct ip_fw *reap, *rule, **map;
782 	uint32_t end, start;
783 	int i, n, ndyn, ofs;
784 
785 	reap = NULL;
786 	IPFW_UH_WLOCK(chain);	/* arbitrate writers */
787 
788 	/*
789 	 * Stage 1: Determine range to inspect.
790 	 * Range is half-inclusive, e.g [start, end).
791 	 */
792 	start = 0;
793 	end = chain->n_rules - 1;
794 
795 	if ((rt->flags & IPFW_RCFLAG_RANGE) != 0) {
796 		start = ipfw_find_rule(chain, rt->start_rule, 0);
797 
798 		if (rt->end_rule >= IPFW_DEFAULT_RULE)
799 			rt->end_rule = IPFW_DEFAULT_RULE - 1;
800 		end = ipfw_find_rule(chain, rt->end_rule, UINT32_MAX);
801 	}
802 
803 	if (rt->flags & IPFW_RCFLAG_DYNAMIC) {
804 		/*
805 		 * Requested deleting only for dynamic states.
806 		 */
807 		*ndel = 0;
808 		ipfw_expire_dyn_states(chain, rt);
809 		IPFW_UH_WUNLOCK(chain);
810 		return (0);
811 	}
812 
813 	/* Allocate new map of the same size */
814 	map = get_map(chain, 0, 1 /* locked */);
815 	if (map == NULL) {
816 		IPFW_UH_WUNLOCK(chain);
817 		return (ENOMEM);
818 	}
819 
820 	n = 0;
821 	ndyn = 0;
822 	ofs = start;
823 	/* 1. bcopy the initial part of the map */
824 	if (start > 0)
825 		bcopy(chain->map, map, start * sizeof(struct ip_fw *));
826 	/* 2. copy active rules between start and end */
827 	for (i = start; i < end; i++) {
828 		rule = chain->map[i];
829 		if (ipfw_match_range(rule, rt) == 0) {
830 			map[ofs++] = rule;
831 			continue;
832 		}
833 
834 		n++;
835 		if (ipfw_is_dyn_rule(rule) != 0)
836 			ndyn++;
837 	}
838 	/* 3. copy the final part of the map */
839 	bcopy(chain->map + end, map + ofs,
840 		(chain->n_rules - end) * sizeof(struct ip_fw *));
841 	/* 4. recalculate skipto cache */
842 	update_skipto_cache(chain, map);
843 	/* 5. swap the maps (under UH_WLOCK + WHLOCK) */
844 	map = swap_map(chain, map, chain->n_rules - n);
845 	/* 6. Remove all dynamic states originated by deleted rules */
846 	if (ndyn > 0)
847 		ipfw_expire_dyn_states(chain, rt);
848 	/* 7. now remove the rules deleted from the old map */
849 	for (i = start; i < end; i++) {
850 		rule = map[i];
851 		if (ipfw_match_range(rule, rt) == 0)
852 			continue;
853 		ipfw_reap_add(chain, &reap, rule);
854 	}
855 	IPFW_UH_WUNLOCK(chain);
856 
857 	ipfw_reap_rules(reap);
858 	if (map != NULL)
859 		free(map, M_IPFW);
860 	*ndel = n;
861 	return (0);
862 }
863 
864 static int
move_objects(struct ip_fw_chain * ch,ipfw_range_tlv * rt)865 move_objects(struct ip_fw_chain *ch, ipfw_range_tlv *rt)
866 {
867 	struct opcode_obj_rewrite *rw;
868 	struct ip_fw *rule;
869 	ipfw_insn *cmd;
870 	uint32_t kidx;
871 	int cmdlen, i, l, c;
872 
873 	IPFW_UH_WLOCK_ASSERT(ch);
874 
875 	/* Stage 1: count number of references by given rules */
876 	for (c = 0, i = 0; i < ch->n_rules - 1; i++) {
877 		rule = ch->map[i];
878 		if (ipfw_match_range(rule, rt) == 0)
879 			continue;
880 		if (rule->set == rt->new_set) /* nothing to do */
881 			continue;
882 		/* Search opcodes with named objects */
883 		for (l = rule->cmd_len, cmdlen = 0, cmd = rule->cmd;
884 		    l > 0; l -= cmdlen, cmd += cmdlen) {
885 			cmdlen = F_LEN(cmd);
886 			rw = find_op_rw(cmd, &kidx, NULL);
887 			if (rw == NULL || rw->manage_sets == NULL)
888 				continue;
889 			/*
890 			 * When manage_sets() returns non-zero value to
891 			 * COUNT_ONE command, consider this as an object
892 			 * doesn't support sets (e.g. disabled with sysctl).
893 			 * So, skip checks for this object.
894 			 */
895 			if (rw->manage_sets(ch, kidx, 1, COUNT_ONE) != 0)
896 				continue;
897 			c++;
898 		}
899 	}
900 	if (c == 0) /* No objects found */
901 		return (0);
902 	/* Stage 2: verify "ownership" */
903 	for (c = 0, i = 0; (i < ch->n_rules - 1) && c == 0; i++) {
904 		rule = ch->map[i];
905 		if (ipfw_match_range(rule, rt) == 0)
906 			continue;
907 		if (rule->set == rt->new_set) /* nothing to do */
908 			continue;
909 		/* Search opcodes with named objects */
910 		for (l = rule->cmd_len, cmdlen = 0, cmd = rule->cmd;
911 		    l > 0 && c == 0; l -= cmdlen, cmd += cmdlen) {
912 			cmdlen = F_LEN(cmd);
913 			rw = find_op_rw(cmd, &kidx, NULL);
914 			if (rw == NULL || rw->manage_sets == NULL)
915 				continue;
916 			/* Test for ownership and conflicting names */
917 			c = rw->manage_sets(ch, kidx,
918 			    (uint8_t)rt->new_set, TEST_ONE);
919 		}
920 	}
921 	/* Stage 3: change set and cleanup */
922 	for (i = 0; i < ch->n_rules - 1; i++) {
923 		rule = ch->map[i];
924 		if (ipfw_match_range(rule, rt) == 0)
925 			continue;
926 		if (rule->set == rt->new_set) /* nothing to do */
927 			continue;
928 		/* Search opcodes with named objects */
929 		for (l = rule->cmd_len, cmdlen = 0, cmd = rule->cmd;
930 		    l > 0; l -= cmdlen, cmd += cmdlen) {
931 			cmdlen = F_LEN(cmd);
932 			rw = find_op_rw(cmd, &kidx, NULL);
933 			if (rw == NULL || rw->manage_sets == NULL)
934 				continue;
935 			/* cleanup object counter */
936 			rw->manage_sets(ch, kidx,
937 			    0 /* reset counter */, COUNT_ONE);
938 			if (c != 0)
939 				continue;
940 			/* change set */
941 			rw->manage_sets(ch, kidx,
942 			    (uint8_t)rt->new_set, MOVE_ONE);
943 		}
944 	}
945 	return (c);
946 }
947 
948 /*
949  * Changes set of given rule rannge @rt
950  * with each other.
951  *
952  * Returns 0 on success.
953  */
954 static int
move_range(struct ip_fw_chain * chain,ipfw_range_tlv * rt)955 move_range(struct ip_fw_chain *chain, ipfw_range_tlv *rt)
956 {
957 	struct ip_fw *rule;
958 	int i;
959 
960 	IPFW_UH_WLOCK(chain);
961 
962 	/*
963 	 * Move rules with matching paramenerts to a new set.
964 	 * This one is much more complex. We have to ensure
965 	 * that all referenced tables (if any) are referenced
966 	 * by given rule subset only. Otherwise, we can't move
967 	 * them to new set and have to return error.
968 	 */
969 	if ((i = move_objects(chain, rt)) != 0) {
970 		IPFW_UH_WUNLOCK(chain);
971 		return (i);
972 	}
973 
974 	/* XXX: We have to do swap holding WLOCK */
975 	for (i = 0; i < chain->n_rules; i++) {
976 		rule = chain->map[i];
977 		if (ipfw_match_range(rule, rt) == 0)
978 			continue;
979 		rule->set = rt->new_set;
980 	}
981 
982 	IPFW_UH_WUNLOCK(chain);
983 
984 	return (0);
985 }
986 
987 /*
988  * Returns pointer to action instruction, skips all possible rule
989  * modifiers like O_LOG, O_TAG, O_ALTQ.
990  */
991 ipfw_insn *
ipfw_get_action(struct ip_fw * rule)992 ipfw_get_action(struct ip_fw *rule)
993 {
994 	ipfw_insn *cmd;
995 	int l, cmdlen;
996 
997 	cmd = ACTION_PTR(rule);
998 	l = rule->cmd_len - rule->act_ofs;
999 	while (l > 0) {
1000 		switch (cmd->opcode) {
1001 		case O_ALTQ:
1002 		case O_LOG:
1003 		case O_TAG:
1004 			break;
1005 		default:
1006 			return (cmd);
1007 		}
1008 		cmdlen = F_LEN(cmd);
1009 		l -= cmdlen;
1010 		cmd += cmdlen;
1011 	}
1012 	panic("%s: rule (%p) has not action opcode", __func__, rule);
1013 	return (NULL);
1014 }
1015 
1016 /*
1017  * Clear counters for a specific rule.
1018  * Normally run under IPFW_UH_RLOCK, but these are idempotent ops
1019  * so we only care that rules do not disappear.
1020  */
1021 static void
clear_counters(struct ip_fw * rule,int log_only)1022 clear_counters(struct ip_fw *rule, int log_only)
1023 {
1024 	ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
1025 
1026 	if (log_only == 0)
1027 		IPFW_ZERO_RULE_COUNTER(rule);
1028 	if (l->o.opcode == O_LOG)
1029 		l->log_left = l->max_log;
1030 }
1031 
1032 /*
1033  * Flushes rules counters and/or log values on matching range.
1034  *
1035  * Returns number of items cleared.
1036  */
1037 static int
clear_range(struct ip_fw_chain * chain,ipfw_range_tlv * rt,int log_only)1038 clear_range(struct ip_fw_chain *chain, ipfw_range_tlv *rt, int log_only)
1039 {
1040 	struct ip_fw *rule;
1041 	int num;
1042 	int i;
1043 
1044 	num = 0;
1045 	rt->flags |= IPFW_RCFLAG_DEFAULT;
1046 
1047 	IPFW_UH_WLOCK(chain);	/* arbitrate writers */
1048 	for (i = 0; i < chain->n_rules; i++) {
1049 		rule = chain->map[i];
1050 		if (ipfw_match_range(rule, rt) == 0)
1051 			continue;
1052 		clear_counters(rule, log_only);
1053 		num++;
1054 	}
1055 	IPFW_UH_WUNLOCK(chain);
1056 
1057 	return (num);
1058 }
1059 
1060 static int
check_range_tlv(ipfw_range_tlv * rt)1061 check_range_tlv(ipfw_range_tlv *rt)
1062 {
1063 
1064 	if (rt->head.length != sizeof(*rt))
1065 		return (1);
1066 	if (rt->start_rule > rt->end_rule)
1067 		return (1);
1068 	if (rt->set >= IPFW_MAX_SETS || rt->new_set >= IPFW_MAX_SETS)
1069 		return (1);
1070 
1071 	if ((rt->flags & IPFW_RCFLAG_USER) != rt->flags)
1072 		return (1);
1073 
1074 	return (0);
1075 }
1076 
1077 /*
1078  * Delete rules matching specified parameters
1079  * Data layout (v0)(current):
1080  * Request: [ ipfw_obj_header ipfw_range_tlv ]
1081  * Reply: [ ipfw_obj_header ipfw_range_tlv ]
1082  *
1083  * Saves number of deleted rules in ipfw_range_tlv->new_set.
1084  *
1085  * Returns 0 on success.
1086  */
1087 static int
del_rules(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)1088 del_rules(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
1089     struct sockopt_data *sd)
1090 {
1091 	ipfw_range_header *rh;
1092 	int error, ndel;
1093 
1094 	if (sd->valsize != sizeof(*rh))
1095 		return (EINVAL);
1096 
1097 	rh = (ipfw_range_header *)ipfw_get_sopt_space(sd, sd->valsize);
1098 
1099 	if (check_range_tlv(&rh->range) != 0)
1100 		return (EINVAL);
1101 
1102 	ndel = 0;
1103 	if ((error = delete_range(chain, &rh->range, &ndel)) != 0)
1104 		return (error);
1105 
1106 	/* Save number of rules deleted */
1107 	rh->range.new_set = ndel;
1108 	return (0);
1109 }
1110 
1111 /*
1112  * Move rules/sets matching specified parameters
1113  * Data layout (v0)(current):
1114  * Request: [ ipfw_obj_header ipfw_range_tlv ]
1115  *
1116  * Returns 0 on success.
1117  */
1118 static int
move_rules(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)1119 move_rules(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
1120     struct sockopt_data *sd)
1121 {
1122 	ipfw_range_header *rh;
1123 
1124 	if (sd->valsize != sizeof(*rh))
1125 		return (EINVAL);
1126 
1127 	rh = (ipfw_range_header *)ipfw_get_sopt_space(sd, sd->valsize);
1128 
1129 	if (check_range_tlv(&rh->range) != 0)
1130 		return (EINVAL);
1131 
1132 	return (move_range(chain, &rh->range));
1133 }
1134 
1135 /*
1136  * Clear rule accounting data matching specified parameters
1137  * Data layout (v0)(current):
1138  * Request: [ ipfw_obj_header ipfw_range_tlv ]
1139  * Reply: [ ipfw_obj_header ipfw_range_tlv ]
1140  *
1141  * Saves number of cleared rules in ipfw_range_tlv->new_set.
1142  *
1143  * Returns 0 on success.
1144  */
1145 static int
clear_rules(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)1146 clear_rules(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
1147     struct sockopt_data *sd)
1148 {
1149 	ipfw_range_header *rh;
1150 	int log_only, num;
1151 	char *msg;
1152 
1153 	if (sd->valsize != sizeof(*rh))
1154 		return (EINVAL);
1155 
1156 	rh = (ipfw_range_header *)ipfw_get_sopt_space(sd, sd->valsize);
1157 
1158 	if (check_range_tlv(&rh->range) != 0)
1159 		return (EINVAL);
1160 
1161 	log_only = (op3->opcode == IP_FW_XRESETLOG);
1162 
1163 	num = clear_range(chain, &rh->range, log_only);
1164 
1165 	if (rh->range.flags & IPFW_RCFLAG_ALL)
1166 		msg = log_only ? "All logging counts reset" :
1167 		    "Accounting cleared";
1168 	else
1169 		msg = log_only ? "logging count reset" : "cleared";
1170 
1171 	if (V_fw_verbose) {
1172 		int lev = LOG_SECURITY | LOG_NOTICE;
1173 		log(lev, "ipfw: %s.\n", msg);
1174 	}
1175 
1176 	/* Save number of rules cleared */
1177 	rh->range.new_set = num;
1178 	return (0);
1179 }
1180 
1181 static void
enable_sets(struct ip_fw_chain * chain,ipfw_range_tlv * rt)1182 enable_sets(struct ip_fw_chain *chain, ipfw_range_tlv *rt)
1183 {
1184 	uint32_t v_set;
1185 
1186 	IPFW_UH_WLOCK_ASSERT(chain);
1187 
1188 	/* Change enabled/disabled sets mask */
1189 	v_set = (V_set_disable | rt->set) & ~rt->new_set;
1190 	v_set &= ~(1 << RESVD_SET); /* set RESVD_SET always enabled */
1191 	IPFW_WLOCK(chain);
1192 	V_set_disable = v_set;
1193 	IPFW_WUNLOCK(chain);
1194 }
1195 
1196 static int
swap_sets(struct ip_fw_chain * chain,ipfw_range_tlv * rt,int mv)1197 swap_sets(struct ip_fw_chain *chain, ipfw_range_tlv *rt, int mv)
1198 {
1199 	struct opcode_obj_rewrite *rw;
1200 	struct ip_fw *rule;
1201 	int i;
1202 
1203 	IPFW_UH_WLOCK_ASSERT(chain);
1204 
1205 	if (rt->set == rt->new_set) /* nothing to do */
1206 		return (0);
1207 
1208 	if (mv != 0) {
1209 		/*
1210 		 * Berfore moving the rules we need to check that
1211 		 * there aren't any conflicting named objects.
1212 		 */
1213 		for (rw = ctl3_rewriters;
1214 		    rw < ctl3_rewriters + ctl3_rsize; rw++) {
1215 			if (rw->manage_sets == NULL)
1216 				continue;
1217 			i = rw->manage_sets(chain, (uint8_t)rt->set,
1218 			    (uint8_t)rt->new_set, TEST_ALL);
1219 			if (i != 0)
1220 				return (EEXIST);
1221 		}
1222 	}
1223 	/* Swap or move two sets */
1224 	for (i = 0; i < chain->n_rules - 1; i++) {
1225 		rule = chain->map[i];
1226 		if (rule->set == (uint8_t)rt->set)
1227 			rule->set = (uint8_t)rt->new_set;
1228 		else if (rule->set == (uint8_t)rt->new_set && mv == 0)
1229 			rule->set = (uint8_t)rt->set;
1230 	}
1231 	for (rw = ctl3_rewriters; rw < ctl3_rewriters + ctl3_rsize; rw++) {
1232 		if (rw->manage_sets == NULL)
1233 			continue;
1234 		rw->manage_sets(chain, (uint8_t)rt->set,
1235 		    (uint8_t)rt->new_set, mv != 0 ? MOVE_ALL: SWAP_ALL);
1236 	}
1237 	return (0);
1238 }
1239 
1240 /*
1241  * Swaps or moves set
1242  * Data layout (v0)(current):
1243  * Request: [ ipfw_obj_header ipfw_range_tlv ]
1244  *
1245  * Returns 0 on success.
1246  */
1247 static int
manage_sets(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)1248 manage_sets(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
1249     struct sockopt_data *sd)
1250 {
1251 	ipfw_range_header *rh;
1252 	int ret;
1253 
1254 	if (sd->valsize != sizeof(*rh))
1255 		return (EINVAL);
1256 
1257 	rh = (ipfw_range_header *)ipfw_get_sopt_space(sd, sd->valsize);
1258 
1259 	if (rh->range.head.length != sizeof(ipfw_range_tlv))
1260 		return (1);
1261 	/* enable_sets() expects bitmasks. */
1262 	if (op3->opcode != IP_FW_SET_ENABLE &&
1263 	    (rh->range.set >= IPFW_MAX_SETS ||
1264 	    rh->range.new_set >= IPFW_MAX_SETS))
1265 		return (EINVAL);
1266 
1267 	ret = 0;
1268 	IPFW_UH_WLOCK(chain);
1269 	switch (op3->opcode) {
1270 	case IP_FW_SET_SWAP:
1271 	case IP_FW_SET_MOVE:
1272 		ret = swap_sets(chain, &rh->range,
1273 		    op3->opcode == IP_FW_SET_MOVE);
1274 		break;
1275 	case IP_FW_SET_ENABLE:
1276 		enable_sets(chain, &rh->range);
1277 		break;
1278 	}
1279 	IPFW_UH_WUNLOCK(chain);
1280 
1281 	return (ret);
1282 }
1283 
1284 /* Check rule format */
1285 int
ipfw_check_rule(struct ip_fw_rule * rule,size_t size,struct rule_check_info * ci)1286 ipfw_check_rule(struct ip_fw_rule *rule, size_t size,
1287     struct rule_check_info *ci)
1288 {
1289 	int l;
1290 
1291 	if (size < sizeof(*rule)) {
1292 		printf("ipfw: rule too short\n");
1293 		return (EINVAL);
1294 	}
1295 
1296 	/* Check for valid cmd_len */
1297 	l = roundup2(RULESIZE(rule), sizeof(uint64_t));
1298 	if (l != size) {
1299 		printf("ipfw: size mismatch (have %zu want %d)\n", size, l);
1300 		return (EINVAL);
1301 	}
1302 	if (rule->act_ofs >= rule->cmd_len) {
1303 		printf("ipfw: bogus action offset (%u > %u)\n",
1304 		    rule->act_ofs, rule->cmd_len - 1);
1305 		return (EINVAL);
1306 	}
1307 
1308 	if (rule->rulenum > IPFW_DEFAULT_RULE - 1)
1309 		return (EINVAL);
1310 
1311 	return (check_ipfw_rule_body(rule->cmd, rule->cmd_len, ci));
1312 }
1313 
1314 #define	CHECK_TARG(a, c)	\
1315     ((a) == IP_FW_TARG && ((c)->flags & IPFW_RCIFLAG_HAS_STATE))
1316 
1317 enum ipfw_opcheck_result
ipfw_check_opcode(ipfw_insn ** pcmd,int * plen,struct rule_check_info * ci)1318 ipfw_check_opcode(ipfw_insn **pcmd, int *plen, struct rule_check_info *ci)
1319 {
1320 	ipfw_insn *cmd;
1321 	size_t cmdlen;
1322 
1323 	cmd = *pcmd;
1324 	cmdlen = F_LEN(cmd);
1325 
1326 	switch (cmd->opcode) {
1327 	case O_PROBE_STATE:
1328 	case O_KEEP_STATE:
1329 		if (cmdlen != F_INSN_SIZE(ipfw_insn_kidx))
1330 			return (BAD_SIZE);
1331 		ci->object_opcodes++;
1332 		ci->flags |= IPFW_RCIFLAG_HAS_STATE;
1333 		break;
1334 	case O_PROTO:
1335 	case O_IP_SRC_ME:
1336 	case O_IP_DST_ME:
1337 	case O_LAYER2:
1338 	case O_IN:
1339 	case O_FRAG:
1340 	case O_DIVERTED:
1341 	case O_IPOPT:
1342 	case O_IPTOS:
1343 	case O_IPPRECEDENCE:
1344 	case O_IPVER:
1345 	case O_SOCKARG:
1346 	case O_TCPFLAGS:
1347 	case O_TCPOPTS:
1348 	case O_ESTAB:
1349 	case O_VERREVPATH:
1350 	case O_VERSRCREACH:
1351 	case O_ANTISPOOF:
1352 	case O_IPSEC:
1353 #ifdef INET6
1354 	case O_IP6_SRC_ME:
1355 	case O_IP6_DST_ME:
1356 	case O_EXT_HDR:
1357 	case O_IP6:
1358 #endif
1359 	case O_IP4:
1360 	case O_TAG:
1361 	case O_SKIP_ACTION:
1362 		if (cmdlen != F_INSN_SIZE(ipfw_insn))
1363 			return (BAD_SIZE);
1364 		break;
1365 
1366 	case O_EXTERNAL_ACTION:
1367 		if (cmdlen != F_INSN_SIZE(ipfw_insn_kidx))
1368 			return (BAD_SIZE);
1369 
1370 		if (insntod(cmd, kidx)->kidx == 0)
1371 			return (FAILED);
1372 		ci->object_opcodes++;
1373 		/*
1374 		 * Do we have O_EXTERNAL_INSTANCE or O_EXTERNAL_DATA
1375 		 * opcode?
1376 		 */
1377 		if (*plen != cmdlen) {
1378 			*plen -= cmdlen;
1379 			cmd += cmdlen;
1380 			*pcmd = cmd;
1381 			cmdlen = F_LEN(cmd);
1382 			if (cmd->opcode == O_EXTERNAL_DATA)
1383 				return (CHECK_ACTION);
1384 			if (cmd->opcode != O_EXTERNAL_INSTANCE) {
1385 				printf("ipfw: invalid opcode "
1386 				    "next to external action %u\n",
1387 				    cmd->opcode);
1388 				return (FAILED);
1389 			}
1390 			if (cmdlen != F_INSN_SIZE(ipfw_insn_kidx))
1391 				return (BAD_SIZE);
1392 			if (insntod(cmd, kidx)->kidx == 0)
1393 				return (FAILED);
1394 			ci->object_opcodes++;
1395 		}
1396 		return (CHECK_ACTION);
1397 
1398 	case O_FIB:
1399 		if (cmdlen != F_INSN_SIZE(ipfw_insn))
1400 			return (BAD_SIZE);
1401 		if (cmd->arg1 >= rt_numfibs) {
1402 			printf("ipfw: invalid fib number %d\n",
1403 				cmd->arg1);
1404 			return (FAILED);
1405 		}
1406 		break;
1407 
1408 	case O_SETFIB:
1409 		if (cmdlen != F_INSN_SIZE(ipfw_insn))
1410 			return (BAD_SIZE);
1411 		if ((cmd->arg1 != IP_FW_TARG) &&
1412 		    ((cmd->arg1 & 0x7FFF) >= rt_numfibs)) {
1413 			printf("ipfw: invalid fib number %d\n",
1414 				cmd->arg1 & 0x7FFF);
1415 			return (FAILED);
1416 		}
1417 		if (CHECK_TARG(cmd->arg1, ci))
1418 			goto bad_targ;
1419 		return (CHECK_ACTION);
1420 
1421 	case O_UID:
1422 	case O_GID:
1423 	case O_JAIL:
1424 	case O_IP_SRC:
1425 	case O_IP_DST:
1426 	case O_TCPSEQ:
1427 	case O_TCPACK:
1428 	case O_PROB:
1429 	case O_ICMPTYPE:
1430 		if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
1431 			return (BAD_SIZE);
1432 		break;
1433 
1434 	case O_LIMIT:
1435 		if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
1436 			return (BAD_SIZE);
1437 		ci->object_opcodes++;
1438 		break;
1439 
1440 	case O_LOG:
1441 		if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
1442 			return (BAD_SIZE);
1443 		insntod(cmd, log)->log_left = insntod(cmd, log)->max_log;
1444 		break;
1445 
1446 	case O_IP_SRC_MASK:
1447 	case O_IP_DST_MASK:
1448 		/* only odd command lengths */
1449 		if ((cmdlen & 1) == 0)
1450 			return (BAD_SIZE);
1451 		break;
1452 
1453 	case O_IP_SRC_SET:
1454 	case O_IP_DST_SET:
1455 		if (cmd->arg1 == 0 || cmd->arg1 > 256) {
1456 			printf("ipfw: invalid set size %d\n",
1457 				cmd->arg1);
1458 			return (FAILED);
1459 		}
1460 		if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
1461 		    (cmd->arg1+31)/32 )
1462 			return (BAD_SIZE);
1463 		break;
1464 
1465 	case O_IP_SRC_LOOKUP:
1466 	case O_IP_DST_LOOKUP:
1467 	case O_IP_FLOW_LOOKUP:
1468 	case O_MAC_SRC_LOOKUP:
1469 	case O_MAC_DST_LOOKUP:
1470 		if (cmdlen != F_INSN_SIZE(ipfw_insn_kidx) &&
1471 		    cmdlen != F_INSN_SIZE(ipfw_insn_table))
1472 			return (BAD_SIZE);
1473 		if (insntod(cmd, kidx)->kidx >= V_fw_tables_max) {
1474 			printf("ipfw: invalid table index %u\n",
1475 			    insntod(cmd, kidx)->kidx);
1476 			return (FAILED);
1477 		}
1478 		ci->object_opcodes++;
1479 		break;
1480 	case O_MACADDR2:
1481 		if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
1482 			return (BAD_SIZE);
1483 		break;
1484 
1485 	case O_NOP:
1486 	case O_IPID:
1487 	case O_IPTTL:
1488 	case O_IPLEN:
1489 	case O_TCPDATALEN:
1490 	case O_TCPMSS:
1491 	case O_TCPWIN:
1492 	case O_TAGGED:
1493 		if (cmdlen < 1 || cmdlen > 31)
1494 			return (BAD_SIZE);
1495 		break;
1496 
1497 	case O_DSCP:
1498 	case O_MARK:
1499 		if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) + 1)
1500 			return (BAD_SIZE);
1501 		break;
1502 
1503 	case O_MAC_TYPE:
1504 	case O_IP_SRCPORT:
1505 	case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
1506 		if (cmdlen < 2 || cmdlen > 31)
1507 			return (BAD_SIZE);
1508 		break;
1509 
1510 	case O_RECV:
1511 	case O_XMIT:
1512 	case O_VIA:
1513 		if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
1514 			return (BAD_SIZE);
1515 		ci->object_opcodes++;
1516 		break;
1517 
1518 	case O_ALTQ:
1519 		if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
1520 			return (BAD_SIZE);
1521 		break;
1522 
1523 	case O_PIPE:
1524 	case O_QUEUE:
1525 		if (cmdlen != F_INSN_SIZE(ipfw_insn))
1526 			return (BAD_SIZE);
1527 		if (CHECK_TARG(cmd->arg1, ci))
1528 			goto bad_targ;
1529 		return (CHECK_ACTION);
1530 
1531 	case O_FORWARD_IP:
1532 		if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
1533 			return (BAD_SIZE);
1534 		if (insntoc(cmd, sa)->sa.sin_addr.s_addr == INADDR_ANY &&
1535 		    (ci->flags & IPFW_RCIFLAG_HAS_STATE))
1536 			goto bad_targ;
1537 		return (CHECK_ACTION);
1538 #ifdef INET6
1539 	case O_FORWARD_IP6:
1540 		if (cmdlen != F_INSN_SIZE(ipfw_insn_sa6))
1541 			return (BAD_SIZE);
1542 		return (CHECK_ACTION);
1543 #endif /* INET6 */
1544 
1545 	case O_DIVERT:
1546 	case O_TEE:
1547 		if (ip_divert_ptr == NULL)
1548 			return (FAILED);
1549 		if (cmdlen != F_INSN_SIZE(ipfw_insn))
1550 			return (BAD_SIZE);
1551 		if (CHECK_TARG(cmd->arg1, ci))
1552 			goto bad_targ;
1553 		return (CHECK_ACTION);
1554 	case O_NETGRAPH:
1555 	case O_NGTEE:
1556 		if (ng_ipfw_input_p == NULL)
1557 			return (FAILED);
1558 		if (cmdlen != F_INSN_SIZE(ipfw_insn))
1559 			return (BAD_SIZE);
1560 		if (CHECK_TARG(cmd->arg1, ci))
1561 			goto bad_targ;
1562 		return (CHECK_ACTION);
1563 	case O_NAT:
1564 		if (!IPFW_NAT_LOADED)
1565 			return (FAILED);
1566 		if (cmdlen != F_INSN_SIZE(ipfw_insn_nat))
1567 			return (BAD_SIZE);
1568 		if (CHECK_TARG(cmd->arg1, ci))
1569 			goto bad_targ;
1570 		return (CHECK_ACTION);
1571 
1572 	case O_SKIPTO:
1573 	case O_CALLRETURN:
1574 	case O_SETMARK:
1575 		if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
1576 			return (BAD_SIZE);
1577 		/* O_CALLRETURN + F_NOT means 'return' opcode. */
1578 		if (cmd->opcode != O_CALLRETURN || (cmd->len & F_NOT) == 0) {
1579 			if (CHECK_TARG(insntoc(cmd, u32)->d[0], ci))
1580 				goto bad_targ;
1581 		}
1582 		return (CHECK_ACTION);
1583 
1584 	case O_CHECK_STATE:
1585 		if (cmdlen != F_INSN_SIZE(ipfw_insn_kidx))
1586 			return (BAD_SIZE);
1587 		ci->object_opcodes++;
1588 		return (CHECK_ACTION);
1589 
1590 	case O_FORWARD_MAC: /* XXX not implemented yet */
1591 	case O_COUNT:
1592 	case O_ACCEPT:
1593 	case O_DENY:
1594 	case O_REJECT:
1595 	case O_SETDSCP:
1596 #ifdef INET6
1597 	case O_UNREACH6:
1598 #endif
1599 	case O_REASS:
1600 		if (cmdlen != F_INSN_SIZE(ipfw_insn))
1601 			return (BAD_SIZE);
1602 		if (cmd->opcode == O_SETDSCP && CHECK_TARG(cmd->arg1, ci))
1603 			goto bad_targ;
1604 		return (CHECK_ACTION);
1605 #ifdef INET6
1606 	case O_IP6_SRC:
1607 	case O_IP6_DST:
1608 		if (cmdlen != F_INSN_SIZE(struct in6_addr) +
1609 		    F_INSN_SIZE(ipfw_insn))
1610 			return (BAD_SIZE);
1611 		break;
1612 
1613 	case O_FLOW6ID:
1614 		if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
1615 		    ((ipfw_insn_u32 *)cmd)->o.arg1)
1616 			return (BAD_SIZE);
1617 		break;
1618 
1619 	case O_IP6_SRC_MASK:
1620 	case O_IP6_DST_MASK:
1621 		if ( !(cmdlen & 1) || cmdlen > 127)
1622 			return (BAD_SIZE);
1623 		break;
1624 	case O_ICMP6TYPE:
1625 		if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) )
1626 			return (BAD_SIZE);
1627 		break;
1628 #endif
1629 
1630 	default:
1631 		switch (cmd->opcode) {
1632 #ifndef INET6
1633 		case O_IP6_SRC_ME:
1634 		case O_IP6_DST_ME:
1635 		case O_EXT_HDR:
1636 		case O_IP6:
1637 		case O_UNREACH6:
1638 		case O_IP6_SRC:
1639 		case O_IP6_DST:
1640 		case O_FLOW6ID:
1641 		case O_IP6_SRC_MASK:
1642 		case O_IP6_DST_MASK:
1643 		case O_ICMP6TYPE:
1644 			printf("ipfw: no IPv6 support in kernel\n");
1645 			return (FAILED);
1646 #endif
1647 		default:
1648 			printf("ipfw: opcode %d: unknown opcode\n",
1649 				cmd->opcode);
1650 			return (FAILED);
1651 		}
1652 	}
1653 	return (SUCCESS);
1654 bad_targ:
1655 	/*
1656 	 * For dynamic states we can not correctly initialize tablearg value,
1657 	 * because we don't go through rule's opcodes except rule action.
1658 	 */
1659 	printf("ipfw: tablearg is not allowed with dynamic states\n");
1660 	return (FAILED);
1661 }
1662 
1663 static __noinline int
check_ipfw_rule_body(ipfw_insn * cmd,int cmd_len,struct rule_check_info * ci)1664 check_ipfw_rule_body(ipfw_insn *cmd, int cmd_len, struct rule_check_info *ci)
1665 {
1666 	int cmdlen, l;
1667 	int have_action, ret;
1668 
1669 	/*
1670 	 * Now go for the individual checks. Very simple ones, basically only
1671 	 * instruction sizes.
1672 	 */
1673 	have_action = 0;
1674 	for (l = cmd_len; l > 0 ; l -= cmdlen, cmd += cmdlen) {
1675 		cmdlen = F_LEN(cmd);
1676 		if (cmdlen > l) {
1677 			printf("ipfw: opcode %d: size truncated\n",
1678 			    cmd->opcode);
1679 			return (EINVAL);
1680 		}
1681 		if (ci->version != IP_FW3_OPVER)
1682 			ret = (*check_opcode_f)(&cmd, &l, ci);
1683 		else
1684 			ret = ipfw_check_opcode(&cmd, &l, ci);
1685 
1686 		if (ret == CHECK_ACTION) {
1687 			if (have_action != 0) {
1688 				printf("ipfw: opcode %d: multiple actions"
1689 				    " not allowed\n", cmd->opcode);
1690 				ret = FAILED;
1691 			} else
1692 				have_action = 1;
1693 
1694 			if (l != F_LEN(cmd)) {
1695 				printf("ipfw: opcode %d: action must be"
1696 				    " last opcode\n", cmd->opcode);
1697 				ret = FAILED;
1698 			}
1699 		}
1700 		switch (ret) {
1701 		case SUCCESS:
1702 			continue;
1703 		case BAD_SIZE:
1704 			printf("ipfw: opcode %d: wrong size %d\n",
1705 			    cmd->opcode, cmdlen);
1706 			/* FALLTHROUGH */
1707 		case FAILED:
1708 			return (EINVAL);
1709 		}
1710 	}
1711 	if (have_action == 0) {
1712 		printf("ipfw: missing action\n");
1713 		return (EINVAL);
1714 	}
1715 	return (0);
1716 }
1717 
1718 struct dump_args {
1719 	uint32_t	b;	/* start rule */
1720 	uint32_t	e;	/* end rule */
1721 	uint32_t	rcount;	/* number of rules */
1722 	uint32_t	rsize;	/* rules size */
1723 	uint32_t	tcount;	/* number of tables */
1724 	int		rcounters;	/* counters */
1725 	uint32_t	*bmask;	/* index bitmask of used named objects */
1726 };
1727 
1728 void
ipfw_export_obj_ntlv(struct named_object * no,ipfw_obj_ntlv * ntlv)1729 ipfw_export_obj_ntlv(struct named_object *no, ipfw_obj_ntlv *ntlv)
1730 {
1731 
1732 	ntlv->head.type = no->etlv;
1733 	ntlv->head.length = sizeof(*ntlv);
1734 	ntlv->idx = no->kidx;
1735 	strlcpy(ntlv->name, no->name, sizeof(ntlv->name));
1736 }
1737 
1738 /*
1739  * Export named object info in instance @ni, identified by @kidx
1740  * to ipfw_obj_ntlv. TLV is allocated from @sd space.
1741  *
1742  * Returns 0 on success.
1743  */
1744 static int
export_objhash_ntlv(struct namedobj_instance * ni,uint32_t kidx,struct sockopt_data * sd)1745 export_objhash_ntlv(struct namedobj_instance *ni, uint32_t kidx,
1746     struct sockopt_data *sd)
1747 {
1748 	struct named_object *no;
1749 	ipfw_obj_ntlv *ntlv;
1750 
1751 	no = ipfw_objhash_lookup_kidx(ni, kidx);
1752 	KASSERT(no != NULL, ("invalid object kernel index passed"));
1753 
1754 	ntlv = (ipfw_obj_ntlv *)ipfw_get_sopt_space(sd, sizeof(*ntlv));
1755 	if (ntlv == NULL)
1756 		return (ENOMEM);
1757 
1758 	ipfw_export_obj_ntlv(no, ntlv);
1759 	return (0);
1760 }
1761 
1762 static int
export_named_objects(struct namedobj_instance * ni,struct dump_args * da,struct sockopt_data * sd)1763 export_named_objects(struct namedobj_instance *ni, struct dump_args *da,
1764     struct sockopt_data *sd)
1765 {
1766 	uint32_t i;
1767 	int error;
1768 
1769 	for (i = 0; i < IPFW_TABLES_MAX && da->tcount > 0; i++) {
1770 		if ((da->bmask[i / 32] & (1 << (i % 32))) == 0)
1771 			continue;
1772 		if ((error = export_objhash_ntlv(ni, i, sd)) != 0)
1773 			return (error);
1774 		da->tcount--;
1775 	}
1776 	return (0);
1777 }
1778 
1779 static int
dump_named_objects(struct ip_fw_chain * ch,struct dump_args * da,struct sockopt_data * sd)1780 dump_named_objects(struct ip_fw_chain *ch, struct dump_args *da,
1781     struct sockopt_data *sd)
1782 {
1783 	ipfw_obj_ctlv *ctlv;
1784 	int error;
1785 
1786 	MPASS(da->tcount > 0);
1787 	/* Header first */
1788 	ctlv = (ipfw_obj_ctlv *)ipfw_get_sopt_space(sd, sizeof(*ctlv));
1789 	if (ctlv == NULL)
1790 		return (ENOMEM);
1791 	ctlv->head.type = IPFW_TLV_TBLNAME_LIST;
1792 	ctlv->head.length = da->tcount * sizeof(ipfw_obj_ntlv) +
1793 	    sizeof(*ctlv);
1794 	ctlv->count = da->tcount;
1795 	ctlv->objsize = sizeof(ipfw_obj_ntlv);
1796 
1797 	/* Dump table names first (if any) */
1798 	error = export_named_objects(ipfw_get_table_objhash(ch), da, sd);
1799 	if (error != 0)
1800 		return (error);
1801 	/* Then dump another named objects */
1802 	da->bmask += IPFW_TABLES_MAX / 32;
1803 	return (export_named_objects(CHAIN_TO_SRV(ch), da, sd));
1804 }
1805 
1806 /*
1807  * Dumps static rules with table TLVs in buffer @sd.
1808  *
1809  * Returns 0 on success.
1810  */
1811 static int
dump_static_rules(struct ip_fw_chain * chain,struct dump_args * da,struct sockopt_data * sd)1812 dump_static_rules(struct ip_fw_chain *chain, struct dump_args *da,
1813     struct sockopt_data *sd)
1814 {
1815 	ipfw_obj_ctlv *ctlv;
1816 	struct ip_fw *krule;
1817 	caddr_t dst;
1818 	int i, l;
1819 
1820 	/* Dump rules */
1821 	ctlv = (ipfw_obj_ctlv *)ipfw_get_sopt_space(sd, sizeof(*ctlv));
1822 	if (ctlv == NULL)
1823 		return (ENOMEM);
1824 	ctlv->head.type = IPFW_TLV_RULE_LIST;
1825 	ctlv->head.length = da->rsize + sizeof(*ctlv);
1826 	ctlv->count = da->rcount;
1827 
1828 	for (i = da->b; i < da->e; i++) {
1829 		krule = chain->map[i];
1830 
1831 		l = RULEUSIZE1(krule) + sizeof(ipfw_obj_tlv);
1832 		if (da->rcounters != 0)
1833 			l += sizeof(struct ip_fw_bcounter);
1834 		dst = (caddr_t)ipfw_get_sopt_space(sd, l);
1835 		if (dst == NULL)
1836 			return (ENOMEM);
1837 
1838 		export_rule1(krule, dst, l, da->rcounters);
1839 	}
1840 
1841 	return (0);
1842 }
1843 
1844 int
ipfw_mark_object_kidx(uint32_t * bmask,uint16_t etlv,uint32_t kidx)1845 ipfw_mark_object_kidx(uint32_t *bmask, uint16_t etlv, uint32_t kidx)
1846 {
1847 	uint32_t bidx;
1848 
1849 	/*
1850 	 * Maintain separate bitmasks for table and non-table objects.
1851 	 */
1852 	bidx = (etlv == IPFW_TLV_TBL_NAME) ? 0: IPFW_TABLES_MAX / 32;
1853 	bidx += kidx / 32;
1854 	if ((bmask[bidx] & (1 << (kidx % 32))) != 0)
1855 		return (0);
1856 
1857 	bmask[bidx] |= 1 << (kidx % 32);
1858 	return (1);
1859 }
1860 
1861 /*
1862  * Marks every object index used in @rule with bit in @bmask.
1863  * Used to generate bitmask of referenced tables/objects for given ruleset
1864  * or its part.
1865  */
1866 static void
mark_rule_objects(struct ip_fw_chain * ch,struct ip_fw * rule,struct dump_args * da)1867 mark_rule_objects(struct ip_fw_chain *ch, struct ip_fw *rule,
1868     struct dump_args *da)
1869 {
1870 	struct opcode_obj_rewrite *rw;
1871 	ipfw_insn *cmd;
1872 	uint32_t kidx;
1873 	int cmdlen, l;
1874 	uint8_t subtype;
1875 
1876 	l = rule->cmd_len;
1877 	cmd = rule->cmd;
1878 	cmdlen = 0;
1879 	for ( ;	l > 0 ; l -= cmdlen, cmd += cmdlen) {
1880 		cmdlen = F_LEN(cmd);
1881 
1882 		rw = find_op_rw(cmd, &kidx, &subtype);
1883 		if (rw == NULL)
1884 			continue;
1885 
1886 		if (ipfw_mark_object_kidx(da->bmask, rw->etlv, kidx))
1887 			da->tcount++;
1888 	}
1889 }
1890 
1891 /*
1892  * Dumps requested objects data
1893  * Data layout (version 0)(current):
1894  * Request: [ ipfw_cfg_lheader ] + IPFW_CFG_GET_* flags
1895  *   size = ipfw_cfg_lheader.size
1896  * Reply: [ ipfw_cfg_lheader
1897  *   [ ipfw_obj_ctlv(IPFW_TLV_TBL_LIST) ipfw_obj_ntlv x N ] (optional)
1898  *   [ ipfw_obj_ctlv(IPFW_TLV_RULE_LIST)
1899  *     ipfw_obj_tlv(IPFW_TLV_RULE_ENT) [ ip_fw_bcounter (optional) ip_fw_rule ]
1900  *   ] (optional)
1901  *   [ ipfw_obj_ctlv(IPFW_TLV_STATE_LIST) ipfw_obj_dyntlv x N ] (optional)
1902  * ]
1903  * * NOTE IPFW_TLV_STATE_LIST has the single valid field: objsize.
1904  * The rest (size, count) are set to zero and needs to be ignored.
1905  *
1906  * Returns 0 on success.
1907  */
1908 static int
dump_config(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)1909 dump_config(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
1910     struct sockopt_data *sd)
1911 {
1912 	struct dump_args da;
1913 	ipfw_cfg_lheader *hdr;
1914 	struct ip_fw *rule;
1915 	size_t sz, rnum;
1916 	uint32_t hdr_flags, *bmask;
1917 	int error, i;
1918 
1919 	hdr = (ipfw_cfg_lheader *)ipfw_get_sopt_header(sd, sizeof(*hdr));
1920 	if (hdr == NULL)
1921 		return (EINVAL);
1922 
1923 	error = 0;
1924 	bmask = NULL;
1925 	memset(&da, 0, sizeof(da));
1926 	/*
1927 	 * Allocate needed state.
1928 	 * Note we allocate 2xspace mask, for table & srv
1929 	 */
1930 	if (hdr->flags & (IPFW_CFG_GET_STATIC | IPFW_CFG_GET_STATES))
1931 		da.bmask = bmask = malloc(
1932 		    sizeof(uint32_t) * IPFW_TABLES_MAX * 2 / 32, M_TEMP,
1933 		    M_WAITOK | M_ZERO);
1934 	IPFW_UH_RLOCK(chain);
1935 
1936 	/*
1937 	 * STAGE 1: Determine size/count for objects in range.
1938 	 * Prepare used tables bitmask.
1939 	 */
1940 	sz = sizeof(ipfw_cfg_lheader);
1941 	da.e = chain->n_rules;
1942 
1943 	if (hdr->end_rule != 0) {
1944 		/* Handle custom range */
1945 		if ((rnum = hdr->start_rule) > IPFW_DEFAULT_RULE)
1946 			rnum = IPFW_DEFAULT_RULE;
1947 		da.b = ipfw_find_rule(chain, rnum, 0);
1948 		rnum = (hdr->end_rule < IPFW_DEFAULT_RULE) ?
1949 		    hdr->end_rule + 1: IPFW_DEFAULT_RULE;
1950 		da.e = ipfw_find_rule(chain, rnum, UINT32_MAX) + 1;
1951 	}
1952 
1953 	if (hdr->flags & IPFW_CFG_GET_STATIC) {
1954 		for (i = da.b; i < da.e; i++) {
1955 			rule = chain->map[i];
1956 			da.rsize += RULEUSIZE1(rule) + sizeof(ipfw_obj_tlv);
1957 			da.rcount++;
1958 			/* Update bitmask of used objects for given range */
1959 			mark_rule_objects(chain, rule, &da);
1960 		}
1961 		/* Add counters if requested */
1962 		if (hdr->flags & IPFW_CFG_GET_COUNTERS) {
1963 			da.rsize += sizeof(struct ip_fw_bcounter) * da.rcount;
1964 			da.rcounters = 1;
1965 		}
1966 		sz += da.rsize + sizeof(ipfw_obj_ctlv);
1967 	}
1968 
1969 	if (hdr->flags & IPFW_CFG_GET_STATES) {
1970 		sz += sizeof(ipfw_obj_ctlv) +
1971 		    ipfw_dyn_get_count(bmask, &i) * sizeof(ipfw_obj_dyntlv);
1972 		da.tcount += i;
1973 	}
1974 
1975 	if (da.tcount > 0)
1976 		sz += da.tcount * sizeof(ipfw_obj_ntlv) +
1977 		    sizeof(ipfw_obj_ctlv);
1978 
1979 	/*
1980 	 * Fill header anyway.
1981 	 * Note we have to save header fields to stable storage
1982 	 * buffer inside @sd can be flushed after dumping rules
1983 	 */
1984 	hdr->size = sz;
1985 	hdr->set_mask = ~V_set_disable;
1986 	hdr_flags = hdr->flags;
1987 	hdr = NULL;
1988 
1989 	if (sd->valsize < sz) {
1990 		error = ENOMEM;
1991 		goto cleanup;
1992 	}
1993 
1994 	/* STAGE2: Store actual data */
1995 	if (da.tcount > 0) {
1996 		error = dump_named_objects(chain, &da, sd);
1997 		if (error != 0)
1998 			goto cleanup;
1999 	}
2000 
2001 	if (hdr_flags & IPFW_CFG_GET_STATIC) {
2002 		error = dump_static_rules(chain, &da, sd);
2003 		if (error != 0)
2004 			goto cleanup;
2005 	}
2006 
2007 	if (hdr_flags & IPFW_CFG_GET_STATES)
2008 		error = ipfw_dump_states(chain, sd);
2009 
2010 cleanup:
2011 	IPFW_UH_RUNLOCK(chain);
2012 
2013 	if (bmask != NULL)
2014 		free(bmask, M_TEMP);
2015 
2016 	return (error);
2017 }
2018 
2019 int
ipfw_check_object_name_generic(const char * name)2020 ipfw_check_object_name_generic(const char *name)
2021 {
2022 	int nsize;
2023 
2024 	nsize = sizeof(((ipfw_obj_ntlv *)0)->name);
2025 	if (strnlen(name, nsize) == nsize)
2026 		return (EINVAL);
2027 	if (name[0] == '\0')
2028 		return (EINVAL);
2029 	return (0);
2030 }
2031 
2032 /*
2033  * Creates non-existent objects referenced by rule.
2034  *
2035  * Return 0 on success.
2036  */
2037 int
create_objects_compat(struct ip_fw_chain * ch,ipfw_insn * cmd,struct obj_idx * oib,struct obj_idx * pidx,struct tid_info * ti)2038 create_objects_compat(struct ip_fw_chain *ch, ipfw_insn *cmd,
2039     struct obj_idx *oib, struct obj_idx *pidx, struct tid_info *ti)
2040 {
2041 	struct opcode_obj_rewrite *rw;
2042 	struct obj_idx *p;
2043 	uint32_t kidx;
2044 	int error;
2045 
2046 	/*
2047 	 * Compatibility stuff: do actual creation for non-existing,
2048 	 * but referenced objects.
2049 	 */
2050 	for (p = oib; p < pidx; p++) {
2051 		if (p->kidx != 0)
2052 			continue;
2053 
2054 		ti->uidx = p->uidx;
2055 		ti->type = p->type;
2056 		ti->atype = 0;
2057 
2058 		rw = find_op_rw(cmd + p->off, NULL, NULL);
2059 		KASSERT(rw != NULL, ("Unable to find handler for op %d",
2060 		    (cmd + p->off)->opcode));
2061 
2062 		if (rw->create_object == NULL)
2063 			error = EOPNOTSUPP;
2064 		else
2065 			error = rw->create_object(ch, ti, &kidx);
2066 		if (error == 0) {
2067 			p->kidx = kidx;
2068 			continue;
2069 		}
2070 
2071 		/*
2072 		 * Error happened. We have to rollback everything.
2073 		 * Drop all already acquired references.
2074 		 */
2075 		IPFW_UH_WLOCK(ch);
2076 		unref_oib_objects(ch, cmd, oib, pidx);
2077 		IPFW_UH_WUNLOCK(ch);
2078 
2079 		return (error);
2080 	}
2081 
2082 	return (0);
2083 }
2084 
2085 /*
2086  * Unreferences all already-referenced objects in given @cmd rule,
2087  * using information in @oib.
2088  *
2089  * Used to rollback partially converted rule on error.
2090  */
2091 static void
unref_oib_objects(struct ip_fw_chain * ch,ipfw_insn * cmd,struct obj_idx * oib,struct obj_idx * end)2092 unref_oib_objects(struct ip_fw_chain *ch, ipfw_insn *cmd, struct obj_idx *oib,
2093     struct obj_idx *end)
2094 {
2095 	struct opcode_obj_rewrite *rw;
2096 	struct named_object *no;
2097 	struct obj_idx *p;
2098 
2099 	IPFW_UH_WLOCK_ASSERT(ch);
2100 
2101 	for (p = oib; p < end; p++) {
2102 		if (p->kidx == 0)
2103 			continue;
2104 
2105 		rw = find_op_rw(cmd + p->off, NULL, NULL);
2106 		KASSERT(rw != NULL, ("Unable to find handler for op %d",
2107 		    (cmd + p->off)->opcode));
2108 
2109 		/* Find & unref by existing idx */
2110 		no = rw->find_bykidx(ch, p->kidx);
2111 		KASSERT(no != NULL, ("Ref'd object %d disappeared", p->kidx));
2112 		no->refcnt--;
2113 	}
2114 }
2115 
2116 /*
2117  * Remove references from every object used in @rule.
2118  * Used at rule removal code.
2119  */
2120 static void
unref_rule_objects(struct ip_fw_chain * ch,struct ip_fw * rule)2121 unref_rule_objects(struct ip_fw_chain *ch, struct ip_fw *rule)
2122 {
2123 	struct opcode_obj_rewrite *rw;
2124 	struct named_object *no;
2125 	ipfw_insn *cmd;
2126 	uint32_t kidx;
2127 	int cmdlen, l;
2128 	uint8_t subtype;
2129 
2130 	IPFW_UH_WLOCK_ASSERT(ch);
2131 
2132 	l = rule->cmd_len;
2133 	cmd = rule->cmd;
2134 	cmdlen = 0;
2135 	for ( ;	l > 0 ; l -= cmdlen, cmd += cmdlen) {
2136 		cmdlen = F_LEN(cmd);
2137 
2138 		rw = find_op_rw(cmd, &kidx, &subtype);
2139 		if (rw == NULL)
2140 			continue;
2141 		no = rw->find_bykidx(ch, kidx);
2142 
2143 		KASSERT(no != NULL, ("object id %d not found", kidx));
2144 		KASSERT(no->subtype == subtype,
2145 		    ("wrong type %d (%d) for object id %d",
2146 		    no->subtype, subtype, kidx));
2147 		KASSERT(no->refcnt > 0, ("refcount for object %d is %d",
2148 		    kidx, no->refcnt));
2149 
2150 		if (no->refcnt == 1 && rw->destroy_object != NULL)
2151 			rw->destroy_object(ch, no);
2152 		else
2153 			no->refcnt--;
2154 	}
2155 }
2156 
2157 /*
2158  * Find and reference object (if any) stored in instruction @cmd.
2159  *
2160  * Saves object info in @pidx, sets
2161  *  - @unresolved to 1 if object should exists but not found
2162  *
2163  * Returns non-zero value in case of error.
2164  */
2165 static int
ref_opcode_object(struct ip_fw_chain * ch,ipfw_insn * cmd,struct tid_info * ti,struct obj_idx * pidx,int * unresolved)2166 ref_opcode_object(struct ip_fw_chain *ch, ipfw_insn *cmd, struct tid_info *ti,
2167     struct obj_idx *pidx, int *unresolved)
2168 {
2169 	struct named_object *no;
2170 	struct opcode_obj_rewrite *rw;
2171 	int error;
2172 
2173 	/* Check if this opcode is candidate for rewrite */
2174 	rw = find_op_rw(cmd, &ti->uidx, &ti->type);
2175 	if (rw == NULL)
2176 		return (0);
2177 
2178 	/* Need to rewrite. Save necessary fields */
2179 	pidx->uidx = ti->uidx;
2180 	pidx->type = ti->type;
2181 
2182 	/* Try to find referenced kernel object */
2183 	error = rw->find_byname(ch, ti, &no);
2184 	if (error != 0)
2185 		return (error);
2186 	if (no == NULL) {
2187 		/*
2188 		 * Report about unresolved object for automaic
2189 		 * creation.
2190 		 */
2191 		*unresolved = 1;
2192 		return (0);
2193 	}
2194 
2195 	/*
2196 	 * Object is already exist.
2197 	 * Its subtype should match with expected value.
2198 	 */
2199 	if (ti->type != no->subtype)
2200 		return (EINVAL);
2201 
2202 	/* Bump refcount and update kidx. */
2203 	no->refcnt++;
2204 	rw->update(cmd, no->kidx);
2205 	return (0);
2206 }
2207 
2208 /*
2209  * Finds and bumps refcount for objects referenced by given @rule.
2210  * Auto-creates non-existing tables.
2211  * Fills in @oib array with userland/kernel indexes.
2212  *
2213  * Returns 0 on success.
2214  */
2215 static int
ref_rule_objects(struct ip_fw_chain * ch,struct ip_fw * rule,struct rule_check_info * ci,struct obj_idx * oib,struct tid_info * ti)2216 ref_rule_objects(struct ip_fw_chain *ch, struct ip_fw *rule,
2217     struct rule_check_info *ci, struct obj_idx *oib, struct tid_info *ti)
2218 {
2219 	struct obj_idx *pidx;
2220 	ipfw_insn *cmd;
2221 	int cmdlen, error, l, unresolved;
2222 
2223 	pidx = oib;
2224 	l = rule->cmd_len;
2225 	cmd = rule->cmd;
2226 	cmdlen = 0;
2227 	error = 0;
2228 
2229 	IPFW_UH_WLOCK(ch);
2230 
2231 	/* Increase refcount on each existing referenced table. */
2232 	for ( ;	l > 0 ; l -= cmdlen, cmd += cmdlen) {
2233 		cmdlen = F_LEN(cmd);
2234 		unresolved = 0;
2235 
2236 		error = ref_opcode_object(ch, cmd, ti, pidx, &unresolved);
2237 		if (error != 0)
2238 			break;
2239 		/*
2240 		 * Compatibility stuff for old clients:
2241 		 * prepare to automaitcally create non-existing objects.
2242 		 */
2243 		if (unresolved != 0) {
2244 			pidx->off = rule->cmd_len - l;
2245 			pidx++;
2246 		}
2247 	}
2248 
2249 	if (error != 0) {
2250 		/* Unref everything we have already done */
2251 		unref_oib_objects(ch, rule->cmd, oib, pidx);
2252 		IPFW_UH_WUNLOCK(ch);
2253 		return (error);
2254 	}
2255 	IPFW_UH_WUNLOCK(ch);
2256 
2257 	/* Perform auto-creation for non-existing objects */
2258 	if (pidx != oib)
2259 		error = create_objects_compat(ch, rule->cmd, oib, pidx, ti);
2260 
2261 	/* Calculate real number of dynamic objects */
2262 	ci->object_opcodes = (uint16_t)(pidx - oib);
2263 
2264 	return (error);
2265 }
2266 
2267 /*
2268  * Checks is opcode is referencing table of appropriate type.
2269  * Adds reference count for found table if true.
2270  * Rewrites user-supplied opcode values with kernel ones.
2271  *
2272  * Returns 0 on success and appropriate error code otherwise.
2273  */
2274 static int
rewrite_rule_uidx(struct ip_fw_chain * chain,struct rule_check_info * ci)2275 rewrite_rule_uidx(struct ip_fw_chain *chain, struct rule_check_info *ci)
2276 {
2277 	int error;
2278 	ipfw_insn *cmd;
2279 	struct obj_idx *p, *pidx_first, *pidx_last;
2280 	struct tid_info ti;
2281 
2282 	/*
2283 	 * Prepare an array for storing opcode indices.
2284 	 * Use stack allocation by default.
2285 	 */
2286 	if (ci->object_opcodes <= (sizeof(ci->obuf)/sizeof(ci->obuf[0]))) {
2287 		/* Stack */
2288 		pidx_first = ci->obuf;
2289 	} else
2290 		pidx_first = malloc(
2291 		    ci->object_opcodes * sizeof(struct obj_idx),
2292 		    M_IPFW, M_WAITOK | M_ZERO);
2293 
2294 	error = 0;
2295 	memset(&ti, 0, sizeof(ti));
2296 
2297 	/* Use set rule is assigned to. */
2298 	ti.set = ci->krule->set;
2299 	if (ci->ctlv != NULL) {
2300 		ti.tlvs = (void *)(ci->ctlv + 1);
2301 		ti.tlen = ci->ctlv->head.length - sizeof(ipfw_obj_ctlv);
2302 	}
2303 
2304 	/* Reference all used tables and other objects */
2305 	error = ref_rule_objects(chain, ci->krule, ci, pidx_first, &ti);
2306 	if (error != 0)
2307 		goto free;
2308 	/*
2309 	 * Note that ref_rule_objects() might have updated ci->object_opcodes
2310 	 * to reflect actual number of object opcodes.
2311 	 */
2312 
2313 	/* Perform rewrite of remaining opcodes */
2314 	p = pidx_first;
2315 	pidx_last = pidx_first + ci->object_opcodes;
2316 	for (p = pidx_first; p < pidx_last; p++) {
2317 		cmd = ci->krule->cmd + p->off;
2318 		update_opcode_kidx(cmd, p->kidx);
2319 	}
2320 
2321 free:
2322 	if (pidx_first != ci->obuf)
2323 		free(pidx_first, M_IPFW);
2324 
2325 	return (error);
2326 }
2327 
2328 /*
2329  * Parses one or more rules from userland.
2330  * Data layout (version 1)(current):
2331  * Request:
2332  * [
2333  *   ip_fw3_opheader
2334  *   [ ipfw_obj_ctlv(IPFW_TLV_TBL_LIST) ipfw_obj_ntlv x N ] (optional *1)
2335  *   [ ipfw_obj_ctlv(IPFW_TLV_RULE_LIST) ip_fw x N ] (*2) (*3)
2336  * ]
2337  * Reply:
2338  * [
2339  *   ip_fw3_opheader
2340  *   [ ipfw_obj_ctlv(IPFW_TLV_TBL_LIST) ipfw_obj_ntlv x N ] (optional)
2341  *   [ ipfw_obj_ctlv(IPFW_TLV_RULE_LIST) ip_fw x N ]
2342  * ]
2343  *
2344  * Rules in reply are modified to store their actual ruleset number.
2345  *
2346  * (*1) TLVs inside IPFW_TLV_TBL_LIST needs to be sorted ascending
2347  * according to their idx field and there has to be no duplicates.
2348  * (*2) Numbered rules inside IPFW_TLV_RULE_LIST needs to be sorted ascending.
2349  * (*3) Each ip_fw structure needs to be aligned to u64 boundary.
2350  *
2351  * Returns 0 on success.
2352  */
2353 static __noinline int
parse_rules_v1(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd,ipfw_obj_ctlv ** prtlv,struct rule_check_info ** pci)2354 parse_rules_v1(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
2355     struct sockopt_data *sd, ipfw_obj_ctlv **prtlv,
2356     struct rule_check_info **pci)
2357 {
2358 	ipfw_obj_ctlv *ctlv, *rtlv, *tstate;
2359 	ipfw_obj_ntlv *ntlv;
2360 	struct rule_check_info *ci, *cbuf;
2361 	struct ip_fw_rule *r;
2362 	size_t count, clen, read, rsize;
2363 	uint32_t idx, rulenum;
2364 	int error;
2365 
2366 	op3 = (ip_fw3_opheader *)ipfw_get_sopt_space(sd, sd->valsize);
2367 	ctlv = (ipfw_obj_ctlv *)(op3 + 1);
2368 	read = sizeof(ip_fw3_opheader);
2369 	if (read + sizeof(*ctlv) > sd->valsize)
2370 		return (EINVAL);
2371 
2372 	rtlv = NULL;
2373 	tstate = NULL;
2374 	cbuf = NULL;
2375 	/* Table names or other named objects. */
2376 	if (ctlv->head.type == IPFW_TLV_TBLNAME_LIST) {
2377 		/* Check size and alignment. */
2378 		clen = ctlv->head.length;
2379 		if (read + clen > sd->valsize || clen < sizeof(*ctlv) ||
2380 		    (clen % sizeof(uint64_t)) != 0)
2381 			return (EINVAL);
2382 		/* Check for validness. */
2383 		count = (ctlv->head.length - sizeof(*ctlv)) / sizeof(*ntlv);
2384 		if (ctlv->count != count || ctlv->objsize != sizeof(*ntlv))
2385 			return (EINVAL);
2386 		/*
2387 		 * Check each TLV.
2388 		 * Ensure TLVs are sorted ascending and
2389 		 * there are no duplicates.
2390 		 */
2391 		idx = 0;
2392 		ntlv = (ipfw_obj_ntlv *)(ctlv + 1);
2393 		while (count > 0) {
2394 			if (ntlv->head.length != sizeof(ipfw_obj_ntlv))
2395 				return (EINVAL);
2396 
2397 			error = ipfw_check_object_name_generic(ntlv->name);
2398 			if (error != 0)
2399 				return (error);
2400 
2401 			if (ntlv->idx <= idx)
2402 				return (EINVAL);
2403 
2404 			idx = ntlv->idx;
2405 			count--;
2406 			ntlv++;
2407 		}
2408 
2409 		tstate = ctlv;
2410 		read += ctlv->head.length;
2411 		ctlv = (ipfw_obj_ctlv *)((caddr_t)ctlv + ctlv->head.length);
2412 
2413 		if (read + sizeof(*ctlv) > sd->valsize)
2414 			return (EINVAL);
2415 	}
2416 
2417 	/* List of rules. */
2418 	if (ctlv->head.type == IPFW_TLV_RULE_LIST) {
2419 		clen = ctlv->head.length;
2420 		if (read + clen > sd->valsize || clen < sizeof(*ctlv) ||
2421 		    (clen % sizeof(uint64_t)) != 0)
2422 			return (EINVAL);
2423 
2424 		clen -= sizeof(*ctlv);
2425 		if (ctlv->count == 0 ||
2426 		    ctlv->count > clen / sizeof(struct ip_fw_rule))
2427 			return (EINVAL);
2428 
2429 		/* Allocate state for each rule */
2430 		cbuf = malloc(ctlv->count * sizeof(struct rule_check_info),
2431 		    M_TEMP, M_WAITOK | M_ZERO);
2432 
2433 		/*
2434 		 * Check each rule for validness.
2435 		 * Ensure numbered rules are sorted ascending
2436 		 * and properly aligned
2437 		 */
2438 		rulenum = 0;
2439 		count = 0;
2440 		error = 0;
2441 		ci = cbuf;
2442 		r = (struct ip_fw_rule *)(ctlv + 1);
2443 		while (clen > 0) {
2444 			rsize = RULEUSIZE1(r);
2445 			if (rsize > clen || count > ctlv->count) {
2446 				error = EINVAL;
2447 				break;
2448 			}
2449 			ci->ctlv = tstate;
2450 			ci->version = IP_FW3_OPVER;
2451 			error = ipfw_check_rule(r, rsize, ci);
2452 			if (error != 0)
2453 				break;
2454 
2455 			/* Check sorting */
2456 			if (count != 0 && ((rulenum == 0) != (r->rulenum == 0) ||
2457 			    r->rulenum < rulenum)) {
2458 				printf("ipfw: wrong order: rulenum %u"
2459 				    " vs %u\n", r->rulenum, rulenum);
2460 				error = EINVAL;
2461 				break;
2462 			}
2463 			rulenum = r->rulenum;
2464 			ci->urule = (caddr_t)r;
2465 			clen -= rsize;
2466 			r = (struct ip_fw_rule *)((caddr_t)r + rsize);
2467 			count++;
2468 			ci++;
2469 		}
2470 
2471 		if (ctlv->count != count || error != 0) {
2472 			free(cbuf, M_TEMP);
2473 			return (EINVAL);
2474 		}
2475 
2476 		rtlv = ctlv;
2477 		read += ctlv->head.length;
2478 		ctlv = (ipfw_obj_ctlv *)((caddr_t)ctlv + ctlv->head.length);
2479 	}
2480 
2481 	if (read != sd->valsize || rtlv == NULL) {
2482 		free(cbuf, M_TEMP);
2483 		return (EINVAL);
2484 	}
2485 
2486 	*prtlv = rtlv;
2487 	*pci = cbuf;
2488 	return (0);
2489 }
2490 
2491 /*
2492  * Copy rule @urule from v1 userland format (current) to kernel @krule.
2493  */
2494 static void
import_rule_v1(struct ip_fw_chain * chain,struct rule_check_info * ci)2495 import_rule_v1(struct ip_fw_chain *chain, struct rule_check_info *ci)
2496 {
2497 	struct ip_fw_rule *urule;
2498 	struct ip_fw *krule;
2499 
2500 	urule = (struct ip_fw_rule *)ci->urule;
2501 	krule = ci->krule = ipfw_alloc_rule(chain, RULEKSIZE1(urule));
2502 
2503 	krule->act_ofs = urule->act_ofs;
2504 	krule->cmd_len = urule->cmd_len;
2505 	krule->rulenum = urule->rulenum;
2506 	krule->set = urule->set;
2507 	krule->flags = urule->flags;
2508 
2509 	/* Save rulenum offset */
2510 	ci->urule_numoff = offsetof(struct ip_fw_rule, rulenum);
2511 
2512 	/* Copy opcodes */
2513 	memcpy(krule->cmd, urule->cmd, krule->cmd_len * sizeof(uint32_t));
2514 }
2515 
2516 /*
2517  * Adds one or more rules to ipfw @chain.
2518  */
2519 static int
add_rules(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)2520 add_rules(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
2521     struct sockopt_data *sd)
2522 {
2523 	ipfw_obj_ctlv *rtlv;
2524 	struct rule_check_info *ci, *nci;
2525 	int i, ret;
2526 
2527 	/*
2528 	 * Check rules buffer for validness.
2529 	 */
2530 	ret = parse_rules_v1(chain, op3, sd, &rtlv, &nci);
2531 	if (ret != 0)
2532 		return (ret);
2533 	/*
2534 	 * Allocate storage for the kernel representation of rules.
2535 	 */
2536 	for (i = 0, ci = nci; i < rtlv->count; i++, ci++)
2537 		import_rule_v1(chain, ci);
2538 	/*
2539 	 * Try to add new rules to the chain.
2540 	 */
2541 	if ((ret = ipfw_commit_rules(chain, nci, rtlv->count)) != 0) {
2542 		for (i = 0, ci = nci; i < rtlv->count; i++, ci++)
2543 			ipfw_free_rule(ci->krule);
2544 	}
2545 	/* Cleanup after parse_rules() */
2546 	free(nci, M_TEMP);
2547 	return (ret);
2548 }
2549 
2550 /*
2551  * Lists all sopts currently registered.
2552  * Data layout (v1)(current):
2553  * Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size
2554  * Reply: [ ipfw_obj_lheader ipfw_sopt_info x N ]
2555  *
2556  * Returns 0 on success
2557  */
2558 static int
dump_soptcodes(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)2559 dump_soptcodes(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
2560     struct sockopt_data *sd)
2561 {
2562 	struct _ipfw_obj_lheader *olh;
2563 	ipfw_sopt_info *i;
2564 	struct ipfw_sopt_handler *sh;
2565 	uint32_t count, n, size;
2566 
2567 	olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,
2568 	    sizeof(*olh));
2569 	if (olh == NULL)
2570 		return (EINVAL);
2571 	if (sd->valsize < olh->size)
2572 		return (EINVAL);
2573 
2574 	CTL3_LOCK();
2575 	count = ctl3_hsize;
2576 	size = count * sizeof(ipfw_sopt_info) + sizeof(ipfw_obj_lheader);
2577 
2578 	/* Fill in header regadless of buffer size */
2579 	olh->count = count;
2580 	olh->objsize = sizeof(ipfw_sopt_info);
2581 
2582 	if (size > olh->size) {
2583 		olh->size = size;
2584 		CTL3_UNLOCK();
2585 		return (ENOMEM);
2586 	}
2587 	olh->size = size;
2588 
2589 	for (n = 0; n < count; n++) {
2590 		i = (ipfw_sopt_info *)ipfw_get_sopt_space(sd, sizeof(*i));
2591 		KASSERT(i != NULL, ("previously checked buffer is not enough"));
2592 		sh = &ctl3_handlers[n];
2593 		i->opcode = sh->opcode;
2594 		i->version = sh->version;
2595 		i->refcnt = sh->refcnt;
2596 	}
2597 	CTL3_UNLOCK();
2598 
2599 	return (0);
2600 }
2601 
2602 /*
2603  * Compares two opcodes.
2604  * Used both in qsort() and bsearch().
2605  *
2606  * Returns 0 if match is found.
2607  */
2608 static int
compare_opcodes(const void * _a,const void * _b)2609 compare_opcodes(const void *_a, const void *_b)
2610 {
2611 	const struct opcode_obj_rewrite *a, *b;
2612 
2613 	a = (const struct opcode_obj_rewrite *)_a;
2614 	b = (const struct opcode_obj_rewrite *)_b;
2615 
2616 	if (a->opcode < b->opcode)
2617 		return (-1);
2618 	else if (a->opcode > b->opcode)
2619 		return (1);
2620 
2621 	return (0);
2622 }
2623 
2624 /*
2625  * XXX: Rewrite bsearch()
2626  */
2627 static int
find_op_rw_range(uint16_t op,struct opcode_obj_rewrite ** plo,struct opcode_obj_rewrite ** phi)2628 find_op_rw_range(uint16_t op, struct opcode_obj_rewrite **plo,
2629     struct opcode_obj_rewrite **phi)
2630 {
2631 	struct opcode_obj_rewrite *ctl3_max, *lo, *hi, h, *rw;
2632 
2633 	memset(&h, 0, sizeof(h));
2634 	h.opcode = op;
2635 
2636 	rw = (struct opcode_obj_rewrite *)bsearch(&h, ctl3_rewriters,
2637 	    ctl3_rsize, sizeof(h), compare_opcodes);
2638 	if (rw == NULL)
2639 		return (1);
2640 
2641 	/* Find the first element matching the same opcode */
2642 	lo = rw;
2643 	for ( ; lo > ctl3_rewriters && (lo - 1)->opcode == op; lo--)
2644 		;
2645 
2646 	/* Find the last element matching the same opcode */
2647 	hi = rw;
2648 	ctl3_max = ctl3_rewriters + ctl3_rsize;
2649 	for ( ; (hi + 1) < ctl3_max && (hi + 1)->opcode == op; hi++)
2650 		;
2651 
2652 	*plo = lo;
2653 	*phi = hi;
2654 
2655 	return (0);
2656 }
2657 
2658 /*
2659  * Finds opcode object rewriter based on @code.
2660  *
2661  * Returns pointer to handler or NULL.
2662  */
2663 static struct opcode_obj_rewrite *
find_op_rw(ipfw_insn * cmd,uint32_t * puidx,uint8_t * ptype)2664 find_op_rw(ipfw_insn *cmd, uint32_t *puidx, uint8_t *ptype)
2665 {
2666 	struct opcode_obj_rewrite *rw, *lo, *hi;
2667 	uint32_t uidx;
2668 	uint8_t subtype;
2669 
2670 	if (find_op_rw_range(cmd->opcode, &lo, &hi) != 0)
2671 		return (NULL);
2672 
2673 	for (rw = lo; rw <= hi; rw++) {
2674 		if (rw->classifier(cmd, &uidx, &subtype) == 0) {
2675 			if (puidx != NULL)
2676 				*puidx = uidx;
2677 			if (ptype != NULL)
2678 				*ptype = subtype;
2679 			return (rw);
2680 		}
2681 	}
2682 
2683 	return (NULL);
2684 }
2685 int
classify_opcode_kidx(ipfw_insn * cmd,uint32_t * puidx)2686 classify_opcode_kidx(ipfw_insn *cmd, uint32_t *puidx)
2687 {
2688 
2689 	if (find_op_rw(cmd, puidx, NULL) == NULL)
2690 		return (1);
2691 	return (0);
2692 }
2693 
2694 void
update_opcode_kidx(ipfw_insn * cmd,uint32_t idx)2695 update_opcode_kidx(ipfw_insn *cmd, uint32_t idx)
2696 {
2697 	struct opcode_obj_rewrite *rw;
2698 
2699 	rw = find_op_rw(cmd, NULL, NULL);
2700 	KASSERT(rw != NULL, ("No handler to update opcode %d", cmd->opcode));
2701 	rw->update(cmd, idx);
2702 }
2703 
2704 void
ipfw_init_obj_rewriter(void)2705 ipfw_init_obj_rewriter(void)
2706 {
2707 	ctl3_rewriters = NULL;
2708 	ctl3_rsize = 0;
2709 }
2710 
2711 void
ipfw_destroy_obj_rewriter(void)2712 ipfw_destroy_obj_rewriter(void)
2713 {
2714 	if (ctl3_rewriters != NULL)
2715 		free(ctl3_rewriters, M_IPFW);
2716 	ctl3_rewriters = NULL;
2717 	ctl3_rsize = 0;
2718 }
2719 
2720 /*
2721  * Adds one or more opcode object rewrite handlers to the global array.
2722  * Function may sleep.
2723  */
2724 void
ipfw_add_obj_rewriter(struct opcode_obj_rewrite * rw,size_t count)2725 ipfw_add_obj_rewriter(struct opcode_obj_rewrite *rw, size_t count)
2726 {
2727 	size_t sz;
2728 	struct opcode_obj_rewrite *tmp;
2729 
2730 	CTL3_LOCK();
2731 
2732 	for (;;) {
2733 		sz = ctl3_rsize + count;
2734 		CTL3_UNLOCK();
2735 		tmp = malloc(sizeof(*rw) * sz, M_IPFW, M_WAITOK | M_ZERO);
2736 		CTL3_LOCK();
2737 		if (ctl3_rsize + count <= sz)
2738 			break;
2739 
2740 		/* Retry */
2741 		free(tmp, M_IPFW);
2742 	}
2743 
2744 	/* Merge old & new arrays */
2745 	sz = ctl3_rsize + count;
2746 	memcpy(tmp, ctl3_rewriters, ctl3_rsize * sizeof(*rw));
2747 	memcpy(&tmp[ctl3_rsize], rw, count * sizeof(*rw));
2748 	qsort(tmp, sz, sizeof(*rw), compare_opcodes);
2749 	/* Switch new and free old */
2750 	if (ctl3_rewriters != NULL)
2751 		free(ctl3_rewriters, M_IPFW);
2752 	ctl3_rewriters = tmp;
2753 	ctl3_rsize = sz;
2754 
2755 	CTL3_UNLOCK();
2756 }
2757 
2758 /*
2759  * Removes one or more object rewrite handlers from the global array.
2760  */
2761 int
ipfw_del_obj_rewriter(struct opcode_obj_rewrite * rw,size_t count)2762 ipfw_del_obj_rewriter(struct opcode_obj_rewrite *rw, size_t count)
2763 {
2764 	size_t sz;
2765 	struct opcode_obj_rewrite *ctl3_max, *ktmp, *lo, *hi;
2766 	int i;
2767 
2768 	CTL3_LOCK();
2769 
2770 	for (i = 0; i < count; i++) {
2771 		if (find_op_rw_range(rw[i].opcode, &lo, &hi) != 0)
2772 			continue;
2773 
2774 		for (ktmp = lo; ktmp <= hi; ktmp++) {
2775 			if (ktmp->classifier != rw[i].classifier)
2776 				continue;
2777 
2778 			ctl3_max = ctl3_rewriters + ctl3_rsize;
2779 			sz = (ctl3_max - (ktmp + 1)) * sizeof(*ktmp);
2780 			memmove(ktmp, ktmp + 1, sz);
2781 			ctl3_rsize--;
2782 			break;
2783 		}
2784 	}
2785 
2786 	if (ctl3_rsize == 0) {
2787 		if (ctl3_rewriters != NULL)
2788 			free(ctl3_rewriters, M_IPFW);
2789 		ctl3_rewriters = NULL;
2790 	}
2791 
2792 	CTL3_UNLOCK();
2793 
2794 	return (0);
2795 }
2796 
2797 static int
export_objhash_ntlv_internal(struct namedobj_instance * ni,struct named_object * no,void * arg)2798 export_objhash_ntlv_internal(struct namedobj_instance *ni,
2799     struct named_object *no, void *arg)
2800 {
2801 	struct sockopt_data *sd;
2802 	ipfw_obj_ntlv *ntlv;
2803 
2804 	sd = (struct sockopt_data *)arg;
2805 	ntlv = (ipfw_obj_ntlv *)ipfw_get_sopt_space(sd, sizeof(*ntlv));
2806 	if (ntlv == NULL)
2807 		return (ENOMEM);
2808 	ipfw_export_obj_ntlv(no, ntlv);
2809 	return (0);
2810 }
2811 
2812 /*
2813  * Lists all service objects.
2814  * Data layout (v0)(current):
2815  * Request: [ ipfw_obj_lheader ] size = ipfw_obj_lheader.size
2816  * Reply: [ ipfw_obj_lheader [ ipfw_obj_ntlv x N ] (optional) ]
2817  * Returns 0 on success
2818  */
2819 static int
dump_srvobjects(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)2820 dump_srvobjects(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
2821     struct sockopt_data *sd)
2822 {
2823 	ipfw_obj_lheader *hdr;
2824 	int count;
2825 
2826 	hdr = (ipfw_obj_lheader *)ipfw_get_sopt_header(sd, sizeof(*hdr));
2827 	if (hdr == NULL)
2828 		return (EINVAL);
2829 
2830 	IPFW_UH_RLOCK(chain);
2831 	count = ipfw_objhash_count(CHAIN_TO_SRV(chain));
2832 	hdr->size = sizeof(ipfw_obj_lheader) + count * sizeof(ipfw_obj_ntlv);
2833 	if (sd->valsize < hdr->size) {
2834 		IPFW_UH_RUNLOCK(chain);
2835 		return (ENOMEM);
2836 	}
2837 	hdr->count = count;
2838 	hdr->objsize = sizeof(ipfw_obj_ntlv);
2839 	if (count > 0)
2840 		ipfw_objhash_foreach(CHAIN_TO_SRV(chain),
2841 		    export_objhash_ntlv_internal, sd);
2842 	IPFW_UH_RUNLOCK(chain);
2843 	return (0);
2844 }
2845 
2846 void
ipfw_enable_skipto_cache(struct ip_fw_chain * chain)2847 ipfw_enable_skipto_cache(struct ip_fw_chain *chain)
2848 {
2849 
2850 	IPFW_UH_WLOCK_ASSERT(chain);
2851 	update_skipto_cache(chain, chain->map);
2852 
2853 	IPFW_WLOCK(chain);
2854 	swap_skipto_cache(chain);
2855 	V_skipto_cache = 1;
2856 	IPFW_WUNLOCK(chain);
2857 }
2858 
2859 /*
2860  * Enables or disable skipto cache.
2861  * Request: [ ipfw_cmd_header ] size = ipfw_cmd_header.size
2862  * Reply: [ ipfw_cmd_header ]
2863  * Returns 0 on success
2864  */
2865 static int
manage_skiptocache(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)2866 manage_skiptocache(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
2867     struct sockopt_data *sd)
2868 {
2869 	ipfw_cmd_header *hdr;
2870 
2871 	if (sd->valsize != sizeof(*hdr))
2872 		return (EINVAL);
2873 
2874 	hdr = (ipfw_cmd_header *)ipfw_get_sopt_space(sd, sd->valsize);
2875 	if (hdr->cmd != SKIPTO_CACHE_DISABLE &&
2876 	    hdr->cmd != SKIPTO_CACHE_ENABLE)
2877 		return (EOPNOTSUPP);
2878 
2879 	IPFW_UH_WLOCK(chain);
2880 	if (hdr->cmd != V_skipto_cache) {
2881 		if (hdr->cmd == SKIPTO_CACHE_ENABLE)
2882 			ipfw_enable_skipto_cache(chain);
2883 		V_skipto_cache = hdr->cmd;
2884 	}
2885 	IPFW_UH_WUNLOCK(chain);
2886 	return (0);
2887 }
2888 
2889 /*
2890  * Compares two sopt handlers (code, version and handler ptr).
2891  * Used both as qsort() and bsearch().
2892  * Does not compare handler for latter case.
2893  *
2894  * Returns 0 if match is found.
2895  */
2896 static int
compare_sh(const void * _a,const void * _b)2897 compare_sh(const void *_a, const void *_b)
2898 {
2899 	const struct ipfw_sopt_handler *a, *b;
2900 
2901 	a = (const struct ipfw_sopt_handler *)_a;
2902 	b = (const struct ipfw_sopt_handler *)_b;
2903 
2904 	if (a->opcode < b->opcode)
2905 		return (-1);
2906 	else if (a->opcode > b->opcode)
2907 		return (1);
2908 
2909 	if (a->version < b->version)
2910 		return (-1);
2911 	else if (a->version > b->version)
2912 		return (1);
2913 
2914 	/* bsearch helper */
2915 	if (a->handler == NULL)
2916 		return (0);
2917 
2918 	if ((uintptr_t)a->handler < (uintptr_t)b->handler)
2919 		return (-1);
2920 	else if ((uintptr_t)a->handler > (uintptr_t)b->handler)
2921 		return (1);
2922 
2923 	return (0);
2924 }
2925 
2926 /*
2927  * Finds sopt handler based on @code and @version.
2928  *
2929  * Returns pointer to handler or NULL.
2930  */
2931 static struct ipfw_sopt_handler *
find_sh(uint16_t code,uint8_t version,sopt_handler_f * handler)2932 find_sh(uint16_t code, uint8_t version, sopt_handler_f *handler)
2933 {
2934 	struct ipfw_sopt_handler *sh, h;
2935 
2936 	memset(&h, 0, sizeof(h));
2937 	h.opcode = code;
2938 	h.version = version;
2939 	h.handler = handler;
2940 
2941 	sh = (struct ipfw_sopt_handler *)bsearch(&h, ctl3_handlers,
2942 	    ctl3_hsize, sizeof(h), compare_sh);
2943 
2944 	return (sh);
2945 }
2946 
2947 static int
find_ref_sh(uint16_t opcode,uint8_t version,struct ipfw_sopt_handler * psh)2948 find_ref_sh(uint16_t opcode, uint8_t version, struct ipfw_sopt_handler *psh)
2949 {
2950 	struct ipfw_sopt_handler *sh;
2951 
2952 	CTL3_LOCK();
2953 	if ((sh = find_sh(opcode, version, NULL)) == NULL) {
2954 		CTL3_UNLOCK();
2955 		printf("ipfw: ipfw_ctl3 invalid option %d""v""%d\n",
2956 		    opcode, version);
2957 		return (EINVAL);
2958 	}
2959 	sh->refcnt++;
2960 	ctl3_refct++;
2961 	/* Copy handler data to requested buffer */
2962 	*psh = *sh;
2963 	CTL3_UNLOCK();
2964 
2965 	return (0);
2966 }
2967 
2968 static void
find_unref_sh(struct ipfw_sopt_handler * psh)2969 find_unref_sh(struct ipfw_sopt_handler *psh)
2970 {
2971 	struct ipfw_sopt_handler *sh;
2972 
2973 	CTL3_LOCK();
2974 	sh = find_sh(psh->opcode, psh->version, NULL);
2975 	KASSERT(sh != NULL, ("ctl3 handler disappeared"));
2976 	sh->refcnt--;
2977 	ctl3_refct--;
2978 	CTL3_UNLOCK();
2979 }
2980 
2981 void
ipfw_init_sopt_handler(void)2982 ipfw_init_sopt_handler(void)
2983 {
2984 	CTL3_LOCK_INIT();
2985 	IPFW_ADD_SOPT_HANDLER(1, scodes);
2986 }
2987 
2988 void
ipfw_destroy_sopt_handler(void)2989 ipfw_destroy_sopt_handler(void)
2990 {
2991 	IPFW_DEL_SOPT_HANDLER(1, scodes);
2992 	CTL3_LOCK_DESTROY();
2993 }
2994 
2995 void
ipfw_register_compat(ipfw_check_opcode_t f)2996 ipfw_register_compat(ipfw_check_opcode_t f)
2997 {
2998 	check_opcode_f = f;
2999 }
3000 
3001 void
ipfw_unregister_compat(void)3002 ipfw_unregister_compat(void)
3003 {
3004 	check_opcode_f = check_opcode_compat_nop;
3005 }
3006 
3007 /*
3008  * Adds one or more sockopt handlers to the global array.
3009  * Function may sleep.
3010  */
3011 void
ipfw_add_sopt_handler(struct ipfw_sopt_handler * sh,size_t count)3012 ipfw_add_sopt_handler(struct ipfw_sopt_handler *sh, size_t count)
3013 {
3014 	size_t sz;
3015 	struct ipfw_sopt_handler *tmp;
3016 
3017 	CTL3_LOCK();
3018 
3019 	for (;;) {
3020 		sz = ctl3_hsize + count;
3021 		CTL3_UNLOCK();
3022 		tmp = malloc(sizeof(*sh) * sz, M_IPFW, M_WAITOK | M_ZERO);
3023 		CTL3_LOCK();
3024 		if (ctl3_hsize + count <= sz)
3025 			break;
3026 
3027 		/* Retry */
3028 		free(tmp, M_IPFW);
3029 	}
3030 
3031 	/* Merge old & new arrays */
3032 	sz = ctl3_hsize + count;
3033 	memcpy(tmp, ctl3_handlers, ctl3_hsize * sizeof(*sh));
3034 	memcpy(&tmp[ctl3_hsize], sh, count * sizeof(*sh));
3035 	qsort(tmp, sz, sizeof(*sh), compare_sh);
3036 	/* Switch new and free old */
3037 	if (ctl3_handlers != NULL)
3038 		free(ctl3_handlers, M_IPFW);
3039 	ctl3_handlers = tmp;
3040 	ctl3_hsize = sz;
3041 	ctl3_gencnt++;
3042 
3043 	CTL3_UNLOCK();
3044 }
3045 
3046 /*
3047  * Removes one or more sockopt handlers from the global array.
3048  */
3049 int
ipfw_del_sopt_handler(struct ipfw_sopt_handler * sh,size_t count)3050 ipfw_del_sopt_handler(struct ipfw_sopt_handler *sh, size_t count)
3051 {
3052 	size_t sz;
3053 	struct ipfw_sopt_handler *tmp, *h;
3054 	int i;
3055 
3056 	CTL3_LOCK();
3057 
3058 	for (i = 0; i < count; i++) {
3059 		tmp = &sh[i];
3060 		h = find_sh(tmp->opcode, tmp->version, tmp->handler);
3061 		if (h == NULL)
3062 			continue;
3063 
3064 		sz = (ctl3_handlers + ctl3_hsize - (h + 1)) * sizeof(*h);
3065 		memmove(h, h + 1, sz);
3066 		ctl3_hsize--;
3067 	}
3068 
3069 	if (ctl3_hsize == 0) {
3070 		if (ctl3_handlers != NULL)
3071 			free(ctl3_handlers, M_IPFW);
3072 		ctl3_handlers = NULL;
3073 	}
3074 
3075 	ctl3_gencnt++;
3076 
3077 	CTL3_UNLOCK();
3078 
3079 	return (0);
3080 }
3081 
3082 /*
3083  * Writes data accumulated in @sd to sockopt buffer.
3084  * Zeroes internal @sd buffer.
3085  */
3086 static int
ipfw_flush_sopt_data(struct sockopt_data * sd)3087 ipfw_flush_sopt_data(struct sockopt_data *sd)
3088 {
3089 	struct sockopt *sopt;
3090 	int error;
3091 	size_t sz;
3092 
3093 	sz = sd->koff;
3094 	if (sz == 0)
3095 		return (0);
3096 
3097 	sopt = sd->sopt;
3098 
3099 	if (sopt->sopt_dir == SOPT_GET) {
3100 		error = copyout(sd->kbuf, sopt->sopt_val, sz);
3101 		if (error != 0)
3102 			return (error);
3103 	}
3104 
3105 	memset(sd->kbuf, 0, sd->ksize);
3106 	sd->ktotal += sz;
3107 	sd->koff = 0;
3108 	if (sd->ktotal + sd->ksize < sd->valsize)
3109 		sd->kavail = sd->ksize;
3110 	else
3111 		sd->kavail = sd->valsize - sd->ktotal;
3112 
3113 	/* Update sopt buffer data */
3114 	sopt->sopt_valsize = sd->ktotal;
3115 	sopt->sopt_val = sd->sopt_val + sd->ktotal;
3116 
3117 	return (0);
3118 }
3119 
3120 /*
3121  * Ensures that @sd buffer has contiguous @neeeded number of
3122  * bytes.
3123  *
3124  * Returns pointer to requested space or NULL.
3125  */
3126 caddr_t
ipfw_get_sopt_space(struct sockopt_data * sd,size_t needed)3127 ipfw_get_sopt_space(struct sockopt_data *sd, size_t needed)
3128 {
3129 	int error;
3130 	caddr_t addr;
3131 
3132 	if (sd->kavail < needed) {
3133 		/*
3134 		 * Flush data and try another time.
3135 		 */
3136 		error = ipfw_flush_sopt_data(sd);
3137 
3138 		if (sd->kavail < needed || error != 0)
3139 			return (NULL);
3140 	}
3141 
3142 	addr = sd->kbuf + sd->koff;
3143 	sd->koff += needed;
3144 	sd->kavail -= needed;
3145 	return (addr);
3146 }
3147 
3148 /*
3149  * Requests @needed contiguous bytes from @sd buffer.
3150  * Function is used to notify subsystem that we are
3151  * interesed in first @needed bytes (request header)
3152  * and the rest buffer can be safely zeroed.
3153  *
3154  * Returns pointer to requested space or NULL.
3155  */
3156 caddr_t
ipfw_get_sopt_header(struct sockopt_data * sd,size_t needed)3157 ipfw_get_sopt_header(struct sockopt_data *sd, size_t needed)
3158 {
3159 	caddr_t addr;
3160 
3161 	if ((addr = ipfw_get_sopt_space(sd, needed)) == NULL)
3162 		return (NULL);
3163 
3164 	if (sd->kavail > 0)
3165 		memset(sd->kbuf + sd->koff, 0, sd->kavail);
3166 
3167 	return (addr);
3168 }
3169 
3170 /*
3171  * New sockopt handler.
3172  */
3173 int
ipfw_ctl3(struct sockopt * sopt)3174 ipfw_ctl3(struct sockopt *sopt)
3175 {
3176 	int error, locked;
3177 	size_t size, valsize;
3178 	struct ip_fw_chain *chain;
3179 	char xbuf[256];
3180 	struct sockopt_data sdata;
3181 	struct ipfw_sopt_handler h;
3182 	ip_fw3_opheader *op3 = NULL;
3183 
3184 	error = priv_check(sopt->sopt_td, PRIV_NETINET_IPFW);
3185 	if (error != 0)
3186 		return (error);
3187 
3188 	if (sopt->sopt_name != IP_FW3)
3189 		return (EOPNOTSUPP);
3190 
3191 	chain = &V_layer3_chain;
3192 	error = 0;
3193 
3194 	/* Save original valsize before it is altered via sooptcopyin() */
3195 	valsize = sopt->sopt_valsize;
3196 	memset(&sdata, 0, sizeof(sdata));
3197 	/* Read op3 header first to determine actual operation */
3198 	op3 = (ip_fw3_opheader *)xbuf;
3199 	error = sooptcopyin(sopt, op3, sizeof(*op3), sizeof(*op3));
3200 	if (error != 0)
3201 		return (error);
3202 	sopt->sopt_valsize = valsize;
3203 
3204 	/*
3205 	 * Find and reference command.
3206 	 */
3207 	error = find_ref_sh(op3->opcode, op3->version, &h);
3208 	if (error != 0)
3209 		return (error);
3210 
3211 	/*
3212 	 * Disallow modifications in really-really secure mode, but still allow
3213 	 * the logging counters to be reset.
3214 	 */
3215 	if ((h.dir & HDIR_SET) != 0 && h.opcode != IP_FW_XRESETLOG) {
3216 		error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
3217 		if (error != 0) {
3218 			find_unref_sh(&h);
3219 			return (error);
3220 		}
3221 	}
3222 
3223 	/*
3224 	 * Fill in sockopt_data structure that may be useful for
3225 	 * IP_FW3 get requests.
3226 	 */
3227 	locked = 0;
3228 	if (valsize <= sizeof(xbuf)) {
3229 		/* use on-stack buffer */
3230 		sdata.kbuf = xbuf;
3231 		sdata.ksize = sizeof(xbuf);
3232 		sdata.kavail = valsize;
3233 	} else {
3234 		/*
3235 		 * Determine opcode type/buffer size:
3236 		 * allocate sliding-window buf for data export or
3237 		 * contiguous buffer for special ops.
3238 		 */
3239 		if ((h.dir & HDIR_SET) != 0) {
3240 			/* Set request. Allocate contigous buffer. */
3241 			if (valsize > CTL3_LARGEBUF) {
3242 				find_unref_sh(&h);
3243 				return (EFBIG);
3244 			}
3245 
3246 			size = valsize;
3247 		} else {
3248 			/* Get request. Allocate sliding window buffer */
3249 			size = (valsize<CTL3_SMALLBUF) ? valsize:CTL3_SMALLBUF;
3250 
3251 			if (size < valsize) {
3252 				/* We have to wire user buffer */
3253 				error = vslock(sopt->sopt_val, valsize);
3254 				if (error != 0)
3255 					return (error);
3256 				locked = 1;
3257 			}
3258 		}
3259 
3260 		sdata.kbuf = malloc(size, M_TEMP, M_WAITOK | M_ZERO);
3261 		sdata.ksize = size;
3262 		sdata.kavail = size;
3263 	}
3264 
3265 	sdata.sopt = sopt;
3266 	sdata.sopt_val = sopt->sopt_val;
3267 	sdata.valsize = valsize;
3268 
3269 	/*
3270 	 * Copy either all request (if valsize < bsize_max)
3271 	 * or first bsize_max bytes to guarantee most consumers
3272 	 * that all necessary data has been copied).
3273 	 * Anyway, copy not less than sizeof(ip_fw3_opheader).
3274 	 */
3275 	if ((error = sooptcopyin(sopt, sdata.kbuf, sdata.ksize,
3276 	    sizeof(ip_fw3_opheader))) != 0)
3277 		return (error);
3278 	op3 = (ip_fw3_opheader *)sdata.kbuf;
3279 
3280 	/* Finally, run handler */
3281 	error = h.handler(chain, op3, &sdata);
3282 	find_unref_sh(&h);
3283 
3284 	/* Flush state and free buffers */
3285 	if (error == 0)
3286 		error = ipfw_flush_sopt_data(&sdata);
3287 	else
3288 		ipfw_flush_sopt_data(&sdata);
3289 
3290 	if (locked != 0)
3291 		vsunlock(sdata.sopt_val, valsize);
3292 
3293 	/* Restore original pointer and set number of bytes written */
3294 	sopt->sopt_val = sdata.sopt_val;
3295 	sopt->sopt_valsize = sdata.ktotal;
3296 	if (sdata.kbuf != xbuf)
3297 		free(sdata.kbuf, M_TEMP);
3298 
3299 	return (error);
3300 }
3301 
3302 /*
3303  * Named object api
3304  *
3305  */
3306 
3307 void
ipfw_init_srv(struct ip_fw_chain * ch)3308 ipfw_init_srv(struct ip_fw_chain *ch)
3309 {
3310 	ch->srvmap = ipfw_objhash_create(IPFW_OBJECTS_DEFAULT,
3311 	    DEFAULT_OBJHASH_SIZE);
3312 	ch->srvstate = malloc(sizeof(void *) * IPFW_OBJECTS_DEFAULT,
3313 	    M_IPFW, M_WAITOK | M_ZERO);
3314 }
3315 
3316 void
ipfw_destroy_srv(struct ip_fw_chain * ch)3317 ipfw_destroy_srv(struct ip_fw_chain *ch)
3318 {
3319 	free(ch->srvstate, M_IPFW);
3320 	ipfw_objhash_destroy(ch->srvmap);
3321 }
3322 
3323 /*
3324  * Allocate new bitmask which can be used to enlarge/shrink
3325  * named instance index.
3326  */
3327 void
ipfw_objhash_bitmap_alloc(uint32_t items,void ** idx,int * pblocks)3328 ipfw_objhash_bitmap_alloc(uint32_t items, void **idx, int *pblocks)
3329 {
3330 	size_t size;
3331 	int max_blocks;
3332 	u_long *idx_mask;
3333 
3334 	KASSERT((items % BLOCK_ITEMS) == 0,
3335 	   ("bitmask size needs to power of 2 and greater or equal to %zu",
3336 	    BLOCK_ITEMS));
3337 
3338 	max_blocks = items / BLOCK_ITEMS;
3339 	size = items / 8;
3340 	idx_mask = malloc(size * IPFW_MAX_SETS, M_IPFW, M_WAITOK);
3341 	/* Mark all as free */
3342 	memset(idx_mask, 0xFF, size * IPFW_MAX_SETS);
3343 	*idx_mask &= ~(u_long)1; /* Skip index 0 */
3344 
3345 	*idx = idx_mask;
3346 	*pblocks = max_blocks;
3347 }
3348 
3349 /*
3350  * Copy current bitmask index to new one.
3351  */
3352 void
ipfw_objhash_bitmap_merge(struct namedobj_instance * ni,void ** idx,int * blocks)3353 ipfw_objhash_bitmap_merge(struct namedobj_instance *ni, void **idx, int *blocks)
3354 {
3355 	int old_blocks, new_blocks;
3356 	u_long *old_idx, *new_idx;
3357 	int i;
3358 
3359 	old_idx = ni->idx_mask;
3360 	old_blocks = ni->max_blocks;
3361 	new_idx = *idx;
3362 	new_blocks = *blocks;
3363 
3364 	for (i = 0; i < IPFW_MAX_SETS; i++) {
3365 		memcpy(&new_idx[new_blocks * i], &old_idx[old_blocks * i],
3366 		    old_blocks * sizeof(u_long));
3367 	}
3368 }
3369 
3370 /*
3371  * Swaps current @ni index with new one.
3372  */
3373 void
ipfw_objhash_bitmap_swap(struct namedobj_instance * ni,void ** idx,int * blocks)3374 ipfw_objhash_bitmap_swap(struct namedobj_instance *ni, void **idx, int *blocks)
3375 {
3376 	int old_blocks;
3377 	u_long *old_idx;
3378 
3379 	old_idx = ni->idx_mask;
3380 	old_blocks = ni->max_blocks;
3381 
3382 	ni->idx_mask = *idx;
3383 	ni->max_blocks = *blocks;
3384 
3385 	/* Save old values */
3386 	*idx = old_idx;
3387 	*blocks = old_blocks;
3388 }
3389 
3390 void
ipfw_objhash_bitmap_free(void * idx,int blocks)3391 ipfw_objhash_bitmap_free(void *idx, int blocks)
3392 {
3393 	free(idx, M_IPFW);
3394 }
3395 
3396 /*
3397  * Creates named hash instance.
3398  * Must be called without holding any locks.
3399  * Return pointer to new instance.
3400  */
3401 struct namedobj_instance *
ipfw_objhash_create(uint32_t items,size_t hash_size)3402 ipfw_objhash_create(uint32_t items, size_t hash_size)
3403 {
3404 	struct namedobj_instance *ni;
3405 	int i;
3406 	size_t size;
3407 
3408 	size = sizeof(struct namedobj_instance) +
3409 	    sizeof(struct namedobjects_head) * hash_size +
3410 	    sizeof(struct namedobjects_head) * hash_size;
3411 
3412 	ni = malloc(size, M_IPFW, M_WAITOK | M_ZERO);
3413 	ni->nn_size = hash_size;
3414 	ni->nv_size = hash_size;
3415 
3416 	ni->names = (struct namedobjects_head *)(ni +1);
3417 	ni->values = &ni->names[ni->nn_size];
3418 
3419 	for (i = 0; i < ni->nn_size; i++)
3420 		TAILQ_INIT(&ni->names[i]);
3421 
3422 	for (i = 0; i < ni->nv_size; i++)
3423 		TAILQ_INIT(&ni->values[i]);
3424 
3425 	/* Set default hashing/comparison functions */
3426 	ni->hash_f = objhash_hash_name;
3427 	ni->cmp_f = objhash_cmp_name;
3428 
3429 	/* Allocate bitmask separately due to possible resize */
3430 	ipfw_objhash_bitmap_alloc(items, (void*)&ni->idx_mask, &ni->max_blocks);
3431 
3432 	return (ni);
3433 }
3434 
3435 void
ipfw_objhash_destroy(struct namedobj_instance * ni)3436 ipfw_objhash_destroy(struct namedobj_instance *ni)
3437 {
3438 	free(ni->idx_mask, M_IPFW);
3439 	free(ni, M_IPFW);
3440 }
3441 
3442 void
ipfw_objhash_set_funcs(struct namedobj_instance * ni,objhash_hash_f * hash_f,objhash_cmp_f * cmp_f)3443 ipfw_objhash_set_funcs(struct namedobj_instance *ni, objhash_hash_f *hash_f,
3444     objhash_cmp_f *cmp_f)
3445 {
3446 
3447 	ni->hash_f = hash_f;
3448 	ni->cmp_f = cmp_f;
3449 }
3450 
3451 static uint32_t
objhash_hash_name(struct namedobj_instance * ni,const void * name,uint32_t set)3452 objhash_hash_name(struct namedobj_instance *ni, const void *name, uint32_t set)
3453 {
3454 
3455 	return (fnv_32_str((const char *)name, FNV1_32_INIT));
3456 }
3457 
3458 static int
objhash_cmp_name(struct named_object * no,const void * name,uint32_t set)3459 objhash_cmp_name(struct named_object *no, const void *name, uint32_t set)
3460 {
3461 
3462 	if ((strcmp(no->name, (const char *)name) == 0) && (no->set == set))
3463 		return (0);
3464 
3465 	return (1);
3466 }
3467 
3468 static uint32_t
objhash_hash_idx(struct namedobj_instance * ni,uint32_t val)3469 objhash_hash_idx(struct namedobj_instance *ni, uint32_t val)
3470 {
3471 	uint32_t v;
3472 
3473 	v = val % (ni->nv_size - 1);
3474 
3475 	return (v);
3476 }
3477 
3478 struct named_object *
ipfw_objhash_lookup_name(struct namedobj_instance * ni,uint32_t set,const char * name)3479 ipfw_objhash_lookup_name(struct namedobj_instance *ni, uint32_t set,
3480     const char *name)
3481 {
3482 	struct named_object *no;
3483 	uint32_t hash;
3484 
3485 	hash = ni->hash_f(ni, name, set) % ni->nn_size;
3486 
3487 	TAILQ_FOREACH(no, &ni->names[hash], nn_next) {
3488 		if (ni->cmp_f(no, name, set) == 0)
3489 			return (no);
3490 	}
3491 
3492 	return (NULL);
3493 }
3494 
3495 /*
3496  * Find named object by @uid.
3497  * Check @tlvs for valid data inside.
3498  *
3499  * Returns pointer to found TLV or NULL.
3500  */
3501 ipfw_obj_ntlv *
ipfw_find_name_tlv_type(void * tlvs,int len,uint32_t uidx,uint32_t etlv)3502 ipfw_find_name_tlv_type(void *tlvs, int len, uint32_t uidx, uint32_t etlv)
3503 {
3504 	ipfw_obj_ntlv *ntlv;
3505 	uintptr_t pa, pe;
3506 	int l;
3507 
3508 	pa = (uintptr_t)tlvs;
3509 	pe = pa + len;
3510 	l = 0;
3511 	for (; pa < pe; pa += l) {
3512 		ntlv = (ipfw_obj_ntlv *)pa;
3513 		l = ntlv->head.length;
3514 
3515 		if (l != sizeof(*ntlv))
3516 			return (NULL);
3517 
3518 		if (ntlv->idx != uidx)
3519 			continue;
3520 		/*
3521 		 * When userland has specified zero TLV type, do
3522 		 * not compare it with eltv. In some cases userland
3523 		 * doesn't know what type should it have. Use only
3524 		 * uidx and name for search named_object.
3525 		 */
3526 		if (ntlv->head.type != 0 &&
3527 		    ntlv->head.type != (uint16_t)etlv)
3528 			continue;
3529 
3530 		if (ipfw_check_object_name_generic(ntlv->name) != 0)
3531 			return (NULL);
3532 
3533 		return (ntlv);
3534 	}
3535 
3536 	return (NULL);
3537 }
3538 
3539 /*
3540  * Finds object config based on either legacy index
3541  * or name in ntlv.
3542  * Note @ti structure contains unchecked data from userland.
3543  *
3544  * Returns 0 in success and fills in @pno with found config
3545  */
3546 int
ipfw_objhash_find_type(struct namedobj_instance * ni,struct tid_info * ti,uint32_t etlv,struct named_object ** pno)3547 ipfw_objhash_find_type(struct namedobj_instance *ni, struct tid_info *ti,
3548     uint32_t etlv, struct named_object **pno)
3549 {
3550 	char *name;
3551 	ipfw_obj_ntlv *ntlv;
3552 	uint32_t set;
3553 
3554 	if (ti->tlvs == NULL)
3555 		return (EINVAL);
3556 
3557 	ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx, etlv);
3558 	if (ntlv == NULL)
3559 		return (EINVAL);
3560 	name = ntlv->name;
3561 
3562 	/*
3563 	 * Use set provided by @ti instead of @ntlv one.
3564 	 * This is needed due to different sets behavior
3565 	 * controlled by V_fw_tables_sets.
3566 	 */
3567 	set = ti->set;
3568 	*pno = ipfw_objhash_lookup_name(ni, set, name);
3569 	if (*pno == NULL)
3570 		return (ESRCH);
3571 	return (0);
3572 }
3573 
3574 /*
3575  * Find named object by name, considering also its TLV type.
3576  */
3577 struct named_object *
ipfw_objhash_lookup_name_type(struct namedobj_instance * ni,uint32_t set,uint32_t type,const char * name)3578 ipfw_objhash_lookup_name_type(struct namedobj_instance *ni, uint32_t set,
3579     uint32_t type, const char *name)
3580 {
3581 	struct named_object *no;
3582 	uint32_t hash;
3583 
3584 	hash = ni->hash_f(ni, name, set) % ni->nn_size;
3585 
3586 	TAILQ_FOREACH(no, &ni->names[hash], nn_next) {
3587 		if (ni->cmp_f(no, name, set) == 0 &&
3588 		    no->etlv == (uint16_t)type)
3589 			return (no);
3590 	}
3591 
3592 	return (NULL);
3593 }
3594 
3595 struct named_object *
ipfw_objhash_lookup_kidx(struct namedobj_instance * ni,uint32_t kidx)3596 ipfw_objhash_lookup_kidx(struct namedobj_instance *ni, uint32_t kidx)
3597 {
3598 	struct named_object *no;
3599 	uint32_t hash;
3600 
3601 	hash = objhash_hash_idx(ni, kidx);
3602 
3603 	TAILQ_FOREACH(no, &ni->values[hash], nv_next) {
3604 		if (no->kidx == kidx)
3605 			return (no);
3606 	}
3607 
3608 	return (NULL);
3609 }
3610 
3611 int
ipfw_objhash_same_name(struct namedobj_instance * ni,struct named_object * a,struct named_object * b)3612 ipfw_objhash_same_name(struct namedobj_instance *ni, struct named_object *a,
3613     struct named_object *b)
3614 {
3615 
3616 	if ((strcmp(a->name, b->name) == 0) && a->set == b->set)
3617 		return (1);
3618 
3619 	return (0);
3620 }
3621 
3622 void
ipfw_objhash_add(struct namedobj_instance * ni,struct named_object * no)3623 ipfw_objhash_add(struct namedobj_instance *ni, struct named_object *no)
3624 {
3625 	uint32_t hash;
3626 
3627 	hash = ni->hash_f(ni, no->name, no->set) % ni->nn_size;
3628 	TAILQ_INSERT_HEAD(&ni->names[hash], no, nn_next);
3629 
3630 	hash = objhash_hash_idx(ni, no->kidx);
3631 	TAILQ_INSERT_HEAD(&ni->values[hash], no, nv_next);
3632 
3633 	ni->count++;
3634 }
3635 
3636 void
ipfw_objhash_del(struct namedobj_instance * ni,struct named_object * no)3637 ipfw_objhash_del(struct namedobj_instance *ni, struct named_object *no)
3638 {
3639 	uint32_t hash;
3640 
3641 	hash = ni->hash_f(ni, no->name, no->set) % ni->nn_size;
3642 	TAILQ_REMOVE(&ni->names[hash], no, nn_next);
3643 
3644 	hash = objhash_hash_idx(ni, no->kidx);
3645 	TAILQ_REMOVE(&ni->values[hash], no, nv_next);
3646 
3647 	ni->count--;
3648 }
3649 
3650 uint32_t
ipfw_objhash_count(struct namedobj_instance * ni)3651 ipfw_objhash_count(struct namedobj_instance *ni)
3652 {
3653 
3654 	return (ni->count);
3655 }
3656 
3657 uint32_t
ipfw_objhash_count_type(struct namedobj_instance * ni,uint16_t type)3658 ipfw_objhash_count_type(struct namedobj_instance *ni, uint16_t type)
3659 {
3660 	struct named_object *no;
3661 	uint32_t count;
3662 	int i;
3663 
3664 	count = 0;
3665 	for (i = 0; i < ni->nn_size; i++) {
3666 		TAILQ_FOREACH(no, &ni->names[i], nn_next) {
3667 			if (no->etlv == type)
3668 				count++;
3669 		}
3670 	}
3671 	return (count);
3672 }
3673 
3674 /*
3675  * Runs @func for each found named object.
3676  * It is safe to delete objects from callback
3677  */
3678 int
ipfw_objhash_foreach(struct namedobj_instance * ni,objhash_cb_t * f,void * arg)3679 ipfw_objhash_foreach(struct namedobj_instance *ni, objhash_cb_t *f, void *arg)
3680 {
3681 	struct named_object *no, *no_tmp;
3682 	int i, ret;
3683 
3684 	for (i = 0; i < ni->nn_size; i++) {
3685 		TAILQ_FOREACH_SAFE(no, &ni->names[i], nn_next, no_tmp) {
3686 			ret = f(ni, no, arg);
3687 			if (ret != 0)
3688 				return (ret);
3689 		}
3690 	}
3691 	return (0);
3692 }
3693 
3694 /*
3695  * Runs @f for each found named object with type @type.
3696  * It is safe to delete objects from callback
3697  */
3698 int
ipfw_objhash_foreach_type(struct namedobj_instance * ni,objhash_cb_t * f,void * arg,uint16_t type)3699 ipfw_objhash_foreach_type(struct namedobj_instance *ni, objhash_cb_t *f,
3700     void *arg, uint16_t type)
3701 {
3702 	struct named_object *no, *no_tmp;
3703 	int i, ret;
3704 
3705 	for (i = 0; i < ni->nn_size; i++) {
3706 		TAILQ_FOREACH_SAFE(no, &ni->names[i], nn_next, no_tmp) {
3707 			if (no->etlv != type)
3708 				continue;
3709 			ret = f(ni, no, arg);
3710 			if (ret != 0)
3711 				return (ret);
3712 		}
3713 	}
3714 	return (0);
3715 }
3716 
3717 /*
3718  * Removes index from given set.
3719  * Returns 0 on success.
3720  */
3721 int
ipfw_objhash_free_idx(struct namedobj_instance * ni,uint32_t idx)3722 ipfw_objhash_free_idx(struct namedobj_instance *ni, uint32_t idx)
3723 {
3724 	u_long *mask;
3725 	int i, v;
3726 
3727 	i = idx / BLOCK_ITEMS;
3728 	v = idx % BLOCK_ITEMS;
3729 
3730 	if (i >= ni->max_blocks)
3731 		return (1);
3732 
3733 	mask = &ni->idx_mask[i];
3734 
3735 	if ((*mask & ((u_long)1 << v)) != 0)
3736 		return (1);
3737 
3738 	/* Mark as free */
3739 	*mask |= (u_long)1 << v;
3740 
3741 	/* Update free offset */
3742 	if (ni->free_off[0] > i)
3743 		ni->free_off[0] = i;
3744 
3745 	return (0);
3746 }
3747 
3748 /*
3749  * Allocate new index in given instance and stores in in @pidx.
3750  * Returns 0 on success.
3751  */
3752 int
ipfw_objhash_alloc_idx(void * n,uint32_t * pidx)3753 ipfw_objhash_alloc_idx(void *n, uint32_t *pidx)
3754 {
3755 	struct namedobj_instance *ni;
3756 	u_long *mask;
3757 	int i, off, v;
3758 
3759 	ni = (struct namedobj_instance *)n;
3760 
3761 	off = ni->free_off[0];
3762 	mask = &ni->idx_mask[off];
3763 
3764 	for (i = off; i < ni->max_blocks; i++, mask++) {
3765 		if ((v = ffsl(*mask)) == 0)
3766 			continue;
3767 
3768 		/* Mark as busy */
3769 		*mask &= ~ ((u_long)1 << (v - 1));
3770 
3771 		ni->free_off[0] = i;
3772 
3773 		v = BLOCK_ITEMS * i + v - 1;
3774 
3775 		*pidx = v;
3776 		return (0);
3777 	}
3778 
3779 	return (1);
3780 }
3781 
3782 /* end of file */
3783