1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 1990 Mentat Inc.
24 */
25
26 /*
27 * This file contains routines that manipulate Internet Routing Entries (IREs).
28 */
29
30 #include <sys/types.h>
31 #include <sys/stream.h>
32 #include <sys/stropts.h>
33 #include <sys/strsun.h>
34 #include <sys/strsubr.h>
35 #include <sys/ddi.h>
36 #include <sys/cmn_err.h>
37 #include <sys/policy.h>
38
39 #include <sys/systm.h>
40 #include <sys/kmem.h>
41 #include <sys/param.h>
42 #include <sys/socket.h>
43 #include <net/if.h>
44 #include <net/route.h>
45 #include <netinet/in.h>
46 #include <net/if_dl.h>
47 #include <netinet/ip6.h>
48 #include <netinet/icmp6.h>
49
50 #include <inet/common.h>
51 #include <inet/mi.h>
52 #include <inet/ip.h>
53 #include <inet/ip6.h>
54 #include <inet/ip_ndp.h>
55 #include <inet/arp.h>
56 #include <inet/ip_if.h>
57 #include <inet/ip_ire.h>
58 #include <inet/ip_ftable.h>
59 #include <inet/ip_rts.h>
60 #include <inet/nd.h>
61 #include <inet/tunables.h>
62
63 #include <inet/tcp.h>
64 #include <inet/ipclassifier.h>
65 #include <sys/zone.h>
66 #include <sys/cpuvar.h>
67
68 #include <sys/tsol/label.h>
69 #include <sys/tsol/tnet.h>
70
71 struct kmem_cache *rt_entry_cache;
72
73 typedef struct nce_clookup_s {
74 ipaddr_t ncecl_addr;
75 boolean_t ncecl_found;
76 } nce_clookup_t;
77
78 /*
79 * Synchronization notes:
80 *
81 * The fields of the ire_t struct are protected in the following way :
82 *
83 * ire_next/ire_ptpn
84 *
85 * - bucket lock of the forwarding table in which is ire stored.
86 *
87 * ire_ill, ire_u *except* ire_gateway_addr[v6], ire_mask,
88 * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags,
89 * ire_bucket
90 *
91 * - Set in ire_create_v4/v6 and never changes after that. Thus,
92 * we don't need a lock whenever these fields are accessed.
93 *
94 * - ire_bucket and ire_masklen (also set in ire_create) is set in
95 * ire_add before inserting in the bucket and never
96 * changes after that. Thus we don't need a lock whenever these
97 * fields are accessed.
98 *
99 * ire_gateway_addr_v4[v6]
100 *
101 * - ire_gateway_addr_v4[v6] is set during ire_create and later modified
102 * by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to
103 * it assumed to be atomic and hence the other parts of the code
104 * does not use any locks. ire_gateway_addr_v6 updates are not atomic
105 * and hence any access to it uses ire_lock to get/set the right value.
106 *
107 * ire_refcnt, ire_identical_ref
108 *
109 * - Updated atomically using atomic_add_32
110 *
111 * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count
112 *
113 * - Assumes that 32 bit writes are atomic. No locks. ire_lock is
114 * used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt.
115 *
116 * ire_generation
117 * - Under ire_lock
118 *
119 * ire_nce_cache
120 * - Under ire_lock
121 *
122 * ire_dep_parent (To next IRE in recursive lookup chain)
123 * - Under ips_ire_dep_lock. Write held when modifying. Read held when
124 * walking. We also hold ire_lock when modifying to allow the data path
125 * to only acquire ire_lock.
126 *
127 * ire_dep_parent_generation (Generation number from ire_dep_parent)
128 * - Under ips_ire_dep_lock and/or ire_lock. (A read claim on the dep_lock
129 * and ire_lock held when modifying)
130 *
131 * ire_dep_children (From parent to first child)
132 * ire_dep_sib_next (linked list of siblings)
133 * ire_dep_sib_ptpn (linked list of siblings)
134 * - Under ips_ire_dep_lock. Write held when modifying. Read held when
135 * walking.
136 *
137 * As we always hold the bucket locks in all the places while accessing
138 * the above values, it is natural to use them for protecting them.
139 *
140 * We have a forwarding table for IPv4 and IPv6. The IPv6 forwarding table
141 * (ip_forwarding_table_v6) is an array of pointers to arrays of irb_t
142 * structures. ip_forwarding_table_v6 is allocated dynamically in
143 * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads
144 * initializing the same bucket. Once a bucket is initialized, it is never
145 * de-alloacted. This assumption enables us to access
146 * ip_forwarding_table_v6[i] without any locks.
147 *
148 * The forwarding table for IPv4 is a radix tree whose leaves
149 * are rt_entry structures containing the irb_t for the rt_dst. The irb_t
150 * for IPv4 is dynamically allocated and freed.
151 *
152 * Each irb_t - ire bucket structure has a lock to protect
153 * a bucket and the ires residing in the bucket have a back pointer to
154 * the bucket structure. It also has a reference count for the number
155 * of threads walking the bucket - irb_refcnt which is bumped up
156 * using the irb_refhold function. The flags irb_marks can be
157 * set to IRB_MARK_CONDEMNED indicating that there are some ires
158 * in this bucket that are IRE_IS_CONDEMNED and the
159 * last thread to leave the bucket should delete the ires. Usually
160 * this is done by the irb_refrele function which is used to decrement
161 * the reference count on a bucket. See comments above irb_t structure
162 * definition in ip.h for further details.
163 *
164 * The ire_refhold/ire_refrele functions operate on the ire which increments/
165 * decrements the reference count, ire_refcnt, atomically on the ire.
166 * ire_refcnt is modified only using those functions. Operations on the IRE
167 * could be described as follows :
168 *
169 * CREATE an ire with reference count initialized to 1.
170 *
171 * ADDITION of an ire holds the bucket lock, checks for duplicates
172 * and then adds the ire. ire_add returns the ire after
173 * bumping up once more i.e the reference count is 2. This is to avoid
174 * an extra lookup in the functions calling ire_add which wants to
175 * work with the ire after adding.
176 *
177 * LOOKUP of an ire bumps up the reference count using ire_refhold
178 * function. It is valid to bump up the referece count of the IRE,
179 * after the lookup has returned an ire. Following are the lookup
180 * functions that return an HELD ire :
181 *
182 * ire_ftable_lookup[_v6], ire_lookup_multi_ill[_v6]
183 *
184 * DELETION of an ire holds the bucket lock, removes it from the list
185 * and then decrements the reference count for having removed from the list
186 * by using the ire_refrele function. If some other thread has looked up
187 * the ire, the reference count would have been bumped up and hence
188 * this ire will not be freed once deleted. It will be freed once the
189 * reference count drops to zero.
190 *
191 * Add and Delete acquires the bucket lock as RW_WRITER, while all the
192 * lookups acquire the bucket lock as RW_READER.
193 *
194 * The general rule is to do the ire_refrele in the function
195 * that is passing the ire as an argument.
196 *
197 * In trying to locate ires the following points are to be noted.
198 *
199 * IRE_IS_CONDEMNED signifies that the ire has been logically deleted and is
200 * to be ignored when walking the ires using ire_next.
201 *
202 * Zones note:
203 * Walking IREs within a given zone also walks certain ires in other
204 * zones. This is done intentionally. IRE walks with a specified
205 * zoneid are used only when doing informational reports, and
206 * zone users want to see things that they can access. See block
207 * comment in ire_walk_ill_match().
208 */
209
210 /*
211 * The size of the forwarding table. We will make sure that it is a
212 * power of 2 in ip_ire_init().
213 * Setable in /etc/system
214 */
215 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE;
216
217 struct kmem_cache *ire_cache;
218 struct kmem_cache *ncec_cache;
219 struct kmem_cache *nce_cache;
220
221 static ire_t ire_null;
222
223 static ire_t *ire_add_v4(ire_t *ire);
224 static void ire_delete_v4(ire_t *ire);
225 static void ire_dep_invalidate_children(ire_t *child);
226 static void ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers,
227 zoneid_t zoneid, ip_stack_t *);
228 static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type,
229 pfv_t func, void *arg, uchar_t vers, ill_t *ill);
230 #ifdef DEBUG
231 static void ire_trace_cleanup(const ire_t *);
232 #endif
233 static void ire_dep_incr_generation_locked(ire_t *);
234
235 /*
236 * Following are the functions to increment/decrement the reference
237 * count of the IREs and IRBs (ire bucket).
238 *
239 * 1) We bump up the reference count of an IRE to make sure that
240 * it does not get deleted and freed while we are using it.
241 * Typically all the lookup functions hold the bucket lock,
242 * and look for the IRE. If it finds an IRE, it bumps up the
243 * reference count before dropping the lock. Sometimes we *may* want
244 * to bump up the reference count after we *looked* up i.e without
245 * holding the bucket lock. So, the ire_refhold function does not assert
246 * on the bucket lock being held. Any thread trying to delete from
247 * the hash bucket can still do so but cannot free the IRE if
248 * ire_refcnt is not 0.
249 *
250 * 2) We bump up the reference count on the bucket where the IRE resides
251 * (IRB), when we want to prevent the IREs getting deleted from a given
252 * hash bucket. This makes life easier for ire_walk type functions which
253 * wants to walk the IRE list, call a function, but needs to drop
254 * the bucket lock to prevent recursive rw_enters. While the
255 * lock is dropped, the list could be changed by other threads or
256 * the same thread could end up deleting the ire or the ire pointed by
257 * ire_next. ire_refholding the ire or ire_next is not sufficient as
258 * a delete will still remove the ire from the bucket while we have
259 * dropped the lock and hence the ire_next would be NULL. Thus, we
260 * need a mechanism to prevent deletions from a given bucket.
261 *
262 * To prevent deletions, we bump up the reference count on the
263 * bucket. If the bucket is held, ire_delete just marks both
264 * the ire and irb as CONDEMNED. When the
265 * reference count on the bucket drops to zero, all the CONDEMNED ires
266 * are deleted. We don't have to bump up the reference count on the
267 * bucket if we are walking the bucket and never have to drop the bucket
268 * lock. Note that irb_refhold does not prevent addition of new ires
269 * in the list. It is okay because addition of new ires will not cause
270 * ire_next to point to freed memory. We do irb_refhold only when
271 * all of the 3 conditions are true :
272 *
273 * 1) The code needs to walk the IRE bucket from start to end.
274 * 2) It may have to drop the bucket lock sometimes while doing (1)
275 * 3) It does not want any ires to be deleted meanwhile.
276 */
277
278 /*
279 * Bump up the reference count on the hash bucket - IRB to
280 * prevent ires from being deleted in this bucket.
281 */
282 void
irb_refhold(irb_t * irb)283 irb_refhold(irb_t *irb)
284 {
285 rw_enter(&irb->irb_lock, RW_WRITER);
286 irb->irb_refcnt++;
287 ASSERT(irb->irb_refcnt != 0);
288 rw_exit(&irb->irb_lock);
289 }
290
291 void
irb_refhold_locked(irb_t * irb)292 irb_refhold_locked(irb_t *irb)
293 {
294 ASSERT(RW_WRITE_HELD(&irb->irb_lock));
295 irb->irb_refcnt++;
296 ASSERT(irb->irb_refcnt != 0);
297 }
298
299 /*
300 * Note: when IRB_MARK_DYNAMIC is not set the irb_t
301 * is statically allocated, so that when the irb_refcnt goes to 0,
302 * we simply clean up the ire list and continue.
303 */
304 void
irb_refrele(irb_t * irb)305 irb_refrele(irb_t *irb)
306 {
307 if (irb->irb_marks & IRB_MARK_DYNAMIC) {
308 irb_refrele_ftable(irb);
309 } else {
310 rw_enter(&irb->irb_lock, RW_WRITER);
311 ASSERT(irb->irb_refcnt != 0);
312 if (--irb->irb_refcnt == 0 &&
313 (irb->irb_marks & IRB_MARK_CONDEMNED)) {
314 ire_t *ire_list;
315
316 ire_list = ire_unlink(irb);
317 rw_exit(&irb->irb_lock);
318 ASSERT(ire_list != NULL);
319 ire_cleanup(ire_list);
320 } else {
321 rw_exit(&irb->irb_lock);
322 }
323 }
324 }
325
326
327 /*
328 * Bump up the reference count on the IRE. We cannot assert that the
329 * bucket lock is being held as it is legal to bump up the reference
330 * count after the first lookup has returned the IRE without
331 * holding the lock.
332 */
333 void
ire_refhold(ire_t * ire)334 ire_refhold(ire_t *ire)
335 {
336 atomic_inc_32(&(ire)->ire_refcnt);
337 ASSERT((ire)->ire_refcnt != 0);
338 #ifdef DEBUG
339 ire_trace_ref(ire);
340 #endif
341 }
342
343 void
ire_refhold_notr(ire_t * ire)344 ire_refhold_notr(ire_t *ire)
345 {
346 atomic_inc_32(&(ire)->ire_refcnt);
347 ASSERT((ire)->ire_refcnt != 0);
348 }
349
350 void
ire_refhold_locked(ire_t * ire)351 ire_refhold_locked(ire_t *ire)
352 {
353 #ifdef DEBUG
354 ire_trace_ref(ire);
355 #endif
356 ire->ire_refcnt++;
357 }
358
359 /*
360 * Release a ref on an IRE.
361 *
362 * Must not be called while holding any locks. Otherwise if this is
363 * the last reference to be released there is a chance of recursive mutex
364 * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
365 * to restart an ioctl. The one exception is when the caller is sure that
366 * this is not the last reference to be released. Eg. if the caller is
367 * sure that the ire has not been deleted and won't be deleted.
368 *
369 * In architectures e.g sun4u, where atomic_add_32_nv is just
370 * a cas, we need to maintain the right memory barrier semantics
371 * as that of mutex_exit i.e all the loads and stores should complete
372 * before the cas is executed. membar_exit() does that here.
373 */
374 void
ire_refrele(ire_t * ire)375 ire_refrele(ire_t *ire)
376 {
377 #ifdef DEBUG
378 ire_untrace_ref(ire);
379 #endif
380 ASSERT((ire)->ire_refcnt != 0);
381 membar_exit();
382 if (atomic_dec_32_nv(&(ire)->ire_refcnt) == 0)
383 ire_inactive(ire);
384 }
385
386 void
ire_refrele_notr(ire_t * ire)387 ire_refrele_notr(ire_t *ire)
388 {
389 ASSERT((ire)->ire_refcnt != 0);
390 membar_exit();
391 if (atomic_dec_32_nv(&(ire)->ire_refcnt) == 0)
392 ire_inactive(ire);
393 }
394
395 /*
396 * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY]
397 * IOCTL[s]. The NO_REPLY form is used by TCP to tell IP that it is
398 * having problems reaching a particular destination.
399 * This will make IP consider alternate routes (e.g., when there are
400 * muliple default routes), and it will also make IP discard any (potentially)
401 * stale redirect.
402 * Management processes may want to use the version that generates a reply.
403 *
404 * With the use of NUD like behavior for IPv4/ARP in addition to IPv6
405 * this function shouldn't be necessary for IP to recover from a bad redirect,
406 * a bad default router (when there are multiple default routers), or
407 * a stale ND/ARP entry. But we retain it in any case.
408 * For instance, this is helpful when TCP suspects a failure before NUD does.
409 */
410 int
ip_ire_delete(queue_t * q,mblk_t * mp,cred_t * ioc_cr)411 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr)
412 {
413 uchar_t *addr_ucp;
414 uint_t ipversion;
415 sin_t *sin;
416 sin6_t *sin6;
417 ipaddr_t v4addr;
418 in6_addr_t v6addr;
419 ire_t *ire;
420 ipid_t *ipid;
421 zoneid_t zoneid;
422 ip_stack_t *ipst;
423
424 ASSERT(q->q_next == NULL);
425 zoneid = IPCL_ZONEID(Q_TO_CONN(q));
426 ipst = CONNQ_TO_IPST(q);
427
428 /*
429 * Check privilege using the ioctl credential; if it is NULL
430 * then this is a kernel message and therefor privileged.
431 */
432 if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0)
433 return (EPERM);
434
435 ipid = (ipid_t *)mp->b_rptr;
436
437 addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset,
438 ipid->ipid_addr_length);
439 if (addr_ucp == NULL || !OK_32PTR(addr_ucp))
440 return (EINVAL);
441 switch (ipid->ipid_addr_length) {
442 case sizeof (sin_t):
443 /*
444 * got complete (sockaddr) address - increment addr_ucp to point
445 * at the ip_addr field.
446 */
447 sin = (sin_t *)addr_ucp;
448 addr_ucp = (uchar_t *)&sin->sin_addr.s_addr;
449 ipversion = IPV4_VERSION;
450 break;
451 case sizeof (sin6_t):
452 /*
453 * got complete (sockaddr) address - increment addr_ucp to point
454 * at the ip_addr field.
455 */
456 sin6 = (sin6_t *)addr_ucp;
457 addr_ucp = (uchar_t *)&sin6->sin6_addr;
458 ipversion = IPV6_VERSION;
459 break;
460 default:
461 return (EINVAL);
462 }
463 if (ipversion == IPV4_VERSION) {
464 /* Extract the destination address. */
465 bcopy(addr_ucp, &v4addr, IP_ADDR_LEN);
466
467 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL,
468 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
469 } else {
470 /* Extract the destination address. */
471 bcopy(addr_ucp, &v6addr, IPV6_ADDR_LEN);
472
473 ire = ire_ftable_lookup_v6(&v6addr, NULL, NULL, 0, NULL,
474 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
475 }
476 if (ire != NULL) {
477 if (ipversion == IPV4_VERSION) {
478 ip_rts_change(RTM_LOSING, ire->ire_addr,
479 ire->ire_gateway_addr, ire->ire_mask,
480 (Q_TO_CONN(q))->conn_laddr_v4, 0, 0, 0,
481 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA),
482 ire->ire_ipst);
483 }
484 (void) ire_no_good(ire);
485 ire_refrele(ire);
486 }
487 return (0);
488 }
489
490 /*
491 * Initialize the ire that is specific to IPv4 part and call
492 * ire_init_common to finish it.
493 * Returns zero or errno.
494 */
495 int
ire_init_v4(ire_t * ire,uchar_t * addr,uchar_t * mask,uchar_t * gateway,ushort_t type,ill_t * ill,zoneid_t zoneid,uint_t flags,tsol_gc_t * gc,ip_stack_t * ipst)496 ire_init_v4(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *gateway,
497 ushort_t type, ill_t *ill, zoneid_t zoneid, uint_t flags,
498 tsol_gc_t *gc, ip_stack_t *ipst)
499 {
500 int error;
501
502 /*
503 * Reject IRE security attribute creation/initialization
504 * if system is not running in Trusted mode.
505 */
506 if (gc != NULL && !is_system_labeled())
507 return (EINVAL);
508
509 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced);
510
511 if (addr != NULL)
512 bcopy(addr, &ire->ire_addr, IP_ADDR_LEN);
513 if (gateway != NULL)
514 bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN);
515
516 /* Make sure we don't have stray values in some fields */
517 switch (type) {
518 case IRE_LOOPBACK:
519 case IRE_HOST:
520 case IRE_BROADCAST:
521 case IRE_LOCAL:
522 case IRE_IF_CLONE:
523 ire->ire_mask = IP_HOST_MASK;
524 ire->ire_masklen = IPV4_ABITS;
525 break;
526 case IRE_PREFIX:
527 case IRE_DEFAULT:
528 case IRE_IF_RESOLVER:
529 case IRE_IF_NORESOLVER:
530 if (mask != NULL) {
531 bcopy(mask, &ire->ire_mask, IP_ADDR_LEN);
532 ire->ire_masklen = ip_mask_to_plen(ire->ire_mask);
533 }
534 break;
535 case IRE_MULTICAST:
536 case IRE_NOROUTE:
537 ASSERT(mask == NULL);
538 break;
539 default:
540 ASSERT(0);
541 return (EINVAL);
542 }
543
544 error = ire_init_common(ire, type, ill, zoneid, flags, IPV4_VERSION,
545 gc, ipst);
546 if (error != 0)
547 return (error);
548
549 /* Determine which function pointers to use */
550 ire->ire_postfragfn = ip_xmit; /* Common case */
551
552 switch (ire->ire_type) {
553 case IRE_LOCAL:
554 ire->ire_sendfn = ire_send_local_v4;
555 ire->ire_recvfn = ire_recv_local_v4;
556 ASSERT(ire->ire_ill != NULL);
557 if (ire->ire_ill->ill_flags & ILLF_NOACCEPT)
558 ire->ire_recvfn = ire_recv_noaccept_v6;
559 break;
560 case IRE_LOOPBACK:
561 ire->ire_sendfn = ire_send_local_v4;
562 ire->ire_recvfn = ire_recv_loopback_v4;
563 break;
564 case IRE_BROADCAST:
565 ire->ire_postfragfn = ip_postfrag_loopcheck;
566 ire->ire_sendfn = ire_send_broadcast_v4;
567 ire->ire_recvfn = ire_recv_broadcast_v4;
568 break;
569 case IRE_MULTICAST:
570 ire->ire_postfragfn = ip_postfrag_loopcheck;
571 ire->ire_sendfn = ire_send_multicast_v4;
572 ire->ire_recvfn = ire_recv_multicast_v4;
573 break;
574 default:
575 /*
576 * For IRE_IF_ALL and IRE_OFFLINK we forward received
577 * packets by default.
578 */
579 ire->ire_sendfn = ire_send_wire_v4;
580 ire->ire_recvfn = ire_recv_forward_v4;
581 break;
582 }
583 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
584 ire->ire_sendfn = ire_send_noroute_v4;
585 ire->ire_recvfn = ire_recv_noroute_v4;
586 } else if (ire->ire_flags & RTF_MULTIRT) {
587 ire->ire_postfragfn = ip_postfrag_multirt_v4;
588 ire->ire_sendfn = ire_send_multirt_v4;
589 /* Multirt receive of broadcast uses ire_recv_broadcast_v4 */
590 if (ire->ire_type != IRE_BROADCAST)
591 ire->ire_recvfn = ire_recv_multirt_v4;
592 }
593 ire->ire_nce_capable = ire_determine_nce_capable(ire);
594 return (0);
595 }
596
597 /*
598 * Determine ire_nce_capable
599 */
600 boolean_t
ire_determine_nce_capable(ire_t * ire)601 ire_determine_nce_capable(ire_t *ire)
602 {
603 int max_masklen;
604
605 if ((ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
606 (ire->ire_type & IRE_MULTICAST))
607 return (B_TRUE);
608
609 if (ire->ire_ipversion == IPV4_VERSION)
610 max_masklen = IPV4_ABITS;
611 else
612 max_masklen = IPV6_ABITS;
613
614 if ((ire->ire_type & IRE_ONLINK) && ire->ire_masklen == max_masklen)
615 return (B_TRUE);
616 return (B_FALSE);
617 }
618
619 /*
620 * ire_create is called to allocate and initialize a new IRE.
621 *
622 * NOTE : This is called as writer sometimes though not required
623 * by this function.
624 */
625 ire_t *
ire_create(uchar_t * addr,uchar_t * mask,uchar_t * gateway,ushort_t type,ill_t * ill,zoneid_t zoneid,uint_t flags,tsol_gc_t * gc,ip_stack_t * ipst)626 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *gateway,
627 ushort_t type, ill_t *ill, zoneid_t zoneid, uint_t flags, tsol_gc_t *gc,
628 ip_stack_t *ipst)
629 {
630 ire_t *ire;
631 int error;
632
633 ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
634 if (ire == NULL) {
635 DTRACE_PROBE(kmem__cache__alloc);
636 return (NULL);
637 }
638 *ire = ire_null;
639
640 error = ire_init_v4(ire, addr, mask, gateway, type, ill, zoneid, flags,
641 gc, ipst);
642 if (error != 0) {
643 DTRACE_PROBE2(ire__init, ire_t *, ire, int, error);
644 kmem_cache_free(ire_cache, ire);
645 return (NULL);
646 }
647 return (ire);
648 }
649
650 /*
651 * Common to IPv4 and IPv6
652 * Returns zero or errno.
653 */
654 int
ire_init_common(ire_t * ire,ushort_t type,ill_t * ill,zoneid_t zoneid,uint_t flags,uchar_t ipversion,tsol_gc_t * gc,ip_stack_t * ipst)655 ire_init_common(ire_t *ire, ushort_t type, ill_t *ill, zoneid_t zoneid,
656 uint_t flags, uchar_t ipversion, tsol_gc_t *gc, ip_stack_t *ipst)
657 {
658 int error;
659
660 #ifdef DEBUG
661 if (ill != NULL) {
662 if (ill->ill_isv6)
663 ASSERT(ipversion == IPV6_VERSION);
664 else
665 ASSERT(ipversion == IPV4_VERSION);
666 }
667 #endif /* DEBUG */
668
669 /*
670 * Create/initialize IRE security attribute only in Trusted mode;
671 * if the passed in gc is non-NULL, we expect that the caller
672 * has held a reference to it and will release it when this routine
673 * returns a failure, otherwise we own the reference. We do this
674 * prior to initializing the rest IRE fields.
675 */
676 if (is_system_labeled()) {
677 if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST |
678 IRE_IF_ALL | IRE_MULTICAST | IRE_NOROUTE)) != 0) {
679 /* release references on behalf of caller */
680 if (gc != NULL)
681 GC_REFRELE(gc);
682 } else {
683 error = tsol_ire_init_gwattr(ire, ipversion, gc);
684 if (error != 0)
685 return (error);
686 }
687 }
688
689 ire->ire_type = type;
690 ire->ire_flags = RTF_UP | flags;
691 ire->ire_create_time = (uint32_t)gethrestime_sec();
692 ire->ire_generation = IRE_GENERATION_INITIAL;
693
694 /*
695 * The ill_ire_cnt isn't increased until
696 * the IRE is added to ensure that a walker will find
697 * all IREs that hold a reference on an ill.
698 *
699 * Note that ill_ire_multicast doesn't hold a ref on the ill since
700 * ire_add() is not called for the IRE_MULTICAST.
701 */
702 ire->ire_ill = ill;
703 ire->ire_zoneid = zoneid;
704 ire->ire_ipversion = ipversion;
705
706 mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL);
707 ire->ire_refcnt = 1;
708 ire->ire_identical_ref = 1; /* Number of ire_delete's needed */
709 ire->ire_ipst = ipst; /* No netstack_hold */
710 ire->ire_trace_disable = B_FALSE;
711
712 return (0);
713 }
714
715 /*
716 * This creates an IRE_BROADCAST based on the arguments.
717 * A mirror is ire_lookup_bcast().
718 *
719 * Any supression of unneeded ones is done in ire_add_v4.
720 * We add one IRE_BROADCAST per address. ire_send_broadcast_v4()
721 * takes care of generating a loopback copy of the packet.
722 */
723 ire_t **
ire_create_bcast(ill_t * ill,ipaddr_t addr,zoneid_t zoneid,ire_t ** irep)724 ire_create_bcast(ill_t *ill, ipaddr_t addr, zoneid_t zoneid, ire_t **irep)
725 {
726 ip_stack_t *ipst = ill->ill_ipst;
727
728 ASSERT(IAM_WRITER_ILL(ill));
729
730 *irep++ = ire_create(
731 (uchar_t *)&addr, /* dest addr */
732 (uchar_t *)&ip_g_all_ones, /* mask */
733 NULL, /* no gateway */
734 IRE_BROADCAST,
735 ill,
736 zoneid,
737 RTF_KERNEL,
738 NULL,
739 ipst);
740
741 return (irep);
742 }
743
744 /*
745 * This looks up an IRE_BROADCAST based on the arguments.
746 * Mirrors ire_create_bcast().
747 */
748 ire_t *
ire_lookup_bcast(ill_t * ill,ipaddr_t addr,zoneid_t zoneid)749 ire_lookup_bcast(ill_t *ill, ipaddr_t addr, zoneid_t zoneid)
750 {
751 ire_t *ire;
752 int match_args;
753
754 match_args = MATCH_IRE_TYPE | MATCH_IRE_ILL | MATCH_IRE_GW |
755 MATCH_IRE_MASK | MATCH_IRE_ZONEONLY;
756
757 if (IS_UNDER_IPMP(ill))
758 match_args |= MATCH_IRE_TESTHIDDEN;
759
760 ire = ire_ftable_lookup_v4(
761 addr, /* dest addr */
762 ip_g_all_ones, /* mask */
763 0, /* no gateway */
764 IRE_BROADCAST,
765 ill,
766 zoneid,
767 NULL,
768 match_args,
769 0,
770 ill->ill_ipst,
771 NULL);
772 return (ire);
773 }
774
775 /* Arrange to call the specified function for every IRE in the world. */
776 void
ire_walk(pfv_t func,void * arg,ip_stack_t * ipst)777 ire_walk(pfv_t func, void *arg, ip_stack_t *ipst)
778 {
779 ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst);
780 }
781
782 void
ire_walk_v4(pfv_t func,void * arg,zoneid_t zoneid,ip_stack_t * ipst)783 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst)
784 {
785 ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst);
786 }
787
788 void
ire_walk_v6(pfv_t func,void * arg,zoneid_t zoneid,ip_stack_t * ipst)789 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst)
790 {
791 ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst);
792 }
793
794 /*
795 * Walk a particular version. version == 0 means both v4 and v6.
796 */
797 static void
ire_walk_ipvers(pfv_t func,void * arg,uchar_t vers,zoneid_t zoneid,ip_stack_t * ipst)798 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid,
799 ip_stack_t *ipst)
800 {
801 if (vers != IPV6_VERSION) {
802 /*
803 * ip_forwarding_table variable doesn't matter for IPv4 since
804 * ire_walk_ill_tables uses ips_ip_ftable for IPv4.
805 */
806 ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE,
807 0, NULL,
808 NULL, zoneid, ipst);
809 }
810 if (vers != IPV4_VERSION) {
811 ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE,
812 ipst->ips_ip6_ftable_hash_size,
813 ipst->ips_ip_forwarding_table_v6,
814 NULL, zoneid, ipst);
815 }
816 }
817
818 /*
819 * Arrange to call the specified function for every IRE that matches the ill.
820 */
821 void
ire_walk_ill(uint_t match_flags,uint_t ire_type,pfv_t func,void * arg,ill_t * ill)822 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
823 ill_t *ill)
824 {
825 uchar_t vers = (ill->ill_isv6 ? IPV6_VERSION : IPV4_VERSION);
826
827 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, vers, ill);
828 }
829
830 /*
831 * Walk a particular ill and version.
832 */
833 static void
ire_walk_ill_ipvers(uint_t match_flags,uint_t ire_type,pfv_t func,void * arg,uchar_t vers,ill_t * ill)834 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func,
835 void *arg, uchar_t vers, ill_t *ill)
836 {
837 ip_stack_t *ipst = ill->ill_ipst;
838
839 if (vers == IPV4_VERSION) {
840 ire_walk_ill_tables(match_flags, ire_type, func, arg,
841 IP_MASK_TABLE_SIZE,
842 0, NULL,
843 ill, ALL_ZONES, ipst);
844 }
845 if (vers != IPV4_VERSION) {
846 ire_walk_ill_tables(match_flags, ire_type, func, arg,
847 IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size,
848 ipst->ips_ip_forwarding_table_v6,
849 ill, ALL_ZONES, ipst);
850 }
851 }
852
853 /*
854 * Do the specific matching of IREs to shared-IP zones.
855 *
856 * We have the same logic as in ire_match_args but implemented slightly
857 * differently.
858 */
859 boolean_t
ire_walk_ill_match(uint_t match_flags,uint_t ire_type,ire_t * ire,ill_t * ill,zoneid_t zoneid,ip_stack_t * ipst)860 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire,
861 ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst)
862 {
863 ill_t *dst_ill = ire->ire_ill;
864
865 ASSERT(match_flags != 0 || zoneid != ALL_ZONES);
866
867 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid &&
868 ire->ire_zoneid != ALL_ZONES) {
869 /*
870 * We're walking the IREs for a specific zone. The only relevant
871 * IREs are:
872 * - all IREs with a matching ire_zoneid
873 * - IRE_IF_ALL IREs for interfaces with a usable source addr
874 * with a matching zone
875 * - IRE_OFFLINK with a gateway reachable from the zone
876 * Note that ealier we only did the IRE_OFFLINK check for
877 * IRE_DEFAULT (and only when we had multiple IRE_DEFAULTs).
878 */
879 if (ire->ire_type & IRE_ONLINK) {
880 uint_t ifindex;
881
882 /*
883 * Note there is no IRE_INTERFACE on vniN thus
884 * can't do an IRE lookup for a matching route.
885 */
886 ifindex = dst_ill->ill_usesrc_ifindex;
887 if (ifindex == 0)
888 return (B_FALSE);
889
890 /*
891 * If there is a usable source address in the
892 * zone, then it's ok to return an
893 * IRE_INTERFACE
894 */
895 if (!ipif_zone_avail(ifindex, dst_ill->ill_isv6,
896 zoneid, ipst)) {
897 return (B_FALSE);
898 }
899 }
900 if (dst_ill != NULL && (ire->ire_type & IRE_OFFLINK)) {
901 ipif_t *tipif;
902
903 mutex_enter(&dst_ill->ill_lock);
904 for (tipif = dst_ill->ill_ipif;
905 tipif != NULL; tipif = tipif->ipif_next) {
906 if (!IPIF_IS_CONDEMNED(tipif) &&
907 (tipif->ipif_flags & IPIF_UP) &&
908 (tipif->ipif_zoneid == zoneid ||
909 tipif->ipif_zoneid == ALL_ZONES))
910 break;
911 }
912 mutex_exit(&dst_ill->ill_lock);
913 if (tipif == NULL) {
914 return (B_FALSE);
915 }
916 }
917 }
918 /*
919 * Except for ALL_ZONES, we only match the offlink routes
920 * where ire_gateway_addr has an IRE_INTERFACE for the zoneid.
921 * Since we can have leftover routes after the IP addresses have
922 * changed, the global zone will also match offlink routes where the
923 * gateway is unreachable from any zone.
924 */
925 if ((ire->ire_type & IRE_OFFLINK) && zoneid != ALL_ZONES) {
926 in6_addr_t gw_addr_v6;
927 boolean_t reach;
928
929 if (ire->ire_ipversion == IPV4_VERSION) {
930 reach = ire_gateway_ok_zone_v4(ire->ire_gateway_addr,
931 zoneid, dst_ill, NULL, ipst, B_FALSE);
932 } else {
933 ASSERT(ire->ire_ipversion == IPV6_VERSION);
934 mutex_enter(&ire->ire_lock);
935 gw_addr_v6 = ire->ire_gateway_addr_v6;
936 mutex_exit(&ire->ire_lock);
937
938 reach = ire_gateway_ok_zone_v6(&gw_addr_v6, zoneid,
939 dst_ill, NULL, ipst, B_FALSE);
940 }
941 if (!reach) {
942 if (zoneid != GLOBAL_ZONEID)
943 return (B_FALSE);
944
945 /*
946 * Check if ALL_ZONES reachable - if not then let the
947 * global zone see it.
948 */
949 if (ire->ire_ipversion == IPV4_VERSION) {
950 reach = ire_gateway_ok_zone_v4(
951 ire->ire_gateway_addr, ALL_ZONES,
952 dst_ill, NULL, ipst, B_FALSE);
953 } else {
954 reach = ire_gateway_ok_zone_v6(&gw_addr_v6,
955 ALL_ZONES, dst_ill, NULL, ipst, B_FALSE);
956 }
957 if (reach) {
958 /*
959 * Some other zone could see it, hence hide it
960 * in the global zone.
961 */
962 return (B_FALSE);
963 }
964 }
965 }
966
967 if (((!(match_flags & MATCH_IRE_TYPE)) ||
968 (ire->ire_type & ire_type)) &&
969 ((!(match_flags & MATCH_IRE_ILL)) ||
970 (dst_ill == ill ||
971 dst_ill != NULL && IS_IN_SAME_ILLGRP(dst_ill, ill)))) {
972 return (B_TRUE);
973 }
974 return (B_FALSE);
975 }
976
977 int
rtfunc(struct radix_node * rn,void * arg)978 rtfunc(struct radix_node *rn, void *arg)
979 {
980 struct rtfuncarg *rtf = arg;
981 struct rt_entry *rt;
982 irb_t *irb;
983 ire_t *ire;
984 boolean_t ret;
985
986 rt = (struct rt_entry *)rn;
987 ASSERT(rt != NULL);
988 irb = &rt->rt_irb;
989 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
990 if ((rtf->rt_match_flags != 0) ||
991 (rtf->rt_zoneid != ALL_ZONES)) {
992 ret = ire_walk_ill_match(rtf->rt_match_flags,
993 rtf->rt_ire_type, ire,
994 rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst);
995 } else {
996 ret = B_TRUE;
997 }
998 if (ret)
999 (*rtf->rt_func)(ire, rtf->rt_arg);
1000 }
1001 return (0);
1002 }
1003
1004 /*
1005 * Walk the ftable entries that match the ill.
1006 */
1007 void
ire_walk_ill_tables(uint_t match_flags,uint_t ire_type,pfv_t func,void * arg,size_t ftbl_sz,size_t htbl_sz,irb_t ** ipftbl,ill_t * ill,zoneid_t zoneid,ip_stack_t * ipst)1008 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func,
1009 void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl,
1010 ill_t *ill, zoneid_t zoneid,
1011 ip_stack_t *ipst)
1012 {
1013 irb_t *irb_ptr;
1014 irb_t *irb;
1015 ire_t *ire;
1016 int i, j;
1017 boolean_t ret;
1018 struct rtfuncarg rtfarg;
1019
1020 ASSERT((!(match_flags & MATCH_IRE_ILL)) || (ill != NULL));
1021 ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0));
1022
1023 /* knobs such that routine is called only for v6 case */
1024 if (ipftbl == ipst->ips_ip_forwarding_table_v6) {
1025 for (i = (ftbl_sz - 1); i >= 0; i--) {
1026 if ((irb_ptr = ipftbl[i]) == NULL)
1027 continue;
1028 for (j = 0; j < htbl_sz; j++) {
1029 irb = &irb_ptr[j];
1030 if (irb->irb_ire == NULL)
1031 continue;
1032
1033 irb_refhold(irb);
1034 for (ire = irb->irb_ire; ire != NULL;
1035 ire = ire->ire_next) {
1036 if (match_flags == 0 &&
1037 zoneid == ALL_ZONES) {
1038 ret = B_TRUE;
1039 } else {
1040 ret =
1041 ire_walk_ill_match(
1042 match_flags,
1043 ire_type, ire, ill,
1044 zoneid, ipst);
1045 }
1046 if (ret)
1047 (*func)(ire, arg);
1048 }
1049 irb_refrele(irb);
1050 }
1051 }
1052 } else {
1053 bzero(&rtfarg, sizeof (rtfarg));
1054 rtfarg.rt_func = func;
1055 rtfarg.rt_arg = arg;
1056 if (match_flags != 0) {
1057 rtfarg.rt_match_flags = match_flags;
1058 }
1059 rtfarg.rt_ire_type = ire_type;
1060 rtfarg.rt_ill = ill;
1061 rtfarg.rt_zoneid = zoneid;
1062 rtfarg.rt_ipst = ipst; /* No netstack_hold */
1063 (void) ipst->ips_ip_ftable->rnh_walktree_mt(
1064 ipst->ips_ip_ftable,
1065 rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn);
1066 }
1067 }
1068
1069 /*
1070 * This function takes a mask and returns
1071 * number of bits set in the mask. If no
1072 * bit is set it returns 0.
1073 * Assumes a contiguous mask.
1074 */
1075 int
ip_mask_to_plen(ipaddr_t mask)1076 ip_mask_to_plen(ipaddr_t mask)
1077 {
1078 return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1));
1079 }
1080
1081 /*
1082 * Convert length for a mask to the mask.
1083 */
1084 ipaddr_t
ip_plen_to_mask(uint_t masklen)1085 ip_plen_to_mask(uint_t masklen)
1086 {
1087 if (masklen == 0)
1088 return (0);
1089
1090 return (htonl(IP_HOST_MASK << (IP_ABITS - masklen)));
1091 }
1092
1093 void
ire_atomic_end(irb_t * irb_ptr,ire_t * ire)1094 ire_atomic_end(irb_t *irb_ptr, ire_t *ire)
1095 {
1096 ill_t *ill;
1097
1098 ill = ire->ire_ill;
1099 if (ill != NULL)
1100 mutex_exit(&ill->ill_lock);
1101 rw_exit(&irb_ptr->irb_lock);
1102 }
1103
1104 /*
1105 * ire_add_v[46] atomically make sure that the ill associated
1106 * with the new ire is not going away i.e., we check ILL_CONDEMNED.
1107 */
1108 int
ire_atomic_start(irb_t * irb_ptr,ire_t * ire)1109 ire_atomic_start(irb_t *irb_ptr, ire_t *ire)
1110 {
1111 ill_t *ill;
1112
1113 ill = ire->ire_ill;
1114
1115 rw_enter(&irb_ptr->irb_lock, RW_WRITER);
1116 if (ill != NULL) {
1117 mutex_enter(&ill->ill_lock);
1118
1119 /*
1120 * Don't allow IRE's to be created on dying ills, or on
1121 * ill's for which the last ipif is going down, or ones which
1122 * don't have even a single UP interface
1123 */
1124 if ((ill->ill_state_flags &
1125 (ILL_CONDEMNED|ILL_DOWN_IN_PROGRESS)) != 0) {
1126 ire_atomic_end(irb_ptr, ire);
1127 DTRACE_PROBE1(ire__add__on__dying__ill, ire_t *, ire);
1128 return (ENXIO);
1129 }
1130
1131 if (IS_UNDER_IPMP(ill)) {
1132 int error = 0;
1133 mutex_enter(&ill->ill_phyint->phyint_lock);
1134 if (!ipmp_ill_is_active(ill) &&
1135 IRE_HIDDEN_TYPE(ire->ire_type) &&
1136 !ire->ire_testhidden) {
1137 error = EINVAL;
1138 }
1139 mutex_exit(&ill->ill_phyint->phyint_lock);
1140 if (error != 0) {
1141 ire_atomic_end(irb_ptr, ire);
1142 return (error);
1143 }
1144 }
1145
1146 }
1147 return (0);
1148 }
1149
1150 /*
1151 * Add a fully initialized IRE to the forwarding table.
1152 * This returns NULL on failure, or a held IRE on success.
1153 * Normally the returned IRE is the same as the argument. But a different
1154 * IRE will be returned if the added IRE is deemed identical to an existing
1155 * one. In that case ire_identical_ref will be increased.
1156 * The caller always needs to do an ire_refrele() on the returned IRE.
1157 */
1158 ire_t *
ire_add(ire_t * ire)1159 ire_add(ire_t *ire)
1160 {
1161 if (IRE_HIDDEN_TYPE(ire->ire_type) &&
1162 ire->ire_ill != NULL && IS_UNDER_IPMP(ire->ire_ill)) {
1163 /*
1164 * IREs hosted on interfaces that are under IPMP
1165 * should be hidden so that applications don't
1166 * accidentally end up sending packets with test
1167 * addresses as their source addresses, or
1168 * sending out interfaces that are e.g. IFF_INACTIVE.
1169 * Hide them here.
1170 */
1171 ire->ire_testhidden = B_TRUE;
1172 }
1173
1174 if (ire->ire_ipversion == IPV6_VERSION)
1175 return (ire_add_v6(ire));
1176 else
1177 return (ire_add_v4(ire));
1178 }
1179
1180 /*
1181 * Add a fully initialized IPv4 IRE to the forwarding table.
1182 * This returns NULL on failure, or a held IRE on success.
1183 * Normally the returned IRE is the same as the argument. But a different
1184 * IRE will be returned if the added IRE is deemed identical to an existing
1185 * one. In that case ire_identical_ref will be increased.
1186 * The caller always needs to do an ire_refrele() on the returned IRE.
1187 */
1188 static ire_t *
ire_add_v4(ire_t * ire)1189 ire_add_v4(ire_t *ire)
1190 {
1191 ire_t *ire1;
1192 irb_t *irb_ptr;
1193 ire_t **irep;
1194 int match_flags;
1195 int error;
1196 ip_stack_t *ipst = ire->ire_ipst;
1197
1198 if (ire->ire_ill != NULL)
1199 ASSERT(!MUTEX_HELD(&ire->ire_ill->ill_lock));
1200 ASSERT(ire->ire_ipversion == IPV4_VERSION);
1201
1202 /* Make sure the address is properly masked. */
1203 ire->ire_addr &= ire->ire_mask;
1204
1205 match_flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW);
1206
1207 if (ire->ire_ill != NULL) {
1208 match_flags |= MATCH_IRE_ILL;
1209 }
1210 irb_ptr = ire_get_bucket(ire);
1211 if (irb_ptr == NULL) {
1212 printf("no bucket for %p\n", (void *)ire);
1213 ire_delete(ire);
1214 return (NULL);
1215 }
1216
1217 /*
1218 * Start the atomic add of the ire. Grab the ill lock,
1219 * the bucket lock. Check for condemned.
1220 */
1221 error = ire_atomic_start(irb_ptr, ire);
1222 if (error != 0) {
1223 printf("no ire_atomic_start for %p\n", (void *)ire);
1224 ire_delete(ire);
1225 irb_refrele(irb_ptr);
1226 return (NULL);
1227 }
1228 /*
1229 * If we are creating a hidden IRE, make sure we search for
1230 * hidden IREs when searching for duplicates below.
1231 * Otherwise, we might find an IRE on some other interface
1232 * that's not marked hidden.
1233 */
1234 if (ire->ire_testhidden)
1235 match_flags |= MATCH_IRE_TESTHIDDEN;
1236
1237 /*
1238 * Atomically check for duplicate and insert in the table.
1239 */
1240 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) {
1241 if (IRE_IS_CONDEMNED(ire1))
1242 continue;
1243 /*
1244 * Here we need an exact match on zoneid, i.e.,
1245 * ire_match_args doesn't fit.
1246 */
1247 if (ire1->ire_zoneid != ire->ire_zoneid)
1248 continue;
1249
1250 if (ire1->ire_type != ire->ire_type)
1251 continue;
1252
1253 /*
1254 * Note: We do not allow multiple routes that differ only
1255 * in the gateway security attributes; such routes are
1256 * considered duplicates.
1257 * To change that we explicitly have to treat them as
1258 * different here.
1259 */
1260 if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask,
1261 ire->ire_gateway_addr, ire->ire_type, ire->ire_ill,
1262 ire->ire_zoneid, NULL, match_flags)) {
1263 /*
1264 * Return the old ire after doing a REFHOLD.
1265 * As most of the callers continue to use the IRE
1266 * after adding, we return a held ire. This will
1267 * avoid a lookup in the caller again. If the callers
1268 * don't want to use it, they need to do a REFRELE.
1269 *
1270 * We only allow exactly one IRE_IF_CLONE for any dst,
1271 * so, if the is an IF_CLONE, return the ire without
1272 * an identical_ref, but with an ire_ref held.
1273 */
1274 if (ire->ire_type != IRE_IF_CLONE) {
1275 atomic_inc_32(&ire1->ire_identical_ref);
1276 DTRACE_PROBE2(ire__add__exist, ire_t *, ire1,
1277 ire_t *, ire);
1278 }
1279 ire_refhold(ire1);
1280 ire_atomic_end(irb_ptr, ire);
1281 ire_delete(ire);
1282 irb_refrele(irb_ptr);
1283 return (ire1);
1284 }
1285 }
1286
1287 /*
1288 * Normally we do head insertion since most things do not care about
1289 * the order of the IREs in the bucket. Note that ip_cgtp_bcast_add
1290 * assumes we at least do head insertion so that its IRE_BROADCAST
1291 * arrive ahead of existing IRE_HOST for the same address.
1292 * However, due to shared-IP zones (and restrict_interzone_loopback)
1293 * we can have an IRE_LOCAL as well as IRE_IF_CLONE for the same
1294 * address. For that reason we do tail insertion for IRE_IF_CLONE.
1295 * Due to the IRE_BROADCAST on cgtp0, which must be last in the bucket,
1296 * we do tail insertion of IRE_BROADCASTs that do not have RTF_MULTIRT
1297 * set.
1298 */
1299 irep = (ire_t **)irb_ptr;
1300 if ((ire->ire_type & IRE_IF_CLONE) ||
1301 ((ire->ire_type & IRE_BROADCAST) &&
1302 !(ire->ire_flags & RTF_MULTIRT))) {
1303 while ((ire1 = *irep) != NULL)
1304 irep = &ire1->ire_next;
1305 }
1306 /* Insert at *irep */
1307 ire1 = *irep;
1308 if (ire1 != NULL)
1309 ire1->ire_ptpn = &ire->ire_next;
1310 ire->ire_next = ire1;
1311 /* Link the new one in. */
1312 ire->ire_ptpn = irep;
1313
1314 /*
1315 * ire_walk routines de-reference ire_next without holding
1316 * a lock. Before we point to the new ire, we want to make
1317 * sure the store that sets the ire_next of the new ire
1318 * reaches global visibility, so that ire_walk routines
1319 * don't see a truncated list of ires i.e if the ire_next
1320 * of the new ire gets set after we do "*irep = ire" due
1321 * to re-ordering, the ire_walk thread will see a NULL
1322 * once it accesses the ire_next of the new ire.
1323 * membar_producer() makes sure that the following store
1324 * happens *after* all of the above stores.
1325 */
1326 membar_producer();
1327 *irep = ire;
1328 ire->ire_bucket = irb_ptr;
1329 /*
1330 * We return a bumped up IRE above. Keep it symmetrical
1331 * so that the callers will always have to release. This
1332 * helps the callers of this function because they continue
1333 * to use the IRE after adding and hence they don't have to
1334 * lookup again after we return the IRE.
1335 *
1336 * NOTE : We don't have to use atomics as this is appearing
1337 * in the list for the first time and no one else can bump
1338 * up the reference count on this yet.
1339 */
1340 ire_refhold_locked(ire);
1341 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted);
1342
1343 irb_ptr->irb_ire_cnt++;
1344 if (irb_ptr->irb_marks & IRB_MARK_DYNAMIC)
1345 irb_ptr->irb_nire++;
1346
1347 if (ire->ire_ill != NULL) {
1348 ire->ire_ill->ill_ire_cnt++;
1349 ASSERT(ire->ire_ill->ill_ire_cnt != 0); /* Wraparound */
1350 }
1351
1352 ire_atomic_end(irb_ptr, ire);
1353
1354 /* Make any caching of the IREs be notified or updated */
1355 ire_flush_cache_v4(ire, IRE_FLUSH_ADD);
1356
1357 if (ire->ire_ill != NULL)
1358 ASSERT(!MUTEX_HELD(&ire->ire_ill->ill_lock));
1359 irb_refrele(irb_ptr);
1360 return (ire);
1361 }
1362
1363 /*
1364 * irb_refrele is the only caller of the function. ire_unlink calls to
1365 * do the final cleanup for this ire.
1366 */
1367 void
ire_cleanup(ire_t * ire)1368 ire_cleanup(ire_t *ire)
1369 {
1370 ire_t *ire_next;
1371 ip_stack_t *ipst = ire->ire_ipst;
1372
1373 ASSERT(ire != NULL);
1374
1375 while (ire != NULL) {
1376 ire_next = ire->ire_next;
1377 if (ire->ire_ipversion == IPV4_VERSION) {
1378 ire_delete_v4(ire);
1379 BUMP_IRE_STATS(ipst->ips_ire_stats_v4,
1380 ire_stats_deleted);
1381 } else {
1382 ASSERT(ire->ire_ipversion == IPV6_VERSION);
1383 ire_delete_v6(ire);
1384 BUMP_IRE_STATS(ipst->ips_ire_stats_v6,
1385 ire_stats_deleted);
1386 }
1387 /*
1388 * Now it's really out of the list. Before doing the
1389 * REFRELE, set ire_next to NULL as ire_inactive asserts
1390 * so.
1391 */
1392 ire->ire_next = NULL;
1393 ire_refrele_notr(ire);
1394 ire = ire_next;
1395 }
1396 }
1397
1398 /*
1399 * irb_refrele is the only caller of the function. It calls to unlink
1400 * all the CONDEMNED ires from this bucket.
1401 */
1402 ire_t *
ire_unlink(irb_t * irb)1403 ire_unlink(irb_t *irb)
1404 {
1405 ire_t *ire;
1406 ire_t *ire1;
1407 ire_t **ptpn;
1408 ire_t *ire_list = NULL;
1409
1410 ASSERT(RW_WRITE_HELD(&irb->irb_lock));
1411 ASSERT(((irb->irb_marks & IRB_MARK_DYNAMIC) && irb->irb_refcnt == 1) ||
1412 (irb->irb_refcnt == 0));
1413 ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED);
1414 ASSERT(irb->irb_ire != NULL);
1415
1416 for (ire = irb->irb_ire; ire != NULL; ire = ire1) {
1417 ire1 = ire->ire_next;
1418 if (IRE_IS_CONDEMNED(ire)) {
1419 ptpn = ire->ire_ptpn;
1420 ire1 = ire->ire_next;
1421 if (ire1)
1422 ire1->ire_ptpn = ptpn;
1423 *ptpn = ire1;
1424 ire->ire_ptpn = NULL;
1425 ire->ire_next = NULL;
1426
1427 /*
1428 * We need to call ire_delete_v4 or ire_delete_v6 to
1429 * clean up dependents and the redirects pointing at
1430 * the default gateway. We need to drop the lock
1431 * as ire_flush_cache/ire_delete_host_redircts require
1432 * so. But we can't drop the lock, as ire_unlink needs
1433 * to atomically remove the ires from the list.
1434 * So, create a temporary list of CONDEMNED ires
1435 * for doing ire_delete_v4/ire_delete_v6 operations
1436 * later on.
1437 */
1438 ire->ire_next = ire_list;
1439 ire_list = ire;
1440 }
1441 }
1442 irb->irb_marks &= ~IRB_MARK_CONDEMNED;
1443 return (ire_list);
1444 }
1445
1446 /*
1447 * Clean up the radix node for this ire. Must be called by irb_refrele
1448 * when there are no ire's left in the bucket. Returns TRUE if the bucket
1449 * is deleted and freed.
1450 */
1451 boolean_t
irb_inactive(irb_t * irb)1452 irb_inactive(irb_t *irb)
1453 {
1454 struct rt_entry *rt;
1455 struct radix_node *rn;
1456 ip_stack_t *ipst = irb->irb_ipst;
1457
1458 ASSERT(irb->irb_ipst != NULL);
1459
1460 rt = IRB2RT(irb);
1461 rn = (struct radix_node *)rt;
1462
1463 /* first remove it from the radix tree. */
1464 RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable);
1465 rw_enter(&irb->irb_lock, RW_WRITER);
1466 if (irb->irb_refcnt == 1 && irb->irb_nire == 0) {
1467 rn = ipst->ips_ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask,
1468 ipst->ips_ip_ftable);
1469 DTRACE_PROBE1(irb__free, rt_t *, rt);
1470 ASSERT((void *)rn == (void *)rt);
1471 Free(rt, rt_entry_cache);
1472 /* irb_lock is freed */
1473 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
1474 return (B_TRUE);
1475 }
1476 rw_exit(&irb->irb_lock);
1477 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
1478 return (B_FALSE);
1479 }
1480
1481 /*
1482 * Delete the specified IRE.
1483 * We assume that if ire_bucket is not set then ire_ill->ill_ire_cnt was
1484 * not incremented i.e., that the insertion in the bucket and the increment
1485 * of that counter is done atomically.
1486 */
1487 void
ire_delete(ire_t * ire)1488 ire_delete(ire_t *ire)
1489 {
1490 ire_t *ire1;
1491 ire_t **ptpn;
1492 irb_t *irb;
1493 ip_stack_t *ipst = ire->ire_ipst;
1494
1495 if ((irb = ire->ire_bucket) == NULL) {
1496 /*
1497 * It was never inserted in the list. Should call REFRELE
1498 * to free this IRE.
1499 */
1500 ire_make_condemned(ire);
1501 ire_refrele_notr(ire);
1502 return;
1503 }
1504
1505 /*
1506 * Move the use counts from an IRE_IF_CLONE to its parent
1507 * IRE_INTERFACE.
1508 * We need to do this before acquiring irb_lock.
1509 */
1510 if (ire->ire_type & IRE_IF_CLONE) {
1511 ire_t *parent;
1512
1513 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
1514 if ((parent = ire->ire_dep_parent) != NULL) {
1515 parent->ire_ob_pkt_count += ire->ire_ob_pkt_count;
1516 parent->ire_ib_pkt_count += ire->ire_ib_pkt_count;
1517 ire->ire_ob_pkt_count = 0;
1518 ire->ire_ib_pkt_count = 0;
1519 }
1520 rw_exit(&ipst->ips_ire_dep_lock);
1521 }
1522
1523 rw_enter(&irb->irb_lock, RW_WRITER);
1524 if (ire->ire_ptpn == NULL) {
1525 /*
1526 * Some other thread has removed us from the list.
1527 * It should have done the REFRELE for us.
1528 */
1529 rw_exit(&irb->irb_lock);
1530 return;
1531 }
1532
1533 if (!IRE_IS_CONDEMNED(ire)) {
1534 /* Is this an IRE representing multiple duplicate entries? */
1535 ASSERT(ire->ire_identical_ref >= 1);
1536 if (atomic_dec_32_nv(&ire->ire_identical_ref) != 0) {
1537 /* Removed one of the identical parties */
1538 rw_exit(&irb->irb_lock);
1539 return;
1540 }
1541
1542 irb->irb_ire_cnt--;
1543 ire_make_condemned(ire);
1544 }
1545
1546 if (irb->irb_refcnt != 0) {
1547 /*
1548 * The last thread to leave this bucket will
1549 * delete this ire.
1550 */
1551 irb->irb_marks |= IRB_MARK_CONDEMNED;
1552 rw_exit(&irb->irb_lock);
1553 return;
1554 }
1555
1556 /*
1557 * Normally to delete an ire, we walk the bucket. While we
1558 * walk the bucket, we normally bump up irb_refcnt and hence
1559 * we return from above where we mark CONDEMNED and the ire
1560 * gets deleted from ire_unlink. This case is where somebody
1561 * knows the ire e.g by doing a lookup, and wants to delete the
1562 * IRE. irb_refcnt would be 0 in this case if nobody is walking
1563 * the bucket.
1564 */
1565 ptpn = ire->ire_ptpn;
1566 ire1 = ire->ire_next;
1567 if (ire1 != NULL)
1568 ire1->ire_ptpn = ptpn;
1569 ASSERT(ptpn != NULL);
1570 *ptpn = ire1;
1571 ire->ire_ptpn = NULL;
1572 ire->ire_next = NULL;
1573 if (ire->ire_ipversion == IPV6_VERSION) {
1574 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted);
1575 } else {
1576 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted);
1577 }
1578 rw_exit(&irb->irb_lock);
1579
1580 /* Cleanup dependents and related stuff */
1581 if (ire->ire_ipversion == IPV6_VERSION) {
1582 ire_delete_v6(ire);
1583 } else {
1584 ire_delete_v4(ire);
1585 }
1586 /*
1587 * We removed it from the list. Decrement the
1588 * reference count.
1589 */
1590 ire_refrele_notr(ire);
1591 }
1592
1593 /*
1594 * Delete the specified IRE.
1595 * All calls should use ire_delete().
1596 * Sometimes called as writer though not required by this function.
1597 *
1598 * NOTE : This function is called only if the ire was added
1599 * in the list.
1600 */
1601 static void
ire_delete_v4(ire_t * ire)1602 ire_delete_v4(ire_t *ire)
1603 {
1604 ip_stack_t *ipst = ire->ire_ipst;
1605
1606 ASSERT(ire->ire_refcnt >= 1);
1607 ASSERT(ire->ire_ipversion == IPV4_VERSION);
1608
1609 ire_flush_cache_v4(ire, IRE_FLUSH_DELETE);
1610 if (ire->ire_type == IRE_DEFAULT) {
1611 /*
1612 * when a default gateway is going away
1613 * delete all the host redirects pointing at that
1614 * gateway.
1615 */
1616 ire_delete_host_redirects(ire->ire_gateway_addr, ipst);
1617 }
1618
1619 /*
1620 * If we are deleting an IRE_INTERFACE then we make sure we also
1621 * delete any IRE_IF_CLONE that has been created from it.
1622 * Those are always in ire_dep_children.
1623 */
1624 if ((ire->ire_type & IRE_INTERFACE) && ire->ire_dep_children != NULL)
1625 ire_dep_delete_if_clone(ire);
1626
1627 /* Remove from parent dependencies and child */
1628 rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER);
1629 if (ire->ire_dep_parent != NULL)
1630 ire_dep_remove(ire);
1631
1632 while (ire->ire_dep_children != NULL)
1633 ire_dep_remove(ire->ire_dep_children);
1634 rw_exit(&ipst->ips_ire_dep_lock);
1635 }
1636
1637 /*
1638 * ire_refrele is the only caller of the function. It calls
1639 * to free the ire when the reference count goes to zero.
1640 */
1641 void
ire_inactive(ire_t * ire)1642 ire_inactive(ire_t *ire)
1643 {
1644 ill_t *ill;
1645 irb_t *irb;
1646 ip_stack_t *ipst = ire->ire_ipst;
1647
1648 ASSERT(ire->ire_refcnt == 0);
1649 ASSERT(ire->ire_ptpn == NULL);
1650 ASSERT(ire->ire_next == NULL);
1651
1652 /* Count how many condemned ires for kmem_cache callback */
1653 ASSERT(IRE_IS_CONDEMNED(ire));
1654 atomic_add_32(&ipst->ips_num_ire_condemned, -1);
1655
1656 if (ire->ire_gw_secattr != NULL) {
1657 ire_gw_secattr_free(ire->ire_gw_secattr);
1658 ire->ire_gw_secattr = NULL;
1659 }
1660
1661 /*
1662 * ire_nce_cache is cleared in ire_delete, and we make sure we don't
1663 * set it once the ire is marked condemned.
1664 */
1665 ASSERT(ire->ire_nce_cache == NULL);
1666
1667 /*
1668 * Since any parent would have a refhold on us they would already
1669 * have been removed.
1670 */
1671 ASSERT(ire->ire_dep_parent == NULL);
1672 ASSERT(ire->ire_dep_sib_next == NULL);
1673 ASSERT(ire->ire_dep_sib_ptpn == NULL);
1674
1675 /*
1676 * Since any children would have a refhold on us they should have
1677 * already been removed.
1678 */
1679 ASSERT(ire->ire_dep_children == NULL);
1680
1681 /*
1682 * ill_ire_ref is increased when the IRE is inserted in the
1683 * bucket - not when the IRE is created.
1684 */
1685 irb = ire->ire_bucket;
1686 ill = ire->ire_ill;
1687 if (irb != NULL && ill != NULL) {
1688 mutex_enter(&ill->ill_lock);
1689 ASSERT(ill->ill_ire_cnt != 0);
1690 DTRACE_PROBE3(ill__decr__cnt, (ill_t *), ill,
1691 (char *), "ire", (void *), ire);
1692 ill->ill_ire_cnt--;
1693 if (ILL_DOWN_OK(ill)) {
1694 /* Drops the ill lock */
1695 ipif_ill_refrele_tail(ill);
1696 } else {
1697 mutex_exit(&ill->ill_lock);
1698 }
1699 }
1700 ire->ire_ill = NULL;
1701
1702 /* This should be true for both V4 and V6 */
1703 if (irb != NULL && (irb->irb_marks & IRB_MARK_DYNAMIC)) {
1704 rw_enter(&irb->irb_lock, RW_WRITER);
1705 irb->irb_nire--;
1706 /*
1707 * Instead of examining the conditions for freeing
1708 * the radix node here, we do it by calling
1709 * irb_refrele which is a single point in the code
1710 * that embeds that logic. Bump up the refcnt to
1711 * be able to call irb_refrele
1712 */
1713 irb_refhold_locked(irb);
1714 rw_exit(&irb->irb_lock);
1715 irb_refrele(irb);
1716 }
1717
1718 #ifdef DEBUG
1719 ire_trace_cleanup(ire);
1720 #endif
1721 mutex_destroy(&ire->ire_lock);
1722 if (ire->ire_ipversion == IPV6_VERSION) {
1723 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_freed);
1724 } else {
1725 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed);
1726 }
1727 kmem_cache_free(ire_cache, ire);
1728 }
1729
1730 /*
1731 * ire_update_generation is the callback function provided by
1732 * ire_get_bucket() to update the generation number of any
1733 * matching shorter route when a new route is added.
1734 *
1735 * This fucntion always returns a failure return (B_FALSE)
1736 * to force the caller (rn_matchaddr_args)
1737 * to back-track up the tree looking for shorter matches.
1738 */
1739 /* ARGSUSED */
1740 static boolean_t
ire_update_generation(struct radix_node * rn,void * arg)1741 ire_update_generation(struct radix_node *rn, void *arg)
1742 {
1743 struct rt_entry *rt = (struct rt_entry *)rn;
1744
1745 /* We need to handle all in the same bucket */
1746 irb_increment_generation(&rt->rt_irb);
1747 return (B_FALSE);
1748 }
1749
1750 /*
1751 * Take care of all the generation numbers in the bucket.
1752 */
1753 void
irb_increment_generation(irb_t * irb)1754 irb_increment_generation(irb_t *irb)
1755 {
1756 ire_t *ire;
1757 ip_stack_t *ipst;
1758
1759 if (irb == NULL || irb->irb_ire_cnt == 0)
1760 return;
1761
1762 ipst = irb->irb_ipst;
1763 /*
1764 * we cannot do an irb_refhold/irb_refrele here as the caller
1765 * already has the global RADIX_NODE_HEAD_WLOCK, and the irb_refrele
1766 * may result in an attempt to free the irb_t, which also needs
1767 * the RADIX_NODE_HEAD lock. However, since we want to traverse the
1768 * irb_ire list without fear of having a condemned ire removed from
1769 * the list, we acquire the irb_lock as WRITER. Moreover, since
1770 * the ire_generation increments are done under the ire_dep_lock,
1771 * acquire the locks in the prescribed lock order first.
1772 */
1773 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
1774 rw_enter(&irb->irb_lock, RW_WRITER);
1775 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
1776 if (!IRE_IS_CONDEMNED(ire))
1777 ire_increment_generation(ire); /* Ourselves */
1778 ire_dep_incr_generation_locked(ire); /* Dependants */
1779 }
1780 rw_exit(&irb->irb_lock);
1781 rw_exit(&ipst->ips_ire_dep_lock);
1782 }
1783
1784 /*
1785 * When an IRE is added or deleted this routine is called to make sure
1786 * any caching of IRE information is notified or updated.
1787 *
1788 * The flag argument indicates if the flush request is due to addition
1789 * of new route (IRE_FLUSH_ADD), deletion of old route (IRE_FLUSH_DELETE),
1790 * or a change to ire_gateway_addr (IRE_FLUSH_GWCHANGE).
1791 */
1792 void
ire_flush_cache_v4(ire_t * ire,int flag)1793 ire_flush_cache_v4(ire_t *ire, int flag)
1794 {
1795 irb_t *irb = ire->ire_bucket;
1796 struct rt_entry *rt = IRB2RT(irb);
1797 ip_stack_t *ipst = ire->ire_ipst;
1798
1799 /*
1800 * IRE_IF_CLONE ire's don't provide any new information
1801 * than the parent from which they are cloned, so don't
1802 * perturb the generation numbers.
1803 */
1804 if (ire->ire_type & IRE_IF_CLONE)
1805 return;
1806
1807 /*
1808 * Ensure that an ire_add during a lookup serializes the updates of the
1809 * generation numbers under the radix head lock so that the lookup gets
1810 * either the old ire and old generation number, or a new ire and new
1811 * generation number.
1812 */
1813 RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable);
1814
1815 /*
1816 * If a route was just added, we need to notify everybody that
1817 * has cached an IRE_NOROUTE since there might now be a better
1818 * route for them.
1819 */
1820 if (flag == IRE_FLUSH_ADD) {
1821 ire_increment_generation(ipst->ips_ire_reject_v4);
1822 ire_increment_generation(ipst->ips_ire_blackhole_v4);
1823 }
1824
1825 /* Adding a default can't otherwise provide a better route */
1826 if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) {
1827 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
1828 return;
1829 }
1830
1831 switch (flag) {
1832 case IRE_FLUSH_DELETE:
1833 case IRE_FLUSH_GWCHANGE:
1834 /*
1835 * Update ire_generation for all ire_dep_children chains
1836 * starting with this IRE
1837 */
1838 ire_dep_incr_generation(ire);
1839 break;
1840 case IRE_FLUSH_ADD:
1841 /*
1842 * Update the generation numbers of all shorter matching routes.
1843 * ire_update_generation takes care of the dependants by
1844 * using ire_dep_incr_generation.
1845 */
1846 (void) ipst->ips_ip_ftable->rnh_matchaddr_args(&rt->rt_dst,
1847 ipst->ips_ip_ftable, ire_update_generation, NULL);
1848 break;
1849 }
1850 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
1851 }
1852
1853 /*
1854 * Matches the arguments passed with the values in the ire.
1855 *
1856 * Note: for match types that match using "ill" passed in, ill
1857 * must be checked for non-NULL before calling this routine.
1858 */
1859 boolean_t
ire_match_args(ire_t * ire,ipaddr_t addr,ipaddr_t mask,ipaddr_t gateway,int type,const ill_t * ill,zoneid_t zoneid,const ts_label_t * tsl,int match_flags)1860 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway,
1861 int type, const ill_t *ill, zoneid_t zoneid,
1862 const ts_label_t *tsl, int match_flags)
1863 {
1864 ill_t *ire_ill = NULL, *dst_ill;
1865 ip_stack_t *ipst = ire->ire_ipst;
1866
1867 ASSERT(ire->ire_ipversion == IPV4_VERSION);
1868 ASSERT((ire->ire_addr & ~ire->ire_mask) == 0);
1869 ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_SRC_ILL))) ||
1870 (ill != NULL && !ill->ill_isv6));
1871
1872 /*
1873 * If MATCH_IRE_TESTHIDDEN is set, then only return the IRE if it is
1874 * in fact hidden, to ensure the caller gets the right one.
1875 */
1876 if (ire->ire_testhidden) {
1877 if (!(match_flags & MATCH_IRE_TESTHIDDEN))
1878 return (B_FALSE);
1879 }
1880
1881 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid &&
1882 ire->ire_zoneid != ALL_ZONES) {
1883 /*
1884 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid
1885 * does not match that of ire_zoneid, a failure to
1886 * match is reported at this point. Otherwise, since some IREs
1887 * that are available in the global zone can be used in local
1888 * zones, additional checks need to be performed:
1889 *
1890 * IRE_LOOPBACK
1891 * entries should never be matched in this situation.
1892 * Each zone has its own IRE_LOOPBACK.
1893 *
1894 * IRE_LOCAL
1895 * We allow them for any zoneid. ire_route_recursive
1896 * does additional checks when
1897 * ip_restrict_interzone_loopback is set.
1898 *
1899 * If ill_usesrc_ifindex is set
1900 * Then we check if the zone has a valid source address
1901 * on the usesrc ill.
1902 *
1903 * If ire_ill is set, then check that the zone has an ipif
1904 * on that ill.
1905 *
1906 * Outside of this function (in ire_round_robin) we check
1907 * that any IRE_OFFLINK has a gateway that reachable from the
1908 * zone when we have multiple choices (ECMP).
1909 */
1910 if (match_flags & MATCH_IRE_ZONEONLY)
1911 return (B_FALSE);
1912 if (ire->ire_type & IRE_LOOPBACK)
1913 return (B_FALSE);
1914
1915 if (ire->ire_type & IRE_LOCAL)
1916 goto matchit;
1917
1918 /*
1919 * The normal case of IRE_ONLINK has a matching zoneid.
1920 * Here we handle the case when shared-IP zones have been
1921 * configured with IP addresses on vniN. In that case it
1922 * is ok for traffic from a zone to use IRE_ONLINK routes
1923 * if the ill has a usesrc pointing at vniN
1924 */
1925 dst_ill = ire->ire_ill;
1926 if (ire->ire_type & IRE_ONLINK) {
1927 uint_t ifindex;
1928
1929 /*
1930 * Note there is no IRE_INTERFACE on vniN thus
1931 * can't do an IRE lookup for a matching route.
1932 */
1933 ifindex = dst_ill->ill_usesrc_ifindex;
1934 if (ifindex == 0)
1935 return (B_FALSE);
1936
1937 /*
1938 * If there is a usable source address in the
1939 * zone, then it's ok to return this IRE_INTERFACE
1940 */
1941 if (!ipif_zone_avail(ifindex, dst_ill->ill_isv6,
1942 zoneid, ipst)) {
1943 ip3dbg(("ire_match_args: no usrsrc for zone"
1944 " dst_ill %p\n", (void *)dst_ill));
1945 return (B_FALSE);
1946 }
1947 }
1948 /*
1949 * For example, with
1950 * route add 11.0.0.0 gw1 -ifp bge0
1951 * route add 11.0.0.0 gw2 -ifp bge1
1952 * this code would differentiate based on
1953 * where the sending zone has addresses.
1954 * Only if the zone has an address on bge0 can it use the first
1955 * route. It isn't clear if this behavior is documented
1956 * anywhere.
1957 */
1958 if (dst_ill != NULL && (ire->ire_type & IRE_OFFLINK)) {
1959 ipif_t *tipif;
1960
1961 mutex_enter(&dst_ill->ill_lock);
1962 for (tipif = dst_ill->ill_ipif;
1963 tipif != NULL; tipif = tipif->ipif_next) {
1964 if (!IPIF_IS_CONDEMNED(tipif) &&
1965 (tipif->ipif_flags & IPIF_UP) &&
1966 (tipif->ipif_zoneid == zoneid ||
1967 tipif->ipif_zoneid == ALL_ZONES))
1968 break;
1969 }
1970 mutex_exit(&dst_ill->ill_lock);
1971 if (tipif == NULL) {
1972 return (B_FALSE);
1973 }
1974 }
1975 }
1976
1977 matchit:
1978 ire_ill = ire->ire_ill;
1979 if (match_flags & MATCH_IRE_ILL) {
1980
1981 /*
1982 * If asked to match an ill, we *must* match
1983 * on the ire_ill for ipmp test addresses, or
1984 * any of the ill in the group for data addresses.
1985 * If we don't, we may as well fail.
1986 * However, we need an exception for IRE_LOCALs to ensure
1987 * we loopback packets even sent to test addresses on different
1988 * interfaces in the group.
1989 */
1990 if ((match_flags & MATCH_IRE_TESTHIDDEN) &&
1991 !(ire->ire_type & IRE_LOCAL)) {
1992 if (ire->ire_ill != ill)
1993 return (B_FALSE);
1994 } else {
1995 match_flags &= ~MATCH_IRE_TESTHIDDEN;
1996 /*
1997 * We know that ill is not NULL, but ire_ill could be
1998 * NULL
1999 */
2000 if (ire_ill == NULL || !IS_ON_SAME_LAN(ill, ire_ill))
2001 return (B_FALSE);
2002 }
2003 }
2004 if (match_flags & MATCH_IRE_SRC_ILL) {
2005 if (ire_ill == NULL)
2006 return (B_FALSE);
2007 if (!IS_ON_SAME_LAN(ill, ire_ill)) {
2008 if (ire_ill->ill_usesrc_ifindex == 0 ||
2009 (ire_ill->ill_usesrc_ifindex !=
2010 ill->ill_phyint->phyint_ifindex))
2011 return (B_FALSE);
2012 }
2013 }
2014
2015 if ((ire->ire_addr == (addr & mask)) &&
2016 ((!(match_flags & MATCH_IRE_GW)) ||
2017 (ire->ire_gateway_addr == gateway)) &&
2018 ((!(match_flags & MATCH_IRE_DIRECT)) ||
2019 !(ire->ire_flags & RTF_INDIRECT)) &&
2020 ((!(match_flags & MATCH_IRE_TYPE)) || (ire->ire_type & type)) &&
2021 ((!(match_flags & MATCH_IRE_TESTHIDDEN)) || ire->ire_testhidden) &&
2022 ((!(match_flags & MATCH_IRE_MASK)) || (ire->ire_mask == mask)) &&
2023 ((!(match_flags & MATCH_IRE_SECATTR)) ||
2024 (!is_system_labeled()) ||
2025 (tsol_ire_match_gwattr(ire, tsl) == 0))) {
2026 /* We found the matched IRE */
2027 return (B_TRUE);
2028 }
2029 return (B_FALSE);
2030 }
2031
2032 /*
2033 * Check if the IRE_LOCAL uses the same ill as another route would use.
2034 * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE,
2035 * then we don't allow this IRE_LOCAL to be used.
2036 * We always return an IRE; will be RTF_REJECT if no route available.
2037 */
2038 ire_t *
ire_alt_local(ire_t * ire,zoneid_t zoneid,const ts_label_t * tsl,const ill_t * ill,uint_t * generationp)2039 ire_alt_local(ire_t *ire, zoneid_t zoneid, const ts_label_t *tsl,
2040 const ill_t *ill, uint_t *generationp)
2041 {
2042 ip_stack_t *ipst = ire->ire_ipst;
2043 ire_t *alt_ire;
2044 uint_t ire_type;
2045 uint_t generation;
2046 uint_t match_flags;
2047
2048 ASSERT(ire->ire_type & IRE_LOCAL);
2049 ASSERT(ire->ire_ill != NULL);
2050
2051 /*
2052 * Need to match on everything but local.
2053 * This might result in the creation of a IRE_IF_CLONE for the
2054 * same address as the IRE_LOCAL when restrict_interzone_loopback is
2055 * set. ire_add_*() ensures that the IRE_IF_CLONE are tail inserted
2056 * to make sure the IRE_LOCAL is always found first.
2057 */
2058 ire_type = (IRE_ONLINK | IRE_OFFLINK) & ~(IRE_LOCAL|IRE_LOOPBACK);
2059 match_flags = MATCH_IRE_TYPE | MATCH_IRE_SECATTR;
2060 if (ill != NULL)
2061 match_flags |= MATCH_IRE_ILL;
2062
2063 if (ire->ire_ipversion == IPV4_VERSION) {
2064 alt_ire = ire_route_recursive_v4(ire->ire_addr, ire_type,
2065 ill, zoneid, tsl, match_flags, IRR_ALLOCATE, 0, ipst, NULL,
2066 NULL, &generation);
2067 } else {
2068 alt_ire = ire_route_recursive_v6(&ire->ire_addr_v6, ire_type,
2069 ill, zoneid, tsl, match_flags, IRR_ALLOCATE, 0, ipst, NULL,
2070 NULL, &generation);
2071 }
2072 ASSERT(alt_ire != NULL);
2073
2074 if (alt_ire->ire_ill == ire->ire_ill) {
2075 /* Going out the same ILL - ok to send to IRE_LOCAL */
2076 ire_refrele(alt_ire);
2077 } else {
2078 /* Different ill - ignore IRE_LOCAL */
2079 ire_refrele(ire);
2080 ire = alt_ire;
2081 if (generationp != NULL)
2082 *generationp = generation;
2083 }
2084 return (ire);
2085 }
2086
2087 boolean_t
ire_find_zoneid(struct radix_node * rn,void * arg)2088 ire_find_zoneid(struct radix_node *rn, void *arg)
2089 {
2090 struct rt_entry *rt = (struct rt_entry *)rn;
2091 irb_t *irb;
2092 ire_t *ire;
2093 ire_ftable_args_t *margs = arg;
2094
2095 ASSERT(rt != NULL);
2096
2097 irb = &rt->rt_irb;
2098
2099 if (irb->irb_ire_cnt == 0)
2100 return (B_FALSE);
2101
2102 rw_enter(&irb->irb_lock, RW_READER);
2103 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
2104 if (IRE_IS_CONDEMNED(ire))
2105 continue;
2106
2107 if (!(ire->ire_type & IRE_INTERFACE))
2108 continue;
2109
2110 if (ire->ire_zoneid != ALL_ZONES &&
2111 ire->ire_zoneid != margs->ift_zoneid)
2112 continue;
2113
2114 if (margs->ift_ill != NULL && margs->ift_ill != ire->ire_ill)
2115 continue;
2116
2117 if (is_system_labeled() &&
2118 tsol_ire_match_gwattr(ire, margs->ift_tsl) != 0)
2119 continue;
2120
2121 rw_exit(&irb->irb_lock);
2122 return (B_TRUE);
2123 }
2124 rw_exit(&irb->irb_lock);
2125 return (B_FALSE);
2126 }
2127
2128 /*
2129 * Check if the zoneid (not ALL_ZONES) has an IRE_INTERFACE for the specified
2130 * gateway address. If ill is non-NULL we also match on it.
2131 * The caller must hold a read lock on RADIX_NODE_HEAD if lock_held is set.
2132 */
2133 boolean_t
ire_gateway_ok_zone_v4(ipaddr_t gateway,zoneid_t zoneid,ill_t * ill,const ts_label_t * tsl,ip_stack_t * ipst,boolean_t lock_held)2134 ire_gateway_ok_zone_v4(ipaddr_t gateway, zoneid_t zoneid, ill_t *ill,
2135 const ts_label_t *tsl, ip_stack_t *ipst, boolean_t lock_held)
2136 {
2137 struct rt_sockaddr rdst;
2138 struct rt_entry *rt;
2139 ire_ftable_args_t margs;
2140
2141 ASSERT(ill == NULL || !ill->ill_isv6);
2142 if (lock_held)
2143 ASSERT(RW_READ_HELD(&ipst->ips_ip_ftable->rnh_lock));
2144 else
2145 RADIX_NODE_HEAD_RLOCK(ipst->ips_ip_ftable);
2146
2147 bzero(&rdst, sizeof (rdst));
2148 rdst.rt_sin_len = sizeof (rdst);
2149 rdst.rt_sin_family = AF_INET;
2150 rdst.rt_sin_addr.s_addr = gateway;
2151
2152 /*
2153 * We only use margs for ill, zoneid, and tsl matching in
2154 * ire_find_zoneid
2155 */
2156 bzero(&margs, sizeof (margs));
2157 margs.ift_ill = ill;
2158 margs.ift_zoneid = zoneid;
2159 margs.ift_tsl = tsl;
2160 rt = (struct rt_entry *)ipst->ips_ip_ftable->rnh_matchaddr_args(&rdst,
2161 ipst->ips_ip_ftable, ire_find_zoneid, (void *)&margs);
2162
2163 if (!lock_held)
2164 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
2165
2166 return (rt != NULL);
2167 }
2168
2169 /*
2170 * ire_walk routine to delete a fraction of redirect IREs and IRE_CLONE_IF IREs.
2171 * The fraction argument tells us what fraction of the IREs to delete.
2172 * Common for IPv4 and IPv6.
2173 * Used when memory backpressure.
2174 */
2175 static void
ire_delete_reclaim(ire_t * ire,char * arg)2176 ire_delete_reclaim(ire_t *ire, char *arg)
2177 {
2178 ip_stack_t *ipst = ire->ire_ipst;
2179 uint_t fraction = *(uint_t *)arg;
2180 uint_t rand;
2181
2182 if ((ire->ire_flags & RTF_DYNAMIC) ||
2183 (ire->ire_type & IRE_IF_CLONE)) {
2184
2185 /* Pick a random number */
2186 rand = (uint_t)ddi_get_lbolt() +
2187 IRE_ADDR_HASH_V6(ire->ire_addr_v6, 256);
2188
2189 /* Use truncation */
2190 if ((rand/fraction)*fraction == rand) {
2191 IP_STAT(ipst, ip_ire_reclaim_deleted);
2192 ire_delete(ire);
2193 }
2194 }
2195
2196 }
2197
2198 /*
2199 * kmem_cache callback to free up memory.
2200 *
2201 * Free a fraction (ips_ip_ire_reclaim_fraction) of things IP added dynamically
2202 * (RTF_DYNAMIC and IRE_IF_CLONE).
2203 */
2204 static void
ip_ire_reclaim_stack(ip_stack_t * ipst)2205 ip_ire_reclaim_stack(ip_stack_t *ipst)
2206 {
2207 uint_t fraction = ipst->ips_ip_ire_reclaim_fraction;
2208
2209 IP_STAT(ipst, ip_ire_reclaim_calls);
2210
2211 ire_walk(ire_delete_reclaim, &fraction, ipst);
2212
2213 /*
2214 * Walk all CONNs that can have a reference on an ire, nce or dce.
2215 * Get them to update any stale references to drop any refholds they
2216 * have.
2217 */
2218 ipcl_walk(conn_ixa_cleanup, (void *)B_FALSE, ipst);
2219 }
2220
2221 /*
2222 * Called by the memory allocator subsystem directly, when the system
2223 * is running low on memory.
2224 */
2225 /* ARGSUSED */
2226 void
ip_ire_reclaim(void * args)2227 ip_ire_reclaim(void *args)
2228 {
2229 netstack_handle_t nh;
2230 netstack_t *ns;
2231 ip_stack_t *ipst;
2232
2233 netstack_next_init(&nh);
2234 while ((ns = netstack_next(&nh)) != NULL) {
2235 /*
2236 * netstack_next() can return a netstack_t with a NULL
2237 * netstack_ip at boot time.
2238 */
2239 if ((ipst = ns->netstack_ip) == NULL) {
2240 netstack_rele(ns);
2241 continue;
2242 }
2243 ip_ire_reclaim_stack(ipst);
2244 netstack_rele(ns);
2245 }
2246 netstack_next_fini(&nh);
2247 }
2248
2249 static void
power2_roundup(uint32_t * value)2250 power2_roundup(uint32_t *value)
2251 {
2252 int i;
2253
2254 for (i = 1; i < 31; i++) {
2255 if (*value <= (1 << i))
2256 break;
2257 }
2258 *value = (1 << i);
2259 }
2260
2261 /* Global init for all zones */
2262 void
ip_ire_g_init()2263 ip_ire_g_init()
2264 {
2265 /*
2266 * Create kmem_caches. ip_ire_reclaim() and ip_nce_reclaim()
2267 * will give disposable IREs back to system when needed.
2268 * This needs to be done here before anything else, since
2269 * ire_add() expects the cache to be created.
2270 */
2271 ire_cache = kmem_cache_create("ire_cache",
2272 sizeof (ire_t), 0, NULL, NULL,
2273 ip_ire_reclaim, NULL, NULL, 0);
2274
2275 ncec_cache = kmem_cache_create("ncec_cache",
2276 sizeof (ncec_t), 0, NULL, NULL,
2277 ip_nce_reclaim, NULL, NULL, 0);
2278 nce_cache = kmem_cache_create("nce_cache",
2279 sizeof (nce_t), 0, NULL, NULL,
2280 NULL, NULL, NULL, 0);
2281
2282 rt_entry_cache = kmem_cache_create("rt_entry",
2283 sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0);
2284
2285 /*
2286 * Have radix code setup kmem caches etc.
2287 */
2288 rn_init();
2289 }
2290
2291 void
ip_ire_init(ip_stack_t * ipst)2292 ip_ire_init(ip_stack_t *ipst)
2293 {
2294 ire_t *ire;
2295 int error;
2296
2297 mutex_init(&ipst->ips_ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0);
2298
2299 (void) rn_inithead((void **)&ipst->ips_ip_ftable, 32);
2300
2301 /*
2302 * Make sure that the forwarding table size is a power of 2.
2303 * The IRE*_ADDR_HASH() macroes depend on that.
2304 */
2305 ipst->ips_ip6_ftable_hash_size = ip6_ftable_hash_size;
2306 power2_roundup(&ipst->ips_ip6_ftable_hash_size);
2307
2308 /*
2309 * Allocate/initialize a pair of IRE_NOROUTEs for each of IPv4 and IPv6.
2310 * The ire_reject_v* has RTF_REJECT set, and the ire_blackhole_v* has
2311 * RTF_BLACKHOLE set. We use the latter for transient errors such
2312 * as memory allocation failures and tripping on IRE_IS_CONDEMNED
2313 * entries.
2314 */
2315 ire = kmem_cache_alloc(ire_cache, KM_SLEEP);
2316 *ire = ire_null;
2317 error = ire_init_v4(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES,
2318 RTF_REJECT|RTF_UP, NULL, ipst);
2319 ASSERT(error == 0);
2320 ipst->ips_ire_reject_v4 = ire;
2321
2322 ire = kmem_cache_alloc(ire_cache, KM_SLEEP);
2323 *ire = ire_null;
2324 error = ire_init_v6(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES,
2325 RTF_REJECT|RTF_UP, NULL, ipst);
2326 ASSERT(error == 0);
2327 ipst->ips_ire_reject_v6 = ire;
2328
2329 ire = kmem_cache_alloc(ire_cache, KM_SLEEP);
2330 *ire = ire_null;
2331 error = ire_init_v4(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES,
2332 RTF_BLACKHOLE|RTF_UP, NULL, ipst);
2333 ASSERT(error == 0);
2334 ipst->ips_ire_blackhole_v4 = ire;
2335
2336 ire = kmem_cache_alloc(ire_cache, KM_SLEEP);
2337 *ire = ire_null;
2338 error = ire_init_v6(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES,
2339 RTF_BLACKHOLE|RTF_UP, NULL, ipst);
2340 ASSERT(error == 0);
2341 ipst->ips_ire_blackhole_v6 = ire;
2342
2343 rw_init(&ipst->ips_ip6_ire_head_lock, NULL, RW_DEFAULT, NULL);
2344 rw_init(&ipst->ips_ire_dep_lock, NULL, RW_DEFAULT, NULL);
2345 }
2346
2347 void
ip_ire_g_fini(void)2348 ip_ire_g_fini(void)
2349 {
2350 kmem_cache_destroy(ire_cache);
2351 kmem_cache_destroy(ncec_cache);
2352 kmem_cache_destroy(nce_cache);
2353 kmem_cache_destroy(rt_entry_cache);
2354
2355 rn_fini();
2356 }
2357
2358 void
ip_ire_fini(ip_stack_t * ipst)2359 ip_ire_fini(ip_stack_t *ipst)
2360 {
2361 int i;
2362
2363 ire_make_condemned(ipst->ips_ire_reject_v6);
2364 ire_refrele_notr(ipst->ips_ire_reject_v6);
2365 ipst->ips_ire_reject_v6 = NULL;
2366
2367 ire_make_condemned(ipst->ips_ire_reject_v4);
2368 ire_refrele_notr(ipst->ips_ire_reject_v4);
2369 ipst->ips_ire_reject_v4 = NULL;
2370
2371 ire_make_condemned(ipst->ips_ire_blackhole_v6);
2372 ire_refrele_notr(ipst->ips_ire_blackhole_v6);
2373 ipst->ips_ire_blackhole_v6 = NULL;
2374
2375 ire_make_condemned(ipst->ips_ire_blackhole_v4);
2376 ire_refrele_notr(ipst->ips_ire_blackhole_v4);
2377 ipst->ips_ire_blackhole_v4 = NULL;
2378
2379 /*
2380 * Delete all IREs - assumes that the ill/ipifs have
2381 * been removed so what remains are just the ftable to handle.
2382 */
2383 ire_walk(ire_delete, NULL, ipst);
2384
2385 rn_freehead(ipst->ips_ip_ftable);
2386 ipst->ips_ip_ftable = NULL;
2387
2388 rw_destroy(&ipst->ips_ire_dep_lock);
2389 rw_destroy(&ipst->ips_ip6_ire_head_lock);
2390
2391 mutex_destroy(&ipst->ips_ire_ft_init_lock);
2392
2393 for (i = 0; i < IP6_MASK_TABLE_SIZE; i++) {
2394 irb_t *ptr;
2395 int j;
2396
2397 if ((ptr = ipst->ips_ip_forwarding_table_v6[i]) == NULL)
2398 continue;
2399
2400 for (j = 0; j < ipst->ips_ip6_ftable_hash_size; j++) {
2401 ASSERT(ptr[j].irb_ire == NULL);
2402 rw_destroy(&ptr[j].irb_lock);
2403 }
2404 mi_free(ptr);
2405 ipst->ips_ip_forwarding_table_v6[i] = NULL;
2406 }
2407 }
2408
2409 #ifdef DEBUG
2410 void
ire_trace_ref(ire_t * ire)2411 ire_trace_ref(ire_t *ire)
2412 {
2413 mutex_enter(&ire->ire_lock);
2414 if (ire->ire_trace_disable) {
2415 mutex_exit(&ire->ire_lock);
2416 return;
2417 }
2418
2419 if (th_trace_ref(ire, ire->ire_ipst)) {
2420 mutex_exit(&ire->ire_lock);
2421 } else {
2422 ire->ire_trace_disable = B_TRUE;
2423 mutex_exit(&ire->ire_lock);
2424 ire_trace_cleanup(ire);
2425 }
2426 }
2427
2428 void
ire_untrace_ref(ire_t * ire)2429 ire_untrace_ref(ire_t *ire)
2430 {
2431 mutex_enter(&ire->ire_lock);
2432 if (!ire->ire_trace_disable)
2433 th_trace_unref(ire);
2434 mutex_exit(&ire->ire_lock);
2435 }
2436
2437 static void
ire_trace_cleanup(const ire_t * ire)2438 ire_trace_cleanup(const ire_t *ire)
2439 {
2440 th_trace_cleanup(ire, ire->ire_trace_disable);
2441 }
2442 #endif /* DEBUG */
2443
2444 /*
2445 * Find, or create if needed, the nce_t pointer to the neighbor cache
2446 * entry ncec_t for an IPv4 address. The nce_t will be created on the ill_t
2447 * in the non-IPMP case, or on the cast-ill in the IPMP bcast/mcast case, or
2448 * on the next available under-ill (selected by the IPMP rotor) in the
2449 * unicast IPMP case.
2450 *
2451 * If a neighbor-cache entry has to be created (i.e., one does not already
2452 * exist in the nce list) the ncec_lladdr and ncec_state of the neighbor cache
2453 * entry are initialized in nce_add_v4(). The broadcast, multicast, and
2454 * link-layer type determine the contents of {ncec_state, ncec_lladdr} of
2455 * the ncec_t created. The ncec_lladdr is non-null for all link types with
2456 * non-zero ill_phys_addr_length, though the contents may be zero in cases
2457 * where the link-layer type is not known at the time of creation
2458 * (e.g., IRE_IFRESOLVER links)
2459 *
2460 * All IRE_BROADCAST entries have ncec_state = ND_REACHABLE, and the nce_lladr
2461 * has the physical broadcast address of the outgoing interface.
2462 * For unicast ire entries,
2463 * - if the outgoing interface is of type IRE_IF_RESOLVER, a newly created
2464 * ncec_t with 0 nce_lladr contents, and will be in the ND_INITIAL state.
2465 * - if the outgoing interface is a IRE_IF_NORESOLVER interface, no link
2466 * layer resolution is necessary, so that the ncec_t will be in the
2467 * ND_REACHABLE state
2468 *
2469 * The link layer information needed for broadcast addresses, and for
2470 * packets sent on IRE_IF_NORESOLVER interfaces is a constant mapping that
2471 * never needs re-verification for the lifetime of the ncec_t. These are
2472 * therefore marked NCE_F_NONUD.
2473 *
2474 * The nce returned will be created such that the nce_ill == ill that
2475 * is passed in. Note that the nce itself may not have ncec_ill == ill
2476 * where IPMP links are involved.
2477 */
2478 static nce_t *
ire_nce_init(ill_t * ill,const void * addr,int ire_type)2479 ire_nce_init(ill_t *ill, const void *addr, int ire_type)
2480 {
2481 int err;
2482 nce_t *nce = NULL;
2483 uint16_t ncec_flags;
2484 uchar_t *hwaddr;
2485 boolean_t need_refrele = B_FALSE;
2486 ill_t *in_ill = ill;
2487 boolean_t is_unicast;
2488 uint_t hwaddr_len;
2489
2490 is_unicast = ((ire_type & (IRE_MULTICAST|IRE_BROADCAST)) == 0);
2491 if (IS_IPMP(ill) ||
2492 ((ire_type & IRE_BROADCAST) && IS_UNDER_IPMP(ill))) {
2493 if ((ill = ipmp_ill_hold_xmit_ill(ill, is_unicast)) == NULL)
2494 return (NULL);
2495 need_refrele = B_TRUE;
2496 }
2497 ncec_flags = (ill->ill_flags & ILLF_NONUD) ? NCE_F_NONUD : 0;
2498
2499 switch (ire_type) {
2500 case IRE_BROADCAST:
2501 ASSERT(!ill->ill_isv6);
2502 ncec_flags |= (NCE_F_BCAST|NCE_F_NONUD);
2503 break;
2504 case IRE_MULTICAST:
2505 ncec_flags |= (NCE_F_MCAST|NCE_F_NONUD);
2506 break;
2507 }
2508
2509 if (ill->ill_net_type == IRE_IF_NORESOLVER && is_unicast) {
2510 hwaddr = ill->ill_dest_addr;
2511 } else {
2512 hwaddr = NULL;
2513 }
2514 hwaddr_len = ill->ill_phys_addr_length;
2515
2516 retry:
2517 /* nce_state will be computed by nce_add_common() */
2518 if (!ill->ill_isv6) {
2519 err = nce_lookup_then_add_v4(ill, hwaddr, hwaddr_len, addr,
2520 ncec_flags, ND_UNCHANGED, &nce);
2521 } else {
2522 err = nce_lookup_then_add_v6(ill, hwaddr, hwaddr_len, addr,
2523 ncec_flags, ND_UNCHANGED, &nce);
2524 }
2525
2526 switch (err) {
2527 case 0:
2528 break;
2529 case EEXIST:
2530 /*
2531 * When subnets change or partially overlap what was once
2532 * a broadcast address could now be a unicast, or vice versa.
2533 */
2534 if (((ncec_flags ^ nce->nce_common->ncec_flags) &
2535 NCE_F_BCAST) != 0) {
2536 ASSERT(!ill->ill_isv6);
2537 ncec_delete(nce->nce_common);
2538 nce_refrele(nce);
2539 goto retry;
2540 }
2541 break;
2542 default:
2543 DTRACE_PROBE2(nce__init__fail, ill_t *, ill, int, err);
2544 if (need_refrele)
2545 ill_refrele(ill);
2546 return (NULL);
2547 }
2548 /*
2549 * If the ill was an under-ill of an IPMP group, we need to verify
2550 * that it is still active so that we select an active interface in
2551 * the group. However, since ipmp_ill_is_active ASSERTs for
2552 * IS_UNDER_IPMP(), we first need to verify that the ill is an
2553 * under-ill, and since this is being done in the data path, the
2554 * only way to ascertain this is by holding the ill_g_lock.
2555 */
2556 rw_enter(&ill->ill_ipst->ips_ill_g_lock, RW_READER);
2557 mutex_enter(&ill->ill_lock);
2558 mutex_enter(&ill->ill_phyint->phyint_lock);
2559 if (need_refrele && IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) {
2560 /*
2561 * need_refrele implies that the under ill was selected by
2562 * ipmp_ill_hold_xmit_ill() because either the in_ill was an
2563 * ipmp_ill, or we are sending a non-unicast packet on an
2564 * under_ill. However, when we get here, the ill selected by
2565 * ipmp_ill_hold_xmit_ill was pulled out of the active set
2566 * (for unicast) or cast_ill nomination (for !unicast) after
2567 * it was picked as the outgoing ill. We have to pick an
2568 * active interface and/or cast_ill in the group.
2569 */
2570 mutex_exit(&ill->ill_phyint->phyint_lock);
2571 nce_delete(nce);
2572 mutex_exit(&ill->ill_lock);
2573 rw_exit(&ill->ill_ipst->ips_ill_g_lock);
2574 nce_refrele(nce);
2575 ill_refrele(ill);
2576 if ((ill = ipmp_ill_hold_xmit_ill(in_ill, is_unicast)) == NULL)
2577 return (NULL);
2578 goto retry;
2579 } else {
2580 mutex_exit(&ill->ill_phyint->phyint_lock);
2581 mutex_exit(&ill->ill_lock);
2582 rw_exit(&ill->ill_ipst->ips_ill_g_lock);
2583 }
2584 done:
2585 ASSERT(nce->nce_ill == ill);
2586 if (need_refrele)
2587 ill_refrele(ill);
2588 return (nce);
2589 }
2590
2591 nce_t *
arp_nce_init(ill_t * ill,in_addr_t addr4,int ire_type)2592 arp_nce_init(ill_t *ill, in_addr_t addr4, int ire_type)
2593 {
2594 return (ire_nce_init(ill, &addr4, ire_type));
2595 }
2596
2597 nce_t *
ndp_nce_init(ill_t * ill,const in6_addr_t * addr6,int ire_type)2598 ndp_nce_init(ill_t *ill, const in6_addr_t *addr6, int ire_type)
2599 {
2600 ASSERT((ire_type & IRE_BROADCAST) == 0);
2601 return (ire_nce_init(ill, addr6, ire_type));
2602 }
2603
2604 /*
2605 * The caller should hold irb_lock as a writer if the ire is in a bucket.
2606 * This routine will clear ire_nce_cache, and we make sure that we can never
2607 * set ire_nce_cache after the ire is marked condemned.
2608 */
2609 void
ire_make_condemned(ire_t * ire)2610 ire_make_condemned(ire_t *ire)
2611 {
2612 ip_stack_t *ipst = ire->ire_ipst;
2613 nce_t *nce;
2614
2615 mutex_enter(&ire->ire_lock);
2616 ASSERT(ire->ire_bucket == NULL ||
2617 RW_WRITE_HELD(&ire->ire_bucket->irb_lock));
2618 ASSERT(!IRE_IS_CONDEMNED(ire));
2619 ire->ire_generation = IRE_GENERATION_CONDEMNED;
2620 /* Count how many condemned ires for kmem_cache callback */
2621 atomic_inc_32(&ipst->ips_num_ire_condemned);
2622 nce = ire->ire_nce_cache;
2623 ire->ire_nce_cache = NULL;
2624 mutex_exit(&ire->ire_lock);
2625 if (nce != NULL)
2626 nce_refrele(nce);
2627 }
2628
2629 /*
2630 * Increment the generation avoiding the special condemned value
2631 */
2632 void
ire_increment_generation(ire_t * ire)2633 ire_increment_generation(ire_t *ire)
2634 {
2635 uint_t generation;
2636
2637 mutex_enter(&ire->ire_lock);
2638 /*
2639 * Even though the caller has a hold it can't prevent a concurrent
2640 * ire_delete marking the IRE condemned
2641 */
2642 if (!IRE_IS_CONDEMNED(ire)) {
2643 generation = ire->ire_generation + 1;
2644 if (generation == IRE_GENERATION_CONDEMNED)
2645 generation = IRE_GENERATION_INITIAL;
2646 ASSERT(generation != IRE_GENERATION_VERIFY);
2647 ire->ire_generation = generation;
2648 }
2649 mutex_exit(&ire->ire_lock);
2650 }
2651
2652 /*
2653 * Increment ire_generation on all the IRE_MULTICASTs
2654 * Used when the default multicast interface (as determined by
2655 * ill_lookup_multicast) might have changed.
2656 *
2657 * That includes the zoneid, IFF_ flags, the IPv6 scope of the address, and
2658 * ill unplumb.
2659 */
2660 void
ire_increment_multicast_generation(ip_stack_t * ipst,boolean_t isv6)2661 ire_increment_multicast_generation(ip_stack_t *ipst, boolean_t isv6)
2662 {
2663 ill_t *ill;
2664 ill_walk_context_t ctx;
2665
2666 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
2667 if (isv6)
2668 ill = ILL_START_WALK_V6(&ctx, ipst);
2669 else
2670 ill = ILL_START_WALK_V4(&ctx, ipst);
2671 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
2672 if (ILL_IS_CONDEMNED(ill))
2673 continue;
2674 if (ill->ill_ire_multicast != NULL)
2675 ire_increment_generation(ill->ill_ire_multicast);
2676 }
2677 rw_exit(&ipst->ips_ill_g_lock);
2678 }
2679
2680 /*
2681 * Return a held IRE_NOROUTE with RTF_REJECT set
2682 */
2683 ire_t *
ire_reject(ip_stack_t * ipst,boolean_t isv6)2684 ire_reject(ip_stack_t *ipst, boolean_t isv6)
2685 {
2686 ire_t *ire;
2687
2688 if (isv6)
2689 ire = ipst->ips_ire_reject_v6;
2690 else
2691 ire = ipst->ips_ire_reject_v4;
2692
2693 ASSERT(ire->ire_generation != IRE_GENERATION_CONDEMNED);
2694 ire_refhold(ire);
2695 return (ire);
2696 }
2697
2698 /*
2699 * Return a held IRE_NOROUTE with RTF_BLACKHOLE set
2700 */
2701 ire_t *
ire_blackhole(ip_stack_t * ipst,boolean_t isv6)2702 ire_blackhole(ip_stack_t *ipst, boolean_t isv6)
2703 {
2704 ire_t *ire;
2705
2706 if (isv6)
2707 ire = ipst->ips_ire_blackhole_v6;
2708 else
2709 ire = ipst->ips_ire_blackhole_v4;
2710
2711 ASSERT(ire->ire_generation != IRE_GENERATION_CONDEMNED);
2712 ire_refhold(ire);
2713 return (ire);
2714 }
2715
2716 /*
2717 * Return a held IRE_MULTICAST.
2718 */
2719 ire_t *
ire_multicast(ill_t * ill)2720 ire_multicast(ill_t *ill)
2721 {
2722 ire_t *ire = ill->ill_ire_multicast;
2723
2724 ASSERT(ire == NULL || ire->ire_generation != IRE_GENERATION_CONDEMNED);
2725 if (ire == NULL)
2726 ire = ire_blackhole(ill->ill_ipst, ill->ill_isv6);
2727 else
2728 ire_refhold(ire);
2729 return (ire);
2730 }
2731
2732 /*
2733 * Given an IRE return its nexthop IRE. The nexthop IRE is an IRE_ONLINK
2734 * that is an exact match (i.e., a /32 for IPv4 and /128 for IPv6).
2735 * This can return an RTF_REJECT|RTF_BLACKHOLE.
2736 * The returned IRE is held.
2737 * The assumption is that ip_select_route() has been called and returned the
2738 * IRE (thus ip_select_route would have set up the ire_dep* information.)
2739 * If some IRE is deleteted then ire_dep_remove() will have been called and
2740 * we might not find a nexthop IRE, in which case we return NULL.
2741 */
2742 ire_t *
ire_nexthop(ire_t * ire)2743 ire_nexthop(ire_t *ire)
2744 {
2745 ip_stack_t *ipst = ire->ire_ipst;
2746
2747 /* Acquire lock to walk ire_dep_parent */
2748 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
2749 while (ire != NULL) {
2750 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
2751 goto done;
2752 }
2753 /*
2754 * If we find an IRE_ONLINK we are done. This includes
2755 * the case of IRE_MULTICAST.
2756 * Note that in order to send packets we need a host-specific
2757 * IRE_IF_ALL first in the ire_dep_parent chain. Normally this
2758 * is done by inserting an IRE_IF_CLONE if the IRE_INTERFACE
2759 * was not host specific.
2760 * However, ip_rts_request doesn't want to send packets
2761 * hence doesn't want to allocate an IRE_IF_CLONE. Yet
2762 * it needs an IRE_IF_ALL to get to the ill. Thus
2763 * we return IRE_IF_ALL that are not host specific here.
2764 */
2765 if (ire->ire_type & IRE_ONLINK)
2766 goto done;
2767 ire = ire->ire_dep_parent;
2768 }
2769 rw_exit(&ipst->ips_ire_dep_lock);
2770 return (NULL);
2771
2772 done:
2773 ire_refhold(ire);
2774 rw_exit(&ipst->ips_ire_dep_lock);
2775 return (ire);
2776 }
2777
2778 /*
2779 * Find the ill used to send packets. This will be NULL in case
2780 * of a reject or blackhole.
2781 * The returned ill is held; caller needs to do ill_refrele when done.
2782 */
2783 ill_t *
ire_nexthop_ill(ire_t * ire)2784 ire_nexthop_ill(ire_t *ire)
2785 {
2786 ill_t *ill;
2787
2788 ire = ire_nexthop(ire);
2789 if (ire == NULL)
2790 return (NULL);
2791
2792 /* ire_ill can not change for an existing ire */
2793 ill = ire->ire_ill;
2794 if (ill != NULL)
2795 ill_refhold(ill);
2796 ire_refrele(ire);
2797 return (ill);
2798 }
2799
2800 #ifdef DEBUG
2801 static boolean_t
parent_has_child(ire_t * parent,ire_t * child)2802 parent_has_child(ire_t *parent, ire_t *child)
2803 {
2804 ire_t *ire;
2805 ire_t *prev;
2806
2807 ire = parent->ire_dep_children;
2808 prev = NULL;
2809 while (ire != NULL) {
2810 if (prev == NULL) {
2811 ASSERT(ire->ire_dep_sib_ptpn ==
2812 &(parent->ire_dep_children));
2813 } else {
2814 ASSERT(ire->ire_dep_sib_ptpn ==
2815 &(prev->ire_dep_sib_next));
2816 }
2817 if (ire == child)
2818 return (B_TRUE);
2819 prev = ire;
2820 ire = ire->ire_dep_sib_next;
2821 }
2822 return (B_FALSE);
2823 }
2824
2825 static void
ire_dep_verify(ire_t * ire)2826 ire_dep_verify(ire_t *ire)
2827 {
2828 ire_t *parent = ire->ire_dep_parent;
2829 ire_t *child = ire->ire_dep_children;
2830
2831 ASSERT(ire->ire_ipversion == IPV4_VERSION ||
2832 ire->ire_ipversion == IPV6_VERSION);
2833 if (parent != NULL) {
2834 ASSERT(parent->ire_ipversion == IPV4_VERSION ||
2835 parent->ire_ipversion == IPV6_VERSION);
2836 ASSERT(parent->ire_refcnt >= 1);
2837 ASSERT(parent_has_child(parent, ire));
2838 }
2839 if (child != NULL) {
2840 ASSERT(child->ire_ipversion == IPV4_VERSION ||
2841 child->ire_ipversion == IPV6_VERSION);
2842 ASSERT(child->ire_dep_parent == ire);
2843 ASSERT(child->ire_dep_sib_ptpn != NULL);
2844 ASSERT(parent_has_child(ire, child));
2845 }
2846 }
2847 #endif /* DEBUG */
2848
2849 /*
2850 * Assumes ire_dep_parent is set. Remove this child from its parent's linkage.
2851 */
2852 void
ire_dep_remove(ire_t * ire)2853 ire_dep_remove(ire_t *ire)
2854 {
2855 ip_stack_t *ipst = ire->ire_ipst;
2856 ire_t *parent = ire->ire_dep_parent;
2857 ire_t *next;
2858 nce_t *nce;
2859
2860 ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock));
2861 ASSERT(ire->ire_dep_parent != NULL);
2862 ASSERT(ire->ire_dep_sib_ptpn != NULL);
2863
2864 #ifdef DEBUG
2865 ire_dep_verify(ire);
2866 ire_dep_verify(parent);
2867 #endif
2868
2869 next = ire->ire_dep_sib_next;
2870 if (next != NULL)
2871 next->ire_dep_sib_ptpn = ire->ire_dep_sib_ptpn;
2872
2873 ASSERT(*(ire->ire_dep_sib_ptpn) == ire);
2874 *(ire->ire_dep_sib_ptpn) = ire->ire_dep_sib_next;
2875
2876 ire->ire_dep_sib_ptpn = NULL;
2877 ire->ire_dep_sib_next = NULL;
2878
2879 mutex_enter(&ire->ire_lock);
2880 parent = ire->ire_dep_parent;
2881 ire->ire_dep_parent = NULL;
2882 mutex_exit(&ire->ire_lock);
2883
2884 /*
2885 * Make sure all our children, grandchildren, etc set
2886 * ire_dep_parent_generation to IRE_GENERATION_VERIFY since
2887 * we can no longer guarantee than the children have a current
2888 * ire_nce_cache and ire_nexthop_ill().
2889 */
2890 if (ire->ire_dep_children != NULL)
2891 ire_dep_invalidate_children(ire->ire_dep_children);
2892
2893 /*
2894 * Since the parent is gone we make sure we clear ire_nce_cache.
2895 * We can clear it under ire_lock even if the IRE is used
2896 */
2897 mutex_enter(&ire->ire_lock);
2898 nce = ire->ire_nce_cache;
2899 ire->ire_nce_cache = NULL;
2900 mutex_exit(&ire->ire_lock);
2901 if (nce != NULL)
2902 nce_refrele(nce);
2903
2904 #ifdef DEBUG
2905 ire_dep_verify(ire);
2906 ire_dep_verify(parent);
2907 #endif
2908
2909 ire_refrele_notr(parent);
2910 ire_refrele_notr(ire);
2911 }
2912
2913 /*
2914 * Insert the child in the linkage of the parent
2915 */
2916 static void
ire_dep_parent_insert(ire_t * child,ire_t * parent)2917 ire_dep_parent_insert(ire_t *child, ire_t *parent)
2918 {
2919 ip_stack_t *ipst = child->ire_ipst;
2920 ire_t *next;
2921
2922 ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock));
2923 ASSERT(child->ire_dep_parent == NULL);
2924
2925 #ifdef DEBUG
2926 ire_dep_verify(child);
2927 ire_dep_verify(parent);
2928 #endif
2929 /* No parents => no siblings */
2930 ASSERT(child->ire_dep_sib_ptpn == NULL);
2931 ASSERT(child->ire_dep_sib_next == NULL);
2932
2933 ire_refhold_notr(parent);
2934 ire_refhold_notr(child);
2935
2936 /* Head insertion */
2937 next = parent->ire_dep_children;
2938 if (next != NULL) {
2939 ASSERT(next->ire_dep_sib_ptpn == &(parent->ire_dep_children));
2940 child->ire_dep_sib_next = next;
2941 next->ire_dep_sib_ptpn = &(child->ire_dep_sib_next);
2942 }
2943 parent->ire_dep_children = child;
2944 child->ire_dep_sib_ptpn = &(parent->ire_dep_children);
2945
2946 mutex_enter(&child->ire_lock);
2947 child->ire_dep_parent = parent;
2948 mutex_exit(&child->ire_lock);
2949
2950 #ifdef DEBUG
2951 ire_dep_verify(child);
2952 ire_dep_verify(parent);
2953 #endif
2954 }
2955
2956
2957 /*
2958 * Given count worth of ires and generations, build ire_dep_* relationships
2959 * from ires[0] to ires[count-1]. Record generations[i+1] in
2960 * ire_dep_parent_generation for ires[i].
2961 * We graft onto an existing parent chain by making sure that we don't
2962 * touch ire_dep_parent for ires[count-1].
2963 *
2964 * We check for any condemned ire_generation count and return B_FALSE in
2965 * that case so that the caller can tear it apart.
2966 *
2967 * Note that generations[0] is not used. Caller handles that.
2968 */
2969 boolean_t
ire_dep_build(ire_t * ires[],uint_t generations[],uint_t count)2970 ire_dep_build(ire_t *ires[], uint_t generations[], uint_t count)
2971 {
2972 ire_t *ire = ires[0];
2973 ip_stack_t *ipst;
2974 uint_t i;
2975
2976 ASSERT(count > 0);
2977 if (count == 1) {
2978 /* No work to do */
2979 return (B_TRUE);
2980 }
2981 ipst = ire->ire_ipst;
2982 rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER);
2983 /*
2984 * Do not remove the linkage for any existing parent chain i.e.,
2985 * ires[count-1] is left alone.
2986 */
2987 for (i = 0; i < count-1; i++) {
2988 /* Remove existing parent if we need to change it */
2989 if (ires[i]->ire_dep_parent != NULL &&
2990 ires[i]->ire_dep_parent != ires[i+1])
2991 ire_dep_remove(ires[i]);
2992 }
2993
2994 for (i = 0; i < count - 1; i++) {
2995 ASSERT(ires[i]->ire_ipversion == IPV4_VERSION ||
2996 ires[i]->ire_ipversion == IPV6_VERSION);
2997 /* Does it need to change? */
2998 if (ires[i]->ire_dep_parent != ires[i+1])
2999 ire_dep_parent_insert(ires[i], ires[i+1]);
3000
3001 mutex_enter(&ires[i+1]->ire_lock);
3002 if (IRE_IS_CONDEMNED(ires[i+1])) {
3003 mutex_exit(&ires[i+1]->ire_lock);
3004 rw_exit(&ipst->ips_ire_dep_lock);
3005 return (B_FALSE);
3006 }
3007 mutex_exit(&ires[i+1]->ire_lock);
3008
3009 mutex_enter(&ires[i]->ire_lock);
3010 ires[i]->ire_dep_parent_generation = generations[i+1];
3011 mutex_exit(&ires[i]->ire_lock);
3012 }
3013 rw_exit(&ipst->ips_ire_dep_lock);
3014 return (B_TRUE);
3015 }
3016
3017 /*
3018 * Given count worth of ires, unbuild ire_dep_* relationships
3019 * from ires[0] to ires[count-1].
3020 */
3021 void
ire_dep_unbuild(ire_t * ires[],uint_t count)3022 ire_dep_unbuild(ire_t *ires[], uint_t count)
3023 {
3024 ip_stack_t *ipst;
3025 uint_t i;
3026
3027 if (count == 0) {
3028 /* No work to do */
3029 return;
3030 }
3031 ipst = ires[0]->ire_ipst;
3032 rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER);
3033 for (i = 0; i < count; i++) {
3034 ASSERT(ires[i]->ire_ipversion == IPV4_VERSION ||
3035 ires[i]->ire_ipversion == IPV6_VERSION);
3036 if (ires[i]->ire_dep_parent != NULL)
3037 ire_dep_remove(ires[i]);
3038 mutex_enter(&ires[i]->ire_lock);
3039 ires[i]->ire_dep_parent_generation = IRE_GENERATION_VERIFY;
3040 mutex_exit(&ires[i]->ire_lock);
3041 }
3042 rw_exit(&ipst->ips_ire_dep_lock);
3043 }
3044
3045 /*
3046 * Both the forwarding and the outbound code paths can trip on
3047 * a condemned NCE, in which case we call this function.
3048 * We have two different behaviors: if the NCE was UNREACHABLE
3049 * it is an indication that something failed. In that case
3050 * we see if we should look for a different IRE (for example,
3051 * delete any matching redirect IRE, or try a different
3052 * IRE_DEFAULT (ECMP)). We mark the ire as bad so a hopefully
3053 * different IRE will be picked next time we send/forward.
3054 *
3055 * If we are called by the output path then fail_if_better is set
3056 * and we return NULL if there could be a better IRE. This is because the
3057 * output path retries the IRE lookup. (The input/forward path can not retry.)
3058 *
3059 * If the NCE was not unreachable then we pick/allocate a
3060 * new (most likely ND_INITIAL) NCE and proceed with it.
3061 *
3062 * ipha/ip6h are needed for multicast packets; ipha needs to be
3063 * set for IPv4 and ip6h needs to be set for IPv6 packets.
3064 */
3065 nce_t *
ire_handle_condemned_nce(nce_t * nce,ire_t * ire,ipha_t * ipha,ip6_t * ip6h,boolean_t fail_if_better)3066 ire_handle_condemned_nce(nce_t *nce, ire_t *ire, ipha_t *ipha, ip6_t *ip6h,
3067 boolean_t fail_if_better)
3068 {
3069 if (nce->nce_common->ncec_state == ND_UNREACHABLE) {
3070 if (ire_no_good(ire) && fail_if_better) {
3071 /*
3072 * Did some changes, or ECMP likely to exist.
3073 * Make ip_output look for a different IRE
3074 */
3075 return (NULL);
3076 }
3077 }
3078 if (ire_revalidate_nce(ire) == ENETUNREACH) {
3079 /* The ire_dep_parent chain went bad, or no memory? */
3080 (void) ire_no_good(ire);
3081 return (NULL);
3082 }
3083 if (ire->ire_ipversion == IPV4_VERSION) {
3084 ASSERT(ipha != NULL);
3085 nce = ire_to_nce(ire, ipha->ipha_dst, NULL);
3086 } else {
3087 ASSERT(ip6h != NULL);
3088 nce = ire_to_nce(ire, INADDR_ANY, &ip6h->ip6_dst);
3089 }
3090
3091 if (nce == NULL)
3092 return (NULL);
3093 if (nce->nce_is_condemned) {
3094 nce_refrele(nce);
3095 return (NULL);
3096 }
3097 return (nce);
3098 }
3099
3100 /*
3101 * The caller has found that the ire is bad, either due to a reference to an NCE
3102 * in ND_UNREACHABLE state, or a MULTIRT route whose gateway can't be resolved.
3103 * We update things so a subsequent attempt to send to the destination
3104 * is likely to find different IRE, or that a new NCE would be created.
3105 *
3106 * Returns B_TRUE if it is likely that a subsequent ire_ftable_lookup would
3107 * find a different route (either due to having deleted a redirect, or there
3108 * being ECMP routes.)
3109 *
3110 * If we have a redirect (RTF_DYNAMIC) we delete it.
3111 * Otherwise we increment ire_badcnt and increment the generation number so
3112 * that a cached ixa_ire will redo the route selection. ire_badcnt is taken
3113 * into account in the route selection when we have multiple choices (multiple
3114 * default routes or ECMP in general).
3115 * Any time ip_select_route find an ire with a condemned ire_nce_cache
3116 * (e.g., if no equal cost route to the bad one) ip_select_route will make
3117 * sure the NCE is revalidated to avoid getting stuck on a
3118 * NCE_F_CONDMNED ncec that caused ire_no_good to be called.
3119 */
3120 boolean_t
ire_no_good(ire_t * ire)3121 ire_no_good(ire_t *ire)
3122 {
3123 ip_stack_t *ipst = ire->ire_ipst;
3124 ire_t *ire2;
3125 nce_t *nce;
3126
3127 if (ire->ire_flags & RTF_DYNAMIC) {
3128 ire_delete(ire);
3129 return (B_TRUE);
3130 }
3131 if (ire->ire_flags & RTF_INDIRECT) {
3132 /* Check if next IRE is a redirect */
3133 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
3134 if (ire->ire_dep_parent != NULL &&
3135 (ire->ire_dep_parent->ire_flags & RTF_DYNAMIC)) {
3136 ire2 = ire->ire_dep_parent;
3137 ire_refhold(ire2);
3138 } else {
3139 ire2 = NULL;
3140 }
3141 rw_exit(&ipst->ips_ire_dep_lock);
3142 if (ire2 != NULL) {
3143 ire_delete(ire2);
3144 ire_refrele(ire2);
3145 return (B_TRUE);
3146 }
3147 }
3148 /*
3149 * No redirect involved. Increment badcnt so that if we have ECMP
3150 * routes we are likely to pick a different one for the next packet.
3151 *
3152 * If the NCE is unreachable and condemned we should drop the reference
3153 * to it so that a new NCE can be created.
3154 *
3155 * Finally we increment the generation number so that any ixa_ire
3156 * cache will be revalidated.
3157 */
3158 mutex_enter(&ire->ire_lock);
3159 ire->ire_badcnt++;
3160 ire->ire_last_badcnt = TICK_TO_SEC(ddi_get_lbolt64());
3161 nce = ire->ire_nce_cache;
3162 if (nce != NULL && nce->nce_is_condemned &&
3163 nce->nce_common->ncec_state == ND_UNREACHABLE)
3164 ire->ire_nce_cache = NULL;
3165 else
3166 nce = NULL;
3167 mutex_exit(&ire->ire_lock);
3168 if (nce != NULL)
3169 nce_refrele(nce);
3170
3171 ire_increment_generation(ire);
3172 ire_dep_incr_generation(ire);
3173
3174 return (ire->ire_bucket->irb_ire_cnt > 1);
3175 }
3176
3177 /*
3178 * Walk ire_dep_parent chain and validate that ire_dep_parent->ire_generation ==
3179 * ire_dep_parent_generation.
3180 * If they all match we just return ire_generation from the topmost IRE.
3181 * Otherwise we propagate the mismatch by setting all ire_dep_parent_generation
3182 * above the mismatch to IRE_GENERATION_VERIFY and also returning
3183 * IRE_GENERATION_VERIFY.
3184 */
3185 uint_t
ire_dep_validate_generations(ire_t * ire)3186 ire_dep_validate_generations(ire_t *ire)
3187 {
3188 ip_stack_t *ipst = ire->ire_ipst;
3189 uint_t generation;
3190 ire_t *ire1;
3191
3192 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
3193 generation = ire->ire_generation; /* Assuming things match */
3194 for (ire1 = ire; ire1 != NULL; ire1 = ire1->ire_dep_parent) {
3195 ASSERT(ire1->ire_ipversion == IPV4_VERSION ||
3196 ire1->ire_ipversion == IPV6_VERSION);
3197 if (ire1->ire_dep_parent == NULL)
3198 break;
3199 if (ire1->ire_dep_parent_generation !=
3200 ire1->ire_dep_parent->ire_generation)
3201 goto mismatch;
3202 }
3203 rw_exit(&ipst->ips_ire_dep_lock);
3204 return (generation);
3205
3206 mismatch:
3207 generation = IRE_GENERATION_VERIFY;
3208 /* Fill from top down to the mismatch with _VERIFY */
3209 while (ire != ire1) {
3210 ASSERT(ire->ire_ipversion == IPV4_VERSION ||
3211 ire->ire_ipversion == IPV6_VERSION);
3212 mutex_enter(&ire->ire_lock);
3213 ire->ire_dep_parent_generation = IRE_GENERATION_VERIFY;
3214 mutex_exit(&ire->ire_lock);
3215 ire = ire->ire_dep_parent;
3216 }
3217 rw_exit(&ipst->ips_ire_dep_lock);
3218 return (generation);
3219 }
3220
3221 /*
3222 * Used when we need to return an ire with ire_dep_parent, but we
3223 * know the chain is invalid for instance we didn't create an IRE_IF_CLONE
3224 * Using IRE_GENERATION_VERIFY means that next time we'll redo the
3225 * recursive lookup.
3226 */
3227 void
ire_dep_invalidate_generations(ire_t * ire)3228 ire_dep_invalidate_generations(ire_t *ire)
3229 {
3230 ip_stack_t *ipst = ire->ire_ipst;
3231
3232 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
3233 while (ire != NULL) {
3234 ASSERT(ire->ire_ipversion == IPV4_VERSION ||
3235 ire->ire_ipversion == IPV6_VERSION);
3236 mutex_enter(&ire->ire_lock);
3237 ire->ire_dep_parent_generation = IRE_GENERATION_VERIFY;
3238 mutex_exit(&ire->ire_lock);
3239 ire = ire->ire_dep_parent;
3240 }
3241 rw_exit(&ipst->ips_ire_dep_lock);
3242 }
3243
3244 /* Set _VERIFY ire_dep_parent_generation for all children recursively */
3245 static void
ire_dep_invalidate_children(ire_t * child)3246 ire_dep_invalidate_children(ire_t *child)
3247 {
3248 ip_stack_t *ipst = child->ire_ipst;
3249
3250 ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock));
3251 /* Depth first */
3252 if (child->ire_dep_children != NULL)
3253 ire_dep_invalidate_children(child->ire_dep_children);
3254
3255 while (child != NULL) {
3256 mutex_enter(&child->ire_lock);
3257 child->ire_dep_parent_generation = IRE_GENERATION_VERIFY;
3258 mutex_exit(&child->ire_lock);
3259 child = child->ire_dep_sib_next;
3260 }
3261 }
3262
3263 static void
ire_dep_increment_children(ire_t * child)3264 ire_dep_increment_children(ire_t *child)
3265 {
3266 ip_stack_t *ipst = child->ire_ipst;
3267
3268 ASSERT(RW_READ_HELD(&ipst->ips_ire_dep_lock));
3269 /* Depth first */
3270 if (child->ire_dep_children != NULL)
3271 ire_dep_increment_children(child->ire_dep_children);
3272
3273 while (child != NULL) {
3274 if (!IRE_IS_CONDEMNED(child))
3275 ire_increment_generation(child);
3276 child = child->ire_dep_sib_next;
3277 }
3278 }
3279
3280 /*
3281 * Walk all the children of this ire recursively and increment their
3282 * generation number.
3283 */
3284 static void
ire_dep_incr_generation_locked(ire_t * parent)3285 ire_dep_incr_generation_locked(ire_t *parent)
3286 {
3287 ASSERT(RW_READ_HELD(&parent->ire_ipst->ips_ire_dep_lock));
3288 if (parent->ire_dep_children != NULL)
3289 ire_dep_increment_children(parent->ire_dep_children);
3290 }
3291
3292 void
ire_dep_incr_generation(ire_t * parent)3293 ire_dep_incr_generation(ire_t *parent)
3294 {
3295 ip_stack_t *ipst = parent->ire_ipst;
3296
3297 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
3298 ire_dep_incr_generation_locked(parent);
3299 rw_exit(&ipst->ips_ire_dep_lock);
3300 }
3301
3302 /*
3303 * Get a new ire_nce_cache for this IRE as well as its nexthop.
3304 * Returns zero if it succeeds. Can fail due to lack of memory or when
3305 * the route has become unreachable. Returns ENOMEM and ENETUNREACH in those
3306 * cases.
3307 *
3308 * In the in.mpathd case, the ire will have ire_testhidden
3309 * set; so we should create the ncec for the underlying ill.
3310 *
3311 * Note that the error returned by ire_revalidate_nce() is ignored by most
3312 * callers except ire_handle_condemned_nce(), which handles the ENETUNREACH
3313 * error to mark potentially bad ire's. For all the other callers, an
3314 * error return could indicate a transient condition like ENOMEM, or could
3315 * be the result of an interface that is going down/unplumbing. In the former
3316 * case (transient error), we would leave the old stale ire/ire_nce_cache
3317 * in place, and possibly use incorrect link-layer information to send packets
3318 * but would eventually recover. In the latter case (ill down/replumb),
3319 * ire_revalidate_nce() might return a condemned nce back, but we would then
3320 * recover in the packet output path.
3321 */
3322 int
ire_revalidate_nce(ire_t * ire)3323 ire_revalidate_nce(ire_t *ire)
3324 {
3325 nce_t *nce, *old_nce;
3326 ire_t *nexthop;
3327
3328 /*
3329 * For multicast we conceptually have an NCE but we don't store it
3330 * in ire_nce_cache; when ire_to_nce is called we allocate the nce.
3331 */
3332 if (ire->ire_type & IRE_MULTICAST)
3333 return (0);
3334
3335 /* ire_testhidden should only be set on under-interfaces */
3336 ASSERT(!ire->ire_testhidden || !IS_IPMP(ire->ire_ill));
3337
3338 nexthop = ire_nexthop(ire);
3339 if (nexthop == NULL) {
3340 /* The route is potentially bad */
3341 (void) ire_no_good(ire);
3342 return (ENETUNREACH);
3343 }
3344 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
3345 ASSERT(ire->ire_ill != NULL);
3346
3347 if (ire->ire_ipversion == IPV4_VERSION)
3348 nce = nce_lookup_v4(ire->ire_ill, &ire->ire_addr);
3349 else
3350 nce = nce_lookup_v6(ire->ire_ill, &ire->ire_addr_v6);
3351 } else {
3352 ASSERT(nexthop->ire_type & IRE_ONLINK);
3353 if (ire->ire_ipversion == IPV4_VERSION) {
3354 nce = arp_nce_init(nexthop->ire_ill, nexthop->ire_addr,
3355 nexthop->ire_type);
3356 } else {
3357 nce = ndp_nce_init(nexthop->ire_ill,
3358 &nexthop->ire_addr_v6, nexthop->ire_type);
3359 }
3360 }
3361 if (nce == NULL) {
3362 /*
3363 * Leave the old stale one in place to avoid a NULL
3364 * ire_nce_cache.
3365 */
3366 ire_refrele(nexthop);
3367 return (ENOMEM);
3368 }
3369
3370 if (nexthop != ire) {
3371 /* Update the nexthop ire */
3372 mutex_enter(&nexthop->ire_lock);
3373 old_nce = nexthop->ire_nce_cache;
3374 if (!IRE_IS_CONDEMNED(nexthop)) {
3375 nce_refhold(nce);
3376 nexthop->ire_nce_cache = nce;
3377 } else {
3378 nexthop->ire_nce_cache = NULL;
3379 }
3380 mutex_exit(&nexthop->ire_lock);
3381 if (old_nce != NULL)
3382 nce_refrele(old_nce);
3383 }
3384 ire_refrele(nexthop);
3385
3386 mutex_enter(&ire->ire_lock);
3387 old_nce = ire->ire_nce_cache;
3388 if (!IRE_IS_CONDEMNED(ire)) {
3389 nce_refhold(nce);
3390 ire->ire_nce_cache = nce;
3391 } else {
3392 ire->ire_nce_cache = NULL;
3393 }
3394 mutex_exit(&ire->ire_lock);
3395 if (old_nce != NULL)
3396 nce_refrele(old_nce);
3397
3398 nce_refrele(nce);
3399 return (0);
3400 }
3401
3402 /*
3403 * Get a held nce for a given ire.
3404 * In the common case this is just from ire_nce_cache.
3405 * For IRE_MULTICAST this needs to do an explicit lookup since we do not
3406 * have an IRE_MULTICAST per address.
3407 * Note that this explicitly returns CONDEMNED NCEs. The caller needs those
3408 * so they can check whether the NCE went unreachable (as opposed to was
3409 * condemned for some other reason).
3410 */
3411 nce_t *
ire_to_nce(ire_t * ire,ipaddr_t v4nexthop,const in6_addr_t * v6nexthop)3412 ire_to_nce(ire_t *ire, ipaddr_t v4nexthop, const in6_addr_t *v6nexthop)
3413 {
3414 nce_t *nce;
3415
3416 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
3417 return (NULL);
3418
3419 /* ire_testhidden should only be set on under-interfaces */
3420 ASSERT(!ire->ire_testhidden || !IS_IPMP(ire->ire_ill));
3421
3422 mutex_enter(&ire->ire_lock);
3423 nce = ire->ire_nce_cache;
3424 if (nce != NULL) {
3425 nce_refhold(nce);
3426 mutex_exit(&ire->ire_lock);
3427 return (nce);
3428 }
3429 mutex_exit(&ire->ire_lock);
3430
3431 if (ire->ire_type & IRE_MULTICAST) {
3432 ASSERT(ire->ire_ill != NULL);
3433
3434 if (ire->ire_ipversion == IPV4_VERSION) {
3435 ASSERT(v6nexthop == NULL);
3436
3437 nce = arp_nce_init(ire->ire_ill, v4nexthop,
3438 ire->ire_type);
3439 } else {
3440 ASSERT(v6nexthop != NULL);
3441 ASSERT(v4nexthop == 0);
3442 nce = ndp_nce_init(ire->ire_ill, v6nexthop,
3443 ire->ire_type);
3444 }
3445 return (nce);
3446 }
3447 return (NULL);
3448 }
3449
3450 nce_t *
ire_to_nce_pkt(ire_t * ire,mblk_t * mp)3451 ire_to_nce_pkt(ire_t *ire, mblk_t *mp)
3452 {
3453 ipha_t *ipha;
3454 ip6_t *ip6h;
3455
3456 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
3457 ipha = (ipha_t *)mp->b_rptr;
3458 return (ire_to_nce(ire, ipha->ipha_dst, NULL));
3459 } else {
3460 ip6h = (ip6_t *)mp->b_rptr;
3461 return (ire_to_nce(ire, INADDR_ANY, &ip6h->ip6_dst));
3462 }
3463 }
3464
3465 /*
3466 * Given an IRE_INTERFACE (that matches more than one address) create
3467 * and return an IRE_IF_CLONE for the specific address.
3468 * Return the generation number.
3469 * Returns NULL is no memory for the IRE.
3470 * Handles both IPv4 and IPv6.
3471 *
3472 * IRE_IF_CLONE entries may only be created adn added by calling
3473 * ire_create_if_clone(), and we depend on the fact that ire_add will
3474 * atomically ensure that attempts to add multiple identical IRE_IF_CLONE
3475 * entries will not result in duplicate (i.e., ire_identical_ref > 1)
3476 * CLONE entries, so that a single ire_delete is sufficient to remove the
3477 * CLONE.
3478 */
3479 ire_t *
ire_create_if_clone(ire_t * ire_if,const in6_addr_t * addr,uint_t * generationp)3480 ire_create_if_clone(ire_t *ire_if, const in6_addr_t *addr, uint_t *generationp)
3481 {
3482 ire_t *ire;
3483 ire_t *nire;
3484
3485 if (ire_if->ire_ipversion == IPV4_VERSION) {
3486 ipaddr_t v4addr;
3487 ipaddr_t mask = IP_HOST_MASK;
3488
3489 ASSERT(IN6_IS_ADDR_V4MAPPED(addr));
3490 IN6_V4MAPPED_TO_IPADDR(addr, v4addr);
3491
3492 ire = ire_create(
3493 (uchar_t *)&v4addr, /* dest address */
3494 (uchar_t *)&mask, /* mask */
3495 (uchar_t *)&ire_if->ire_gateway_addr,
3496 IRE_IF_CLONE, /* IRE type */
3497 ire_if->ire_ill,
3498 ire_if->ire_zoneid,
3499 ire_if->ire_flags | RTF_HOST,
3500 NULL, /* No security attr for IRE_IF_ALL */
3501 ire_if->ire_ipst);
3502 } else {
3503 ASSERT(!IN6_IS_ADDR_V4MAPPED(addr));
3504 ire = ire_create_v6(
3505 addr, /* dest address */
3506 &ipv6_all_ones, /* mask */
3507 &ire_if->ire_gateway_addr_v6, /* gateway addr */
3508 IRE_IF_CLONE, /* IRE type */
3509 ire_if->ire_ill,
3510 ire_if->ire_zoneid,
3511 ire_if->ire_flags | RTF_HOST,
3512 NULL, /* No security attr for IRE_IF_ALL */
3513 ire_if->ire_ipst);
3514 }
3515 if (ire == NULL)
3516 return (NULL);
3517
3518 /* Take the metrics, in particular the mtu, from the IRE_IF */
3519 ire->ire_metrics = ire_if->ire_metrics;
3520
3521 nire = ire_add(ire);
3522 if (nire == NULL) /* Some failure */
3523 return (NULL);
3524
3525 if (generationp != NULL)
3526 *generationp = nire->ire_generation;
3527
3528 return (nire);
3529 }
3530
3531 /*
3532 * The argument is an IRE_INTERFACE. Delete all of IRE_IF_CLONE in the
3533 * ire_dep_children (just walk the ire_dep_sib_next since they are all
3534 * immediate children.)
3535 * Since we hold a lock while we remove them we need to defer the actual
3536 * calls to ire_delete() until we have dropped the lock. This makes things
3537 * less efficient since we restart at the top after dropping the lock. But
3538 * we only run when an IRE_INTERFACE is deleted which is infrquent.
3539 *
3540 * Note that ire_dep_children can be any mixture of offlink routes and
3541 * IRE_IF_CLONE entries.
3542 */
3543 void
ire_dep_delete_if_clone(ire_t * parent)3544 ire_dep_delete_if_clone(ire_t *parent)
3545 {
3546 ip_stack_t *ipst = parent->ire_ipst;
3547 ire_t *child, *next;
3548
3549 restart:
3550 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
3551 if (parent->ire_dep_children == NULL) {
3552 rw_exit(&ipst->ips_ire_dep_lock);
3553 return;
3554 }
3555 child = parent->ire_dep_children;
3556 while (child != NULL) {
3557 next = child->ire_dep_sib_next;
3558 if ((child->ire_type & IRE_IF_CLONE) &&
3559 !IRE_IS_CONDEMNED(child)) {
3560 ire_refhold(child);
3561 rw_exit(&ipst->ips_ire_dep_lock);
3562 ire_delete(child);
3563 ASSERT(IRE_IS_CONDEMNED(child));
3564 ire_refrele(child);
3565 goto restart;
3566 }
3567 child = next;
3568 }
3569 rw_exit(&ipst->ips_ire_dep_lock);
3570 }
3571
3572 /*
3573 * In the preferred/strict src multihoming modes, unbound routes (i.e.,
3574 * ire_t entries with ire_unbound set to B_TRUE) are bound to an interface
3575 * by selecting the first available interface that has an interface route for
3576 * the ire_gateway. If that interface is subsequently brought down, ill_downi()
3577 * will call ire_rebind() so that the unbound route can be bound to some other
3578 * matching interface thereby preserving the intended reachability information
3579 * from the original unbound route.
3580 */
3581 void
ire_rebind(ire_t * ire)3582 ire_rebind(ire_t *ire)
3583 {
3584 ire_t *gw_ire, *new_ire;
3585 int match_flags = MATCH_IRE_TYPE;
3586 ill_t *gw_ill;
3587 boolean_t isv6 = (ire->ire_ipversion == IPV6_VERSION);
3588 ip_stack_t *ipst = ire->ire_ipst;
3589
3590 ASSERT(ire->ire_unbound);
3591 again:
3592 if (isv6) {
3593 gw_ire = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 0, 0,
3594 IRE_INTERFACE, NULL, ALL_ZONES, NULL, match_flags, 0,
3595 ipst, NULL);
3596 } else {
3597 gw_ire = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
3598 IRE_INTERFACE, NULL, ALL_ZONES, NULL, match_flags, 0,
3599 ipst, NULL);
3600 }
3601 if (gw_ire == NULL) {
3602 /* see comments in ip_rt_add[_v6]() for IPMP */
3603 if (match_flags & MATCH_IRE_TESTHIDDEN)
3604 return;
3605
3606 match_flags |= MATCH_IRE_TESTHIDDEN;
3607 goto again;
3608 }
3609 gw_ill = gw_ire->ire_ill;
3610 if (isv6) {
3611 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6,
3612 &ire->ire_gateway_addr_v6, ire->ire_type, gw_ill,
3613 ire->ire_zoneid, ire->ire_flags, NULL, ipst);
3614 } else {
3615 new_ire = ire_create((uchar_t *)&ire->ire_addr,
3616 (uchar_t *)&ire->ire_mask,
3617 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, gw_ill,
3618 ire->ire_zoneid, ire->ire_flags, NULL, ipst);
3619 }
3620 ire_refrele(gw_ire);
3621 if (new_ire == NULL)
3622 return;
3623 new_ire->ire_unbound = B_TRUE;
3624 new_ire = ire_add(new_ire);
3625 if (new_ire != NULL)
3626 ire_refrele(new_ire);
3627 }
3628