xref: /freebsd/sys/netinet/udp_usrreq.c (revision 3ff865c6a7948b2cfc01d7056c619145b696700a)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2008 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * Copyright (c) 2014 Kevin Lo
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Robert N. M. Watson under
12  * contract to Juniper Networks, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #include <sys/cdefs.h>
40 #include "opt_inet.h"
41 #include "opt_inet6.h"
42 #include "opt_ipsec.h"
43 #include "opt_route.h"
44 #include "opt_rss.h"
45 
46 #include <sys/param.h>
47 #include <sys/domain.h>
48 #include <sys/eventhandler.h>
49 #include <sys/jail.h>
50 #include <sys/kernel.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/protosw.h>
57 #include <sys/sdt.h>
58 #include <sys/signalvar.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/sx.h>
62 #include <sys/sysctl.h>
63 #include <sys/syslog.h>
64 #include <sys/systm.h>
65 
66 #include <vm/uma.h>
67 
68 #include <net/if.h>
69 #include <net/if_var.h>
70 #include <net/route.h>
71 #include <net/route/nhop.h>
72 #include <net/rss_config.h>
73 
74 #include <netinet/in.h>
75 #include <netinet/in_kdtrace.h>
76 #include <netinet/in_fib.h>
77 #include <netinet/in_pcb.h>
78 #include <netinet/in_systm.h>
79 #include <netinet/in_var.h>
80 #include <netinet/ip.h>
81 #ifdef INET6
82 #include <netinet/ip6.h>
83 #endif
84 #include <netinet/ip_icmp.h>
85 #include <netinet/icmp_var.h>
86 #include <netinet/ip_var.h>
87 #include <netinet/ip_options.h>
88 #ifdef INET6
89 #include <netinet6/ip6_var.h>
90 #endif
91 #include <netinet/udp.h>
92 #include <netinet/udp_var.h>
93 #include <netinet/udplite.h>
94 #include <netinet/in_rss.h>
95 
96 #include <netipsec/ipsec_support.h>
97 
98 #include <machine/in_cksum.h>
99 
100 #include <security/mac/mac_framework.h>
101 
102 /*
103  * UDP and UDP-Lite protocols implementation.
104  * Per RFC 768, August, 1980.
105  * Per RFC 3828, July, 2004.
106  */
107 
108 VNET_DEFINE(int, udp_bind_all_fibs) = 1;
109 SYSCTL_INT(_net_inet_udp, OID_AUTO, bind_all_fibs, CTLFLAG_VNET | CTLFLAG_RDTUN,
110     &VNET_NAME(udp_bind_all_fibs), 0,
111     "Bound sockets receive traffic from all FIBs");
112 
113 /*
114  * BSD 4.2 defaulted the udp checksum to be off.  Turning off udp checksums
115  * removes the only data integrity mechanism for packets and malformed
116  * packets that would otherwise be discarded due to bad checksums, and may
117  * cause problems (especially for NFS data blocks).
118  */
119 VNET_DEFINE(int, udp_cksum) = 1;
120 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW,
121     &VNET_NAME(udp_cksum), 0, "compute udp checksum");
122 
123 VNET_DEFINE(int, udp_log_in_vain) = 0;
124 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW,
125     &VNET_NAME(udp_log_in_vain), 0, "Log all incoming UDP packets");
126 
127 VNET_DEFINE(int, udp_blackhole) = 0;
128 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
129     &VNET_NAME(udp_blackhole), 0,
130     "Do not send port unreachables for refused connects");
131 VNET_DEFINE(bool, udp_blackhole_local) = false;
132 SYSCTL_BOOL(_net_inet_udp, OID_AUTO, blackhole_local, CTLFLAG_VNET |
133     CTLFLAG_RW, &VNET_NAME(udp_blackhole_local), false,
134     "Enforce net.inet.udp.blackhole for locally originated packets");
135 
136 u_long	udp_sendspace = 9216;		/* really max datagram size */
137 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
138     &udp_sendspace, 0, "Maximum outgoing UDP datagram size");
139 
140 u_long	udp_recvspace = 40 * (1024 +
141 #ifdef INET6
142 				      sizeof(struct sockaddr_in6)
143 #else
144 				      sizeof(struct sockaddr_in)
145 #endif
146 				      );	/* 40 1K datagrams */
147 
148 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
149     &udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
150 
151 VNET_DEFINE(struct inpcbinfo, udbinfo);
152 VNET_DEFINE(struct inpcbinfo, ulitecbinfo);
153 
154 #ifndef UDBHASHSIZE
155 #define	UDBHASHSIZE	128
156 #endif
157 
158 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat);		/* from udp_var.h */
159 VNET_PCPUSTAT_SYSINIT(udpstat);
160 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat,
161     udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
162 
163 #ifdef VIMAGE
164 VNET_PCPUSTAT_SYSUNINIT(udpstat);
165 #endif /* VIMAGE */
166 #ifdef INET
167 static void	udp_detach(struct socket *so);
168 #endif
169 
170 INPCBSTORAGE_DEFINE(udpcbstor, udpcb, "udpinp", "udp_inpcb", "udp", "udphash");
171 INPCBSTORAGE_DEFINE(udplitecbstor, udpcb, "udpliteinp", "udplite_inpcb",
172     "udplite", "udplitehash");
173 
174 static void
udp_vnet_init(void * arg __unused)175 udp_vnet_init(void *arg __unused)
176 {
177 
178 	/*
179 	 * For now default to 2-tuple UDP hashing - until the fragment
180 	 * reassembly code can also update the flowid.
181 	 *
182 	 * Once we can calculate the flowid that way and re-establish
183 	 * a 4-tuple, flip this to 4-tuple.
184 	 */
185 	in_pcbinfo_init(&V_udbinfo, &udpcbstor, UDBHASHSIZE, UDBHASHSIZE);
186 	/* Additional pcbinfo for UDP-Lite */
187 	in_pcbinfo_init(&V_ulitecbinfo, &udplitecbstor, UDBHASHSIZE,
188 	    UDBHASHSIZE);
189 }
190 VNET_SYSINIT(udp_vnet_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH,
191     udp_vnet_init, NULL);
192 
193 /*
194  * Kernel module interface for updating udpstat.  The argument is an index
195  * into udpstat treated as an array of u_long.  While this encodes the
196  * general layout of udpstat into the caller, it doesn't encode its location,
197  * so that future changes to add, for example, per-CPU stats support won't
198  * cause binary compatibility problems for kernel modules.
199  */
200 void
kmod_udpstat_inc(int statnum)201 kmod_udpstat_inc(int statnum)
202 {
203 
204 	counter_u64_add(VNET(udpstat)[statnum], 1);
205 }
206 
207 #ifdef VIMAGE
208 static void
udp_destroy(void * unused __unused)209 udp_destroy(void *unused __unused)
210 {
211 
212 	in_pcbinfo_destroy(&V_udbinfo);
213 	in_pcbinfo_destroy(&V_ulitecbinfo);
214 }
215 VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL);
216 #endif
217 
218 #ifdef INET
219 /*
220  * Subroutine of udp_input(), which appends the provided mbuf chain to the
221  * passed pcb/socket.  The caller must provide a sockaddr_in via udp_in that
222  * contains the source address.  If the socket ends up being an IPv6 socket,
223  * udp_append() will convert to a sockaddr_in6 before passing the address
224  * into the socket code.
225  *
226  * In the normal case udp_append() will return 0, indicating that you
227  * must unlock the inp. However if a tunneling protocol is in place we increment
228  * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we
229  * then decrement the reference count. If the inp_rele returns 1, indicating the
230  * inp is gone, we return that to the caller to tell them *not* to unlock
231  * the inp. In the case of multi-cast this will cause the distribution
232  * to stop (though most tunneling protocols known currently do *not* use
233  * multicast).
234  */
235 static int
udp_append(struct inpcb * inp,struct ip * ip,struct mbuf * n,int off,struct sockaddr_in * udp_in)236 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
237     struct sockaddr_in *udp_in)
238 {
239 	struct sockaddr *append_sa;
240 	struct socket *so;
241 	struct mbuf *tmpopts, *opts = NULL;
242 #ifdef INET6
243 	struct sockaddr_in6 udp_in6;
244 #endif
245 	struct udpcb *up;
246 	bool filtered;
247 
248 	INP_LOCK_ASSERT(inp);
249 
250 	/*
251 	 * Engage the tunneling protocol.
252 	 */
253 	up = intoudpcb(inp);
254 	if (up->u_tun_func != NULL) {
255 		in_pcbref(inp);
256 		INP_RUNLOCK(inp);
257 		filtered = (*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0],
258 		    up->u_tun_ctx);
259 		INP_RLOCK(inp);
260 		if (filtered)
261 			return (in_pcbrele_rlocked(inp));
262 	}
263 
264 	off += sizeof(struct udphdr);
265 
266 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
267 	/* Check AH/ESP integrity. */
268 	if (IPSEC_ENABLED(ipv4) &&
269 	    IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) {
270 		m_freem(n);
271 		return (0);
272 	}
273 	if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */
274 		if (IPSEC_ENABLED(ipv4) &&
275 		    UDPENCAP_INPUT(ipv4, n, off, AF_INET) != 0)
276 			return (0);	/* Consumed. */
277 	}
278 #endif /* IPSEC */
279 #ifdef MAC
280 	if (mac_inpcb_check_deliver(inp, n) != 0) {
281 		m_freem(n);
282 		return (0);
283 	}
284 #endif /* MAC */
285 	if (inp->inp_flags & INP_CONTROLOPTS ||
286 	    inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
287 #ifdef INET6
288 		if (inp->inp_vflag & INP_IPV6)
289 			(void)ip6_savecontrol_v4(inp, n, &opts, NULL);
290 		else
291 #endif /* INET6 */
292 			ip_savecontrol(inp, &opts, ip, n);
293 	}
294 	if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) {
295 		tmpopts = sbcreatecontrol(&udp_in[1],
296 		    sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP,
297 		    M_NOWAIT);
298 		if (tmpopts) {
299 			if (opts) {
300 				tmpopts->m_next = opts;
301 				opts = tmpopts;
302 			} else
303 				opts = tmpopts;
304 		}
305 	}
306 #ifdef INET6
307 	if (inp->inp_vflag & INP_IPV6) {
308 		bzero(&udp_in6, sizeof(udp_in6));
309 		udp_in6.sin6_len = sizeof(udp_in6);
310 		udp_in6.sin6_family = AF_INET6;
311 		in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6);
312 		append_sa = (struct sockaddr *)&udp_in6;
313 	} else
314 #endif /* INET6 */
315 		append_sa = (struct sockaddr *)&udp_in[0];
316 	m_adj(n, off);
317 
318 	so = inp->inp_socket;
319 	SOCKBUF_LOCK(&so->so_rcv);
320 	if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
321 		soroverflow_locked(so);
322 		m_freem(n);
323 		if (opts)
324 			m_freem(opts);
325 		UDPSTAT_INC(udps_fullsock);
326 	} else
327 		sorwakeup_locked(so);
328 	return (0);
329 }
330 
331 static bool
udp_multi_match(const struct inpcb * inp,void * v)332 udp_multi_match(const struct inpcb *inp, void *v)
333 {
334 	struct ip *ip = v;
335 	struct udphdr *uh = (struct udphdr *)(ip + 1);
336 
337 	if (inp->inp_lport != uh->uh_dport)
338 		return (false);
339 #ifdef INET6
340 	if ((inp->inp_vflag & INP_IPV4) == 0)
341 		return (false);
342 #endif
343 	if (inp->inp_laddr.s_addr != INADDR_ANY &&
344 	    inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
345 		return (false);
346 	if (inp->inp_faddr.s_addr != INADDR_ANY &&
347 	    inp->inp_faddr.s_addr != ip->ip_src.s_addr)
348 		return (false);
349 	if (inp->inp_fport != 0 &&
350 	    inp->inp_fport != uh->uh_sport)
351 		return (false);
352 
353 	return (true);
354 }
355 
356 static int
udp_multi_input(struct mbuf * m,int proto,struct sockaddr_in * udp_in)357 udp_multi_input(struct mbuf *m, int proto, struct sockaddr_in *udp_in)
358 {
359 	struct ip *ip = mtod(m, struct ip *);
360 	struct inpcb_iterator inpi = INP_ITERATOR(udp_get_inpcbinfo(proto),
361 	    INPLOOKUP_RLOCKPCB, udp_multi_match, ip);
362 #ifdef KDTRACE_HOOKS
363 	struct udphdr *uh = (struct udphdr *)(ip + 1);
364 #endif
365 	struct inpcb *inp;
366 	struct mbuf *n;
367 	int appends = 0, fib;
368 
369 	MPASS(ip->ip_hl == sizeof(struct ip) >> 2);
370 
371 	fib = M_GETFIB(m);
372 
373 	while ((inp = inp_next(&inpi)) != NULL) {
374 		/*
375 		 * XXXRW: Because we weren't holding either the inpcb
376 		 * or the hash lock when we checked for a match
377 		 * before, we should probably recheck now that the
378 		 * inpcb lock is held.
379 		 */
380 
381 		if (V_udp_bind_all_fibs == 0 && fib != inp->inp_inc.inc_fibnum)
382 			/*
383 			 * Sockets bound to a specific FIB can only receive
384 			 * packets from that FIB.
385 			 */
386 			continue;
387 
388 		/*
389 		 * Handle socket delivery policy for any-source
390 		 * and source-specific multicast. [RFC3678]
391 		 */
392 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
393 			struct ip_moptions	*imo;
394 			struct sockaddr_in	 group;
395 			int			 blocked;
396 
397 			imo = inp->inp_moptions;
398 			if (imo == NULL)
399 				continue;
400 			bzero(&group, sizeof(struct sockaddr_in));
401 			group.sin_len = sizeof(struct sockaddr_in);
402 			group.sin_family = AF_INET;
403 			group.sin_addr = ip->ip_dst;
404 
405 			blocked = imo_multi_filter(imo, m->m_pkthdr.rcvif,
406 				(struct sockaddr *)&group,
407 				(struct sockaddr *)&udp_in[0]);
408 			if (blocked != MCAST_PASS) {
409 				if (blocked == MCAST_NOTGMEMBER)
410 					IPSTAT_INC(ips_notmember);
411 				if (blocked == MCAST_NOTSMEMBER ||
412 				    blocked == MCAST_MUTED)
413 					UDPSTAT_INC(udps_filtermcast);
414 				continue;
415 			}
416 		}
417 		if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) != NULL) {
418 			if (proto == IPPROTO_UDPLITE)
419 				UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
420 			else
421 				UDP_PROBE(receive, NULL, inp, ip, inp, uh);
422 			if (udp_append(inp, ip, n, sizeof(struct ip), udp_in)) {
423 				break;
424 			} else
425 				appends++;
426 		}
427 		/*
428 		 * Don't look for additional matches if this one does
429 		 * not have either the SO_REUSEPORT or SO_REUSEADDR
430 		 * socket options set.  This heuristic avoids
431 		 * searching through all pcbs in the common case of a
432 		 * non-shared port.  It assumes that an application
433 		 * will never clear these options after setting them.
434 		 */
435 		if ((inp->inp_socket->so_options &
436 		    (SO_REUSEPORT|SO_REUSEPORT_LB|SO_REUSEADDR)) == 0) {
437 			INP_RUNLOCK(inp);
438 			break;
439 		}
440 	}
441 
442 	if (appends == 0) {
443 		/*
444 		 * No matching pcb found; discard datagram.  (No need
445 		 * to send an ICMP Port Unreachable for a broadcast
446 		 * or multicast datgram.)
447 		 */
448 		UDPSTAT_INC(udps_noport);
449 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)))
450 			UDPSTAT_INC(udps_noportmcast);
451 		else
452 			UDPSTAT_INC(udps_noportbcast);
453 	}
454 	m_freem(m);
455 
456 	return (IPPROTO_DONE);
457 }
458 
459 static int
udp_input(struct mbuf ** mp,int * offp,int proto)460 udp_input(struct mbuf **mp, int *offp, int proto)
461 {
462 	struct ip *ip;
463 	struct udphdr *uh;
464 	struct ifnet *ifp;
465 	struct inpcb *inp;
466 	uint16_t len, ip_len;
467 	struct inpcbinfo *pcbinfo;
468 	struct sockaddr_in udp_in[2];
469 	struct mbuf *m;
470 	struct m_tag *fwd_tag;
471 	int cscov_partial, iphlen, lookupflags;
472 
473 	m = *mp;
474 	iphlen = *offp;
475 	ifp = m->m_pkthdr.rcvif;
476 	*mp = NULL;
477 	UDPSTAT_INC(udps_ipackets);
478 
479 	/*
480 	 * Strip IP options, if any; should skip this, make available to
481 	 * user, and use on returned packets, but we don't yet have a way to
482 	 * check the checksum with options still present.
483 	 */
484 	if (iphlen > sizeof (struct ip)) {
485 		ip_stripoptions(m);
486 		iphlen = sizeof(struct ip);
487 	}
488 
489 	/*
490 	 * Get IP and UDP header together in first mbuf.
491 	 */
492 	if (m->m_len < iphlen + sizeof(struct udphdr)) {
493 		if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) {
494 			UDPSTAT_INC(udps_hdrops);
495 			return (IPPROTO_DONE);
496 		}
497 	}
498 	ip = mtod(m, struct ip *);
499 	uh = (struct udphdr *)((caddr_t)ip + iphlen);
500 	cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0;
501 
502 	/*
503 	 * Destination port of 0 is illegal, based on RFC768.
504 	 */
505 	if (uh->uh_dport == 0)
506 		goto badunlocked;
507 
508 	/*
509 	 * Construct sockaddr format source address.  Stuff source address
510 	 * and datagram in user buffer.
511 	 */
512 	bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2);
513 	udp_in[0].sin_len = sizeof(struct sockaddr_in);
514 	udp_in[0].sin_family = AF_INET;
515 	udp_in[0].sin_port = uh->uh_sport;
516 	udp_in[0].sin_addr = ip->ip_src;
517 	udp_in[1].sin_len = sizeof(struct sockaddr_in);
518 	udp_in[1].sin_family = AF_INET;
519 	udp_in[1].sin_port = uh->uh_dport;
520 	udp_in[1].sin_addr = ip->ip_dst;
521 
522 	/*
523 	 * Make mbuf data length reflect UDP length.  If not enough data to
524 	 * reflect UDP length, drop.
525 	 */
526 	len = ntohs((u_short)uh->uh_ulen);
527 	ip_len = ntohs(ip->ip_len) - iphlen;
528 	if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) {
529 		/* Zero means checksum over the complete packet. */
530 		if (len == 0)
531 			len = ip_len;
532 		cscov_partial = 0;
533 	}
534 	if (ip_len != len) {
535 		if (len > ip_len || len < sizeof(struct udphdr)) {
536 			UDPSTAT_INC(udps_badlen);
537 			goto badunlocked;
538 		}
539 		if (proto == IPPROTO_UDP)
540 			m_adj(m, len - ip_len);
541 	}
542 
543 	/*
544 	 * Checksum extended UDP header and data.
545 	 */
546 	if (uh->uh_sum) {
547 		u_short uh_sum;
548 
549 		if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
550 		    !cscov_partial) {
551 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
552 				uh_sum = m->m_pkthdr.csum_data;
553 			else
554 				uh_sum = in_pseudo(ip->ip_src.s_addr,
555 				    ip->ip_dst.s_addr, htonl((u_short)len +
556 				    m->m_pkthdr.csum_data + proto));
557 			uh_sum ^= 0xffff;
558 		} else {
559 			char b[offsetof(struct ipovly, ih_src)];
560 			struct ipovly *ipov = (struct ipovly *)ip;
561 
562 			memcpy(b, ipov, sizeof(b));
563 			bzero(ipov, sizeof(ipov->ih_x1));
564 			ipov->ih_len = (proto == IPPROTO_UDP) ?
565 			    uh->uh_ulen : htons(ip_len);
566 			uh_sum = in_cksum(m, len + sizeof (struct ip));
567 			memcpy(ipov, b, sizeof(b));
568 		}
569 		if (uh_sum) {
570 			UDPSTAT_INC(udps_badsum);
571 			m_freem(m);
572 			return (IPPROTO_DONE);
573 		}
574 	} else {
575 		if (proto == IPPROTO_UDP) {
576 			UDPSTAT_INC(udps_nosum);
577 		} else {
578 			/* UDPLite requires a checksum */
579 			/* XXX: What is the right UDPLite MIB counter here? */
580 			m_freem(m);
581 			return (IPPROTO_DONE);
582 		}
583 	}
584 
585 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
586 	    in_ifnet_broadcast(ip->ip_dst, ifp))
587 		return (udp_multi_input(m, proto, udp_in));
588 
589 	pcbinfo = udp_get_inpcbinfo(proto);
590 
591 	/*
592 	 * Locate pcb for datagram.
593 	 */
594 	lookupflags = INPLOOKUP_RLOCKPCB |
595 	    (V_udp_bind_all_fibs ? 0 : INPLOOKUP_FIB);
596 
597 	/*
598 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
599 	 */
600 	if ((m->m_flags & M_IP_NEXTHOP) &&
601 	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
602 		struct sockaddr_in *next_hop;
603 
604 		next_hop = (struct sockaddr_in *)(fwd_tag + 1);
605 
606 		/*
607 		 * Transparently forwarded. Pretend to be the destination.
608 		 * Already got one like this?
609 		 */
610 		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
611 		    ip->ip_dst, uh->uh_dport, lookupflags, ifp, m);
612 		if (!inp) {
613 			/*
614 			 * It's new.  Try to find the ambushing socket.
615 			 * Because we've rewritten the destination address,
616 			 * any hardware-generated hash is ignored.
617 			 */
618 			inp = in_pcblookup(pcbinfo, ip->ip_src,
619 			    uh->uh_sport, next_hop->sin_addr,
620 			    next_hop->sin_port ? htons(next_hop->sin_port) :
621 			    uh->uh_dport, INPLOOKUP_WILDCARD | lookupflags,
622 			    ifp);
623 		}
624 		/* Remove the tag from the packet. We don't need it anymore. */
625 		m_tag_delete(m, fwd_tag);
626 		m->m_flags &= ~M_IP_NEXTHOP;
627 	} else
628 		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
629 		    ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
630 		    lookupflags, ifp, m);
631 	if (inp == NULL) {
632 		if (V_udp_log_in_vain) {
633 			char src[INET_ADDRSTRLEN];
634 			char dst[INET_ADDRSTRLEN];
635 
636 			log(LOG_INFO,
637 			    "Connection attempt to UDP %s:%d from %s:%d\n",
638 			    inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport),
639 			    inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport));
640 		}
641 		if (proto == IPPROTO_UDPLITE)
642 			UDPLITE_PROBE(receive, NULL, NULL, ip, NULL, uh);
643 		else
644 			UDP_PROBE(receive, NULL, NULL, ip, NULL, uh);
645 		UDPSTAT_INC(udps_noport);
646 		if (m->m_flags & (M_BCAST | M_MCAST)) {
647 			UDPSTAT_INC(udps_noportbcast);
648 			goto badunlocked;
649 		}
650 		if (V_udp_blackhole && (V_udp_blackhole_local ||
651 		    !in_localip(ip->ip_src)))
652 			goto badunlocked;
653 		if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
654 			goto badunlocked;
655 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
656 		return (IPPROTO_DONE);
657 	}
658 
659 	/*
660 	 * Check the minimum TTL for socket.
661 	 */
662 	INP_RLOCK_ASSERT(inp);
663 	if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
664 		if (proto == IPPROTO_UDPLITE)
665 			UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
666 		else
667 			UDP_PROBE(receive, NULL, inp, ip, inp, uh);
668 		INP_RUNLOCK(inp);
669 		m_freem(m);
670 		return (IPPROTO_DONE);
671 	}
672 	if (cscov_partial) {
673 		struct udpcb *up;
674 
675 		up = intoudpcb(inp);
676 		if (up->u_rxcslen == 0 || up->u_rxcslen > len) {
677 			INP_RUNLOCK(inp);
678 			m_freem(m);
679 			return (IPPROTO_DONE);
680 		}
681 	}
682 
683 	if (proto == IPPROTO_UDPLITE)
684 		UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
685 	else
686 		UDP_PROBE(receive, NULL, inp, ip, inp, uh);
687 	if (udp_append(inp, ip, m, iphlen, udp_in) == 0)
688 		INP_RUNLOCK(inp);
689 	return (IPPROTO_DONE);
690 
691 badunlocked:
692 	m_freem(m);
693 	return (IPPROTO_DONE);
694 }
695 #endif /* INET */
696 
697 /*
698  * Notify a udp user of an asynchronous error; just wake up so that they can
699  * collect error status.
700  */
701 struct inpcb *
udp_notify(struct inpcb * inp,int errno)702 udp_notify(struct inpcb *inp, int errno)
703 {
704 
705 	INP_WLOCK_ASSERT(inp);
706 	if ((errno == EHOSTUNREACH || errno == ENETUNREACH ||
707 	     errno == EHOSTDOWN) && inp->inp_route.ro_nh) {
708 		NH_FREE(inp->inp_route.ro_nh);
709 		inp->inp_route.ro_nh = (struct nhop_object *)NULL;
710 	}
711 
712 	inp->inp_socket->so_error = errno;
713 	sorwakeup(inp->inp_socket);
714 	sowwakeup(inp->inp_socket);
715 	return (inp);
716 }
717 
718 #ifdef INET
719 static void
udp_common_ctlinput(struct icmp * icmp,struct inpcbinfo * pcbinfo)720 udp_common_ctlinput(struct icmp *icmp, struct inpcbinfo *pcbinfo)
721 {
722 	struct ip *ip = &icmp->icmp_ip;
723 	struct udphdr *uh;
724 	struct inpcb *inp;
725 
726 	if (icmp_errmap(icmp) == 0)
727 		return;
728 
729 	uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
730 	inp = in_pcblookup(pcbinfo, ip->ip_dst, uh->uh_dport, ip->ip_src,
731 	    uh->uh_sport, INPLOOKUP_WLOCKPCB, NULL);
732 	if (inp != NULL) {
733 		INP_WLOCK_ASSERT(inp);
734 		if (inp->inp_socket != NULL)
735 			udp_notify(inp, icmp_errmap(icmp));
736 		INP_WUNLOCK(inp);
737 	} else {
738 		inp = in_pcblookup(pcbinfo, ip->ip_dst, uh->uh_dport,
739 		    ip->ip_src, uh->uh_sport,
740 		    INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
741 		if (inp != NULL) {
742 			struct udpcb *up;
743 			udp_tun_icmp_t *func;
744 
745 			up = intoudpcb(inp);
746 			func = up->u_icmp_func;
747 			INP_RUNLOCK(inp);
748 			if (func != NULL)
749 				func(icmp);
750 		}
751 	}
752 }
753 
754 static void
udp_ctlinput(struct icmp * icmp)755 udp_ctlinput(struct icmp *icmp)
756 {
757 
758 	return (udp_common_ctlinput(icmp, &V_udbinfo));
759 }
760 
761 static void
udplite_ctlinput(struct icmp * icmp)762 udplite_ctlinput(struct icmp *icmp)
763 {
764 
765 	return (udp_common_ctlinput(icmp, &V_ulitecbinfo));
766 }
767 #endif /* INET */
768 
769 static int
udp_pcblist(SYSCTL_HANDLER_ARGS)770 udp_pcblist(SYSCTL_HANDLER_ARGS)
771 {
772 	struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_udbinfo,
773 	    INPLOOKUP_RLOCKPCB);
774 	struct xinpgen xig;
775 	struct inpcb *inp;
776 	int error;
777 
778 	if (req->newptr != 0)
779 		return (EPERM);
780 
781 	if (req->oldptr == 0) {
782 		int n;
783 
784 		n = V_udbinfo.ipi_count;
785 		n += imax(n / 8, 10);
786 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
787 		return (0);
788 	}
789 
790 	if ((error = sysctl_wire_old_buffer(req, 0)) != 0)
791 		return (error);
792 
793 	bzero(&xig, sizeof(xig));
794 	xig.xig_len = sizeof xig;
795 	xig.xig_count = V_udbinfo.ipi_count;
796 	xig.xig_gen = V_udbinfo.ipi_gencnt;
797 	xig.xig_sogen = so_gencnt;
798 	error = SYSCTL_OUT(req, &xig, sizeof xig);
799 	if (error)
800 		return (error);
801 
802 	while ((inp = inp_next(&inpi)) != NULL) {
803 		if (inp->inp_gencnt <= xig.xig_gen &&
804 		    cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
805 			struct xinpcb xi;
806 
807 			in_pcbtoxinpcb(inp, &xi);
808 			error = SYSCTL_OUT(req, &xi, sizeof xi);
809 			if (error) {
810 				INP_RUNLOCK(inp);
811 				break;
812 			}
813 		}
814 	}
815 
816 	if (!error) {
817 		/*
818 		 * Give the user an updated idea of our state.  If the
819 		 * generation differs from what we told her before, she knows
820 		 * that something happened while we were processing this
821 		 * request, and it might be necessary to retry.
822 		 */
823 		xig.xig_gen = V_udbinfo.ipi_gencnt;
824 		xig.xig_sogen = so_gencnt;
825 		xig.xig_count = V_udbinfo.ipi_count;
826 		error = SYSCTL_OUT(req, &xig, sizeof xig);
827 	}
828 
829 	return (error);
830 }
831 
832 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
833     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
834     udp_pcblist, "S,xinpcb",
835     "List of active UDP sockets");
836 
837 #ifdef INET
838 static int
udp_getcred(SYSCTL_HANDLER_ARGS)839 udp_getcred(SYSCTL_HANDLER_ARGS)
840 {
841 	struct xucred xuc;
842 	struct sockaddr_in addrs[2];
843 	struct epoch_tracker et;
844 	struct inpcb *inp;
845 	int error;
846 
847 	if (req->newptr == NULL)
848 		return (EINVAL);
849 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
850 	if (error)
851 		return (error);
852 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
853 	if (error)
854 		return (error);
855 	NET_EPOCH_ENTER(et);
856 	inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
857 	    addrs[0].sin_addr, addrs[0].sin_port,
858 	    INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
859 	NET_EPOCH_EXIT(et);
860 	if (inp != NULL) {
861 		INP_RLOCK_ASSERT(inp);
862 		if (inp->inp_socket == NULL)
863 			error = ENOENT;
864 		if (error == 0)
865 			error = cr_canseeinpcb(req->td->td_ucred, inp);
866 		if (error == 0)
867 			cru2x(inp->inp_cred, &xuc);
868 		INP_RUNLOCK(inp);
869 	} else
870 		error = ENOENT;
871 	if (error == 0)
872 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
873 	return (error);
874 }
875 
876 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
877     CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_MPSAFE,
878     0, 0, udp_getcred, "S,xucred",
879     "Get the xucred of a UDP connection");
880 #endif /* INET */
881 
882 int
udp_ctloutput(struct socket * so,struct sockopt * sopt)883 udp_ctloutput(struct socket *so, struct sockopt *sopt)
884 {
885 	struct inpcb *inp;
886 	struct udpcb *up;
887 	int isudplite, error, optval;
888 
889 	error = 0;
890 	isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0;
891 	inp = sotoinpcb(so);
892 	KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
893 	INP_WLOCK(inp);
894 	if (sopt->sopt_level != so->so_proto->pr_protocol) {
895 #ifdef INET6
896 		if (INP_CHECK_SOCKAF(so, AF_INET6)) {
897 			INP_WUNLOCK(inp);
898 			error = ip6_ctloutput(so, sopt);
899 		}
900 #endif
901 #if defined(INET) && defined(INET6)
902 		else
903 #endif
904 #ifdef INET
905 		{
906 			INP_WUNLOCK(inp);
907 			error = ip_ctloutput(so, sopt);
908 		}
909 #endif
910 		return (error);
911 	}
912 
913 	switch (sopt->sopt_dir) {
914 	case SOPT_SET:
915 		switch (sopt->sopt_name) {
916 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
917 #if defined(INET) || defined(INET6)
918 		case UDP_ENCAP:
919 #ifdef INET
920 			if (INP_SOCKAF(so) == AF_INET) {
921 				if (!IPSEC_ENABLED(ipv4)) {
922 					INP_WUNLOCK(inp);
923 					return (ENOPROTOOPT);
924 				}
925 				error = UDPENCAP_PCBCTL(ipv4, inp, sopt);
926 				break;
927 			}
928 #endif /* INET */
929 #ifdef INET6
930 			if (INP_SOCKAF(so) == AF_INET6) {
931 				if (!IPSEC_ENABLED(ipv6)) {
932 					INP_WUNLOCK(inp);
933 					return (ENOPROTOOPT);
934 				}
935 				error = UDPENCAP_PCBCTL(ipv6, inp, sopt);
936 				break;
937 			}
938 #endif /* INET6 */
939 			INP_WUNLOCK(inp);
940 			return (EINVAL);
941 #endif /* INET || INET6 */
942 
943 #endif /* IPSEC */
944 		case UDPLITE_SEND_CSCOV:
945 		case UDPLITE_RECV_CSCOV:
946 			if (!isudplite) {
947 				INP_WUNLOCK(inp);
948 				error = ENOPROTOOPT;
949 				break;
950 			}
951 			INP_WUNLOCK(inp);
952 			error = sooptcopyin(sopt, &optval, sizeof(optval),
953 			    sizeof(optval));
954 			if (error != 0)
955 				break;
956 			inp = sotoinpcb(so);
957 			KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
958 			INP_WLOCK(inp);
959 			up = intoudpcb(inp);
960 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
961 			if ((optval != 0 && optval < 8) || (optval > 65535)) {
962 				INP_WUNLOCK(inp);
963 				error = EINVAL;
964 				break;
965 			}
966 			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
967 				up->u_txcslen = optval;
968 			else
969 				up->u_rxcslen = optval;
970 			INP_WUNLOCK(inp);
971 			break;
972 		default:
973 			INP_WUNLOCK(inp);
974 			error = ENOPROTOOPT;
975 			break;
976 		}
977 		break;
978 	case SOPT_GET:
979 		switch (sopt->sopt_name) {
980 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
981 #if defined(INET) || defined(INET6)
982 		case UDP_ENCAP:
983 #ifdef INET
984 			if (INP_SOCKAF(so) == AF_INET) {
985 				if (!IPSEC_ENABLED(ipv4)) {
986 					INP_WUNLOCK(inp);
987 					return (ENOPROTOOPT);
988 				}
989 				error = UDPENCAP_PCBCTL(ipv4, inp, sopt);
990 				break;
991 			}
992 #endif /* INET */
993 #ifdef INET6
994 			if (INP_SOCKAF(so) == AF_INET6) {
995 				if (!IPSEC_ENABLED(ipv6)) {
996 					INP_WUNLOCK(inp);
997 					return (ENOPROTOOPT);
998 				}
999 				error = UDPENCAP_PCBCTL(ipv6, inp, sopt);
1000 				break;
1001 			}
1002 #endif /* INET6 */
1003 			INP_WUNLOCK(inp);
1004 			return (EINVAL);
1005 #endif /* INET || INET6 */
1006 
1007 #endif /* IPSEC */
1008 		case UDPLITE_SEND_CSCOV:
1009 		case UDPLITE_RECV_CSCOV:
1010 			if (!isudplite) {
1011 				INP_WUNLOCK(inp);
1012 				error = ENOPROTOOPT;
1013 				break;
1014 			}
1015 			up = intoudpcb(inp);
1016 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1017 			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1018 				optval = up->u_txcslen;
1019 			else
1020 				optval = up->u_rxcslen;
1021 			INP_WUNLOCK(inp);
1022 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1023 			break;
1024 		default:
1025 			INP_WUNLOCK(inp);
1026 			error = ENOPROTOOPT;
1027 			break;
1028 		}
1029 		break;
1030 	}
1031 	return (error);
1032 }
1033 
1034 #ifdef INET
1035 #ifdef INET6
1036 /* The logic here is derived from ip6_setpktopt(). See comments there. */
1037 static int
udp_v4mapped_pktinfo(struct cmsghdr * cm,struct sockaddr_in * src,struct inpcb * inp,int flags)1038 udp_v4mapped_pktinfo(struct cmsghdr *cm, struct sockaddr_in * src,
1039     struct inpcb *inp, int flags)
1040 {
1041 	struct ifnet *ifp;
1042 	struct in6_pktinfo *pktinfo;
1043 	struct in_addr ia;
1044 
1045 	NET_EPOCH_ASSERT();
1046 
1047 	if ((flags & PRUS_IPV6) == 0)
1048 		return (0);
1049 
1050 	if (cm->cmsg_level != IPPROTO_IPV6)
1051 		return (0);
1052 
1053 	if  (cm->cmsg_type != IPV6_2292PKTINFO &&
1054 	    cm->cmsg_type != IPV6_PKTINFO)
1055 		return (0);
1056 
1057 	if (cm->cmsg_len !=
1058 	    CMSG_LEN(sizeof(struct in6_pktinfo)))
1059 		return (EINVAL);
1060 
1061 	pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
1062 	if (!IN6_IS_ADDR_V4MAPPED(&pktinfo->ipi6_addr) &&
1063 	    !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr))
1064 		return (EINVAL);
1065 
1066 	/* Validate the interface index if specified. */
1067 	if (pktinfo->ipi6_ifindex) {
1068 		ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
1069 		if (ifp == NULL)
1070 			return (ENXIO);
1071 	} else
1072 		ifp = NULL;
1073 	if (ifp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
1074 		ia.s_addr = pktinfo->ipi6_addr.s6_addr32[3];
1075 		if (!in_ifhasaddr(ifp, ia))
1076 			return (EADDRNOTAVAIL);
1077 	}
1078 
1079 	bzero(src, sizeof(*src));
1080 	src->sin_family = AF_INET;
1081 	src->sin_len = sizeof(*src);
1082 	src->sin_port = inp->inp_lport;
1083 	src->sin_addr.s_addr = pktinfo->ipi6_addr.s6_addr32[3];
1084 
1085 	return (0);
1086 }
1087 #endif	/* INET6 */
1088 
1089 int
udp_send(struct socket * so,int flags,struct mbuf * m,struct sockaddr * addr,struct mbuf * control,struct thread * td)1090 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
1091     struct mbuf *control, struct thread *td)
1092 {
1093 	struct inpcb *inp;
1094 	struct udpiphdr *ui;
1095 	int len, error = 0;
1096 	struct in_addr faddr, laddr;
1097 	struct cmsghdr *cm;
1098 	struct inpcbinfo *pcbinfo;
1099 	struct sockaddr_in *sin, src;
1100 	struct epoch_tracker et;
1101 	int cscov_partial = 0;
1102 	int ipflags = 0;
1103 	u_short fport, lport;
1104 	u_char tos, vflagsav;
1105 	uint8_t pr;
1106 	uint16_t cscov = 0;
1107 	uint32_t flowid = 0;
1108 	uint8_t flowtype = M_HASHTYPE_NONE;
1109 	bool use_cached_route;
1110 
1111 	inp = sotoinpcb(so);
1112 	KASSERT(inp != NULL, ("udp_send: inp == NULL"));
1113 
1114 	if (addr != NULL) {
1115 		if (addr->sa_family != AF_INET)
1116 			error = EAFNOSUPPORT;
1117 		else if (addr->sa_len != sizeof(struct sockaddr_in))
1118 			error = EINVAL;
1119 		if (__predict_false(error != 0)) {
1120 			m_freem(control);
1121 			m_freem(m);
1122 			return (error);
1123 		}
1124 	}
1125 
1126 	len = m->m_pkthdr.len;
1127 	if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
1128 		if (control)
1129 			m_freem(control);
1130 		m_freem(m);
1131 		return (EMSGSIZE);
1132 	}
1133 
1134 	src.sin_family = 0;
1135 	sin = (struct sockaddr_in *)addr;
1136 
1137 	/*
1138 	 * udp_send() may need to bind the current inpcb.  As such, we don't
1139 	 * know up front whether we will need the pcbinfo lock or not.  Do any
1140 	 * work to decide what is needed up front before acquiring any locks.
1141 	 *
1142 	 * We will need network epoch in either case, to safely lookup into
1143 	 * pcb hash.
1144 	 */
1145 	use_cached_route = sin == NULL || (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0);
1146 	if (use_cached_route || (flags & PRUS_IPV6) != 0)
1147 		INP_WLOCK(inp);
1148 	else
1149 		INP_RLOCK(inp);
1150 	NET_EPOCH_ENTER(et);
1151 	tos = inp->inp_ip_tos;
1152 	if (control != NULL) {
1153 		/*
1154 		 * XXX: Currently, we assume all the optional information is
1155 		 * stored in a single mbuf.
1156 		 */
1157 		if (control->m_next) {
1158 			m_freem(control);
1159 			error = EINVAL;
1160 			goto release;
1161 		}
1162 		for (; control->m_len > 0;
1163 		    control->m_data += CMSG_ALIGN(cm->cmsg_len),
1164 		    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1165 			cm = mtod(control, struct cmsghdr *);
1166 			if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
1167 			    || cm->cmsg_len > control->m_len) {
1168 				error = EINVAL;
1169 				break;
1170 			}
1171 #ifdef INET6
1172 			error = udp_v4mapped_pktinfo(cm, &src, inp, flags);
1173 			if (error != 0)
1174 				break;
1175 #endif
1176 			if (cm->cmsg_level != IPPROTO_IP)
1177 				continue;
1178 
1179 			switch (cm->cmsg_type) {
1180 			case IP_SENDSRCADDR:
1181 				if (cm->cmsg_len !=
1182 				    CMSG_LEN(sizeof(struct in_addr))) {
1183 					error = EINVAL;
1184 					break;
1185 				}
1186 				bzero(&src, sizeof(src));
1187 				src.sin_family = AF_INET;
1188 				src.sin_len = sizeof(src);
1189 				src.sin_port = inp->inp_lport;
1190 				src.sin_addr =
1191 				    *(struct in_addr *)CMSG_DATA(cm);
1192 				break;
1193 
1194 			case IP_TOS:
1195 				if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) {
1196 					error = EINVAL;
1197 					break;
1198 				}
1199 				tos = *(u_char *)CMSG_DATA(cm);
1200 				break;
1201 
1202 			case IP_FLOWID:
1203 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1204 					error = EINVAL;
1205 					break;
1206 				}
1207 				flowid = *(uint32_t *) CMSG_DATA(cm);
1208 				break;
1209 
1210 			case IP_FLOWTYPE:
1211 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1212 					error = EINVAL;
1213 					break;
1214 				}
1215 				flowtype = *(uint32_t *) CMSG_DATA(cm);
1216 				break;
1217 
1218 #ifdef	RSS
1219 			case IP_RSSBUCKETID:
1220 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1221 					error = EINVAL;
1222 					break;
1223 				}
1224 				/* This is just a placeholder for now */
1225 				break;
1226 #endif	/* RSS */
1227 			default:
1228 				error = ENOPROTOOPT;
1229 				break;
1230 			}
1231 			if (error)
1232 				break;
1233 		}
1234 		m_freem(control);
1235 		control = NULL;
1236 	}
1237 	if (error)
1238 		goto release;
1239 
1240 	pr = inp->inp_socket->so_proto->pr_protocol;
1241 	pcbinfo = udp_get_inpcbinfo(pr);
1242 
1243 	/*
1244 	 * If the IP_SENDSRCADDR control message was specified, override the
1245 	 * source address for this datagram.  Its use is invalidated if the
1246 	 * address thus specified is incomplete or clobbers other inpcbs.
1247 	 */
1248 	laddr = inp->inp_laddr;
1249 	lport = inp->inp_lport;
1250 	if (src.sin_family == AF_INET) {
1251 		if ((lport == 0) ||
1252 		    (laddr.s_addr == INADDR_ANY &&
1253 		     src.sin_addr.s_addr == INADDR_ANY)) {
1254 			error = EINVAL;
1255 			goto release;
1256 		}
1257 		if ((flags & PRUS_IPV6) != 0) {
1258 			vflagsav = inp->inp_vflag;
1259 			inp->inp_vflag |= INP_IPV4;
1260 			inp->inp_vflag &= ~INP_IPV6;
1261 		}
1262 		INP_HASH_WLOCK(pcbinfo);
1263 		error = in_pcbbind_setup(inp, &src, &laddr.s_addr, &lport,
1264 		    V_udp_bind_all_fibs ? 0 : INPBIND_FIB, td->td_ucred);
1265 		INP_HASH_WUNLOCK(pcbinfo);
1266 		if ((flags & PRUS_IPV6) != 0)
1267 			inp->inp_vflag = vflagsav;
1268 		if (error)
1269 			goto release;
1270 	}
1271 
1272 	/*
1273 	 * If a UDP socket has been connected, then a local address/port will
1274 	 * have been selected and bound.
1275 	 *
1276 	 * If a UDP socket has not been connected to, then an explicit
1277 	 * destination address must be used, in which case a local
1278 	 * address/port may not have been selected and bound.
1279 	 */
1280 	if (sin != NULL) {
1281 		INP_LOCK_ASSERT(inp);
1282 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1283 			error = EISCONN;
1284 			goto release;
1285 		}
1286 
1287 		/*
1288 		 * Jail may rewrite the destination address, so let it do
1289 		 * that before we use it.
1290 		 */
1291 		error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1292 		if (error)
1293 			goto release;
1294 		/*
1295 		 * sendto(2) on unconnected UDP socket results in implicit
1296 		 * binding to INADDR_ANY and anonymous port.  This has two
1297 		 * side effects:
1298 		 * 1) after first sendto(2) the socket will receive datagrams
1299 		 *    destined to the selected port.
1300 		 * 2) subsequent sendto(2) calls will use the same source port.
1301 		 */
1302 		if (inp->inp_lport == 0) {
1303 			struct sockaddr_in wild = {
1304 				.sin_family = AF_INET,
1305 				.sin_len = sizeof(struct sockaddr_in),
1306 			};
1307 
1308 			INP_HASH_WLOCK(pcbinfo);
1309 			error = in_pcbbind(inp, &wild, V_udp_bind_all_fibs ?
1310 			    0 : INPBIND_FIB, td->td_ucred);
1311 			INP_HASH_WUNLOCK(pcbinfo);
1312 			if (error)
1313 				goto release;
1314 			lport = inp->inp_lport;
1315 			laddr = inp->inp_laddr;
1316 		}
1317 		if (laddr.s_addr == INADDR_ANY) {
1318 			error = in_pcbladdr(inp, &sin->sin_addr, &laddr,
1319 			    td->td_ucred);
1320 			if (error)
1321 				goto release;
1322 		}
1323 		faddr = sin->sin_addr;
1324 		fport = sin->sin_port;
1325 	} else {
1326 		INP_LOCK_ASSERT(inp);
1327 		faddr = inp->inp_faddr;
1328 		fport = inp->inp_fport;
1329 		if (faddr.s_addr == INADDR_ANY) {
1330 			error = ENOTCONN;
1331 			goto release;
1332 		}
1333 	}
1334 
1335 	/*
1336 	 * Calculate data length and get a mbuf for UDP, IP, and possible
1337 	 * link-layer headers.  Immediate slide the data pointer back forward
1338 	 * since we won't use that space at this layer.
1339 	 */
1340 	M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT);
1341 	if (m == NULL) {
1342 		error = ENOBUFS;
1343 		goto release;
1344 	}
1345 	m->m_data += max_linkhdr;
1346 	m->m_len -= max_linkhdr;
1347 	m->m_pkthdr.len -= max_linkhdr;
1348 
1349 	/*
1350 	 * Fill in mbuf with extended UDP header and addresses and length put
1351 	 * into network format.
1352 	 */
1353 	ui = mtod(m, struct udpiphdr *);
1354 	/*
1355 	 * Filling only those fields of udpiphdr that participate in the
1356 	 * checksum calculation. The rest must be zeroed and will be filled
1357 	 * later.
1358 	 */
1359 	bzero(ui->ui_x1, sizeof(ui->ui_x1));
1360 	ui->ui_pr = pr;
1361 	ui->ui_src = laddr;
1362 	ui->ui_dst = faddr;
1363 	ui->ui_sport = lport;
1364 	ui->ui_dport = fport;
1365 	ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
1366 	if (pr == IPPROTO_UDPLITE) {
1367 		struct udpcb *up;
1368 		uint16_t plen;
1369 
1370 		up = intoudpcb(inp);
1371 		cscov = up->u_txcslen;
1372 		plen = (u_short)len + sizeof(struct udphdr);
1373 		if (cscov >= plen)
1374 			cscov = 0;
1375 		ui->ui_len = htons(plen);
1376 		ui->ui_ulen = htons(cscov);
1377 		/*
1378 		 * For UDP-Lite, checksum coverage length of zero means
1379 		 * the entire UDPLite packet is covered by the checksum.
1380 		 */
1381 		cscov_partial = (cscov == 0) ? 0 : 1;
1382 	}
1383 
1384 	if (inp->inp_socket->so_options & SO_DONTROUTE)
1385 		ipflags |= IP_ROUTETOIF;
1386 	if (inp->inp_socket->so_options & SO_BROADCAST)
1387 		ipflags |= IP_ALLOWBROADCAST;
1388 	if (inp->inp_flags & INP_ONESBCAST)
1389 		ipflags |= IP_SENDONES;
1390 
1391 #ifdef MAC
1392 	mac_inpcb_create_mbuf(inp, m);
1393 #endif
1394 
1395 	/*
1396 	 * Set up checksum and output datagram.
1397 	 */
1398 	ui->ui_sum = 0;
1399 	if (pr == IPPROTO_UDPLITE) {
1400 		if (inp->inp_flags & INP_ONESBCAST)
1401 			faddr.s_addr = INADDR_BROADCAST;
1402 		if (cscov_partial) {
1403 			if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0)
1404 				ui->ui_sum = 0xffff;
1405 		} else {
1406 			if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0)
1407 				ui->ui_sum = 0xffff;
1408 		}
1409 	} else if (V_udp_cksum) {
1410 		if (inp->inp_flags & INP_ONESBCAST)
1411 			faddr.s_addr = INADDR_BROADCAST;
1412 		ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
1413 		    htons((u_short)len + sizeof(struct udphdr) + pr));
1414 		m->m_pkthdr.csum_flags = CSUM_UDP;
1415 		m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
1416 	}
1417 	/*
1418 	 * After finishing the checksum computation, fill the remaining fields
1419 	 * of udpiphdr.
1420 	 */
1421 	((struct ip *)ui)->ip_v = IPVERSION;
1422 	((struct ip *)ui)->ip_tos = tos;
1423 	((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
1424 	if (inp->inp_flags & INP_DONTFRAG)
1425 		((struct ip *)ui)->ip_off |= htons(IP_DF);
1426 	((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl;
1427 	UDPSTAT_INC(udps_opackets);
1428 
1429 	/*
1430 	 * Setup flowid / RSS information for outbound socket.
1431 	 *
1432 	 * Once the UDP code decides to set a flowid some other way,
1433 	 * this allows the flowid to be overridden by userland.
1434 	 */
1435 	if (flowtype != M_HASHTYPE_NONE) {
1436 		m->m_pkthdr.flowid = flowid;
1437 		M_HASHTYPE_SET(m, flowtype);
1438 	}
1439 #if defined(ROUTE_MPATH) || defined(RSS)
1440 	else if (CALC_FLOWID_OUTBOUND_SENDTO) {
1441 		uint32_t hash_val, hash_type;
1442 
1443 		hash_val = fib4_calc_packet_hash(laddr, faddr,
1444 		    lport, fport, pr, &hash_type);
1445 		m->m_pkthdr.flowid = hash_val;
1446 		M_HASHTYPE_SET(m, hash_type);
1447 	}
1448 
1449 	/*
1450 	 * Don't override with the inp cached flowid value.
1451 	 *
1452 	 * Depending upon the kind of send being done, the inp
1453 	 * flowid/flowtype values may actually not be appropriate
1454 	 * for this particular socket send.
1455 	 *
1456 	 * We should either leave the flowid at zero (which is what is
1457 	 * currently done) or set it to some software generated
1458 	 * hash value based on the packet contents.
1459 	 */
1460 	ipflags |= IP_NODEFAULTFLOWID;
1461 #endif	/* RSS */
1462 
1463 	if (pr == IPPROTO_UDPLITE)
1464 		UDPLITE_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1465 	else
1466 		UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1467 	error = ip_output(m, inp->inp_options,
1468 	    use_cached_route ? &inp->inp_route : NULL, ipflags,
1469 	    inp->inp_moptions, inp);
1470 	INP_UNLOCK(inp);
1471 	NET_EPOCH_EXIT(et);
1472 	return (error);
1473 
1474 release:
1475 	INP_UNLOCK(inp);
1476 	NET_EPOCH_EXIT(et);
1477 	m_freem(m);
1478 	return (error);
1479 }
1480 
1481 void
udp_abort(struct socket * so)1482 udp_abort(struct socket *so)
1483 {
1484 	struct inpcb *inp;
1485 	struct inpcbinfo *pcbinfo;
1486 
1487 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1488 	inp = sotoinpcb(so);
1489 	KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
1490 	INP_WLOCK(inp);
1491 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1492 		INP_HASH_WLOCK(pcbinfo);
1493 		in_pcbdisconnect(inp);
1494 		INP_HASH_WUNLOCK(pcbinfo);
1495 		soisdisconnected(so);
1496 	}
1497 	INP_WUNLOCK(inp);
1498 }
1499 
1500 static int
udp_attach(struct socket * so,int proto,struct thread * td)1501 udp_attach(struct socket *so, int proto, struct thread *td)
1502 {
1503 	static uint32_t udp_flowid;
1504 	struct inpcbinfo *pcbinfo;
1505 	struct inpcb *inp;
1506 	struct udpcb *up;
1507 	int error;
1508 
1509 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1510 	inp = sotoinpcb(so);
1511 	KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
1512 	error = soreserve(so, udp_sendspace, udp_recvspace);
1513 	if (error)
1514 		return (error);
1515 	error = in_pcballoc(so, pcbinfo);
1516 	if (error)
1517 		return (error);
1518 
1519 	inp = sotoinpcb(so);
1520 	inp->inp_ip_ttl = V_ip_defttl;
1521 	inp->inp_flowid = atomic_fetchadd_int(&udp_flowid, 1);
1522 	inp->inp_flowtype = M_HASHTYPE_OPAQUE;
1523 	up = intoudpcb(inp);
1524 	bzero(&up->u_start_zero, u_zero_size);
1525 	INP_WUNLOCK(inp);
1526 
1527 	return (0);
1528 }
1529 #endif /* INET */
1530 
1531 int
udp_set_kernel_tunneling(struct socket * so,udp_tun_func_t f,udp_tun_icmp_t i,void * ctx)1532 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx)
1533 {
1534 	struct inpcb *inp;
1535 	struct udpcb *up;
1536 
1537 	KASSERT(so->so_type == SOCK_DGRAM,
1538 	    ("udp_set_kernel_tunneling: !dgram"));
1539 	inp = sotoinpcb(so);
1540 	KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
1541 	INP_WLOCK(inp);
1542 	up = intoudpcb(inp);
1543 	if ((f != NULL || i != NULL) && ((up->u_tun_func != NULL) ||
1544 	    (up->u_icmp_func != NULL))) {
1545 		INP_WUNLOCK(inp);
1546 		return (EBUSY);
1547 	}
1548 	up->u_tun_func = f;
1549 	up->u_icmp_func = i;
1550 	up->u_tun_ctx = ctx;
1551 	INP_WUNLOCK(inp);
1552 	return (0);
1553 }
1554 
1555 #ifdef INET
1556 static int
udp_bind(struct socket * so,struct sockaddr * nam,struct thread * td)1557 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
1558 {
1559 	struct inpcb *inp;
1560 	struct inpcbinfo *pcbinfo;
1561 	struct sockaddr_in *sinp;
1562 	int error;
1563 
1564 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1565 	inp = sotoinpcb(so);
1566 	KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
1567 
1568 	sinp = (struct sockaddr_in *)nam;
1569 	if (nam->sa_family != AF_INET) {
1570 		/*
1571 		 * Preserve compatibility with old programs.
1572 		 */
1573 		if (nam->sa_family != AF_UNSPEC ||
1574 		    nam->sa_len < offsetof(struct sockaddr_in, sin_zero) ||
1575 		    sinp->sin_addr.s_addr != INADDR_ANY)
1576 			return (EAFNOSUPPORT);
1577 		nam->sa_family = AF_INET;
1578 	}
1579 	if (nam->sa_len != sizeof(struct sockaddr_in))
1580 		return (EINVAL);
1581 
1582 	INP_WLOCK(inp);
1583 	INP_HASH_WLOCK(pcbinfo);
1584 	error = in_pcbbind(inp, sinp, V_udp_bind_all_fibs ? 0 : INPBIND_FIB,
1585 	    td->td_ucred);
1586 	INP_HASH_WUNLOCK(pcbinfo);
1587 	INP_WUNLOCK(inp);
1588 	return (error);
1589 }
1590 
1591 static void
udp_close(struct socket * so)1592 udp_close(struct socket *so)
1593 {
1594 	struct inpcb *inp;
1595 	struct inpcbinfo *pcbinfo;
1596 
1597 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1598 	inp = sotoinpcb(so);
1599 	KASSERT(inp != NULL, ("udp_close: inp == NULL"));
1600 	INP_WLOCK(inp);
1601 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1602 		INP_HASH_WLOCK(pcbinfo);
1603 		in_pcbdisconnect(inp);
1604 		INP_HASH_WUNLOCK(pcbinfo);
1605 		soisdisconnected(so);
1606 	}
1607 	INP_WUNLOCK(inp);
1608 }
1609 
1610 static int
udp_connect(struct socket * so,struct sockaddr * nam,struct thread * td)1611 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1612 {
1613 	struct epoch_tracker et;
1614 	struct inpcb *inp;
1615 	struct inpcbinfo *pcbinfo;
1616 	struct sockaddr_in *sin;
1617 	int error;
1618 
1619 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1620 	inp = sotoinpcb(so);
1621 	KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
1622 
1623 	sin = (struct sockaddr_in *)nam;
1624 	if (sin->sin_family != AF_INET)
1625 		return (EAFNOSUPPORT);
1626 	if (sin->sin_len != sizeof(*sin))
1627 		return (EINVAL);
1628 
1629 	INP_WLOCK(inp);
1630 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1631 		INP_WUNLOCK(inp);
1632 		return (EISCONN);
1633 	}
1634 	error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1635 	if (error != 0) {
1636 		INP_WUNLOCK(inp);
1637 		return (error);
1638 	}
1639 	NET_EPOCH_ENTER(et);
1640 	INP_HASH_WLOCK(pcbinfo);
1641 	error = in_pcbconnect(inp, sin, td->td_ucred);
1642 	INP_HASH_WUNLOCK(pcbinfo);
1643 	NET_EPOCH_EXIT(et);
1644 	if (error == 0)
1645 		soisconnected(so);
1646 	INP_WUNLOCK(inp);
1647 	return (error);
1648 }
1649 
1650 static void
udp_detach(struct socket * so)1651 udp_detach(struct socket *so)
1652 {
1653 	struct inpcb *inp;
1654 
1655 	inp = sotoinpcb(so);
1656 	KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
1657 	KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
1658 	    ("udp_detach: not disconnected"));
1659 	INP_WLOCK(inp);
1660 	in_pcbfree(inp);
1661 }
1662 
1663 int
udp_disconnect(struct socket * so)1664 udp_disconnect(struct socket *so)
1665 {
1666 	struct inpcb *inp;
1667 	struct inpcbinfo *pcbinfo;
1668 
1669 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1670 	inp = sotoinpcb(so);
1671 	KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
1672 	INP_WLOCK(inp);
1673 	if (inp->inp_faddr.s_addr == INADDR_ANY) {
1674 		INP_WUNLOCK(inp);
1675 		return (ENOTCONN);
1676 	}
1677 	INP_HASH_WLOCK(pcbinfo);
1678 	in_pcbdisconnect(inp);
1679 	INP_HASH_WUNLOCK(pcbinfo);
1680 	SOCK_LOCK(so);
1681 	so->so_state &= ~SS_ISCONNECTED;		/* XXX */
1682 	SOCK_UNLOCK(so);
1683 	INP_WUNLOCK(inp);
1684 	return (0);
1685 }
1686 #endif /* INET */
1687 
1688 int
udp_shutdown(struct socket * so,enum shutdown_how how)1689 udp_shutdown(struct socket *so, enum shutdown_how how)
1690 {
1691 	int error;
1692 
1693 	SOCK_LOCK(so);
1694 	if (!(so->so_state & SS_ISCONNECTED))
1695 		/*
1696 		 * POSIX mandates us to just return ENOTCONN when shutdown(2) is
1697 		 * invoked on a datagram sockets, however historically we would
1698 		 * actually tear socket down.  This is known to be leveraged by
1699 		 * some applications to unblock process waiting in recv(2) by
1700 		 * other process that it shares that socket with.  Try to meet
1701 		 * both backward-compatibility and POSIX requirements by forcing
1702 		 * ENOTCONN but still flushing buffers and performing wakeup(9).
1703 		 *
1704 		 * XXXGL: it remains unknown what applications expect this
1705 		 * behavior and is this isolated to unix/dgram or inet/dgram or
1706 		 * both.  See: D10351, D3039.
1707 		 */
1708 		error = ENOTCONN;
1709 	else
1710 		error = 0;
1711 	SOCK_UNLOCK(so);
1712 
1713 	switch (how) {
1714 	case SHUT_RD:
1715 		sorflush(so);
1716 		break;
1717 	case SHUT_RDWR:
1718 		sorflush(so);
1719 		/* FALLTHROUGH */
1720 	case SHUT_WR:
1721 		socantsendmore(so);
1722 	}
1723 
1724 	return (error);
1725 }
1726 
1727 #ifdef INET
1728 #define	UDP_PROTOSW							\
1729 	.pr_type =		SOCK_DGRAM,				\
1730 	.pr_flags =		PR_ATOMIC | PR_ADDR | PR_CAPATTACH,	\
1731 	.pr_ctloutput =		udp_ctloutput,				\
1732 	.pr_abort =		udp_abort,				\
1733 	.pr_attach =		udp_attach,				\
1734 	.pr_bind =		udp_bind,				\
1735 	.pr_connect =		udp_connect,				\
1736 	.pr_control =		in_control,				\
1737 	.pr_detach =		udp_detach,				\
1738 	.pr_disconnect =	udp_disconnect,				\
1739 	.pr_peeraddr =		in_getpeeraddr,				\
1740 	.pr_send =		udp_send,				\
1741 	.pr_soreceive =		soreceive_dgram,			\
1742 	.pr_sosend =		sosend_dgram,				\
1743 	.pr_shutdown =		udp_shutdown,				\
1744 	.pr_sockaddr =		in_getsockaddr,				\
1745 	.pr_sosetlabel =	in_pcbsosetlabel,			\
1746 	.pr_close =		udp_close
1747 
1748 struct protosw udp_protosw = {
1749 	.pr_protocol =		IPPROTO_UDP,
1750 	UDP_PROTOSW
1751 };
1752 
1753 struct protosw udplite_protosw = {
1754 	.pr_protocol =		IPPROTO_UDPLITE,
1755 	UDP_PROTOSW
1756 };
1757 
1758 static void
udp_init(void * arg __unused)1759 udp_init(void *arg __unused)
1760 {
1761 
1762 	IPPROTO_REGISTER(IPPROTO_UDP, udp_input, udp_ctlinput);
1763 	IPPROTO_REGISTER(IPPROTO_UDPLITE, udp_input, udplite_ctlinput);
1764 }
1765 SYSINIT(udp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, udp_init, NULL);
1766 #endif /* INET */
1767