xref: /freebsd/sys/netpfil/ipfilter/netinet/fil.c (revision 47fb51847fdea3f1cce841b5f2bbbcd6f8a04ee0)
1 
2 /*
3  * Copyright (C) 2012 by Darren Reed.
4  *
5  * See the IPFILTER.LICENCE file for details on licencing.
6  *
7  * Copyright 2008 Sun Microsystems.
8  *
9  * $Id$
10  *
11  */
12 #if defined(KERNEL) || defined(_KERNEL)
13 # undef KERNEL
14 # undef _KERNEL
15 # define        KERNEL	1
16 # define        _KERNEL	1
17 #endif
18 #include <sys/errno.h>
19 #include <sys/types.h>
20 #include <sys/param.h>
21 #include <sys/time.h>
22 #if defined(_KERNEL) && defined(__FreeBSD__)
23 #  if !defined(IPFILTER_LKM)
24 #   include "opt_inet6.h"
25 #  endif
26 # include <sys/filio.h>
27 #else
28 # include <sys/ioctl.h>
29 #endif
30 #if defined(__SVR4) || defined(sun) /* SOLARIS */
31 # include <sys/filio.h>
32 #endif
33 # include <sys/fcntl.h>
34 #if defined(_KERNEL)
35 # include <sys/systm.h>
36 # include <sys/file.h>
37 #else
38 # include <stdio.h>
39 # include <string.h>
40 # include <stdlib.h>
41 # include <stddef.h>
42 # include <sys/file.h>
43 # define _KERNEL
44 # include <sys/uio.h>
45 # undef _KERNEL
46 #endif
47 #if !defined(__SVR4)
48 # include <sys/mbuf.h>
49 #else
50 # include <sys/byteorder.h>
51 # if (SOLARIS2 < 5) && defined(sun)
52 #  include <sys/dditypes.h>
53 # endif
54 #endif
55 # include <sys/protosw.h>
56 #include <sys/socket.h>
57 #include <net/if.h>
58 #ifdef sun
59 # include <net/af.h>
60 #endif
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/ip.h>
64 #include <netinet/tcp.h>
65 # include <netinet/udp.h>
66 # include <netinet/ip_icmp.h>
67 #include "netinet/ip_compat.h"
68 #ifdef	USE_INET6
69 # include <netinet/icmp6.h>
70 # if !SOLARIS && defined(_KERNEL)
71 #  include <netinet6/in6_var.h>
72 # endif
73 #endif
74 #include "netinet/ip_fil.h"
75 #include "netinet/ip_nat.h"
76 #include "netinet/ip_frag.h"
77 #include "netinet/ip_state.h"
78 #include "netinet/ip_proxy.h"
79 #include "netinet/ip_auth.h"
80 #ifdef IPFILTER_SCAN
81 # include "netinet/ip_scan.h"
82 #endif
83 #include "netinet/ip_sync.h"
84 #include "netinet/ip_lookup.h"
85 #include "netinet/ip_pool.h"
86 #include "netinet/ip_htable.h"
87 #ifdef IPFILTER_COMPILED
88 # include "netinet/ip_rules.h"
89 #endif
90 #if defined(IPFILTER_BPF) && defined(_KERNEL)
91 # include <net/bpf.h>
92 #endif
93 #if defined(__FreeBSD__)
94 # include <sys/malloc.h>
95 #endif
96 #include "netinet/ipl.h"
97 
98 #if defined(__NetBSD__) && (__NetBSD_Version__ >= 104230000)
99 # include <sys/callout.h>
100 extern struct callout ipf_slowtimer_ch;
101 #endif
102 /* END OF INCLUDES */
103 
104 
105 #ifndef	_KERNEL
106 # include "ipf.h"
107 # include "ipt.h"
108 extern	int	opts;
109 extern	int	blockreason;
110 #endif /* _KERNEL */
111 
112 #define FASTROUTE_RECURSION
113 
114 #define	LBUMP(x)	softc->x++
115 #define	LBUMPD(x, y)	do { softc->x.y++; DT(y); } while (0)
116 
117 static	inline int	ipf_check_ipf(fr_info_t *, frentry_t *, int);
118 static	u_32_t		ipf_checkcipso(fr_info_t *, u_char *, int);
119 static	u_32_t		ipf_checkripso(u_char *);
120 static	u_32_t		ipf_decaps(fr_info_t *, u_32_t, int);
121 #ifdef IPFILTER_LOG
122 static	frentry_t	*ipf_dolog(fr_info_t *, u_32_t *);
123 #endif
124 static	int		ipf_flushlist(ipf_main_softc_t *, int *, frentry_t **);
125 static	int		ipf_flush_groups(ipf_main_softc_t *, frgroup_t **,
126 					      int);
127 static	ipfunc_t	ipf_findfunc(ipfunc_t);
128 static	void		*ipf_findlookup(ipf_main_softc_t *, int, frentry_t *,
129 					     i6addr_t *, i6addr_t *);
130 static	frentry_t	*ipf_firewall(fr_info_t *, u_32_t *);
131 static	int		ipf_fr_matcharray(fr_info_t *, int *);
132 static	int		ipf_frruleiter(ipf_main_softc_t *, void *, int,
133 					    void *);
134 static	void		ipf_funcfini(ipf_main_softc_t *, frentry_t *);
135 static	int		ipf_funcinit(ipf_main_softc_t *, frentry_t *);
136 static	int		ipf_geniter(ipf_main_softc_t *, ipftoken_t *,
137 					 ipfgeniter_t *);
138 static	void		ipf_getstat(ipf_main_softc_t *,
139 					 struct friostat *, int);
140 static	int		ipf_group_flush(ipf_main_softc_t *, frgroup_t *);
141 static	void		ipf_group_free(frgroup_t *);
142 static	int		ipf_grpmapfini(struct ipf_main_softc_s *,
143 					    frentry_t *);
144 static	int		ipf_grpmapinit(struct ipf_main_softc_s *,
145 					    frentry_t *);
146 static	frentry_t	*ipf_nextrule(ipf_main_softc_t *, int, int,
147 					   frentry_t *, int);
148 static	int		ipf_portcheck(frpcmp_t *, u_32_t);
149 static	inline int	ipf_pr_ah(fr_info_t *);
150 static	inline void	ipf_pr_esp(fr_info_t *);
151 static	inline void	ipf_pr_gre(fr_info_t *);
152 static	inline void	ipf_pr_udp(fr_info_t *);
153 static	inline void	ipf_pr_tcp(fr_info_t *);
154 static	inline void	ipf_pr_icmp(fr_info_t *);
155 static	inline void	ipf_pr_ipv4hdr(fr_info_t *);
156 static	inline void	ipf_pr_short(fr_info_t *, int);
157 static	inline int	ipf_pr_tcpcommon(fr_info_t *);
158 static	inline int	ipf_pr_udpcommon(fr_info_t *);
159 static	void		ipf_rule_delete(ipf_main_softc_t *, frentry_t *f,
160 					     int, int);
161 static	void		ipf_rule_expire_insert(ipf_main_softc_t *,
162 						    frentry_t *, int);
163 static	int		ipf_synclist(ipf_main_softc_t *, frentry_t *,
164 					  void *);
165 static	void		ipf_token_flush(ipf_main_softc_t *);
166 static	void		ipf_token_unlink(ipf_main_softc_t *,
167 					      ipftoken_t *);
168 static	ipftuneable_t	*ipf_tune_findbyname(ipftuneable_t *,
169 						  const char *);
170 static	ipftuneable_t	*ipf_tune_findbycookie(ipftuneable_t **, void *,
171 						    void **);
172 static	int		ipf_updateipid(fr_info_t *);
173 static	int		ipf_settimeout(struct ipf_main_softc_s *,
174 					    struct ipftuneable *,
175 					    ipftuneval_t *);
176 #if !defined(_KERNEL) || SOLARIS
177 static	int		ppsratecheck(struct timeval *, int *, int);
178 #endif
179 
180 
181 /*
182  * bit values for identifying presence of individual IP options
183  * All of these tables should be ordered by increasing key value on the left
184  * hand side to allow for binary searching of the array and include a trailer
185  * with a 0 for the bitmask for linear searches to easily find the end with.
186  */
187 static const	struct	optlist	ipopts[] = {
188 	{ IPOPT_NOP,	0x000001 },
189 	{ IPOPT_RR,	0x000002 },
190 	{ IPOPT_ZSU,	0x000004 },
191 	{ IPOPT_MTUP,	0x000008 },
192 	{ IPOPT_MTUR,	0x000010 },
193 	{ IPOPT_ENCODE,	0x000020 },
194 	{ IPOPT_TS,	0x000040 },
195 	{ IPOPT_TR,	0x000080 },
196 	{ IPOPT_SECURITY, 0x000100 },
197 	{ IPOPT_LSRR,	0x000200 },
198 	{ IPOPT_E_SEC,	0x000400 },
199 	{ IPOPT_CIPSO,	0x000800 },
200 	{ IPOPT_SATID,	0x001000 },
201 	{ IPOPT_SSRR,	0x002000 },
202 	{ IPOPT_ADDEXT,	0x004000 },
203 	{ IPOPT_VISA,	0x008000 },
204 	{ IPOPT_IMITD,	0x010000 },
205 	{ IPOPT_EIP,	0x020000 },
206 	{ IPOPT_FINN,	0x040000 },
207 	{ 0,		0x000000 }
208 };
209 
210 #ifdef USE_INET6
211 static const struct optlist ip6exthdr[] = {
212 	{ IPPROTO_HOPOPTS,		0x000001 },
213 	{ IPPROTO_IPV6,			0x000002 },
214 	{ IPPROTO_ROUTING,		0x000004 },
215 	{ IPPROTO_FRAGMENT,		0x000008 },
216 	{ IPPROTO_ESP,			0x000010 },
217 	{ IPPROTO_AH,			0x000020 },
218 	{ IPPROTO_NONE,			0x000040 },
219 	{ IPPROTO_DSTOPTS,		0x000080 },
220 	{ IPPROTO_MOBILITY,		0x000100 },
221 	{ 0,				0 }
222 };
223 #endif
224 
225 /*
226  * bit values for identifying presence of individual IP security options
227  */
228 static const	struct	optlist	secopt[] = {
229 	{ IPSO_CLASS_RES4,	0x01 },
230 	{ IPSO_CLASS_TOPS,	0x02 },
231 	{ IPSO_CLASS_SECR,	0x04 },
232 	{ IPSO_CLASS_RES3,	0x08 },
233 	{ IPSO_CLASS_CONF,	0x10 },
234 	{ IPSO_CLASS_UNCL,	0x20 },
235 	{ IPSO_CLASS_RES2,	0x40 },
236 	{ IPSO_CLASS_RES1,	0x80 }
237 };
238 
239 /*
240  * Internal errors set by ipf_check_names_string().
241  */
242 static const int interr_tbl[3] = { 152, 156, 153 };
243 
244 char	ipfilter_version[] = IPL_VERSION;
245 
246 int	ipf_features = 0
247 #ifdef	IPFILTER_LKM
248 		| IPF_FEAT_LKM
249 #endif
250 #ifdef	IPFILTER_LOG
251 		| IPF_FEAT_LOG
252 #endif
253 		| IPF_FEAT_LOOKUP
254 #ifdef	IPFILTER_BPF
255 		| IPF_FEAT_BPF
256 #endif
257 #ifdef	IPFILTER_COMPILED
258 		| IPF_FEAT_COMPILED
259 #endif
260 #ifdef	IPFILTER_CKSUM
261 		| IPF_FEAT_CKSUM
262 #endif
263 		| IPF_FEAT_SYNC
264 #ifdef	IPFILTER_SCAN
265 		| IPF_FEAT_SCAN
266 #endif
267 #ifdef	USE_INET6
268 		| IPF_FEAT_IPV6
269 #endif
270 	;
271 
272 
273 /*
274  * Table of functions available for use with call rules.
275  */
276 static ipfunc_resolve_t ipf_availfuncs[] = {
277 	{ "srcgrpmap", ipf_srcgrpmap, ipf_grpmapinit, ipf_grpmapfini },
278 	{ "dstgrpmap", ipf_dstgrpmap, ipf_grpmapinit, ipf_grpmapfini },
279 	{ "",	      NULL,	      NULL,	      NULL }
280 };
281 
282 static ipftuneable_t ipf_main_tuneables[] = {
283 	{ { (void *)offsetof(struct ipf_main_softc_s, ipf_flags) },
284 		"ipf_flags",		0,	0xffffffff,
285 		stsizeof(ipf_main_softc_t, ipf_flags),
286 		0,			NULL,	NULL },
287 	{ { (void *)offsetof(struct ipf_main_softc_s, ipf_active) },
288 		"active",		0,	0,
289 		stsizeof(ipf_main_softc_t, ipf_active),
290 		IPFT_RDONLY,		NULL,	NULL },
291 	{ { (void *)offsetof(ipf_main_softc_t, ipf_control_forwarding) },
292 		"control_forwarding",	0, 1,
293 		stsizeof(ipf_main_softc_t, ipf_control_forwarding),
294 		0,			NULL,	NULL },
295 	{ { (void *)offsetof(ipf_main_softc_t, ipf_update_ipid) },
296 		"update_ipid",		0,	1,
297 		stsizeof(ipf_main_softc_t, ipf_update_ipid),
298 		0,			NULL,	NULL },
299 	{ { (void *)offsetof(ipf_main_softc_t, ipf_chksrc) },
300 		"chksrc",		0,	1,
301 		stsizeof(ipf_main_softc_t, ipf_chksrc),
302 		0,			NULL,	NULL },
303 	{ { (void *)offsetof(ipf_main_softc_t, ipf_minttl) },
304 		"min_ttl",		0,	1,
305 		stsizeof(ipf_main_softc_t, ipf_minttl),
306 		0,			NULL,	NULL },
307 	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmpminfragmtu) },
308 		"icmp_minfragmtu",	0,	1,
309 		stsizeof(ipf_main_softc_t, ipf_icmpminfragmtu),
310 		0,			NULL,	NULL },
311 	{ { (void *)offsetof(ipf_main_softc_t, ipf_pass) },
312 		"default_pass",		0,	0xffffffff,
313 		stsizeof(ipf_main_softc_t, ipf_pass),
314 		0,			NULL,	NULL },
315 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpidletimeout) },
316 		"tcp_idle_timeout",	1,	0x7fffffff,
317 		stsizeof(ipf_main_softc_t, ipf_tcpidletimeout),
318 		0,			NULL,	ipf_settimeout },
319 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosewait) },
320 		"tcp_close_wait",	1,	0x7fffffff,
321 		stsizeof(ipf_main_softc_t, ipf_tcpclosewait),
322 		0,			NULL,	ipf_settimeout },
323 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcplastack) },
324 		"tcp_last_ack",		1,	0x7fffffff,
325 		stsizeof(ipf_main_softc_t, ipf_tcplastack),
326 		0,			NULL,	ipf_settimeout },
327 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcptimeout) },
328 		"tcp_timeout",		1,	0x7fffffff,
329 		stsizeof(ipf_main_softc_t, ipf_tcptimeout),
330 		0,			NULL,	ipf_settimeout },
331 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynsent) },
332 		"tcp_syn_sent",		1,	0x7fffffff,
333 		stsizeof(ipf_main_softc_t, ipf_tcpsynsent),
334 		0,			NULL,	ipf_settimeout },
335 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynrecv) },
336 		"tcp_syn_received",	1,	0x7fffffff,
337 		stsizeof(ipf_main_softc_t, ipf_tcpsynrecv),
338 		0,			NULL,	ipf_settimeout },
339 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosed) },
340 		"tcp_closed",		1,	0x7fffffff,
341 		stsizeof(ipf_main_softc_t, ipf_tcpclosed),
342 		0,			NULL,	ipf_settimeout },
343 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcphalfclosed) },
344 		"tcp_half_closed",	1,	0x7fffffff,
345 		stsizeof(ipf_main_softc_t, ipf_tcphalfclosed),
346 		0,			NULL,	ipf_settimeout },
347 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcptimewait) },
348 		"tcp_time_wait",	1,	0x7fffffff,
349 		stsizeof(ipf_main_softc_t, ipf_tcptimewait),
350 		0,			NULL,	ipf_settimeout },
351 	{ { (void *)offsetof(ipf_main_softc_t, ipf_udptimeout) },
352 		"udp_timeout",		1,	0x7fffffff,
353 		stsizeof(ipf_main_softc_t, ipf_udptimeout),
354 		0,			NULL,	ipf_settimeout },
355 	{ { (void *)offsetof(ipf_main_softc_t, ipf_udpacktimeout) },
356 		"udp_ack_timeout",	1,	0x7fffffff,
357 		stsizeof(ipf_main_softc_t, ipf_udpacktimeout),
358 		0,			NULL,	ipf_settimeout },
359 	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmptimeout) },
360 		"icmp_timeout",		1,	0x7fffffff,
361 		stsizeof(ipf_main_softc_t, ipf_icmptimeout),
362 		0,			NULL,	ipf_settimeout },
363 	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmpacktimeout) },
364 		"icmp_ack_timeout",	1,	0x7fffffff,
365 		stsizeof(ipf_main_softc_t, ipf_icmpacktimeout),
366 		0,			NULL,	ipf_settimeout },
367 	{ { (void *)offsetof(ipf_main_softc_t, ipf_iptimeout) },
368 		"ip_timeout",		1,	0x7fffffff,
369 		stsizeof(ipf_main_softc_t, ipf_iptimeout),
370 		0,			NULL,	ipf_settimeout },
371 	{ { (void *)offsetof(ipf_main_softc_t, ipf_max_namelen) },
372 		"max_namelen",		0,	0x7fffffff,
373 		stsizeof(ipf_main_softc_t, ipf_max_namelen),
374 		0,			NULL,	NULL },
375 #if defined(INSTANCES) && defined(_KERNEL)
376 	{ { (void *)offsetof(ipf_main_softc_t, ipf_get_loopback) },
377 		"intercept_loopback",	0,	1,
378 		stsizeof(ipf_main_softc_t, ipf_get_loopback),
379 		0,			NULL,	ipf_set_loopback },
380 #endif
381 	{ { 0 },
382 		NULL,			0,	0,
383 		0,
384 		0,			NULL,	NULL }
385 };
386 
387 
388 /*
389  * The next section of code is a collection of small routines that set
390  * fields in the fr_info_t structure passed based on properties of the
391  * current packet.  There are different routines for the same protocol
392  * for each of IPv4 and IPv6.  Adding a new protocol, for which there
393  * will "special" inspection for setup, is now more easily done by adding
394  * a new routine and expanding the ipf_pr_ipinit*() function rather than by
395  * adding more code to a growing switch statement.
396  */
397 #ifdef USE_INET6
398 static	inline int	ipf_pr_ah6(fr_info_t *);
399 static	inline void	ipf_pr_esp6(fr_info_t *);
400 static	inline void	ipf_pr_gre6(fr_info_t *);
401 static	inline void	ipf_pr_udp6(fr_info_t *);
402 static	inline void	ipf_pr_tcp6(fr_info_t *);
403 static	inline void	ipf_pr_icmp6(fr_info_t *);
404 static	inline void	ipf_pr_ipv6hdr(fr_info_t *);
405 static	inline void	ipf_pr_short6(fr_info_t *, int);
406 static	inline int	ipf_pr_hopopts6(fr_info_t *);
407 static	inline int	ipf_pr_mobility6(fr_info_t *);
408 static	inline int	ipf_pr_routing6(fr_info_t *);
409 static	inline int	ipf_pr_dstopts6(fr_info_t *);
410 static	inline int	ipf_pr_fragment6(fr_info_t *);
411 static	inline struct ip6_ext *ipf_pr_ipv6exthdr(fr_info_t *, int, int);
412 
413 
414 /* ------------------------------------------------------------------------ */
415 /* Function:    ipf_pr_short6                                               */
416 /* Returns:     void                                                        */
417 /* Parameters:  fin(I)  - pointer to packet information                     */
418 /*              xmin(I) - minimum header size                               */
419 /*                                                                          */
420 /* IPv6 Only                                                                */
421 /* This is function enforces the 'is a packet too short to be legit' rule   */
422 /* for IPv6 and marks the packet with FI_SHORT if so.  See function comment */
423 /* for ipf_pr_short() for more details.                                     */
424 /* ------------------------------------------------------------------------ */
425 static inline void
426 ipf_pr_short6(fr_info_t *fin, int xmin)
427 {
428 
429 	if (fin->fin_dlen < xmin)
430 		fin->fin_flx |= FI_SHORT;
431 }
432 
433 
434 /* ------------------------------------------------------------------------ */
435 /* Function:    ipf_pr_ipv6hdr                                              */
436 /* Returns:     void                                                        */
437 /* Parameters:  fin(I) - pointer to packet information                      */
438 /*                                                                          */
439 /* IPv6 Only                                                                */
440 /* Copy values from the IPv6 header into the fr_info_t struct and call the  */
441 /* per-protocol analyzer if it exists.  In validating the packet, a protocol*/
442 /* analyzer may pullup or free the packet itself so we need to be vigiliant */
443 /* of that possibility arising.                                             */
444 /* ------------------------------------------------------------------------ */
445 static inline void
446 ipf_pr_ipv6hdr(fr_info_t *fin)
447 {
448 	ip6_t *ip6 = (ip6_t *)fin->fin_ip;
449 	int p, go = 1, i;
450 	fr_ip_t *fi = &fin->fin_fi;
451 
452 	fin->fin_off = 0;
453 
454 	fi->fi_tos = 0;
455 	fi->fi_optmsk = 0;
456 	fi->fi_secmsk = 0;
457 	fi->fi_auth = 0;
458 
459 	p = ip6->ip6_nxt;
460 	fin->fin_crc = p;
461 	fi->fi_ttl = ip6->ip6_hlim;
462 	fi->fi_src.in6 = ip6->ip6_src;
463 	fin->fin_crc += fi->fi_src.i6[0];
464 	fin->fin_crc += fi->fi_src.i6[1];
465 	fin->fin_crc += fi->fi_src.i6[2];
466 	fin->fin_crc += fi->fi_src.i6[3];
467 	fi->fi_dst.in6 = ip6->ip6_dst;
468 	fin->fin_crc += fi->fi_dst.i6[0];
469 	fin->fin_crc += fi->fi_dst.i6[1];
470 	fin->fin_crc += fi->fi_dst.i6[2];
471 	fin->fin_crc += fi->fi_dst.i6[3];
472 	fin->fin_id = 0;
473 	if (IN6_IS_ADDR_MULTICAST(&fi->fi_dst.in6))
474 		fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
475 
476 	while (go && !(fin->fin_flx & FI_SHORT)) {
477 		switch (p)
478 		{
479 		case IPPROTO_UDP :
480 			ipf_pr_udp6(fin);
481 			go = 0;
482 			break;
483 
484 		case IPPROTO_TCP :
485 			ipf_pr_tcp6(fin);
486 			go = 0;
487 			break;
488 
489 		case IPPROTO_ICMPV6 :
490 			ipf_pr_icmp6(fin);
491 			go = 0;
492 			break;
493 
494 		case IPPROTO_GRE :
495 			ipf_pr_gre6(fin);
496 			go = 0;
497 			break;
498 
499 		case IPPROTO_HOPOPTS :
500 			p = ipf_pr_hopopts6(fin);
501 			break;
502 
503 		case IPPROTO_MOBILITY :
504 			p = ipf_pr_mobility6(fin);
505 			break;
506 
507 		case IPPROTO_DSTOPTS :
508 			p = ipf_pr_dstopts6(fin);
509 			break;
510 
511 		case IPPROTO_ROUTING :
512 			p = ipf_pr_routing6(fin);
513 			break;
514 
515 		case IPPROTO_AH :
516 			p = ipf_pr_ah6(fin);
517 			break;
518 
519 		case IPPROTO_ESP :
520 			ipf_pr_esp6(fin);
521 			go = 0;
522 			break;
523 
524 		case IPPROTO_IPV6 :
525 			for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
526 				if (ip6exthdr[i].ol_val == p) {
527 					fin->fin_flx |= ip6exthdr[i].ol_bit;
528 					break;
529 				}
530 			go = 0;
531 			break;
532 
533 		case IPPROTO_NONE :
534 			go = 0;
535 			break;
536 
537 		case IPPROTO_FRAGMENT :
538 			p = ipf_pr_fragment6(fin);
539 			/*
540 			 * Given that the only fragments we want to let through
541 			 * (where fin_off != 0) are those where the non-first
542 			 * fragments only have data, we can safely stop looking
543 			 * at headers if this is a non-leading fragment.
544 			 */
545 			if (fin->fin_off != 0)
546 				go = 0;
547 			break;
548 
549 		default :
550 			go = 0;
551 			break;
552 		}
553 
554 		/*
555 		 * It is important to note that at this point, for the
556 		 * extension headers (go != 0), the entire header may not have
557 		 * been pulled up when the code gets to this point.  This is
558 		 * only done for "go != 0" because the other header handlers
559 		 * will all pullup their complete header.  The other indicator
560 		 * of an incomplete packet is that this was just an extension
561 		 * header.
562 		 */
563 		if ((go != 0) && (p != IPPROTO_NONE) &&
564 		    (ipf_pr_pullup(fin, 0) == -1)) {
565 			p = IPPROTO_NONE;
566 			break;
567 		}
568 	}
569 
570 	/*
571 	 * Some of the above functions, like ipf_pr_esp6(), can call ipf_pullup
572 	 * and destroy whatever packet was here.  The caller of this function
573 	 * expects us to return if there is a problem with ipf_pullup.
574 	 */
575 	if (fin->fin_m == NULL) {
576 		ipf_main_softc_t *softc = fin->fin_main_soft;
577 
578 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_bad);
579 		return;
580 	}
581 
582 	fi->fi_p = p;
583 
584 	/*
585 	 * IPv6 fragment case 1 - see comment for ipf_pr_fragment6().
586 	 * "go != 0" implies the above loop hasn't arrived at a layer 4 header.
587 	 */
588 	if ((go != 0) && (fin->fin_flx & FI_FRAG) && (fin->fin_off == 0)) {
589 		ipf_main_softc_t *softc = fin->fin_main_soft;
590 
591 		fin->fin_flx |= FI_BAD;
592 		DT2(ipf_fi_bad_ipv6_frag_1, fr_info_t *, fin, int, go);
593 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_badfrag);
594 		LBUMP(ipf_stats[fin->fin_out].fr_v6_bad);
595 	}
596 }
597 
598 
599 /* ------------------------------------------------------------------------ */
600 /* Function:    ipf_pr_ipv6exthdr                                           */
601 /* Returns:     struct ip6_ext * - pointer to the start of the next header  */
602 /*                                 or NULL if there is a prolblem.          */
603 /* Parameters:  fin(I)      - pointer to packet information                 */
604 /*              multiple(I) - flag indicating yes/no if multiple occurances */
605 /*                            of this extension header are allowed.         */
606 /*              proto(I)    - protocol number for this extension header     */
607 /*                                                                          */
608 /* IPv6 Only                                                                */
609 /* This function embodies a number of common checks that all IPv6 extension */
610 /* headers must be subjected to.  For example, making sure the packet is    */
611 /* big enough for it to be in, checking if it is repeated and setting a     */
612 /* flag to indicate its presence.                                           */
613 /* ------------------------------------------------------------------------ */
614 static inline struct ip6_ext *
615 ipf_pr_ipv6exthdr(fr_info_t *fin, int multiple, int proto)
616 {
617 	ipf_main_softc_t *softc = fin->fin_main_soft;
618 	struct ip6_ext *hdr;
619 	u_short shift;
620 	int i;
621 
622 	fin->fin_flx |= FI_V6EXTHDR;
623 
624 				/* 8 is default length of extension hdr */
625 	if ((fin->fin_dlen - 8) < 0) {
626 		fin->fin_flx |= FI_SHORT;
627 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_short);
628 		return (NULL);
629 	}
630 
631 	if (ipf_pr_pullup(fin, 8) == -1) {
632 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_pullup);
633 		return (NULL);
634 	}
635 
636 	hdr = fin->fin_dp;
637 	switch (proto)
638 	{
639 	case IPPROTO_FRAGMENT :
640 		shift = 8;
641 		break;
642 	default :
643 		shift = 8 + (hdr->ip6e_len << 3);
644 		break;
645 	}
646 
647 	if (shift > fin->fin_dlen) {	/* Nasty extension header length? */
648 		fin->fin_flx |= FI_BAD;
649 		DT3(ipf_fi_bad_pr_ipv6exthdr_len, fr_info_t *, fin, u_short, shift, u_short, fin->fin_dlen);
650 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_hlen);
651 		return (NULL);
652 	}
653 
654 	fin->fin_dp = (char *)fin->fin_dp + shift;
655 	fin->fin_dlen -= shift;
656 
657 	/*
658 	 * If we have seen a fragment header, do not set any flags to indicate
659 	 * the presence of this extension header as it has no impact on the
660 	 * end result until after it has been defragmented.
661 	 */
662 	if (fin->fin_flx & FI_FRAG)
663 		return (hdr);
664 
665 	for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
666 		if (ip6exthdr[i].ol_val == proto) {
667 			/*
668 			 * Most IPv6 extension headers are only allowed once.
669 			 */
670 			if ((multiple == 0) &&
671 			    ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0)) {
672 				fin->fin_flx |= FI_BAD;
673 				DT2(ipf_fi_bad_ipv6exthdr_once, fr_info_t *, fin, u_int, (fin->fin_optmsk & ip6exthdr[i].ol_bit));
674 			} else
675 				fin->fin_optmsk |= ip6exthdr[i].ol_bit;
676 			break;
677 		}
678 
679 	return (hdr);
680 }
681 
682 
683 /* ------------------------------------------------------------------------ */
684 /* Function:    ipf_pr_hopopts6                                             */
685 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
686 /* Parameters:  fin(I) - pointer to packet information                      */
687 /*                                                                          */
688 /* IPv6 Only                                                                */
689 /* This is function checks pending hop by hop options extension header      */
690 /* ------------------------------------------------------------------------ */
691 static inline int
692 ipf_pr_hopopts6(fr_info_t *fin)
693 {
694 	struct ip6_ext *hdr;
695 
696 	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
697 	if (hdr == NULL)
698 		return (IPPROTO_NONE);
699 	return (hdr->ip6e_nxt);
700 }
701 
702 
703 /* ------------------------------------------------------------------------ */
704 /* Function:    ipf_pr_mobility6                                            */
705 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
706 /* Parameters:  fin(I) - pointer to packet information                      */
707 /*                                                                          */
708 /* IPv6 Only                                                                */
709 /* This is function checks the IPv6 mobility extension header               */
710 /* ------------------------------------------------------------------------ */
711 static inline int
712 ipf_pr_mobility6(fr_info_t *fin)
713 {
714 	struct ip6_ext *hdr;
715 
716 	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_MOBILITY);
717 	if (hdr == NULL)
718 		return (IPPROTO_NONE);
719 	return (hdr->ip6e_nxt);
720 }
721 
722 
723 /* ------------------------------------------------------------------------ */
724 /* Function:    ipf_pr_routing6                                             */
725 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
726 /* Parameters:  fin(I) - pointer to packet information                      */
727 /*                                                                          */
728 /* IPv6 Only                                                                */
729 /* This is function checks pending routing extension header                 */
730 /* ------------------------------------------------------------------------ */
731 static inline int
732 ipf_pr_routing6(fr_info_t *fin)
733 {
734 	struct ip6_routing *hdr;
735 
736 	hdr = (struct ip6_routing *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_ROUTING);
737 	if (hdr == NULL)
738 		return (IPPROTO_NONE);
739 
740 	switch (hdr->ip6r_type)
741 	{
742 	case 0 :
743 		/*
744 		 * Nasty extension header length?
745 		 */
746 		if (((hdr->ip6r_len >> 1) < hdr->ip6r_segleft) ||
747 		    (hdr->ip6r_segleft && (hdr->ip6r_len & 1))) {
748 			ipf_main_softc_t *softc = fin->fin_main_soft;
749 
750 			fin->fin_flx |= FI_BAD;
751 			DT1(ipf_fi_bad_routing6, fr_info_t *, fin);
752 			LBUMPD(ipf_stats[fin->fin_out], fr_v6_rh_bad);
753 			return (IPPROTO_NONE);
754 		}
755 		break;
756 
757 	default :
758 		break;
759 	}
760 
761 	return (hdr->ip6r_nxt);
762 }
763 
764 
765 /* ------------------------------------------------------------------------ */
766 /* Function:    ipf_pr_fragment6                                            */
767 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
768 /* Parameters:  fin(I) - pointer to packet information                      */
769 /*                                                                          */
770 /* IPv6 Only                                                                */
771 /* Examine the IPv6 fragment header and extract fragment offset information.*/
772 /*                                                                          */
773 /* Fragments in IPv6 are extraordinarily difficult to deal with - much more */
774 /* so than in IPv4.  There are 5 cases of fragments with IPv6 that all      */
775 /* packets with a fragment header can fit into.  They are as follows:       */
776 /*                                                                          */
777 /* 1.  [IPv6][0-n EH][FH][0-n EH] (no L4HDR present)                        */
778 /* 2.  [IPV6][0-n EH][FH][0-n EH][L4HDR part] (short)                       */
779 /* 3.  [IPV6][0-n EH][FH][L4HDR part][0-n data] (short)                     */
780 /* 4.  [IPV6][0-n EH][FH][0-n EH][L4HDR][0-n data]                          */
781 /* 5.  [IPV6][0-n EH][FH][data]                                             */
782 /*                                                                          */
783 /* IPV6 = IPv6 header, FH = Fragment Header,                                */
784 /* 0-n EH = 0 or more extension headers, 0-n data = 0 or more bytes of data */
785 /*                                                                          */
786 /* Packets that match 1, 2, 3 will be dropped as the only reasonable        */
787 /* scenario in which they happen is in extreme circumstances that are most  */
788 /* likely to be an indication of an attack rather than normal traffic.      */
789 /* A type 3 packet may be sent by an attacked after a type 4 packet.  There */
790 /* are two rules that can be used to guard against type 3 packets: L4       */
791 /* headers must always be in a packet that has the offset field set to 0    */
792 /* and no packet is allowed to overlay that where offset = 0.               */
793 /* ------------------------------------------------------------------------ */
794 static inline int
795 ipf_pr_fragment6(fr_info_t *fin)
796 {
797 	ipf_main_softc_t *softc = fin->fin_main_soft;
798 	struct ip6_frag *frag;
799 
800 	fin->fin_flx |= FI_FRAG;
801 
802 	frag = (struct ip6_frag *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT);
803 	if (frag == NULL) {
804 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_frag_bad);
805 		return (IPPROTO_NONE);
806 	}
807 
808 	if ((frag->ip6f_offlg & IP6F_MORE_FRAG) != 0) {
809 		/*
810 		 * Any fragment that isn't the last fragment must have its
811 		 * length as a multiple of 8.
812 		 */
813 		if ((fin->fin_plen & 7) != 0) {
814 			fin->fin_flx |= FI_BAD;
815 			DT2(ipf_fi_bad_frag_not_8, fr_info_t *, fin, u_int, (fin->fin_plen & 7));
816 		}
817 	}
818 
819 	fin->fin_fraghdr = frag;
820 	fin->fin_id = frag->ip6f_ident;
821 	fin->fin_off = ntohs(frag->ip6f_offlg & IP6F_OFF_MASK);
822 	if (fin->fin_off != 0)
823 		fin->fin_flx |= FI_FRAGBODY;
824 
825 	/*
826 	 * Jumbograms aren't handled, so the max. length is 64k
827 	 */
828 	if ((fin->fin_off << 3) + fin->fin_dlen > 65535) {
829 		  fin->fin_flx |= FI_BAD;
830 		  DT2(ipf_fi_bad_jumbogram, fr_info_t *, fin, u_int, ((fin->fin_off << 3) + fin->fin_dlen));
831 	}
832 
833 	/*
834 	 * We don't know where the transport layer header (or whatever is next
835 	 * is), as it could be behind destination options (amongst others) so
836 	* return the fragment header as the type of packet this is.  Note that
837 	 * this effectively disables the fragment cache for > 1 protocol at a
838 	 * time.
839 	 */
840 	return (frag->ip6f_nxt);
841 }
842 
843 
844 /* ------------------------------------------------------------------------ */
845 /* Function:    ipf_pr_dstopts6                                             */
846 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
847 /* Parameters:  fin(I) - pointer to packet information                      */
848 /*                                                                          */
849 /* IPv6 Only                                                                */
850 /* This is function checks pending destination options extension header     */
851 /* ------------------------------------------------------------------------ */
852 static inline int
853 ipf_pr_dstopts6(fr_info_t *fin)
854 {
855 	ipf_main_softc_t *softc = fin->fin_main_soft;
856 	struct ip6_ext *hdr;
857 
858 	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_DSTOPTS);
859 	if (hdr == NULL) {
860 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_dst_bad);
861 		return (IPPROTO_NONE);
862 	}
863 	return (hdr->ip6e_nxt);
864 }
865 
866 
867 /* ------------------------------------------------------------------------ */
868 /* Function:    ipf_pr_icmp6                                                */
869 /* Returns:     void                                                        */
870 /* Parameters:  fin(I) - pointer to packet information                      */
871 /*                                                                          */
872 /* IPv6 Only                                                                */
873 /* This routine is mainly concerned with determining the minimum valid size */
874 /* for an ICMPv6 packet.                                                    */
875 /* ------------------------------------------------------------------------ */
876 static inline void
877 ipf_pr_icmp6(fr_info_t *fin)
878 {
879 	int minicmpsz = sizeof(struct icmp6_hdr);
880 	struct icmp6_hdr *icmp6;
881 
882 	if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1) {
883 		ipf_main_softc_t *softc = fin->fin_main_soft;
884 
885 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_icmp6_pullup);
886 		return;
887 	}
888 
889 	if (fin->fin_dlen > 1) {
890 		ip6_t *ip6;
891 
892 		icmp6 = fin->fin_dp;
893 
894 		fin->fin_data[0] = *(u_short *)icmp6;
895 
896 		if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0)
897 			fin->fin_flx |= FI_ICMPQUERY;
898 
899 		switch (icmp6->icmp6_type)
900 		{
901 		case ICMP6_ECHO_REPLY :
902 		case ICMP6_ECHO_REQUEST :
903 			if (fin->fin_dlen >= 6)
904 				fin->fin_data[1] = icmp6->icmp6_id;
905 			minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t);
906 			break;
907 
908 		case ICMP6_DST_UNREACH :
909 		case ICMP6_PACKET_TOO_BIG :
910 		case ICMP6_TIME_EXCEEDED :
911 		case ICMP6_PARAM_PROB :
912 			fin->fin_flx |= FI_ICMPERR;
913 			minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t);
914 			if (fin->fin_plen < ICMP6ERR_IPICMPHLEN)
915 				break;
916 
917 			if (M_LEN(fin->fin_m) < fin->fin_plen) {
918 				if (ipf_coalesce(fin) != 1)
919 					return;
920 			}
921 
922 			if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN) == -1)
923 				return;
924 
925 			/*
926 			 * If the destination of this packet doesn't match the
927 			 * source of the original packet then this packet is
928 			 * not correct.
929 			 */
930 			icmp6 = fin->fin_dp;
931 			ip6 = (ip6_t *)((char *)icmp6 + ICMPERR_ICMPHLEN);
932 			if (IP6_NEQ(&fin->fin_fi.fi_dst,
933 				    (i6addr_t *)&ip6->ip6_src)) {
934 				fin->fin_flx |= FI_BAD;
935 				DT1(ipf_fi_bad_icmp6, fr_info_t *, fin);
936 			}
937 			break;
938 		default :
939 			break;
940 		}
941 	}
942 
943 	ipf_pr_short6(fin, minicmpsz);
944 	if ((fin->fin_flx & (FI_SHORT|FI_BAD)) == 0) {
945 		u_char p = fin->fin_p;
946 
947 		fin->fin_p = IPPROTO_ICMPV6;
948 		ipf_checkv6sum(fin);
949 		fin->fin_p = p;
950 	}
951 }
952 
953 
954 /* ------------------------------------------------------------------------ */
955 /* Function:    ipf_pr_udp6                                                 */
956 /* Returns:     void                                                        */
957 /* Parameters:  fin(I) - pointer to packet information                      */
958 /*                                                                          */
959 /* IPv6 Only                                                                */
960 /* Analyse the packet for IPv6/UDP properties.                              */
961 /* Is not expected to be called for fragmented packets.                     */
962 /* ------------------------------------------------------------------------ */
963 static inline void
964 ipf_pr_udp6(fr_info_t *fin)
965 {
966 
967 	if (ipf_pr_udpcommon(fin) == 0) {
968 		u_char p = fin->fin_p;
969 
970 		fin->fin_p = IPPROTO_UDP;
971 		ipf_checkv6sum(fin);
972 		fin->fin_p = p;
973 	}
974 }
975 
976 
977 /* ------------------------------------------------------------------------ */
978 /* Function:    ipf_pr_tcp6                                                 */
979 /* Returns:     void                                                        */
980 /* Parameters:  fin(I) - pointer to packet information                      */
981 /*                                                                          */
982 /* IPv6 Only                                                                */
983 /* Analyse the packet for IPv6/TCP properties.                              */
984 /* Is not expected to be called for fragmented packets.                     */
985 /* ------------------------------------------------------------------------ */
986 static inline void
987 ipf_pr_tcp6(fr_info_t *fin)
988 {
989 
990 	if (ipf_pr_tcpcommon(fin) == 0) {
991 		u_char p = fin->fin_p;
992 
993 		fin->fin_p = IPPROTO_TCP;
994 		ipf_checkv6sum(fin);
995 		fin->fin_p = p;
996 	}
997 }
998 
999 
1000 /* ------------------------------------------------------------------------ */
1001 /* Function:    ipf_pr_esp6                                                 */
1002 /* Returns:     void                                                        */
1003 /* Parameters:  fin(I) - pointer to packet information                      */
1004 /*                                                                          */
1005 /* IPv6 Only                                                                */
1006 /* Analyse the packet for ESP properties.                                   */
1007 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
1008 /* even though the newer ESP packets must also have a sequence number that  */
1009 /* is 32bits as well, it is not possible(?) to determine the version from a */
1010 /* simple packet header.                                                    */
1011 /* ------------------------------------------------------------------------ */
1012 static inline void
1013 ipf_pr_esp6(fr_info_t *fin)
1014 {
1015 
1016 	if ((fin->fin_off == 0) && (ipf_pr_pullup(fin, 8) == -1)) {
1017 		ipf_main_softc_t *softc = fin->fin_main_soft;
1018 
1019 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_esp_pullup);
1020 		return;
1021 	}
1022 }
1023 
1024 
1025 /* ------------------------------------------------------------------------ */
1026 /* Function:    ipf_pr_ah6                                                  */
1027 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
1028 /* Parameters:  fin(I) - pointer to packet information                      */
1029 /*                                                                          */
1030 /* IPv6 Only                                                                */
1031 /* Analyse the packet for AH properties.                                    */
1032 /* The minimum length is taken to be the combination of all fields in the   */
1033 /* header being present and no authentication data (null algorithm used.)   */
1034 /* ------------------------------------------------------------------------ */
1035 static inline int
1036 ipf_pr_ah6(fr_info_t *fin)
1037 {
1038 	authhdr_t *ah;
1039 
1040 	fin->fin_flx |= FI_AH;
1041 
1042 	ah = (authhdr_t *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
1043 	if (ah == NULL) {
1044 		ipf_main_softc_t *softc = fin->fin_main_soft;
1045 
1046 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ah_bad);
1047 		return (IPPROTO_NONE);
1048 	}
1049 
1050 	ipf_pr_short6(fin, sizeof(*ah));
1051 
1052 	/*
1053 	 * No need for another pullup, ipf_pr_ipv6exthdr() will pullup
1054 	 * enough data to satisfy ah_next (the very first one.)
1055 	 */
1056 	return (ah->ah_next);
1057 }
1058 
1059 
1060 /* ------------------------------------------------------------------------ */
1061 /* Function:    ipf_pr_gre6                                                 */
1062 /* Returns:     void                                                        */
1063 /* Parameters:  fin(I) - pointer to packet information                      */
1064 /*                                                                          */
1065 /* Analyse the packet for GRE properties.                                   */
1066 /* ------------------------------------------------------------------------ */
1067 static inline void
1068 ipf_pr_gre6(fr_info_t *fin)
1069 {
1070 	grehdr_t *gre;
1071 
1072 	if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1073 		ipf_main_softc_t *softc = fin->fin_main_soft;
1074 
1075 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_gre_pullup);
1076 		return;
1077 	}
1078 
1079 	gre = fin->fin_dp;
1080 	if (GRE_REV(gre->gr_flags) == 1)
1081 		fin->fin_data[0] = gre->gr_call;
1082 }
1083 #endif	/* USE_INET6 */
1084 
1085 
1086 /* ------------------------------------------------------------------------ */
1087 /* Function:    ipf_pr_pullup                                               */
1088 /* Returns:     int     - 0 == pullup succeeded, -1 == failure              */
1089 /* Parameters:  fin(I)  - pointer to packet information                     */
1090 /*              plen(I) - length (excluding L3 header) to pullup            */
1091 /*                                                                          */
1092 /* Short inline function to cut down on code duplication to perform a call  */
1093 /* to ipf_pullup to ensure there is the required amount of data,            */
1094 /* consecutively in the packet buffer.                                      */
1095 /*                                                                          */
1096 /* This function pulls up 'extra' data at the location of fin_dp.  fin_dp   */
1097 /* points to the first byte after the complete layer 3 header, which will   */
1098 /* include all of the known extension headers for IPv6 or options for IPv4. */
1099 /*                                                                          */
1100 /* Since fr_pullup() expects the total length of bytes to be pulled up, it  */
1101 /* is necessary to add those we can already assume to be pulled up (fin_dp  */
1102 /* - fin_ip) to what is passed through.                                     */
1103 /* ------------------------------------------------------------------------ */
1104 int
1105 ipf_pr_pullup(fr_info_t *fin, int plen)
1106 {
1107 	ipf_main_softc_t *softc = fin->fin_main_soft;
1108 
1109 	if (fin->fin_m != NULL) {
1110 		if (fin->fin_dp != NULL)
1111 			plen += (char *)fin->fin_dp -
1112 				((char *)fin->fin_ip + fin->fin_hlen);
1113 		plen += fin->fin_hlen;
1114 		if (M_LEN(fin->fin_m) < plen + fin->fin_ipoff) {
1115 #if defined(_KERNEL)
1116 			if (ipf_pullup(fin->fin_m, fin, plen) == NULL) {
1117 				DT1(ipf_pullup_fail, fr_info_t *, fin);
1118 				LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1119 				fin->fin_reason = FRB_PULLUP;
1120 				fin->fin_flx |= FI_BAD;
1121 				return (-1);
1122 			}
1123 			LBUMP(ipf_stats[fin->fin_out].fr_pull[0]);
1124 #else
1125 			LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1126 			/*
1127 			 * Fake ipf_pullup failing
1128 			 */
1129 			fin->fin_reason = FRB_PULLUP;
1130 			*fin->fin_mp = NULL;
1131 			fin->fin_m = NULL;
1132 			fin->fin_ip = NULL;
1133 			fin->fin_flx |= FI_BAD;
1134 			return (-1);
1135 #endif
1136 		}
1137 	}
1138 	return (0);
1139 }
1140 
1141 
1142 /* ------------------------------------------------------------------------ */
1143 /* Function:    ipf_pr_short                                                */
1144 /* Returns:     void                                                        */
1145 /* Parameters:  fin(I)  - pointer to packet information                     */
1146 /*              xmin(I) - minimum header size                               */
1147 /*                                                                          */
1148 /* Check if a packet is "short" as defined by xmin.  The rule we are        */
1149 /* applying here is that the packet must not be fragmented within the layer */
1150 /* 4 header.  That is, it must not be a fragment that has its offset set to */
1151 /* start within the layer 4 header (hdrmin) or if it is at offset 0, the    */
1152 /* entire layer 4 header must be present (min).                             */
1153 /* ------------------------------------------------------------------------ */
1154 static inline void
1155 ipf_pr_short(fr_info_t *fin, int xmin)
1156 {
1157 
1158 	if (fin->fin_off == 0) {
1159 		if (fin->fin_dlen < xmin)
1160 			fin->fin_flx |= FI_SHORT;
1161 	} else if (fin->fin_off < xmin) {
1162 		fin->fin_flx |= FI_SHORT;
1163 	}
1164 }
1165 
1166 
1167 /* ------------------------------------------------------------------------ */
1168 /* Function:    ipf_pr_icmp                                                 */
1169 /* Returns:     void                                                        */
1170 /* Parameters:  fin(I) - pointer to packet information                      */
1171 /*                                                                          */
1172 /* IPv4 Only                                                                */
1173 /* Do a sanity check on the packet for ICMP (v4).  In nearly all cases,     */
1174 /* except extrememly bad packets, both type and code will be present.       */
1175 /* The expected minimum size of an ICMP packet is very much dependent on    */
1176 /* the type of it.                                                          */
1177 /*                                                                          */
1178 /* XXX - other ICMP sanity checks?                                          */
1179 /* ------------------------------------------------------------------------ */
1180 static inline void
1181 ipf_pr_icmp(fr_info_t *fin)
1182 {
1183 	ipf_main_softc_t *softc = fin->fin_main_soft;
1184 	int minicmpsz = sizeof(struct icmp);
1185 	icmphdr_t *icmp;
1186 	ip_t *oip;
1187 
1188 	ipf_pr_short(fin, ICMPERR_ICMPHLEN);
1189 
1190 	if (fin->fin_off != 0) {
1191 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_frag);
1192 		return;
1193 	}
1194 
1195 	if (ipf_pr_pullup(fin, ICMPERR_ICMPHLEN) == -1) {
1196 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_pullup);
1197 		return;
1198 	}
1199 
1200 	icmp = fin->fin_dp;
1201 
1202 	fin->fin_data[0] = *(u_short *)icmp;
1203 	fin->fin_data[1] = icmp->icmp_id;
1204 
1205 	switch (icmp->icmp_type)
1206 	{
1207 	case ICMP_ECHOREPLY :
1208 	case ICMP_ECHO :
1209 	/* Router discovery messaes - RFC 1256 */
1210 	case ICMP_ROUTERADVERT :
1211 	case ICMP_ROUTERSOLICIT :
1212 		fin->fin_flx |= FI_ICMPQUERY;
1213 		minicmpsz = ICMP_MINLEN;
1214 		break;
1215 	/*
1216 	 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1217 	 * 3 * timestamp(3 * 4)
1218 	 */
1219 	case ICMP_TSTAMP :
1220 	case ICMP_TSTAMPREPLY :
1221 		fin->fin_flx |= FI_ICMPQUERY;
1222 		minicmpsz = 20;
1223 		break;
1224 	/*
1225 	 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1226 	 * mask(4)
1227 	 */
1228 	case ICMP_IREQ :
1229 	case ICMP_IREQREPLY :
1230 	case ICMP_MASKREQ :
1231 	case ICMP_MASKREPLY :
1232 		fin->fin_flx |= FI_ICMPQUERY;
1233 		minicmpsz = 12;
1234 		break;
1235 	/*
1236 	 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+)
1237 	 */
1238 	case ICMP_UNREACH :
1239 #ifdef icmp_nextmtu
1240 		if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) {
1241 			if (icmp->icmp_nextmtu < softc->ipf_icmpminfragmtu) {
1242 				fin->fin_flx |= FI_BAD;
1243 				DT3(ipf_fi_bad_icmp_nextmtu, fr_info_t *, fin, u_int, icmp->icmp_nextmtu, u_int, softc->ipf_icmpminfragmtu);
1244 			}
1245 		}
1246 #endif
1247 		/* FALLTHROUGH */
1248 	case ICMP_SOURCEQUENCH :
1249 	case ICMP_REDIRECT :
1250 	case ICMP_TIMXCEED :
1251 	case ICMP_PARAMPROB :
1252 		fin->fin_flx |= FI_ICMPERR;
1253 		if (ipf_coalesce(fin) != 1) {
1254 			LBUMPD(ipf_stats[fin->fin_out], fr_icmp_coalesce);
1255 			return;
1256 		}
1257 
1258 		/*
1259 		 * ICMP error packets should not be generated for IP
1260 		 * packets that are a fragment that isn't the first
1261 		 * fragment.
1262 		 */
1263 		oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN);
1264 		if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0) {
1265 			fin->fin_flx |= FI_BAD;
1266 			DT2(ipf_fi_bad_icmp_err, fr_info_t, fin, u_int, (ntohs(oip->ip_off) & IP_OFFMASK));
1267 		}
1268 
1269 		/*
1270 		 * If the destination of this packet doesn't match the
1271 		 * source of the original packet then this packet is
1272 		 * not correct.
1273 		 */
1274 		if (oip->ip_src.s_addr != fin->fin_daddr) {
1275 			fin->fin_flx |= FI_BAD;
1276 			DT1(ipf_fi_bad_src_ne_dst, fr_info_t *, fin);
1277 		}
1278 		break;
1279 	default :
1280 		break;
1281 	}
1282 
1283 	ipf_pr_short(fin, minicmpsz);
1284 
1285 	ipf_checkv4sum(fin);
1286 }
1287 
1288 
1289 /* ------------------------------------------------------------------------ */
1290 /* Function:    ipf_pr_tcpcommon                                            */
1291 /* Returns:     int    - 0 = header ok, 1 = bad packet, -1 = buffer error   */
1292 /* Parameters:  fin(I) - pointer to packet information                      */
1293 /*                                                                          */
1294 /* TCP header sanity checking.  Look for bad combinations of TCP flags,     */
1295 /* and make some checks with how they interact with other fields.           */
1296 /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is     */
1297 /* valid and mark the packet as bad if not.                                 */
1298 /* ------------------------------------------------------------------------ */
1299 static inline int
1300 ipf_pr_tcpcommon(fr_info_t *fin)
1301 {
1302 	ipf_main_softc_t *softc = fin->fin_main_soft;
1303 	int flags, tlen;
1304 	tcphdr_t *tcp;
1305 
1306 	fin->fin_flx |= FI_TCPUDP;
1307 	if (fin->fin_off != 0) {
1308 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_frag);
1309 		return (0);
1310 	}
1311 
1312 	if (ipf_pr_pullup(fin, sizeof(*tcp)) == -1) {
1313 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1314 		return (-1);
1315 	}
1316 
1317 	tcp = fin->fin_dp;
1318 	if (fin->fin_dlen > 3) {
1319 		fin->fin_sport = ntohs(tcp->th_sport);
1320 		fin->fin_dport = ntohs(tcp->th_dport);
1321 	}
1322 
1323 	if ((fin->fin_flx & FI_SHORT) != 0) {
1324 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_short);
1325 		return (1);
1326 	}
1327 
1328 	/*
1329 	 * Use of the TCP data offset *must* result in a value that is at
1330 	 * least the same size as the TCP header.
1331 	 */
1332 	tlen = TCP_OFF(tcp) << 2;
1333 	if (tlen < sizeof(tcphdr_t)) {
1334 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_small);
1335 		fin->fin_flx |= FI_BAD;
1336 		DT3(ipf_fi_bad_tlen, fr_info_t, fin, u_int, tlen, u_int, sizeof(tcphdr_t));
1337 		return (1);
1338 	}
1339 
1340 	flags = tcp_get_flags(tcp);
1341 	fin->fin_tcpf = tcp_get_flags(tcp);
1342 
1343 	/*
1344 	 * If the urgent flag is set, then the urgent pointer must
1345 	 * also be set and vice versa.  Good TCP packets do not have
1346 	 * just one of these set.
1347 	 */
1348 	if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) {
1349 		fin->fin_flx |= FI_BAD;
1350 		DT3(ipf_fi_bad_th_urg, fr_info_t*, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp);
1351 #if 0
1352 	} else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) {
1353 		/*
1354 		 * Ignore this case (#if 0) as it shows up in "real"
1355 		 * traffic with bogus values in the urgent pointer field.
1356 		 */
1357 		fin->fin_flx |= FI_BAD;
1358 		DT3(ipf_fi_bad_th_urg0, fr_info_t *, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp);
1359 #endif
1360 	} else if (((flags & (TH_SYN|TH_FIN)) != 0) &&
1361 		   ((flags & (TH_RST|TH_ACK)) == TH_RST)) {
1362 		/* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */
1363 		fin->fin_flx |= FI_BAD;
1364 		DT1(ipf_fi_bad_th_fin_rst_ack, fr_info_t, fin);
1365 #if 1
1366 	} else if (((flags & TH_SYN) != 0) &&
1367 		   ((flags & (TH_URG|TH_PUSH)) != 0)) {
1368 		/*
1369 		 * SYN with URG and PUSH set is not for normal TCP but it is
1370 		 * possible(?) with T/TCP...but who uses T/TCP?
1371 		 */
1372 		fin->fin_flx |= FI_BAD;
1373 		DT1(ipf_fi_bad_th_syn_urg_psh, fr_info_t *, fin);
1374 #endif
1375 	} else if (!(flags & TH_ACK)) {
1376 		/*
1377 		 * If the ack bit isn't set, then either the SYN or
1378 		 * RST bit must be set.  If the SYN bit is set, then
1379 		 * we expect the ACK field to be 0.  If the ACK is
1380 		 * not set and if URG, PSH or FIN are set, consdier
1381 		 * that to indicate a bad TCP packet.
1382 		 */
1383 		if ((flags == TH_SYN) && (tcp->th_ack != 0)) {
1384 			/*
1385 			 * Cisco PIX sets the ACK field to a random value.
1386 			 * In light of this, do not set FI_BAD until a patch
1387 			 * is available from Cisco to ensure that
1388 			 * interoperability between existing systems is
1389 			 * achieved.
1390 			 */
1391 			/*fin->fin_flx |= FI_BAD*/;
1392 			/*DT1(ipf_fi_bad_th_syn_ack, fr_info_t *, fin);*/
1393 		} else if (!(flags & (TH_RST|TH_SYN))) {
1394 			fin->fin_flx |= FI_BAD;
1395 			DT1(ipf_fi_bad_th_rst_syn, fr_info_t *, fin);
1396 		} else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) {
1397 			fin->fin_flx |= FI_BAD;
1398 			DT1(ipf_fi_bad_th_urg_push_fin, fr_info_t *, fin);
1399 		}
1400 	}
1401 	if (fin->fin_flx & FI_BAD) {
1402 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_bad_flags);
1403 		return (1);
1404 	}
1405 
1406 	/*
1407 	 * At this point, it's not exactly clear what is to be gained by
1408 	 * marking up which TCP options are and are not present.  The one we
1409 	 * are most interested in is the TCP window scale.  This is only in
1410 	 * a SYN packet [RFC1323] so we don't need this here...?
1411 	 * Now if we were to analyse the header for passive fingerprinting,
1412 	 * then that might add some weight to adding this...
1413 	 */
1414 	if (tlen == sizeof(tcphdr_t)) {
1415 		return (0);
1416 	}
1417 
1418 	if (ipf_pr_pullup(fin, tlen) == -1) {
1419 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1420 		return (-1);
1421 	}
1422 
1423 #if 0
1424 	tcp = fin->fin_dp;
1425 	ip = fin->fin_ip;
1426 	s = (u_char *)(tcp + 1);
1427 	off = IP_HL(ip) << 2;
1428 # ifdef _KERNEL
1429 	if (fin->fin_mp != NULL) {
1430 		mb_t *m = *fin->fin_mp;
1431 
1432 		if (off + tlen > M_LEN(m))
1433 			return;
1434 	}
1435 # endif
1436 	for (tlen -= (int)sizeof(*tcp); tlen > 0; ) {
1437 		opt = *s;
1438 		if (opt == '\0')
1439 			break;
1440 		else if (opt == TCPOPT_NOP)
1441 			ol = 1;
1442 		else {
1443 			if (tlen < 2)
1444 				break;
1445 			ol = (int)*(s + 1);
1446 			if (ol < 2 || ol > tlen)
1447 				break;
1448 		}
1449 
1450 		for (i = 9, mv = 4; mv >= 0; ) {
1451 			op = ipopts + i;
1452 			if (opt == (u_char)op->ol_val) {
1453 				optmsk |= op->ol_bit;
1454 				break;
1455 			}
1456 		}
1457 		tlen -= ol;
1458 		s += ol;
1459 	}
1460 #endif /* 0 */
1461 
1462 	return (0);
1463 }
1464 
1465 
1466 
1467 /* ------------------------------------------------------------------------ */
1468 /* Function:    ipf_pr_udpcommon                                            */
1469 /* Returns:     int    - 0 = header ok, 1 = bad packet                      */
1470 /* Parameters:  fin(I) - pointer to packet information                      */
1471 /*                                                                          */
1472 /* Extract the UDP source and destination ports, if present.  If compiled   */
1473 /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid.          */
1474 /* ------------------------------------------------------------------------ */
1475 static inline int
1476 ipf_pr_udpcommon(fr_info_t *fin)
1477 {
1478 	udphdr_t *udp;
1479 
1480 	fin->fin_flx |= FI_TCPUDP;
1481 
1482 	if (!fin->fin_off && (fin->fin_dlen > 3)) {
1483 		if (ipf_pr_pullup(fin, sizeof(*udp)) == -1) {
1484 			ipf_main_softc_t *softc = fin->fin_main_soft;
1485 
1486 			fin->fin_flx |= FI_SHORT;
1487 			LBUMPD(ipf_stats[fin->fin_out], fr_udp_pullup);
1488 			return (1);
1489 		}
1490 
1491 		udp = fin->fin_dp;
1492 
1493 		fin->fin_sport = ntohs(udp->uh_sport);
1494 		fin->fin_dport = ntohs(udp->uh_dport);
1495 	}
1496 
1497 	return (0);
1498 }
1499 
1500 
1501 /* ------------------------------------------------------------------------ */
1502 /* Function:    ipf_pr_tcp                                                  */
1503 /* Returns:     void                                                        */
1504 /* Parameters:  fin(I) - pointer to packet information                      */
1505 /*                                                                          */
1506 /* IPv4 Only                                                                */
1507 /* Analyse the packet for IPv4/TCP properties.                              */
1508 /* ------------------------------------------------------------------------ */
1509 static inline void
1510 ipf_pr_tcp(fr_info_t *fin)
1511 {
1512 
1513 	ipf_pr_short(fin, sizeof(tcphdr_t));
1514 
1515 	if (ipf_pr_tcpcommon(fin) == 0)
1516 		ipf_checkv4sum(fin);
1517 }
1518 
1519 
1520 /* ------------------------------------------------------------------------ */
1521 /* Function:    ipf_pr_udp                                                  */
1522 /* Returns:     void                                                        */
1523 /* Parameters:  fin(I) - pointer to packet information                      */
1524 /*                                                                          */
1525 /* IPv4 Only                                                                */
1526 /* Analyse the packet for IPv4/UDP properties.                              */
1527 /* ------------------------------------------------------------------------ */
1528 static inline void
1529 ipf_pr_udp(fr_info_t *fin)
1530 {
1531 
1532 	ipf_pr_short(fin, sizeof(udphdr_t));
1533 
1534 	if (ipf_pr_udpcommon(fin) == 0)
1535 		ipf_checkv4sum(fin);
1536 }
1537 
1538 
1539 /* ------------------------------------------------------------------------ */
1540 /* Function:    ipf_pr_esp                                                  */
1541 /* Returns:     void                                                        */
1542 /* Parameters:  fin(I) - pointer to packet information                      */
1543 /*                                                                          */
1544 /* Analyse the packet for ESP properties.                                   */
1545 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
1546 /* even though the newer ESP packets must also have a sequence number that  */
1547 /* is 32bits as well, it is not possible(?) to determine the version from a */
1548 /* simple packet header.                                                    */
1549 /* ------------------------------------------------------------------------ */
1550 static inline void
1551 ipf_pr_esp(fr_info_t *fin)
1552 {
1553 
1554 	if (fin->fin_off == 0) {
1555 		ipf_pr_short(fin, 8);
1556 		if (ipf_pr_pullup(fin, 8) == -1) {
1557 			ipf_main_softc_t *softc = fin->fin_main_soft;
1558 
1559 			LBUMPD(ipf_stats[fin->fin_out], fr_v4_esp_pullup);
1560 		}
1561 	}
1562 }
1563 
1564 
1565 /* ------------------------------------------------------------------------ */
1566 /* Function:    ipf_pr_ah                                                   */
1567 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
1568 /* Parameters:  fin(I) - pointer to packet information                      */
1569 /*                                                                          */
1570 /* Analyse the packet for AH properties.                                    */
1571 /* The minimum length is taken to be the combination of all fields in the   */
1572 /* header being present and no authentication data (null algorithm used.)   */
1573 /* ------------------------------------------------------------------------ */
1574 static inline int
1575 ipf_pr_ah(fr_info_t *fin)
1576 {
1577 	ipf_main_softc_t *softc = fin->fin_main_soft;
1578 	authhdr_t *ah;
1579 	int len;
1580 
1581 	fin->fin_flx |= FI_AH;
1582 	ipf_pr_short(fin, sizeof(*ah));
1583 
1584 	if (((fin->fin_flx & FI_SHORT) != 0) || (fin->fin_off != 0)) {
1585 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_ah_bad);
1586 		return (IPPROTO_NONE);
1587 	}
1588 
1589 	if (ipf_pr_pullup(fin, sizeof(*ah)) == -1) {
1590 		DT(fr_v4_ah_pullup_1);
1591 		LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1592 		return (IPPROTO_NONE);
1593 	}
1594 
1595 	ah = (authhdr_t *)fin->fin_dp;
1596 
1597 	len = (ah->ah_plen + 2) << 2;
1598 	ipf_pr_short(fin, len);
1599 	if (ipf_pr_pullup(fin, len) == -1) {
1600 		DT(fr_v4_ah_pullup_2);
1601 		LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1602 		return (IPPROTO_NONE);
1603 	}
1604 
1605 	/*
1606 	 * Adjust fin_dp and fin_dlen for skipping over the authentication
1607 	 * header.
1608 	 */
1609 	fin->fin_dp = (char *)fin->fin_dp + len;
1610 	fin->fin_dlen -= len;
1611 	return (ah->ah_next);
1612 }
1613 
1614 
1615 /* ------------------------------------------------------------------------ */
1616 /* Function:    ipf_pr_gre                                                  */
1617 /* Returns:     void                                                        */
1618 /* Parameters:  fin(I) - pointer to packet information                      */
1619 /*                                                                          */
1620 /* Analyse the packet for GRE properties.                                   */
1621 /* ------------------------------------------------------------------------ */
1622 static inline void
1623 ipf_pr_gre(fr_info_t *fin)
1624 {
1625 	ipf_main_softc_t *softc = fin->fin_main_soft;
1626 	grehdr_t *gre;
1627 
1628 	ipf_pr_short(fin, sizeof(grehdr_t));
1629 
1630 	if (fin->fin_off != 0) {
1631 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_frag);
1632 		return;
1633 	}
1634 
1635 	if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1636 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_pullup);
1637 		return;
1638 	}
1639 
1640 	gre = fin->fin_dp;
1641 	if (GRE_REV(gre->gr_flags) == 1)
1642 		fin->fin_data[0] = gre->gr_call;
1643 }
1644 
1645 
1646 /* ------------------------------------------------------------------------ */
1647 /* Function:    ipf_pr_ipv4hdr                                              */
1648 /* Returns:     void                                                        */
1649 /* Parameters:  fin(I) - pointer to packet information                      */
1650 /*                                                                          */
1651 /* IPv4 Only                                                                */
1652 /* Analyze the IPv4 header and set fields in the fr_info_t structure.       */
1653 /* Check all options present and flag their presence if any exist.          */
1654 /* ------------------------------------------------------------------------ */
1655 static inline void
1656 ipf_pr_ipv4hdr(fr_info_t *fin)
1657 {
1658 	u_short optmsk = 0, secmsk = 0, auth = 0;
1659 	int hlen, ol, mv, p, i;
1660 	const struct optlist *op;
1661 	u_char *s, opt;
1662 	u_short off;
1663 	fr_ip_t *fi;
1664 	ip_t *ip;
1665 
1666 	fi = &fin->fin_fi;
1667 	hlen = fin->fin_hlen;
1668 
1669 	ip = fin->fin_ip;
1670 	p = ip->ip_p;
1671 	fi->fi_p = p;
1672 	fin->fin_crc = p;
1673 	fi->fi_tos = ip->ip_tos;
1674 	fin->fin_id = ntohs(ip->ip_id);
1675 	off = ntohs(ip->ip_off);
1676 
1677 	/* Get both TTL and protocol */
1678 	fi->fi_p = ip->ip_p;
1679 	fi->fi_ttl = ip->ip_ttl;
1680 
1681 	/* Zero out bits not used in IPv6 address */
1682 	fi->fi_src.i6[1] = 0;
1683 	fi->fi_src.i6[2] = 0;
1684 	fi->fi_src.i6[3] = 0;
1685 	fi->fi_dst.i6[1] = 0;
1686 	fi->fi_dst.i6[2] = 0;
1687 	fi->fi_dst.i6[3] = 0;
1688 
1689 	fi->fi_saddr = ip->ip_src.s_addr;
1690 	fin->fin_crc += fi->fi_saddr;
1691 	fi->fi_daddr = ip->ip_dst.s_addr;
1692 	fin->fin_crc += fi->fi_daddr;
1693 	if (IN_MULTICAST(ntohl(fi->fi_daddr)))
1694 		fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
1695 
1696 	/*
1697 	 * set packet attribute flags based on the offset and
1698 	 * calculate the byte offset that it represents.
1699 	 */
1700 	off &= IP_MF|IP_OFFMASK;
1701 	if (off != 0) {
1702 		int morefrag = off & IP_MF;
1703 
1704 		fi->fi_flx |= FI_FRAG;
1705 		off &= IP_OFFMASK;
1706 		if (off == 1 && p == IPPROTO_TCP) {
1707 			fin->fin_flx |= FI_SHORT;	/* RFC 3128 */
1708 			DT1(ipf_fi_tcp_frag_off_1, fr_info_t *, fin);
1709 		}
1710 		if (off != 0) {
1711 			fin->fin_flx |= FI_FRAGBODY;
1712 			off <<= 3;
1713 			if ((off + fin->fin_dlen > 65535) ||
1714 			    (fin->fin_dlen == 0) ||
1715 			    ((morefrag != 0) && ((fin->fin_dlen & 7) != 0))) {
1716 				/*
1717 				 * The length of the packet, starting at its
1718 				 * offset cannot exceed 65535 (0xffff) as the
1719 				 * length of an IP packet is only 16 bits.
1720 				 *
1721 				 * Any fragment that isn't the last fragment
1722 				 * must have a length greater than 0 and it
1723 				 * must be an even multiple of 8.
1724 				 */
1725 				fi->fi_flx |= FI_BAD;
1726 				DT1(ipf_fi_bad_fragbody_gt_65535, fr_info_t *, fin);
1727 			}
1728 		}
1729 	}
1730 	fin->fin_off = off;
1731 
1732 	/*
1733 	 * Call per-protocol setup and checking
1734 	 */
1735 	if (p == IPPROTO_AH) {
1736 		/*
1737 		 * Treat AH differently because we expect there to be another
1738 		 * layer 4 header after it.
1739 		 */
1740 		p = ipf_pr_ah(fin);
1741 	}
1742 
1743 	switch (p)
1744 	{
1745 	case IPPROTO_UDP :
1746 		ipf_pr_udp(fin);
1747 		break;
1748 	case IPPROTO_TCP :
1749 		ipf_pr_tcp(fin);
1750 		break;
1751 	case IPPROTO_ICMP :
1752 		ipf_pr_icmp(fin);
1753 		break;
1754 	case IPPROTO_ESP :
1755 		ipf_pr_esp(fin);
1756 		break;
1757 	case IPPROTO_GRE :
1758 		ipf_pr_gre(fin);
1759 		break;
1760 	}
1761 
1762 	ip = fin->fin_ip;
1763 	if (ip == NULL)
1764 		return;
1765 
1766 	/*
1767 	 * If it is a standard IP header (no options), set the flag fields
1768 	 * which relate to options to 0.
1769 	 */
1770 	if (hlen == sizeof(*ip)) {
1771 		fi->fi_optmsk = 0;
1772 		fi->fi_secmsk = 0;
1773 		fi->fi_auth = 0;
1774 		return;
1775 	}
1776 
1777 	/*
1778 	 * So the IP header has some IP options attached.  Walk the entire
1779 	 * list of options present with this packet and set flags to indicate
1780 	 * which ones are here and which ones are not.  For the somewhat out
1781 	 * of date and obscure security classification options, set a flag to
1782 	 * represent which classification is present.
1783 	 */
1784 	fi->fi_flx |= FI_OPTIONS;
1785 
1786 	for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) {
1787 		opt = *s;
1788 		if (opt == '\0')
1789 			break;
1790 		else if (opt == IPOPT_NOP)
1791 			ol = 1;
1792 		else {
1793 			if (hlen < 2)
1794 				break;
1795 			ol = (int)*(s + 1);
1796 			if (ol < 2 || ol > hlen)
1797 				break;
1798 		}
1799 		for (i = 9, mv = 4; mv >= 0; ) {
1800 			op = ipopts + i;
1801 
1802 			if ((opt == (u_char)op->ol_val) && (ol > 4)) {
1803 				u_32_t doi;
1804 
1805 				switch (opt)
1806 				{
1807 				case IPOPT_SECURITY :
1808 					if (optmsk & op->ol_bit) {
1809 						fin->fin_flx |= FI_BAD;
1810 						DT2(ipf_fi_bad_ipopt_security, fr_info_t *, fin, u_short, (optmsk & op->ol_bit));
1811 					} else {
1812 						doi = ipf_checkripso(s);
1813 						secmsk = doi >> 16;
1814 						auth = doi & 0xffff;
1815 					}
1816 					break;
1817 
1818 				case IPOPT_CIPSO :
1819 
1820 					if (optmsk & op->ol_bit) {
1821 						fin->fin_flx |= FI_BAD;
1822 						DT2(ipf_fi_bad_ipopt_cipso, fr_info_t *, fin, u_short, (optmsk & op->ol_bit));
1823 					} else {
1824 						doi = ipf_checkcipso(fin,
1825 								     s, ol);
1826 						secmsk = doi >> 16;
1827 						auth = doi & 0xffff;
1828 					}
1829 					break;
1830 				}
1831 				optmsk |= op->ol_bit;
1832 			}
1833 
1834 			if (opt < op->ol_val)
1835 				i -= mv;
1836 			else
1837 				i += mv;
1838 			mv--;
1839 		}
1840 		hlen -= ol;
1841 		s += ol;
1842 	}
1843 
1844 	/*
1845 	 *
1846 	 */
1847 	if (auth && !(auth & 0x0100))
1848 		auth &= 0xff00;
1849 	fi->fi_optmsk = optmsk;
1850 	fi->fi_secmsk = secmsk;
1851 	fi->fi_auth = auth;
1852 }
1853 
1854 
1855 /* ------------------------------------------------------------------------ */
1856 /* Function:    ipf_checkripso                                              */
1857 /* Returns:     void                                                        */
1858 /* Parameters:  s(I)   - pointer to start of RIPSO option                   */
1859 /*                                                                          */
1860 /* ------------------------------------------------------------------------ */
1861 static u_32_t
1862 ipf_checkripso(u_char *s)
1863 {
1864 	const struct optlist *sp;
1865 	u_short secmsk = 0, auth = 0;
1866 	u_char sec;
1867 	int j, m;
1868 
1869 	sec = *(s + 2);	/* classification */
1870 	for (j = 3, m = 2; m >= 0; ) {
1871 		sp = secopt + j;
1872 		if (sec == sp->ol_val) {
1873 			secmsk |= sp->ol_bit;
1874 			auth = *(s + 3);
1875 			auth *= 256;
1876 			auth += *(s + 4);
1877 			break;
1878 		}
1879 		if (sec < sp->ol_val)
1880 			j -= m;
1881 		else
1882 			j += m;
1883 		m--;
1884 	}
1885 
1886 	return (secmsk << 16) | auth;
1887 }
1888 
1889 
1890 /* ------------------------------------------------------------------------ */
1891 /* Function:    ipf_checkcipso                                              */
1892 /* Returns:     u_32_t  - 0 = failure, else the doi from the header         */
1893 /* Parameters:  fin(IO) - pointer to packet information                     */
1894 /*              s(I)    - pointer to start of CIPSO option                  */
1895 /*              ol(I)   - length of CIPSO option field                      */
1896 /*                                                                          */
1897 /* This function returns the domain of integrity (DOI) field from the CIPSO */
1898 /* header and returns that whilst also storing the highest sensitivity      */
1899 /* value found in the fr_info_t structure.                                  */
1900 /*                                                                          */
1901 /* No attempt is made to extract the category bitmaps as these are defined  */
1902 /* by the user (rather than the protocol) and can be rather numerous on the */
1903 /* end nodes.                                                               */
1904 /* ------------------------------------------------------------------------ */
1905 static u_32_t
1906 ipf_checkcipso(fr_info_t *fin, u_char *s, int ol)
1907 {
1908 	ipf_main_softc_t *softc = fin->fin_main_soft;
1909 	fr_ip_t *fi;
1910 	u_32_t doi;
1911 	u_char *t, tag, tlen, sensitivity;
1912 	int len;
1913 
1914 	if (ol < 6 || ol > 40) {
1915 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_bad);
1916 		fin->fin_flx |= FI_BAD;
1917 		DT2(ipf_fi_bad_checkcipso_ol, fr_info_t *, fin, u_int, ol);
1918 		return (0);
1919 	}
1920 
1921 	fi = &fin->fin_fi;
1922 	fi->fi_sensitivity = 0;
1923 	/*
1924 	 * The DOI field MUST be there.
1925 	 */
1926 	bcopy(s + 2, &doi, sizeof(doi));
1927 
1928 	t = (u_char *)s + 6;
1929 	for (len = ol - 6; len >= 2; len -= tlen, t+= tlen) {
1930 		tag = *t;
1931 		tlen = *(t + 1);
1932 		if (tlen > len || tlen < 4 || tlen > 34) {
1933 			LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_tlen);
1934 			fin->fin_flx |= FI_BAD;
1935 			DT2(ipf_fi_bad_checkcipso_tlen, fr_info_t *, fin, u_int, tlen);
1936 			return (0);
1937 		}
1938 
1939 		sensitivity = 0;
1940 		/*
1941 		 * Tag numbers 0, 1, 2, 5 are laid out in the CIPSO Internet
1942 		 * draft (16 July 1992) that has expired.
1943 		 */
1944 		if (tag == 0) {
1945 			fin->fin_flx |= FI_BAD;
1946 			DT2(ipf_fi_bad_checkcipso_tag, fr_info_t *, fin, u_int, tag);
1947 			continue;
1948 		} else if (tag == 1) {
1949 			if (*(t + 2) != 0) {
1950 				fin->fin_flx |= FI_BAD;
1951 				DT2(ipf_fi_bad_checkcipso_tag1_t2, fr_info_t *, fin, u_int, (*t + 2));
1952 				continue;
1953 			}
1954 			sensitivity = *(t + 3);
1955 			/* Category bitmap for categories 0-239 */
1956 
1957 		} else if (tag == 4) {
1958 			if (*(t + 2) != 0) {
1959 				fin->fin_flx |= FI_BAD;
1960 				DT2(ipf_fi_bad_checkcipso_tag4_t2, fr_info_t *, fin, u_int, (*t + 2));
1961 				continue;
1962 			}
1963 			sensitivity = *(t + 3);
1964 			/* Enumerated categories, 16bits each, upto 15 */
1965 
1966 		} else if (tag == 5) {
1967 			if (*(t + 2) != 0) {
1968 				fin->fin_flx |= FI_BAD;
1969 				DT2(ipf_fi_bad_checkcipso_tag5_t2, fr_info_t *, fin, u_int, (*t + 2));
1970 				continue;
1971 			}
1972 			sensitivity = *(t + 3);
1973 			/* Range of categories (2*16bits), up to 7 pairs */
1974 
1975 		} else if (tag > 127) {
1976 			/* Custom defined DOI */
1977 			;
1978 		} else {
1979 			fin->fin_flx |= FI_BAD;
1980 			DT2(ipf_fi_bad_checkcipso_tag127, fr_info_t *, fin, u_int, tag);
1981 			continue;
1982 		}
1983 
1984 		if (sensitivity > fi->fi_sensitivity)
1985 			fi->fi_sensitivity = sensitivity;
1986 	}
1987 
1988 	return (doi);
1989 }
1990 
1991 
1992 /* ------------------------------------------------------------------------ */
1993 /* Function:    ipf_makefrip                                                */
1994 /* Returns:     int     - 0 == packet ok, -1 == packet freed                */
1995 /* Parameters:  hlen(I) - length of IP packet header                        */
1996 /*              ip(I)   - pointer to the IP header                          */
1997 /*              fin(IO) - pointer to packet information                     */
1998 /*                                                                          */
1999 /* Compact the IP header into a structure which contains just the info.     */
2000 /* which is useful for comparing IP headers with and store this information */
2001 /* in the fr_info_t structure pointer to by fin.  At present, it is assumed */
2002 /* this function will be called with either an IPv4 or IPv6 packet.         */
2003 /* ------------------------------------------------------------------------ */
2004 int
2005 ipf_makefrip(int hlen, ip_t *ip, fr_info_t *fin)
2006 {
2007 	ipf_main_softc_t *softc = fin->fin_main_soft;
2008 	int v;
2009 
2010 	fin->fin_depth = 0;
2011 	fin->fin_hlen = (u_short)hlen;
2012 	fin->fin_ip = ip;
2013 	fin->fin_rule = 0xffffffff;
2014 	fin->fin_group[0] = -1;
2015 	fin->fin_group[1] = '\0';
2016 	fin->fin_dp = (char *)ip + hlen;
2017 
2018 	v = fin->fin_v;
2019 	if (v == 4) {
2020 		fin->fin_plen = ntohs(ip->ip_len);
2021 		fin->fin_dlen = fin->fin_plen - hlen;
2022 		ipf_pr_ipv4hdr(fin);
2023 #ifdef	USE_INET6
2024 	} else if (v == 6) {
2025 		fin->fin_plen = ntohs(((ip6_t *)ip)->ip6_plen);
2026 		fin->fin_dlen = fin->fin_plen;
2027 		fin->fin_plen += hlen;
2028 
2029 		ipf_pr_ipv6hdr(fin);
2030 #endif
2031 	}
2032 	if (fin->fin_ip == NULL) {
2033 		LBUMP(ipf_stats[fin->fin_out].fr_ip_freed);
2034 		return (-1);
2035 	}
2036 	return (0);
2037 }
2038 
2039 
2040 /* ------------------------------------------------------------------------ */
2041 /* Function:    ipf_portcheck                                               */
2042 /* Returns:     int - 1 == port matched, 0 == port match failed             */
2043 /* Parameters:  frp(I) - pointer to port check `expression'                 */
2044 /*              pop(I) - port number to evaluate                            */
2045 /*                                                                          */
2046 /* Perform a comparison of a port number against some other(s), using a     */
2047 /* structure with compare information stored in it.                         */
2048 /* ------------------------------------------------------------------------ */
2049 static inline int
2050 ipf_portcheck(frpcmp_t *frp, u_32_t pop)
2051 {
2052 	int err = 1;
2053 	u_32_t po;
2054 
2055 	po = frp->frp_port;
2056 
2057 	/*
2058 	 * Do opposite test to that required and continue if that succeeds.
2059 	 */
2060 	switch (frp->frp_cmp)
2061 	{
2062 	case FR_EQUAL :
2063 		if (pop != po) /* EQUAL */
2064 			err = 0;
2065 		break;
2066 	case FR_NEQUAL :
2067 		if (pop == po) /* NOTEQUAL */
2068 			err = 0;
2069 		break;
2070 	case FR_LESST :
2071 		if (pop >= po) /* LESSTHAN */
2072 			err = 0;
2073 		break;
2074 	case FR_GREATERT :
2075 		if (pop <= po) /* GREATERTHAN */
2076 			err = 0;
2077 		break;
2078 	case FR_LESSTE :
2079 		if (pop > po) /* LT or EQ */
2080 			err = 0;
2081 		break;
2082 	case FR_GREATERTE :
2083 		if (pop < po) /* GT or EQ */
2084 			err = 0;
2085 		break;
2086 	case FR_OUTRANGE :
2087 		if (pop >= po && pop <= frp->frp_top) /* Out of range */
2088 			err = 0;
2089 		break;
2090 	case FR_INRANGE :
2091 		if (pop <= po || pop >= frp->frp_top) /* In range */
2092 			err = 0;
2093 		break;
2094 	case FR_INCRANGE :
2095 		if (pop < po || pop > frp->frp_top) /* Inclusive range */
2096 			err = 0;
2097 		break;
2098 	default :
2099 		break;
2100 	}
2101 	return (err);
2102 }
2103 
2104 
2105 /* ------------------------------------------------------------------------ */
2106 /* Function:    ipf_tcpudpchk                                               */
2107 /* Returns:     int - 1 == protocol matched, 0 == check failed              */
2108 /* Parameters:  fda(I) - pointer to packet information                      */
2109 /*              ft(I)  - pointer to structure with comparison data          */
2110 /*                                                                          */
2111 /* Compares the current pcket (assuming it is TCP/UDP) information with a   */
2112 /* structure containing information that we want to match against.          */
2113 /* ------------------------------------------------------------------------ */
2114 int
2115 ipf_tcpudpchk(fr_ip_t *fi, frtuc_t *ft)
2116 {
2117 	int err = 1;
2118 
2119 	/*
2120 	 * Both ports should *always* be in the first fragment.
2121 	 * So far, I cannot find any cases where they can not be.
2122 	 *
2123 	 * compare destination ports
2124 	 */
2125 	if (ft->ftu_dcmp)
2126 		err = ipf_portcheck(&ft->ftu_dst, fi->fi_ports[1]);
2127 
2128 	/*
2129 	 * compare source ports
2130 	 */
2131 	if (err && ft->ftu_scmp)
2132 		err = ipf_portcheck(&ft->ftu_src, fi->fi_ports[0]);
2133 
2134 	/*
2135 	 * If we don't have all the TCP/UDP header, then how can we
2136 	 * expect to do any sort of match on it ?  If we were looking for
2137 	 * TCP flags, then NO match.  If not, then match (which should
2138 	 * satisfy the "short" class too).
2139 	 */
2140 	if (err && (fi->fi_p == IPPROTO_TCP)) {
2141 		if (fi->fi_flx & FI_SHORT)
2142 			return (!(ft->ftu_tcpf | ft->ftu_tcpfm));
2143 		/*
2144 		 * Match the flags ?  If not, abort this match.
2145 		 */
2146 		if (ft->ftu_tcpfm &&
2147 		    ft->ftu_tcpf != (fi->fi_tcpf & ft->ftu_tcpfm)) {
2148 			FR_DEBUG(("f. %#x & %#x != %#x\n", fi->fi_tcpf,
2149 				 ft->ftu_tcpfm, ft->ftu_tcpf));
2150 			err = 0;
2151 		}
2152 	}
2153 	return (err);
2154 }
2155 
2156 
2157 /* ------------------------------------------------------------------------ */
2158 /* Function:    ipf_check_ipf                                               */
2159 /* Returns:     int - 0 == match, else no match                             */
2160 /* Parameters:  fin(I)     - pointer to packet information                  */
2161 /*              fr(I)      - pointer to filter rule                         */
2162 /*              portcmp(I) - flag indicating whether to attempt matching on */
2163 /*                           TCP/UDP port data.                             */
2164 /*                                                                          */
2165 /* Check to see if a packet matches an IPFilter rule.  Checks of addresses, */
2166 /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */
2167 /* this function.                                                           */
2168 /* ------------------------------------------------------------------------ */
2169 static inline int
2170 ipf_check_ipf(fr_info_t *fin, frentry_t *fr, int portcmp)
2171 {
2172 	u_32_t	*ld, *lm, *lip;
2173 	fripf_t *fri;
2174 	fr_ip_t *fi;
2175 	int i;
2176 
2177 	fi = &fin->fin_fi;
2178 	fri = fr->fr_ipf;
2179 	lip = (u_32_t *)fi;
2180 	lm = (u_32_t *)&fri->fri_mip;
2181 	ld = (u_32_t *)&fri->fri_ip;
2182 
2183 	/*
2184 	 * first 32 bits to check coversion:
2185 	 * IP version, TOS, TTL, protocol
2186 	 */
2187 	i = ((*lip & *lm) != *ld);
2188 	FR_DEBUG(("0. %#08x & %#08x != %#08x\n",
2189 		   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2190 	if (i)
2191 		return (1);
2192 
2193 	/*
2194 	 * Next 32 bits is a constructed bitmask indicating which IP options
2195 	 * are present (if any) in this packet.
2196 	 */
2197 	lip++, lm++, ld++;
2198 	i = ((*lip & *lm) != *ld);
2199 	FR_DEBUG(("1. %#08x & %#08x != %#08x\n",
2200 		   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2201 	if (i != 0)
2202 		return (1);
2203 
2204 	lip++, lm++, ld++;
2205 	/*
2206 	 * Unrolled loops (4 each, for 32 bits) for address checks.
2207 	 */
2208 	/*
2209 	 * Check the source address.
2210 	 */
2211 	if (fr->fr_satype == FRI_LOOKUP) {
2212 		i = (*fr->fr_srcfunc)(fin->fin_main_soft, fr->fr_srcptr,
2213 				      fi->fi_v, lip, fin->fin_plen);
2214 		if (i == -1)
2215 			return (1);
2216 		lip += 3;
2217 		lm += 3;
2218 		ld += 3;
2219 	} else {
2220 		i = ((*lip & *lm) != *ld);
2221 		FR_DEBUG(("2a. %#08x & %#08x != %#08x\n",
2222 			   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2223 		if (fi->fi_v == 6) {
2224 			lip++, lm++, ld++;
2225 			i |= ((*lip & *lm) != *ld);
2226 			FR_DEBUG(("2b. %#08x & %#08x != %#08x\n",
2227 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2228 			lip++, lm++, ld++;
2229 			i |= ((*lip & *lm) != *ld);
2230 			FR_DEBUG(("2c. %#08x & %#08x != %#08x\n",
2231 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2232 			lip++, lm++, ld++;
2233 			i |= ((*lip & *lm) != *ld);
2234 			FR_DEBUG(("2d. %#08x & %#08x != %#08x\n",
2235 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2236 		} else {
2237 			lip += 3;
2238 			lm += 3;
2239 			ld += 3;
2240 		}
2241 	}
2242 	i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6;
2243 	if (i != 0)
2244 		return (1);
2245 
2246 	/*
2247 	 * Check the destination address.
2248 	 */
2249 	lip++, lm++, ld++;
2250 	if (fr->fr_datype == FRI_LOOKUP) {
2251 		i = (*fr->fr_dstfunc)(fin->fin_main_soft, fr->fr_dstptr,
2252 				      fi->fi_v, lip, fin->fin_plen);
2253 		if (i == -1)
2254 			return (1);
2255 		lip += 3;
2256 		lm += 3;
2257 		ld += 3;
2258 	} else {
2259 		i = ((*lip & *lm) != *ld);
2260 		FR_DEBUG(("3a. %#08x & %#08x != %#08x\n",
2261 			   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2262 		if (fi->fi_v == 6) {
2263 			lip++, lm++, ld++;
2264 			i |= ((*lip & *lm) != *ld);
2265 			FR_DEBUG(("3b. %#08x & %#08x != %#08x\n",
2266 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2267 			lip++, lm++, ld++;
2268 			i |= ((*lip & *lm) != *ld);
2269 			FR_DEBUG(("3c. %#08x & %#08x != %#08x\n",
2270 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2271 			lip++, lm++, ld++;
2272 			i |= ((*lip & *lm) != *ld);
2273 			FR_DEBUG(("3d. %#08x & %#08x != %#08x\n",
2274 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2275 		} else {
2276 			lip += 3;
2277 			lm += 3;
2278 			ld += 3;
2279 		}
2280 	}
2281 	i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7;
2282 	if (i != 0)
2283 		return (1);
2284 	/*
2285 	 * IP addresses matched.  The next 32bits contains:
2286 	 * mast of old IP header security & authentication bits.
2287 	 */
2288 	lip++, lm++, ld++;
2289 	i = (*ld - (*lip & *lm));
2290 	FR_DEBUG(("4. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2291 
2292 	/*
2293 	 * Next we have 32 bits of packet flags.
2294 	 */
2295 	lip++, lm++, ld++;
2296 	i |= (*ld - (*lip & *lm));
2297 	FR_DEBUG(("5. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2298 
2299 	if (i == 0) {
2300 		/*
2301 		 * If a fragment, then only the first has what we're
2302 		 * looking for here...
2303 		 */
2304 		if (portcmp) {
2305 			if (!ipf_tcpudpchk(&fin->fin_fi, &fr->fr_tuc))
2306 				i = 1;
2307 		} else {
2308 			if (fr->fr_dcmp || fr->fr_scmp ||
2309 			    fr->fr_tcpf || fr->fr_tcpfm)
2310 				i = 1;
2311 			if (fr->fr_icmpm || fr->fr_icmp) {
2312 				if (((fi->fi_p != IPPROTO_ICMP) &&
2313 				     (fi->fi_p != IPPROTO_ICMPV6)) ||
2314 				    fin->fin_off || (fin->fin_dlen < 2))
2315 					i = 1;
2316 				else if ((fin->fin_data[0] & fr->fr_icmpm) !=
2317 					 fr->fr_icmp) {
2318 					FR_DEBUG(("i. %#x & %#x != %#x\n",
2319 						 fin->fin_data[0],
2320 						 fr->fr_icmpm, fr->fr_icmp));
2321 					i = 1;
2322 				}
2323 			}
2324 		}
2325 	}
2326 	return (i);
2327 }
2328 
2329 
2330 /* ------------------------------------------------------------------------ */
2331 /* Function:    ipf_scanlist                                                */
2332 /* Returns:     int - result flags of scanning filter list                  */
2333 /* Parameters:  fin(I) - pointer to packet information                      */
2334 /*              pass(I) - default result to return for filtering            */
2335 /*                                                                          */
2336 /* Check the input/output list of rules for a match to the current packet.  */
2337 /* If a match is found, the value of fr_flags from the rule becomes the     */
2338 /* return value and fin->fin_fr points to the matched rule.                 */
2339 /*                                                                          */
2340 /* This function may be called recursively upto 16 times (limit inbuilt.)   */
2341 /* When unwinding, it should finish up with fin_depth as 0.                 */
2342 /*                                                                          */
2343 /* Could be per interface, but this gets real nasty when you don't have,    */
2344 /* or can't easily change, the kernel source code to .                      */
2345 /* ------------------------------------------------------------------------ */
2346 int
2347 ipf_scanlist(fr_info_t *fin, u_32_t pass)
2348 {
2349 	ipf_main_softc_t *softc = fin->fin_main_soft;
2350 	int rulen, portcmp, off, skip;
2351 	struct frentry *fr, *fnext;
2352 	u_32_t passt, passo;
2353 
2354 	/*
2355 	 * Do not allow nesting deeper than 16 levels.
2356 	 */
2357 	if (fin->fin_depth >= 16)
2358 		return (pass);
2359 
2360 	fr = fin->fin_fr;
2361 
2362 	/*
2363 	* If there are no rules in this list, return now.
2364 	 */
2365 	if (fr == NULL)
2366 		return (pass);
2367 
2368 	skip = 0;
2369 	portcmp = 0;
2370 	fin->fin_depth++;
2371 	fin->fin_fr = NULL;
2372 	off = fin->fin_off;
2373 
2374 	if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off)
2375 		portcmp = 1;
2376 
2377 	for (rulen = 0; fr; fr = fnext, rulen++) {
2378 		fnext = fr->fr_next;
2379 		if (skip != 0) {
2380 			FR_VERBOSE(("SKIP %d (%#x)\n", skip, fr->fr_flags));
2381 			skip--;
2382 			continue;
2383 		}
2384 
2385 		/*
2386 		 * In all checks below, a null (zero) value in the
2387 		 * filter struture is taken to mean a wildcard.
2388 		 *
2389 		 * check that we are working for the right interface
2390 		 */
2391 #ifdef	_KERNEL
2392 		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2393 			continue;
2394 #else
2395 		if (opts & (OPT_VERBOSE|OPT_DEBUG))
2396 			printf("\n");
2397 		FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' :
2398 				  FR_ISPASS(pass) ? 'p' :
2399 				  FR_ISACCOUNT(pass) ? 'A' :
2400 				  FR_ISAUTH(pass) ? 'a' :
2401 				  (pass & FR_NOMATCH) ? 'n' :'b'));
2402 		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2403 			continue;
2404 		FR_VERBOSE((":i"));
2405 #endif
2406 
2407 		switch (fr->fr_type)
2408 		{
2409 		case FR_T_IPF :
2410 		case FR_T_IPF_BUILTIN :
2411 			if (ipf_check_ipf(fin, fr, portcmp))
2412 				continue;
2413 			break;
2414 #if defined(IPFILTER_BPF)
2415 		case FR_T_BPFOPC :
2416 		case FR_T_BPFOPC_BUILTIN :
2417 		    {
2418 			u_char *mc;
2419 			int wlen;
2420 
2421 			if (*fin->fin_mp == NULL)
2422 				continue;
2423 			if (fin->fin_family != fr->fr_family)
2424 				continue;
2425 			mc = (u_char *)fin->fin_m;
2426 			wlen = fin->fin_dlen + fin->fin_hlen;
2427 			if (!bpf_filter(fr->fr_data, mc, wlen, 0))
2428 				continue;
2429 			break;
2430 		    }
2431 #endif
2432 		case FR_T_CALLFUNC_BUILTIN :
2433 		    {
2434 			frentry_t *f;
2435 
2436 			f = (*fr->fr_func)(fin, &pass);
2437 			if (f != NULL)
2438 				fr = f;
2439 			else
2440 				continue;
2441 			break;
2442 		    }
2443 
2444 		case FR_T_IPFEXPR :
2445 		case FR_T_IPFEXPR_BUILTIN :
2446 			if (fin->fin_family != fr->fr_family)
2447 				continue;
2448 			if (ipf_fr_matcharray(fin, fr->fr_data) == 0)
2449 				continue;
2450 			break;
2451 
2452 		default :
2453 			break;
2454 		}
2455 
2456 		if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) {
2457 			if (fin->fin_nattag == NULL)
2458 				continue;
2459 			if (ipf_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0)
2460 				continue;
2461 		}
2462 		FR_VERBOSE(("=%d/%d.%d *", fr->fr_grhead, fr->fr_group, rulen));
2463 
2464 		passt = fr->fr_flags;
2465 
2466 		/*
2467 		 * If the rule is a "call now" rule, then call the function
2468 		 * in the rule, if it exists and use the results from that.
2469 		 * If the function pointer is bad, just make like we ignore
2470 		 * it, except for increasing the hit counter.
2471 		 */
2472 		if ((passt & FR_CALLNOW) != 0) {
2473 			frentry_t *frs;
2474 
2475 			ATOMIC_INC64(fr->fr_hits);
2476 			if ((fr->fr_func == NULL) ||
2477 			    (fr->fr_func == (ipfunc_t)-1))
2478 				continue;
2479 
2480 			frs = fin->fin_fr;
2481 			fin->fin_fr = fr;
2482 			fr = (*fr->fr_func)(fin, &passt);
2483 			if (fr == NULL) {
2484 				fin->fin_fr = frs;
2485 				continue;
2486 			}
2487 			passt = fr->fr_flags;
2488 		}
2489 		fin->fin_fr = fr;
2490 
2491 #ifdef  IPFILTER_LOG
2492 		/*
2493 		 * Just log this packet...
2494 		 */
2495 		if ((passt & FR_LOGMASK) == FR_LOG) {
2496 			if (ipf_log_pkt(fin, passt) == -1) {
2497 				if (passt & FR_LOGORBLOCK) {
2498 					DT(frb_logfail);
2499 					passt &= ~FR_CMDMASK;
2500 					passt |= FR_BLOCK|FR_QUICK;
2501 					fin->fin_reason = FRB_LOGFAIL;
2502 				}
2503 			}
2504 		}
2505 #endif /* IPFILTER_LOG */
2506 
2507 		MUTEX_ENTER(&fr->fr_lock);
2508 		fr->fr_bytes += (U_QUAD_T)fin->fin_plen;
2509 		fr->fr_hits++;
2510 		MUTEX_EXIT(&fr->fr_lock);
2511 		fin->fin_rule = rulen;
2512 
2513 		passo = pass;
2514 		if (FR_ISSKIP(passt)) {
2515 			skip = fr->fr_arg;
2516 			continue;
2517 		} else if (((passt & FR_LOGMASK) != FR_LOG) &&
2518 			   ((passt & FR_LOGMASK) != FR_DECAPSULATE)) {
2519 			pass = passt;
2520 		}
2521 
2522 		if (passt & (FR_RETICMP|FR_FAKEICMP))
2523 			fin->fin_icode = fr->fr_icode;
2524 
2525 		if (fr->fr_group != -1) {
2526 			(void) strncpy(fin->fin_group,
2527 				       FR_NAME(fr, fr_group),
2528 				       strlen(FR_NAME(fr, fr_group)));
2529 		} else {
2530 			fin->fin_group[0] = '\0';
2531 		}
2532 
2533 		FR_DEBUG(("pass %#x/%#x/%x\n", passo, pass, passt));
2534 
2535 		if (fr->fr_grphead != NULL) {
2536 			fin->fin_fr = fr->fr_grphead->fg_start;
2537 			FR_VERBOSE(("group %s\n", FR_NAME(fr, fr_grhead)));
2538 
2539 			if (FR_ISDECAPS(passt))
2540 				passt = ipf_decaps(fin, pass, fr->fr_icode);
2541 			else
2542 				passt = ipf_scanlist(fin, pass);
2543 
2544 			if (fin->fin_fr == NULL) {
2545 				fin->fin_rule = rulen;
2546 				if (fr->fr_group != -1)
2547 					(void) strncpy(fin->fin_group,
2548 						       fr->fr_names +
2549 						       fr->fr_group,
2550 						       strlen(fr->fr_names +
2551 							      fr->fr_group));
2552 				fin->fin_fr = fr;
2553 				passt = pass;
2554 			}
2555 			pass = passt;
2556 		}
2557 
2558 		if (pass & FR_QUICK) {
2559 			/*
2560 			 * Finally, if we've asked to track state for this
2561 			 * packet, set it up.  Add state for "quick" rules
2562 			 * here so that if the action fails we can consider
2563 			 * the rule to "not match" and keep on processing
2564 			 * filter rules.
2565 			 */
2566 			if ((pass & FR_KEEPSTATE) && !FR_ISAUTH(pass) &&
2567 			    !(fin->fin_flx & FI_STATE)) {
2568 				int out = fin->fin_out;
2569 
2570 				fin->fin_fr = fr;
2571 				if (ipf_state_add(softc, fin, NULL, 0) == 0) {
2572 					LBUMPD(ipf_stats[out], fr_ads);
2573 				} else {
2574 					LBUMPD(ipf_stats[out], fr_bads);
2575 					pass = passo;
2576 					continue;
2577 				}
2578 			}
2579 			break;
2580 		}
2581 	}
2582 	fin->fin_depth--;
2583 	return (pass);
2584 }
2585 
2586 
2587 /* ------------------------------------------------------------------------ */
2588 /* Function:    ipf_acctpkt                                                 */
2589 /* Returns:     frentry_t* - always returns NULL                            */
2590 /* Parameters:  fin(I) - pointer to packet information                      */
2591 /*              passp(IO) - pointer to current/new filter decision (unused) */
2592 /*                                                                          */
2593 /* Checks a packet against accounting rules, if there are any for the given */
2594 /* IP protocol version.                                                     */
2595 /*                                                                          */
2596 /* N.B.: this function returns NULL to match the prototype used by other    */
2597 /* functions called from the IPFilter "mainline" in ipf_check().            */
2598 /* ------------------------------------------------------------------------ */
2599 frentry_t *
2600 ipf_acctpkt(fr_info_t *fin, u_32_t *passp __unused)
2601 {
2602 	ipf_main_softc_t *softc = fin->fin_main_soft;
2603 	char group[FR_GROUPLEN];
2604 	frentry_t *fr, *frsave;
2605 	u_32_t pass, rulen;
2606 
2607 	fr = softc->ipf_acct[fin->fin_out][softc->ipf_active];
2608 
2609 	if (fr != NULL) {
2610 		frsave = fin->fin_fr;
2611 		bcopy(fin->fin_group, group, FR_GROUPLEN);
2612 		rulen = fin->fin_rule;
2613 		fin->fin_fr = fr;
2614 		pass = ipf_scanlist(fin, FR_NOMATCH);
2615 		if (FR_ISACCOUNT(pass)) {
2616 			LBUMPD(ipf_stats[0], fr_acct);
2617 		}
2618 		fin->fin_fr = frsave;
2619 		bcopy(group, fin->fin_group, FR_GROUPLEN);
2620 		fin->fin_rule = rulen;
2621 	}
2622 	return (NULL);
2623 }
2624 
2625 
2626 /* ------------------------------------------------------------------------ */
2627 /* Function:    ipf_firewall                                                */
2628 /* Returns:     frentry_t* - returns pointer to matched rule, if no matches */
2629 /*                           were found, returns NULL.                      */
2630 /* Parameters:  fin(I) - pointer to packet information                      */
2631 /*              passp(IO) - pointer to current/new filter decision (unused) */
2632 /*                                                                          */
2633 /* Applies an appropriate set of firewall rules to the packet, to see if    */
2634 /* there are any matches.  The first check is to see if a match can be seen */
2635 /* in the cache.  If not, then search an appropriate list of rules.  Once a */
2636 /* matching rule is found, take any appropriate actions as defined by the   */
2637 /* rule - except logging.                                                   */
2638 /* ------------------------------------------------------------------------ */
2639 static frentry_t *
2640 ipf_firewall(fr_info_t *fin, u_32_t *passp)
2641 {
2642 	ipf_main_softc_t *softc = fin->fin_main_soft;
2643 	frentry_t *fr;
2644 	u_32_t pass;
2645 	int out;
2646 
2647 	out = fin->fin_out;
2648 	pass = *passp;
2649 
2650 	/*
2651 	 * This rule cache will only affect packets that are not being
2652 	 * statefully filtered.
2653 	 */
2654 	fin->fin_fr = softc->ipf_rules[out][softc->ipf_active];
2655 	if (fin->fin_fr != NULL)
2656 		pass = ipf_scanlist(fin, softc->ipf_pass);
2657 
2658 	if ((pass & FR_NOMATCH)) {
2659 		LBUMPD(ipf_stats[out], fr_nom);
2660 	}
2661 	fr = fin->fin_fr;
2662 
2663 	/*
2664 	 * Apply packets per second rate-limiting to a rule as required.
2665 	 */
2666 	if ((fr != NULL) && (fr->fr_pps != 0) &&
2667 	    !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) {
2668 		DT2(frb_ppsrate, fr_info_t *, fin, frentry_t *, fr);
2669 		pass &= ~(FR_CMDMASK|FR_RETICMP|FR_RETRST);
2670 		pass |= FR_BLOCK;
2671 		LBUMPD(ipf_stats[out], fr_ppshit);
2672 		fin->fin_reason = FRB_PPSRATE;
2673 	}
2674 
2675 	/*
2676 	 * If we fail to add a packet to the authorization queue, then we
2677 	 * drop the packet later.  However, if it was added then pretend
2678 	 * we've dropped it already.
2679 	 */
2680 	if (FR_ISAUTH(pass)) {
2681 		if (ipf_auth_new(fin->fin_m, fin) != 0) {
2682 			DT1(frb_authnew, fr_info_t *, fin);
2683 			fin->fin_m = *fin->fin_mp = NULL;
2684 			fin->fin_reason = FRB_AUTHNEW;
2685 			fin->fin_error = 0;
2686 		} else {
2687 			IPFERROR(1);
2688 			fin->fin_error = ENOSPC;
2689 		}
2690 	}
2691 
2692 	if ((fr != NULL) && (fr->fr_func != NULL) &&
2693 	    (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW))
2694 		(void) (*fr->fr_func)(fin, &pass);
2695 
2696 	/*
2697 	 * If a rule is a pre-auth rule, check again in the list of rules
2698 	 * loaded for authenticated use.  It does not particulary matter
2699 	 * if this search fails because a "preauth" result, from a rule,
2700 	 * is treated as "not a pass", hence the packet is blocked.
2701 	 */
2702 	if (FR_ISPREAUTH(pass)) {
2703 		pass = ipf_auth_pre_scanlist(softc, fin, pass);
2704 	}
2705 
2706 	/*
2707 	 * If the rule has "keep frag" and the packet is actually a fragment,
2708 	 * then create a fragment state entry.
2709 	 */
2710 	if (pass & FR_KEEPFRAG) {
2711 		if (fin->fin_flx & FI_FRAG) {
2712 			if (ipf_frag_new(softc, fin, pass) == -1) {
2713 				LBUMP(ipf_stats[out].fr_bnfr);
2714 			} else {
2715 				LBUMP(ipf_stats[out].fr_nfr);
2716 			}
2717 		} else {
2718 			LBUMP(ipf_stats[out].fr_cfr);
2719 		}
2720 	}
2721 
2722 	fr = fin->fin_fr;
2723 	*passp = pass;
2724 
2725 	return (fr);
2726 }
2727 
2728 
2729 /* ------------------------------------------------------------------------ */
2730 /* Function:    ipf_check                                                   */
2731 /* Returns:     int -  0 == packet allowed through,                         */
2732 /*              User space:                                                 */
2733 /*                    -1 == packet blocked                                  */
2734 /*                     1 == packet not matched                              */
2735 /*                    -2 == requires authentication                         */
2736 /*              Kernel:                                                     */
2737 /*                   > 0 == filter error # for packet                       */
2738 /* Parameters: ctx(I)  - pointer to the instance context                    */
2739 /*             ip(I)   - pointer to start of IPv4/6 packet                  */
2740 /*             hlen(I) - length of header                                   */
2741 /*             ifp(I)  - pointer to interface this packet is on             */
2742 /*             out(I)  - 0 == packet going in, 1 == packet going out        */
2743 /*             mp(IO)  - pointer to caller's buffer pointer that holds this */
2744 /*                       IP packet.                                         */
2745 /* Solaris:                                                                 */
2746 /*             qpi(I)  - pointer to STREAMS queue information for this      */
2747 /*                       interface & direction.                             */
2748 /*                                                                          */
2749 /* ipf_check() is the master function for all IPFilter packet processing.   */
2750 /* It orchestrates: Network Address Translation (NAT), checking for packet  */
2751 /* authorisation (or pre-authorisation), presence of related state info.,   */
2752 /* generating log entries, IP packet accounting, routing of packets as      */
2753 /* directed by firewall rules and of course whether or not to allow the     */
2754 /* packet to be further processed by the kernel.                            */
2755 /*                                                                          */
2756 /* For packets blocked, the contents of "mp" will be NULL'd and the buffer  */
2757 /* freed.  Packets passed may be returned with the pointer pointed to by    */
2758 /* by "mp" changed to a new buffer.                                         */
2759 /* ------------------------------------------------------------------------ */
2760 int
2761 ipf_check(void *ctx, ip_t *ip, int hlen, struct ifnet *ifp, int out
2762 #if defined(_KERNEL) && SOLARIS
2763 	, void* qif, mb_t **mp)
2764 #else
2765 	, mb_t **mp)
2766 #endif
2767 {
2768 	/*
2769 	 * The above really sucks, but short of writing a diff
2770 	 */
2771 	ipf_main_softc_t *softc = ctx;
2772 	fr_info_t frinfo;
2773 	fr_info_t *fin = &frinfo;
2774 	u_32_t pass = softc->ipf_pass;
2775 	frentry_t *fr = NULL;
2776 	int v = IP_V(ip);
2777 	mb_t *mc = NULL;
2778 	mb_t *m;
2779 	/*
2780 	 * The first part of ipf_check() deals with making sure that what goes
2781 	 * into the filtering engine makes some sense.  Information about the
2782 	 * the packet is distilled, collected into a fr_info_t structure and
2783 	 * the an attempt to ensure the buffer the packet is in is big enough
2784 	 * to hold all the required packet headers.
2785 	 */
2786 #ifdef	_KERNEL
2787 # if SOLARIS
2788 	qpktinfo_t *qpi = qif;
2789 
2790 #  ifdef __sparc
2791 	if ((u_int)ip & 0x3)
2792 		return (2);
2793 #  endif
2794 # else
2795 	SPL_INT(s);
2796 # endif
2797 
2798 	if (softc->ipf_running <= 0) {
2799 		return (0);
2800 	}
2801 
2802 	bzero((char *)fin, sizeof(*fin));
2803 
2804 # if SOLARIS
2805 	if (qpi->qpi_flags & QF_BROADCAST)
2806 		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2807 	if (qpi->qpi_flags & QF_MULTICAST)
2808 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2809 	m = qpi->qpi_m;
2810 	fin->fin_qfm = m;
2811 	fin->fin_qpi = qpi;
2812 # else /* SOLARIS */
2813 
2814 	m = *mp;
2815 
2816 #  if defined(M_MCAST)
2817 	if ((m->m_flags & M_MCAST) != 0)
2818 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2819 #  endif
2820 #  if defined(M_MLOOP)
2821 	if ((m->m_flags & M_MLOOP) != 0)
2822 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2823 #  endif
2824 #  if defined(M_BCAST)
2825 	if ((m->m_flags & M_BCAST) != 0)
2826 		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2827 #  endif
2828 #  ifdef M_CANFASTFWD
2829 	/*
2830 	 * XXX For now, IP Filter and fast-forwarding of cached flows
2831 	 * XXX are mutually exclusive.  Eventually, IP Filter should
2832 	 * XXX get a "can-fast-forward" filter rule.
2833 	 */
2834 	m->m_flags &= ~M_CANFASTFWD;
2835 #  endif /* M_CANFASTFWD */
2836 #  if defined(CSUM_DELAY_DATA) && !defined(__FreeBSD__)
2837 	/*
2838 	 * disable delayed checksums.
2839 	 */
2840 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2841 		in_delayed_cksum(m);
2842 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2843 	}
2844 #  endif /* CSUM_DELAY_DATA */
2845 # endif /* SOLARIS */
2846 #else
2847 	bzero((char *)fin, sizeof(*fin));
2848 	m = *mp;
2849 # if defined(M_MCAST)
2850 	if ((m->m_flags & M_MCAST) != 0)
2851 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2852 # endif
2853 # if defined(M_MLOOP)
2854 	if ((m->m_flags & M_MLOOP) != 0)
2855 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2856 # endif
2857 # if defined(M_BCAST)
2858 	if ((m->m_flags & M_BCAST) != 0)
2859 		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2860 # endif
2861 #endif /* _KERNEL */
2862 
2863 	fin->fin_v = v;
2864 	fin->fin_m = m;
2865 	fin->fin_ip = ip;
2866 	fin->fin_mp = mp;
2867 	fin->fin_out = out;
2868 	fin->fin_ifp = ifp;
2869 	fin->fin_error = ENETUNREACH;
2870 	fin->fin_hlen = (u_short)hlen;
2871 	fin->fin_dp = (char *)ip + hlen;
2872 	fin->fin_main_soft = softc;
2873 
2874 	fin->fin_ipoff = (char *)ip - MTOD(m, char *);
2875 
2876 	SPL_NET(s);
2877 
2878 #ifdef	USE_INET6
2879 	if (v == 6) {
2880 		LBUMP(ipf_stats[out].fr_ipv6);
2881 		/*
2882 		 * Jumbo grams are quite likely too big for internal buffer
2883 		 * structures to handle comfortably, for now, so just drop
2884 		 * them.
2885 		 */
2886 		if (((ip6_t *)ip)->ip6_plen == 0) {
2887 			DT1(frb_jumbo, ip6_t *, (ip6_t *)ip);
2888 			pass = FR_BLOCK|FR_NOMATCH;
2889 			fin->fin_reason = FRB_JUMBO;
2890 			goto finished;
2891 		}
2892 		fin->fin_family = AF_INET6;
2893 	} else
2894 #endif
2895 	{
2896 		fin->fin_family = AF_INET;
2897 	}
2898 
2899 	if (ipf_makefrip(hlen, ip, fin) == -1) {
2900 		DT1(frb_makefrip, fr_info_t *, fin);
2901 		pass = FR_BLOCK|FR_NOMATCH;
2902 		fin->fin_reason = FRB_MAKEFRIP;
2903 		goto finished;
2904 	}
2905 
2906 	/*
2907 	 * For at least IPv6 packets, if a m_pullup() fails then this pointer
2908 	 * becomes NULL and so we have no packet to free.
2909 	 */
2910 	if (*fin->fin_mp == NULL)
2911 		goto finished;
2912 
2913 	if (!out) {
2914 		if (v == 4) {
2915 			if (softc->ipf_chksrc && !ipf_verifysrc(fin)) {
2916 				LBUMPD(ipf_stats[0], fr_v4_badsrc);
2917 				fin->fin_flx |= FI_BADSRC;
2918 			}
2919 			if (fin->fin_ip->ip_ttl < softc->ipf_minttl) {
2920 				LBUMPD(ipf_stats[0], fr_v4_badttl);
2921 				fin->fin_flx |= FI_LOWTTL;
2922 			}
2923 		}
2924 #ifdef USE_INET6
2925 		else  if (v == 6) {
2926 			if (((ip6_t *)ip)->ip6_hlim < softc->ipf_minttl) {
2927 				LBUMPD(ipf_stats[0], fr_v6_badttl);
2928 				fin->fin_flx |= FI_LOWTTL;
2929 			}
2930 		}
2931 #endif
2932 	}
2933 
2934 	if (fin->fin_flx & FI_SHORT) {
2935 		LBUMPD(ipf_stats[out], fr_short);
2936 	}
2937 
2938 	READ_ENTER(&softc->ipf_mutex);
2939 
2940 	if (!out) {
2941 		switch (fin->fin_v)
2942 		{
2943 		case 4 :
2944 			if (ipf_nat_checkin(fin, &pass) == -1) {
2945 				goto filterdone;
2946 			}
2947 			break;
2948 #ifdef USE_INET6
2949 		case 6 :
2950 			if (ipf_nat6_checkin(fin, &pass) == -1) {
2951 				goto filterdone;
2952 			}
2953 			break;
2954 #endif
2955 		default :
2956 			break;
2957 		}
2958 	}
2959 	/*
2960 	 * Check auth now.
2961 	 * If a packet is found in the auth table, then skip checking
2962 	 * the access lists for permission but we do need to consider
2963 	 * the result as if it were from the ACL's.  In addition, being
2964 	 * found in the auth table means it has been seen before, so do
2965 	 * not pass it through accounting (again), lest it be counted twice.
2966 	 */
2967 	fr = ipf_auth_check(fin, &pass);
2968 	if (!out && (fr == NULL))
2969 		(void) ipf_acctpkt(fin, NULL);
2970 
2971 	if (fr == NULL) {
2972 		if ((fin->fin_flx & FI_FRAG) != 0)
2973 			fr = ipf_frag_known(fin, &pass);
2974 
2975 		if (fr == NULL)
2976 			fr = ipf_state_check(fin, &pass);
2977 	}
2978 
2979 	if ((pass & FR_NOMATCH) || (fr == NULL))
2980 		fr = ipf_firewall(fin, &pass);
2981 
2982 	/*
2983 	 * If we've asked to track state for this packet, set it up.
2984 	 * Here rather than ipf_firewall because ipf_checkauth may decide
2985 	* to return a packet for "keep state"
2986 	 */
2987 	if ((pass & FR_KEEPSTATE) && (fin->fin_m != NULL) &&
2988 	    !(fin->fin_flx & FI_STATE)) {
2989 		if (ipf_state_add(softc, fin, NULL, 0) == 0) {
2990 			LBUMP(ipf_stats[out].fr_ads);
2991 		} else {
2992 			LBUMP(ipf_stats[out].fr_bads);
2993 			if (FR_ISPASS(pass)) {
2994 				DT(frb_stateadd);
2995 				pass &= ~FR_CMDMASK;
2996 				pass |= FR_BLOCK;
2997 				fin->fin_reason = FRB_STATEADD;
2998 			}
2999 		}
3000 	}
3001 
3002 	fin->fin_fr = fr;
3003 	if ((fr != NULL) && !(fin->fin_flx & FI_STATE)) {
3004 		fin->fin_dif = &fr->fr_dif;
3005 		fin->fin_tif = &fr->fr_tifs[fin->fin_rev];
3006 	}
3007 
3008 	/*
3009 	 * Only count/translate packets which will be passed on, out the
3010 	 * interface.
3011 	 */
3012 	if (out && FR_ISPASS(pass)) {
3013 		(void) ipf_acctpkt(fin, NULL);
3014 
3015 		switch (fin->fin_v)
3016 		{
3017 		case 4 :
3018 			if (ipf_nat_checkout(fin, &pass) == -1) {
3019 				;
3020 			} else if ((softc->ipf_update_ipid != 0) && (v == 4)) {
3021 				if (ipf_updateipid(fin) == -1) {
3022 					DT(frb_updateipid);
3023 					LBUMP(ipf_stats[1].fr_ipud);
3024 					pass &= ~FR_CMDMASK;
3025 					pass |= FR_BLOCK;
3026 					fin->fin_reason = FRB_UPDATEIPID;
3027 				} else {
3028 					LBUMP(ipf_stats[0].fr_ipud);
3029 				}
3030 			}
3031 			break;
3032 #ifdef USE_INET6
3033 		case 6 :
3034 			(void) ipf_nat6_checkout(fin, &pass);
3035 			break;
3036 #endif
3037 		default :
3038 			break;
3039 		}
3040 	}
3041 
3042 filterdone:
3043 #ifdef	IPFILTER_LOG
3044 	if ((softc->ipf_flags & FF_LOGGING) || (pass & FR_LOGMASK)) {
3045 		(void) ipf_dolog(fin, &pass);
3046 	}
3047 #endif
3048 
3049 	/*
3050 	 * The FI_STATE flag is cleared here so that calling ipf_state_check
3051 	 * will work when called from inside of fr_fastroute.  Although
3052 	 * there is a similar flag, FI_NATED, for NAT, it does have the same
3053 	 * impact on code execution.
3054 	 */
3055 	fin->fin_flx &= ~FI_STATE;
3056 
3057 #if defined(FASTROUTE_RECURSION)
3058 	/*
3059 	 * Up the reference on fr_lock and exit ipf_mutex. The generation of
3060 	 * a packet below can sometimes cause a recursive call into IPFilter.
3061 	 * On those platforms where that does happen, we need to hang onto
3062 	 * the filter rule just in case someone decides to remove or flush it
3063 	 * in the meantime.
3064 	 */
3065 	if (fr != NULL) {
3066 		MUTEX_ENTER(&fr->fr_lock);
3067 		fr->fr_ref++;
3068 		MUTEX_EXIT(&fr->fr_lock);
3069 	}
3070 
3071 	RWLOCK_EXIT(&softc->ipf_mutex);
3072 #endif
3073 
3074 	if ((pass & FR_RETMASK) != 0) {
3075 		/*
3076 		* Should we return an ICMP packet to indicate error
3077 		 * status passing through the packet filter ?
3078 		 * WARNING: ICMP error packets AND TCP RST packets should
3079 		 * ONLY be sent in repsonse to incoming packets.  Sending
3080 		 * them in response to outbound packets can result in a
3081 		 * panic on some operating systems.
3082 		 */
3083 		if (!out) {
3084 			if (pass & FR_RETICMP) {
3085 				int dst;
3086 
3087 				if ((pass & FR_RETMASK) == FR_FAKEICMP)
3088 					dst = 1;
3089 				else
3090 					dst = 0;
3091 				(void) ipf_send_icmp_err(ICMP_UNREACH, fin,
3092 							 dst);
3093 				LBUMP(ipf_stats[0].fr_ret);
3094 			} else if (((pass & FR_RETMASK) == FR_RETRST) &&
3095 				   !(fin->fin_flx & FI_SHORT)) {
3096 				if (((fin->fin_flx & FI_OOW) != 0) ||
3097 				    (ipf_send_reset(fin) == 0)) {
3098 					LBUMP(ipf_stats[1].fr_ret);
3099 				}
3100 			}
3101 
3102 			/*
3103 			 * When using return-* with auth rules, the auth code
3104 			 * takes over disposing of this packet.
3105 			 */
3106 			if (FR_ISAUTH(pass) && (fin->fin_m != NULL)) {
3107 				DT1(frb_authcapture, fr_info_t *, fin);
3108 				fin->fin_m = *fin->fin_mp = NULL;
3109 				fin->fin_reason = FRB_AUTHCAPTURE;
3110 				m = NULL;
3111 			}
3112 		} else {
3113 			if (pass & FR_RETRST) {
3114 				fin->fin_error = ECONNRESET;
3115 			}
3116 		}
3117 	}
3118 
3119 	/*
3120 	 * After the above so that ICMP unreachables and TCP RSTs get
3121 	 * created properly.
3122 	 */
3123 	if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT))
3124 		ipf_nat_uncreate(fin);
3125 
3126 	/*
3127 	 * If we didn't drop off the bottom of the list of rules (and thus
3128 	 * the 'current' rule fr is not NULL), then we may have some extra
3129 	 * instructions about what to do with a packet.
3130 	* Once we're finished return to our caller, freeing the packet if
3131 	 * we are dropping it.
3132 	 */
3133 	if (fr != NULL) {
3134 		frdest_t *fdp;
3135 
3136 		/*
3137 		 * Generate a duplicated packet first because ipf_fastroute
3138 		 * can lead to fin_m being free'd... not good.
3139 		 */
3140 		fdp = fin->fin_dif;
3141 		if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3142 		    (fdp->fd_ptr != (void *)-1)) {
3143 			mc = M_COPY(fin->fin_m);
3144 			if (mc != NULL)
3145 				ipf_fastroute(mc, &mc, fin, fdp);
3146 		}
3147 
3148 		fdp = fin->fin_tif;
3149 		if (!out && (pass & FR_FASTROUTE)) {
3150 			/*
3151 			 * For fastroute rule, no destination interface defined
3152 			 * so pass NULL as the frdest_t parameter
3153 			 */
3154 			(void) ipf_fastroute(fin->fin_m, mp, fin, NULL);
3155 			m = *mp = NULL;
3156 		} else if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3157 			   (fdp->fd_ptr != (struct ifnet *)-1)) {
3158 			/* this is for to rules: */
3159 			ipf_fastroute(fin->fin_m, mp, fin, fdp);
3160 			m = *mp = NULL;
3161 		}
3162 
3163 #if defined(FASTROUTE_RECURSION)
3164 		(void) ipf_derefrule(softc, &fr);
3165 #endif
3166 	}
3167 #if !defined(FASTROUTE_RECURSION)
3168 	RWLOCK_EXIT(&softc->ipf_mutex);
3169 #endif
3170 
3171 finished:
3172 	if (!FR_ISPASS(pass)) {
3173 		LBUMP(ipf_stats[out].fr_block);
3174 		if (*mp != NULL) {
3175 #ifdef _KERNEL
3176 			FREE_MB_T(*mp);
3177 #endif
3178 			m = *mp = NULL;
3179 		}
3180 	} else {
3181 		LBUMP(ipf_stats[out].fr_pass);
3182 	}
3183 
3184 	SPL_X(s);
3185 
3186 	if (fin->fin_m == NULL && fin->fin_flx & FI_BAD &&
3187 	    fin->fin_reason == FRB_PULLUP) {
3188 		/* m_pullup() has freed the mbuf */
3189 		LBUMP(ipf_stats[out].fr_blocked[fin->fin_reason]);
3190 		return (-1);
3191 	}
3192 
3193 
3194 #ifdef _KERNEL
3195 	if (FR_ISPASS(pass))
3196 		return (0);
3197 	LBUMP(ipf_stats[out].fr_blocked[fin->fin_reason]);
3198 	return (fin->fin_error);
3199 #else /* _KERNEL */
3200 	if (*mp != NULL)
3201 		(*mp)->mb_ifp = fin->fin_ifp;
3202 	blockreason = fin->fin_reason;
3203 	FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass));
3204 	/*if ((pass & FR_CMDMASK) == (softc->ipf_pass & FR_CMDMASK))*/
3205 		if ((pass & FR_NOMATCH) != 0)
3206 			return (1);
3207 
3208 	if ((pass & FR_RETMASK) != 0)
3209 		switch (pass & FR_RETMASK)
3210 		{
3211 		case FR_RETRST :
3212 			return (3);
3213 		case FR_RETICMP :
3214 			return (4);
3215 		case FR_FAKEICMP :
3216 			return (5);
3217 		}
3218 
3219 	switch (pass & FR_CMDMASK)
3220 	{
3221 	case FR_PASS :
3222 		return (0);
3223 	case FR_BLOCK :
3224 		return (-1);
3225 	case FR_AUTH :
3226 		return (-2);
3227 	case FR_ACCOUNT :
3228 		return (-3);
3229 	case FR_PREAUTH :
3230 		return (-4);
3231 	}
3232 	return (2);
3233 #endif /* _KERNEL */
3234 }
3235 
3236 
3237 #ifdef	IPFILTER_LOG
3238 /* ------------------------------------------------------------------------ */
3239 /* Function:    ipf_dolog                                                   */
3240 /* Returns:     frentry_t* - returns contents of fin_fr (no change made)    */
3241 /* Parameters:  fin(I) - pointer to packet information                      */
3242 /*              passp(IO) - pointer to current/new filter decision (unused) */
3243 /*                                                                          */
3244 /* Checks flags set to see how a packet should be logged, if it is to be    */
3245 /* logged.  Adjust statistics based on its success or not.                  */
3246 /* ------------------------------------------------------------------------ */
3247 frentry_t *
3248 ipf_dolog(fr_info_t *fin, u_32_t *passp)
3249 {
3250 	ipf_main_softc_t *softc = fin->fin_main_soft;
3251 	u_32_t pass;
3252 	int out;
3253 
3254 	out = fin->fin_out;
3255 	pass = *passp;
3256 
3257 	if ((softc->ipf_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) {
3258 		pass |= FF_LOGNOMATCH;
3259 		LBUMPD(ipf_stats[out], fr_npkl);
3260 		goto logit;
3261 
3262 	} else if (((pass & FR_LOGMASK) == FR_LOGP) ||
3263 	    (FR_ISPASS(pass) && (softc->ipf_flags & FF_LOGPASS))) {
3264 		if ((pass & FR_LOGMASK) != FR_LOGP)
3265 			pass |= FF_LOGPASS;
3266 		LBUMPD(ipf_stats[out], fr_ppkl);
3267 		goto logit;
3268 
3269 	} else if (((pass & FR_LOGMASK) == FR_LOGB) ||
3270 		   (FR_ISBLOCK(pass) && (softc->ipf_flags & FF_LOGBLOCK))) {
3271 		if ((pass & FR_LOGMASK) != FR_LOGB)
3272 			pass |= FF_LOGBLOCK;
3273 		LBUMPD(ipf_stats[out], fr_bpkl);
3274 
3275 logit:
3276 		if (ipf_log_pkt(fin, pass) == -1) {
3277 			/*
3278 			 * If the "or-block" option has been used then
3279 			 * block the packet if we failed to log it.
3280 			 */
3281 			if ((pass & FR_LOGORBLOCK) && FR_ISPASS(pass)) {
3282 				DT1(frb_logfail2, u_int, pass);
3283 				pass &= ~FR_CMDMASK;
3284 				pass |= FR_BLOCK;
3285 				fin->fin_reason = FRB_LOGFAIL2;
3286 			}
3287 		}
3288 		*passp = pass;
3289 	}
3290 
3291 	return (fin->fin_fr);
3292 }
3293 #endif /* IPFILTER_LOG */
3294 
3295 
3296 /* ------------------------------------------------------------------------ */
3297 /* Function:    ipf_cksum                                                   */
3298 /* Returns:     u_short - IP header checksum                                */
3299 /* Parameters:  addr(I) - pointer to start of buffer to checksum            */
3300 /*              len(I)  - length of buffer in bytes                         */
3301 /*                                                                          */
3302 /* Calculate the two's complement 16 bit checksum of the buffer passed.     */
3303 /*                                                                          */
3304 /* N.B.: addr should be 16bit aligned.                                      */
3305 /* ------------------------------------------------------------------------ */
3306 u_short
3307 ipf_cksum(u_short *addr, int len)
3308 {
3309 	u_32_t sum = 0;
3310 
3311 	for (sum = 0; len > 1; len -= 2)
3312 		sum += *addr++;
3313 
3314 	/* mop up an odd byte, if necessary */
3315 	if (len == 1)
3316 		sum += *(u_char *)addr;
3317 
3318 	/*
3319 	 * add back carry outs from top 16 bits to low 16 bits
3320 	 */
3321 	sum = (sum >> 16) + (sum & 0xffff);	/* add hi 16 to low 16 */
3322 	sum += (sum >> 16);			/* add carry */
3323 	return (u_short)(~sum);
3324 }
3325 
3326 
3327 /* ------------------------------------------------------------------------ */
3328 /* Function:    fr_cksum                                                    */
3329 /* Returns:     u_short - layer 4 checksum                                  */
3330 /* Parameters:  fin(I)     - pointer to packet information                  */
3331 /*              ip(I)      - pointer to IP header                           */
3332 /*              l4proto(I) - protocol to caclulate checksum for             */
3333 /*              l4hdr(I)   - pointer to layer 4 header                      */
3334 /*                                                                          */
3335 /* Calculates the TCP checksum for the packet held in "m", using the data   */
3336 /* in the IP header "ip" to seed it.                                        */
3337 /*                                                                          */
3338 /* NB: This function assumes we've pullup'd enough for all of the IP header */
3339 /* and the TCP header.  We also assume that data blocks aren't allocated in */
3340 /* odd sizes.                                                               */
3341 /*                                                                          */
3342 /* Expects ip_len and ip_off to be in network byte order when called.       */
3343 /* ------------------------------------------------------------------------ */
3344 u_short
3345 fr_cksum(fr_info_t *fin, ip_t *ip, int l4proto, void *l4hdr)
3346 {
3347 	u_short *sp, slen, sumsave, *csump;
3348 	u_int sum, sum2;
3349 	int hlen;
3350 	int off;
3351 #ifdef	USE_INET6
3352 	ip6_t *ip6;
3353 #endif
3354 
3355 	csump = NULL;
3356 	sumsave = 0;
3357 	sp = NULL;
3358 	slen = 0;
3359 	hlen = 0;
3360 	sum = 0;
3361 
3362 	sum = htons((u_short)l4proto);
3363 	/*
3364 	 * Add up IP Header portion
3365 	 */
3366 #ifdef	USE_INET6
3367 	if (IP_V(ip) == 4) {
3368 #endif
3369 		hlen = IP_HL(ip) << 2;
3370 		off = hlen;
3371 		sp = (u_short *)&ip->ip_src;
3372 		sum += *sp++;	/* ip_src */
3373 		sum += *sp++;
3374 		sum += *sp++;	/* ip_dst */
3375 		sum += *sp++;
3376 		slen = fin->fin_plen - off;
3377 		sum += htons(slen);
3378 #ifdef	USE_INET6
3379 	} else if (IP_V(ip) == 6) {
3380 		mb_t *m;
3381 
3382 		m = fin->fin_m;
3383 		ip6 = (ip6_t *)ip;
3384 		off = ((caddr_t)ip6 - m->m_data) + sizeof(struct ip6_hdr);
3385 		int len = ntohs(ip6->ip6_plen) - (off - sizeof(*ip6));
3386 		return (ipf_pcksum6(m, ip6, off, len));
3387 	} else {
3388 		return (0xffff);
3389 	}
3390 #endif
3391 
3392 	switch (l4proto)
3393 	{
3394 	case IPPROTO_UDP :
3395 		csump = &((udphdr_t *)l4hdr)->uh_sum;
3396 		break;
3397 
3398 	case IPPROTO_TCP :
3399 		csump = &((tcphdr_t *)l4hdr)->th_sum;
3400 		break;
3401 	case IPPROTO_ICMP :
3402 		csump = &((icmphdr_t *)l4hdr)->icmp_cksum;
3403 		sum = 0;	/* Pseudo-checksum is not included */
3404 		break;
3405 #ifdef USE_INET6
3406 	case IPPROTO_ICMPV6 :
3407 		csump = &((struct icmp6_hdr *)l4hdr)->icmp6_cksum;
3408 		break;
3409 #endif
3410 	default :
3411 		break;
3412 	}
3413 
3414 	if (csump != NULL) {
3415 		sumsave = *csump;
3416 		*csump = 0;
3417 	}
3418 
3419 	sum2 = ipf_pcksum(fin, off, sum);
3420 	if (csump != NULL)
3421 		*csump = sumsave;
3422 	return (sum2);
3423 }
3424 
3425 
3426 /* ------------------------------------------------------------------------ */
3427 /* Function:    ipf_findgroup                                               */
3428 /* Returns:     frgroup_t * - NULL = group not found, else pointer to group */
3429 /* Parameters:  softc(I) - pointer to soft context main structure           */
3430 /*              group(I) - group name to search for                         */
3431 /*              unit(I)  - device to which this group belongs               */
3432 /*              set(I)   - which set of rules (inactive/inactive) this is   */
3433 /*              fgpp(O)  - pointer to place to store pointer to the pointer */
3434 /*                         to where to add the next (last) group or where   */
3435 /*                         to delete group from.                            */
3436 /*                                                                          */
3437 /* Search amongst the defined groups for a particular group number.         */
3438 /* ------------------------------------------------------------------------ */
3439 frgroup_t *
3440 ipf_findgroup(ipf_main_softc_t *softc, char *group, minor_t unit, int set,
3441 	frgroup_t ***fgpp)
3442 {
3443 	frgroup_t *fg, **fgp;
3444 
3445 	/*
3446 	 * Which list of groups to search in is dependent on which list of
3447 	 * rules are being operated on.
3448 	 */
3449 	fgp = &softc->ipf_groups[unit][set];
3450 
3451 	while ((fg = *fgp) != NULL) {
3452 		if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0)
3453 			break;
3454 		else
3455 			fgp = &fg->fg_next;
3456 	}
3457 	if (fgpp != NULL)
3458 		*fgpp = fgp;
3459 	return (fg);
3460 }
3461 
3462 
3463 /* ------------------------------------------------------------------------ */
3464 /* Function:    ipf_group_add                                               */
3465 /* Returns:     frgroup_t * - NULL == did not create group,                 */
3466 /*                            != NULL == pointer to the group               */
3467 /* Parameters:  softc(I) - pointer to soft context main structure           */
3468 /*              num(I)   - group number to add                              */
3469 /*              head(I)  - rule pointer that is using this as the head      */
3470 /*              flags(I) - rule flags which describe the type of rule it is */
3471 /*              unit(I)  - device to which this group will belong to        */
3472 /*              set(I)   - which set of rules (inactive/inactive) this is   */
3473 /* Write Locks: ipf_mutex                                                   */
3474 /*                                                                          */
3475 /* Add a new group head, or if it already exists, increase the reference    */
3476 /* count to it.                                                             */
3477 /* ------------------------------------------------------------------------ */
3478 frgroup_t *
3479 ipf_group_add(ipf_main_softc_t *softc, char *group, void *head, u_32_t flags,
3480 	minor_t unit, int set)
3481 {
3482 	frgroup_t *fg, **fgp;
3483 	u_32_t gflags;
3484 
3485 	if (group == NULL)
3486 		return (NULL);
3487 
3488 	if (unit == IPL_LOGIPF && *group == '\0')
3489 		return (NULL);
3490 
3491 	fgp = NULL;
3492 	gflags = flags & FR_INOUT;
3493 
3494 	fg = ipf_findgroup(softc, group, unit, set, &fgp);
3495 	if (fg != NULL) {
3496 		if (fg->fg_head == NULL && head != NULL)
3497 			fg->fg_head = head;
3498 		if (fg->fg_flags == 0)
3499 			fg->fg_flags = gflags;
3500 		else if (gflags != fg->fg_flags)
3501 			return (NULL);
3502 		fg->fg_ref++;
3503 		return (fg);
3504 	}
3505 
3506 	KMALLOC(fg, frgroup_t *);
3507 	if (fg != NULL) {
3508 		fg->fg_head = head;
3509 		fg->fg_start = NULL;
3510 		fg->fg_next = *fgp;
3511 		bcopy(group, fg->fg_name, strnlen(group, FR_GROUPLEN) + 1);
3512 		fg->fg_flags = gflags;
3513 		fg->fg_ref = 1;
3514 		fg->fg_set = &softc->ipf_groups[unit][set];
3515 		*fgp = fg;
3516 	}
3517 	return (fg);
3518 }
3519 
3520 
3521 /* ------------------------------------------------------------------------ */
3522 /* Function:    ipf_group_del                                               */
3523 /* Returns:     int      - number of rules deleted                          */
3524 /* Parameters:  softc(I) - pointer to soft context main structure           */
3525 /*              group(I) - group name to delete                             */
3526 /*              fr(I)    - filter rule from which group is referenced       */
3527 /* Write Locks: ipf_mutex                                                   */
3528 /*                                                                          */
3529 /* This function is called whenever a reference to a group is to be dropped */
3530 /* and thus its reference count needs to be lowered and the group free'd if */
3531 /* the reference count reaches zero. Passing in fr is really for the sole   */
3532 /* purpose of knowing when the head rule is being deleted.                  */
3533 /* ------------------------------------------------------------------------ */
3534 void
3535 ipf_group_del(ipf_main_softc_t *softc, frgroup_t *group, frentry_t *fr)
3536 {
3537 
3538 	if (group->fg_head == fr)
3539 		group->fg_head = NULL;
3540 
3541 	group->fg_ref--;
3542 	if ((group->fg_ref == 0) && (group->fg_start == NULL))
3543 		ipf_group_free(group);
3544 }
3545 
3546 
3547 /* ------------------------------------------------------------------------ */
3548 /* Function:    ipf_group_free                                              */
3549 /* Returns:     Nil                                                         */
3550 /* Parameters:  group(I) - pointer to filter rule group                     */
3551 /*                                                                          */
3552 /* Remove the group from the list of groups and free it.                    */
3553 /* ------------------------------------------------------------------------ */
3554 static void
3555 ipf_group_free(frgroup_t *group)
3556 {
3557 	frgroup_t **gp;
3558 
3559 	for (gp = group->fg_set; *gp != NULL; gp = &(*gp)->fg_next) {
3560 		if (*gp == group) {
3561 			*gp = group->fg_next;
3562 			break;
3563 		}
3564 	}
3565 	KFREE(group);
3566 }
3567 
3568 
3569 /* ------------------------------------------------------------------------ */
3570 /* Function:    ipf_group_flush                                             */
3571 /* Returns:     int      - number of rules flush from group                 */
3572 /* Parameters:  softc(I) - pointer to soft context main structure           */
3573 /* Parameters:  group(I) - pointer to filter rule group                     */
3574 /*                                                                          */
3575 /* Remove all of the rules that currently are listed under the given group. */
3576 /* ------------------------------------------------------------------------ */
3577 static int
3578 ipf_group_flush(ipf_main_softc_t *softc, frgroup_t *group)
3579 {
3580 	int gone = 0;
3581 
3582 	(void) ipf_flushlist(softc, &gone, &group->fg_start);
3583 
3584 	return (gone);
3585 }
3586 
3587 
3588 /* ------------------------------------------------------------------------ */
3589 /* Function:    ipf_getrulen                                                */
3590 /* Returns:     frentry_t * - NULL == not found, else pointer to rule n     */
3591 /* Parameters:  softc(I) - pointer to soft context main structure           */
3592 /* Parameters:  unit(I)  - device for which to count the rule's number      */
3593 /*              flags(I) - which set of rules to find the rule in           */
3594 /*              group(I) - group name                                       */
3595 /*              n(I)     - rule number to find                              */
3596 /*                                                                          */
3597 /* Find rule # n in group # g and return a pointer to it.  Return NULl if   */
3598 /* group # g doesn't exist or there are less than n rules in the group.     */
3599 /* ------------------------------------------------------------------------ */
3600 frentry_t *
3601 ipf_getrulen(ipf_main_softc_t *softc, int unit, char *group, u_32_t n)
3602 {
3603 	frentry_t *fr;
3604 	frgroup_t *fg;
3605 
3606 	fg = ipf_findgroup(softc, group, unit, softc->ipf_active, NULL);
3607 	if (fg == NULL)
3608 		return (NULL);
3609 	for (fr = fg->fg_start; fr && n; fr = fr->fr_next, n--)
3610 		;
3611 	if (n != 0)
3612 		return (NULL);
3613 	return (fr);
3614 }
3615 
3616 
3617 /* ------------------------------------------------------------------------ */
3618 /* Function:    ipf_flushlist                                               */
3619 /* Returns:     int - >= 0 - number of flushed rules                        */
3620 /* Parameters:  softc(I)   - pointer to soft context main structure         */
3621 /*              nfreedp(O) - pointer to int where flush count is stored     */
3622 /*              listp(I)   - pointer to list to flush pointer               */
3623 /* Write Locks: ipf_mutex                                                   */
3624 /*                                                                          */
3625 /* Recursively flush rules from the list, descending groups as they are     */
3626 /* encountered.  if a rule is the head of a group and it has lost all its   */
3627 /* group members, then also delete the group reference.  nfreedp is needed  */
3628 /* to store the accumulating count of rules removed, whereas the returned   */
3629 /* value is just the number removed from the current list.  The latter is   */
3630 /* needed to correctly adjust reference counts on rules that define groups. */
3631 /*                                                                          */
3632 /* NOTE: Rules not loaded from user space cannot be flushed.                */
3633 /* ------------------------------------------------------------------------ */
3634 static int
3635 ipf_flushlist(ipf_main_softc_t *softc, int *nfreedp, frentry_t **listp)
3636 {
3637 	int freed = 0;
3638 	frentry_t *fp;
3639 
3640 	while ((fp = *listp) != NULL) {
3641 		if ((fp->fr_type & FR_T_BUILTIN) ||
3642 		    !(fp->fr_flags & FR_COPIED)) {
3643 			listp = &fp->fr_next;
3644 			continue;
3645 		}
3646 		*listp = fp->fr_next;
3647 		if (fp->fr_next != NULL)
3648 			fp->fr_next->fr_pnext = fp->fr_pnext;
3649 		fp->fr_pnext = NULL;
3650 
3651 		if (fp->fr_grphead != NULL) {
3652 			freed += ipf_group_flush(softc, fp->fr_grphead);
3653 			fp->fr_names[fp->fr_grhead] = '\0';
3654 		}
3655 
3656 		if (fp->fr_icmpgrp != NULL) {
3657 			freed += ipf_group_flush(softc, fp->fr_icmpgrp);
3658 			fp->fr_names[fp->fr_icmphead] = '\0';
3659 		}
3660 
3661 		if (fp->fr_srctrack.ht_max_nodes)
3662 			ipf_rb_ht_flush(&fp->fr_srctrack);
3663 
3664 		fp->fr_next = NULL;
3665 
3666 		ASSERT(fp->fr_ref > 0);
3667 		if (ipf_derefrule(softc, &fp) == 0)
3668 			freed++;
3669 	}
3670 	*nfreedp += freed;
3671 	return (freed);
3672 }
3673 
3674 
3675 /* ------------------------------------------------------------------------ */
3676 /* Function:    ipf_flush                                                   */
3677 /* Returns:     int - >= 0 - number of flushed rules                        */
3678 /* Parameters:  softc(I) - pointer to soft context main structure           */
3679 /*              unit(I)  - device for which to flush rules                  */
3680 /*              flags(I) - which set of rules to flush                      */
3681 /*                                                                          */
3682 /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */
3683 /* and IPv6) as defined by the value of flags.                              */
3684 /* ------------------------------------------------------------------------ */
3685 int
3686 ipf_flush(ipf_main_softc_t *softc, minor_t unit, int flags)
3687 {
3688 	int flushed = 0, set;
3689 
3690 	WRITE_ENTER(&softc->ipf_mutex);
3691 
3692 	set = softc->ipf_active;
3693 	if ((flags & FR_INACTIVE) == FR_INACTIVE)
3694 		set = 1 - set;
3695 
3696 	if (flags & FR_OUTQUE) {
3697 		ipf_flushlist(softc, &flushed, &softc->ipf_rules[1][set]);
3698 		ipf_flushlist(softc, &flushed, &softc->ipf_acct[1][set]);
3699 	}
3700 	if (flags & FR_INQUE) {
3701 		ipf_flushlist(softc, &flushed, &softc->ipf_rules[0][set]);
3702 		ipf_flushlist(softc, &flushed, &softc->ipf_acct[0][set]);
3703 	}
3704 
3705 	flushed += ipf_flush_groups(softc, &softc->ipf_groups[unit][set],
3706 				    flags & (FR_INQUE|FR_OUTQUE));
3707 
3708 	RWLOCK_EXIT(&softc->ipf_mutex);
3709 
3710 	if (unit == IPL_LOGIPF) {
3711 		int tmp;
3712 
3713 		tmp = ipf_flush(softc, IPL_LOGCOUNT, flags);
3714 		if (tmp >= 0)
3715 			flushed += tmp;
3716 	}
3717 	return (flushed);
3718 }
3719 
3720 
3721 /* ------------------------------------------------------------------------ */
3722 /* Function:    ipf_flush_groups                                            */
3723 /* Returns:     int - >= 0 - number of flushed rules                        */
3724 /* Parameters:  softc(I)  - soft context pointerto work with                */
3725 /*              grhead(I) - pointer to the start of the group list to flush */
3726 /*              flags(I)  - which set of rules to flush                     */
3727 /*                                                                          */
3728 /* Walk through all of the groups under the given group head and remove all */
3729 /* of those that match the flags passed in. The for loop here is bit more   */
3730 /* complicated than usual because the removal of a rule with ipf_derefrule  */
3731 /* may end up removing not only the structure pointed to by "fg" but also   */
3732 /* what is fg_next and fg_next after that. So if a filter rule is actually  */
3733 /* removed from the group then it is necessary to start again.              */
3734 /* ------------------------------------------------------------------------ */
3735 static int
3736 ipf_flush_groups(ipf_main_softc_t *softc, frgroup_t **grhead, int flags)
3737 {
3738 	frentry_t *fr, **frp;
3739 	frgroup_t *fg, **fgp;
3740 	int flushed = 0;
3741 	int removed = 0;
3742 
3743 	for (fgp = grhead; (fg = *fgp) != NULL; ) {
3744 		while ((fg != NULL) && ((fg->fg_flags & flags) == 0))
3745 			fg = fg->fg_next;
3746 		if (fg == NULL)
3747 			break;
3748 		removed = 0;
3749 		frp = &fg->fg_start;
3750 		while ((removed == 0) && ((fr = *frp) != NULL)) {
3751 			if ((fr->fr_flags & flags) == 0) {
3752 				frp = &fr->fr_next;
3753 			} else {
3754 				if (fr->fr_next != NULL)
3755 					fr->fr_next->fr_pnext = fr->fr_pnext;
3756 				*frp = fr->fr_next;
3757 				fr->fr_pnext = NULL;
3758 				fr->fr_next = NULL;
3759 				(void) ipf_derefrule(softc, &fr);
3760 				flushed++;
3761 				removed++;
3762 			}
3763 		}
3764 		if (removed == 0)
3765 			fgp = &fg->fg_next;
3766 	}
3767 	return (flushed);
3768 }
3769 
3770 
3771 /* ------------------------------------------------------------------------ */
3772 /* Function:    memstr                                                      */
3773 /* Returns:     char *  - NULL if failed, != NULL pointer to matching bytes */
3774 /* Parameters:  src(I)  - pointer to byte sequence to match                 */
3775 /*              dst(I)  - pointer to byte sequence to search                */
3776 /*              slen(I) - match length                                      */
3777 /*              dlen(I) - length available to search in                     */
3778 /*                                                                          */
3779 /* Search dst for a sequence of bytes matching those at src and extend for  */
3780 /* slen bytes.                                                              */
3781 /* ------------------------------------------------------------------------ */
3782 char *
3783 memstr(const char *src, char *dst, size_t slen, size_t dlen)
3784 {
3785 	char *s = NULL;
3786 
3787 	while (dlen >= slen) {
3788 		if (bcmp(src, dst, slen) == 0) {
3789 			s = dst;
3790 			break;
3791 		}
3792 		dst++;
3793 		dlen--;
3794 	}
3795 	return (s);
3796 }
3797 /* ------------------------------------------------------------------------ */
3798 /* Function:    ipf_fixskip                                                 */
3799 /* Returns:     Nil                                                         */
3800 /* Parameters:  listp(IO)    - pointer to start of list with skip rule      */
3801 /*              rp(I)        - rule added/removed with skip in it.          */
3802 /*              addremove(I) - adjustment (-1/+1) to make to skip count,    */
3803 /*                             depending on whether a rule was just added   */
3804 /*                             or removed.                                  */
3805 /*                                                                          */
3806 /* Adjust all the rules in a list which would have skip'd past the position */
3807 /* where we are inserting to skip to the right place given the change.      */
3808 /* ------------------------------------------------------------------------ */
3809 void
3810 ipf_fixskip(frentry_t **listp, frentry_t *rp, int addremove)
3811 {
3812 	int rules, rn;
3813 	frentry_t *fp;
3814 
3815 	rules = 0;
3816 	for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next)
3817 		rules++;
3818 
3819 	if (fp == NULL)
3820 		return;
3821 
3822 	for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++)
3823 		if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules))
3824 			fp->fr_arg += addremove;
3825 }
3826 
3827 
3828 #ifdef	_KERNEL
3829 /* ------------------------------------------------------------------------ */
3830 /* Function:    count4bits                                                  */
3831 /* Returns:     int - >= 0 - number of consecutive bits in input            */
3832 /* Parameters:  ip(I) - 32bit IP address                                    */
3833 /*                                                                          */
3834 /* IPv4 ONLY                                                                */
3835 /* count consecutive 1's in bit mask.  If the mask generated by counting    */
3836 /* consecutive 1's is different to that passed, return -1, else return #    */
3837 /* of bits.                                                                 */
3838 /* ------------------------------------------------------------------------ */
3839 int
3840 count4bits(u_32_t ip)
3841 {
3842 	u_32_t	ipn;
3843 	int	cnt = 0, i, j;
3844 
3845 	ip = ipn = ntohl(ip);
3846 	for (i = 32; i; i--, ipn *= 2)
3847 		if (ipn & 0x80000000)
3848 			cnt++;
3849 		else
3850 			break;
3851 	ipn = 0;
3852 	for (i = 32, j = cnt; i; i--, j--) {
3853 		ipn *= 2;
3854 		if (j > 0)
3855 			ipn++;
3856 	}
3857 	if (ipn == ip)
3858 		return (cnt);
3859 	return (-1);
3860 }
3861 
3862 
3863 /* ------------------------------------------------------------------------ */
3864 /* Function:    count6bits                                                  */
3865 /* Returns:     int - >= 0 - number of consecutive bits in input            */
3866 /* Parameters:  msk(I) - pointer to start of IPv6 bitmask                   */
3867 /*                                                                          */
3868 /* IPv6 ONLY                                                                */
3869 /* count consecutive 1's in bit mask.                                       */
3870 /* ------------------------------------------------------------------------ */
3871 # ifdef USE_INET6
3872 int
3873 count6bits(u_32_t *msk)
3874 {
3875 	int i = 0, k;
3876 	u_32_t j;
3877 
3878 	for (k = 3; k >= 0; k--)
3879 		if (msk[k] == 0xffffffff)
3880 			i += 32;
3881 		else {
3882 			for (j = msk[k]; j; j <<= 1)
3883 				if (j & 0x80000000)
3884 					i++;
3885 		}
3886 	return (i);
3887 }
3888 # endif
3889 #endif /* _KERNEL */
3890 
3891 
3892 /* ------------------------------------------------------------------------ */
3893 /* Function:    ipf_synclist                                                */
3894 /* Returns:     int    - 0 = no failures, else indication of first failure  */
3895 /* Parameters:  fr(I)  - start of filter list to sync interface names for   */
3896 /*              ifp(I) - interface pointer for limiting sync lookups        */
3897 /* Write Locks: ipf_mutex                                                   */
3898 /*                                                                          */
3899 /* Walk through a list of filter rules and resolve any interface names into */
3900 /* pointers.  Where dynamic addresses are used, also update the IP address  */
3901 /* used in the rule.  The interface pointer is used to limit the lookups to */
3902 /* a specific set of matching names if it is non-NULL.                      */
3903 /* Errors can occur when resolving the destination name of to/dup-to fields */
3904 /* when the name points to a pool and that pool doest not exist. If this    */
3905 /* does happen then it is necessary to check if there are any lookup refs   */
3906 /* that need to be dropped before returning with an error.                  */
3907 /* ------------------------------------------------------------------------ */
3908 static int
3909 ipf_synclist(ipf_main_softc_t *softc, frentry_t *fr, void *ifp)
3910 {
3911 	frentry_t *frt, *start = fr;
3912 	frdest_t *fdp;
3913 	char *name;
3914 	int error, interr;
3915 	void *ifa;
3916 	int v, i;
3917 
3918 	error = 0;
3919 
3920 	for (; fr; fr = fr->fr_next) {
3921 		if (fr->fr_family == AF_INET)
3922 			v = 4;
3923 		else if (fr->fr_family == AF_INET6)
3924 			v = 6;
3925 		else
3926 			v = 0;
3927 
3928 		/*
3929 		 * Lookup all the interface names that are part of the rule.
3930 		 */
3931 		for (i = 0; i < FR_NUM(fr->fr_ifas); i++) {
3932 			if ((ifp != NULL) && (fr->fr_ifas[i] != ifp))
3933 				continue;
3934 			if (fr->fr_ifnames[i] == -1)
3935 				continue;
3936 			name = FR_NAME(fr, fr_ifnames[i]);
3937 			fr->fr_ifas[i] = ipf_resolvenic(softc, name, v);
3938 		}
3939 
3940 		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
3941 			/*
3942 			 * We do the validation for fr_sifpidx here because
3943 			 * it is a union that contains an offset only when
3944 			 * fr_sifpidx points to an interface name, an offset
3945 			 * into fr_names. The union is  an offset into
3946 			 * fr_names in this case only.
3947 			 *
3948 			 * Note that sifpidx is only used in ipf_sync() which
3949 			 * implments ipf -y.
3950 			 */
3951 			if ((interr = ipf_check_names_string(fr->fr_names, fr->fr_namelen, fr->fr_sifpidx)) != 0) {
3952 				IPFERROR(interr_tbl[interr-1]);
3953 				error = EINVAL;
3954 				goto unwind;
3955 			}
3956 			if (fr->fr_satype != FRI_NORMAL &&
3957 			    fr->fr_satype != FRI_LOOKUP) {
3958 				ifa = ipf_resolvenic(softc, fr->fr_names +
3959 						     fr->fr_sifpidx, v);
3960 				ipf_ifpaddr(softc, v, fr->fr_satype, ifa,
3961 					    &fr->fr_src6, &fr->fr_smsk6);
3962 			}
3963 			if (fr->fr_datype != FRI_NORMAL &&
3964 			    fr->fr_datype != FRI_LOOKUP) {
3965 				ifa = ipf_resolvenic(softc, fr->fr_names +
3966 						     fr->fr_sifpidx, v);
3967 				ipf_ifpaddr(softc, v, fr->fr_datype, ifa,
3968 					    &fr->fr_dst6, &fr->fr_dmsk6);
3969 			}
3970 		}
3971 
3972 		fdp = &fr->fr_tifs[0];
3973 		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
3974 			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
3975 			if (error != 0)
3976 				goto unwind;
3977 		}
3978 
3979 		fdp = &fr->fr_tifs[1];
3980 		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
3981 			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
3982 			if (error != 0)
3983 				goto unwind;
3984 		}
3985 
3986 		fdp = &fr->fr_dif;
3987 		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
3988 			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
3989 			if (error != 0)
3990 				goto unwind;
3991 		}
3992 
3993 		if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
3994 		    (fr->fr_satype == FRI_LOOKUP) && (fr->fr_srcptr == NULL)) {
3995 			fr->fr_srcptr = ipf_lookup_res_num(softc,
3996 							   fr->fr_srctype,
3997 							   IPL_LOGIPF,
3998 							   fr->fr_srcnum,
3999 							   &fr->fr_srcfunc);
4000 		}
4001 		if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4002 		    (fr->fr_datype == FRI_LOOKUP) && (fr->fr_dstptr == NULL)) {
4003 			fr->fr_dstptr = ipf_lookup_res_num(softc,
4004 							   fr->fr_dsttype,
4005 							   IPL_LOGIPF,
4006 							   fr->fr_dstnum,
4007 							   &fr->fr_dstfunc);
4008 		}
4009 	}
4010 	return (0);
4011 
4012 unwind:
4013 	for (frt = start; frt != fr; fr = fr->fr_next) {
4014 		if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4015 		    (frt->fr_satype == FRI_LOOKUP) && (frt->fr_srcptr != NULL))
4016 				ipf_lookup_deref(softc, frt->fr_srctype,
4017 						 frt->fr_srcptr);
4018 		if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4019 		    (frt->fr_datype == FRI_LOOKUP) && (frt->fr_dstptr != NULL))
4020 				ipf_lookup_deref(softc, frt->fr_dsttype,
4021 						 frt->fr_dstptr);
4022 	}
4023 	return (error);
4024 }
4025 
4026 
4027 /* ------------------------------------------------------------------------ */
4028 /* Function:    ipf_sync                                                    */
4029 /* Returns:     void                                                        */
4030 /* Parameters:  Nil                                                         */
4031 /*                                                                          */
4032 /* ipf_sync() is called when we suspect that the interface list or          */
4033 /* information about interfaces (like IP#) has changed.  Go through all     */
4034 /* filter rules, NAT entries and the state table and check if anything      */
4035 /* needs to be changed/updated.                                             */
4036 /* ------------------------------------------------------------------------ */
4037 int
4038 ipf_sync(ipf_main_softc_t *softc, void *ifp)
4039 {
4040 	int i;
4041 
4042 #if !SOLARIS
4043 	ipf_nat_sync(softc, ifp);
4044 	ipf_state_sync(softc, ifp);
4045 	ipf_lookup_sync(softc, ifp);
4046 #endif
4047 
4048 	WRITE_ENTER(&softc->ipf_mutex);
4049 	(void) ipf_synclist(softc, softc->ipf_acct[0][softc->ipf_active], ifp);
4050 	(void) ipf_synclist(softc, softc->ipf_acct[1][softc->ipf_active], ifp);
4051 	(void) ipf_synclist(softc, softc->ipf_rules[0][softc->ipf_active], ifp);
4052 	(void) ipf_synclist(softc, softc->ipf_rules[1][softc->ipf_active], ifp);
4053 
4054 	for (i = 0; i < IPL_LOGSIZE; i++) {
4055 		frgroup_t *g;
4056 
4057 		for (g = softc->ipf_groups[i][0]; g != NULL; g = g->fg_next)
4058 			(void) ipf_synclist(softc, g->fg_start, ifp);
4059 		for (g = softc->ipf_groups[i][1]; g != NULL; g = g->fg_next)
4060 			(void) ipf_synclist(softc, g->fg_start, ifp);
4061 	}
4062 	RWLOCK_EXIT(&softc->ipf_mutex);
4063 
4064 	return (0);
4065 }
4066 
4067 
4068 /*
4069  * In the functions below, bcopy() is called because the pointer being
4070  * copied _from_ in this instance is a pointer to a char buf (which could
4071  * end up being unaligned) and on the kernel's local stack.
4072  */
4073 /* ------------------------------------------------------------------------ */
4074 /* Function:    ipf_copyin_indirect                                         */
4075 /* Returns:     int - 0 = success, else failure                             */
4076 /* Parameters:  src(I)  - pointer to the source address                     */
4077 /*              dst(I)  - destination address                               */
4078 /*              size(I) - number of bytes to copy                           */
4079 /*                                                                          */
4080 /* Copy a block of data in from user space, given a pointer to the pointer  */
4081 /* to start copying from (src) and a pointer to where to store it (dst).    */
4082 /* NB: src - pointer to user space pointer, dst - kernel space pointer      */
4083 /* ------------------------------------------------------------------------ */
4084 int
4085 ipf_copyin_indirect(ipf_main_softc_t *softc, void *src, void *dst, size_t size)
4086 {
4087 	caddr_t ca;
4088 	int error;
4089 
4090 #if SOLARIS
4091 	error = COPYIN(src, &ca, sizeof(ca));
4092 	if (error != 0)
4093 		return (error);
4094 #else
4095 	bcopy(src, (caddr_t)&ca, sizeof(ca));
4096 #endif
4097 	error = COPYIN(ca, dst, size);
4098 	if (error != 0) {
4099 		IPFERROR(3);
4100 		error = EFAULT;
4101 	}
4102 	return (error);
4103 }
4104 
4105 
4106 /* ------------------------------------------------------------------------ */
4107 /* Function:    ipf_copyout_indirect                                        */
4108 /* Returns:     int - 0 = success, else failure                             */
4109 /* Parameters:  src(I)  - pointer to the source address                     */
4110 /*              dst(I)  - destination address                               */
4111 /*              size(I) - number of bytes to copy                           */
4112 /*                                                                          */
4113 /* Copy a block of data out to user space, given a pointer to the pointer   */
4114 /* to start copying from (src) and a pointer to where to store it (dst).    */
4115 /* NB: src - kernel space pointer, dst - pointer to user space pointer.     */
4116 /* ------------------------------------------------------------------------ */
4117 int
4118 ipf_copyout_indirect(ipf_main_softc_t *softc, void *src, void *dst, size_t size)
4119 {
4120 	caddr_t ca;
4121 	int error;
4122 
4123 	bcopy(dst, (caddr_t)&ca, sizeof(ca));
4124 	error = COPYOUT(src, ca, size);
4125 	if (error != 0) {
4126 		IPFERROR(4);
4127 		error = EFAULT;
4128 	}
4129 	return (error);
4130 }
4131 
4132 
4133 /* ------------------------------------------------------------------------ */
4134 /* Function:    ipf_lock                                                    */
4135 /* Returns:     int      - 0 = success, else error                          */
4136 /* Parameters:  data(I)  - pointer to lock value to set                     */
4137 /*              lockp(O) - pointer to location to store old lock value      */
4138 /*                                                                          */
4139 /* Get the new value for the lock integer, set it and return the old value  */
4140 /* in *lockp.                                                               */
4141 /* ------------------------------------------------------------------------ */
4142 int
4143 ipf_lock(caddr_t data, int *lockp)
4144 {
4145 	int arg, err;
4146 
4147 	err = BCOPYIN(data, &arg, sizeof(arg));
4148 	if (err != 0)
4149 		return (EFAULT);
4150 	err = BCOPYOUT(lockp, data, sizeof(*lockp));
4151 	if (err != 0)
4152 		return (EFAULT);
4153 	*lockp = arg;
4154 	return (0);
4155 }
4156 
4157 
4158 /* ------------------------------------------------------------------------ */
4159 /* Function:    ipf_getstat                                                 */
4160 /* Returns:     Nil                                                         */
4161 /* Parameters:  softc(I) - pointer to soft context main structure           */
4162 /*              fiop(I)  - pointer to ipfilter stats structure              */
4163 /*              rev(I)   - version claim by program doing ioctl             */
4164 /*                                                                          */
4165 /* Stores a copy of current pointers, counters, etc, in the friostat        */
4166 /* structure.                                                               */
4167 /* If IPFILTER_COMPAT is compiled, we pretend to be whatever version the    */
4168 /* program is looking for. This ensure that validation of the version it    */
4169 /* expects will always succeed. Thus kernels with IPFILTER_COMPAT will      */
4170 /* allow older binaries to work but kernels without it will not.            */
4171 /* ------------------------------------------------------------------------ */
4172 /*ARGSUSED*/
4173 static void
4174 ipf_getstat(ipf_main_softc_t *softc, friostat_t *fiop, int rev)
4175 {
4176 	int i;
4177 
4178 	bcopy((char *)softc->ipf_stats, (char *)fiop->f_st,
4179 	      sizeof(ipf_statistics_t) * 2);
4180 	fiop->f_locks[IPL_LOGSTATE] = -1;
4181 	fiop->f_locks[IPL_LOGNAT] = -1;
4182 	fiop->f_locks[IPL_LOGIPF] = -1;
4183 	fiop->f_locks[IPL_LOGAUTH] = -1;
4184 
4185 	fiop->f_ipf[0][0] = softc->ipf_rules[0][0];
4186 	fiop->f_acct[0][0] = softc->ipf_acct[0][0];
4187 	fiop->f_ipf[0][1] = softc->ipf_rules[0][1];
4188 	fiop->f_acct[0][1] = softc->ipf_acct[0][1];
4189 	fiop->f_ipf[1][0] = softc->ipf_rules[1][0];
4190 	fiop->f_acct[1][0] = softc->ipf_acct[1][0];
4191 	fiop->f_ipf[1][1] = softc->ipf_rules[1][1];
4192 	fiop->f_acct[1][1] = softc->ipf_acct[1][1];
4193 
4194 	fiop->f_ticks = softc->ipf_ticks;
4195 	fiop->f_active = softc->ipf_active;
4196 	fiop->f_froute[0] = softc->ipf_frouteok[0];
4197 	fiop->f_froute[1] = softc->ipf_frouteok[1];
4198 	fiop->f_rb_no_mem = softc->ipf_rb_no_mem;
4199 	fiop->f_rb_node_max = softc->ipf_rb_node_max;
4200 
4201 	fiop->f_running = softc->ipf_running;
4202 	for (i = 0; i < IPL_LOGSIZE; i++) {
4203 		fiop->f_groups[i][0] = softc->ipf_groups[i][0];
4204 		fiop->f_groups[i][1] = softc->ipf_groups[i][1];
4205 	}
4206 #ifdef  IPFILTER_LOG
4207 	fiop->f_log_ok = ipf_log_logok(softc, IPL_LOGIPF);
4208 	fiop->f_log_fail = ipf_log_failures(softc, IPL_LOGIPF);
4209 	fiop->f_logging = 1;
4210 #else
4211 	fiop->f_log_ok = 0;
4212 	fiop->f_log_fail = 0;
4213 	fiop->f_logging = 0;
4214 #endif
4215 	fiop->f_defpass = softc->ipf_pass;
4216 	fiop->f_features = ipf_features;
4217 
4218 #ifdef IPFILTER_COMPAT
4219 	snprintf(fiop->f_version, sizeof(friostat.f_version), "IP Filter: v%d.%d.%d",
4220 		(rev / 1000000) % 100,
4221 		(rev / 10000) % 100,
4222 		(rev / 100) % 100);
4223 #else
4224 	(void)rev; /* UNUSED */
4225 	(void) strncpy(fiop->f_version, ipfilter_version,
4226 		       sizeof(fiop->f_version));
4227 #endif
4228 }
4229 
4230 
4231 #ifdef	USE_INET6
4232 int icmptoicmp6types[ICMP_MAXTYPE+1] = {
4233 	ICMP6_ECHO_REPLY,	/* 0: ICMP_ECHOREPLY */
4234 	-1,			/* 1: UNUSED */
4235 	-1,			/* 2: UNUSED */
4236 	ICMP6_DST_UNREACH,	/* 3: ICMP_UNREACH */
4237 	-1,			/* 4: ICMP_SOURCEQUENCH */
4238 	ND_REDIRECT,		/* 5: ICMP_REDIRECT */
4239 	-1,			/* 6: UNUSED */
4240 	-1,			/* 7: UNUSED */
4241 	ICMP6_ECHO_REQUEST,	/* 8: ICMP_ECHO */
4242 	-1,			/* 9: UNUSED */
4243 	-1,			/* 10: UNUSED */
4244 	ICMP6_TIME_EXCEEDED,	/* 11: ICMP_TIMXCEED */
4245 	ICMP6_PARAM_PROB,	/* 12: ICMP_PARAMPROB */
4246 	-1,			/* 13: ICMP_TSTAMP */
4247 	-1,			/* 14: ICMP_TSTAMPREPLY */
4248 	-1,			/* 15: ICMP_IREQ */
4249 	-1,			/* 16: ICMP_IREQREPLY */
4250 	-1,			/* 17: ICMP_MASKREQ */
4251 	-1,			/* 18: ICMP_MASKREPLY */
4252 };
4253 
4254 
4255 int	icmptoicmp6unreach[ICMP_MAX_UNREACH] = {
4256 	ICMP6_DST_UNREACH_ADDR,		/* 0: ICMP_UNREACH_NET */
4257 	ICMP6_DST_UNREACH_ADDR,		/* 1: ICMP_UNREACH_HOST */
4258 	-1,				/* 2: ICMP_UNREACH_PROTOCOL */
4259 	ICMP6_DST_UNREACH_NOPORT,	/* 3: ICMP_UNREACH_PORT */
4260 	-1,				/* 4: ICMP_UNREACH_NEEDFRAG */
4261 	ICMP6_DST_UNREACH_NOTNEIGHBOR,	/* 5: ICMP_UNREACH_SRCFAIL */
4262 	ICMP6_DST_UNREACH_ADDR,		/* 6: ICMP_UNREACH_NET_UNKNOWN */
4263 	ICMP6_DST_UNREACH_ADDR,		/* 7: ICMP_UNREACH_HOST_UNKNOWN */
4264 	-1,				/* 8: ICMP_UNREACH_ISOLATED */
4265 	ICMP6_DST_UNREACH_ADMIN,	/* 9: ICMP_UNREACH_NET_PROHIB */
4266 	ICMP6_DST_UNREACH_ADMIN,	/* 10: ICMP_UNREACH_HOST_PROHIB */
4267 	-1,				/* 11: ICMP_UNREACH_TOSNET */
4268 	-1,				/* 12: ICMP_UNREACH_TOSHOST */
4269 	ICMP6_DST_UNREACH_ADMIN,	/* 13: ICMP_UNREACH_ADMIN_PROHIBIT */
4270 };
4271 int	icmpreplytype6[ICMP6_MAXTYPE + 1];
4272 #endif
4273 
4274 int	icmpreplytype4[ICMP_MAXTYPE + 1];
4275 
4276 
4277 /* ------------------------------------------------------------------------ */
4278 /* Function:    ipf_matchicmpqueryreply                                     */
4279 /* Returns:     int - 1 if "icmp" is a valid reply to "ic" else 0.          */
4280 /* Parameters:  v(I)    - IP protocol version (4 or 6)                      */
4281 /*              ic(I)   - ICMP information                                  */
4282 /*              icmp(I) - ICMP packet header                                */
4283 /*              rev(I)  - direction (0 = forward/1 = reverse) of packet     */
4284 /*                                                                          */
4285 /* Check if the ICMP packet defined by the header pointed to by icmp is a   */
4286 /* reply to one as described by what's in ic.  If it is a match, return 1,  */
4287 /* else return 0 for no match.                                              */
4288 /* ------------------------------------------------------------------------ */
4289 int
4290 ipf_matchicmpqueryreply(int v, icmpinfo_t *ic, icmphdr_t *icmp, int rev)
4291 {
4292 	int ictype;
4293 
4294 	ictype = ic->ici_type;
4295 
4296 	if (v == 4) {
4297 		/*
4298 		 * If we matched its type on the way in, then when going out
4299 		 * it will still be the same type.
4300 		 */
4301 		if ((!rev && (icmp->icmp_type == ictype)) ||
4302 		    (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) {
4303 			if (icmp->icmp_type != ICMP_ECHOREPLY)
4304 				return (1);
4305 			if (icmp->icmp_id == ic->ici_id)
4306 				return (1);
4307 		}
4308 	}
4309 #ifdef	USE_INET6
4310 	else if (v == 6) {
4311 		if ((!rev && (icmp->icmp_type == ictype)) ||
4312 		    (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) {
4313 			if (icmp->icmp_type != ICMP6_ECHO_REPLY)
4314 				return (1);
4315 			if (icmp->icmp_id == ic->ici_id)
4316 				return (1);
4317 		}
4318 	}
4319 #endif
4320 	return (0);
4321 }
4322 
4323 
4324 /*
4325  * IFNAMES are located in the variable length field starting at
4326  * frentry.fr_names. As pointers within the struct cannot be passed
4327  * to the kernel from ipf(8), an offset is used. An offset of -1 means it
4328  * is unused (invalid). If it is used (valid) it is an offset to the
4329  * character string of an interface name or a comment. The following
4330  * macros will assist those who follow to understand the code.
4331  */
4332 #define IPF_IFNAME_VALID(_a)	(_a != -1)
4333 #define IPF_IFNAME_INVALID(_a)	(_a == -1)
4334 #define IPF_IFNAMES_DIFFERENT(_a)	\
4335 	!((IPF_IFNAME_INVALID(fr1->_a) &&	\
4336 	IPF_IFNAME_INVALID(fr2->_a)) ||	\
4337 	(IPF_IFNAME_VALID(fr1->_a) &&	\
4338 	IPF_IFNAME_VALID(fr2->_a) &&	\
4339 	!strcmp(FR_NAME(fr1, _a), FR_NAME(fr2, _a))))
4340 #define IPF_FRDEST_DIFFERENT(_a)	\
4341 	(memcmp(&fr1->_a.fd_addr, &fr2->_a.fd_addr,	\
4342 	offsetof(frdest_t, fd_name) - offsetof(frdest_t, fd_addr)) ||	\
4343 	IPF_IFNAMES_DIFFERENT(_a.fd_name))
4344 
4345 
4346 /* ------------------------------------------------------------------------ */
4347 /* Function:    ipf_rule_compare                                            */
4348 /* Parameters:  fr1(I) - first rule structure to compare                    */
4349 /*              fr2(I) - second rule structure to compare                   */
4350 /* Returns:     int    - 0 == rules are the same, else mismatch             */
4351 /*                                                                          */
4352 /* Compare two rules and return 0 if they match or a number indicating      */
4353 /* which of the individual checks failed.                                   */
4354 /* ------------------------------------------------------------------------ */
4355 static int
4356 ipf_rule_compare(frentry_t *fr1, frentry_t *fr2)
4357 {
4358 	int i;
4359 
4360 	if (fr1->fr_cksum != fr2->fr_cksum)
4361 		return (1);
4362 	if (fr1->fr_size != fr2->fr_size)
4363 		return (2);
4364 	if (fr1->fr_dsize != fr2->fr_dsize)
4365 		return (3);
4366 	if (bcmp((char *)&fr1->fr_func, (char *)&fr2->fr_func, FR_CMPSIZ)
4367 	    != 0)
4368 		return (4);
4369 	/*
4370 	 * XXX:	There is still a bug here as different rules with the
4371 	 *	the same interfaces but in a different order will compare
4372 	 *	differently. But since multiple interfaces in a rule doesn't
4373 	 *	work anyway a simple straightforward compare is performed
4374 	 *	here. Ultimately frentry_t creation will need to be
4375 	 *	revisited in ipf_y.y. While the other issue, recognition
4376 	 *	of only the first interface in a list of interfaces will
4377 	 *	need to be separately addressed along with why only four.
4378 	 */
4379 	for (i = 0; i < FR_NUM(fr1->fr_ifnames); i++) {
4380 		/*
4381 		 * XXX:	It's either the same index or uninitialized.
4382 		 * 	We assume this because multiple interfaces
4383 		 *	referenced by the same rule doesn't work anyway.
4384 		 */
4385 		if (IPF_IFNAMES_DIFFERENT(fr_ifnames[i]))
4386 			return (5);
4387 	}
4388 
4389 	if (IPF_FRDEST_DIFFERENT(fr_tif))
4390 		return (6);
4391 	if (IPF_FRDEST_DIFFERENT(fr_rif))
4392 		return (7);
4393 	if (IPF_FRDEST_DIFFERENT(fr_dif))
4394 		return (8);
4395 	if (!fr1->fr_data && !fr2->fr_data)
4396 		return (0);	/* move along, nothing to see here */
4397 	if (fr1->fr_data && fr2->fr_data) {
4398 		if (bcmp(fr1->fr_caddr, fr2->fr_caddr, fr1->fr_dsize) == 0)
4399 			return (0);	/* same */
4400 	}
4401 	return (9);
4402 }
4403 
4404 
4405 /* ------------------------------------------------------------------------ */
4406 /* Function:    frrequest                                                   */
4407 /* Returns:     int - 0 == success, > 0 == errno value                      */
4408 /* Parameters:  unit(I)     - device for which this is for                  */
4409 /*              req(I)      - ioctl command (SIOC*)                         */
4410 /*              data(I)     - pointr to ioctl data                          */
4411 /*              set(I)      - 1 or 0 (filter set)                           */
4412 /*              makecopy(I) - flag indicating whether data points to a rule */
4413 /*                            in kernel space & hence doesn't need copying. */
4414 /*                                                                          */
4415 /* This function handles all the requests which operate on the list of      */
4416 /* filter rules.  This includes adding, deleting, insertion.  It is also    */
4417 /* responsible for creating groups when a "head" rule is loaded.  Interface */
4418 /* names are resolved here and other sanity checks are made on the content  */
4419 /* of the rule structure being loaded.  If a rule has user defined timeouts */
4420 /* then make sure they are created and initialised before exiting.          */
4421 /* ------------------------------------------------------------------------ */
4422 int
4423 frrequest(ipf_main_softc_t *softc, int unit, ioctlcmd_t req, caddr_t data,
4424 	int set, int makecopy)
4425 {
4426 	int error = 0, in, family, need_free = 0, interr, i;
4427 	enum {	OP_ADD,		/* add rule */
4428 		OP_REM,		/* remove rule */
4429 		OP_ZERO 	/* zero statistics and counters */ }
4430 		addrem = OP_ADD;
4431 	frentry_t frd, *fp, *f, **fprev, **ftail;
4432 	void *ptr, *uptr;
4433 	u_int *p, *pp;
4434 	frgroup_t *fg;
4435 	char *group;
4436 
4437 	ptr = NULL;
4438 	fg = NULL;
4439 	fp = &frd;
4440 	if (makecopy != 0) {
4441 		bzero(fp, sizeof(frd));
4442 		error = ipf_inobj(softc, data, NULL, fp, IPFOBJ_FRENTRY);
4443 		if (error) {
4444 			return (error);
4445 		}
4446 		if ((fp->fr_type & FR_T_BUILTIN) != 0) {
4447 			IPFERROR(6);
4448 			return (EINVAL);
4449 		}
4450 		if (fp->fr_size < sizeof(frd)) {
4451 			return (EINVAL);
4452 		}
4453 		if (sizeof(frd) + fp->fr_namelen != fp->fr_size ) {
4454 			IPFERROR(155);
4455 			return (EINVAL);
4456 		}
4457 		if (fp->fr_namelen < 0 || fp->fr_namelen > softc->ipf_max_namelen) {
4458 			IPFERROR(156);
4459 			return (EINVAL);
4460 		}
4461 		KMALLOCS(f, frentry_t *, fp->fr_size);
4462 		if (f == NULL) {
4463 			IPFERROR(131);
4464 			return (ENOMEM);
4465 		}
4466 		bzero(f, fp->fr_size);
4467 		error = ipf_inobjsz(softc, data, f, IPFOBJ_FRENTRY,
4468 				    fp->fr_size);
4469 		if (error) {
4470 			KFREES(f, fp->fr_size);
4471 			return (error);
4472 		}
4473 
4474 		fp = f;
4475 		f = NULL;
4476 		fp->fr_next = NULL;
4477 		fp->fr_dnext = NULL;
4478 		fp->fr_pnext = NULL;
4479 		fp->fr_pdnext = NULL;
4480 		fp->fr_grp = NULL;
4481 		fp->fr_grphead = NULL;
4482 		fp->fr_icmpgrp = NULL;
4483 		fp->fr_isc = (void *)-1;
4484 		fp->fr_ptr = NULL;
4485 		fp->fr_ref = 0;
4486 		fp->fr_flags |= FR_COPIED;
4487 
4488 		for (i = 0; i <= 3; i++) {
4489 			if ((interr = ipf_check_names_string(fp->fr_names, fp->fr_namelen, fp->fr_ifnames[i])) != 0) {
4490 				IPFERROR(interr_tbl[interr-1]);
4491 				error = EINVAL;
4492 				goto donenolock;
4493 			}
4494 		}
4495 		if ((interr = ipf_check_names_string(fp->fr_names, fp->fr_namelen, fp->fr_comment)) != 0) {
4496 			IPFERROR(interr_tbl[interr-1]);
4497 			error = EINVAL;
4498 			goto donenolock;
4499 		}
4500 		if ((interr = ipf_check_names_string(fp->fr_names, fp->fr_namelen, fp->fr_group)) != 0) {
4501 			IPFERROR(interr_tbl[interr-1]);
4502 			error = EINVAL;
4503 			goto donenolock;
4504 		}
4505 		if ((interr = ipf_check_names_string(fp->fr_names, fp->fr_namelen, fp->fr_grhead)) != 0) {
4506 			IPFERROR(interr_tbl[interr-1]);
4507 			error = EINVAL;
4508 			goto donenolock;
4509 		}
4510 		if ((interr = ipf_check_names_string(fp->fr_names, fp->fr_namelen, fp->fr_tif.fd_name)) != 0) {
4511 			IPFERROR(interr_tbl[interr-1]);
4512 			error = EINVAL;
4513 			goto donenolock;
4514 		}
4515 		if ((interr = ipf_check_names_string(fp->fr_names, fp->fr_namelen, fp->fr_rif.fd_name)) != 0) {
4516 			IPFERROR(interr_tbl[interr-1]);
4517 			error = EINVAL;
4518 			goto donenolock;
4519 		}
4520 		if ((interr = ipf_check_names_string(fp->fr_names, fp->fr_namelen, fp->fr_dif.fd_name)) != 0) {
4521 			IPFERROR(interr_tbl[interr-1]);
4522 			error = EINVAL;
4523 			goto donenolock;
4524 		}
4525 	} else {
4526 		fp = (frentry_t *)data;
4527 		if ((fp->fr_type & FR_T_BUILTIN) == 0) {
4528 			IPFERROR(7);
4529 			return (EINVAL);
4530 		}
4531 		fp->fr_flags &= ~FR_COPIED;
4532 	}
4533 
4534 	if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) ||
4535 	    ((fp->fr_dsize != 0) && (fp->fr_data == NULL))) {
4536 		IPFERROR(8);
4537 		error = EINVAL;
4538 		goto donenolock;
4539 	}
4540 
4541 	family = fp->fr_family;
4542 	uptr = fp->fr_data;
4543 
4544 	if (req == (ioctlcmd_t)SIOCINAFR || req == (ioctlcmd_t)SIOCINIFR ||
4545 	    req == (ioctlcmd_t)SIOCADAFR || req == (ioctlcmd_t)SIOCADIFR)
4546 		addrem = OP_ADD;	/* Add rule */
4547 	else if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR)
4548 		addrem = OP_REM;		/* Remove rule */
4549 	else if (req == (ioctlcmd_t)SIOCZRLST)
4550 		addrem = OP_ZERO;	/* Zero statistics and counters */
4551 	else {
4552 		IPFERROR(9);
4553 		error = EINVAL;
4554 		goto donenolock;
4555 	}
4556 
4557 	/*
4558 	 * Only filter rules for IPv4 or IPv6 are accepted.
4559 	 */
4560 	if (family == AF_INET) {
4561 		/*EMPTY*/;
4562 #ifdef	USE_INET6
4563 	} else if (family == AF_INET6) {
4564 		/*EMPTY*/;
4565 #endif
4566 	} else if (family != 0) {
4567 		IPFERROR(10);
4568 		error = EINVAL;
4569 		goto donenolock;
4570 	}
4571 
4572 	/*
4573 	 * If the rule is being loaded from user space, i.e. we had to copy it
4574 	 * into kernel space, then do not trust the function pointer in the
4575 	 * rule.
4576 	 */
4577 	if ((makecopy == 1) && (fp->fr_func != NULL)) {
4578 		if (ipf_findfunc(fp->fr_func) == NULL) {
4579 			IPFERROR(11);
4580 			error = ESRCH;
4581 			goto donenolock;
4582 		}
4583 
4584 		if (addrem == OP_ADD) {
4585 			error = ipf_funcinit(softc, fp);
4586 			if (error != 0)
4587 				goto donenolock;
4588 		}
4589 	}
4590 	if ((fp->fr_flags & FR_CALLNOW) &&
4591 	    ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4592 		IPFERROR(142);
4593 		error = ESRCH;
4594 		goto donenolock;
4595 	}
4596 	if (((fp->fr_flags & FR_CMDMASK) == FR_CALL) &&
4597 	    ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4598 		IPFERROR(143);
4599 		error = ESRCH;
4600 		goto donenolock;
4601 	}
4602 
4603 	ptr = NULL;
4604 
4605 	if (FR_ISACCOUNT(fp->fr_flags))
4606 		unit = IPL_LOGCOUNT;
4607 
4608 	/*
4609 	 * Check that each group name in the rule has a start index that
4610 	 * is valid.
4611 	 */
4612 	if (fp->fr_icmphead != -1) {
4613 		if ((fp->fr_icmphead < 0) ||
4614 		    (fp->fr_icmphead >= fp->fr_namelen)) {
4615 			IPFERROR(136);
4616 			error = EINVAL;
4617 			goto donenolock;
4618 		}
4619 		if (!strcmp(FR_NAME(fp, fr_icmphead), "0"))
4620 			fp->fr_names[fp->fr_icmphead] = '\0';
4621 	}
4622 
4623 	if (fp->fr_grhead != -1) {
4624 		if ((fp->fr_grhead < 0) ||
4625 		    (fp->fr_grhead >= fp->fr_namelen)) {
4626 			IPFERROR(137);
4627 			error = EINVAL;
4628 			goto donenolock;
4629 		}
4630 		if (!strcmp(FR_NAME(fp, fr_grhead), "0"))
4631 			fp->fr_names[fp->fr_grhead] = '\0';
4632 	}
4633 
4634 	if (fp->fr_group != -1) {
4635 		if ((fp->fr_group < 0) ||
4636 		    (fp->fr_group >= fp->fr_namelen)) {
4637 			IPFERROR(138);
4638 			error = EINVAL;
4639 			goto donenolock;
4640 		}
4641 		if ((req != (int)SIOCZRLST) && (fp->fr_group != -1)) {
4642 			/*
4643 			 * Allow loading rules that are in groups to cause
4644 			 * them to be created if they don't already exit.
4645 			 */
4646 			group = FR_NAME(fp, fr_group);
4647 			if (addrem == OP_ADD) {
4648 				fg = ipf_group_add(softc, group, NULL,
4649 						   fp->fr_flags, unit, set);
4650 				fp->fr_grp = fg;
4651 			} else {
4652 				fg = ipf_findgroup(softc, group, unit,
4653 						   set, NULL);
4654 				if (fg == NULL) {
4655 					IPFERROR(12);
4656 					error = ESRCH;
4657 					goto donenolock;
4658 				}
4659 			}
4660 
4661 			if (fg->fg_flags == 0) {
4662 				fg->fg_flags = fp->fr_flags & FR_INOUT;
4663 			} else if (fg->fg_flags != (fp->fr_flags & FR_INOUT)) {
4664 				IPFERROR(13);
4665 				error = ESRCH;
4666 				goto donenolock;
4667 			}
4668 		}
4669 	} else {
4670 		/*
4671 		 * If a rule is going to be part of a group then it does
4672 		 * not matter whether it is an in or out rule, but if it
4673 		 * isn't in a group, then it does...
4674 		 */
4675 		if ((fp->fr_flags & (FR_INQUE|FR_OUTQUE)) == 0) {
4676 			IPFERROR(14);
4677 			error = EINVAL;
4678 			goto donenolock;
4679 		}
4680 	}
4681 	in = (fp->fr_flags & FR_INQUE) ? 0 : 1;
4682 
4683 	/*
4684 	 * Work out which rule list this change is being applied to.
4685 	 */
4686 	ftail = NULL;
4687 	fprev = NULL;
4688 	if (unit == IPL_LOGAUTH) {
4689 		if ((fp->fr_tifs[0].fd_ptr != NULL) ||
4690 		    (fp->fr_tifs[1].fd_ptr != NULL) ||
4691 		    (fp->fr_dif.fd_ptr != NULL) ||
4692 		    (fp->fr_flags & FR_FASTROUTE)) {
4693 			softc->ipf_interror = 145;
4694 			error = EINVAL;
4695 			goto donenolock;
4696 		}
4697 		fprev = ipf_auth_rulehead(softc);
4698 	} else {
4699 		if (FR_ISACCOUNT(fp->fr_flags))
4700 			fprev = &softc->ipf_acct[in][set];
4701 		else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0)
4702 			fprev = &softc->ipf_rules[in][set];
4703 	}
4704 	if (fprev == NULL) {
4705 		IPFERROR(15);
4706 		error = ESRCH;
4707 		goto donenolock;
4708 	}
4709 
4710 	if (fg != NULL)
4711 		fprev = &fg->fg_start;
4712 
4713 	/*
4714 	 * Copy in extra data for the rule.
4715 	 */
4716 	if (fp->fr_dsize != 0) {
4717 		if (makecopy != 0) {
4718 			KMALLOCS(ptr, void *, fp->fr_dsize);
4719 			if (ptr == NULL) {
4720 				IPFERROR(16);
4721 				error = ENOMEM;
4722 				goto donenolock;
4723 			}
4724 
4725 			/*
4726 			 * The bcopy case is for when the data is appended
4727 			 * to the rule by ipf_in_compat().
4728 			 */
4729 			if (uptr >= (void *)fp &&
4730 			    uptr < (void *)((char *)fp + fp->fr_size)) {
4731 				bcopy(uptr, ptr, fp->fr_dsize);
4732 				error = 0;
4733 			} else {
4734 				error = COPYIN(uptr, ptr, fp->fr_dsize);
4735 				if (error != 0) {
4736 					IPFERROR(17);
4737 					error = EFAULT;
4738 					goto donenolock;
4739 				}
4740 			}
4741 		} else {
4742 			ptr = uptr;
4743 		}
4744 		fp->fr_data = ptr;
4745 	} else {
4746 		fp->fr_data = NULL;
4747 	}
4748 
4749 	/*
4750 	 * Perform per-rule type sanity checks of their members.
4751 	 * All code after this needs to be aware that allocated memory
4752 	 * may need to be free'd before exiting.
4753 	 */
4754 	switch (fp->fr_type & ~FR_T_BUILTIN)
4755 	{
4756 #if defined(IPFILTER_BPF)
4757 	case FR_T_BPFOPC :
4758 		if (fp->fr_dsize == 0) {
4759 			IPFERROR(19);
4760 			error = EINVAL;
4761 			break;
4762 		}
4763 		if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) {
4764 			IPFERROR(20);
4765 			error = EINVAL;
4766 			break;
4767 		}
4768 		break;
4769 #endif
4770 	case FR_T_IPF :
4771 		/*
4772 		 * Preparation for error case at the bottom of this function.
4773 		 */
4774 		if (fp->fr_datype == FRI_LOOKUP)
4775 			fp->fr_dstptr = NULL;
4776 		if (fp->fr_satype == FRI_LOOKUP)
4777 			fp->fr_srcptr = NULL;
4778 
4779 		if (fp->fr_dsize != sizeof(fripf_t)) {
4780 			IPFERROR(21);
4781 			error = EINVAL;
4782 			break;
4783 		}
4784 
4785 		/*
4786 		 * Allowing a rule with both "keep state" and "with oow" is
4787 		 * pointless because adding a state entry to the table will
4788 		 * fail with the out of window (oow) flag set.
4789 		 */
4790 		if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) {
4791 			IPFERROR(22);
4792 			error = EINVAL;
4793 			break;
4794 		}
4795 
4796 		switch (fp->fr_satype)
4797 		{
4798 		case FRI_BROADCAST :
4799 		case FRI_DYNAMIC :
4800 		case FRI_NETWORK :
4801 		case FRI_NETMASKED :
4802 		case FRI_PEERADDR :
4803 			if (fp->fr_sifpidx < 0) {
4804 				IPFERROR(23);
4805 				error = EINVAL;
4806 			}
4807 			break;
4808 		case FRI_LOOKUP :
4809 			fp->fr_srcptr = ipf_findlookup(softc, unit, fp,
4810 						       &fp->fr_src6,
4811 						       &fp->fr_smsk6);
4812 			if (fp->fr_srcfunc == NULL) {
4813 				IPFERROR(132);
4814 				error = ESRCH;
4815 				break;
4816 			}
4817 			break;
4818 		case FRI_NORMAL :
4819 			break;
4820 		default :
4821 			IPFERROR(133);
4822 			error = EINVAL;
4823 			break;
4824 		}
4825 		if (error != 0)
4826 			break;
4827 
4828 		switch (fp->fr_datype)
4829 		{
4830 		case FRI_BROADCAST :
4831 		case FRI_DYNAMIC :
4832 		case FRI_NETWORK :
4833 		case FRI_NETMASKED :
4834 		case FRI_PEERADDR :
4835 			if (fp->fr_difpidx < 0) {
4836 				IPFERROR(24);
4837 				error = EINVAL;
4838 			}
4839 			break;
4840 		case FRI_LOOKUP :
4841 			fp->fr_dstptr = ipf_findlookup(softc, unit, fp,
4842 						       &fp->fr_dst6,
4843 						       &fp->fr_dmsk6);
4844 			if (fp->fr_dstfunc == NULL) {
4845 				IPFERROR(134);
4846 				error = ESRCH;
4847 			}
4848 			break;
4849 		case FRI_NORMAL :
4850 			break;
4851 		default :
4852 			IPFERROR(135);
4853 			error = EINVAL;
4854 		}
4855 		break;
4856 
4857 	case FR_T_NONE :
4858 	case FR_T_CALLFUNC :
4859 	case FR_T_COMPIPF :
4860 		break;
4861 
4862 	case FR_T_IPFEXPR :
4863 		if (ipf_matcharray_verify(fp->fr_data, fp->fr_dsize) == -1) {
4864 			IPFERROR(25);
4865 			error = EINVAL;
4866 		}
4867 		break;
4868 
4869 	default :
4870 		IPFERROR(26);
4871 		error = EINVAL;
4872 		break;
4873 	}
4874 	if (error != 0)
4875 		goto donenolock;
4876 
4877 	if (fp->fr_tif.fd_name != -1) {
4878 		if ((fp->fr_tif.fd_name < 0) ||
4879 		    (fp->fr_tif.fd_name >= fp->fr_namelen)) {
4880 			IPFERROR(139);
4881 			error = EINVAL;
4882 			goto donenolock;
4883 		}
4884 	}
4885 
4886 	if (fp->fr_dif.fd_name != -1) {
4887 		if ((fp->fr_dif.fd_name < 0) ||
4888 		    (fp->fr_dif.fd_name >= fp->fr_namelen)) {
4889 			IPFERROR(140);
4890 			error = EINVAL;
4891 			goto donenolock;
4892 		}
4893 	}
4894 
4895 	if (fp->fr_rif.fd_name != -1) {
4896 		if ((fp->fr_rif.fd_name < 0) ||
4897 		    (fp->fr_rif.fd_name >= fp->fr_namelen)) {
4898 			IPFERROR(141);
4899 			error = EINVAL;
4900 			goto donenolock;
4901 		}
4902 	}
4903 
4904 	/*
4905 	 * Lookup all the interface names that are part of the rule.
4906 	 */
4907 	error = ipf_synclist(softc, fp, NULL);
4908 	if (error != 0)
4909 		goto donenolock;
4910 	fp->fr_statecnt = 0;
4911 	if (fp->fr_srctrack.ht_max_nodes != 0)
4912 		ipf_rb_ht_init(&fp->fr_srctrack);
4913 
4914 	/*
4915 	 * Look for an existing matching filter rule, but don't include the
4916 	 * next or interface pointer in the comparison (fr_next, fr_ifa).
4917 	 * This elminates rules which are indentical being loaded.  Checksum
4918 	 * the constant part of the filter rule to make comparisons quicker
4919 	 * (this meaning no pointers are included).
4920 	 */
4921 	pp = (u_int *)(fp->fr_caddr + fp->fr_dsize);
4922 	for (fp->fr_cksum = 0, p = (u_int *)fp->fr_data; p < pp; p++)
4923 		fp->fr_cksum += *p;
4924 
4925 	WRITE_ENTER(&softc->ipf_mutex);
4926 
4927 	/*
4928 	 * Now that the filter rule lists are locked, we can walk the
4929 	 * chain of them without fear.
4930 	 */
4931 	ftail = fprev;
4932 	for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) {
4933 		if (fp->fr_collect <= f->fr_collect) {
4934 			ftail = fprev;
4935 			f = NULL;
4936 			break;
4937 		}
4938 		fprev = ftail;
4939 	}
4940 
4941 	for (; (f = *ftail) != NULL; ftail = &f->fr_next) {
4942 		if (ipf_rule_compare(fp, f) == 0)
4943 			break;
4944 	}
4945 
4946 	/*
4947 	 * If zero'ing statistics, copy current to caller and zero.
4948 	 */
4949 	if (addrem == OP_ZERO) {
4950 		if (f == NULL) {
4951 			IPFERROR(27);
4952 			error = ESRCH;
4953 		} else {
4954 			/*
4955 			 * Copy and reduce lock because of impending copyout.
4956 			 * Well we should, but if we do then the atomicity of
4957 			 * this call and the correctness of fr_hits and
4958 			 * fr_bytes cannot be guaranteed.  As it is, this code
4959 			 * only resets them to 0 if they are successfully
4960 			 * copied out into user space.
4961 			 */
4962 			bcopy((char *)f, (char *)fp, f->fr_size);
4963 			/* MUTEX_DOWNGRADE(&softc->ipf_mutex); */
4964 
4965 			/*
4966 			 * When we copy this rule back out, set the data
4967 			 * pointer to be what it was in user space.
4968 			 */
4969 			fp->fr_data = uptr;
4970 			error = ipf_outobj(softc, data, fp, IPFOBJ_FRENTRY);
4971 
4972 			if (error == 0) {
4973 				if ((f->fr_dsize != 0) && (uptr != NULL)) {
4974 					error = COPYOUT(f->fr_data, uptr,
4975 							f->fr_dsize);
4976 					if (error == 0) {
4977 						f->fr_hits = 0;
4978 						f->fr_bytes = 0;
4979 					} else {
4980 						IPFERROR(28);
4981 						error = EFAULT;
4982 					}
4983 				}
4984 			}
4985 		}
4986 
4987 		if (makecopy != 0) {
4988 			if (ptr != NULL) {
4989 				KFREES(ptr, fp->fr_dsize);
4990 			}
4991 			KFREES(fp, fp->fr_size);
4992 		}
4993 		RWLOCK_EXIT(&softc->ipf_mutex);
4994 		return (error);
4995 	}
4996 
4997 	if (f == NULL) {
4998 		/*
4999 		 * At the end of this, ftail must point to the place where the
5000 		 * new rule is to be saved/inserted/added.
5001 		 * For SIOCAD*FR, this should be the last rule in the group of
5002 		 * rules that have equal fr_collect fields.
5003 		 * For SIOCIN*FR, ...
5004 		 */
5005 		if (req == (ioctlcmd_t)SIOCADAFR ||
5006 		    req == (ioctlcmd_t)SIOCADIFR) {
5007 
5008 			for (ftail = fprev; (f = *ftail) != NULL; ) {
5009 				if (f->fr_collect > fp->fr_collect)
5010 					break;
5011 				ftail = &f->fr_next;
5012 				fprev = ftail;
5013 			}
5014 			ftail = fprev;
5015 			f = NULL;
5016 			ptr = NULL;
5017 		} else if (req == (ioctlcmd_t)SIOCINAFR ||
5018 			   req == (ioctlcmd_t)SIOCINIFR) {
5019 			while ((f = *fprev) != NULL) {
5020 				if (f->fr_collect >= fp->fr_collect)
5021 					break;
5022 				fprev = &f->fr_next;
5023 			}
5024   			ftail = fprev;
5025   			if (fp->fr_hits != 0) {
5026 				while (fp->fr_hits && (f = *ftail)) {
5027 					if (f->fr_collect != fp->fr_collect)
5028 						break;
5029 					fprev = ftail;
5030   					ftail = &f->fr_next;
5031 					fp->fr_hits--;
5032 				}
5033   			}
5034   			f = NULL;
5035   			ptr = NULL;
5036 		}
5037 	}
5038 
5039 	/*
5040 	 * Request to remove a rule.
5041 	 */
5042 	if (addrem == OP_REM) {
5043 		if (f == NULL) {
5044 			IPFERROR(29);
5045 			error = ESRCH;
5046 		} else {
5047 			/*
5048 			 * Do not allow activity from user space to interfere
5049 			 * with rules not loaded that way.
5050 			 */
5051 			if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) {
5052 				IPFERROR(30);
5053 				error = EPERM;
5054 				goto done;
5055 			}
5056 
5057 			/*
5058 			 * Return EBUSY if the rule is being reference by
5059 			 * something else (eg state information.)
5060 			 */
5061 			if (f->fr_ref > 1) {
5062 				IPFERROR(31);
5063 				error = EBUSY;
5064 				goto done;
5065 			}
5066 #ifdef	IPFILTER_SCAN
5067 			if (f->fr_isctag != -1 &&
5068 			    (f->fr_isc != (struct ipscan *)-1))
5069 				ipf_scan_detachfr(f);
5070 #endif
5071 
5072 			if (unit == IPL_LOGAUTH) {
5073 				error = ipf_auth_precmd(softc, req, f, ftail);
5074 				goto done;
5075 			}
5076 
5077 			ipf_rule_delete(softc, f, unit, set);
5078 
5079 			need_free = makecopy;
5080 		}
5081 	} else {
5082 		/*
5083 		 * Not removing, so we must be adding/inserting a rule.
5084 		 */
5085 		if (f != NULL) {
5086 			IPFERROR(32);
5087 			error = EEXIST;
5088 			goto done;
5089 		}
5090 		if (unit == IPL_LOGAUTH) {
5091 			error = ipf_auth_precmd(softc, req, fp, ftail);
5092 			goto done;
5093 		}
5094 
5095 		MUTEX_NUKE(&fp->fr_lock);
5096 		MUTEX_INIT(&fp->fr_lock, "filter rule lock");
5097 		if (fp->fr_die != 0)
5098 			ipf_rule_expire_insert(softc, fp, set);
5099 
5100 		fp->fr_hits = 0;
5101 		if (makecopy != 0)
5102 			fp->fr_ref = 1;
5103 		fp->fr_pnext = ftail;
5104 		fp->fr_next = *ftail;
5105 		if (fp->fr_next != NULL)
5106 			fp->fr_next->fr_pnext = &fp->fr_next;
5107 		*ftail = fp;
5108 		ipf_fixskip(ftail, fp, 1);
5109 
5110 		fp->fr_icmpgrp = NULL;
5111 		if (fp->fr_icmphead != -1) {
5112 			group = FR_NAME(fp, fr_icmphead);
5113 			fg = ipf_group_add(softc, group, fp, 0, unit, set);
5114 			fp->fr_icmpgrp = fg;
5115 		}
5116 
5117 		fp->fr_grphead = NULL;
5118 		if (fp->fr_grhead != -1) {
5119 			group = FR_NAME(fp, fr_grhead);
5120 			fg = ipf_group_add(softc, group, fp, fp->fr_flags,
5121 					   unit, set);
5122 			fp->fr_grphead = fg;
5123 		}
5124 	}
5125 done:
5126 	RWLOCK_EXIT(&softc->ipf_mutex);
5127 donenolock:
5128 	if (need_free || (error != 0)) {
5129 		if ((fp->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
5130 			if ((fp->fr_satype == FRI_LOOKUP) &&
5131 			    (fp->fr_srcptr != NULL))
5132 				ipf_lookup_deref(softc, fp->fr_srctype,
5133 						 fp->fr_srcptr);
5134 			if ((fp->fr_datype == FRI_LOOKUP) &&
5135 			    (fp->fr_dstptr != NULL))
5136 				ipf_lookup_deref(softc, fp->fr_dsttype,
5137 						 fp->fr_dstptr);
5138 		}
5139 		if (fp->fr_grp != NULL) {
5140 			WRITE_ENTER(&softc->ipf_mutex);
5141 			ipf_group_del(softc, fp->fr_grp, fp);
5142 			RWLOCK_EXIT(&softc->ipf_mutex);
5143 		}
5144 		if ((ptr != NULL) && (makecopy != 0)) {
5145 			KFREES(ptr, fp->fr_dsize);
5146 		}
5147 		KFREES(fp, fp->fr_size);
5148 	}
5149 	return (error);
5150 }
5151 
5152 
5153 /* ------------------------------------------------------------------------ */
5154 /* Function:   ipf_rule_delete                                              */
5155 /* Returns:    Nil                                                          */
5156 /* Parameters: softc(I) - pointer to soft context main structure            */
5157 /*             f(I)     - pointer to the rule being deleted                 */
5158 /*             ftail(I) - pointer to the pointer to f                       */
5159 /*             unit(I)  - device for which this is for                      */
5160 /*             set(I)   - 1 or 0 (filter set)                               */
5161 /*                                                                          */
5162 /* This function attempts to do what it can to delete a filter rule: remove */
5163 /* it from any linked lists and remove any groups it is responsible for.    */
5164 /* But in the end, removing a rule can only drop the reference count - we   */
5165 /* must use that as the guide for whether or not it can be freed.           */
5166 /* ------------------------------------------------------------------------ */
5167 static void
5168 ipf_rule_delete(ipf_main_softc_t *softc, frentry_t *f, int unit, int set)
5169 {
5170 
5171 	/*
5172 	 * If fr_pdnext is set, then the rule is on the expire list, so
5173 	 * remove it from there.
5174 	 */
5175 	if (f->fr_pdnext != NULL) {
5176 		*f->fr_pdnext = f->fr_dnext;
5177 		if (f->fr_dnext != NULL)
5178 			f->fr_dnext->fr_pdnext = f->fr_pdnext;
5179 		f->fr_pdnext = NULL;
5180 		f->fr_dnext = NULL;
5181 	}
5182 
5183 	ipf_fixskip(f->fr_pnext, f, -1);
5184 	if (f->fr_pnext != NULL)
5185 		*f->fr_pnext = f->fr_next;
5186 	if (f->fr_next != NULL)
5187 		f->fr_next->fr_pnext = f->fr_pnext;
5188 	f->fr_pnext = NULL;
5189 	f->fr_next = NULL;
5190 
5191 	(void) ipf_derefrule(softc, &f);
5192 }
5193 
5194 /* ------------------------------------------------------------------------ */
5195 /* Function:   ipf_rule_expire_insert                                       */
5196 /* Returns:    Nil                                                          */
5197 /* Parameters: softc(I) - pointer to soft context main structure            */
5198 /*             f(I)     - pointer to rule to be added to expire list        */
5199 /*             set(I)   - 1 or 0 (filter set)                               */
5200 /*                                                                          */
5201 /* If the new rule has a given expiration time, insert it into the list of  */
5202 /* expiring rules with the ones to be removed first added to the front of   */
5203 /* the list. The insertion is O(n) but it is kept sorted for quick scans at */
5204 /* expiration interval checks.                                              */
5205 /* ------------------------------------------------------------------------ */
5206 static void
5207 ipf_rule_expire_insert(ipf_main_softc_t *softc, frentry_t *f, int set)
5208 {
5209 	frentry_t *fr;
5210 
5211 	/*
5212 	 */
5213 
5214 	f->fr_die = softc->ipf_ticks + IPF_TTLVAL(f->fr_die);
5215 	for (fr = softc->ipf_rule_explist[set]; fr != NULL;
5216 	     fr = fr->fr_dnext) {
5217 		if (f->fr_die < fr->fr_die)
5218 			break;
5219 		if (fr->fr_dnext == NULL) {
5220 			/*
5221 			 * We've got to the last rule and everything
5222 			 * wanted to be expired before this new node,
5223 			 * so we have to tack it on the end...
5224 			 */
5225 			fr->fr_dnext = f;
5226 			f->fr_pdnext = &fr->fr_dnext;
5227 			fr = NULL;
5228 			break;
5229 		}
5230 	}
5231 
5232 	if (softc->ipf_rule_explist[set] == NULL) {
5233 		softc->ipf_rule_explist[set] = f;
5234 		f->fr_pdnext = &softc->ipf_rule_explist[set];
5235 	} else if (fr != NULL) {
5236 		f->fr_dnext = fr;
5237 		f->fr_pdnext = fr->fr_pdnext;
5238 		fr->fr_pdnext = &f->fr_dnext;
5239 	}
5240 }
5241 
5242 
5243 /* ------------------------------------------------------------------------ */
5244 /* Function:   ipf_findlookup                                               */
5245 /* Returns:    NULL = failure, else success                                 */
5246 /* Parameters: softc(I) - pointer to soft context main structure            */
5247 /*             unit(I)  - ipf device we want to find match for              */
5248 /*             fp(I)    - rule for which lookup is for                      */
5249 /*             addrp(I) - pointer to lookup information in address struct   */
5250 /*             maskp(O) - pointer to lookup information for storage         */
5251 /*                                                                          */
5252 /* When using pools and hash tables to store addresses for matching in      */
5253 /* rules, it is necessary to resolve both the object referred to by the     */
5254 /* name or address (and return that pointer) and also provide the means by  */
5255 /* which to determine if an address belongs to that object to make the      */
5256 /* packet matching quicker.                                                 */
5257 /* ------------------------------------------------------------------------ */
5258 static void *
5259 ipf_findlookup(ipf_main_softc_t *softc, int unit, frentry_t *fr,
5260 	i6addr_t *addrp, i6addr_t *maskp)
5261 {
5262 	void *ptr = NULL;
5263 
5264 	switch (addrp->iplookupsubtype)
5265 	{
5266 	case 0 :
5267 		ptr = ipf_lookup_res_num(softc, unit, addrp->iplookuptype,
5268 					 addrp->iplookupnum,
5269 					 &maskp->iplookupfunc);
5270 		break;
5271 	case 1 :
5272 		if (addrp->iplookupname < 0)
5273 			break;
5274 		if (addrp->iplookupname >= fr->fr_namelen)
5275 			break;
5276 		ptr = ipf_lookup_res_name(softc, unit, addrp->iplookuptype,
5277 					  fr->fr_names + addrp->iplookupname,
5278 					  &maskp->iplookupfunc);
5279 		break;
5280 	default :
5281 		break;
5282 	}
5283 
5284 	return (ptr);
5285 }
5286 
5287 
5288 /* ------------------------------------------------------------------------ */
5289 /* Function:    ipf_funcinit                                                */
5290 /* Returns:     int - 0 == success, else ESRCH: cannot resolve rule details */
5291 /* Parameters:  softc(I) - pointer to soft context main structure           */
5292 /*              fr(I)    - pointer to filter rule                           */
5293 /*                                                                          */
5294 /* If a rule is a call rule, then check if the function it points to needs  */
5295 /* an init function to be called now the rule has been loaded.              */
5296 /* ------------------------------------------------------------------------ */
5297 static int
5298 ipf_funcinit(ipf_main_softc_t *softc, frentry_t *fr)
5299 {
5300 	ipfunc_resolve_t *ft;
5301 	int err;
5302 
5303 	IPFERROR(34);
5304 	err = ESRCH;
5305 
5306 	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5307 		if (ft->ipfu_addr == fr->fr_func) {
5308 			err = 0;
5309 			if (ft->ipfu_init != NULL)
5310 				err = (*ft->ipfu_init)(softc, fr);
5311 			break;
5312 		}
5313 	return (err);
5314 }
5315 
5316 
5317 /* ------------------------------------------------------------------------ */
5318 /* Function:    ipf_funcfini                                                */
5319 /* Returns:     Nil                                                         */
5320 /* Parameters:  softc(I) - pointer to soft context main structure           */
5321 /*              fr(I)    - pointer to filter rule                           */
5322 /*                                                                          */
5323 /* For a given filter rule, call the matching "fini" function if the rule   */
5324 /* is using a known function that would have resulted in the "init" being   */
5325 /* called for ealier.                                                       */
5326 /* ------------------------------------------------------------------------ */
5327 static void
5328 ipf_funcfini(ipf_main_softc_t *softc, frentry_t *fr)
5329 {
5330 	ipfunc_resolve_t *ft;
5331 
5332 	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5333 		if (ft->ipfu_addr == fr->fr_func) {
5334 			if (ft->ipfu_fini != NULL)
5335 				(void) (*ft->ipfu_fini)(softc, fr);
5336 			break;
5337 		}
5338 }
5339 
5340 
5341 /* ------------------------------------------------------------------------ */
5342 /* Function:    ipf_findfunc                                                */
5343 /* Returns:     ipfunc_t - pointer to function if found, else NULL          */
5344 /* Parameters:  funcptr(I) - function pointer to lookup                     */
5345 /*                                                                          */
5346 /* Look for a function in the table of known functions.                     */
5347 /* ------------------------------------------------------------------------ */
5348 static ipfunc_t
5349 ipf_findfunc(ipfunc_t funcptr)
5350 {
5351 	ipfunc_resolve_t *ft;
5352 
5353 	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5354 		if (ft->ipfu_addr == funcptr)
5355 			return (funcptr);
5356 	return (NULL);
5357 }
5358 
5359 
5360 /* ------------------------------------------------------------------------ */
5361 /* Function:    ipf_resolvefunc                                             */
5362 /* Returns:     int - 0 == success, else error                              */
5363 /* Parameters:  data(IO) - ioctl data pointer to ipfunc_resolve_t struct    */
5364 /*                                                                          */
5365 /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */
5366 /* This will either be the function name (if the pointer is set) or the     */
5367 /* function pointer if the name is set.  When found, fill in the other one  */
5368 /* so that the entire, complete, structure can be copied back to user space.*/
5369 /* ------------------------------------------------------------------------ */
5370 int
5371 ipf_resolvefunc(ipf_main_softc_t *softc, void *data)
5372 {
5373 	ipfunc_resolve_t res, *ft;
5374 	int error;
5375 
5376 	error = BCOPYIN(data, &res, sizeof(res));
5377 	if (error != 0) {
5378 		IPFERROR(123);
5379 		return (EFAULT);
5380 	}
5381 
5382 	if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') {
5383 		for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5384 			if (strncmp(res.ipfu_name, ft->ipfu_name,
5385 				    sizeof(res.ipfu_name)) == 0) {
5386 				res.ipfu_addr = ft->ipfu_addr;
5387 				res.ipfu_init = ft->ipfu_init;
5388 				if (COPYOUT(&res, data, sizeof(res)) != 0) {
5389 					IPFERROR(35);
5390 					return (EFAULT);
5391 				}
5392 				return (0);
5393 			}
5394 	}
5395 	if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') {
5396 		for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5397 			if (ft->ipfu_addr == res.ipfu_addr) {
5398 				(void) strncpy(res.ipfu_name, ft->ipfu_name,
5399 					       sizeof(res.ipfu_name));
5400 				res.ipfu_init = ft->ipfu_init;
5401 				if (COPYOUT(&res, data, sizeof(res)) != 0) {
5402 					IPFERROR(36);
5403 					return (EFAULT);
5404 				}
5405 				return (0);
5406 			}
5407 	}
5408 	IPFERROR(37);
5409 	return (ESRCH);
5410 }
5411 
5412 
5413 #if !defined(_KERNEL) || SOLARIS
5414 /*
5415  * From: NetBSD
5416  * ppsratecheck(): packets (or events) per second limitation.
5417  */
5418 int
5419 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
5420 	/* maxpps: maximum pps allowed */
5421 {
5422 	struct timeval tv, delta;
5423 	int rv;
5424 
5425 	GETKTIME(&tv);
5426 
5427 	delta.tv_sec = tv.tv_sec - lasttime->tv_sec;
5428 	delta.tv_usec = tv.tv_usec - lasttime->tv_usec;
5429 	if (delta.tv_usec < 0) {
5430 		delta.tv_sec--;
5431 		delta.tv_usec += 1000000;
5432 	}
5433 
5434 	/*
5435 	 * check for 0,0 is so that the message will be seen at least once.
5436 	 * if more than one second have passed since the last update of
5437 	 * lasttime, reset the counter.
5438 	 *
5439 	 * we do increment *curpps even in *curpps < maxpps case, as some may
5440 	 * try to use *curpps for stat purposes as well.
5441 	 */
5442 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
5443 	    delta.tv_sec >= 1) {
5444 		*lasttime = tv;
5445 		*curpps = 0;
5446 		rv = 1;
5447 	} else if (maxpps < 0)
5448 		rv = 1;
5449 	else if (*curpps < maxpps)
5450 		rv = 1;
5451 	else
5452 		rv = 0;
5453 	*curpps = *curpps + 1;
5454 
5455 	return (rv);
5456 }
5457 #endif
5458 
5459 
5460 /* ------------------------------------------------------------------------ */
5461 /* Function:    ipf_derefrule                                               */
5462 /* Returns:     int   - 0 == rule freed up, else rule not freed             */
5463 /* Parameters:  fr(I) - pointer to filter rule                              */
5464 /*                                                                          */
5465 /* Decrement the reference counter to a rule by one.  If it reaches zero,   */
5466 /* free it and any associated storage space being used by it.               */
5467 /* ------------------------------------------------------------------------ */
5468 int
5469 ipf_derefrule(ipf_main_softc_t *softc, frentry_t **frp)
5470 {
5471 	frentry_t *fr;
5472 	frdest_t *fdp;
5473 
5474 	fr = *frp;
5475 	*frp = NULL;
5476 
5477 	MUTEX_ENTER(&fr->fr_lock);
5478 	fr->fr_ref--;
5479 	if (fr->fr_ref == 0) {
5480 		MUTEX_EXIT(&fr->fr_lock);
5481 		MUTEX_DESTROY(&fr->fr_lock);
5482 
5483 		ipf_funcfini(softc, fr);
5484 
5485 		fdp = &fr->fr_tif;
5486 		if (fdp->fd_type == FRD_DSTLIST)
5487 			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5488 
5489 		fdp = &fr->fr_rif;
5490 		if (fdp->fd_type == FRD_DSTLIST)
5491 			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5492 
5493 		fdp = &fr->fr_dif;
5494 		if (fdp->fd_type == FRD_DSTLIST)
5495 			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5496 
5497 		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5498 		    fr->fr_satype == FRI_LOOKUP)
5499 			ipf_lookup_deref(softc, fr->fr_srctype, fr->fr_srcptr);
5500 		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5501 		    fr->fr_datype == FRI_LOOKUP)
5502 			ipf_lookup_deref(softc, fr->fr_dsttype, fr->fr_dstptr);
5503 
5504 		if (fr->fr_grp != NULL)
5505 			ipf_group_del(softc, fr->fr_grp, fr);
5506 
5507 		if (fr->fr_grphead != NULL)
5508 			ipf_group_del(softc, fr->fr_grphead, fr);
5509 
5510 		if (fr->fr_icmpgrp != NULL)
5511 			ipf_group_del(softc, fr->fr_icmpgrp, fr);
5512 
5513 		if ((fr->fr_flags & FR_COPIED) != 0) {
5514 			if (fr->fr_dsize) {
5515 				KFREES(fr->fr_data, fr->fr_dsize);
5516 			}
5517 			KFREES(fr, fr->fr_size);
5518 			return (0);
5519 		}
5520 		return (1);
5521 	} else {
5522 		MUTEX_EXIT(&fr->fr_lock);
5523 	}
5524 	return (-1);
5525 }
5526 
5527 
5528 /* ------------------------------------------------------------------------ */
5529 /* Function:    ipf_grpmapinit                                              */
5530 /* Returns:     int - 0 == success, else ESRCH because table entry not found*/
5531 /* Parameters:  fr(I) - pointer to rule to find hash table for              */
5532 /*                                                                          */
5533 /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr.  */
5534 /* fr_ptr is later used by ipf_srcgrpmap and ipf_dstgrpmap.                 */
5535 /* ------------------------------------------------------------------------ */
5536 static int
5537 ipf_grpmapinit(ipf_main_softc_t *softc, frentry_t *fr)
5538 {
5539 	char name[FR_GROUPLEN];
5540 	iphtable_t *iph;
5541 
5542 	(void) snprintf(name, sizeof(name), "%d", fr->fr_arg);
5543 	iph = ipf_lookup_find_htable(softc, IPL_LOGIPF, name);
5544 	if (iph == NULL) {
5545 		IPFERROR(38);
5546 		return (ESRCH);
5547 	}
5548 	if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT)) {
5549 		IPFERROR(39);
5550 		return (ESRCH);
5551 	}
5552 	iph->iph_ref++;
5553 	fr->fr_ptr = iph;
5554 	return (0);
5555 }
5556 
5557 
5558 /* ------------------------------------------------------------------------ */
5559 /* Function:    ipf_grpmapfini                                              */
5560 /* Returns:     int - 0 == success, else ESRCH because table entry not found*/
5561 /* Parameters:  softc(I) - pointer to soft context main structure           */
5562 /*              fr(I)    - pointer to rule to release hash table for        */
5563 /*                                                                          */
5564 /* For rules that have had ipf_grpmapinit called, ipf_lookup_deref needs to */
5565 /* be called to undo what ipf_grpmapinit caused to be done.                 */
5566 /* ------------------------------------------------------------------------ */
5567 static int
5568 ipf_grpmapfini(ipf_main_softc_t *softc, frentry_t *fr)
5569 {
5570 	iphtable_t *iph;
5571 	iph = fr->fr_ptr;
5572 	if (iph != NULL)
5573 		ipf_lookup_deref(softc, IPLT_HASH, iph);
5574 	return (0);
5575 }
5576 
5577 
5578 /* ------------------------------------------------------------------------ */
5579 /* Function:    ipf_srcgrpmap                                               */
5580 /* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
5581 /* Parameters:  fin(I)    - pointer to packet information                   */
5582 /*              passp(IO) - pointer to current/new filter decision (unused) */
5583 /*                                                                          */
5584 /* Look for a rule group head in a hash table, using the source address as  */
5585 /* the key, and descend into that group and continue matching rules against */
5586 /* the packet.                                                              */
5587 /* ------------------------------------------------------------------------ */
5588 frentry_t *
5589 ipf_srcgrpmap(fr_info_t *fin, u_32_t *passp)
5590 {
5591 	frgroup_t *fg;
5592 	void *rval;
5593 
5594 	rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5595 				 &fin->fin_src);
5596 	if (rval == NULL)
5597 		return (NULL);
5598 
5599 	fg = rval;
5600 	fin->fin_fr = fg->fg_start;
5601 	(void) ipf_scanlist(fin, *passp);
5602 	return (fin->fin_fr);
5603 }
5604 
5605 
5606 /* ------------------------------------------------------------------------ */
5607 /* Function:    ipf_dstgrpmap                                               */
5608 /* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
5609 /* Parameters:  fin(I)    - pointer to packet information                   */
5610 /*              passp(IO) - pointer to current/new filter decision (unused) */
5611 /*                                                                          */
5612 /* Look for a rule group head in a hash table, using the destination        */
5613 /* address as the key, and descend into that group and continue matching    */
5614 /* rules against  the packet.                                               */
5615 /* ------------------------------------------------------------------------ */
5616 frentry_t *
5617 ipf_dstgrpmap(fr_info_t *fin, u_32_t *passp)
5618 {
5619 	frgroup_t *fg;
5620 	void *rval;
5621 
5622 	rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5623 				 &fin->fin_dst);
5624 	if (rval == NULL)
5625 		return (NULL);
5626 
5627 	fg = rval;
5628 	fin->fin_fr = fg->fg_start;
5629 	(void) ipf_scanlist(fin, *passp);
5630 	return (fin->fin_fr);
5631 }
5632 
5633 /*
5634  * Queue functions
5635  * ===============
5636  * These functions manage objects on queues for efficient timeouts.  There
5637  * are a number of system defined queues as well as user defined timeouts.
5638  * It is expected that a lock is held in the domain in which the queue
5639  * belongs (i.e. either state or NAT) when calling any of these functions
5640  * that prevents ipf_freetimeoutqueue() from being called at the same time
5641  * as any other.
5642  */
5643 
5644 
5645 /* ------------------------------------------------------------------------ */
5646 /* Function:    ipf_addtimeoutqueue                                         */
5647 /* Returns:     struct ifqtq * - NULL if malloc fails, else pointer to      */
5648 /*                               timeout queue with given interval.         */
5649 /* Parameters:  parent(I)  - pointer to pointer to parent node of this list */
5650 /*                           of interface queues.                           */
5651 /*              seconds(I) - timeout value in seconds for this queue.       */
5652 /*                                                                          */
5653 /* This routine first looks for a timeout queue that matches the interval   */
5654 /* being requested.  If it finds one, increments the reference counter and  */
5655 /* returns a pointer to it.  If none are found, it allocates a new one and  */
5656 /* inserts it at the top of the list.                                       */
5657 /*                                                                          */
5658 /* Locking.                                                                 */
5659 /* It is assumed that the caller of this function has an appropriate lock   */
5660 /* held (exclusively) in the domain that encompases 'parent'.               */
5661 /* ------------------------------------------------------------------------ */
5662 ipftq_t *
5663 ipf_addtimeoutqueue(ipf_main_softc_t *softc, ipftq_t **parent, u_int seconds)
5664 {
5665 	ipftq_t *ifq;
5666 	u_int period;
5667 
5668 	period = seconds * IPF_HZ_DIVIDE;
5669 
5670 	MUTEX_ENTER(&softc->ipf_timeoutlock);
5671 	for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) {
5672 		if (ifq->ifq_ttl == period) {
5673 			/*
5674 			 * Reset the delete flag, if set, so the structure
5675 			 * gets reused rather than freed and reallocated.
5676 			 */
5677 			MUTEX_ENTER(&ifq->ifq_lock);
5678 			ifq->ifq_flags &= ~IFQF_DELETE;
5679 			ifq->ifq_ref++;
5680 			MUTEX_EXIT(&ifq->ifq_lock);
5681 			MUTEX_EXIT(&softc->ipf_timeoutlock);
5682 
5683 			return (ifq);
5684 		}
5685 	}
5686 
5687 	KMALLOC(ifq, ipftq_t *);
5688 	if (ifq != NULL) {
5689 		MUTEX_NUKE(&ifq->ifq_lock);
5690 		IPFTQ_INIT(ifq, period, "ipftq mutex");
5691 		ifq->ifq_next = *parent;
5692 		ifq->ifq_pnext = parent;
5693 		ifq->ifq_flags = IFQF_USER;
5694 		ifq->ifq_ref++;
5695 		*parent = ifq;
5696 		softc->ipf_userifqs++;
5697 	}
5698 	MUTEX_EXIT(&softc->ipf_timeoutlock);
5699 	return (ifq);
5700 }
5701 
5702 
5703 /* ------------------------------------------------------------------------ */
5704 /* Function:    ipf_deletetimeoutqueue                                      */
5705 /* Returns:     int    - new reference count value of the timeout queue     */
5706 /* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
5707 /* Locks:       ifq->ifq_lock                                               */
5708 /*                                                                          */
5709 /* This routine must be called when we're discarding a pointer to a timeout */
5710 /* queue object, taking care of the reference counter.                      */
5711 /*                                                                          */
5712 /* Now that this just sets a DELETE flag, it requires the expire code to    */
5713 /* check the list of user defined timeout queues and call the free function */
5714 /* below (currently commented out) to stop memory leaking.  It is done this */
5715 /* way because the locking may not be sufficient to safely do a free when   */
5716 /* this function is called.                                                 */
5717 /* ------------------------------------------------------------------------ */
5718 int
5719 ipf_deletetimeoutqueue(ipftq_t *ifq)
5720 {
5721 
5722 	ifq->ifq_ref--;
5723 	if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) {
5724 		ifq->ifq_flags |= IFQF_DELETE;
5725 	}
5726 
5727 	return (ifq->ifq_ref);
5728 }
5729 
5730 
5731 /* ------------------------------------------------------------------------ */
5732 /* Function:    ipf_freetimeoutqueue                                        */
5733 /* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
5734 /* Returns:     Nil                                                         */
5735 /*                                                                          */
5736 /* Locking:                                                                 */
5737 /* It is assumed that the caller of this function has an appropriate lock   */
5738 /* held (exclusively) in the domain that encompases the callers "domain".   */
5739 /* The ifq_lock for this structure should not be held.                      */
5740 /*                                                                          */
5741 /* Remove a user defined timeout queue from the list of queues it is in and */
5742 /* tidy up after this is done.                                              */
5743 /* ------------------------------------------------------------------------ */
5744 void
5745 ipf_freetimeoutqueue(ipf_main_softc_t *softc, ipftq_t *ifq)
5746 {
5747 
5748 	if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) ||
5749 	    ((ifq->ifq_flags & IFQF_USER) == 0)) {
5750 		printf("ipf_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n",
5751 		       (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl,
5752 		       ifq->ifq_ref);
5753 		return;
5754 	}
5755 
5756 	/*
5757 	 * Remove from its position in the list.
5758 	 */
5759 	*ifq->ifq_pnext = ifq->ifq_next;
5760 	if (ifq->ifq_next != NULL)
5761 		ifq->ifq_next->ifq_pnext = ifq->ifq_pnext;
5762 	ifq->ifq_next = NULL;
5763 	ifq->ifq_pnext = NULL;
5764 
5765 	MUTEX_DESTROY(&ifq->ifq_lock);
5766 	ATOMIC_DEC(softc->ipf_userifqs);
5767 	KFREE(ifq);
5768 }
5769 
5770 
5771 /* ------------------------------------------------------------------------ */
5772 /* Function:    ipf_deletequeueentry                                        */
5773 /* Returns:     Nil                                                         */
5774 /* Parameters:  tqe(I) - timeout queue entry to delete                      */
5775 /*                                                                          */
5776 /* Remove a tail queue entry from its queue and make it an orphan.          */
5777 /* ipf_deletetimeoutqueue is called to make sure the reference count on the */
5778 /* queue is correct.  We can't, however, call ipf_freetimeoutqueue because  */
5779 /* the correct lock(s) may not be held that would make it safe to do so.    */
5780 /* ------------------------------------------------------------------------ */
5781 void
5782 ipf_deletequeueentry(ipftqent_t *tqe)
5783 {
5784 	ipftq_t *ifq;
5785 
5786 	ifq = tqe->tqe_ifq;
5787 
5788 	MUTEX_ENTER(&ifq->ifq_lock);
5789 
5790 	if (tqe->tqe_pnext != NULL) {
5791 		*tqe->tqe_pnext = tqe->tqe_next;
5792 		if (tqe->tqe_next != NULL)
5793 			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5794 		else    /* we must be the tail anyway */
5795 			ifq->ifq_tail = tqe->tqe_pnext;
5796 
5797 		tqe->tqe_pnext = NULL;
5798 		tqe->tqe_ifq = NULL;
5799 	}
5800 
5801 	(void) ipf_deletetimeoutqueue(ifq);
5802 	ASSERT(ifq->ifq_ref > 0);
5803 
5804 	MUTEX_EXIT(&ifq->ifq_lock);
5805 }
5806 
5807 
5808 /* ------------------------------------------------------------------------ */
5809 /* Function:    ipf_queuefront                                              */
5810 /* Returns:     Nil                                                         */
5811 /* Parameters:  tqe(I) - pointer to timeout queue entry                     */
5812 /*                                                                          */
5813 /* Move a queue entry to the front of the queue, if it isn't already there. */
5814 /* ------------------------------------------------------------------------ */
5815 void
5816 ipf_queuefront(ipftqent_t *tqe)
5817 {
5818 	ipftq_t *ifq;
5819 
5820 	ifq = tqe->tqe_ifq;
5821 	if (ifq == NULL)
5822 		return;
5823 
5824 	MUTEX_ENTER(&ifq->ifq_lock);
5825 	if (ifq->ifq_head != tqe) {
5826 		*tqe->tqe_pnext = tqe->tqe_next;
5827 		if (tqe->tqe_next)
5828 			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5829 		else
5830 			ifq->ifq_tail = tqe->tqe_pnext;
5831 
5832 		tqe->tqe_next = ifq->ifq_head;
5833 		ifq->ifq_head->tqe_pnext = &tqe->tqe_next;
5834 		ifq->ifq_head = tqe;
5835 		tqe->tqe_pnext = &ifq->ifq_head;
5836 	}
5837 	MUTEX_EXIT(&ifq->ifq_lock);
5838 }
5839 
5840 
5841 /* ------------------------------------------------------------------------ */
5842 /* Function:    ipf_queueback                                               */
5843 /* Returns:     Nil                                                         */
5844 /* Parameters:  ticks(I) - ipf tick time to use with this call              */
5845 /*              tqe(I)   - pointer to timeout queue entry                   */
5846 /*                                                                          */
5847 /* Move a queue entry to the back of the queue, if it isn't already there.  */
5848 /* We use use ticks to calculate the expiration and mark for when we last   */
5849 /* touched the structure.                                                   */
5850 /* ------------------------------------------------------------------------ */
5851 void
5852 ipf_queueback(u_long ticks, ipftqent_t *tqe)
5853 {
5854 	ipftq_t *ifq;
5855 
5856 	ifq = tqe->tqe_ifq;
5857 	if (ifq == NULL)
5858 		return;
5859 	tqe->tqe_die = ticks + ifq->ifq_ttl;
5860 	tqe->tqe_touched = ticks;
5861 
5862 	MUTEX_ENTER(&ifq->ifq_lock);
5863 	if (tqe->tqe_next != NULL) {		/* at the end already ? */
5864 		/*
5865 		 * Remove from list
5866 		 */
5867 		*tqe->tqe_pnext = tqe->tqe_next;
5868 		tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5869 
5870 		/*
5871 		 * Make it the last entry.
5872 		 */
5873 		tqe->tqe_next = NULL;
5874 		tqe->tqe_pnext = ifq->ifq_tail;
5875 		*ifq->ifq_tail = tqe;
5876 		ifq->ifq_tail = &tqe->tqe_next;
5877 	}
5878 	MUTEX_EXIT(&ifq->ifq_lock);
5879 }
5880 
5881 
5882 /* ------------------------------------------------------------------------ */
5883 /* Function:    ipf_queueappend                                             */
5884 /* Returns:     Nil                                                         */
5885 /* Parameters:  ticks(I)  - ipf tick time to use with this call             */
5886 /*              tqe(I)    - pointer to timeout queue entry                  */
5887 /*              ifq(I)    - pointer to timeout queue                        */
5888 /*              parent(I) - owing object pointer                            */
5889 /*                                                                          */
5890 /* Add a new item to this queue and put it on the very end.                 */
5891 /* We use use ticks to calculate the expiration and mark for when we last   */
5892 /* touched the structure.                                                   */
5893 /* ------------------------------------------------------------------------ */
5894 void
5895 ipf_queueappend(u_long ticks, ipftqent_t *tqe, ipftq_t *ifq, void *parent)
5896 {
5897 
5898 	MUTEX_ENTER(&ifq->ifq_lock);
5899 	tqe->tqe_parent = parent;
5900 	tqe->tqe_pnext = ifq->ifq_tail;
5901 	*ifq->ifq_tail = tqe;
5902 	ifq->ifq_tail = &tqe->tqe_next;
5903 	tqe->tqe_next = NULL;
5904 	tqe->tqe_ifq = ifq;
5905 	tqe->tqe_die = ticks + ifq->ifq_ttl;
5906 	tqe->tqe_touched = ticks;
5907 	ifq->ifq_ref++;
5908 	MUTEX_EXIT(&ifq->ifq_lock);
5909 }
5910 
5911 
5912 /* ------------------------------------------------------------------------ */
5913 /* Function:    ipf_movequeue                                               */
5914 /* Returns:     Nil                                                         */
5915 /* Parameters:  tq(I)   - pointer to timeout queue information              */
5916 /*              oifp(I) - old timeout queue entry was on                    */
5917 /*              nifp(I) - new timeout queue to put entry on                 */
5918 /*                                                                          */
5919 /* Move a queue entry from one timeout queue to another timeout queue.      */
5920 /* If it notices that the current entry is already last and does not need   */
5921 /* to move queue, the return.                                               */
5922 /* ------------------------------------------------------------------------ */
5923 void
5924 ipf_movequeue(u_long ticks, ipftqent_t *tqe, ipftq_t *oifq, ipftq_t *nifq)
5925 {
5926 
5927 	/*
5928 	 * If the queue hasn't changed and we last touched this entry at the
5929 	 * same ipf time, then we're not going to achieve anything by either
5930 	 * changing the ttl or moving it on the queue.
5931 	 */
5932 	if (oifq == nifq && tqe->tqe_touched == ticks)
5933 		return;
5934 
5935 	/*
5936 	 * For any of this to be outside the lock, there is a risk that two
5937 	 * packets entering simultaneously, with one changing to a different
5938 	 * queue and one not, could end up with things in a bizarre state.
5939 	 */
5940 	MUTEX_ENTER(&oifq->ifq_lock);
5941 
5942 	tqe->tqe_touched = ticks;
5943 	tqe->tqe_die = ticks + nifq->ifq_ttl;
5944 	/*
5945 	 * Is the operation here going to be a no-op ?
5946 	 */
5947 	if (oifq == nifq) {
5948 		if ((tqe->tqe_next == NULL) ||
5949 		    (tqe->tqe_next->tqe_die == tqe->tqe_die)) {
5950 			MUTEX_EXIT(&oifq->ifq_lock);
5951 			return;
5952 		}
5953 	}
5954 
5955 	/*
5956 	 * Remove from the old queue
5957 	 */
5958 	*tqe->tqe_pnext = tqe->tqe_next;
5959 	if (tqe->tqe_next)
5960 		tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5961 	else
5962 		oifq->ifq_tail = tqe->tqe_pnext;
5963 	tqe->tqe_next = NULL;
5964 
5965 	/*
5966 	 * If we're moving from one queue to another, release the
5967 	 * lock on the old queue and get a lock on the new queue.
5968 	 * For user defined queues, if we're moving off it, call
5969 	 * delete in case it can now be freed.
5970 	 */
5971 	if (oifq != nifq) {
5972 		tqe->tqe_ifq = NULL;
5973 
5974 		(void) ipf_deletetimeoutqueue(oifq);
5975 
5976 		MUTEX_EXIT(&oifq->ifq_lock);
5977 
5978 		MUTEX_ENTER(&nifq->ifq_lock);
5979 
5980 		tqe->tqe_ifq = nifq;
5981 		nifq->ifq_ref++;
5982 	}
5983 
5984 	/*
5985 	 * Add to the bottom of the new queue
5986 	 */
5987 	tqe->tqe_pnext = nifq->ifq_tail;
5988 	*nifq->ifq_tail = tqe;
5989 	nifq->ifq_tail = &tqe->tqe_next;
5990 	MUTEX_EXIT(&nifq->ifq_lock);
5991 }
5992 
5993 
5994 /* ------------------------------------------------------------------------ */
5995 /* Function:    ipf_updateipid                                              */
5996 /* Returns:     int - 0 == success, -1 == error (packet should be droppped) */
5997 /* Parameters:  fin(I) - pointer to packet information                      */
5998 /*                                                                          */
5999 /* When we are doing NAT, change the IP of every packet to represent a      */
6000 /* single sequence of packets coming from the host, hiding any host         */
6001 /* specific sequencing that might otherwise be revealed.  If the packet is  */
6002 /* a fragment, then store the 'new' IPid in the fragment cache and look up  */
6003 /* the fragment cache for non-leading fragments.  If a non-leading fragment */
6004 /* has no match in the cache, return an error.                              */
6005 /* ------------------------------------------------------------------------ */
6006 static int
6007 ipf_updateipid(fr_info_t *fin)
6008 {
6009 	u_short id, ido, sums;
6010 	u_32_t sumd, sum;
6011 	ip_t *ip;
6012 
6013 	ip = fin->fin_ip;
6014 	ido = ntohs(ip->ip_id);
6015 	if (fin->fin_off != 0) {
6016 		sum = ipf_frag_ipidknown(fin);
6017 		if (sum == 0xffffffff)
6018 			return (-1);
6019 		sum &= 0xffff;
6020 		id = (u_short)sum;
6021 		ip->ip_id = htons(id);
6022 	} else {
6023 		ip_fillid(ip, V_ip_random_id);
6024 		id = ntohs(ip->ip_id);
6025 		if ((fin->fin_flx & FI_FRAG) != 0)
6026 			(void) ipf_frag_ipidnew(fin, (u_32_t)id);
6027 	}
6028 
6029 	if (id == ido)
6030 		return (0);
6031 	CALC_SUMD(ido, id, sumd);	/* DESTRUCTIVE MACRO! id,ido change */
6032 	sum = (~ntohs(ip->ip_sum)) & 0xffff;
6033 	sum += sumd;
6034 	sum = (sum >> 16) + (sum & 0xffff);
6035 	sum = (sum >> 16) + (sum & 0xffff);
6036 	sums = ~(u_short)sum;
6037 	ip->ip_sum = htons(sums);
6038 	return (0);
6039 }
6040 
6041 
6042 #ifdef	NEED_FRGETIFNAME
6043 /* ------------------------------------------------------------------------ */
6044 /* Function:    ipf_getifname                                               */
6045 /* Returns:     char *    - pointer to interface name                       */
6046 /* Parameters:  ifp(I)    - pointer to network interface                    */
6047 /*              buffer(O) - pointer to where to store interface name        */
6048 /*                                                                          */
6049 /* Constructs an interface name in the buffer passed.  The buffer passed is */
6050 /* expected to be at least LIFNAMSIZ in bytes big.  If buffer is passed in  */
6051 /* as a NULL pointer then return a pointer to a static array.               */
6052 /* ------------------------------------------------------------------------ */
6053 char *
6054 ipf_getifname(struct ifnet *ifp, char *buffer)
6055 {
6056 	static char namebuf[LIFNAMSIZ];
6057 # if SOLARIS || defined(__FreeBSD__)
6058 	int unit, space;
6059 	char temp[20];
6060 	char *s;
6061 # endif
6062 
6063 	if (buffer == NULL)
6064 		buffer = namebuf;
6065 	(void) strncpy(buffer, ifp->if_name, LIFNAMSIZ);
6066 	buffer[LIFNAMSIZ - 1] = '\0';
6067 # if SOLARIS || defined(__FreeBSD__)
6068 	for (s = buffer; *s; s++)
6069 		;
6070 	unit = ifp->if_unit;
6071 	space = LIFNAMSIZ - (s - buffer);
6072 	if ((space > 0) && (unit >= 0)) {
6073 		(void) snprintf(temp, sizeof(name), "%d", unit);
6074 		(void) strncpy(s, temp, space);
6075 	}
6076 # endif
6077 	return (buffer);
6078 }
6079 #endif
6080 
6081 
6082 /* ------------------------------------------------------------------------ */
6083 /* Function:    ipf_ioctlswitch                                             */
6084 /* Returns:     int     - -1 continue processing, else ioctl return value   */
6085 /* Parameters:  unit(I) - device unit opened                                */
6086 /*              data(I) - pointer to ioctl data                             */
6087 /*              cmd(I)  - ioctl command                                     */
6088 /*              mode(I) - mode value                                        */
6089 /*              uid(I)  - uid making the ioctl call                         */
6090 /*              ctx(I)  - pointer to context data                           */
6091 /*                                                                          */
6092 /* Based on the value of unit, call the appropriate ioctl handler or return */
6093 /* EIO if ipfilter is not running.   Also checks if write perms are req'd   */
6094 /* for the device in order to execute the ioctl.  A special case is made    */
6095 /* SIOCIPFINTERROR so that the same code isn't required in every handler.   */
6096 /* The context data pointer is passed through as this is used as the key    */
6097 /* for locating a matching token for continued access for walking lists,    */
6098 /* etc.                                                                     */
6099 /* ------------------------------------------------------------------------ */
6100 int
6101 ipf_ioctlswitch(ipf_main_softc_t *softc, int unit, void *data, ioctlcmd_t cmd,
6102 	int mode, int uid, void *ctx)
6103 {
6104 	int error = 0;
6105 
6106 	switch (cmd)
6107 	{
6108 	case SIOCIPFINTERROR :
6109 		error = BCOPYOUT(&softc->ipf_interror, data,
6110 				 sizeof(softc->ipf_interror));
6111 		if (error != 0) {
6112 			IPFERROR(40);
6113 			error = EFAULT;
6114 		}
6115 		return (error);
6116 	default :
6117 		break;
6118 	}
6119 
6120 	switch (unit)
6121 	{
6122 	case IPL_LOGIPF :
6123 		error = ipf_ipf_ioctl(softc, data, cmd, mode, uid, ctx);
6124 		break;
6125 	case IPL_LOGNAT :
6126 		if (softc->ipf_running > 0) {
6127 			error = ipf_nat_ioctl(softc, data, cmd, mode,
6128 					      uid, ctx);
6129 		} else {
6130 			IPFERROR(42);
6131 			error = EIO;
6132 		}
6133 		break;
6134 	case IPL_LOGSTATE :
6135 		if (softc->ipf_running > 0) {
6136 			error = ipf_state_ioctl(softc, data, cmd, mode,
6137 						uid, ctx);
6138 		} else {
6139 			IPFERROR(43);
6140 			error = EIO;
6141 		}
6142 		break;
6143 	case IPL_LOGAUTH :
6144 		if (softc->ipf_running > 0) {
6145 			error = ipf_auth_ioctl(softc, data, cmd, mode,
6146 					       uid, ctx);
6147 		} else {
6148 			IPFERROR(44);
6149 			error = EIO;
6150 		}
6151 		break;
6152 	case IPL_LOGSYNC :
6153 		if (softc->ipf_running > 0) {
6154 			error = ipf_sync_ioctl(softc, data, cmd, mode,
6155 					       uid, ctx);
6156 		} else {
6157 			error = EIO;
6158 			IPFERROR(45);
6159 		}
6160 		break;
6161 	case IPL_LOGSCAN :
6162 #ifdef IPFILTER_SCAN
6163 		if (softc->ipf_running > 0)
6164 			error = ipf_scan_ioctl(softc, data, cmd, mode,
6165 					       uid, ctx);
6166 		else
6167 #endif
6168 		{
6169 			error = EIO;
6170 			IPFERROR(46);
6171 		}
6172 		break;
6173 	case IPL_LOGLOOKUP :
6174 		if (softc->ipf_running > 0) {
6175 			error = ipf_lookup_ioctl(softc, data, cmd, mode,
6176 						 uid, ctx);
6177 		} else {
6178 			error = EIO;
6179 			IPFERROR(47);
6180 		}
6181 		break;
6182 	default :
6183 		IPFERROR(48);
6184 		error = EIO;
6185 		break;
6186 	}
6187 
6188 	return (error);
6189 }
6190 
6191 
6192 /*
6193  * This array defines the expected size of objects coming into the kernel
6194  * for the various recognised object types. The first column is flags (see
6195  * below), 2nd column is current size, 3rd column is the version number of
6196  * when the current size became current.
6197  * Flags:
6198  * 1 = minimum size, not absolute size
6199  */
6200 static const int	ipf_objbytes[IPFOBJ_COUNT][3] = {
6201 	{ 1,	sizeof(struct frentry),		5010000 },	/* 0 */
6202 	{ 1,	sizeof(struct friostat),	5010000 },
6203 	{ 0,	sizeof(struct fr_info),		5010000 },
6204 	{ 0,	sizeof(struct ipf_authstat),	4010100 },
6205 	{ 0,	sizeof(struct ipfrstat),	5010000 },
6206 	{ 1,	sizeof(struct ipnat),		5010000 },	/* 5 */
6207 	{ 0,	sizeof(struct natstat),		5010000 },
6208 	{ 0,	sizeof(struct ipstate_save),	5010000 },
6209 	{ 1,	sizeof(struct nat_save),	5010000 },
6210 	{ 0,	sizeof(struct natlookup),	5010000 },
6211 	{ 1,	sizeof(struct ipstate),		5010000 },	/* 10 */
6212 	{ 0,	sizeof(struct ips_stat),	5010000 },
6213 	{ 0,	sizeof(struct frauth),		5010000 },
6214 	{ 0,	sizeof(struct ipftune),		4010100 },
6215 	{ 0,	sizeof(struct nat),		5010000 },
6216 	{ 0,	sizeof(struct ipfruleiter),	4011400 },	/* 15 */
6217 	{ 0,	sizeof(struct ipfgeniter),	4011400 },
6218 	{ 0,	sizeof(struct ipftable),	4011400 },
6219 	{ 0,	sizeof(struct ipflookupiter),	4011400 },
6220 	{ 0,	sizeof(struct ipftq) * IPF_TCP_NSTATES },
6221 	{ 1,	0,				0	}, /* IPFEXPR */
6222 	{ 0,	0,				0	}, /* PROXYCTL */
6223 	{ 0,	sizeof (struct fripf),		5010000	}
6224 };
6225 
6226 
6227 /* ------------------------------------------------------------------------ */
6228 /* Function:    ipf_inobj                                                   */
6229 /* Returns:     int     - 0 = success, else failure                         */
6230 /* Parameters:  softc(I) - soft context pointerto work with                 */
6231 /*              data(I)  - pointer to ioctl data                            */
6232 /*              objp(O)  - where to store ipfobj structure                  */
6233 /*              ptr(I)   - pointer to data to copy out                      */
6234 /*              type(I)  - type of structure being moved                    */
6235 /*                                                                          */
6236 /* Copy in the contents of what the ipfobj_t points to.  In future, we      */
6237 /* add things to check for version numbers, sizes, etc, to make it backward */
6238 /* compatible at the ABI for user land.                                     */
6239 /* If objp is not NULL then we assume that the caller wants to see what is  */
6240 /* in the ipfobj_t structure being copied in. As an example, this can tell  */
6241 /* the caller what version of ipfilter the ioctl program was written to.    */
6242 /* ------------------------------------------------------------------------ */
6243 int
6244 ipf_inobj(ipf_main_softc_t *softc, void *data, ipfobj_t *objp, void *ptr,
6245 	int type)
6246 {
6247 	ipfobj_t obj;
6248 	int error;
6249 	int size;
6250 
6251 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6252 		IPFERROR(49);
6253 		return (EINVAL);
6254 	}
6255 
6256 	if (objp == NULL)
6257 		objp = &obj;
6258 	error = BCOPYIN(data, objp, sizeof(*objp));
6259 	if (error != 0) {
6260 		IPFERROR(124);
6261 		return (EFAULT);
6262 	}
6263 
6264 	if (objp->ipfo_type != type) {
6265 		IPFERROR(50);
6266 		return (EINVAL);
6267 	}
6268 
6269 	if (objp->ipfo_rev >= ipf_objbytes[type][2]) {
6270 		if ((ipf_objbytes[type][0] & 1) != 0) {
6271 			if (objp->ipfo_size < ipf_objbytes[type][1]) {
6272 				IPFERROR(51);
6273 				return (EINVAL);
6274 			}
6275 			size =  ipf_objbytes[type][1];
6276 		} else if (objp->ipfo_size == ipf_objbytes[type][1]) {
6277 			size =  objp->ipfo_size;
6278 		} else {
6279 			IPFERROR(52);
6280 			return (EINVAL);
6281 		}
6282 		error = COPYIN(objp->ipfo_ptr, ptr, size);
6283 		if (error != 0) {
6284 			IPFERROR(55);
6285 			error = EFAULT;
6286 		}
6287 	} else {
6288 #ifdef  IPFILTER_COMPAT
6289 		error = ipf_in_compat(softc, objp, ptr, 0);
6290 #else
6291 		IPFERROR(54);
6292 		error = EINVAL;
6293 #endif
6294 	}
6295 	return (error);
6296 }
6297 
6298 
6299 /* ------------------------------------------------------------------------ */
6300 /* Function:    ipf_inobjsz                                                 */
6301 /* Returns:     int     - 0 = success, else failure                         */
6302 /* Parameters:  softc(I) - soft context pointerto work with                 */
6303 /*              data(I)  - pointer to ioctl data                            */
6304 /*              ptr(I)   - pointer to store real data in                    */
6305 /*              type(I)  - type of structure being moved                    */
6306 /*              sz(I)    - size of data to copy                             */
6307 /*                                                                          */
6308 /* As per ipf_inobj, except the size of the object to copy in is passed in  */
6309 /* but it must not be smaller than the size defined for the type and the    */
6310 /* type must allow for varied sized objects.  The extra requirement here is */
6311 /* that sz must match the size of the object being passed in - this is not  */
6312 /* not possible nor required in ipf_inobj().                                */
6313 /* ------------------------------------------------------------------------ */
6314 int
6315 ipf_inobjsz(ipf_main_softc_t *softc, void *data, void *ptr, int type, int sz)
6316 {
6317 	ipfobj_t obj;
6318 	int error;
6319 
6320 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6321 		IPFERROR(56);
6322 		return (EINVAL);
6323 	}
6324 
6325 	error = BCOPYIN(data, &obj, sizeof(obj));
6326 	if (error != 0) {
6327 		IPFERROR(125);
6328 		return (EFAULT);
6329 	}
6330 
6331 	if (obj.ipfo_type != type) {
6332 		IPFERROR(58);
6333 		return (EINVAL);
6334 	}
6335 
6336 	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6337 		if (((ipf_objbytes[type][0] & 1) == 0) ||
6338 		    (sz < ipf_objbytes[type][1])) {
6339 			IPFERROR(57);
6340 			return (EINVAL);
6341 		}
6342 		error = COPYIN(obj.ipfo_ptr, ptr, sz);
6343 		if (error != 0) {
6344 			IPFERROR(61);
6345 			error = EFAULT;
6346 		}
6347 	} else {
6348 #ifdef	IPFILTER_COMPAT
6349 		error = ipf_in_compat(softc, &obj, ptr, sz);
6350 #else
6351 		IPFERROR(60);
6352 		error = EINVAL;
6353 #endif
6354 	}
6355 	return (error);
6356 }
6357 
6358 
6359 /* ------------------------------------------------------------------------ */
6360 /* Function:    ipf_outobjsz                                                */
6361 /* Returns:     int     - 0 = success, else failure                         */
6362 /* Parameters:  data(I) - pointer to ioctl data                             */
6363 /*              ptr(I)  - pointer to store real data in                     */
6364 /*              type(I) - type of structure being moved                     */
6365 /*              sz(I)   - size of data to copy                              */
6366 /*                                                                          */
6367 /* As per ipf_outobj, except the size of the object to copy out is passed in*/
6368 /* but it must not be smaller than the size defined for the type and the    */
6369 /* type must allow for varied sized objects.  The extra requirement here is */
6370 /* that sz must match the size of the object being passed in - this is not  */
6371 /* not possible nor required in ipf_outobj().                               */
6372 /* ------------------------------------------------------------------------ */
6373 int
6374 ipf_outobjsz(ipf_main_softc_t *softc, void *data, void *ptr, int type, int sz)
6375 {
6376 	ipfobj_t obj;
6377 	int error;
6378 
6379 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6380 		IPFERROR(62);
6381 		return (EINVAL);
6382 	}
6383 
6384 	error = BCOPYIN(data, &obj, sizeof(obj));
6385 	if (error != 0) {
6386 		IPFERROR(127);
6387 		return (EFAULT);
6388 	}
6389 
6390 	if (obj.ipfo_type != type) {
6391 		IPFERROR(63);
6392 		return (EINVAL);
6393 	}
6394 
6395 	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6396 		if (((ipf_objbytes[type][0] & 1) == 0) ||
6397 		    (sz < ipf_objbytes[type][1])) {
6398 			IPFERROR(146);
6399 			return (EINVAL);
6400 		}
6401 		error = COPYOUT(ptr, obj.ipfo_ptr, sz);
6402 		if (error != 0) {
6403 			IPFERROR(66);
6404 			error = EFAULT;
6405 		}
6406 	} else {
6407 #ifdef	IPFILTER_COMPAT
6408 		error = ipf_out_compat(softc, &obj, ptr);
6409 #else
6410 		IPFERROR(65);
6411 		error = EINVAL;
6412 #endif
6413 	}
6414 	return (error);
6415 }
6416 
6417 
6418 /* ------------------------------------------------------------------------ */
6419 /* Function:    ipf_outobj                                                  */
6420 /* Returns:     int     - 0 = success, else failure                         */
6421 /* Parameters:  data(I) - pointer to ioctl data                             */
6422 /*              ptr(I)  - pointer to store real data in                     */
6423 /*              type(I) - type of structure being moved                     */
6424 /*                                                                          */
6425 /* Copy out the contents of what ptr is to where ipfobj points to.  In      */
6426 /* future, we add things to check for version numbers, sizes, etc, to make  */
6427 /* it backward  compatible at the ABI for user land.                        */
6428 /* ------------------------------------------------------------------------ */
6429 int
6430 ipf_outobj(ipf_main_softc_t *softc, void *data, void *ptr, int type)
6431 {
6432 	ipfobj_t obj;
6433 	int error;
6434 
6435 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6436 		IPFERROR(67);
6437 		return (EINVAL);
6438 	}
6439 
6440 	error = BCOPYIN(data, &obj, sizeof(obj));
6441 	if (error != 0) {
6442 		IPFERROR(126);
6443 		return (EFAULT);
6444 	}
6445 
6446 	if (obj.ipfo_type != type) {
6447 		IPFERROR(68);
6448 		return (EINVAL);
6449 	}
6450 
6451 	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6452 		if ((ipf_objbytes[type][0] & 1) != 0) {
6453 			if (obj.ipfo_size < ipf_objbytes[type][1]) {
6454 				IPFERROR(69);
6455 				return (EINVAL);
6456 			}
6457 		} else if (obj.ipfo_size != ipf_objbytes[type][1]) {
6458 			IPFERROR(70);
6459 			return (EINVAL);
6460 		}
6461 
6462 		error = COPYOUT(ptr, obj.ipfo_ptr, obj.ipfo_size);
6463 		if (error != 0) {
6464 			IPFERROR(73);
6465 			error = EFAULT;
6466 		}
6467 	} else {
6468 #ifdef	IPFILTER_COMPAT
6469 		error = ipf_out_compat(softc, &obj, ptr);
6470 #else
6471 		IPFERROR(72);
6472 		error = EINVAL;
6473 #endif
6474 	}
6475 	return (error);
6476 }
6477 
6478 
6479 /* ------------------------------------------------------------------------ */
6480 /* Function:    ipf_outobjk                                                 */
6481 /* Returns:     int     - 0 = success, else failure                         */
6482 /* Parameters:  obj(I)  - pointer to data description structure             */
6483 /*              ptr(I)  - pointer to kernel data to copy out                */
6484 /*                                                                          */
6485 /* In the above functions, the ipfobj_t structure is copied into the kernel,*/
6486 /* telling ipfilter how to copy out data. In this instance, the ipfobj_t is */
6487 /* already populated with information and now we just need to use it.       */
6488 /* There is no need for this function to have a "type" parameter as there   */
6489 /* is no point in validating information that comes from the kernel with    */
6490 /* itself.                                                                  */
6491 /* ------------------------------------------------------------------------ */
6492 int
6493 ipf_outobjk(ipf_main_softc_t *softc, ipfobj_t *obj, void *ptr)
6494 {
6495 	int type = obj->ipfo_type;
6496 	int error;
6497 
6498 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6499 		IPFERROR(147);
6500 		return (EINVAL);
6501 	}
6502 
6503 	if (obj->ipfo_rev >= ipf_objbytes[type][2]) {
6504 		if ((ipf_objbytes[type][0] & 1) != 0) {
6505 			if (obj->ipfo_size < ipf_objbytes[type][1]) {
6506 				IPFERROR(148);
6507 				return (EINVAL);
6508 			}
6509 
6510 		} else if (obj->ipfo_size != ipf_objbytes[type][1]) {
6511 			IPFERROR(149);
6512 			return (EINVAL);
6513 		}
6514 
6515 		error = COPYOUT(ptr, obj->ipfo_ptr, obj->ipfo_size);
6516 		if (error != 0) {
6517 			IPFERROR(150);
6518 			error = EFAULT;
6519 		}
6520 	} else {
6521 #ifdef  IPFILTER_COMPAT
6522 		error = ipf_out_compat(softc, obj, ptr);
6523 #else
6524 		IPFERROR(151);
6525 		error = EINVAL;
6526 #endif
6527 	}
6528 	return (error);
6529 }
6530 
6531 
6532 /* ------------------------------------------------------------------------ */
6533 /* Function:    ipf_checkl4sum                                              */
6534 /* Returns:     int     - 0 = good, -1 = bad, 1 = cannot check              */
6535 /* Parameters:  fin(I) - pointer to packet information                      */
6536 /*                                                                          */
6537 /* If possible, calculate the layer 4 checksum for the packet.  If this is  */
6538 /* not possible, return without indicating a failure or success but in a    */
6539 /* way that is ditinguishable. This function should only be called by the   */
6540 /* ipf_checkv6sum() for each platform.                                      */
6541 /* ------------------------------------------------------------------------ */
6542 inline int
6543 ipf_checkl4sum(fr_info_t *fin)
6544 {
6545 	u_short sum, hdrsum, *csump;
6546 	udphdr_t *udp;
6547 	int dosum;
6548 
6549 	/*
6550 	 * If the TCP packet isn't a fragment, isn't too short and otherwise
6551 	 * isn't already considered "bad", then validate the checksum.  If
6552 	 * this check fails then considered the packet to be "bad".
6553 	 */
6554 	if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0)
6555 		return (1);
6556 
6557 	DT2(l4sumo, int, fin->fin_out, int, (int)fin->fin_p);
6558 	if (fin->fin_out == 1) {
6559 		fin->fin_cksum = FI_CK_SUMOK;
6560 		return (0);
6561 	}
6562 
6563 	csump = NULL;
6564 	hdrsum = 0;
6565 	dosum = 0;
6566 	sum = 0;
6567 
6568 	switch (fin->fin_p)
6569 	{
6570 	case IPPROTO_TCP :
6571 		csump = &((tcphdr_t *)fin->fin_dp)->th_sum;
6572 		dosum = 1;
6573 		break;
6574 
6575 	case IPPROTO_UDP :
6576 		udp = fin->fin_dp;
6577 		if (udp->uh_sum != 0) {
6578 			csump = &udp->uh_sum;
6579 			dosum = 1;
6580 		}
6581 		break;
6582 
6583 #ifdef USE_INET6
6584 	case IPPROTO_ICMPV6 :
6585 		csump = &((struct icmp6_hdr *)fin->fin_dp)->icmp6_cksum;
6586 		dosum = 1;
6587 		break;
6588 #endif
6589 
6590 	case IPPROTO_ICMP :
6591 		csump = &((struct icmp *)fin->fin_dp)->icmp_cksum;
6592 		dosum = 1;
6593 		break;
6594 
6595 	default :
6596 		return (1);
6597 		/*NOTREACHED*/
6598 	}
6599 
6600 	if (csump != NULL) {
6601 		hdrsum = *csump;
6602 		if (fin->fin_p == IPPROTO_UDP && hdrsum == 0xffff)
6603 			hdrsum = 0x0000;
6604 	}
6605 
6606 	if (dosum) {
6607 		sum = fr_cksum(fin, fin->fin_ip, fin->fin_p, fin->fin_dp);
6608 	}
6609 #if !defined(_KERNEL)
6610 	if (sum == hdrsum) {
6611 		FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum));
6612 	} else {
6613 		FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum));
6614 	}
6615 #endif
6616 	DT3(l4sums, u_short, hdrsum, u_short, sum, fr_info_t *, fin);
6617 #ifdef USE_INET6
6618 	if (hdrsum == sum || (sum == 0 && IP_V(fin->fin_ip) == 6)) {
6619 #else
6620 	if (hdrsum == sum) {
6621 #endif
6622 		fin->fin_cksum = FI_CK_SUMOK;
6623 		return (0);
6624 	}
6625 	fin->fin_cksum = FI_CK_BAD;
6626 	return (-1);
6627 }
6628 
6629 
6630 /* ------------------------------------------------------------------------ */
6631 /* Function:    ipf_ifpfillv4addr                                           */
6632 /* Returns:     int     - 0 = address update, -1 = address not updated      */
6633 /* Parameters:  atype(I)   - type of network address update to perform      */
6634 /*              sin(I)     - pointer to source of address information       */
6635 /*              mask(I)    - pointer to source of netmask information       */
6636 /*              inp(I)     - pointer to destination address store           */
6637 /*              inpmask(I) - pointer to destination netmask store           */
6638 /*                                                                          */
6639 /* Given a type of network address update (atype) to perform, copy          */
6640 /* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
6641 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
6642 /* which case the operation fails.  For all values of atype other than      */
6643 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
6644 /* value.                                                                   */
6645 /* ------------------------------------------------------------------------ */
6646 int
6647 ipf_ifpfillv4addr(int atype, struct sockaddr_in *sin, struct sockaddr_in *mask,
6648 	struct in_addr *inp, struct in_addr *inpmask)
6649 {
6650 	if (inpmask != NULL && atype != FRI_NETMASKED)
6651 		inpmask->s_addr = 0xffffffff;
6652 
6653 	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6654 		if (atype == FRI_NETMASKED) {
6655 			if (inpmask == NULL)
6656 				return (-1);
6657 			inpmask->s_addr = mask->sin_addr.s_addr;
6658 		}
6659 		inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr;
6660 	} else {
6661 		inp->s_addr = sin->sin_addr.s_addr;
6662 	}
6663 	return (0);
6664 }
6665 
6666 
6667 #ifdef	USE_INET6
6668 /* ------------------------------------------------------------------------ */
6669 /* Function:    ipf_ifpfillv6addr                                           */
6670 /* Returns:     int     - 0 = address update, -1 = address not updated      */
6671 /* Parameters:  atype(I)   - type of network address update to perform      */
6672 /*              sin(I)     - pointer to source of address information       */
6673 /*              mask(I)    - pointer to source of netmask information       */
6674 /*              inp(I)     - pointer to destination address store           */
6675 /*              inpmask(I) - pointer to destination netmask store           */
6676 /*                                                                          */
6677 /* Given a type of network address update (atype) to perform, copy          */
6678 /* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
6679 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
6680 /* which case the operation fails.  For all values of atype other than      */
6681 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
6682 /* value.                                                                   */
6683 /* ------------------------------------------------------------------------ */
6684 int
6685 ipf_ifpfillv6addr(int atype, struct sockaddr_in6 *sin,
6686 	struct sockaddr_in6 *mask, i6addr_t *inp, i6addr_t *inpmask)
6687 {
6688 	i6addr_t *src, *and;
6689 
6690 	src = (i6addr_t *)&sin->sin6_addr;
6691 	and = (i6addr_t *)&mask->sin6_addr;
6692 
6693 	if (inpmask != NULL && atype != FRI_NETMASKED) {
6694 		inpmask->i6[0] = 0xffffffff;
6695 		inpmask->i6[1] = 0xffffffff;
6696 		inpmask->i6[2] = 0xffffffff;
6697 		inpmask->i6[3] = 0xffffffff;
6698 	}
6699 
6700 	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6701 		if (atype == FRI_NETMASKED) {
6702 			if (inpmask == NULL)
6703 				return (-1);
6704 			inpmask->i6[0] = and->i6[0];
6705 			inpmask->i6[1] = and->i6[1];
6706 			inpmask->i6[2] = and->i6[2];
6707 			inpmask->i6[3] = and->i6[3];
6708 		}
6709 
6710 		inp->i6[0] = src->i6[0] & and->i6[0];
6711 		inp->i6[1] = src->i6[1] & and->i6[1];
6712 		inp->i6[2] = src->i6[2] & and->i6[2];
6713 		inp->i6[3] = src->i6[3] & and->i6[3];
6714 	} else {
6715 		inp->i6[0] = src->i6[0];
6716 		inp->i6[1] = src->i6[1];
6717 		inp->i6[2] = src->i6[2];
6718 		inp->i6[3] = src->i6[3];
6719 	}
6720 	return (0);
6721 }
6722 #endif
6723 
6724 
6725 /* ------------------------------------------------------------------------ */
6726 /* Function:    ipf_matchtag                                                */
6727 /* Returns:     0 == mismatch, 1 == match.                                  */
6728 /* Parameters:  tag1(I) - pointer to first tag to compare                   */
6729 /*              tag2(I) - pointer to second tag to compare                  */
6730 /*                                                                          */
6731 /* Returns true (non-zero) or false(0) if the two tag structures can be     */
6732 /* considered to be a match or not match, respectively.  The tag is 16      */
6733 /* bytes long (16 characters) but that is overlayed with 4 32bit ints so    */
6734 /* compare the ints instead, for speed. tag1 is the master of the           */
6735 /* comparison.  This function should only be called with both tag1 and tag2 */
6736 /* as non-NULL pointers.                                                    */
6737 /* ------------------------------------------------------------------------ */
6738 int
6739 ipf_matchtag(ipftag_t *tag1, ipftag_t *tag2)
6740 {
6741 	if (tag1 == tag2)
6742 		return (1);
6743 
6744 	if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0))
6745 		return (1);
6746 
6747 	if ((tag1->ipt_num[0] == tag2->ipt_num[0]) &&
6748 	    (tag1->ipt_num[1] == tag2->ipt_num[1]) &&
6749 	    (tag1->ipt_num[2] == tag2->ipt_num[2]) &&
6750 	    (tag1->ipt_num[3] == tag2->ipt_num[3]))
6751 		return (1);
6752 	return (0);
6753 }
6754 
6755 
6756 /* ------------------------------------------------------------------------ */
6757 /* Function:    ipf_coalesce                                                */
6758 /* Returns:     1 == success, -1 == failure, 0 == no change                 */
6759 /* Parameters:  fin(I) - pointer to packet information                      */
6760 /*                                                                          */
6761 /* Attempt to get all of the packet data into a single, contiguous buffer.  */
6762 /* If this call returns a failure then the buffers have also been freed.    */
6763 /* ------------------------------------------------------------------------ */
6764 int
6765 ipf_coalesce(fr_info_t *fin)
6766 {
6767 
6768 	if ((fin->fin_flx & FI_COALESCE) != 0)
6769 		return (1);
6770 
6771 	/*
6772 	 * If the mbuf pointers indicate that there is no mbuf to work with,
6773 	* return but do not indicate success or failure.
6774 	 */
6775 	if (fin->fin_m == NULL || fin->fin_mp == NULL)
6776 		return (0);
6777 
6778 #if defined(_KERNEL)
6779 	if (ipf_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) {
6780 		ipf_main_softc_t *softc = fin->fin_main_soft;
6781 
6782 		DT1(frb_coalesce, fr_info_t *, fin);
6783 		LBUMP(ipf_stats[fin->fin_out].fr_badcoalesces);
6784 # if SOLARIS
6785 		FREE_MB_T(*fin->fin_mp);
6786 # endif
6787 		fin->fin_reason = FRB_COALESCE;
6788 		*fin->fin_mp = NULL;
6789 		fin->fin_m = NULL;
6790 		return (-1);
6791 	}
6792 #else
6793 	fin = fin;	/* LINT */
6794 #endif
6795 	return (1);
6796 }
6797 
6798 
6799 /*
6800  * The following table lists all of the tunable variables that can be
6801  * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXt.  The format of each row
6802  * in the table below is as follows:
6803  *
6804  * pointer to value, name of value, minimum, maximum, size of the value's
6805  *     container, value attribute flags
6806  *
6807  * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED
6808  * means the value can only be written to when IPFilter is loaded but disabled.
6809  * The obvious implication is if neither of these are set then the value can be
6810  * changed at any time without harm.
6811  */
6812 
6813 
6814 /* ------------------------------------------------------------------------ */
6815 /* Function:    ipf_tune_findbycookie                                       */
6816 /* Returns:     NULL = search failed, else pointer to tune struct           */
6817 /* Parameters:  cookie(I) - cookie value to search for amongst tuneables    */
6818 /*              next(O)   - pointer to place to store the cookie for the    */
6819 /*                          "next" tuneable, if it is desired.              */
6820 /*                                                                          */
6821 /* This function is used to walk through all of the existing tunables with  */
6822 /* successive calls.  It searches the known tunables for the one which has  */
6823 /* a matching value for "cookie" - ie its address.  When returning a match, */
6824 /* the next one to be found may be returned inside next.                    */
6825 /* ------------------------------------------------------------------------ */
6826 static ipftuneable_t *
6827 ipf_tune_findbycookie(ipftuneable_t **ptop, void *cookie, void **next)
6828 {
6829 	ipftuneable_t *ta, **tap;
6830 
6831 	for (ta = *ptop; ta->ipft_name != NULL; ta++)
6832 		if (ta == cookie) {
6833 			if (next != NULL) {
6834 				/*
6835 				 * If the next entry in the array has a name
6836 				* present, then return a pointer to it for
6837 				* where to go next, else return a pointer to
6838 				 * the dynaminc list as a key to search there
6839 				 * next.  This facilitates a weak linking of
6840 				 * the two "lists" together.
6841 				 */
6842 				if ((ta + 1)->ipft_name != NULL)
6843 					*next = ta + 1;
6844 				else
6845 					*next = ptop;
6846 			}
6847 			return (ta);
6848 		}
6849 
6850 	for (tap = ptop; (ta = *tap) != NULL; tap = &ta->ipft_next)
6851 		if (tap == cookie) {
6852 			if (next != NULL)
6853 				*next = &ta->ipft_next;
6854 			return (ta);
6855 		}
6856 
6857 	if (next != NULL)
6858 		*next = NULL;
6859 	return (NULL);
6860 }
6861 
6862 
6863 /* ------------------------------------------------------------------------ */
6864 /* Function:    ipf_tune_findbyname                                         */
6865 /* Returns:     NULL = search failed, else pointer to tune struct           */
6866 /* Parameters:  name(I) - name of the tuneable entry to find.               */
6867 /*                                                                          */
6868 /* Search the static array of tuneables and the list of dynamic tuneables   */
6869 /* for an entry with a matching name.  If we can find one, return a pointer */
6870 /* to the matching structure.                                               */
6871 /* ------------------------------------------------------------------------ */
6872 static ipftuneable_t *
6873 ipf_tune_findbyname(ipftuneable_t *top, const char *name)
6874 {
6875 	ipftuneable_t *ta;
6876 
6877 	for (ta = top; ta != NULL; ta = ta->ipft_next)
6878 		if (!strcmp(ta->ipft_name, name)) {
6879 			return (ta);
6880 		}
6881 
6882 	return (NULL);
6883 }
6884 
6885 
6886 /* ------------------------------------------------------------------------ */
6887 /* Function:    ipf_tune_add_array                                          */
6888 /* Returns:     int - 0 == success, else failure                            */
6889 /* Parameters:  newtune - pointer to new tune array to add to tuneables     */
6890 /*                                                                          */
6891 /* Appends tune structures from the array passed in (newtune) to the end of */
6892 /* the current list of "dynamic" tuneable parameters.                       */
6893 /* If any entry to be added is already present (by name) then the operation */
6894 /* is aborted - entries that have been added are removed before returning.  */
6895 /* An entry with no name (NULL) is used as the indication that the end of   */
6896 /* the array has been reached.                                              */
6897 /* ------------------------------------------------------------------------ */
6898 int
6899 ipf_tune_add_array(ipf_main_softc_t *softc, ipftuneable_t *newtune)
6900 {
6901 	ipftuneable_t *nt, *dt;
6902 	int error = 0;
6903 
6904 	for (nt = newtune; nt->ipft_name != NULL; nt++) {
6905 		error = ipf_tune_add(softc, nt);
6906 		if (error != 0) {
6907 			for (dt = newtune; dt != nt; dt++) {
6908 				(void) ipf_tune_del(softc, dt);
6909 			}
6910 		}
6911 	}
6912 
6913 	return (error);
6914 }
6915 
6916 
6917 /* ------------------------------------------------------------------------ */
6918 /* Function:    ipf_tune_array_link                                         */
6919 /* Returns:     0 == success, -1 == failure                                 */
6920 /* Parameters:  softc(I) - soft context pointerto work with                 */
6921 /*              array(I) - pointer to an array of tuneables                 */
6922 /*                                                                          */
6923 /* Given an array of tunables (array), append them to the current list of   */
6924 /* tuneables for this context (softc->ipf_tuners.) To properly prepare the  */
6925 /* the array for being appended to the list, initialise all of the next     */
6926 /* pointers so we don't need to walk parts of it with ++ and others with    */
6927 /* next. The array is expected to have an entry with a NULL name as the     */
6928 /* terminator. Trying to add an array with no non-NULL names will return as */
6929 /* a failure.                                                               */
6930 /* ------------------------------------------------------------------------ */
6931 int
6932 ipf_tune_array_link(ipf_main_softc_t *softc, ipftuneable_t *array)
6933 {
6934 	ipftuneable_t *t, **p;
6935 
6936 	t = array;
6937 	if (t->ipft_name == NULL)
6938 		return (-1);
6939 
6940 	for (; t[1].ipft_name != NULL; t++)
6941 		t[0].ipft_next = &t[1];
6942 	t->ipft_next = NULL;
6943 
6944 	/*
6945 	 * Since a pointer to the last entry isn't kept, we need to find it
6946 	 * each time we want to add new variables to the list.
6947 	 */
6948 	for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
6949 		if (t->ipft_name == NULL)
6950 			break;
6951 	*p = array;
6952 
6953 	return (0);
6954 }
6955 
6956 
6957 /* ------------------------------------------------------------------------ */
6958 /* Function:    ipf_tune_array_unlink                                       */
6959 /* Returns:     0 == success, -1 == failure                                 */
6960 /* Parameters:  softc(I) - soft context pointerto work with                 */
6961 /*              array(I) - pointer to an array of tuneables                 */
6962 /*                                                                          */
6963 /* ------------------------------------------------------------------------ */
6964 int
6965 ipf_tune_array_unlink(ipf_main_softc_t *softc, ipftuneable_t *array)
6966 {
6967 	ipftuneable_t *t, **p;
6968 
6969 	for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
6970 		if (t == array)
6971 			break;
6972 	if (t == NULL)
6973 		return (-1);
6974 
6975 	for (; t[1].ipft_name != NULL; t++)
6976 		;
6977 
6978 	*p = t->ipft_next;
6979 
6980 	return (0);
6981 }
6982 
6983 
6984 /* ------------------------------------------------------------------------ */
6985 /* Function:   ipf_tune_array_copy                                          */
6986 /* Returns:    NULL = failure, else pointer to new array                    */
6987 /* Parameters: base(I)     - pointer to structure base                      */
6988 /*             size(I)     - size of the array at template                  */
6989 /*             template(I) - original array to copy                         */
6990 /*                                                                          */
6991 /* Allocate memory for a new set of tuneable values and copy everything     */
6992 /* from template into the new region of memory.  The new region is full of  */
6993 /* uninitialised pointers (ipft_next) so set them up.  Now, ipftp_offset... */
6994 /*                                                                          */
6995 /* NOTE: the following assumes that sizeof(long) == sizeof(void *)          */
6996 /* In the array template, ipftp_offset is the offset (in bytes) of the      */
6997 /* location of the tuneable value inside the structure pointed to by base.  */
6998 /* As ipftp_offset is a union over the pointers to the tuneable values, if  */
6999 /* we add base to the copy's ipftp_offset, copy ends up with a pointer in   */
7000 /* ipftp_void that points to the stored value.                              */
7001 /* ------------------------------------------------------------------------ */
7002 ipftuneable_t *
7003 ipf_tune_array_copy(void *base, size_t size, ipftuneable_t *template)
7004 {
7005 	ipftuneable_t *copy;
7006 	int i;
7007 
7008 
7009 	KMALLOCS(copy, ipftuneable_t *, size);
7010 	if (copy == NULL) {
7011 		return (NULL);
7012 	}
7013 	bcopy(template, copy, size);
7014 
7015 	for (i = 0; copy[i].ipft_name; i++) {
7016 		copy[i].ipft_una.ipftp_offset += (u_long)base;
7017 		copy[i].ipft_next = copy + i + 1;
7018 	}
7019 
7020 	return (copy);
7021 }
7022 
7023 
7024 /* ------------------------------------------------------------------------ */
7025 /* Function:    ipf_tune_add                                                */
7026 /* Returns:     int - 0 == success, else failure                            */
7027 /* Parameters:  newtune - pointer to new tune entry to add to tuneables     */
7028 /*                                                                          */
7029 /* Appends tune structures from the array passed in (newtune) to the end of */
7030 /* the current list of "dynamic" tuneable parameters.  Once added, the      */
7031 /* owner of the object is not expected to ever change "ipft_next".          */
7032 /* ------------------------------------------------------------------------ */
7033 int
7034 ipf_tune_add(ipf_main_softc_t *softc, ipftuneable_t *newtune)
7035 {
7036 	ipftuneable_t *ta, **tap;
7037 
7038 	ta = ipf_tune_findbyname(softc->ipf_tuners, newtune->ipft_name);
7039 	if (ta != NULL) {
7040 		IPFERROR(74);
7041 		return (EEXIST);
7042 	}
7043 
7044 	for (tap = &softc->ipf_tuners; *tap != NULL; tap = &(*tap)->ipft_next)
7045 		;
7046 
7047 	newtune->ipft_next = NULL;
7048 	*tap = newtune;
7049 	return (0);
7050 }
7051 
7052 
7053 /* ------------------------------------------------------------------------ */
7054 /* Function:    ipf_tune_del                                                */
7055 /* Returns:     int - 0 == success, else failure                            */
7056 /* Parameters:  oldtune - pointer to tune entry to remove from the list of  */
7057 /*                        current dynamic tuneables                         */
7058 /*                                                                          */
7059 /* Search for the tune structure, by pointer, in the list of those that are */
7060 /* dynamically added at run time.  If found, adjust the list so that this   */
7061 /* structure is no longer part of it.                                       */
7062 /* ------------------------------------------------------------------------ */
7063 int
7064 ipf_tune_del(ipf_main_softc_t *softc, ipftuneable_t *oldtune)
7065 {
7066 	ipftuneable_t *ta, **tap;
7067 	int error = 0;
7068 
7069 	for (tap = &softc->ipf_tuners; (ta = *tap) != NULL;
7070 	     tap = &ta->ipft_next) {
7071 		if (ta == oldtune) {
7072 			*tap = oldtune->ipft_next;
7073 			oldtune->ipft_next = NULL;
7074 			break;
7075 		}
7076 	}
7077 
7078 	if (ta == NULL) {
7079 		error = ESRCH;
7080 		IPFERROR(75);
7081 	}
7082 	return (error);
7083 }
7084 
7085 
7086 /* ------------------------------------------------------------------------ */
7087 /* Function:    ipf_tune_del_array                                          */
7088 /* Returns:     int - 0 == success, else failure                            */
7089 /* Parameters:  oldtune - pointer to tuneables array                        */
7090 /*                                                                          */
7091 /* Remove each tuneable entry in the array from the list of "dynamic"       */
7092 /* tunables.  If one entry should fail to be found, an error will be        */
7093 /* returned and no further ones removed.                                    */
7094 /* An entry with a NULL name is used as the indicator of the last entry in  */
7095 /* the array.                                                               */
7096 /* ------------------------------------------------------------------------ */
7097 int
7098 ipf_tune_del_array(ipf_main_softc_t *softc, ipftuneable_t *oldtune)
7099 {
7100 	ipftuneable_t *ot;
7101 	int error = 0;
7102 
7103 	for (ot = oldtune; ot->ipft_name != NULL; ot++) {
7104 		error = ipf_tune_del(softc, ot);
7105 		if (error != 0)
7106 			break;
7107 	}
7108 
7109 	return (error);
7110 
7111 }
7112 
7113 
7114 /* ------------------------------------------------------------------------ */
7115 /* Function:    ipf_tune                                                    */
7116 /* Returns:     int - 0 == success, else failure                            */
7117 /* Parameters:  cmd(I)  - ioctl command number                              */
7118 /*              data(I) - pointer to ioctl data structure                   */
7119 /*                                                                          */
7120 /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET.  These  */
7121 /* three ioctls provide the means to access and control global variables    */
7122 /* within IPFilter, allowing (for example) timeouts and table sizes to be   */
7123 /* changed without rebooting, reloading or recompiling.  The initialisation */
7124 /* and 'destruction' routines of the various components of ipfilter are all */
7125 /* each responsible for handling their own values being too big.            */
7126 /* ------------------------------------------------------------------------ */
7127 int
7128 ipf_ipftune(ipf_main_softc_t *softc, ioctlcmd_t cmd, void *data)
7129 {
7130 	ipftuneable_t *ta;
7131 	ipftune_t tu;
7132 	void *cookie;
7133 	int error;
7134 
7135 	error = ipf_inobj(softc, data, NULL, &tu, IPFOBJ_TUNEABLE);
7136 	if (error != 0)
7137 		return (error);
7138 
7139 	tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0';
7140 	cookie = tu.ipft_cookie;
7141 	ta = NULL;
7142 
7143 	switch (cmd)
7144 	{
7145 	case SIOCIPFGETNEXT :
7146 		/*
7147 		 * If cookie is non-NULL, assume it to be a pointer to the last
7148 		* entry we looked at, so find it (if possible) and return a
7149 		 * pointer to the next one after it.  The last entry in the
7150 		 * the table is a NULL entry, so when we get to it, set cookie
7151 		* to NULL and return that, indicating end of list, erstwhile
7152 		 * if we come in with cookie set to NULL, we are starting anew
7153 		 * at the front of the list.
7154 		 */
7155 		if (cookie != NULL) {
7156 			ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7157 						   cookie, &tu.ipft_cookie);
7158 		} else {
7159 			ta = softc->ipf_tuners;
7160 			tu.ipft_cookie = ta + 1;
7161 		}
7162 		if (ta != NULL) {
7163 			/*
7164 			 * Entry found, but does the data pointed to by that
7165 			 * row fit in what we can return?
7166 			 */
7167 			if (ta->ipft_sz > sizeof(tu.ipft_un)) {
7168 				IPFERROR(76);
7169 				return (EINVAL);
7170 			}
7171 
7172 			tu.ipft_vlong = 0;
7173 			if (ta->ipft_sz == sizeof(u_long))
7174 				tu.ipft_vlong = *ta->ipft_plong;
7175 			else if (ta->ipft_sz == sizeof(u_int))
7176 				tu.ipft_vint = *ta->ipft_pint;
7177 			else if (ta->ipft_sz == sizeof(u_short))
7178 				tu.ipft_vshort = *ta->ipft_pshort;
7179 			else if (ta->ipft_sz == sizeof(u_char))
7180 				tu.ipft_vchar = *ta->ipft_pchar;
7181 
7182 			tu.ipft_sz = ta->ipft_sz;
7183 			tu.ipft_min = ta->ipft_min;
7184 			tu.ipft_max = ta->ipft_max;
7185 			tu.ipft_flags = ta->ipft_flags;
7186 			bcopy(ta->ipft_name, tu.ipft_name,
7187 			      MIN(sizeof(tu.ipft_name),
7188 				  strlen(ta->ipft_name) + 1));
7189 		}
7190 		error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7191 		break;
7192 
7193 	case SIOCIPFGET :
7194 	case SIOCIPFSET :
7195 		/*
7196 		 * Search by name or by cookie value for a particular entry
7197 		 * in the tuning parameter table.
7198 		 */
7199 		IPFERROR(77);
7200 		error = ESRCH;
7201 		if (cookie != NULL) {
7202 			ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7203 						   cookie, NULL);
7204 			if (ta != NULL)
7205 				error = 0;
7206 		} else if (tu.ipft_name[0] != '\0') {
7207 			ta = ipf_tune_findbyname(softc->ipf_tuners,
7208 						 tu.ipft_name);
7209 			if (ta != NULL)
7210 				error = 0;
7211 		}
7212 		if (error != 0)
7213 			break;
7214 
7215 		if (cmd == (ioctlcmd_t)SIOCIPFGET) {
7216 			/*
7217 			 * Fetch the tuning parameters for a particular value
7218 			 */
7219 			tu.ipft_vlong = 0;
7220 			if (ta->ipft_sz == sizeof(u_long))
7221 				tu.ipft_vlong = *ta->ipft_plong;
7222 			else if (ta->ipft_sz == sizeof(u_int))
7223 				tu.ipft_vint = *ta->ipft_pint;
7224 			else if (ta->ipft_sz == sizeof(u_short))
7225 				tu.ipft_vshort = *ta->ipft_pshort;
7226 			else if (ta->ipft_sz == sizeof(u_char))
7227 				tu.ipft_vchar = *ta->ipft_pchar;
7228 			tu.ipft_cookie = ta;
7229 			tu.ipft_sz = ta->ipft_sz;
7230 			tu.ipft_min = ta->ipft_min;
7231 			tu.ipft_max = ta->ipft_max;
7232 			tu.ipft_flags = ta->ipft_flags;
7233 			error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7234 
7235 		} else if (cmd == (ioctlcmd_t)SIOCIPFSET) {
7236 			/*
7237 			 * Set an internal parameter.  The hard part here is
7238 			 * getting the new value safely and correctly out of
7239 			 * the kernel (given we only know its size, not type.)
7240 			 */
7241 			u_long in;
7242 
7243 			if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) &&
7244 			    (softc->ipf_running > 0)) {
7245 				IPFERROR(78);
7246 				error = EBUSY;
7247 				break;
7248 			}
7249 
7250 			in = tu.ipft_vlong;
7251 			if (in < ta->ipft_min || in > ta->ipft_max) {
7252 				IPFERROR(79);
7253 				error = EINVAL;
7254 				break;
7255 			}
7256 
7257 			if (ta->ipft_func != NULL) {
7258 				SPL_INT(s);
7259 
7260 				SPL_NET(s);
7261 				error = (*ta->ipft_func)(softc, ta,
7262 							 &tu.ipft_un);
7263 				SPL_X(s);
7264 
7265 			} else if (ta->ipft_sz == sizeof(u_long)) {
7266 				tu.ipft_vlong = *ta->ipft_plong;
7267 				*ta->ipft_plong = in;
7268 
7269 			} else if (ta->ipft_sz == sizeof(u_int)) {
7270 				tu.ipft_vint = *ta->ipft_pint;
7271 				*ta->ipft_pint = (u_int)(in & 0xffffffff);
7272 
7273 			} else if (ta->ipft_sz == sizeof(u_short)) {
7274 				tu.ipft_vshort = *ta->ipft_pshort;
7275 				*ta->ipft_pshort = (u_short)(in & 0xffff);
7276 
7277 			} else if (ta->ipft_sz == sizeof(u_char)) {
7278 				tu.ipft_vchar = *ta->ipft_pchar;
7279 				*ta->ipft_pchar = (u_char)(in & 0xff);
7280 			}
7281 			error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7282 		}
7283 		break;
7284 
7285 	default :
7286 		IPFERROR(80);
7287 		error = EINVAL;
7288 		break;
7289 	}
7290 
7291 	return (error);
7292 }
7293 
7294 
7295 /* ------------------------------------------------------------------------ */
7296 /* Function:    ipf_zerostats                                               */
7297 /* Returns:     int - 0 = success, else failure                             */
7298 /* Parameters:  data(O) - pointer to pointer for copying data back to       */
7299 /*                                                                          */
7300 /* Copies the current statistics out to userspace and then zero's the       */
7301 /* current ones in the kernel. The lock is only held across the bzero() as  */
7302 /* the copyout may result in paging (ie network activity.)                  */
7303 /* ------------------------------------------------------------------------ */
7304 int
7305 ipf_zerostats(ipf_main_softc_t *softc, caddr_t data)
7306 {
7307 	friostat_t fio;
7308 	ipfobj_t obj;
7309 	int error;
7310 
7311 	error = ipf_inobj(softc, data, &obj, &fio, IPFOBJ_IPFSTAT);
7312 	if (error != 0)
7313 		return (error);
7314 	ipf_getstat(softc, &fio, obj.ipfo_rev);
7315 	error = ipf_outobj(softc, data, &fio, IPFOBJ_IPFSTAT);
7316 	if (error != 0)
7317 		return (error);
7318 
7319 	WRITE_ENTER(&softc->ipf_mutex);
7320 	bzero(&softc->ipf_stats, sizeof(softc->ipf_stats));
7321 	RWLOCK_EXIT(&softc->ipf_mutex);
7322 
7323 	return (0);
7324 }
7325 
7326 
7327 /* ------------------------------------------------------------------------ */
7328 /* Function:    ipf_resolvedest                                             */
7329 /* Returns:     Nil                                                         */
7330 /* Parameters:  softc(I) - pointer to soft context main structure           */
7331 /*              base(I)  - where strings are stored                         */
7332 /*              fdp(IO)  - pointer to destination information to resolve    */
7333 /*              v(I)     - IP protocol version to match                     */
7334 /*                                                                          */
7335 /* Looks up an interface name in the frdest structure pointed to by fdp and */
7336 /* if a matching name can be found for the particular IP protocol version   */
7337 /* then store the interface pointer in the frdest struct.  If no match is   */
7338 /* found, then set the interface pointer to be -1 as NULL is considered to  */
7339 /* indicate there is no information at all in the structure.                */
7340 /* ------------------------------------------------------------------------ */
7341 int
7342 ipf_resolvedest(ipf_main_softc_t *softc, char *base, frdest_t *fdp, int v)
7343 {
7344 	int errval = 0;
7345 	void *ifp;
7346 
7347 	ifp = NULL;
7348 
7349 	if (fdp->fd_name != -1) {
7350 		if (fdp->fd_type == FRD_DSTLIST) {
7351 			ifp = ipf_lookup_res_name(softc, IPL_LOGIPF,
7352 						  IPLT_DSTLIST,
7353 						  base + fdp->fd_name,
7354 						  NULL);
7355 			if (ifp == NULL) {
7356 				IPFERROR(144);
7357 				errval = ESRCH;
7358 			}
7359 		} else {
7360 			ifp = GETIFP(base + fdp->fd_name, v);
7361 			if (ifp == NULL)
7362 				ifp = (void *)-1;
7363 		}
7364 	}
7365 	fdp->fd_ptr = ifp;
7366 
7367 	return (errval);
7368 }
7369 
7370 
7371 /* ------------------------------------------------------------------------ */
7372 /* Function:    ipf_resolvenic                                              */
7373 /* Returns:     void* - NULL = wildcard name, -1 = failed to find NIC, else */
7374 /*                      pointer to interface structure for NIC              */
7375 /* Parameters:  softc(I)- pointer to soft context main structure            */
7376 /*              name(I) - complete interface name                           */
7377 /*              v(I)    - IP protocol version                               */
7378 /*                                                                          */
7379 /* Look for a network interface structure that firstly has a matching name  */
7380 /* to that passed in and that is also being used for that IP protocol       */
7381 /* version (necessary on some platforms where there are separate listings   */
7382 /* for both IPv4 and IPv6 on the same physical NIC.                         */
7383 /* ------------------------------------------------------------------------ */
7384 void *
7385 ipf_resolvenic(ipf_main_softc_t *softc __unused, char *name, int v)
7386 {
7387 	void *nic;
7388 
7389 	if (name[0] == '\0')
7390 		return (NULL);
7391 
7392 	if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) {
7393 		return (NULL);
7394 	}
7395 
7396 	nic = GETIFP(name, v);
7397 	if (nic == NULL)
7398 		nic = (void *)-1;
7399 	return (nic);
7400 }
7401 
7402 
7403 /* ------------------------------------------------------------------------ */
7404 /* Function:    ipf_token_expire                                            */
7405 /* Returns:     None.                                                       */
7406 /* Parameters:  softc(I) - pointer to soft context main structure           */
7407 /*                                                                          */
7408 /* This function is run every ipf tick to see if there are any tokens that  */
7409 /* have been held for too long and need to be freed up.                     */
7410 /* ------------------------------------------------------------------------ */
7411 void
7412 ipf_token_expire(ipf_main_softc_t *softc)
7413 {
7414 	ipftoken_t *it;
7415 
7416 	WRITE_ENTER(&softc->ipf_tokens);
7417 	while ((it = softc->ipf_token_head) != NULL) {
7418 		if (it->ipt_die > softc->ipf_ticks)
7419 			break;
7420 
7421 		ipf_token_deref(softc, it);
7422 	}
7423 	RWLOCK_EXIT(&softc->ipf_tokens);
7424 }
7425 
7426 
7427 /* ------------------------------------------------------------------------ */
7428 /* Function:    ipf_token_flush                                             */
7429 /* Returns:     None.                                                       */
7430 /* Parameters:  softc(I) - pointer to soft context main structure           */
7431 /*                                                                          */
7432 /* Loop through all of the existing tokens and call deref to see if they    */
7433 /* can be freed. Normally a function like this might just loop on           */
7434 /* ipf_token_head but there is a chance that a token might have a ref count */
7435 /* of greater than one and in that case the reference would drop twice      */
7436 /* by code that is only entitled to drop it once.                           */
7437 /* ------------------------------------------------------------------------ */
7438 static void
7439 ipf_token_flush(ipf_main_softc_t *softc)
7440 {
7441 	ipftoken_t *it, *next;
7442 
7443 	WRITE_ENTER(&softc->ipf_tokens);
7444 	for (it = softc->ipf_token_head; it != NULL; it = next) {
7445 		next = it->ipt_next;
7446 		(void) ipf_token_deref(softc, it);
7447 	}
7448 	RWLOCK_EXIT(&softc->ipf_tokens);
7449 }
7450 
7451 
7452 /* ------------------------------------------------------------------------ */
7453 /* Function:    ipf_token_del                                               */
7454 /* Returns:     int     - 0 = success, else error                           */
7455 /* Parameters:  softc(I)- pointer to soft context main structure            */
7456 /*              type(I) - the token type to match                           */
7457 /*              uid(I)  - uid owning the token                              */
7458 /*              ptr(I)  - context pointer for the token                     */
7459 /*                                                                          */
7460 /* This function looks for a token in the current list that matches up      */
7461 /* the fields (type, uid, ptr).  If none is found, ESRCH is returned, else  */
7462 /* call ipf_token_dewref() to remove it from the list. In the event that    */
7463 /* the token has a reference held elsewhere, setting ipt_complete to 2      */
7464 /* enables debugging to distinguish between the two paths that ultimately   */
7465 /* lead to a token to be deleted.                                           */
7466 /* ------------------------------------------------------------------------ */
7467 int
7468 ipf_token_del(ipf_main_softc_t *softc, int type, int uid, void *ptr)
7469 {
7470 	ipftoken_t *it;
7471 	int error;
7472 
7473 	IPFERROR(82);
7474 	error = ESRCH;
7475 
7476 	WRITE_ENTER(&softc->ipf_tokens);
7477 	for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7478 		if (ptr == it->ipt_ctx && type == it->ipt_type &&
7479 		    uid == it->ipt_uid) {
7480 			it->ipt_complete = 2;
7481 			ipf_token_deref(softc, it);
7482 			error = 0;
7483 			break;
7484 		}
7485 	}
7486 	RWLOCK_EXIT(&softc->ipf_tokens);
7487 
7488 	return (error);
7489 }
7490 
7491 
7492 /* ------------------------------------------------------------------------ */
7493 /* Function:    ipf_token_mark_complete                                     */
7494 /* Returns:     None.                                                       */
7495 /* Parameters:  token(I) - pointer to token structure                       */
7496 /*                                                                          */
7497 /* Mark a token as being ineligable for being found with ipf_token_find.    */
7498 /* ------------------------------------------------------------------------ */
7499 void
7500 ipf_token_mark_complete(ipftoken_t *token)
7501 {
7502 	if (token->ipt_complete == 0)
7503 		token->ipt_complete = 1;
7504 }
7505 
7506 
7507 /* ------------------------------------------------------------------------ */
7508 /* Function:    ipf_token_find                                               */
7509 /* Returns:     ipftoken_t * - NULL if no memory, else pointer to token     */
7510 /* Parameters:  softc(I)- pointer to soft context main structure            */
7511 /*              type(I) - the token type to match                           */
7512 /*              uid(I)  - uid owning the token                              */
7513 /*              ptr(I)  - context pointer for the token                     */
7514 /*                                                                          */
7515 /* This function looks for a live token in the list of current tokens that  */
7516 /* matches the tuple (type, uid, ptr).  If one cannot be found then one is  */
7517 /* allocated.  If one is found then it is moved to the top of the list of   */
7518 /* currently active tokens.                                                 */
7519 /* ------------------------------------------------------------------------ */
7520 ipftoken_t *
7521 ipf_token_find(ipf_main_softc_t *softc, int type, int uid, void *ptr)
7522 {
7523 	ipftoken_t *it, *new;
7524 
7525 	KMALLOC(new, ipftoken_t *);
7526 	if (new != NULL)
7527 		bzero((char *)new, sizeof(*new));
7528 
7529 	WRITE_ENTER(&softc->ipf_tokens);
7530 	for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7531 		if ((ptr == it->ipt_ctx) && (type == it->ipt_type) &&
7532 		    (uid == it->ipt_uid) && (it->ipt_complete < 2))
7533 			break;
7534 	}
7535 
7536 	if (it == NULL) {
7537 		it = new;
7538 		new = NULL;
7539 		if (it == NULL) {
7540 			RWLOCK_EXIT(&softc->ipf_tokens);
7541 			return (NULL);
7542 		}
7543 		it->ipt_ctx = ptr;
7544 		it->ipt_uid = uid;
7545 		it->ipt_type = type;
7546 		it->ipt_ref = 1;
7547 	} else {
7548 		if (new != NULL) {
7549 			KFREE(new);
7550 			new = NULL;
7551 		}
7552 
7553 		if (it->ipt_complete > 0)
7554 			it = NULL;
7555 		else
7556 			ipf_token_unlink(softc, it);
7557 	}
7558 
7559 	if (it != NULL) {
7560 		it->ipt_pnext = softc->ipf_token_tail;
7561 		*softc->ipf_token_tail = it;
7562 		softc->ipf_token_tail = &it->ipt_next;
7563 		it->ipt_next = NULL;
7564 		it->ipt_ref++;
7565 
7566 		it->ipt_die = softc->ipf_ticks + 20;
7567 	}
7568 
7569 	RWLOCK_EXIT(&softc->ipf_tokens);
7570 
7571 	return (it);
7572 }
7573 
7574 
7575 /* ------------------------------------------------------------------------ */
7576 /* Function:    ipf_token_unlink                                            */
7577 /* Returns:     None.                                                       */
7578 /* Parameters:  softc(I) - pointer to soft context main structure           */
7579 /*              token(I) - pointer to token structure                       */
7580 /* Write Locks: ipf_tokens                                                  */
7581 /*                                                                          */
7582 /* This function unlinks a token structure from the linked list of tokens   */
7583 /* that "own" it.  The head pointer never needs to be explicitly adjusted   */
7584 /* but the tail does due to the linked list implementation.                 */
7585 /* ------------------------------------------------------------------------ */
7586 static void
7587 ipf_token_unlink(ipf_main_softc_t *softc, ipftoken_t *token)
7588 {
7589 
7590 	if (softc->ipf_token_tail == &token->ipt_next)
7591 		softc->ipf_token_tail = token->ipt_pnext;
7592 
7593 	*token->ipt_pnext = token->ipt_next;
7594 	if (token->ipt_next != NULL)
7595 		token->ipt_next->ipt_pnext = token->ipt_pnext;
7596 	token->ipt_next = NULL;
7597 	token->ipt_pnext = NULL;
7598 }
7599 
7600 
7601 /* ------------------------------------------------------------------------ */
7602 /* Function:    ipf_token_deref                                             */
7603 /* Returns:     int      - 0 == token freed, else reference count           */
7604 /* Parameters:  softc(I) - pointer to soft context main structure           */
7605 /*              token(I) - pointer to token structure                       */
7606 /* Write Locks: ipf_tokens                                                  */
7607 /*                                                                          */
7608 /* Drop the reference count on the token structure and if it drops to zero, */
7609 /* call the dereference function for the token type because it is then      */
7610 /* possible to free the token data structure.                               */
7611 /* ------------------------------------------------------------------------ */
7612 int
7613 ipf_token_deref(ipf_main_softc_t *softc, ipftoken_t *token)
7614 {
7615 	void *data, **datap;
7616 
7617 	ASSERT(token->ipt_ref > 0);
7618 	token->ipt_ref--;
7619 	if (token->ipt_ref > 0)
7620 		return (token->ipt_ref);
7621 
7622 	data = token->ipt_data;
7623 	datap = &data;
7624 
7625 	if ((data != NULL) && (data != (void *)-1)) {
7626 		switch (token->ipt_type)
7627 		{
7628 		case IPFGENITER_IPF :
7629 			(void) ipf_derefrule(softc, (frentry_t **)datap);
7630 			break;
7631 		case IPFGENITER_IPNAT :
7632 			WRITE_ENTER(&softc->ipf_nat);
7633 			ipf_nat_rule_deref(softc, (ipnat_t **)datap);
7634 			RWLOCK_EXIT(&softc->ipf_nat);
7635 			break;
7636 		case IPFGENITER_NAT :
7637 			ipf_nat_deref(softc, (nat_t **)datap);
7638 			break;
7639 		case IPFGENITER_STATE :
7640 			ipf_state_deref(softc, (ipstate_t **)datap);
7641 			break;
7642 		case IPFGENITER_FRAG :
7643 			ipf_frag_pkt_deref(softc, (ipfr_t **)datap);
7644 			break;
7645 		case IPFGENITER_NATFRAG :
7646 			ipf_frag_nat_deref(softc, (ipfr_t **)datap);
7647 			break;
7648 		case IPFGENITER_HOSTMAP :
7649 			WRITE_ENTER(&softc->ipf_nat);
7650 			ipf_nat_hostmapdel(softc, (hostmap_t **)datap);
7651 			RWLOCK_EXIT(&softc->ipf_nat);
7652 			break;
7653 		default :
7654 			ipf_lookup_iterderef(softc, token->ipt_type, data);
7655 			break;
7656 		}
7657 	}
7658 
7659 	ipf_token_unlink(softc, token);
7660 	KFREE(token);
7661 	return (0);
7662 }
7663 
7664 
7665 /* ------------------------------------------------------------------------ */
7666 /* Function:    ipf_nextrule                                                */
7667 /* Returns:     frentry_t * - NULL == no more rules, else pointer to next   */
7668 /* Parameters:  softc(I)    - pointer to soft context main structure        */
7669 /*              fr(I)       - pointer to filter rule                        */
7670 /*              out(I)      - 1 == out rules, 0 == input rules              */
7671 /*                                                                          */
7672 /* Starting with "fr", find the next rule to visit. This includes visiting  */
7673 /* the list of rule groups if either fr is NULL (empty list) or it is the   */
7674 /* last rule in the list. When walking rule lists, it is either input or    */
7675 /* output rules that are returned, never both.                              */
7676 /* ------------------------------------------------------------------------ */
7677 static frentry_t *
7678 ipf_nextrule(ipf_main_softc_t *softc, int active, int unit, frentry_t *fr,
7679 	int out)
7680 {
7681 	frentry_t *next;
7682 	frgroup_t *fg;
7683 
7684 	if (fr != NULL && fr->fr_group != -1) {
7685 		fg = ipf_findgroup(softc, fr->fr_names + fr->fr_group,
7686 				   unit, active, NULL);
7687 		if (fg != NULL)
7688 			fg = fg->fg_next;
7689 	} else {
7690 		fg = softc->ipf_groups[unit][active];
7691 	}
7692 
7693 	while (fg != NULL) {
7694 		next = fg->fg_start;
7695 		while (next != NULL) {
7696 			if (out) {
7697 				if (next->fr_flags & FR_OUTQUE)
7698 					return (next);
7699 			} else if (next->fr_flags & FR_INQUE) {
7700 				return (next);
7701 			}
7702 			next = next->fr_next;
7703 		}
7704 		if (next == NULL)
7705 			fg = fg->fg_next;
7706 	}
7707 
7708 	return (NULL);
7709 }
7710 
7711 /* ------------------------------------------------------------------------ */
7712 /* Function:    ipf_getnextrule                                             */
7713 /* Returns:     int - 0 = success, else error                               */
7714 /* Parameters:  softc(I)- pointer to soft context main structure            */
7715 /*              t(I)   - pointer to destination information to resolve      */
7716 /*              ptr(I) - pointer to ipfobj_t to copyin from user space      */
7717 /*                                                                          */
7718 /* This function's first job is to bring in the ipfruleiter_t structure via */
7719 /* the ipfobj_t structure to determine what should be the next rule to      */
7720 /* return. Once the ipfruleiter_t has been brought in, it then tries to     */
7721 /* find the 'next rule'.  This may include searching rule group lists or    */
7722 /* just be as simple as looking at the 'next' field in the rule structure.  */
7723 /* When we have found the rule to return, increase its reference count and  */
7724 /* if we used an existing rule to get here, decrease its reference count.   */
7725 /* ------------------------------------------------------------------------ */
7726 int
7727 ipf_getnextrule(ipf_main_softc_t *softc, ipftoken_t *t, void *ptr)
7728 {
7729 	frentry_t *fr, *next, zero;
7730 	ipfruleiter_t it;
7731 	int error, out;
7732 	frgroup_t *fg;
7733 	ipfobj_t obj;
7734 	int predict;
7735 	char *dst;
7736 	int unit;
7737 
7738 	if (t == NULL || ptr == NULL) {
7739 		IPFERROR(84);
7740 		return (EFAULT);
7741 	}
7742 
7743 	error = ipf_inobj(softc, ptr, &obj, &it, IPFOBJ_IPFITER);
7744 	if (error != 0)
7745 		return (error);
7746 
7747 	if ((it.iri_inout < 0) || (it.iri_inout > 3)) {
7748 		IPFERROR(85);
7749 		return (EINVAL);
7750 	}
7751 	if ((it.iri_active != 0) && (it.iri_active != 1)) {
7752 		IPFERROR(86);
7753 		return (EINVAL);
7754 	}
7755 	if (it.iri_nrules == 0) {
7756 		IPFERROR(87);
7757 		return (ENOSPC);
7758 	}
7759 	if (it.iri_rule == NULL) {
7760 		IPFERROR(88);
7761 		return (EFAULT);
7762 	}
7763 
7764 	fg = NULL;
7765 	fr = t->ipt_data;
7766 	if ((it.iri_inout & F_OUT) != 0)
7767 		out = 1;
7768 	else
7769 		out = 0;
7770 	if ((it.iri_inout & F_ACIN) != 0)
7771 		unit = IPL_LOGCOUNT;
7772 	else
7773 		unit = IPL_LOGIPF;
7774 
7775 	READ_ENTER(&softc->ipf_mutex);
7776 	if (fr == NULL) {
7777 		if (*it.iri_group == '\0') {
7778 			if (unit == IPL_LOGCOUNT) {
7779 				next = softc->ipf_acct[out][it.iri_active];
7780 			} else {
7781 				next = softc->ipf_rules[out][it.iri_active];
7782 			}
7783 			if (next == NULL)
7784 				next = ipf_nextrule(softc, it.iri_active,
7785 						    unit, NULL, out);
7786 		} else {
7787 			fg = ipf_findgroup(softc, it.iri_group, unit,
7788 					   it.iri_active, NULL);
7789 			if (fg != NULL)
7790 				next = fg->fg_start;
7791 			else
7792 				next = NULL;
7793 		}
7794 	} else {
7795 		next = fr->fr_next;
7796 		if (next == NULL)
7797 			next = ipf_nextrule(softc, it.iri_active, unit,
7798 					    fr, out);
7799 	}
7800 
7801 	if (next != NULL && next->fr_next != NULL)
7802 		predict = 1;
7803 	else if (ipf_nextrule(softc, it.iri_active, unit, next, out) != NULL)
7804 		predict = 1;
7805 	else
7806 		predict = 0;
7807 
7808 	if (fr != NULL)
7809 		(void) ipf_derefrule(softc, &fr);
7810 
7811 	obj.ipfo_type = IPFOBJ_FRENTRY;
7812 	dst = (char *)it.iri_rule;
7813 
7814 	if (next != NULL) {
7815 		obj.ipfo_size = next->fr_size;
7816 		MUTEX_ENTER(&next->fr_lock);
7817 		next->fr_ref++;
7818 		MUTEX_EXIT(&next->fr_lock);
7819 		t->ipt_data = next;
7820 	} else {
7821 		obj.ipfo_size = sizeof(frentry_t);
7822 		bzero(&zero, sizeof(zero));
7823 		next = &zero;
7824 		t->ipt_data = NULL;
7825 	}
7826 	it.iri_rule = predict ? next : NULL;
7827 	if (predict == 0)
7828 		ipf_token_mark_complete(t);
7829 
7830 	RWLOCK_EXIT(&softc->ipf_mutex);
7831 
7832 	obj.ipfo_ptr = dst;
7833 	error = ipf_outobjk(softc, &obj, next);
7834 	if (error == 0 && t->ipt_data != NULL) {
7835 		dst += obj.ipfo_size;
7836 		if (next->fr_data != NULL) {
7837 			ipfobj_t dobj;
7838 
7839 			if (next->fr_type == FR_T_IPFEXPR)
7840 				dobj.ipfo_type = IPFOBJ_IPFEXPR;
7841 			else
7842 				dobj.ipfo_type = IPFOBJ_FRIPF;
7843 			dobj.ipfo_size = next->fr_dsize;
7844 			dobj.ipfo_rev = obj.ipfo_rev;
7845 			dobj.ipfo_ptr = dst;
7846 			error = ipf_outobjk(softc, &dobj, next->fr_data);
7847 		}
7848 	}
7849 
7850 	if ((fr != NULL) && (next == &zero))
7851 		(void) ipf_derefrule(softc, &fr);
7852 
7853 	return (error);
7854 }
7855 
7856 
7857 /* ------------------------------------------------------------------------ */
7858 /* Function:    ipf_frruleiter                                              */
7859 /* Returns:     int - 0 = success, else error                               */
7860 /* Parameters:  softc(I)- pointer to soft context main structure            */
7861 /*              data(I) - the token type to match                           */
7862 /*              uid(I)  - uid owning the token                              */
7863 /*              ptr(I)  - context pointer for the token                     */
7864 /*                                                                          */
7865 /* This function serves as a stepping stone between ipf_ipf_ioctl and       */
7866 /* ipf_getnextrule.  It's role is to find the right token in the kernel for */
7867 /* the process doing the ioctl and use that to ask for the next rule.       */
7868 /* ------------------------------------------------------------------------ */
7869 static int
7870 ipf_frruleiter(ipf_main_softc_t *softc, void *data, int uid, void *ctx)
7871 {
7872 	ipftoken_t *token;
7873 	ipfruleiter_t it;
7874 	ipfobj_t obj;
7875 	int error;
7876 
7877 	token = ipf_token_find(softc, IPFGENITER_IPF, uid, ctx);
7878 	if (token != NULL) {
7879 		error = ipf_getnextrule(softc, token, data);
7880 		WRITE_ENTER(&softc->ipf_tokens);
7881 		ipf_token_deref(softc, token);
7882 		RWLOCK_EXIT(&softc->ipf_tokens);
7883 	} else {
7884 		error = ipf_inobj(softc, data, &obj, &it, IPFOBJ_IPFITER);
7885 		if (error != 0)
7886 			return (error);
7887 		it.iri_rule = NULL;
7888 		error = ipf_outobj(softc, data, &it, IPFOBJ_IPFITER);
7889 	}
7890 
7891 	return (error);
7892 }
7893 
7894 
7895 /* ------------------------------------------------------------------------ */
7896 /* Function:    ipf_geniter                                                 */
7897 /* Returns:     int - 0 = success, else error                               */
7898 /* Parameters:  softc(I) - pointer to soft context main structure           */
7899 /*              token(I) - pointer to ipftoken_t structure                  */
7900 /*              itp(I)   - pointer to iterator data                         */
7901 /*                                                                          */
7902 /* Decide which iterator function to call using information passed through  */
7903 /* the ipfgeniter_t structure at itp.                                       */
7904 /* ------------------------------------------------------------------------ */
7905 static int
7906 ipf_geniter(ipf_main_softc_t *softc, ipftoken_t *token, ipfgeniter_t *itp)
7907 {
7908 	int error;
7909 
7910 	switch (itp->igi_type)
7911 	{
7912 	case IPFGENITER_FRAG :
7913 		error = ipf_frag_pkt_next(softc, token, itp);
7914 		break;
7915 	default :
7916 		IPFERROR(92);
7917 		error = EINVAL;
7918 		break;
7919 	}
7920 
7921 	return (error);
7922 }
7923 
7924 
7925 /* ------------------------------------------------------------------------ */
7926 /* Function:    ipf_genericiter                                             */
7927 /* Returns:     int - 0 = success, else error                               */
7928 /* Parameters:  softc(I)- pointer to soft context main structure            */
7929 /*              data(I) - the token type to match                           */
7930 /*              uid(I)  - uid owning the token                              */
7931 /*              ptr(I)  - context pointer for the token                     */
7932 /*                                                                          */
7933 /* Handle the SIOCGENITER ioctl for the ipfilter device. The primary role   */
7934 /* ------------------------------------------------------------------------ */
7935 int
7936 ipf_genericiter(ipf_main_softc_t *softc, void *data, int uid, void *ctx)
7937 {
7938 	ipftoken_t *token;
7939 	ipfgeniter_t iter;
7940 	int error;
7941 
7942 	error = ipf_inobj(softc, data, NULL, &iter, IPFOBJ_GENITER);
7943 	if (error != 0)
7944 		return (error);
7945 
7946 	token = ipf_token_find(softc, iter.igi_type, uid, ctx);
7947 	if (token != NULL) {
7948 		token->ipt_subtype = iter.igi_type;
7949 		error = ipf_geniter(softc, token, &iter);
7950 		WRITE_ENTER(&softc->ipf_tokens);
7951 		ipf_token_deref(softc, token);
7952 		RWLOCK_EXIT(&softc->ipf_tokens);
7953 	} else {
7954 		IPFERROR(93);
7955 		error = 0;
7956 	}
7957 
7958 	return (error);
7959 }
7960 
7961 
7962 /* ------------------------------------------------------------------------ */
7963 /* Function:    ipf_ipf_ioctl                                               */
7964 /* Returns:     int - 0 = success, else error                               */
7965 /* Parameters:  softc(I)- pointer to soft context main structure            */
7966 /*              data(I) - the token type to match                           */
7967 /*              cmd(I)  - the ioctl command number                          */
7968 /*              mode(I) - mode flags for the ioctl                          */
7969 /*              uid(I)  - uid owning the token                              */
7970 /*              ptr(I)  - context pointer for the token                     */
7971 /*                                                                          */
7972 /* This function handles all of the ioctl command that are actually issued  */
7973 /* to the /dev/ipl device.                                                  */
7974 /* ------------------------------------------------------------------------ */
7975 int
7976 ipf_ipf_ioctl(ipf_main_softc_t *softc, caddr_t data, ioctlcmd_t cmd, int mode,
7977 	int uid, void *ctx)
7978 {
7979 	friostat_t fio;
7980 	int error, tmp;
7981 	ipfobj_t obj;
7982 	SPL_INT(s);
7983 
7984 	switch (cmd)
7985 	{
7986 	case SIOCFRENB :
7987 		if (!(mode & FWRITE)) {
7988 			IPFERROR(94);
7989 			error = EPERM;
7990 		} else {
7991 			error = BCOPYIN(data, &tmp, sizeof(tmp));
7992 			if (error != 0) {
7993 				IPFERROR(95);
7994 				error = EFAULT;
7995 				break;
7996 			}
7997 
7998 			WRITE_ENTER(&softc->ipf_global);
7999 			if (tmp) {
8000 				if (softc->ipf_running > 0)
8001 					error = 0;
8002 				else
8003 					error = ipfattach(softc);
8004 				if (error == 0)
8005 					softc->ipf_running = 1;
8006 				else
8007 					(void) ipfdetach(softc);
8008 			} else {
8009 				if (softc->ipf_running == 1)
8010 					error = ipfdetach(softc);
8011 				else
8012 					error = 0;
8013 				if (error == 0)
8014 					softc->ipf_running = -1;
8015 			}
8016 			RWLOCK_EXIT(&softc->ipf_global);
8017 		}
8018 		break;
8019 
8020 	case SIOCIPFSET :
8021 		if (!(mode & FWRITE)) {
8022 			IPFERROR(96);
8023 			error = EPERM;
8024 			break;
8025 		}
8026 		/* FALLTHRU */
8027 	case SIOCIPFGETNEXT :
8028 	case SIOCIPFGET :
8029 		error = ipf_ipftune(softc, cmd, (void *)data);
8030 		break;
8031 
8032 	case SIOCSETFF :
8033 		if (!(mode & FWRITE)) {
8034 			IPFERROR(97);
8035 			error = EPERM;
8036 		} else {
8037 			error = BCOPYIN(data, &softc->ipf_flags,
8038 					sizeof(softc->ipf_flags));
8039 			if (error != 0) {
8040 				IPFERROR(98);
8041 				error = EFAULT;
8042 			}
8043 		}
8044 		break;
8045 
8046 	case SIOCGETFF :
8047 		error = BCOPYOUT(&softc->ipf_flags, data,
8048 				 sizeof(softc->ipf_flags));
8049 		if (error != 0) {
8050 			IPFERROR(99);
8051 			error = EFAULT;
8052 		}
8053 		break;
8054 
8055 	case SIOCFUNCL :
8056 		error = ipf_resolvefunc(softc, (void *)data);
8057 		break;
8058 
8059 	case SIOCINAFR :
8060 	case SIOCRMAFR :
8061 	case SIOCADAFR :
8062 	case SIOCZRLST :
8063 		if (!(mode & FWRITE)) {
8064 			IPFERROR(100);
8065 			error = EPERM;
8066 		} else {
8067 			error = frrequest(softc, IPL_LOGIPF, cmd, (caddr_t)data,
8068 					  softc->ipf_active, 1);
8069 		}
8070 		break;
8071 
8072 	case SIOCINIFR :
8073 	case SIOCRMIFR :
8074 	case SIOCADIFR :
8075 		if (!(mode & FWRITE)) {
8076 			IPFERROR(101);
8077 			error = EPERM;
8078 		} else {
8079 			error = frrequest(softc, IPL_LOGIPF, cmd, (caddr_t)data,
8080 					  1 - softc->ipf_active, 1);
8081 		}
8082 		break;
8083 
8084 	case SIOCSWAPA :
8085 		if (!(mode & FWRITE)) {
8086 			IPFERROR(102);
8087 			error = EPERM;
8088 		} else {
8089 			WRITE_ENTER(&softc->ipf_mutex);
8090 			error = BCOPYOUT(&softc->ipf_active, data,
8091 					 sizeof(softc->ipf_active));
8092 			if (error != 0) {
8093 				IPFERROR(103);
8094 				error = EFAULT;
8095 			} else {
8096 				softc->ipf_active = 1 - softc->ipf_active;
8097 			}
8098 			RWLOCK_EXIT(&softc->ipf_mutex);
8099 		}
8100 		break;
8101 
8102 	case SIOCGETFS :
8103 		error = ipf_inobj(softc, (void *)data, &obj, &fio,
8104 				  IPFOBJ_IPFSTAT);
8105 		if (error != 0)
8106 			break;
8107 		ipf_getstat(softc, &fio, obj.ipfo_rev);
8108 		error = ipf_outobj(softc, (void *)data, &fio, IPFOBJ_IPFSTAT);
8109 		break;
8110 
8111 	case SIOCFRZST :
8112 		if (!(mode & FWRITE)) {
8113 			IPFERROR(104);
8114 			error = EPERM;
8115 		} else
8116 			error = ipf_zerostats(softc, (caddr_t)data);
8117 		break;
8118 
8119 	case SIOCIPFFL :
8120 		if (!(mode & FWRITE)) {
8121 			IPFERROR(105);
8122 			error = EPERM;
8123 		} else {
8124 			error = BCOPYIN(data, &tmp, sizeof(tmp));
8125 			if (!error) {
8126 				tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
8127 				error = BCOPYOUT(&tmp, data, sizeof(tmp));
8128 				if (error != 0) {
8129 					IPFERROR(106);
8130 					error = EFAULT;
8131 				}
8132 			} else {
8133 				IPFERROR(107);
8134 				error = EFAULT;
8135 			}
8136 		}
8137 		break;
8138 
8139 #ifdef USE_INET6
8140 	case SIOCIPFL6 :
8141 		if (!(mode & FWRITE)) {
8142 			IPFERROR(108);
8143 			error = EPERM;
8144 		} else {
8145 			error = BCOPYIN(data, &tmp, sizeof(tmp));
8146 			if (!error) {
8147 				tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
8148 				error = BCOPYOUT(&tmp, data, sizeof(tmp));
8149 				if (error != 0) {
8150 					IPFERROR(109);
8151 					error = EFAULT;
8152 				}
8153 			} else {
8154 				IPFERROR(110);
8155 				error = EFAULT;
8156 			}
8157 		}
8158 		break;
8159 #endif
8160 
8161 	case SIOCSTLCK :
8162 		if (!(mode & FWRITE)) {
8163 			IPFERROR(122);
8164 			error = EPERM;
8165 		} else {
8166 			error = BCOPYIN(data, &tmp, sizeof(tmp));
8167 			if (error == 0) {
8168 				ipf_state_setlock(softc->ipf_state_soft, tmp);
8169 				ipf_nat_setlock(softc->ipf_nat_soft, tmp);
8170 				ipf_frag_setlock(softc->ipf_frag_soft, tmp);
8171 				ipf_auth_setlock(softc->ipf_auth_soft, tmp);
8172 			} else {
8173 				IPFERROR(111);
8174 				error = EFAULT;
8175 			}
8176 		}
8177 		break;
8178 
8179 #ifdef	IPFILTER_LOG
8180 	case SIOCIPFFB :
8181 		if (!(mode & FWRITE)) {
8182 			IPFERROR(112);
8183 			error = EPERM;
8184 		} else {
8185 			tmp = ipf_log_clear(softc, IPL_LOGIPF);
8186 			error = BCOPYOUT(&tmp, data, sizeof(tmp));
8187 			if (error) {
8188 				IPFERROR(113);
8189 				error = EFAULT;
8190 			}
8191 		}
8192 		break;
8193 #endif /* IPFILTER_LOG */
8194 
8195 	case SIOCFRSYN :
8196 		if (!(mode & FWRITE)) {
8197 			IPFERROR(114);
8198 			error = EPERM;
8199 		} else {
8200 			WRITE_ENTER(&softc->ipf_global);
8201 #if (SOLARIS && defined(_KERNEL)) && !defined(INSTANCES)
8202 			error = ipfsync();
8203 #else
8204 			ipf_sync(softc, NULL);
8205 			error = 0;
8206 #endif
8207 			RWLOCK_EXIT(&softc->ipf_global);
8208 
8209 		}
8210 		break;
8211 
8212 	case SIOCGFRST :
8213 		error = ipf_outobj(softc, (void *)data,
8214 				   ipf_frag_stats(softc->ipf_frag_soft),
8215 				   IPFOBJ_FRAGSTAT);
8216 		break;
8217 
8218 #ifdef	IPFILTER_LOG
8219 	case FIONREAD :
8220 		tmp = ipf_log_bytesused(softc, IPL_LOGIPF);
8221 		error = BCOPYOUT(&tmp, data, sizeof(tmp));
8222 		break;
8223 #endif
8224 
8225 	case SIOCIPFITER :
8226 		SPL_SCHED(s);
8227 		error = ipf_frruleiter(softc, data, uid, ctx);
8228 		SPL_X(s);
8229 		break;
8230 
8231 	case SIOCGENITER :
8232 		SPL_SCHED(s);
8233 		error = ipf_genericiter(softc, data, uid, ctx);
8234 		SPL_X(s);
8235 		break;
8236 
8237 	case SIOCIPFDELTOK :
8238 		error = BCOPYIN(data, &tmp, sizeof(tmp));
8239 		if (error == 0) {
8240 			SPL_SCHED(s);
8241 			error = ipf_token_del(softc, tmp, uid, ctx);
8242 			SPL_X(s);
8243 		}
8244 		break;
8245 
8246 	default :
8247 		IPFERROR(115);
8248 		error = EINVAL;
8249 		break;
8250 	}
8251 
8252 	return (error);
8253 }
8254 
8255 
8256 /* ------------------------------------------------------------------------ */
8257 /* Function:    ipf_decaps                                                  */
8258 /* Returns:     int        - -1 == decapsulation failed, else bit mask of   */
8259 /*                           flags indicating packet filtering decision.    */
8260 /* Parameters:  fin(I)     - pointer to packet information                  */
8261 /*              pass(I)    - IP protocol version to match                   */
8262 /*              l5proto(I) - layer 5 protocol to decode UDP data as.        */
8263 /*                                                                          */
8264 /* This function is called for packets that are wrapt up in other packets,  */
8265 /* for example, an IP packet that is the entire data segment for another IP */
8266 /* packet.  If the basic constraints for this are satisfied, change the     */
8267 /* buffer to point to the start of the inner packet and start processing    */
8268 /* rules belonging to the head group this rule specifies.                   */
8269 /* ------------------------------------------------------------------------ */
8270 u_32_t
8271 ipf_decaps(fr_info_t *fin, u_32_t pass, int l5proto)
8272 {
8273 	fr_info_t fin2, *fino = NULL;
8274 	int elen, hlen, nh;
8275 	grehdr_t gre;
8276 	ip_t *ip;
8277 	mb_t *m;
8278 
8279 	if ((fin->fin_flx & FI_COALESCE) == 0)
8280 		if (ipf_coalesce(fin) == -1)
8281 			goto cantdecaps;
8282 
8283 	m = fin->fin_m;
8284 	hlen = fin->fin_hlen;
8285 
8286 	switch (fin->fin_p)
8287 	{
8288 	case IPPROTO_UDP :
8289 		/*
8290 		 * In this case, the specific protocol being decapsulated
8291 		 * inside UDP frames comes from the rule.
8292 		 */
8293 		nh = fin->fin_fr->fr_icode;
8294 		break;
8295 
8296 	case IPPROTO_GRE :	/* 47 */
8297 		bcopy(fin->fin_dp, (char *)&gre, sizeof(gre));
8298 		hlen += sizeof(grehdr_t);
8299 		if (gre.gr_R|gre.gr_s)
8300 			goto cantdecaps;
8301 		if (gre.gr_C)
8302 			hlen += 4;
8303 		if (gre.gr_K)
8304 			hlen += 4;
8305 		if (gre.gr_S)
8306 			hlen += 4;
8307 
8308 		nh = IPPROTO_IP;
8309 
8310 		/*
8311 		 * If the routing options flag is set, validate that it is
8312 		 * there and bounce over it.
8313 		 */
8314 #if 0
8315 		/* This is really heavy weight and lots of room for error, */
8316 		/* so for now, put it off and get the simple stuff right.  */
8317 		if (gre.gr_R) {
8318 			u_char off, len, *s;
8319 			u_short af;
8320 			int end;
8321 
8322 			end = 0;
8323 			s = fin->fin_dp;
8324 			s += hlen;
8325 			aplen = fin->fin_plen - hlen;
8326 			while (aplen > 3) {
8327 				af = (s[0] << 8) | s[1];
8328 				off = s[2];
8329 				len = s[3];
8330 				aplen -= 4;
8331 				s += 4;
8332 				if (af == 0 && len == 0) {
8333 					end = 1;
8334 					break;
8335 				}
8336 				if (aplen < len)
8337 					break;
8338 				s += len;
8339 				aplen -= len;
8340 			}
8341 			if (end != 1)
8342 				goto cantdecaps;
8343 			hlen = s - (u_char *)fin->fin_dp;
8344 		}
8345 #endif
8346 		break;
8347 
8348 #ifdef IPPROTO_IPIP
8349 	case IPPROTO_IPIP :	/* 4 */
8350 #endif
8351 		nh = IPPROTO_IP;
8352 		break;
8353 
8354 	default :	/* Includes ESP, AH is special for IPv4 */
8355 		goto cantdecaps;
8356 	}
8357 
8358 	switch (nh)
8359 	{
8360 	case IPPROTO_IP :
8361 	case IPPROTO_IPV6 :
8362 		break;
8363 	default :
8364 		goto cantdecaps;
8365 	}
8366 
8367 	bcopy((char *)fin, (char *)&fin2, sizeof(fin2));
8368 	fino = fin;
8369 	fin = &fin2;
8370 	elen = hlen;
8371 #if SOLARIS && defined(_KERNEL)
8372 	m->b_rptr += elen;
8373 #else
8374 	m->m_data += elen;
8375 	m->m_len -= elen;
8376 #endif
8377 	fin->fin_plen -= elen;
8378 
8379 	ip = (ip_t *)((char *)fin->fin_ip + elen);
8380 
8381 	/*
8382 	 * Make sure we have at least enough data for the network layer
8383 	 * header.
8384 	 */
8385 	if (IP_V(ip) == 4)
8386 		hlen = IP_HL(ip) << 2;
8387 #ifdef USE_INET6
8388 	else if (IP_V(ip) == 6)
8389 		hlen = sizeof(ip6_t);
8390 #endif
8391 	else
8392 		goto cantdecaps2;
8393 
8394 	if (fin->fin_plen < hlen)
8395 		goto cantdecaps2;
8396 
8397 	fin->fin_dp = (char *)ip + hlen;
8398 
8399 	if (IP_V(ip) == 4) {
8400 		/*
8401 		 * Perform IPv4 header checksum validation.
8402 		 */
8403 		if (ipf_cksum((u_short *)ip, hlen))
8404 			goto cantdecaps2;
8405 	}
8406 
8407 	if (ipf_makefrip(hlen, ip, fin) == -1) {
8408 cantdecaps2:
8409 		if (m != NULL) {
8410 #if SOLARIS && defined(_KERNEL)
8411 			m->b_rptr -= elen;
8412 #else
8413 			m->m_data -= elen;
8414 			m->m_len += elen;
8415 #endif
8416 		}
8417 cantdecaps:
8418 		DT1(frb_decapfrip, fr_info_t *, fin);
8419 		pass &= ~FR_CMDMASK;
8420 		pass |= FR_BLOCK|FR_QUICK;
8421 		fin->fin_reason = FRB_DECAPFRIP;
8422 		return (-1);
8423 	}
8424 
8425 	pass = ipf_scanlist(fin, pass);
8426 
8427 	/*
8428 	 * Copy the packet filter "result" fields out of the fr_info_t struct
8429 	 * that is local to the decapsulation processing and back into the
8430 	 * one we were called with.
8431 	 */
8432 	fino->fin_flx = fin->fin_flx;
8433 	fino->fin_rev = fin->fin_rev;
8434 	fino->fin_icode = fin->fin_icode;
8435 	fino->fin_rule = fin->fin_rule;
8436 	(void) strncpy(fino->fin_group, fin->fin_group, FR_GROUPLEN);
8437 	fino->fin_fr = fin->fin_fr;
8438 	fino->fin_error = fin->fin_error;
8439 	fino->fin_mp = fin->fin_mp;
8440 	fino->fin_m = fin->fin_m;
8441 	m = fin->fin_m;
8442 	if (m != NULL) {
8443 #if SOLARIS && defined(_KERNEL)
8444 		m->b_rptr -= elen;
8445 #else
8446 		m->m_data -= elen;
8447 		m->m_len += elen;
8448 #endif
8449 	}
8450 	return (pass);
8451 }
8452 
8453 
8454 /* ------------------------------------------------------------------------ */
8455 /* Function:    ipf_matcharray_load                                         */
8456 /* Returns:     int         - 0 = success, else error                       */
8457 /* Parameters:  softc(I)    - pointer to soft context main structure        */
8458 /*              data(I)     - pointer to ioctl data                         */
8459 /*              objp(I)     - ipfobj_t structure to load data into          */
8460 /*              arrayptr(I) - pointer to location to store array pointer    */
8461 /*                                                                          */
8462 /* This function loads in a mathing array through the ipfobj_t struct that  */
8463 /* describes it.  Sanity checking and array size limitations are enforced   */
8464 /* in this function to prevent userspace from trying to load in something   */
8465 /* that is insanely big.  Once the size of the array is known, the memory   */
8466 /* required is malloc'd and returned through changing *arrayptr.  The       */
8467 /* contents of the array are verified before returning.  Only in the event  */
8468 /* of a successful call is the caller required to free up the malloc area.  */
8469 /* ------------------------------------------------------------------------ */
8470 int
8471 ipf_matcharray_load(ipf_main_softc_t *softc, caddr_t data, ipfobj_t *objp,
8472 	int **arrayptr)
8473 {
8474 	int arraysize, *array, error;
8475 
8476 	*arrayptr = NULL;
8477 
8478 	error = BCOPYIN(data, objp, sizeof(*objp));
8479 	if (error != 0) {
8480 		IPFERROR(116);
8481 		return (EFAULT);
8482 	}
8483 
8484 	if (objp->ipfo_type != IPFOBJ_IPFEXPR) {
8485 		IPFERROR(117);
8486 		return (EINVAL);
8487 	}
8488 
8489 	if (((objp->ipfo_size & 3) != 0) || (objp->ipfo_size == 0) ||
8490 	    (objp->ipfo_size > 1024)) {
8491 		IPFERROR(118);
8492 		return (EINVAL);
8493 	}
8494 
8495 	arraysize = objp->ipfo_size * sizeof(*array);
8496 	KMALLOCS(array, int *, arraysize);
8497 	if (array == NULL) {
8498 		IPFERROR(119);
8499 		return (ENOMEM);
8500 	}
8501 
8502 	error = COPYIN(objp->ipfo_ptr, array, arraysize);
8503 	if (error != 0) {
8504 		KFREES(array, arraysize);
8505 		IPFERROR(120);
8506 		return (EFAULT);
8507 	}
8508 
8509 	if (ipf_matcharray_verify(array, arraysize) != 0) {
8510 		KFREES(array, arraysize);
8511 		IPFERROR(121);
8512 		return (EINVAL);
8513 	}
8514 
8515 	*arrayptr = array;
8516 	return (0);
8517 }
8518 
8519 
8520 /* ------------------------------------------------------------------------ */
8521 /* Function:    ipf_matcharray_verify                                       */
8522 /* Returns:     Nil                                                         */
8523 /* Parameters:  array(I)     - pointer to matching array                    */
8524 /*              arraysize(I) - number of elements in the array              */
8525 /*                                                                          */
8526 /* Verify the contents of a matching array by stepping through each element */
8527 /* in it.  The actual commands in the array are not verified for            */
8528 /* correctness, only that all of the sizes are correctly within limits.     */
8529 /* ------------------------------------------------------------------------ */
8530 int
8531 ipf_matcharray_verify(int *array, int arraysize)
8532 {
8533 	int i, nelem, maxidx;
8534 	ipfexp_t *e;
8535 
8536 	nelem = arraysize / sizeof(*array);
8537 
8538 	/*
8539 	 * Currently, it makes no sense to have an array less than 6
8540 	 * elements long - the initial size at the from, a single operation
8541 	 * (minimum 4 in length) and a trailer, for a total of 6.
8542 	 */
8543 	if ((array[0] < 6) || (arraysize < 24) || (arraysize > 4096)) {
8544 		return (-1);
8545 	}
8546 
8547 	/*
8548 	 * Verify the size of data pointed to by array with how long
8549 	 * the array claims to be itself.
8550 	 */
8551 	if (array[0] * sizeof(*array) != arraysize) {
8552 		return (-1);
8553 	}
8554 
8555 	maxidx = nelem - 1;
8556 	/*
8557 	 * The last opcode in this array should be an IPF_EXP_END.
8558 	 */
8559 	if (array[maxidx] != IPF_EXP_END) {
8560 		return (-1);
8561 	}
8562 
8563 	for (i = 1; i < maxidx; ) {
8564 		e = (ipfexp_t *)(array + i);
8565 
8566 		/*
8567 		 * The length of the bits to check must be at least 1
8568 		 * (or else there is nothing to comapre with!) and it
8569 		 * cannot exceed the length of the data present.
8570 		 */
8571 		if ((e->ipfe_size < 1 ) ||
8572 		    (e->ipfe_size + i > maxidx)) {
8573 			return (-1);
8574 		}
8575 		i += e->ipfe_size;
8576 	}
8577 	return (0);
8578 }
8579 
8580 
8581 /* ------------------------------------------------------------------------ */
8582 /* Function:    ipf_fr_matcharray                                           */
8583 /* Returns:     int      - 0 = match failed, else positive match            */
8584 /* Parameters:  fin(I)   - pointer to packet information                    */
8585 /*              array(I) - pointer to matching array                        */
8586 /*                                                                          */
8587 /* This function is used to apply a matching array against a packet and     */
8588 /* return an indication of whether or not the packet successfully matches   */
8589 /* all of the commands in it.                                               */
8590 /* ------------------------------------------------------------------------ */
8591 static int
8592 ipf_fr_matcharray(fr_info_t *fin, int *array)
8593 {
8594 	int i, n, *x, rv, p;
8595 	ipfexp_t *e;
8596 
8597 	rv = 0;
8598 	n = array[0];
8599 	x = array + 1;
8600 
8601 	for (; n > 0; x += 3 + x[3], rv = 0) {
8602 		e = (ipfexp_t *)x;
8603 		if (e->ipfe_cmd == IPF_EXP_END)
8604 			break;
8605 		n -= e->ipfe_size;
8606 
8607 		/*
8608 		 * The upper 16 bits currently store the protocol value.
8609 		 * This is currently used with TCP and UDP port compares and
8610 		 * allows "tcp.port = 80" without requiring an explicit
8611 		 " "ip.pr = tcp" first.
8612 		 */
8613 		p = e->ipfe_cmd >> 16;
8614 		if ((p != 0) && (p != fin->fin_p))
8615 			break;
8616 
8617 		switch (e->ipfe_cmd)
8618 		{
8619 		case IPF_EXP_IP_PR :
8620 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8621 				rv |= (fin->fin_p == e->ipfe_arg0[i]);
8622 			}
8623 			break;
8624 
8625 		case IPF_EXP_IP_SRCADDR :
8626 			if (fin->fin_v != 4)
8627 				break;
8628 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8629 				rv |= ((fin->fin_saddr &
8630 					e->ipfe_arg0[i * 2 + 1]) ==
8631 				       e->ipfe_arg0[i * 2]);
8632 			}
8633 			break;
8634 
8635 		case IPF_EXP_IP_DSTADDR :
8636 			if (fin->fin_v != 4)
8637 				break;
8638 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8639 				rv |= ((fin->fin_daddr &
8640 					e->ipfe_arg0[i * 2 + 1]) ==
8641 				       e->ipfe_arg0[i * 2]);
8642 			}
8643 			break;
8644 
8645 		case IPF_EXP_IP_ADDR :
8646 			if (fin->fin_v != 4)
8647 				break;
8648 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8649 				rv |= ((fin->fin_saddr &
8650 					e->ipfe_arg0[i * 2 + 1]) ==
8651 				       e->ipfe_arg0[i * 2]) ||
8652 				      ((fin->fin_daddr &
8653 					e->ipfe_arg0[i * 2 + 1]) ==
8654 				       e->ipfe_arg0[i * 2]);
8655 			}
8656 			break;
8657 
8658 #ifdef USE_INET6
8659 		case IPF_EXP_IP6_SRCADDR :
8660 			if (fin->fin_v != 6)
8661 				break;
8662 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8663 				rv |= IP6_MASKEQ(&fin->fin_src6,
8664 						 &e->ipfe_arg0[i * 8 + 4],
8665 						 &e->ipfe_arg0[i * 8]);
8666 			}
8667 			break;
8668 
8669 		case IPF_EXP_IP6_DSTADDR :
8670 			if (fin->fin_v != 6)
8671 				break;
8672 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8673 				rv |= IP6_MASKEQ(&fin->fin_dst6,
8674 						 &e->ipfe_arg0[i * 8 + 4],
8675 						 &e->ipfe_arg0[i * 8]);
8676 			}
8677 			break;
8678 
8679 		case IPF_EXP_IP6_ADDR :
8680 			if (fin->fin_v != 6)
8681 				break;
8682 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8683 				rv |= IP6_MASKEQ(&fin->fin_src6,
8684 						 &e->ipfe_arg0[i * 8 + 4],
8685 						 &e->ipfe_arg0[i * 8]) ||
8686 				      IP6_MASKEQ(&fin->fin_dst6,
8687 						 &e->ipfe_arg0[i * 8 + 4],
8688 						 &e->ipfe_arg0[i * 8]);
8689 			}
8690 			break;
8691 #endif
8692 
8693 		case IPF_EXP_UDP_PORT :
8694 		case IPF_EXP_TCP_PORT :
8695 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8696 				rv |= (fin->fin_sport == e->ipfe_arg0[i]) ||
8697 				      (fin->fin_dport == e->ipfe_arg0[i]);
8698 			}
8699 			break;
8700 
8701 		case IPF_EXP_UDP_SPORT :
8702 		case IPF_EXP_TCP_SPORT :
8703 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8704 				rv |= (fin->fin_sport == e->ipfe_arg0[i]);
8705 			}
8706 			break;
8707 
8708 		case IPF_EXP_UDP_DPORT :
8709 		case IPF_EXP_TCP_DPORT :
8710 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8711 				rv |= (fin->fin_dport == e->ipfe_arg0[i]);
8712 			}
8713 			break;
8714 
8715 		case IPF_EXP_TCP_FLAGS :
8716 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8717 				rv |= ((fin->fin_tcpf &
8718 					e->ipfe_arg0[i * 2 + 1]) ==
8719 				       e->ipfe_arg0[i * 2]);
8720 			}
8721 			break;
8722 		}
8723 		rv ^= e->ipfe_not;
8724 
8725 		if (rv == 0)
8726 			break;
8727 	}
8728 
8729 	return (rv);
8730 }
8731 
8732 
8733 /* ------------------------------------------------------------------------ */
8734 /* Function:    ipf_queueflush                                              */
8735 /* Returns:     int - number of entries flushed (0 = none)                  */
8736 /* Parameters:  softc(I)    - pointer to soft context main structure        */
8737 /*              deletefn(I) - function to call to delete entry              */
8738 /*              ipfqs(I)    - top of the list of ipf internal queues        */
8739 /*              userqs(I)   - top of the list of user defined timeouts      */
8740 /*                                                                          */
8741 /* This fucntion gets called when the state/NAT hash tables fill up and we  */
8742 /* need to try a bit harder to free up some space.  The algorithm used here */
8743 /* split into two parts but both halves have the same goal: to reduce the   */
8744 /* number of connections considered to be "active" to the low watermark.    */
8745 /* There are two steps in doing this:                                       */
8746 /* 1) Remove any TCP connections that are already considered to be "closed" */
8747 /*    but have not yet been removed from the state table.  The two states   */
8748 /*    TCPS_TIME_WAIT and TCPS_CLOSED are considered to be the perfect       */
8749 /*    candidates for this style of removal.  If freeing up entries in       */
8750 /*    CLOSED or both CLOSED and TIME_WAIT brings us to the low watermark,   */
8751 /*    we do not go on to step 2.                                            */
8752 /*                                                                          */
8753 /* 2) Look for the oldest entries on each timeout queue and free them if    */
8754 /*    they are within the given window we are considering.  Where the       */
8755 /*    window starts and the steps taken to increase its size depend upon    */
8756 /*    how long ipf has been running (ipf_ticks.)  Anything modified in the  */
8757 /*    last 30 seconds is not touched.                                       */
8758 /*                                              touched                     */
8759 /*         die     ipf_ticks  30*1.5    1800*1.5   |  43200*1.5             */
8760 /*           |          |        |           |     |     |                  */
8761 /* future <--+----------+--------+-----------+-----+-----+-----------> past */
8762 /*                     now        \_int=30s_/ \_int=1hr_/ \_int=12hr        */
8763 /*                                                                          */
8764 /* Points to note:                                                          */
8765 /* - tqe_die is the time, in the future, when entries die.                  */
8766 /* - tqe_die - ipf_ticks is how long left the connection has to live in ipf */
8767 /*   ticks.                                                                 */
8768 /* - tqe_touched is when the entry was last used by NAT/state               */
8769 /* - the closer tqe_touched is to ipf_ticks, the further tqe_die will be    */
8770 /*   ipf_ticks any given timeout queue and vice versa.                      */
8771 /* - both tqe_die and tqe_touched increase over time                        */
8772 /* - timeout queues are sorted with the highest value of tqe_die at the     */
8773 /*   bottom and therefore the smallest values of each are at the top        */
8774 /* - the pointer passed in as ipfqs should point to an array of timeout     */
8775 /*   queues representing each of the TCP states                             */
8776 /*                                                                          */
8777 /* We start by setting up a maximum range to scan for things to move of     */
8778 /* iend (newest) to istart (oldest) in chunks of "interval".  If nothing is */
8779 /* found in that range, "interval" is adjusted (so long as it isn't 30) and */
8780 /* we start again with a new value for "iend" and "istart".  This is        */
8781 /* continued until we either finish the scan of 30 second intervals or the  */
8782 /* low water mark is reached.                                               */
8783 /* ------------------------------------------------------------------------ */
8784 int
8785 ipf_queueflush(ipf_main_softc_t *softc, ipftq_delete_fn_t deletefn,
8786 	ipftq_t *ipfqs, ipftq_t *userqs, u_int *activep, int size, int low)
8787 {
8788 	u_long interval, istart, iend;
8789 	ipftq_t *ifq, *ifqnext;
8790 	ipftqent_t *tqe, *tqn;
8791 	int removed = 0;
8792 
8793 	for (tqn = ipfqs[IPF_TCPS_CLOSED].ifq_head; ((tqe = tqn) != NULL); ) {
8794 		tqn = tqe->tqe_next;
8795 		if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8796 			removed++;
8797 	}
8798 	if ((*activep * 100 / size) > low) {
8799 		for (tqn = ipfqs[IPF_TCPS_TIME_WAIT].ifq_head;
8800 		     ((tqe = tqn) != NULL); ) {
8801 			tqn = tqe->tqe_next;
8802 			if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8803 				removed++;
8804 		}
8805 	}
8806 
8807 	if ((*activep * 100 / size) <= low) {
8808 		return (removed);
8809 	}
8810 
8811 	/*
8812 	 * NOTE: Use of "* 15 / 10" is required here because if "* 1.5" is
8813 	 *       used then the operations are upgraded to floating point
8814 	 *       and kernels don't like floating point...
8815 	 */
8816 	if (softc->ipf_ticks > IPF_TTLVAL(43200 * 15 / 10)) {
8817 		istart = IPF_TTLVAL(86400 * 4);
8818 		interval = IPF_TTLVAL(43200);
8819 	} else if (softc->ipf_ticks > IPF_TTLVAL(1800 * 15 / 10)) {
8820 		istart = IPF_TTLVAL(43200);
8821 		interval = IPF_TTLVAL(1800);
8822 	} else if (softc->ipf_ticks > IPF_TTLVAL(30 * 15 / 10)) {
8823 		istart = IPF_TTLVAL(1800);
8824 		interval = IPF_TTLVAL(30);
8825 	} else {
8826 		return (0);
8827 	}
8828 	if (istart > softc->ipf_ticks) {
8829 		if (softc->ipf_ticks - interval < interval)
8830 			istart = interval;
8831 		else
8832 			istart = (softc->ipf_ticks / interval) * interval;
8833 	}
8834 
8835 	iend = softc->ipf_ticks - interval;
8836 
8837 	while ((*activep * 100 / size) > low) {
8838 		u_long try;
8839 
8840 		try = softc->ipf_ticks - istart;
8841 
8842 		for (ifq = ipfqs; ifq != NULL; ifq = ifq->ifq_next) {
8843 			for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
8844 				if (try < tqe->tqe_touched)
8845 					break;
8846 				tqn = tqe->tqe_next;
8847 				if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8848 					removed++;
8849 			}
8850 		}
8851 
8852 		for (ifq = userqs; ifq != NULL; ifq = ifqnext) {
8853 			ifqnext = ifq->ifq_next;
8854 
8855 			for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
8856 				if (try < tqe->tqe_touched)
8857 					break;
8858 				tqn = tqe->tqe_next;
8859 				if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8860 					removed++;
8861 			}
8862 		}
8863 
8864 		if (try >= iend) {
8865 			if (interval == IPF_TTLVAL(43200)) {
8866 				interval = IPF_TTLVAL(1800);
8867 			} else if (interval == IPF_TTLVAL(1800)) {
8868 				interval = IPF_TTLVAL(30);
8869 			} else {
8870 				break;
8871 			}
8872 			if (interval >= softc->ipf_ticks)
8873 				break;
8874 
8875 			iend = softc->ipf_ticks - interval;
8876 		}
8877 		istart -= interval;
8878 	}
8879 
8880 	return (removed);
8881 }
8882 
8883 
8884 /* ------------------------------------------------------------------------ */
8885 /* Function:    ipf_deliverlocal                                            */
8886 /* Returns:     int - 1 = local address, 0 = non-local address              */
8887 /* Parameters:  softc(I)     - pointer to soft context main structure       */
8888 /*              ipversion(I) - IP protocol version (4 or 6)                 */
8889 /*              ifp(I)       - network interface pointer                    */
8890 /*              ipaddr(I)    - IPv4/6 destination address                   */
8891 /*                                                                          */
8892 /* This fucntion is used to determine in the address "ipaddr" belongs to    */
8893 /* the network interface represented by ifp.                                */
8894 /* ------------------------------------------------------------------------ */
8895 int
8896 ipf_deliverlocal(ipf_main_softc_t *softc, int ipversion, void *ifp,
8897 	i6addr_t *ipaddr)
8898 {
8899 	i6addr_t addr;
8900 	int islocal = 0;
8901 
8902 	if (ipversion == 4) {
8903 		if (ipf_ifpaddr(softc, 4, FRI_NORMAL, ifp, &addr, NULL) == 0) {
8904 			if (addr.in4.s_addr == ipaddr->in4.s_addr)
8905 				islocal = 1;
8906 		}
8907 
8908 #ifdef USE_INET6
8909 	} else if (ipversion == 6) {
8910 		if (ipf_ifpaddr(softc, 6, FRI_NORMAL, ifp, &addr, NULL) == 0) {
8911 			if (IP6_EQ(&addr, ipaddr))
8912 				islocal = 1;
8913 		}
8914 #endif
8915 	}
8916 
8917 	return (islocal);
8918 }
8919 
8920 
8921 /* ------------------------------------------------------------------------ */
8922 /* Function:    ipf_settimeout                                              */
8923 /* Returns:     int - 0 = success, -1 = failure                             */
8924 /* Parameters:  softc(I) - pointer to soft context main structure           */
8925 /*              t(I)     - pointer to tuneable array entry                  */
8926 /*              p(I)     - pointer to values passed in to apply             */
8927 /*                                                                          */
8928 /* This function is called to set the timeout values for each distinct      */
8929 /* queue timeout that is available.  When called, it calls into both the    */
8930 /* state and NAT code, telling them to update their timeout queues.         */
8931 /* ------------------------------------------------------------------------ */
8932 static int
8933 ipf_settimeout(struct ipf_main_softc_s *softc, ipftuneable_t *t,
8934 	ipftuneval_t *p)
8935 {
8936 
8937 	/*
8938 	 * ipf_interror should be set by the functions called here, not
8939 	 * by this function - it's just a middle man.
8940 	 */
8941 	if (ipf_state_settimeout(softc, t, p) == -1)
8942 		return (-1);
8943 	if (ipf_nat_settimeout(softc, t, p) == -1)
8944 		return (-1);
8945 	return (0);
8946 }
8947 
8948 
8949 /* ------------------------------------------------------------------------ */
8950 /* Function:    ipf_apply_timeout                                           */
8951 /* Returns:     int - 0 = success, -1 = failure                             */
8952 /* Parameters:  head(I)    - pointer to tuneable array entry                */
8953 /*              seconds(I) - pointer to values passed in to apply           */
8954 /*                                                                          */
8955 /* This function applies a timeout of "seconds" to the timeout queue that   */
8956 /* is pointed to by "head".  All entries on this list have an expiration    */
8957 /* set to be the current tick value of ipf plus the ttl.  Given that this   */
8958 /* function should only be called when the delta is non-zero, the task is   */
8959 /* to walk the entire list and apply the change.  The sort order will not   */
8960 /* change.  The only catch is that this is O(n) across the list, so if the  */
8961 /* queue has lots of entries (10s of thousands or 100s of thousands), it    */
8962 /* could take a relatively long time to work through them all.              */
8963 /* ------------------------------------------------------------------------ */
8964 void
8965 ipf_apply_timeout(ipftq_t *head, u_int seconds)
8966 {
8967 	u_int oldtimeout, newtimeout;
8968 	ipftqent_t *tqe;
8969 	int delta;
8970 
8971 	MUTEX_ENTER(&head->ifq_lock);
8972 	oldtimeout = head->ifq_ttl;
8973 	newtimeout = IPF_TTLVAL(seconds);
8974 	delta = oldtimeout - newtimeout;
8975 
8976 	head->ifq_ttl = newtimeout;
8977 
8978 	for (tqe = head->ifq_head; tqe != NULL; tqe = tqe->tqe_next) {
8979 		tqe->tqe_die += delta;
8980 	}
8981 	MUTEX_EXIT(&head->ifq_lock);
8982 }
8983 
8984 
8985 /* ------------------------------------------------------------------------ */
8986 /* Function:   ipf_settimeout_tcp                                           */
8987 /* Returns:    int - 0 = successfully applied, -1 = failed                  */
8988 /* Parameters: t(I)   - pointer to tuneable to change                       */
8989 /*             p(I)   - pointer to new timeout information                  */
8990 /*             tab(I) - pointer to table of TCP queues                      */
8991 /*                                                                          */
8992 /* This function applies the new timeout (p) to the TCP tunable (t) and     */
8993 /* updates all of the entries on the relevant timeout queue by calling      */
8994 /* ipf_apply_timeout().                                                     */
8995 /* ------------------------------------------------------------------------ */
8996 int
8997 ipf_settimeout_tcp(ipftuneable_t *t, ipftuneval_t *p, ipftq_t *tab)
8998 {
8999 	if (!strcmp(t->ipft_name, "tcp_idle_timeout") ||
9000 	    !strcmp(t->ipft_name, "tcp_established")) {
9001 		ipf_apply_timeout(&tab[IPF_TCPS_ESTABLISHED], p->ipftu_int);
9002 	} else if (!strcmp(t->ipft_name, "tcp_close_wait")) {
9003 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSE_WAIT], p->ipftu_int);
9004 	} else if (!strcmp(t->ipft_name, "tcp_last_ack")) {
9005 		ipf_apply_timeout(&tab[IPF_TCPS_LAST_ACK], p->ipftu_int);
9006 	} else if (!strcmp(t->ipft_name, "tcp_timeout")) {
9007 		ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
9008 		ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
9009 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
9010 	} else if (!strcmp(t->ipft_name, "tcp_listen")) {
9011 		ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
9012 	} else if (!strcmp(t->ipft_name, "tcp_half_established")) {
9013 		ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
9014 	} else if (!strcmp(t->ipft_name, "tcp_closing")) {
9015 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
9016 	} else if (!strcmp(t->ipft_name, "tcp_syn_received")) {
9017 		ipf_apply_timeout(&tab[IPF_TCPS_SYN_RECEIVED], p->ipftu_int);
9018 	} else if (!strcmp(t->ipft_name, "tcp_syn_sent")) {
9019 		ipf_apply_timeout(&tab[IPF_TCPS_SYN_SENT], p->ipftu_int);
9020 	} else if (!strcmp(t->ipft_name, "tcp_closed")) {
9021 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
9022 	} else if (!strcmp(t->ipft_name, "tcp_half_closed")) {
9023 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
9024 	} else if (!strcmp(t->ipft_name, "tcp_time_wait")) {
9025 		ipf_apply_timeout(&tab[IPF_TCPS_TIME_WAIT], p->ipftu_int);
9026 	} else {
9027 		/*
9028 		 * ipf_interror isn't set here because it should be set
9029 		 * by whatever called this function.
9030 		 */
9031 		return (-1);
9032 	}
9033 	return (0);
9034 }
9035 
9036 
9037 /* ------------------------------------------------------------------------ */
9038 /* Function:   ipf_main_soft_create                                         */
9039 /* Returns:    NULL = failure, else success                                 */
9040 /* Parameters: arg(I) - pointer to soft context structure if already allocd */
9041 /*                                                                          */
9042 /* Create the foundation soft context structure. In circumstances where it  */
9043 /* is not required to dynamically allocate the context, a pointer can be    */
9044 /* passed in (rather than NULL) to a structure to be initialised.           */
9045 /* The main thing of interest is that a number of locks are initialised     */
9046 /* here instead of in the where might be expected - in the relevant create  */
9047 /* function elsewhere.  This is done because the current locking design has */
9048 /* some areas where these locks are used outside of their module.           */
9049 /* Possibly the most important exercise that is done here is setting of all */
9050 /* the timeout values, allowing them to be changed before init().           */
9051 /* ------------------------------------------------------------------------ */
9052 void *
9053 ipf_main_soft_create(void *arg)
9054 {
9055 	ipf_main_softc_t *softc;
9056 
9057 	if (arg == NULL) {
9058 		KMALLOC(softc, ipf_main_softc_t *);
9059 		if (softc == NULL)
9060 			return (NULL);
9061 	} else {
9062 		softc = arg;
9063 	}
9064 
9065 	bzero((char *)softc, sizeof(*softc));
9066 
9067 	/*
9068 	 * This serves as a flag as to whether or not the softc should be
9069 	 * free'd when _destroy is called.
9070 	 */
9071 	softc->ipf_dynamic_softc = (arg == NULL) ? 1 : 0;
9072 
9073 	softc->ipf_tuners = ipf_tune_array_copy(softc,
9074 						sizeof(ipf_main_tuneables),
9075 						ipf_main_tuneables);
9076 	if (softc->ipf_tuners == NULL) {
9077 		ipf_main_soft_destroy(softc);
9078 		return (NULL);
9079 	}
9080 
9081 	MUTEX_INIT(&softc->ipf_rw, "ipf rw mutex");
9082 	MUTEX_INIT(&softc->ipf_timeoutlock, "ipf timeout lock");
9083 	RWLOCK_INIT(&softc->ipf_global, "ipf filter load/unload mutex");
9084 	RWLOCK_INIT(&softc->ipf_mutex, "ipf filter rwlock");
9085 	RWLOCK_INIT(&softc->ipf_tokens, "ipf token rwlock");
9086 	RWLOCK_INIT(&softc->ipf_state, "ipf state rwlock");
9087 	RWLOCK_INIT(&softc->ipf_nat, "ipf IP NAT rwlock");
9088 	RWLOCK_INIT(&softc->ipf_poolrw, "ipf pool rwlock");
9089 	RWLOCK_INIT(&softc->ipf_frag, "ipf frag rwlock");
9090 
9091 	softc->ipf_token_head = NULL;
9092 	softc->ipf_token_tail = &softc->ipf_token_head;
9093 
9094 	softc->ipf_tcpidletimeout = FIVE_DAYS;
9095 	softc->ipf_tcpclosewait = IPF_TTLVAL(2 * TCP_MSL);
9096 	softc->ipf_tcplastack = IPF_TTLVAL(30);
9097 	softc->ipf_tcptimewait = IPF_TTLVAL(2 * TCP_MSL);
9098 	softc->ipf_tcptimeout = IPF_TTLVAL(2 * TCP_MSL);
9099 	softc->ipf_tcpsynsent = IPF_TTLVAL(2 * TCP_MSL);
9100 	softc->ipf_tcpsynrecv = IPF_TTLVAL(2 * TCP_MSL);
9101 	softc->ipf_tcpclosed = IPF_TTLVAL(30);
9102 	softc->ipf_tcphalfclosed = IPF_TTLVAL(2 * 3600);
9103 	softc->ipf_udptimeout = IPF_TTLVAL(120);
9104 	softc->ipf_udpacktimeout = IPF_TTLVAL(12);
9105 	softc->ipf_icmptimeout = IPF_TTLVAL(60);
9106 	softc->ipf_icmpacktimeout = IPF_TTLVAL(6);
9107 	softc->ipf_iptimeout = IPF_TTLVAL(60);
9108 
9109 #if defined(IPFILTER_DEFAULT_BLOCK)
9110 	softc->ipf_pass = FR_BLOCK|FR_NOMATCH;
9111 #else
9112 	softc->ipf_pass = (IPF_DEFAULT_PASS)|FR_NOMATCH;
9113 #endif
9114 	softc->ipf_minttl = 4;
9115 	softc->ipf_icmpminfragmtu = 68;
9116 	softc->ipf_max_namelen = 128;
9117 	softc->ipf_flags = IPF_LOGGING;
9118 	softc->ipf_jail_allowed = 0;
9119 
9120 #ifdef LARGE_NAT
9121 	softc->ipf_large_nat = 1;
9122 #endif
9123 	ipf_fbsd_kenv_get(softc);
9124 
9125 	return (softc);
9126 }
9127 
9128 /* ------------------------------------------------------------------------ */
9129 /* Function:   ipf_main_soft_init                                           */
9130 /* Returns:    0 = success, -1 = failure                                    */
9131 /* Parameters: softc(I) - pointer to soft context main structure            */
9132 /*                                                                          */
9133 /* A null-op function that exists as a placeholder so that the flow in      */
9134 /* other functions is obvious.                                              */
9135 /* ------------------------------------------------------------------------ */
9136 /*ARGSUSED*/
9137 int
9138 ipf_main_soft_init(ipf_main_softc_t *softc)
9139 {
9140 	return (0);
9141 }
9142 
9143 
9144 /* ------------------------------------------------------------------------ */
9145 /* Function:   ipf_main_soft_destroy                                        */
9146 /* Returns:    void                                                         */
9147 /* Parameters: softc(I) - pointer to soft context main structure            */
9148 /*                                                                          */
9149 /* Undo everything that we did in ipf_main_soft_create.                     */
9150 /*                                                                          */
9151 /* The most important check that needs to be made here is whether or not    */
9152 /* the structure was allocated by ipf_main_soft_create() by checking what   */
9153 /* value is stored in ipf_dynamic_main.                                     */
9154 /* ------------------------------------------------------------------------ */
9155 /*ARGSUSED*/
9156 void
9157 ipf_main_soft_destroy(ipf_main_softc_t *softc)
9158 {
9159 
9160 	RW_DESTROY(&softc->ipf_frag);
9161 	RW_DESTROY(&softc->ipf_poolrw);
9162 	RW_DESTROY(&softc->ipf_nat);
9163 	RW_DESTROY(&softc->ipf_state);
9164 	RW_DESTROY(&softc->ipf_tokens);
9165 	RW_DESTROY(&softc->ipf_mutex);
9166 	RW_DESTROY(&softc->ipf_global);
9167 	MUTEX_DESTROY(&softc->ipf_timeoutlock);
9168 	MUTEX_DESTROY(&softc->ipf_rw);
9169 
9170 	if (softc->ipf_tuners != NULL) {
9171 		KFREES(softc->ipf_tuners, sizeof(ipf_main_tuneables));
9172 	}
9173 	if (softc->ipf_dynamic_softc == 1) {
9174 		KFREE(softc);
9175 	}
9176 }
9177 
9178 
9179 /* ------------------------------------------------------------------------ */
9180 /* Function:   ipf_main_soft_fini                                           */
9181 /* Returns:    0 = success, -1 = failure                                    */
9182 /* Parameters: softc(I) - pointer to soft context main structure            */
9183 /*                                                                          */
9184 /* Clean out the rules which have been added since _init was last called,   */
9185 /* the only dynamic part of the mainline.                                   */
9186 /* ------------------------------------------------------------------------ */
9187 int
9188 ipf_main_soft_fini(ipf_main_softc_t *softc)
9189 {
9190 	(void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9191 	(void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE);
9192 	(void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9193 	(void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE);
9194 
9195 	return (0);
9196 }
9197 
9198 
9199 /* ------------------------------------------------------------------------ */
9200 /* Function:   ipf_main_load                                                */
9201 /* Returns:    0 = success, -1 = failure                                    */
9202 /* Parameters: none                                                         */
9203 /*                                                                          */
9204 /* Handle global initialisation that needs to be done for the base part of  */
9205 /* IPFilter. At present this just amounts to initialising some ICMP lookup  */
9206 /* arrays that get used by the state/NAT code.                              */
9207 /* ------------------------------------------------------------------------ */
9208 int
9209 ipf_main_load(void)
9210 {
9211 	int i;
9212 
9213 	/* fill icmp reply type table */
9214 	for (i = 0; i <= ICMP_MAXTYPE; i++)
9215 		icmpreplytype4[i] = -1;
9216 	icmpreplytype4[ICMP_ECHO] = ICMP_ECHOREPLY;
9217 	icmpreplytype4[ICMP_TSTAMP] = ICMP_TSTAMPREPLY;
9218 	icmpreplytype4[ICMP_IREQ] = ICMP_IREQREPLY;
9219 	icmpreplytype4[ICMP_MASKREQ] = ICMP_MASKREPLY;
9220 
9221 #ifdef  USE_INET6
9222 	/* fill icmp reply type table */
9223 	for (i = 0; i <= ICMP6_MAXTYPE; i++)
9224 		icmpreplytype6[i] = -1;
9225 	icmpreplytype6[ICMP6_ECHO_REQUEST] = ICMP6_ECHO_REPLY;
9226 	icmpreplytype6[ICMP6_MEMBERSHIP_QUERY] = ICMP6_MEMBERSHIP_REPORT;
9227 	icmpreplytype6[ICMP6_NI_QUERY] = ICMP6_NI_REPLY;
9228 	icmpreplytype6[ND_ROUTER_SOLICIT] = ND_ROUTER_ADVERT;
9229 	icmpreplytype6[ND_NEIGHBOR_SOLICIT] = ND_NEIGHBOR_ADVERT;
9230 #endif
9231 
9232 	return (0);
9233 }
9234 
9235 
9236 /* ------------------------------------------------------------------------ */
9237 /* Function:   ipf_main_unload                                              */
9238 /* Returns:    0 = success, -1 = failure                                    */
9239 /* Parameters: none                                                         */
9240 /*                                                                          */
9241 /* A null-op function that exists as a placeholder so that the flow in      */
9242 /* other functions is obvious.                                              */
9243 /* ------------------------------------------------------------------------ */
9244 int
9245 ipf_main_unload(void)
9246 {
9247 	return (0);
9248 }
9249 
9250 
9251 /* ------------------------------------------------------------------------ */
9252 /* Function:   ipf_load_all                                                 */
9253 /* Returns:    0 = success, -1 = failure                                    */
9254 /* Parameters: none                                                         */
9255 /*                                                                          */
9256 /* Work through all of the subsystems inside IPFilter and call the load     */
9257 /* function for each in an order that won't lead to a crash :)              */
9258 /* ------------------------------------------------------------------------ */
9259 int
9260 ipf_load_all(void)
9261 {
9262 	if (ipf_main_load() == -1)
9263 		return (-1);
9264 
9265 	if (ipf_state_main_load() == -1)
9266 		return (-1);
9267 
9268 	if (ipf_nat_main_load() == -1)
9269 		return (-1);
9270 
9271 	if (ipf_frag_main_load() == -1)
9272 		return (-1);
9273 
9274 	if (ipf_auth_main_load() == -1)
9275 		return (-1);
9276 
9277 	if (ipf_proxy_main_load() == -1)
9278 		return (-1);
9279 
9280 	return (0);
9281 }
9282 
9283 
9284 /* ------------------------------------------------------------------------ */
9285 /* Function:   ipf_unload_all                                               */
9286 /* Returns:    0 = success, -1 = failure                                    */
9287 /* Parameters: none                                                         */
9288 /*                                                                          */
9289 /* Work through all of the subsystems inside IPFilter and call the unload   */
9290 /* function for each in an order that won't lead to a crash :)              */
9291 /* ------------------------------------------------------------------------ */
9292 int
9293 ipf_unload_all(void)
9294 {
9295 	if (ipf_proxy_main_unload() == -1)
9296 		return (-1);
9297 
9298 	if (ipf_auth_main_unload() == -1)
9299 		return (-1);
9300 
9301 	if (ipf_frag_main_unload() == -1)
9302 		return (-1);
9303 
9304 	if (ipf_nat_main_unload() == -1)
9305 		return (-1);
9306 
9307 	if (ipf_state_main_unload() == -1)
9308 		return (-1);
9309 
9310 	if (ipf_main_unload() == -1)
9311 		return (-1);
9312 
9313 	return (0);
9314 }
9315 
9316 
9317 /* ------------------------------------------------------------------------ */
9318 /* Function:   ipf_create_all                                               */
9319 /* Returns:    NULL = failure, else success                                 */
9320 /* Parameters: arg(I) - pointer to soft context main structure              */
9321 /*                                                                          */
9322 /* Work through all of the subsystems inside IPFilter and call the create   */
9323 /* function for each in an order that won't lead to a crash :)              */
9324 /* ------------------------------------------------------------------------ */
9325 ipf_main_softc_t *
9326 ipf_create_all(void *arg)
9327 {
9328 	ipf_main_softc_t *softc;
9329 
9330 	softc = ipf_main_soft_create(arg);
9331 	if (softc == NULL)
9332 		return (NULL);
9333 
9334 #ifdef IPFILTER_LOG
9335 	softc->ipf_log_soft = ipf_log_soft_create(softc);
9336 	if (softc->ipf_log_soft == NULL) {
9337 		ipf_destroy_all(softc);
9338 		return (NULL);
9339 	}
9340 #endif
9341 
9342 	softc->ipf_lookup_soft = ipf_lookup_soft_create(softc);
9343 	if (softc->ipf_lookup_soft == NULL) {
9344 		ipf_destroy_all(softc);
9345 		return (NULL);
9346 	}
9347 
9348 	softc->ipf_sync_soft = ipf_sync_soft_create(softc);
9349 	if (softc->ipf_sync_soft == NULL) {
9350 		ipf_destroy_all(softc);
9351 		return (NULL);
9352 	}
9353 
9354 	softc->ipf_state_soft = ipf_state_soft_create(softc);
9355 	if (softc->ipf_state_soft == NULL) {
9356 		ipf_destroy_all(softc);
9357 		return (NULL);
9358 	}
9359 
9360 	softc->ipf_nat_soft = ipf_nat_soft_create(softc);
9361 	if (softc->ipf_nat_soft == NULL) {
9362 		ipf_destroy_all(softc);
9363 		return (NULL);
9364 	}
9365 
9366 	softc->ipf_frag_soft = ipf_frag_soft_create(softc);
9367 	if (softc->ipf_frag_soft == NULL) {
9368 		ipf_destroy_all(softc);
9369 		return (NULL);
9370 	}
9371 
9372 	softc->ipf_auth_soft = ipf_auth_soft_create(softc);
9373 	if (softc->ipf_auth_soft == NULL) {
9374 		ipf_destroy_all(softc);
9375 		return (NULL);
9376 	}
9377 
9378 	softc->ipf_proxy_soft = ipf_proxy_soft_create(softc);
9379 	if (softc->ipf_proxy_soft == NULL) {
9380 		ipf_destroy_all(softc);
9381 		return (NULL);
9382 	}
9383 
9384 	return (softc);
9385 }
9386 
9387 
9388 /* ------------------------------------------------------------------------ */
9389 /* Function:   ipf_destroy_all                                              */
9390 /* Returns:    void                                                         */
9391 /* Parameters: softc(I) - pointer to soft context main structure            */
9392 /*                                                                          */
9393 /* Work through all of the subsystems inside IPFilter and call the destroy  */
9394 /* function for each in an order that won't lead to a crash :)              */
9395 /*                                                                          */
9396 /* Every one of these functions is expected to succeed, so there is no      */
9397 /* checking of return values.                                               */
9398 /* ------------------------------------------------------------------------ */
9399 void
9400 ipf_destroy_all(ipf_main_softc_t *softc)
9401 {
9402 
9403 	if (softc->ipf_state_soft != NULL) {
9404 		ipf_state_soft_destroy(softc, softc->ipf_state_soft);
9405 		softc->ipf_state_soft = NULL;
9406 	}
9407 
9408 	if (softc->ipf_nat_soft != NULL) {
9409 		ipf_nat_soft_destroy(softc, softc->ipf_nat_soft);
9410 		softc->ipf_nat_soft = NULL;
9411 	}
9412 
9413 	if (softc->ipf_frag_soft != NULL) {
9414 		ipf_frag_soft_destroy(softc, softc->ipf_frag_soft);
9415 		softc->ipf_frag_soft = NULL;
9416 	}
9417 
9418 	if (softc->ipf_auth_soft != NULL) {
9419 		ipf_auth_soft_destroy(softc, softc->ipf_auth_soft);
9420 		softc->ipf_auth_soft = NULL;
9421 	}
9422 
9423 	if (softc->ipf_proxy_soft != NULL) {
9424 		ipf_proxy_soft_destroy(softc, softc->ipf_proxy_soft);
9425 		softc->ipf_proxy_soft = NULL;
9426 	}
9427 
9428 	if (softc->ipf_sync_soft != NULL) {
9429 		ipf_sync_soft_destroy(softc, softc->ipf_sync_soft);
9430 		softc->ipf_sync_soft = NULL;
9431 	}
9432 
9433 	if (softc->ipf_lookup_soft != NULL) {
9434 		ipf_lookup_soft_destroy(softc, softc->ipf_lookup_soft);
9435 		softc->ipf_lookup_soft = NULL;
9436 	}
9437 
9438 #ifdef IPFILTER_LOG
9439 	if (softc->ipf_log_soft != NULL) {
9440 		ipf_log_soft_destroy(softc, softc->ipf_log_soft);
9441 		softc->ipf_log_soft = NULL;
9442 	}
9443 #endif
9444 
9445 	ipf_main_soft_destroy(softc);
9446 }
9447 
9448 
9449 /* ------------------------------------------------------------------------ */
9450 /* Function:   ipf_init_all                                                 */
9451 /* Returns:    0 = success, -1 = failure                                    */
9452 /* Parameters: softc(I) - pointer to soft context main structure            */
9453 /*                                                                          */
9454 /* Work through all of the subsystems inside IPFilter and call the init     */
9455 /* function for each in an order that won't lead to a crash :)              */
9456 /* ------------------------------------------------------------------------ */
9457 int
9458 ipf_init_all(ipf_main_softc_t *softc)
9459 {
9460 
9461 	if (ipf_main_soft_init(softc) == -1)
9462 		return (-1);
9463 
9464 #ifdef IPFILTER_LOG
9465 	if (ipf_log_soft_init(softc, softc->ipf_log_soft) == -1)
9466 		return (-1);
9467 #endif
9468 
9469 	if (ipf_lookup_soft_init(softc, softc->ipf_lookup_soft) == -1)
9470 		return (-1);
9471 
9472 	if (ipf_sync_soft_init(softc, softc->ipf_sync_soft) == -1)
9473 		return (-1);
9474 
9475 	if (ipf_state_soft_init(softc, softc->ipf_state_soft) == -1)
9476 		return (-1);
9477 
9478 	if (ipf_nat_soft_init(softc, softc->ipf_nat_soft) == -1)
9479 		return (-1);
9480 
9481 	if (ipf_frag_soft_init(softc, softc->ipf_frag_soft) == -1)
9482 		return (-1);
9483 
9484 	if (ipf_auth_soft_init(softc, softc->ipf_auth_soft) == -1)
9485 		return (-1);
9486 
9487 	if (ipf_proxy_soft_init(softc, softc->ipf_proxy_soft) == -1)
9488 		return (-1);
9489 
9490 	return (0);
9491 }
9492 
9493 
9494 /* ------------------------------------------------------------------------ */
9495 /* Function:   ipf_fini_all                                                 */
9496 /* Returns:    0 = success, -1 = failure                                    */
9497 /* Parameters: softc(I) - pointer to soft context main structure            */
9498 /*                                                                          */
9499 /* Work through all of the subsystems inside IPFilter and call the fini     */
9500 /* function for each in an order that won't lead to a crash :)              */
9501 /* ------------------------------------------------------------------------ */
9502 int
9503 ipf_fini_all(ipf_main_softc_t *softc)
9504 {
9505 
9506 	ipf_token_flush(softc);
9507 
9508 	if (ipf_proxy_soft_fini(softc, softc->ipf_proxy_soft) == -1)
9509 		return (-1);
9510 
9511 	if (ipf_auth_soft_fini(softc, softc->ipf_auth_soft) == -1)
9512 		return (-1);
9513 
9514 	if (ipf_frag_soft_fini(softc, softc->ipf_frag_soft) == -1)
9515 		return (-1);
9516 
9517 	if (ipf_nat_soft_fini(softc, softc->ipf_nat_soft) == -1)
9518 		return (-1);
9519 
9520 	if (ipf_state_soft_fini(softc, softc->ipf_state_soft) == -1)
9521 		return (-1);
9522 
9523 	if (ipf_sync_soft_fini(softc, softc->ipf_sync_soft) == -1)
9524 		return (-1);
9525 
9526 	if (ipf_lookup_soft_fini(softc, softc->ipf_lookup_soft) == -1)
9527 		return (-1);
9528 
9529 #ifdef IPFILTER_LOG
9530 	if (ipf_log_soft_fini(softc, softc->ipf_log_soft) == -1)
9531 		return (-1);
9532 #endif
9533 
9534 	if (ipf_main_soft_fini(softc) == -1)
9535 		return (-1);
9536 
9537 	return (0);
9538 }
9539 
9540 
9541 /* ------------------------------------------------------------------------ */
9542 /* Function:    ipf_rule_expire                                             */
9543 /* Returns:     Nil                                                         */
9544 /* Parameters:  softc(I) - pointer to soft context main structure           */
9545 /*                                                                          */
9546 /* At present this function exists just to support temporary addition of    */
9547 /* firewall rules. Both inactive and active lists are scanned for items to  */
9548 /* purge, as by rights, the expiration is computed as soon as the rule is   */
9549 /* loaded in.                                                               */
9550 /* ------------------------------------------------------------------------ */
9551 void
9552 ipf_rule_expire(ipf_main_softc_t *softc)
9553 {
9554 	frentry_t *fr;
9555 
9556 	if ((softc->ipf_rule_explist[0] == NULL) &&
9557 	    (softc->ipf_rule_explist[1] == NULL))
9558 		return;
9559 
9560 	WRITE_ENTER(&softc->ipf_mutex);
9561 
9562 	while ((fr = softc->ipf_rule_explist[0]) != NULL) {
9563 		/*
9564 		 * Because the list is kept sorted on insertion, the fist
9565 		 * one that dies in the future means no more work to do.
9566 		 */
9567 		if (fr->fr_die > softc->ipf_ticks)
9568 			break;
9569 		ipf_rule_delete(softc, fr, IPL_LOGIPF, 0);
9570 	}
9571 
9572 	while ((fr = softc->ipf_rule_explist[1]) != NULL) {
9573 		/*
9574 		 * Because the list is kept sorted on insertion, the fist
9575 		 * one that dies in the future means no more work to do.
9576 		 */
9577 		if (fr->fr_die > softc->ipf_ticks)
9578 			break;
9579 		ipf_rule_delete(softc, fr, IPL_LOGIPF, 1);
9580 	}
9581 
9582 	RWLOCK_EXIT(&softc->ipf_mutex);
9583 }
9584 
9585 
9586 static int ipf_ht_node_cmp(struct host_node_s *, struct host_node_s *);
9587 static void ipf_ht_node_make_key(host_track_t *, host_node_t *, int,
9588 				      i6addr_t *);
9589 
9590 host_node_t RBI_ZERO(ipf_rb);
9591 RBI_CODE(ipf_rb, host_node_t, hn_entry, ipf_ht_node_cmp)
9592 
9593 
9594 /* ------------------------------------------------------------------------ */
9595 /* Function:    ipf_ht_node_cmp                                             */
9596 /* Returns:     int   - 0 == nodes are the same, ..                         */
9597 /* Parameters:  k1(I) - pointer to first key to compare                     */
9598 /*              k2(I) - pointer to second key to compare                    */
9599 /*                                                                          */
9600 /* The "key" for the node is a combination of two fields: the address       */
9601 /* family and the address itself.                                           */
9602 /*                                                                          */
9603 /* Because we're not actually interpreting the address data, it isn't       */
9604 /* necessary to convert them to/from network/host byte order. The mask is   */
9605 /* just used to remove bits that aren't significant - it doesn't matter     */
9606 /* where they are, as long as they're always in the same place.             */
9607 /*                                                                          */
9608 /* As with IP6_EQ, comparing IPv6 addresses starts at the bottom because    */
9609 /* this is where individual ones will differ the most - but not true for    */
9610 /* for /48's, etc.                                                          */
9611 /* ------------------------------------------------------------------------ */
9612 static int
9613 ipf_ht_node_cmp(struct host_node_s *k1, struct host_node_s *k2)
9614 {
9615 	int i;
9616 
9617 	i = (k2->hn_addr.adf_family - k1->hn_addr.adf_family);
9618 	if (i != 0)
9619 		return (i);
9620 
9621 	if (k1->hn_addr.adf_family == AF_INET)
9622 		return (k2->hn_addr.adf_addr.in4.s_addr -
9623 			k1->hn_addr.adf_addr.in4.s_addr);
9624 
9625 	i = k2->hn_addr.adf_addr.i6[3] - k1->hn_addr.adf_addr.i6[3];
9626 	if (i != 0)
9627 		return (i);
9628 	i = k2->hn_addr.adf_addr.i6[2] - k1->hn_addr.adf_addr.i6[2];
9629 	if (i != 0)
9630 		return (i);
9631 	i = k2->hn_addr.adf_addr.i6[1] - k1->hn_addr.adf_addr.i6[1];
9632 	if (i != 0)
9633 		return (i);
9634 	i = k2->hn_addr.adf_addr.i6[0] - k1->hn_addr.adf_addr.i6[0];
9635 	return (i);
9636 }
9637 
9638 
9639 /* ------------------------------------------------------------------------ */
9640 /* Function:    ipf_ht_node_make_key                                        */
9641 /* Returns:     Nil                                                         */
9642 /* parameters:  htp(I)    - pointer to address tracking structure           */
9643 /*              key(I)    - where to store masked address for lookup        */
9644 /*              family(I) - protocol family of address                      */
9645 /*              addr(I)   - pointer to network address                      */
9646 /*                                                                          */
9647 /* Using the "netmask" (number of bits) stored parent host tracking struct, */
9648 /* copy the address passed in into the key structure whilst masking out the */
9649 /* bits that we don't want.                                                 */
9650 /*                                                                          */
9651 /* Because the parser will set ht_netmask to 128 if there is no protocol    */
9652 /* specified (the parser doesn't know if it should be a v4 or v6 rule), we  */
9653 /* have to be wary of that and not allow 32-128 to happen.                  */
9654 /* ------------------------------------------------------------------------ */
9655 static void
9656 ipf_ht_node_make_key(host_track_t *htp, host_node_t *key, int family,
9657 	i6addr_t *addr)
9658 {
9659 	key->hn_addr.adf_family = family;
9660 	if (family == AF_INET) {
9661 		u_32_t mask;
9662 		int bits;
9663 
9664 		key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in4);
9665 		bits = htp->ht_netmask;
9666 		if (bits >= 32) {
9667 			mask = 0xffffffff;
9668 		} else {
9669 			mask = htonl(0xffffffff << (32 - bits));
9670 		}
9671 		key->hn_addr.adf_addr.in4.s_addr = addr->in4.s_addr & mask;
9672 #ifdef USE_INET6
9673 	} else {
9674 		int bits = htp->ht_netmask;
9675 
9676 		key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in6);
9677 		if (bits > 96) {
9678 			key->hn_addr.adf_addr.i6[3] = addr->i6[3] &
9679 					     htonl(0xffffffff << (128 - bits));
9680 			key->hn_addr.adf_addr.i6[2] = addr->i6[2];
9681 			key->hn_addr.adf_addr.i6[1] = addr->i6[2];
9682 			key->hn_addr.adf_addr.i6[0] = addr->i6[2];
9683 		} else if (bits > 64) {
9684 			key->hn_addr.adf_addr.i6[3] = 0;
9685 			key->hn_addr.adf_addr.i6[2] = addr->i6[2] &
9686 					     htonl(0xffffffff << (96 - bits));
9687 			key->hn_addr.adf_addr.i6[1] = addr->i6[1];
9688 			key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9689 		} else if (bits > 32) {
9690 			key->hn_addr.adf_addr.i6[3] = 0;
9691 			key->hn_addr.adf_addr.i6[2] = 0;
9692 			key->hn_addr.adf_addr.i6[1] = addr->i6[1] &
9693 					     htonl(0xffffffff << (64 - bits));
9694 			key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9695 		} else {
9696 			key->hn_addr.adf_addr.i6[3] = 0;
9697 			key->hn_addr.adf_addr.i6[2] = 0;
9698 			key->hn_addr.adf_addr.i6[1] = 0;
9699 			key->hn_addr.adf_addr.i6[0] = addr->i6[0] &
9700 					     htonl(0xffffffff << (32 - bits));
9701 		}
9702 #endif
9703 	}
9704 }
9705 
9706 
9707 /* ------------------------------------------------------------------------ */
9708 /* Function:    ipf_ht_node_add                                             */
9709 /* Returns:     int       - 0 == success,  -1 == failure                    */
9710 /* Parameters:  softc(I)  - pointer to soft context main structure          */
9711 /*              htp(I)    - pointer to address tracking structure           */
9712 /*              family(I) - protocol family of address                      */
9713 /*              addr(I)   - pointer to network address                      */
9714 /*                                                                          */
9715 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS  */
9716 /*       ipf_ht_node_del FROM RUNNING CONCURRENTLY ON THE SAME htp.         */
9717 /*                                                                          */
9718 /* After preparing the key with the address information to find, look in    */
9719 /* the red-black tree to see if the address is known. A successful call to  */
9720 /* this function can mean one of two things: a new node was added to the    */
9721 /* tree or a matching node exists and we're able to bump up its activity.   */
9722 /* ------------------------------------------------------------------------ */
9723 int
9724 ipf_ht_node_add(ipf_main_softc_t *softc, host_track_t *htp, int family,
9725 	i6addr_t *addr)
9726 {
9727 	host_node_t *h;
9728 	host_node_t k;
9729 
9730 	ipf_ht_node_make_key(htp, &k, family, addr);
9731 
9732 	h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
9733 	if (h == NULL) {
9734 		if (htp->ht_cur_nodes >= htp->ht_max_nodes)
9735 			return (-1);
9736 		KMALLOC(h, host_node_t *);
9737 		if (h == NULL) {
9738 			DT(ipf_rb_no_mem);
9739 			LBUMP(ipf_rb_no_mem);
9740 			return (-1);
9741 		}
9742 
9743 		/*
9744 		 * If there was a macro to initialise the RB node then that
9745 		 * would get used here, but there isn't...
9746 		 */
9747 		bzero((char *)h, sizeof(*h));
9748 		h->hn_addr = k.hn_addr;
9749 		h->hn_addr.adf_family = k.hn_addr.adf_family;
9750 		RBI_INSERT(ipf_rb, &htp->ht_root, h);
9751 		htp->ht_cur_nodes++;
9752 	} else {
9753 		if ((htp->ht_max_per_node != 0) &&
9754 		    (h->hn_active >= htp->ht_max_per_node)) {
9755 			DT(ipf_rb_node_max);
9756 			LBUMP(ipf_rb_node_max);
9757 			return (-1);
9758 		}
9759 	}
9760 
9761 	h->hn_active++;
9762 
9763 	return (0);
9764 }
9765 
9766 
9767 /* ------------------------------------------------------------------------ */
9768 /* Function:    ipf_ht_node_del                                             */
9769 /* Returns:     int       - 0 == success,  -1 == failure                    */
9770 /* parameters:  htp(I)    - pointer to address tracking structure           */
9771 /*              family(I) - protocol family of address                      */
9772 /*              addr(I)   - pointer to network address                      */
9773 /*                                                                          */
9774 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS  */
9775 /*       ipf_ht_node_add FROM RUNNING CONCURRENTLY ON THE SAME htp.         */
9776 /*                                                                          */
9777 /* Try and find the address passed in amongst the leavese on this tree to   */
9778 /* be friend. If found then drop the active account for that node drops by  */
9779 /* one. If that count reaches 0, it is time to free it all up.              */
9780 /* ------------------------------------------------------------------------ */
9781 int
9782 ipf_ht_node_del(host_track_t *htp, int family, i6addr_t *addr)
9783 {
9784 	host_node_t *h;
9785 	host_node_t k;
9786 
9787 	ipf_ht_node_make_key(htp, &k, family, addr);
9788 
9789 	h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
9790 	if (h == NULL) {
9791 		return (-1);
9792 	} else {
9793 		h->hn_active--;
9794 		if (h->hn_active == 0) {
9795 			(void) RBI_DELETE(ipf_rb, &htp->ht_root, h);
9796 			htp->ht_cur_nodes--;
9797 			KFREE(h);
9798 		}
9799 	}
9800 
9801 	return (0);
9802 }
9803 
9804 
9805 /* ------------------------------------------------------------------------ */
9806 /* Function:    ipf_rb_ht_init                                              */
9807 /* Returns:     Nil                                                         */
9808 /* Parameters:  head(I) - pointer to host tracking structure                */
9809 /*                                                                          */
9810 /* Initialise the host tracking structure to be ready for use above.        */
9811 /* ------------------------------------------------------------------------ */
9812 void
9813 ipf_rb_ht_init(host_track_t *head)
9814 {
9815 	RBI_INIT(ipf_rb, &head->ht_root);
9816 }
9817 
9818 
9819 /* ------------------------------------------------------------------------ */
9820 /* Function:    ipf_rb_ht_freenode                                          */
9821 /* Returns:     Nil                                                         */
9822 /* Parameters:  head(I) - pointer to host tracking structure                */
9823 /*              arg(I)  - additional argument from walk caller              */
9824 /*                                                                          */
9825 /* Free an actual host_node_t structure.                                    */
9826 /* ------------------------------------------------------------------------ */
9827 void
9828 ipf_rb_ht_freenode(host_node_t *node, void *arg)
9829 {
9830 	KFREE(node);
9831 }
9832 
9833 
9834 /* ------------------------------------------------------------------------ */
9835 /* Function:    ipf_rb_ht_flush                                             */
9836 /* Returns:     Nil                                                         */
9837 /* Parameters:  head(I) - pointer to host tracking structure                */
9838 /*                                                                          */
9839 /* Remove all of the nodes in the tree tracking hosts by calling a walker   */
9840 /* and free'ing each one.                                                   */
9841 /* ------------------------------------------------------------------------ */
9842 void
9843 ipf_rb_ht_flush(host_track_t *head)
9844 {
9845 	RBI_WALK(ipf_rb, &head->ht_root, ipf_rb_ht_freenode, NULL);
9846 }
9847 
9848 
9849 /* ------------------------------------------------------------------------ */
9850 /* Function:    ipf_slowtimer                                               */
9851 /* Returns:     Nil                                                         */
9852 /* Parameters:  ptr(I) - pointer to main ipf soft context structure         */
9853 /*                                                                          */
9854 /* Slowly expire held state for fragments.  Timeouts are set * in           */
9855 /* expectation of this being called twice per second.                       */
9856 /* ------------------------------------------------------------------------ */
9857 void
9858 ipf_slowtimer(ipf_main_softc_t *softc)
9859 {
9860 
9861 	ipf_token_expire(softc);
9862 	ipf_frag_expire(softc);
9863 	ipf_state_expire(softc);
9864 	ipf_nat_expire(softc);
9865 	ipf_auth_expire(softc);
9866 	ipf_lookup_expire(softc);
9867 	ipf_rule_expire(softc);
9868 	ipf_sync_expire(softc);
9869 	softc->ipf_ticks++;
9870 }
9871 
9872 
9873 /* ------------------------------------------------------------------------ */
9874 /* Function:    ipf_inet_mask_add                                           */
9875 /* Returns:     Nil                                                         */
9876 /* Parameters:  bits(I) - pointer to nat context information                */
9877 /*              mtab(I) - pointer to mask hash table structure              */
9878 /*                                                                          */
9879 /* When called, bits represents the mask of a new NAT rule that has just    */
9880 /* been added. This function inserts a bitmask into the array of masks to   */
9881 /* search when searching for a matching NAT rule for a packet.              */
9882 /* Prevention of duplicate masks is achieved by checking the use count for  */
9883 /* a given netmask.                                                         */
9884 /* ------------------------------------------------------------------------ */
9885 void
9886 ipf_inet_mask_add(int bits, ipf_v4_masktab_t *mtab)
9887 {
9888 	u_32_t mask;
9889 	int i, j;
9890 
9891 	mtab->imt4_masks[bits]++;
9892 	if (mtab->imt4_masks[bits] > 1)
9893 		return;
9894 
9895 	if (bits == 0)
9896 		mask = 0;
9897 	else
9898 		mask = 0xffffffff << (32 - bits);
9899 
9900 	for (i = 0; i < 33; i++) {
9901 		if (ntohl(mtab->imt4_active[i]) < mask) {
9902 			for (j = 32; j > i; j--)
9903 				mtab->imt4_active[j] = mtab->imt4_active[j - 1];
9904 			mtab->imt4_active[i] = htonl(mask);
9905 			break;
9906 		}
9907 	}
9908 	mtab->imt4_max++;
9909 }
9910 
9911 
9912 /* ------------------------------------------------------------------------ */
9913 /* Function:    ipf_inet_mask_del                                           */
9914 /* Returns:     Nil                                                         */
9915 /* Parameters:  bits(I) - number of bits set in the netmask                 */
9916 /*              mtab(I) - pointer to mask hash table structure              */
9917 /*                                                                          */
9918 /* Remove the 32bit bitmask represented by "bits" from the collection of    */
9919 /* netmasks stored inside of mtab.                                          */
9920 /* ------------------------------------------------------------------------ */
9921 void
9922 ipf_inet_mask_del(int bits, ipf_v4_masktab_t *mtab)
9923 {
9924 	u_32_t mask;
9925 	int i, j;
9926 
9927 	mtab->imt4_masks[bits]--;
9928 	if (mtab->imt4_masks[bits] > 0)
9929 		return;
9930 
9931 	mask = htonl(0xffffffff << (32 - bits));
9932 	for (i = 0; i < 33; i++) {
9933 		if (mtab->imt4_active[i] == mask) {
9934 			for (j = i + 1; j < 33; j++)
9935 				mtab->imt4_active[j - 1] = mtab->imt4_active[j];
9936 			break;
9937 		}
9938 	}
9939 	mtab->imt4_max--;
9940 	ASSERT(mtab->imt4_max >= 0);
9941 }
9942 
9943 
9944 #ifdef USE_INET6
9945 /* ------------------------------------------------------------------------ */
9946 /* Function:    ipf_inet6_mask_add                                          */
9947 /* Returns:     Nil                                                         */
9948 /* Parameters:  bits(I) - number of bits set in mask                        */
9949 /*              mask(I) - pointer to mask to add                            */
9950 /*              mtab(I) - pointer to mask hash table structure              */
9951 /*                                                                          */
9952 /* When called, bitcount represents the mask of a IPv6 NAT map rule that    */
9953 /* has just been added. This function inserts a bitmask into the array of   */
9954 /* masks to search when searching for a matching NAT rule for a packet.     */
9955 /* Prevention of duplicate masks is achieved by checking the use count for  */
9956 /* a given netmask.                                                         */
9957 /* ------------------------------------------------------------------------ */
9958 void
9959 ipf_inet6_mask_add(int bits, i6addr_t *mask, ipf_v6_masktab_t *mtab)
9960 {
9961 	i6addr_t zero;
9962 	int i, j;
9963 
9964 	mtab->imt6_masks[bits]++;
9965 	if (mtab->imt6_masks[bits] > 1)
9966 		return;
9967 
9968 	if (bits == 0) {
9969 		mask = &zero;
9970 		zero.i6[0] = 0;
9971 		zero.i6[1] = 0;
9972 		zero.i6[2] = 0;
9973 		zero.i6[3] = 0;
9974 	}
9975 
9976 	for (i = 0; i < 129; i++) {
9977 		if (IP6_LT(&mtab->imt6_active[i], mask)) {
9978 			for (j = 128; j > i; j--)
9979 				mtab->imt6_active[j] = mtab->imt6_active[j - 1];
9980 			mtab->imt6_active[i] = *mask;
9981 			break;
9982 		}
9983 	}
9984 	mtab->imt6_max++;
9985 }
9986 
9987 
9988 /* ------------------------------------------------------------------------ */
9989 /* Function:    ipf_inet6_mask_del                                          */
9990 /* Returns:     Nil                                                         */
9991 /* Parameters:  bits(I) - number of bits set in mask                        */
9992 /*              mask(I) - pointer to mask to remove                         */
9993 /*              mtab(I) - pointer to mask hash table structure              */
9994 /*                                                                          */
9995 /* Remove the 128bit bitmask represented by "bits" from the collection of   */
9996 /* netmasks stored inside of mtab.                                          */
9997 /* ------------------------------------------------------------------------ */
9998 void
9999 ipf_inet6_mask_del(int bits, i6addr_t *mask, ipf_v6_masktab_t *mtab)
10000 {
10001 	i6addr_t zero;
10002 	int i, j;
10003 
10004 	mtab->imt6_masks[bits]--;
10005 	if (mtab->imt6_masks[bits] > 0)
10006 		return;
10007 
10008 	if (bits == 0)
10009 		mask = &zero;
10010 	zero.i6[0] = 0;
10011 	zero.i6[1] = 0;
10012 	zero.i6[2] = 0;
10013 	zero.i6[3] = 0;
10014 
10015 	for (i = 0; i < 129; i++) {
10016 		if (IP6_EQ(&mtab->imt6_active[i], mask)) {
10017 			for (j = i + 1; j < 129; j++) {
10018 				mtab->imt6_active[j - 1] = mtab->imt6_active[j];
10019 				if (IP6_EQ(&mtab->imt6_active[j - 1], &zero))
10020 					break;
10021 			}
10022 			break;
10023 		}
10024 	}
10025 	mtab->imt6_max--;
10026 	ASSERT(mtab->imt6_max >= 0);
10027 }
10028 #endif
10029 
10030 /* ------------------------------------------------------------------------ */
10031 /* Function:    ipf_check_names_string                                      */
10032 /* Returns:     int       -  0 == success                                   */
10033 /*                        -  1 == negative offset                           */
10034 /*                        -  2 == offset exceds namelen                     */
10035 /*                        -  3 == string exceeds the names string           */
10036 /* Parameters:  names   - pointer to names string                           */
10037 /*              namelen - total length of names string                      */
10038 /*              offset  - offset into names string                          */
10039 /*                                                                          */
10040 /* Validate the names string (fr_names for ipfilter, in_names for ipnat).   */
10041 /* ------------------------------------------------------------------------ */
10042 int
10043 ipf_check_names_string(char *names, int namelen, int offset)
10044 {
10045 	const char *name;
10046 	size_t len;
10047 
10048 	if (offset == -1)
10049 		return (0);
10050 	if (offset < 0)
10051 		return (1);
10052 	if (offset > namelen)
10053 		return (2);
10054 	name = &names[offset];
10055 	len = strnlen(name, namelen - offset);
10056 	if (len == namelen - offset)
10057 		return (3);
10058 	return (0);
10059 }
10060