xref: /freebsd/sys/netpfil/ipfilter/netinet/fil.c (revision ddec4209b10d65ef19e1d1b884e1b876eab58c7d)
1 
2 /*
3  * Copyright (C) 2012 by Darren Reed.
4  *
5  * See the IPFILTER.LICENCE file for details on licencing.
6  *
7  * Copyright 2008 Sun Microsystems.
8  *
9  * $Id$
10  *
11  */
12 #if defined(KERNEL) || defined(_KERNEL)
13 # undef KERNEL
14 # undef _KERNEL
15 # define        KERNEL	1
16 # define        _KERNEL	1
17 #endif
18 #include <sys/errno.h>
19 #include <sys/types.h>
20 #include <sys/param.h>
21 #include <sys/time.h>
22 #if defined(_KERNEL) && defined(__FreeBSD__)
23 #  if !defined(IPFILTER_LKM)
24 #   include "opt_inet6.h"
25 #  endif
26 # include <sys/filio.h>
27 #else
28 # include <sys/ioctl.h>
29 #endif
30 #if defined(__SVR4) || defined(sun) /* SOLARIS */
31 # include <sys/filio.h>
32 #endif
33 # include <sys/fcntl.h>
34 #if defined(_KERNEL)
35 # include <sys/systm.h>
36 # include <sys/file.h>
37 #else
38 # include <stdio.h>
39 # include <string.h>
40 # include <stdlib.h>
41 # include <stddef.h>
42 # include <sys/file.h>
43 # define _KERNEL
44 # include <sys/uio.h>
45 # undef _KERNEL
46 #endif
47 #if !defined(__SVR4)
48 # include <sys/mbuf.h>
49 #else
50 # include <sys/byteorder.h>
51 # if (SOLARIS2 < 5) && defined(sun)
52 #  include <sys/dditypes.h>
53 # endif
54 #endif
55 # include <sys/protosw.h>
56 #include <sys/socket.h>
57 #include <net/if.h>
58 #ifdef sun
59 # include <net/af.h>
60 #endif
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/ip.h>
64 #include <netinet/tcp.h>
65 # include <netinet/udp.h>
66 # include <netinet/ip_icmp.h>
67 #include "netinet/ip_compat.h"
68 #ifdef	USE_INET6
69 # include <netinet/icmp6.h>
70 # if !SOLARIS && defined(_KERNEL)
71 #  include <netinet6/in6_var.h>
72 # endif
73 #endif
74 #include "netinet/ip_fil.h"
75 #include "netinet/ip_nat.h"
76 #include "netinet/ip_frag.h"
77 #include "netinet/ip_state.h"
78 #include "netinet/ip_proxy.h"
79 #include "netinet/ip_auth.h"
80 #ifdef IPFILTER_SCAN
81 # include "netinet/ip_scan.h"
82 #endif
83 #include "netinet/ip_sync.h"
84 #include "netinet/ip_lookup.h"
85 #include "netinet/ip_pool.h"
86 #include "netinet/ip_htable.h"
87 #ifdef IPFILTER_COMPILED
88 # include "netinet/ip_rules.h"
89 #endif
90 #if defined(IPFILTER_BPF) && defined(_KERNEL)
91 # include <net/bpf.h>
92 #endif
93 #if defined(__FreeBSD__)
94 # include <sys/malloc.h>
95 #endif
96 #include "netinet/ipl.h"
97 
98 #if defined(__NetBSD__) && (__NetBSD_Version__ >= 104230000)
99 # include <sys/callout.h>
100 extern struct callout ipf_slowtimer_ch;
101 #endif
102 /* END OF INCLUDES */
103 
104 
105 #ifndef	_KERNEL
106 # include "ipf.h"
107 # include "ipt.h"
108 extern	int	opts;
109 extern	int	blockreason;
110 #endif /* _KERNEL */
111 
112 #define FASTROUTE_RECURSION
113 
114 #define	LBUMP(x)	softc->x++
115 #define	LBUMPD(x, y)	do { softc->x.y++; DT(y); } while (0)
116 
117 static	inline int	ipf_check_ipf(fr_info_t *, frentry_t *, int);
118 static	u_32_t		ipf_checkcipso(fr_info_t *, u_char *, int);
119 static	u_32_t		ipf_checkripso(u_char *);
120 static	u_32_t		ipf_decaps(fr_info_t *, u_32_t, int);
121 #ifdef IPFILTER_LOG
122 static	frentry_t	*ipf_dolog(fr_info_t *, u_32_t *);
123 #endif
124 static	int		ipf_flushlist(ipf_main_softc_t *, int *, frentry_t **);
125 static	int		ipf_flush_groups(ipf_main_softc_t *, frgroup_t **,
126 					      int);
127 static	ipfunc_t	ipf_findfunc(ipfunc_t);
128 static	void		*ipf_findlookup(ipf_main_softc_t *, int, frentry_t *,
129 					     i6addr_t *, i6addr_t *);
130 static	frentry_t	*ipf_firewall(fr_info_t *, u_32_t *);
131 static	int		ipf_fr_matcharray(fr_info_t *, int *);
132 static	int		ipf_frruleiter(ipf_main_softc_t *, void *, int,
133 					    void *);
134 static	void		ipf_funcfini(ipf_main_softc_t *, frentry_t *);
135 static	int		ipf_funcinit(ipf_main_softc_t *, frentry_t *);
136 static	int		ipf_geniter(ipf_main_softc_t *, ipftoken_t *,
137 					 ipfgeniter_t *);
138 static	void		ipf_getstat(ipf_main_softc_t *,
139 					 struct friostat *, int);
140 static	int		ipf_group_flush(ipf_main_softc_t *, frgroup_t *);
141 static	void		ipf_group_free(frgroup_t *);
142 static	int		ipf_grpmapfini(struct ipf_main_softc_s *,
143 					    frentry_t *);
144 static	int		ipf_grpmapinit(struct ipf_main_softc_s *,
145 					    frentry_t *);
146 static	frentry_t	*ipf_nextrule(ipf_main_softc_t *, int, int,
147 					   frentry_t *, int);
148 static	int		ipf_portcheck(frpcmp_t *, u_32_t);
149 static	inline int	ipf_pr_ah(fr_info_t *);
150 static	inline void	ipf_pr_esp(fr_info_t *);
151 static	inline void	ipf_pr_gre(fr_info_t *);
152 static	inline void	ipf_pr_udp(fr_info_t *);
153 static	inline void	ipf_pr_tcp(fr_info_t *);
154 static	inline void	ipf_pr_icmp(fr_info_t *);
155 static	inline void	ipf_pr_ipv4hdr(fr_info_t *);
156 static	inline void	ipf_pr_short(fr_info_t *, int);
157 static	inline int	ipf_pr_tcpcommon(fr_info_t *);
158 static	inline int	ipf_pr_udpcommon(fr_info_t *);
159 static	void		ipf_rule_delete(ipf_main_softc_t *, frentry_t *f,
160 					     int, int);
161 static	void		ipf_rule_expire_insert(ipf_main_softc_t *,
162 						    frentry_t *, int);
163 static	int		ipf_synclist(ipf_main_softc_t *, frentry_t *,
164 					  void *);
165 static	void		ipf_token_flush(ipf_main_softc_t *);
166 static	void		ipf_token_unlink(ipf_main_softc_t *,
167 					      ipftoken_t *);
168 static	ipftuneable_t	*ipf_tune_findbyname(ipftuneable_t *,
169 						  const char *);
170 static	ipftuneable_t	*ipf_tune_findbycookie(ipftuneable_t **, void *,
171 						    void **);
172 static	int		ipf_updateipid(fr_info_t *);
173 static	int		ipf_settimeout(struct ipf_main_softc_s *,
174 					    struct ipftuneable *,
175 					    ipftuneval_t *);
176 #if !defined(_KERNEL) || SOLARIS
177 static	int		ppsratecheck(struct timeval *, int *, int);
178 #endif
179 
180 
181 /*
182  * bit values for identifying presence of individual IP options
183  * All of these tables should be ordered by increasing key value on the left
184  * hand side to allow for binary searching of the array and include a trailer
185  * with a 0 for the bitmask for linear searches to easily find the end with.
186  */
187 static const	struct	optlist	ipopts[] = {
188 	{ IPOPT_NOP,	0x000001 },
189 	{ IPOPT_RR,	0x000002 },
190 	{ IPOPT_ZSU,	0x000004 },
191 	{ IPOPT_MTUP,	0x000008 },
192 	{ IPOPT_MTUR,	0x000010 },
193 	{ IPOPT_ENCODE,	0x000020 },
194 	{ IPOPT_TS,	0x000040 },
195 	{ IPOPT_TR,	0x000080 },
196 	{ IPOPT_SECURITY, 0x000100 },
197 	{ IPOPT_LSRR,	0x000200 },
198 	{ IPOPT_E_SEC,	0x000400 },
199 	{ IPOPT_CIPSO,	0x000800 },
200 	{ IPOPT_SATID,	0x001000 },
201 	{ IPOPT_SSRR,	0x002000 },
202 	{ IPOPT_ADDEXT,	0x004000 },
203 	{ IPOPT_VISA,	0x008000 },
204 	{ IPOPT_IMITD,	0x010000 },
205 	{ IPOPT_EIP,	0x020000 },
206 	{ IPOPT_FINN,	0x040000 },
207 	{ 0,		0x000000 }
208 };
209 
210 #ifdef USE_INET6
211 static const struct optlist ip6exthdr[] = {
212 	{ IPPROTO_HOPOPTS,		0x000001 },
213 	{ IPPROTO_IPV6,			0x000002 },
214 	{ IPPROTO_ROUTING,		0x000004 },
215 	{ IPPROTO_FRAGMENT,		0x000008 },
216 	{ IPPROTO_ESP,			0x000010 },
217 	{ IPPROTO_AH,			0x000020 },
218 	{ IPPROTO_NONE,			0x000040 },
219 	{ IPPROTO_DSTOPTS,		0x000080 },
220 	{ IPPROTO_MOBILITY,		0x000100 },
221 	{ 0,				0 }
222 };
223 #endif
224 
225 /*
226  * bit values for identifying presence of individual IP security options
227  */
228 static const	struct	optlist	secopt[] = {
229 	{ IPSO_CLASS_RES4,	0x01 },
230 	{ IPSO_CLASS_TOPS,	0x02 },
231 	{ IPSO_CLASS_SECR,	0x04 },
232 	{ IPSO_CLASS_RES3,	0x08 },
233 	{ IPSO_CLASS_CONF,	0x10 },
234 	{ IPSO_CLASS_UNCL,	0x20 },
235 	{ IPSO_CLASS_RES2,	0x40 },
236 	{ IPSO_CLASS_RES1,	0x80 }
237 };
238 
239 char	ipfilter_version[] = IPL_VERSION;
240 
241 int	ipf_features = 0
242 #ifdef	IPFILTER_LKM
243 		| IPF_FEAT_LKM
244 #endif
245 #ifdef	IPFILTER_LOG
246 		| IPF_FEAT_LOG
247 #endif
248 		| IPF_FEAT_LOOKUP
249 #ifdef	IPFILTER_BPF
250 		| IPF_FEAT_BPF
251 #endif
252 #ifdef	IPFILTER_COMPILED
253 		| IPF_FEAT_COMPILED
254 #endif
255 #ifdef	IPFILTER_CKSUM
256 		| IPF_FEAT_CKSUM
257 #endif
258 		| IPF_FEAT_SYNC
259 #ifdef	IPFILTER_SCAN
260 		| IPF_FEAT_SCAN
261 #endif
262 #ifdef	USE_INET6
263 		| IPF_FEAT_IPV6
264 #endif
265 	;
266 
267 
268 /*
269  * Table of functions available for use with call rules.
270  */
271 static ipfunc_resolve_t ipf_availfuncs[] = {
272 	{ "srcgrpmap", ipf_srcgrpmap, ipf_grpmapinit, ipf_grpmapfini },
273 	{ "dstgrpmap", ipf_dstgrpmap, ipf_grpmapinit, ipf_grpmapfini },
274 	{ "",	      NULL,	      NULL,	      NULL }
275 };
276 
277 static ipftuneable_t ipf_main_tuneables[] = {
278 	{ { (void *)offsetof(struct ipf_main_softc_s, ipf_flags) },
279 		"ipf_flags",		0,	0xffffffff,
280 		stsizeof(ipf_main_softc_t, ipf_flags),
281 		0,			NULL,	NULL },
282 	{ { (void *)offsetof(struct ipf_main_softc_s, ipf_active) },
283 		"active",		0,	0,
284 		stsizeof(ipf_main_softc_t, ipf_active),
285 		IPFT_RDONLY,		NULL,	NULL },
286 	{ { (void *)offsetof(ipf_main_softc_t, ipf_control_forwarding) },
287 		"control_forwarding",	0, 1,
288 		stsizeof(ipf_main_softc_t, ipf_control_forwarding),
289 		0,			NULL,	NULL },
290 	{ { (void *)offsetof(ipf_main_softc_t, ipf_update_ipid) },
291 		"update_ipid",		0,	1,
292 		stsizeof(ipf_main_softc_t, ipf_update_ipid),
293 		0,			NULL,	NULL },
294 	{ { (void *)offsetof(ipf_main_softc_t, ipf_chksrc) },
295 		"chksrc",		0,	1,
296 		stsizeof(ipf_main_softc_t, ipf_chksrc),
297 		0,			NULL,	NULL },
298 	{ { (void *)offsetof(ipf_main_softc_t, ipf_minttl) },
299 		"min_ttl",		0,	1,
300 		stsizeof(ipf_main_softc_t, ipf_minttl),
301 		0,			NULL,	NULL },
302 	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmpminfragmtu) },
303 		"icmp_minfragmtu",	0,	1,
304 		stsizeof(ipf_main_softc_t, ipf_icmpminfragmtu),
305 		0,			NULL,	NULL },
306 	{ { (void *)offsetof(ipf_main_softc_t, ipf_pass) },
307 		"default_pass",		0,	0xffffffff,
308 		stsizeof(ipf_main_softc_t, ipf_pass),
309 		0,			NULL,	NULL },
310 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpidletimeout) },
311 		"tcp_idle_timeout",	1,	0x7fffffff,
312 		stsizeof(ipf_main_softc_t, ipf_tcpidletimeout),
313 		0,			NULL,	ipf_settimeout },
314 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosewait) },
315 		"tcp_close_wait",	1,	0x7fffffff,
316 		stsizeof(ipf_main_softc_t, ipf_tcpclosewait),
317 		0,			NULL,	ipf_settimeout },
318 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcplastack) },
319 		"tcp_last_ack",		1,	0x7fffffff,
320 		stsizeof(ipf_main_softc_t, ipf_tcplastack),
321 		0,			NULL,	ipf_settimeout },
322 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcptimeout) },
323 		"tcp_timeout",		1,	0x7fffffff,
324 		stsizeof(ipf_main_softc_t, ipf_tcptimeout),
325 		0,			NULL,	ipf_settimeout },
326 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynsent) },
327 		"tcp_syn_sent",		1,	0x7fffffff,
328 		stsizeof(ipf_main_softc_t, ipf_tcpsynsent),
329 		0,			NULL,	ipf_settimeout },
330 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynrecv) },
331 		"tcp_syn_received",	1,	0x7fffffff,
332 		stsizeof(ipf_main_softc_t, ipf_tcpsynrecv),
333 		0,			NULL,	ipf_settimeout },
334 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosed) },
335 		"tcp_closed",		1,	0x7fffffff,
336 		stsizeof(ipf_main_softc_t, ipf_tcpclosed),
337 		0,			NULL,	ipf_settimeout },
338 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcphalfclosed) },
339 		"tcp_half_closed",	1,	0x7fffffff,
340 		stsizeof(ipf_main_softc_t, ipf_tcphalfclosed),
341 		0,			NULL,	ipf_settimeout },
342 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcptimewait) },
343 		"tcp_time_wait",	1,	0x7fffffff,
344 		stsizeof(ipf_main_softc_t, ipf_tcptimewait),
345 		0,			NULL,	ipf_settimeout },
346 	{ { (void *)offsetof(ipf_main_softc_t, ipf_udptimeout) },
347 		"udp_timeout",		1,	0x7fffffff,
348 		stsizeof(ipf_main_softc_t, ipf_udptimeout),
349 		0,			NULL,	ipf_settimeout },
350 	{ { (void *)offsetof(ipf_main_softc_t, ipf_udpacktimeout) },
351 		"udp_ack_timeout",	1,	0x7fffffff,
352 		stsizeof(ipf_main_softc_t, ipf_udpacktimeout),
353 		0,			NULL,	ipf_settimeout },
354 	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmptimeout) },
355 		"icmp_timeout",		1,	0x7fffffff,
356 		stsizeof(ipf_main_softc_t, ipf_icmptimeout),
357 		0,			NULL,	ipf_settimeout },
358 	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmpacktimeout) },
359 		"icmp_ack_timeout",	1,	0x7fffffff,
360 		stsizeof(ipf_main_softc_t, ipf_icmpacktimeout),
361 		0,			NULL,	ipf_settimeout },
362 	{ { (void *)offsetof(ipf_main_softc_t, ipf_iptimeout) },
363 		"ip_timeout",		1,	0x7fffffff,
364 		stsizeof(ipf_main_softc_t, ipf_iptimeout),
365 		0,			NULL,	ipf_settimeout },
366 	{ { (void *)offsetof(ipf_main_softc_t, ipf_max_namelen) },
367 		"max_namelen",		0,	0x7fffffff,
368 		stsizeof(ipf_main_softc_t, ipf_max_namelen),
369 		0,			NULL,	NULL },
370 #if defined(INSTANCES) && defined(_KERNEL)
371 	{ { (void *)offsetof(ipf_main_softc_t, ipf_get_loopback) },
372 		"intercept_loopback",	0,	1,
373 		stsizeof(ipf_main_softc_t, ipf_get_loopback),
374 		0,			NULL,	ipf_set_loopback },
375 #endif
376 	{ { 0 },
377 		NULL,			0,	0,
378 		0,
379 		0,			NULL,	NULL }
380 };
381 
382 
383 /*
384  * The next section of code is a collection of small routines that set
385  * fields in the fr_info_t structure passed based on properties of the
386  * current packet.  There are different routines for the same protocol
387  * for each of IPv4 and IPv6.  Adding a new protocol, for which there
388  * will "special" inspection for setup, is now more easily done by adding
389  * a new routine and expanding the ipf_pr_ipinit*() function rather than by
390  * adding more code to a growing switch statement.
391  */
392 #ifdef USE_INET6
393 static	inline int	ipf_pr_ah6(fr_info_t *);
394 static	inline void	ipf_pr_esp6(fr_info_t *);
395 static	inline void	ipf_pr_gre6(fr_info_t *);
396 static	inline void	ipf_pr_udp6(fr_info_t *);
397 static	inline void	ipf_pr_tcp6(fr_info_t *);
398 static	inline void	ipf_pr_icmp6(fr_info_t *);
399 static	inline void	ipf_pr_ipv6hdr(fr_info_t *);
400 static	inline void	ipf_pr_short6(fr_info_t *, int);
401 static	inline int	ipf_pr_hopopts6(fr_info_t *);
402 static	inline int	ipf_pr_mobility6(fr_info_t *);
403 static	inline int	ipf_pr_routing6(fr_info_t *);
404 static	inline int	ipf_pr_dstopts6(fr_info_t *);
405 static	inline int	ipf_pr_fragment6(fr_info_t *);
406 static	inline struct ip6_ext *ipf_pr_ipv6exthdr(fr_info_t *, int, int);
407 
408 
409 /* ------------------------------------------------------------------------ */
410 /* Function:    ipf_pr_short6                                               */
411 /* Returns:     void                                                        */
412 /* Parameters:  fin(I)  - pointer to packet information                     */
413 /*              xmin(I) - minimum header size                               */
414 /*                                                                          */
415 /* IPv6 Only                                                                */
416 /* This is function enforces the 'is a packet too short to be legit' rule   */
417 /* for IPv6 and marks the packet with FI_SHORT if so.  See function comment */
418 /* for ipf_pr_short() for more details.                                     */
419 /* ------------------------------------------------------------------------ */
420 static inline void
ipf_pr_short6(fr_info_t * fin,int xmin)421 ipf_pr_short6(fr_info_t *fin, int xmin)
422 {
423 
424 	if (fin->fin_dlen < xmin)
425 		fin->fin_flx |= FI_SHORT;
426 }
427 
428 
429 /* ------------------------------------------------------------------------ */
430 /* Function:    ipf_pr_ipv6hdr                                              */
431 /* Returns:     void                                                        */
432 /* Parameters:  fin(I) - pointer to packet information                      */
433 /*                                                                          */
434 /* IPv6 Only                                                                */
435 /* Copy values from the IPv6 header into the fr_info_t struct and call the  */
436 /* per-protocol analyzer if it exists.  In validating the packet, a protocol*/
437 /* analyzer may pullup or free the packet itself so we need to be vigiliant */
438 /* of that possibility arising.                                             */
439 /* ------------------------------------------------------------------------ */
440 static inline void
ipf_pr_ipv6hdr(fr_info_t * fin)441 ipf_pr_ipv6hdr(fr_info_t *fin)
442 {
443 	ip6_t *ip6 = (ip6_t *)fin->fin_ip;
444 	int p, go = 1, i;
445 	fr_ip_t *fi = &fin->fin_fi;
446 
447 	fin->fin_off = 0;
448 
449 	fi->fi_tos = 0;
450 	fi->fi_optmsk = 0;
451 	fi->fi_secmsk = 0;
452 	fi->fi_auth = 0;
453 
454 	p = ip6->ip6_nxt;
455 	fin->fin_crc = p;
456 	fi->fi_ttl = ip6->ip6_hlim;
457 	fi->fi_src.in6 = ip6->ip6_src;
458 	fin->fin_crc += fi->fi_src.i6[0];
459 	fin->fin_crc += fi->fi_src.i6[1];
460 	fin->fin_crc += fi->fi_src.i6[2];
461 	fin->fin_crc += fi->fi_src.i6[3];
462 	fi->fi_dst.in6 = ip6->ip6_dst;
463 	fin->fin_crc += fi->fi_dst.i6[0];
464 	fin->fin_crc += fi->fi_dst.i6[1];
465 	fin->fin_crc += fi->fi_dst.i6[2];
466 	fin->fin_crc += fi->fi_dst.i6[3];
467 	fin->fin_id = 0;
468 	if (IN6_IS_ADDR_MULTICAST(&fi->fi_dst.in6))
469 		fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
470 
471 	while (go && !(fin->fin_flx & FI_SHORT)) {
472 		switch (p)
473 		{
474 		case IPPROTO_UDP :
475 			ipf_pr_udp6(fin);
476 			go = 0;
477 			break;
478 
479 		case IPPROTO_TCP :
480 			ipf_pr_tcp6(fin);
481 			go = 0;
482 			break;
483 
484 		case IPPROTO_ICMPV6 :
485 			ipf_pr_icmp6(fin);
486 			go = 0;
487 			break;
488 
489 		case IPPROTO_GRE :
490 			ipf_pr_gre6(fin);
491 			go = 0;
492 			break;
493 
494 		case IPPROTO_HOPOPTS :
495 			p = ipf_pr_hopopts6(fin);
496 			break;
497 
498 		case IPPROTO_MOBILITY :
499 			p = ipf_pr_mobility6(fin);
500 			break;
501 
502 		case IPPROTO_DSTOPTS :
503 			p = ipf_pr_dstopts6(fin);
504 			break;
505 
506 		case IPPROTO_ROUTING :
507 			p = ipf_pr_routing6(fin);
508 			break;
509 
510 		case IPPROTO_AH :
511 			p = ipf_pr_ah6(fin);
512 			break;
513 
514 		case IPPROTO_ESP :
515 			ipf_pr_esp6(fin);
516 			go = 0;
517 			break;
518 
519 		case IPPROTO_IPV6 :
520 			for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
521 				if (ip6exthdr[i].ol_val == p) {
522 					fin->fin_flx |= ip6exthdr[i].ol_bit;
523 					break;
524 				}
525 			go = 0;
526 			break;
527 
528 		case IPPROTO_NONE :
529 			go = 0;
530 			break;
531 
532 		case IPPROTO_FRAGMENT :
533 			p = ipf_pr_fragment6(fin);
534 			/*
535 			 * Given that the only fragments we want to let through
536 			 * (where fin_off != 0) are those where the non-first
537 			 * fragments only have data, we can safely stop looking
538 			 * at headers if this is a non-leading fragment.
539 			 */
540 			if (fin->fin_off != 0)
541 				go = 0;
542 			break;
543 
544 		default :
545 			go = 0;
546 			break;
547 		}
548 
549 		/*
550 		 * It is important to note that at this point, for the
551 		 * extension headers (go != 0), the entire header may not have
552 		 * been pulled up when the code gets to this point.  This is
553 		 * only done for "go != 0" because the other header handlers
554 		 * will all pullup their complete header.  The other indicator
555 		 * of an incomplete packet is that this was just an extension
556 		 * header.
557 		 */
558 		if ((go != 0) && (p != IPPROTO_NONE) &&
559 		    (ipf_pr_pullup(fin, 0) == -1)) {
560 			p = IPPROTO_NONE;
561 			break;
562 		}
563 	}
564 
565 	/*
566 	 * Some of the above functions, like ipf_pr_esp6(), can call ipf_pullup
567 	 * and destroy whatever packet was here.  The caller of this function
568 	 * expects us to return if there is a problem with ipf_pullup.
569 	 */
570 	if (fin->fin_m == NULL) {
571 		ipf_main_softc_t *softc = fin->fin_main_soft;
572 
573 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_bad);
574 		return;
575 	}
576 
577 	fi->fi_p = p;
578 
579 	/*
580 	 * IPv6 fragment case 1 - see comment for ipf_pr_fragment6().
581 	 * "go != 0" implies the above loop hasn't arrived at a layer 4 header.
582 	 */
583 	if ((go != 0) && (fin->fin_flx & FI_FRAG) && (fin->fin_off == 0)) {
584 		ipf_main_softc_t *softc = fin->fin_main_soft;
585 
586 		fin->fin_flx |= FI_BAD;
587 		DT2(ipf_fi_bad_ipv6_frag_1, fr_info_t *, fin, int, go);
588 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_badfrag);
589 		LBUMP(ipf_stats[fin->fin_out].fr_v6_bad);
590 	}
591 }
592 
593 
594 /* ------------------------------------------------------------------------ */
595 /* Function:    ipf_pr_ipv6exthdr                                           */
596 /* Returns:     struct ip6_ext * - pointer to the start of the next header  */
597 /*                                 or NULL if there is a prolblem.          */
598 /* Parameters:  fin(I)      - pointer to packet information                 */
599 /*              multiple(I) - flag indicating yes/no if multiple occurances */
600 /*                            of this extension header are allowed.         */
601 /*              proto(I)    - protocol number for this extension header     */
602 /*                                                                          */
603 /* IPv6 Only                                                                */
604 /* This function embodies a number of common checks that all IPv6 extension */
605 /* headers must be subjected to.  For example, making sure the packet is    */
606 /* big enough for it to be in, checking if it is repeated and setting a     */
607 /* flag to indicate its presence.                                           */
608 /* ------------------------------------------------------------------------ */
609 static inline struct ip6_ext *
ipf_pr_ipv6exthdr(fr_info_t * fin,int multiple,int proto)610 ipf_pr_ipv6exthdr(fr_info_t *fin, int multiple, int proto)
611 {
612 	ipf_main_softc_t *softc = fin->fin_main_soft;
613 	struct ip6_ext *hdr;
614 	u_short shift;
615 	int i;
616 
617 	fin->fin_flx |= FI_V6EXTHDR;
618 
619 				/* 8 is default length of extension hdr */
620 	if ((fin->fin_dlen - 8) < 0) {
621 		fin->fin_flx |= FI_SHORT;
622 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_short);
623 		return (NULL);
624 	}
625 
626 	if (ipf_pr_pullup(fin, 8) == -1) {
627 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_pullup);
628 		return (NULL);
629 	}
630 
631 	hdr = fin->fin_dp;
632 	switch (proto)
633 	{
634 	case IPPROTO_FRAGMENT :
635 		shift = 8;
636 		break;
637 	default :
638 		shift = 8 + (hdr->ip6e_len << 3);
639 		break;
640 	}
641 
642 	if (shift > fin->fin_dlen) {	/* Nasty extension header length? */
643 		fin->fin_flx |= FI_BAD;
644 		DT3(ipf_fi_bad_pr_ipv6exthdr_len, fr_info_t *, fin, u_short, shift, u_short, fin->fin_dlen);
645 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_hlen);
646 		return (NULL);
647 	}
648 
649 	fin->fin_dp = (char *)fin->fin_dp + shift;
650 	fin->fin_dlen -= shift;
651 
652 	/*
653 	 * If we have seen a fragment header, do not set any flags to indicate
654 	 * the presence of this extension header as it has no impact on the
655 	 * end result until after it has been defragmented.
656 	 */
657 	if (fin->fin_flx & FI_FRAG)
658 		return (hdr);
659 
660 	for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
661 		if (ip6exthdr[i].ol_val == proto) {
662 			/*
663 			 * Most IPv6 extension headers are only allowed once.
664 			 */
665 			if ((multiple == 0) &&
666 			    ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0)) {
667 				fin->fin_flx |= FI_BAD;
668 				DT2(ipf_fi_bad_ipv6exthdr_once, fr_info_t *, fin, u_int, (fin->fin_optmsk & ip6exthdr[i].ol_bit));
669 			} else
670 				fin->fin_optmsk |= ip6exthdr[i].ol_bit;
671 			break;
672 		}
673 
674 	return (hdr);
675 }
676 
677 
678 /* ------------------------------------------------------------------------ */
679 /* Function:    ipf_pr_hopopts6                                             */
680 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
681 /* Parameters:  fin(I) - pointer to packet information                      */
682 /*                                                                          */
683 /* IPv6 Only                                                                */
684 /* This is function checks pending hop by hop options extension header      */
685 /* ------------------------------------------------------------------------ */
686 static inline int
ipf_pr_hopopts6(fr_info_t * fin)687 ipf_pr_hopopts6(fr_info_t *fin)
688 {
689 	struct ip6_ext *hdr;
690 
691 	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
692 	if (hdr == NULL)
693 		return (IPPROTO_NONE);
694 	return (hdr->ip6e_nxt);
695 }
696 
697 
698 /* ------------------------------------------------------------------------ */
699 /* Function:    ipf_pr_mobility6                                            */
700 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
701 /* Parameters:  fin(I) - pointer to packet information                      */
702 /*                                                                          */
703 /* IPv6 Only                                                                */
704 /* This is function checks the IPv6 mobility extension header               */
705 /* ------------------------------------------------------------------------ */
706 static inline int
ipf_pr_mobility6(fr_info_t * fin)707 ipf_pr_mobility6(fr_info_t *fin)
708 {
709 	struct ip6_ext *hdr;
710 
711 	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_MOBILITY);
712 	if (hdr == NULL)
713 		return (IPPROTO_NONE);
714 	return (hdr->ip6e_nxt);
715 }
716 
717 
718 /* ------------------------------------------------------------------------ */
719 /* Function:    ipf_pr_routing6                                             */
720 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
721 /* Parameters:  fin(I) - pointer to packet information                      */
722 /*                                                                          */
723 /* IPv6 Only                                                                */
724 /* This is function checks pending routing extension header                 */
725 /* ------------------------------------------------------------------------ */
726 static inline int
ipf_pr_routing6(fr_info_t * fin)727 ipf_pr_routing6(fr_info_t *fin)
728 {
729 	struct ip6_routing *hdr;
730 
731 	hdr = (struct ip6_routing *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_ROUTING);
732 	if (hdr == NULL)
733 		return (IPPROTO_NONE);
734 
735 	switch (hdr->ip6r_type)
736 	{
737 	case 0 :
738 		/*
739 		 * Nasty extension header length?
740 		 */
741 		if (((hdr->ip6r_len >> 1) < hdr->ip6r_segleft) ||
742 		    (hdr->ip6r_segleft && (hdr->ip6r_len & 1))) {
743 			ipf_main_softc_t *softc = fin->fin_main_soft;
744 
745 			fin->fin_flx |= FI_BAD;
746 			DT1(ipf_fi_bad_routing6, fr_info_t *, fin);
747 			LBUMPD(ipf_stats[fin->fin_out], fr_v6_rh_bad);
748 			return (IPPROTO_NONE);
749 		}
750 		break;
751 
752 	default :
753 		break;
754 	}
755 
756 	return (hdr->ip6r_nxt);
757 }
758 
759 
760 /* ------------------------------------------------------------------------ */
761 /* Function:    ipf_pr_fragment6                                            */
762 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
763 /* Parameters:  fin(I) - pointer to packet information                      */
764 /*                                                                          */
765 /* IPv6 Only                                                                */
766 /* Examine the IPv6 fragment header and extract fragment offset information.*/
767 /*                                                                          */
768 /* Fragments in IPv6 are extraordinarily difficult to deal with - much more */
769 /* so than in IPv4.  There are 5 cases of fragments with IPv6 that all      */
770 /* packets with a fragment header can fit into.  They are as follows:       */
771 /*                                                                          */
772 /* 1.  [IPv6][0-n EH][FH][0-n EH] (no L4HDR present)                        */
773 /* 2.  [IPV6][0-n EH][FH][0-n EH][L4HDR part] (short)                       */
774 /* 3.  [IPV6][0-n EH][FH][L4HDR part][0-n data] (short)                     */
775 /* 4.  [IPV6][0-n EH][FH][0-n EH][L4HDR][0-n data]                          */
776 /* 5.  [IPV6][0-n EH][FH][data]                                             */
777 /*                                                                          */
778 /* IPV6 = IPv6 header, FH = Fragment Header,                                */
779 /* 0-n EH = 0 or more extension headers, 0-n data = 0 or more bytes of data */
780 /*                                                                          */
781 /* Packets that match 1, 2, 3 will be dropped as the only reasonable        */
782 /* scenario in which they happen is in extreme circumstances that are most  */
783 /* likely to be an indication of an attack rather than normal traffic.      */
784 /* A type 3 packet may be sent by an attacked after a type 4 packet.  There */
785 /* are two rules that can be used to guard against type 3 packets: L4       */
786 /* headers must always be in a packet that has the offset field set to 0    */
787 /* and no packet is allowed to overlay that where offset = 0.               */
788 /* ------------------------------------------------------------------------ */
789 static inline int
ipf_pr_fragment6(fr_info_t * fin)790 ipf_pr_fragment6(fr_info_t *fin)
791 {
792 	ipf_main_softc_t *softc = fin->fin_main_soft;
793 	struct ip6_frag *frag;
794 
795 	fin->fin_flx |= FI_FRAG;
796 
797 	frag = (struct ip6_frag *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT);
798 	if (frag == NULL) {
799 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_frag_bad);
800 		return (IPPROTO_NONE);
801 	}
802 
803 	if ((frag->ip6f_offlg & IP6F_MORE_FRAG) != 0) {
804 		/*
805 		 * Any fragment that isn't the last fragment must have its
806 		 * length as a multiple of 8.
807 		 */
808 		if ((fin->fin_plen & 7) != 0) {
809 			fin->fin_flx |= FI_BAD;
810 			DT2(ipf_fi_bad_frag_not_8, fr_info_t *, fin, u_int, (fin->fin_plen & 7));
811 		}
812 	}
813 
814 	fin->fin_fraghdr = frag;
815 	fin->fin_id = frag->ip6f_ident;
816 	fin->fin_off = ntohs(frag->ip6f_offlg & IP6F_OFF_MASK);
817 	if (fin->fin_off != 0)
818 		fin->fin_flx |= FI_FRAGBODY;
819 
820 	/*
821 	 * Jumbograms aren't handled, so the max. length is 64k
822 	 */
823 	if ((fin->fin_off << 3) + fin->fin_dlen > 65535) {
824 		  fin->fin_flx |= FI_BAD;
825 		  DT2(ipf_fi_bad_jumbogram, fr_info_t *, fin, u_int, ((fin->fin_off << 3) + fin->fin_dlen));
826 	}
827 
828 	/*
829 	 * We don't know where the transport layer header (or whatever is next
830 	 * is), as it could be behind destination options (amongst others) so
831 	* return the fragment header as the type of packet this is.  Note that
832 	 * this effectively disables the fragment cache for > 1 protocol at a
833 	 * time.
834 	 */
835 	return (frag->ip6f_nxt);
836 }
837 
838 
839 /* ------------------------------------------------------------------------ */
840 /* Function:    ipf_pr_dstopts6                                             */
841 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
842 /* Parameters:  fin(I) - pointer to packet information                      */
843 /*                                                                          */
844 /* IPv6 Only                                                                */
845 /* This is function checks pending destination options extension header     */
846 /* ------------------------------------------------------------------------ */
847 static inline int
ipf_pr_dstopts6(fr_info_t * fin)848 ipf_pr_dstopts6(fr_info_t *fin)
849 {
850 	ipf_main_softc_t *softc = fin->fin_main_soft;
851 	struct ip6_ext *hdr;
852 
853 	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_DSTOPTS);
854 	if (hdr == NULL) {
855 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_dst_bad);
856 		return (IPPROTO_NONE);
857 	}
858 	return (hdr->ip6e_nxt);
859 }
860 
861 
862 /* ------------------------------------------------------------------------ */
863 /* Function:    ipf_pr_icmp6                                                */
864 /* Returns:     void                                                        */
865 /* Parameters:  fin(I) - pointer to packet information                      */
866 /*                                                                          */
867 /* IPv6 Only                                                                */
868 /* This routine is mainly concerned with determining the minimum valid size */
869 /* for an ICMPv6 packet.                                                    */
870 /* ------------------------------------------------------------------------ */
871 static inline void
ipf_pr_icmp6(fr_info_t * fin)872 ipf_pr_icmp6(fr_info_t *fin)
873 {
874 	int minicmpsz = sizeof(struct icmp6_hdr);
875 	struct icmp6_hdr *icmp6;
876 
877 	if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1) {
878 		ipf_main_softc_t *softc = fin->fin_main_soft;
879 
880 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_icmp6_pullup);
881 		return;
882 	}
883 
884 	if (fin->fin_dlen > 1) {
885 		ip6_t *ip6;
886 
887 		icmp6 = fin->fin_dp;
888 
889 		fin->fin_data[0] = *(u_short *)icmp6;
890 
891 		if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0)
892 			fin->fin_flx |= FI_ICMPQUERY;
893 
894 		switch (icmp6->icmp6_type)
895 		{
896 		case ICMP6_ECHO_REPLY :
897 		case ICMP6_ECHO_REQUEST :
898 			if (fin->fin_dlen >= 6)
899 				fin->fin_data[1] = icmp6->icmp6_id;
900 			minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t);
901 			break;
902 
903 		case ICMP6_DST_UNREACH :
904 		case ICMP6_PACKET_TOO_BIG :
905 		case ICMP6_TIME_EXCEEDED :
906 		case ICMP6_PARAM_PROB :
907 			fin->fin_flx |= FI_ICMPERR;
908 			minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t);
909 			if (fin->fin_plen < ICMP6ERR_IPICMPHLEN)
910 				break;
911 
912 			if (M_LEN(fin->fin_m) < fin->fin_plen) {
913 				if (ipf_coalesce(fin) != 1)
914 					return;
915 			}
916 
917 			if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN) == -1)
918 				return;
919 
920 			/*
921 			 * If the destination of this packet doesn't match the
922 			 * source of the original packet then this packet is
923 			 * not correct.
924 			 */
925 			icmp6 = fin->fin_dp;
926 			ip6 = (ip6_t *)((char *)icmp6 + ICMPERR_ICMPHLEN);
927 			if (IP6_NEQ(&fin->fin_fi.fi_dst,
928 				    (i6addr_t *)&ip6->ip6_src)) {
929 				fin->fin_flx |= FI_BAD;
930 				DT1(ipf_fi_bad_icmp6, fr_info_t *, fin);
931 			}
932 			break;
933 		default :
934 			break;
935 		}
936 	}
937 
938 	ipf_pr_short6(fin, minicmpsz);
939 	if ((fin->fin_flx & (FI_SHORT|FI_BAD)) == 0) {
940 		u_char p = fin->fin_p;
941 
942 		fin->fin_p = IPPROTO_ICMPV6;
943 		ipf_checkv6sum(fin);
944 		fin->fin_p = p;
945 	}
946 }
947 
948 
949 /* ------------------------------------------------------------------------ */
950 /* Function:    ipf_pr_udp6                                                 */
951 /* Returns:     void                                                        */
952 /* Parameters:  fin(I) - pointer to packet information                      */
953 /*                                                                          */
954 /* IPv6 Only                                                                */
955 /* Analyse the packet for IPv6/UDP properties.                              */
956 /* Is not expected to be called for fragmented packets.                     */
957 /* ------------------------------------------------------------------------ */
958 static inline void
ipf_pr_udp6(fr_info_t * fin)959 ipf_pr_udp6(fr_info_t *fin)
960 {
961 
962 	if (ipf_pr_udpcommon(fin) == 0) {
963 		u_char p = fin->fin_p;
964 
965 		fin->fin_p = IPPROTO_UDP;
966 		ipf_checkv6sum(fin);
967 		fin->fin_p = p;
968 	}
969 }
970 
971 
972 /* ------------------------------------------------------------------------ */
973 /* Function:    ipf_pr_tcp6                                                 */
974 /* Returns:     void                                                        */
975 /* Parameters:  fin(I) - pointer to packet information                      */
976 /*                                                                          */
977 /* IPv6 Only                                                                */
978 /* Analyse the packet for IPv6/TCP properties.                              */
979 /* Is not expected to be called for fragmented packets.                     */
980 /* ------------------------------------------------------------------------ */
981 static inline void
ipf_pr_tcp6(fr_info_t * fin)982 ipf_pr_tcp6(fr_info_t *fin)
983 {
984 
985 	if (ipf_pr_tcpcommon(fin) == 0) {
986 		u_char p = fin->fin_p;
987 
988 		fin->fin_p = IPPROTO_TCP;
989 		ipf_checkv6sum(fin);
990 		fin->fin_p = p;
991 	}
992 }
993 
994 
995 /* ------------------------------------------------------------------------ */
996 /* Function:    ipf_pr_esp6                                                 */
997 /* Returns:     void                                                        */
998 /* Parameters:  fin(I) - pointer to packet information                      */
999 /*                                                                          */
1000 /* IPv6 Only                                                                */
1001 /* Analyse the packet for ESP properties.                                   */
1002 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
1003 /* even though the newer ESP packets must also have a sequence number that  */
1004 /* is 32bits as well, it is not possible(?) to determine the version from a */
1005 /* simple packet header.                                                    */
1006 /* ------------------------------------------------------------------------ */
1007 static inline void
ipf_pr_esp6(fr_info_t * fin)1008 ipf_pr_esp6(fr_info_t *fin)
1009 {
1010 
1011 	if ((fin->fin_off == 0) && (ipf_pr_pullup(fin, 8) == -1)) {
1012 		ipf_main_softc_t *softc = fin->fin_main_soft;
1013 
1014 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_esp_pullup);
1015 		return;
1016 	}
1017 }
1018 
1019 
1020 /* ------------------------------------------------------------------------ */
1021 /* Function:    ipf_pr_ah6                                                  */
1022 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
1023 /* Parameters:  fin(I) - pointer to packet information                      */
1024 /*                                                                          */
1025 /* IPv6 Only                                                                */
1026 /* Analyse the packet for AH properties.                                    */
1027 /* The minimum length is taken to be the combination of all fields in the   */
1028 /* header being present and no authentication data (null algorithm used.)   */
1029 /* ------------------------------------------------------------------------ */
1030 static inline int
ipf_pr_ah6(fr_info_t * fin)1031 ipf_pr_ah6(fr_info_t *fin)
1032 {
1033 	authhdr_t *ah;
1034 
1035 	fin->fin_flx |= FI_AH;
1036 
1037 	ah = (authhdr_t *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
1038 	if (ah == NULL) {
1039 		ipf_main_softc_t *softc = fin->fin_main_soft;
1040 
1041 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ah_bad);
1042 		return (IPPROTO_NONE);
1043 	}
1044 
1045 	ipf_pr_short6(fin, sizeof(*ah));
1046 
1047 	/*
1048 	 * No need for another pullup, ipf_pr_ipv6exthdr() will pullup
1049 	 * enough data to satisfy ah_next (the very first one.)
1050 	 */
1051 	return (ah->ah_next);
1052 }
1053 
1054 
1055 /* ------------------------------------------------------------------------ */
1056 /* Function:    ipf_pr_gre6                                                 */
1057 /* Returns:     void                                                        */
1058 /* Parameters:  fin(I) - pointer to packet information                      */
1059 /*                                                                          */
1060 /* Analyse the packet for GRE properties.                                   */
1061 /* ------------------------------------------------------------------------ */
1062 static inline void
ipf_pr_gre6(fr_info_t * fin)1063 ipf_pr_gre6(fr_info_t *fin)
1064 {
1065 	grehdr_t *gre;
1066 
1067 	if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1068 		ipf_main_softc_t *softc = fin->fin_main_soft;
1069 
1070 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_gre_pullup);
1071 		return;
1072 	}
1073 
1074 	gre = fin->fin_dp;
1075 	if (GRE_REV(gre->gr_flags) == 1)
1076 		fin->fin_data[0] = gre->gr_call;
1077 }
1078 #endif	/* USE_INET6 */
1079 
1080 
1081 /* ------------------------------------------------------------------------ */
1082 /* Function:    ipf_pr_pullup                                               */
1083 /* Returns:     int     - 0 == pullup succeeded, -1 == failure              */
1084 /* Parameters:  fin(I)  - pointer to packet information                     */
1085 /*              plen(I) - length (excluding L3 header) to pullup            */
1086 /*                                                                          */
1087 /* Short inline function to cut down on code duplication to perform a call  */
1088 /* to ipf_pullup to ensure there is the required amount of data,            */
1089 /* consecutively in the packet buffer.                                      */
1090 /*                                                                          */
1091 /* This function pulls up 'extra' data at the location of fin_dp.  fin_dp   */
1092 /* points to the first byte after the complete layer 3 header, which will   */
1093 /* include all of the known extension headers for IPv6 or options for IPv4. */
1094 /*                                                                          */
1095 /* Since fr_pullup() expects the total length of bytes to be pulled up, it  */
1096 /* is necessary to add those we can already assume to be pulled up (fin_dp  */
1097 /* - fin_ip) to what is passed through.                                     */
1098 /* ------------------------------------------------------------------------ */
1099 int
ipf_pr_pullup(fr_info_t * fin,int plen)1100 ipf_pr_pullup(fr_info_t *fin, int plen)
1101 {
1102 	ipf_main_softc_t *softc = fin->fin_main_soft;
1103 
1104 	if (fin->fin_m != NULL) {
1105 		if (fin->fin_dp != NULL)
1106 			plen += (char *)fin->fin_dp -
1107 				((char *)fin->fin_ip + fin->fin_hlen);
1108 		plen += fin->fin_hlen;
1109 		if (M_LEN(fin->fin_m) < plen + fin->fin_ipoff) {
1110 #if defined(_KERNEL)
1111 			if (ipf_pullup(fin->fin_m, fin, plen) == NULL) {
1112 				DT1(ipf_pullup_fail, fr_info_t *, fin);
1113 				LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1114 				fin->fin_reason = FRB_PULLUP;
1115 				fin->fin_flx |= FI_BAD;
1116 				return (-1);
1117 			}
1118 			LBUMP(ipf_stats[fin->fin_out].fr_pull[0]);
1119 #else
1120 			LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1121 			/*
1122 			 * Fake ipf_pullup failing
1123 			 */
1124 			fin->fin_reason = FRB_PULLUP;
1125 			*fin->fin_mp = NULL;
1126 			fin->fin_m = NULL;
1127 			fin->fin_ip = NULL;
1128 			fin->fin_flx |= FI_BAD;
1129 			return (-1);
1130 #endif
1131 		}
1132 	}
1133 	return (0);
1134 }
1135 
1136 
1137 /* ------------------------------------------------------------------------ */
1138 /* Function:    ipf_pr_short                                                */
1139 /* Returns:     void                                                        */
1140 /* Parameters:  fin(I)  - pointer to packet information                     */
1141 /*              xmin(I) - minimum header size                               */
1142 /*                                                                          */
1143 /* Check if a packet is "short" as defined by xmin.  The rule we are        */
1144 /* applying here is that the packet must not be fragmented within the layer */
1145 /* 4 header.  That is, it must not be a fragment that has its offset set to */
1146 /* start within the layer 4 header (hdrmin) or if it is at offset 0, the    */
1147 /* entire layer 4 header must be present (min).                             */
1148 /* ------------------------------------------------------------------------ */
1149 static inline void
ipf_pr_short(fr_info_t * fin,int xmin)1150 ipf_pr_short(fr_info_t *fin, int xmin)
1151 {
1152 
1153 	if (fin->fin_off == 0) {
1154 		if (fin->fin_dlen < xmin)
1155 			fin->fin_flx |= FI_SHORT;
1156 	} else if (fin->fin_off < xmin) {
1157 		fin->fin_flx |= FI_SHORT;
1158 	}
1159 }
1160 
1161 
1162 /* ------------------------------------------------------------------------ */
1163 /* Function:    ipf_pr_icmp                                                 */
1164 /* Returns:     void                                                        */
1165 /* Parameters:  fin(I) - pointer to packet information                      */
1166 /*                                                                          */
1167 /* IPv4 Only                                                                */
1168 /* Do a sanity check on the packet for ICMP (v4).  In nearly all cases,     */
1169 /* except extrememly bad packets, both type and code will be present.       */
1170 /* The expected minimum size of an ICMP packet is very much dependent on    */
1171 /* the type of it.                                                          */
1172 /*                                                                          */
1173 /* XXX - other ICMP sanity checks?                                          */
1174 /* ------------------------------------------------------------------------ */
1175 static inline void
ipf_pr_icmp(fr_info_t * fin)1176 ipf_pr_icmp(fr_info_t *fin)
1177 {
1178 	ipf_main_softc_t *softc = fin->fin_main_soft;
1179 	int minicmpsz = sizeof(struct icmp);
1180 	icmphdr_t *icmp;
1181 	ip_t *oip;
1182 
1183 	ipf_pr_short(fin, ICMPERR_ICMPHLEN);
1184 
1185 	if (fin->fin_off != 0) {
1186 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_frag);
1187 		return;
1188 	}
1189 
1190 	if (ipf_pr_pullup(fin, ICMPERR_ICMPHLEN) == -1) {
1191 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_pullup);
1192 		return;
1193 	}
1194 
1195 	icmp = fin->fin_dp;
1196 
1197 	fin->fin_data[0] = *(u_short *)icmp;
1198 	fin->fin_data[1] = icmp->icmp_id;
1199 
1200 	switch (icmp->icmp_type)
1201 	{
1202 	case ICMP_ECHOREPLY :
1203 	case ICMP_ECHO :
1204 	/* Router discovery messaes - RFC 1256 */
1205 	case ICMP_ROUTERADVERT :
1206 	case ICMP_ROUTERSOLICIT :
1207 		fin->fin_flx |= FI_ICMPQUERY;
1208 		minicmpsz = ICMP_MINLEN;
1209 		break;
1210 	/*
1211 	 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1212 	 * 3 * timestamp(3 * 4)
1213 	 */
1214 	case ICMP_TSTAMP :
1215 	case ICMP_TSTAMPREPLY :
1216 		fin->fin_flx |= FI_ICMPQUERY;
1217 		minicmpsz = 20;
1218 		break;
1219 	/*
1220 	 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1221 	 * mask(4)
1222 	 */
1223 	case ICMP_IREQ :
1224 	case ICMP_IREQREPLY :
1225 	case ICMP_MASKREQ :
1226 	case ICMP_MASKREPLY :
1227 		fin->fin_flx |= FI_ICMPQUERY;
1228 		minicmpsz = 12;
1229 		break;
1230 	/*
1231 	 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+)
1232 	 */
1233 	case ICMP_UNREACH :
1234 #ifdef icmp_nextmtu
1235 		if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) {
1236 			if (icmp->icmp_nextmtu < softc->ipf_icmpminfragmtu) {
1237 				fin->fin_flx |= FI_BAD;
1238 				DT3(ipf_fi_bad_icmp_nextmtu, fr_info_t *, fin, u_int, icmp->icmp_nextmtu, u_int, softc->ipf_icmpminfragmtu);
1239 			}
1240 		}
1241 #endif
1242 		/* FALLTHROUGH */
1243 	case ICMP_SOURCEQUENCH :
1244 	case ICMP_REDIRECT :
1245 	case ICMP_TIMXCEED :
1246 	case ICMP_PARAMPROB :
1247 		fin->fin_flx |= FI_ICMPERR;
1248 		if (ipf_coalesce(fin) != 1) {
1249 			LBUMPD(ipf_stats[fin->fin_out], fr_icmp_coalesce);
1250 			return;
1251 		}
1252 
1253 		/*
1254 		 * ICMP error packets should not be generated for IP
1255 		 * packets that are a fragment that isn't the first
1256 		 * fragment.
1257 		 */
1258 		oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN);
1259 		if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0) {
1260 			fin->fin_flx |= FI_BAD;
1261 			DT2(ipf_fi_bad_icmp_err, fr_info_t, fin, u_int, (ntohs(oip->ip_off) & IP_OFFMASK));
1262 		}
1263 
1264 		/*
1265 		 * If the destination of this packet doesn't match the
1266 		 * source of the original packet then this packet is
1267 		 * not correct.
1268 		 */
1269 		if (oip->ip_src.s_addr != fin->fin_daddr) {
1270 			fin->fin_flx |= FI_BAD;
1271 			DT1(ipf_fi_bad_src_ne_dst, fr_info_t *, fin);
1272 		}
1273 		break;
1274 	default :
1275 		break;
1276 	}
1277 
1278 	ipf_pr_short(fin, minicmpsz);
1279 
1280 	ipf_checkv4sum(fin);
1281 }
1282 
1283 
1284 /* ------------------------------------------------------------------------ */
1285 /* Function:    ipf_pr_tcpcommon                                            */
1286 /* Returns:     int    - 0 = header ok, 1 = bad packet, -1 = buffer error   */
1287 /* Parameters:  fin(I) - pointer to packet information                      */
1288 /*                                                                          */
1289 /* TCP header sanity checking.  Look for bad combinations of TCP flags,     */
1290 /* and make some checks with how they interact with other fields.           */
1291 /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is     */
1292 /* valid and mark the packet as bad if not.                                 */
1293 /* ------------------------------------------------------------------------ */
1294 static inline int
ipf_pr_tcpcommon(fr_info_t * fin)1295 ipf_pr_tcpcommon(fr_info_t *fin)
1296 {
1297 	ipf_main_softc_t *softc = fin->fin_main_soft;
1298 	int flags, tlen;
1299 	tcphdr_t *tcp;
1300 
1301 	fin->fin_flx |= FI_TCPUDP;
1302 	if (fin->fin_off != 0) {
1303 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_frag);
1304 		return (0);
1305 	}
1306 
1307 	if (ipf_pr_pullup(fin, sizeof(*tcp)) == -1) {
1308 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1309 		return (-1);
1310 	}
1311 
1312 	tcp = fin->fin_dp;
1313 	if (fin->fin_dlen > 3) {
1314 		fin->fin_sport = ntohs(tcp->th_sport);
1315 		fin->fin_dport = ntohs(tcp->th_dport);
1316 	}
1317 
1318 	if ((fin->fin_flx & FI_SHORT) != 0) {
1319 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_short);
1320 		return (1);
1321 	}
1322 
1323 	/*
1324 	 * Use of the TCP data offset *must* result in a value that is at
1325 	 * least the same size as the TCP header.
1326 	 */
1327 	tlen = TCP_OFF(tcp) << 2;
1328 	if (tlen < sizeof(tcphdr_t)) {
1329 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_small);
1330 		fin->fin_flx |= FI_BAD;
1331 		DT3(ipf_fi_bad_tlen, fr_info_t, fin, u_int, tlen, u_int, sizeof(tcphdr_t));
1332 		return (1);
1333 	}
1334 
1335 	flags = tcp_get_flags(tcp);
1336 	fin->fin_tcpf = tcp_get_flags(tcp);
1337 
1338 	/*
1339 	 * If the urgent flag is set, then the urgent pointer must
1340 	 * also be set and vice versa.  Good TCP packets do not have
1341 	 * just one of these set.
1342 	 */
1343 	if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) {
1344 		fin->fin_flx |= FI_BAD;
1345 		DT3(ipf_fi_bad_th_urg, fr_info_t*, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp);
1346 #if 0
1347 	} else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) {
1348 		/*
1349 		 * Ignore this case (#if 0) as it shows up in "real"
1350 		 * traffic with bogus values in the urgent pointer field.
1351 		 */
1352 		fin->fin_flx |= FI_BAD;
1353 		DT3(ipf_fi_bad_th_urg0, fr_info_t *, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp);
1354 #endif
1355 	} else if (((flags & (TH_SYN|TH_FIN)) != 0) &&
1356 		   ((flags & (TH_RST|TH_ACK)) == TH_RST)) {
1357 		/* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */
1358 		fin->fin_flx |= FI_BAD;
1359 		DT1(ipf_fi_bad_th_fin_rst_ack, fr_info_t, fin);
1360 #if 1
1361 	} else if (((flags & TH_SYN) != 0) &&
1362 		   ((flags & (TH_URG|TH_PUSH)) != 0)) {
1363 		/*
1364 		 * SYN with URG and PUSH set is not for normal TCP but it is
1365 		 * possible(?) with T/TCP...but who uses T/TCP?
1366 		 */
1367 		fin->fin_flx |= FI_BAD;
1368 		DT1(ipf_fi_bad_th_syn_urg_psh, fr_info_t *, fin);
1369 #endif
1370 	} else if (!(flags & TH_ACK)) {
1371 		/*
1372 		 * If the ack bit isn't set, then either the SYN or
1373 		 * RST bit must be set.  If the SYN bit is set, then
1374 		 * we expect the ACK field to be 0.  If the ACK is
1375 		 * not set and if URG, PSH or FIN are set, consdier
1376 		 * that to indicate a bad TCP packet.
1377 		 */
1378 		if ((flags == TH_SYN) && (tcp->th_ack != 0)) {
1379 			/*
1380 			 * Cisco PIX sets the ACK field to a random value.
1381 			 * In light of this, do not set FI_BAD until a patch
1382 			 * is available from Cisco to ensure that
1383 			 * interoperability between existing systems is
1384 			 * achieved.
1385 			 */
1386 			/*fin->fin_flx |= FI_BAD*/;
1387 			/*DT1(ipf_fi_bad_th_syn_ack, fr_info_t *, fin);*/
1388 		} else if (!(flags & (TH_RST|TH_SYN))) {
1389 			fin->fin_flx |= FI_BAD;
1390 			DT1(ipf_fi_bad_th_rst_syn, fr_info_t *, fin);
1391 		} else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) {
1392 			fin->fin_flx |= FI_BAD;
1393 			DT1(ipf_fi_bad_th_urg_push_fin, fr_info_t *, fin);
1394 		}
1395 	}
1396 	if (fin->fin_flx & FI_BAD) {
1397 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_bad_flags);
1398 		return (1);
1399 	}
1400 
1401 	/*
1402 	 * At this point, it's not exactly clear what is to be gained by
1403 	 * marking up which TCP options are and are not present.  The one we
1404 	 * are most interested in is the TCP window scale.  This is only in
1405 	 * a SYN packet [RFC1323] so we don't need this here...?
1406 	 * Now if we were to analyse the header for passive fingerprinting,
1407 	 * then that might add some weight to adding this...
1408 	 */
1409 	if (tlen == sizeof(tcphdr_t)) {
1410 		return (0);
1411 	}
1412 
1413 	if (ipf_pr_pullup(fin, tlen) == -1) {
1414 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1415 		return (-1);
1416 	}
1417 
1418 #if 0
1419 	tcp = fin->fin_dp;
1420 	ip = fin->fin_ip;
1421 	s = (u_char *)(tcp + 1);
1422 	off = IP_HL(ip) << 2;
1423 # ifdef _KERNEL
1424 	if (fin->fin_mp != NULL) {
1425 		mb_t *m = *fin->fin_mp;
1426 
1427 		if (off + tlen > M_LEN(m))
1428 			return;
1429 	}
1430 # endif
1431 	for (tlen -= (int)sizeof(*tcp); tlen > 0; ) {
1432 		opt = *s;
1433 		if (opt == '\0')
1434 			break;
1435 		else if (opt == TCPOPT_NOP)
1436 			ol = 1;
1437 		else {
1438 			if (tlen < 2)
1439 				break;
1440 			ol = (int)*(s + 1);
1441 			if (ol < 2 || ol > tlen)
1442 				break;
1443 		}
1444 
1445 		for (i = 9, mv = 4; mv >= 0; ) {
1446 			op = ipopts + i;
1447 			if (opt == (u_char)op->ol_val) {
1448 				optmsk |= op->ol_bit;
1449 				break;
1450 			}
1451 		}
1452 		tlen -= ol;
1453 		s += ol;
1454 	}
1455 #endif /* 0 */
1456 
1457 	return (0);
1458 }
1459 
1460 
1461 
1462 /* ------------------------------------------------------------------------ */
1463 /* Function:    ipf_pr_udpcommon                                            */
1464 /* Returns:     int    - 0 = header ok, 1 = bad packet                      */
1465 /* Parameters:  fin(I) - pointer to packet information                      */
1466 /*                                                                          */
1467 /* Extract the UDP source and destination ports, if present.  If compiled   */
1468 /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid.          */
1469 /* ------------------------------------------------------------------------ */
1470 static inline int
ipf_pr_udpcommon(fr_info_t * fin)1471 ipf_pr_udpcommon(fr_info_t *fin)
1472 {
1473 	udphdr_t *udp;
1474 
1475 	fin->fin_flx |= FI_TCPUDP;
1476 
1477 	if (!fin->fin_off && (fin->fin_dlen > 3)) {
1478 		if (ipf_pr_pullup(fin, sizeof(*udp)) == -1) {
1479 			ipf_main_softc_t *softc = fin->fin_main_soft;
1480 
1481 			fin->fin_flx |= FI_SHORT;
1482 			LBUMPD(ipf_stats[fin->fin_out], fr_udp_pullup);
1483 			return (1);
1484 		}
1485 
1486 		udp = fin->fin_dp;
1487 
1488 		fin->fin_sport = ntohs(udp->uh_sport);
1489 		fin->fin_dport = ntohs(udp->uh_dport);
1490 	}
1491 
1492 	return (0);
1493 }
1494 
1495 
1496 /* ------------------------------------------------------------------------ */
1497 /* Function:    ipf_pr_tcp                                                  */
1498 /* Returns:     void                                                        */
1499 /* Parameters:  fin(I) - pointer to packet information                      */
1500 /*                                                                          */
1501 /* IPv4 Only                                                                */
1502 /* Analyse the packet for IPv4/TCP properties.                              */
1503 /* ------------------------------------------------------------------------ */
1504 static inline void
ipf_pr_tcp(fr_info_t * fin)1505 ipf_pr_tcp(fr_info_t *fin)
1506 {
1507 
1508 	ipf_pr_short(fin, sizeof(tcphdr_t));
1509 
1510 	if (ipf_pr_tcpcommon(fin) == 0)
1511 		ipf_checkv4sum(fin);
1512 }
1513 
1514 
1515 /* ------------------------------------------------------------------------ */
1516 /* Function:    ipf_pr_udp                                                  */
1517 /* Returns:     void                                                        */
1518 /* Parameters:  fin(I) - pointer to packet information                      */
1519 /*                                                                          */
1520 /* IPv4 Only                                                                */
1521 /* Analyse the packet for IPv4/UDP properties.                              */
1522 /* ------------------------------------------------------------------------ */
1523 static inline void
ipf_pr_udp(fr_info_t * fin)1524 ipf_pr_udp(fr_info_t *fin)
1525 {
1526 
1527 	ipf_pr_short(fin, sizeof(udphdr_t));
1528 
1529 	if (ipf_pr_udpcommon(fin) == 0)
1530 		ipf_checkv4sum(fin);
1531 }
1532 
1533 
1534 /* ------------------------------------------------------------------------ */
1535 /* Function:    ipf_pr_esp                                                  */
1536 /* Returns:     void                                                        */
1537 /* Parameters:  fin(I) - pointer to packet information                      */
1538 /*                                                                          */
1539 /* Analyse the packet for ESP properties.                                   */
1540 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
1541 /* even though the newer ESP packets must also have a sequence number that  */
1542 /* is 32bits as well, it is not possible(?) to determine the version from a */
1543 /* simple packet header.                                                    */
1544 /* ------------------------------------------------------------------------ */
1545 static inline void
ipf_pr_esp(fr_info_t * fin)1546 ipf_pr_esp(fr_info_t *fin)
1547 {
1548 
1549 	if (fin->fin_off == 0) {
1550 		ipf_pr_short(fin, 8);
1551 		if (ipf_pr_pullup(fin, 8) == -1) {
1552 			ipf_main_softc_t *softc = fin->fin_main_soft;
1553 
1554 			LBUMPD(ipf_stats[fin->fin_out], fr_v4_esp_pullup);
1555 		}
1556 	}
1557 }
1558 
1559 
1560 /* ------------------------------------------------------------------------ */
1561 /* Function:    ipf_pr_ah                                                   */
1562 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
1563 /* Parameters:  fin(I) - pointer to packet information                      */
1564 /*                                                                          */
1565 /* Analyse the packet for AH properties.                                    */
1566 /* The minimum length is taken to be the combination of all fields in the   */
1567 /* header being present and no authentication data (null algorithm used.)   */
1568 /* ------------------------------------------------------------------------ */
1569 static inline int
ipf_pr_ah(fr_info_t * fin)1570 ipf_pr_ah(fr_info_t *fin)
1571 {
1572 	ipf_main_softc_t *softc = fin->fin_main_soft;
1573 	authhdr_t *ah;
1574 	int len;
1575 
1576 	fin->fin_flx |= FI_AH;
1577 	ipf_pr_short(fin, sizeof(*ah));
1578 
1579 	if (((fin->fin_flx & FI_SHORT) != 0) || (fin->fin_off != 0)) {
1580 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_ah_bad);
1581 		return (IPPROTO_NONE);
1582 	}
1583 
1584 	if (ipf_pr_pullup(fin, sizeof(*ah)) == -1) {
1585 		DT(fr_v4_ah_pullup_1);
1586 		LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1587 		return (IPPROTO_NONE);
1588 	}
1589 
1590 	ah = (authhdr_t *)fin->fin_dp;
1591 
1592 	len = (ah->ah_plen + 2) << 2;
1593 	ipf_pr_short(fin, len);
1594 	if (ipf_pr_pullup(fin, len) == -1) {
1595 		DT(fr_v4_ah_pullup_2);
1596 		LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1597 		return (IPPROTO_NONE);
1598 	}
1599 
1600 	/*
1601 	 * Adjust fin_dp and fin_dlen for skipping over the authentication
1602 	 * header.
1603 	 */
1604 	fin->fin_dp = (char *)fin->fin_dp + len;
1605 	fin->fin_dlen -= len;
1606 	return (ah->ah_next);
1607 }
1608 
1609 
1610 /* ------------------------------------------------------------------------ */
1611 /* Function:    ipf_pr_gre                                                  */
1612 /* Returns:     void                                                        */
1613 /* Parameters:  fin(I) - pointer to packet information                      */
1614 /*                                                                          */
1615 /* Analyse the packet for GRE properties.                                   */
1616 /* ------------------------------------------------------------------------ */
1617 static inline void
ipf_pr_gre(fr_info_t * fin)1618 ipf_pr_gre(fr_info_t *fin)
1619 {
1620 	ipf_main_softc_t *softc = fin->fin_main_soft;
1621 	grehdr_t *gre;
1622 
1623 	ipf_pr_short(fin, sizeof(grehdr_t));
1624 
1625 	if (fin->fin_off != 0) {
1626 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_frag);
1627 		return;
1628 	}
1629 
1630 	if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1631 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_pullup);
1632 		return;
1633 	}
1634 
1635 	gre = fin->fin_dp;
1636 	if (GRE_REV(gre->gr_flags) == 1)
1637 		fin->fin_data[0] = gre->gr_call;
1638 }
1639 
1640 
1641 /* ------------------------------------------------------------------------ */
1642 /* Function:    ipf_pr_ipv4hdr                                              */
1643 /* Returns:     void                                                        */
1644 /* Parameters:  fin(I) - pointer to packet information                      */
1645 /*                                                                          */
1646 /* IPv4 Only                                                                */
1647 /* Analyze the IPv4 header and set fields in the fr_info_t structure.       */
1648 /* Check all options present and flag their presence if any exist.          */
1649 /* ------------------------------------------------------------------------ */
1650 static inline void
ipf_pr_ipv4hdr(fr_info_t * fin)1651 ipf_pr_ipv4hdr(fr_info_t *fin)
1652 {
1653 	u_short optmsk = 0, secmsk = 0, auth = 0;
1654 	int hlen, ol, mv, p, i;
1655 	const struct optlist *op;
1656 	u_char *s, opt;
1657 	u_short off;
1658 	fr_ip_t *fi;
1659 	ip_t *ip;
1660 
1661 	fi = &fin->fin_fi;
1662 	hlen = fin->fin_hlen;
1663 
1664 	ip = fin->fin_ip;
1665 	p = ip->ip_p;
1666 	fi->fi_p = p;
1667 	fin->fin_crc = p;
1668 	fi->fi_tos = ip->ip_tos;
1669 	fin->fin_id = ntohs(ip->ip_id);
1670 	off = ntohs(ip->ip_off);
1671 
1672 	/* Get both TTL and protocol */
1673 	fi->fi_p = ip->ip_p;
1674 	fi->fi_ttl = ip->ip_ttl;
1675 
1676 	/* Zero out bits not used in IPv6 address */
1677 	fi->fi_src.i6[1] = 0;
1678 	fi->fi_src.i6[2] = 0;
1679 	fi->fi_src.i6[3] = 0;
1680 	fi->fi_dst.i6[1] = 0;
1681 	fi->fi_dst.i6[2] = 0;
1682 	fi->fi_dst.i6[3] = 0;
1683 
1684 	fi->fi_saddr = ip->ip_src.s_addr;
1685 	fin->fin_crc += fi->fi_saddr;
1686 	fi->fi_daddr = ip->ip_dst.s_addr;
1687 	fin->fin_crc += fi->fi_daddr;
1688 	if (IN_MULTICAST(ntohl(fi->fi_daddr)))
1689 		fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
1690 
1691 	/*
1692 	 * set packet attribute flags based on the offset and
1693 	 * calculate the byte offset that it represents.
1694 	 */
1695 	off &= IP_MF|IP_OFFMASK;
1696 	if (off != 0) {
1697 		int morefrag = off & IP_MF;
1698 
1699 		fi->fi_flx |= FI_FRAG;
1700 		off &= IP_OFFMASK;
1701 		if (off == 1 && p == IPPROTO_TCP) {
1702 			fin->fin_flx |= FI_SHORT;	/* RFC 3128 */
1703 			DT1(ipf_fi_tcp_frag_off_1, fr_info_t *, fin);
1704 		}
1705 		if (off != 0) {
1706 			fin->fin_flx |= FI_FRAGBODY;
1707 			off <<= 3;
1708 			if ((off + fin->fin_dlen > 65535) ||
1709 			    (fin->fin_dlen == 0) ||
1710 			    ((morefrag != 0) && ((fin->fin_dlen & 7) != 0))) {
1711 				/*
1712 				 * The length of the packet, starting at its
1713 				 * offset cannot exceed 65535 (0xffff) as the
1714 				 * length of an IP packet is only 16 bits.
1715 				 *
1716 				 * Any fragment that isn't the last fragment
1717 				 * must have a length greater than 0 and it
1718 				 * must be an even multiple of 8.
1719 				 */
1720 				fi->fi_flx |= FI_BAD;
1721 				DT1(ipf_fi_bad_fragbody_gt_65535, fr_info_t *, fin);
1722 			}
1723 		}
1724 	}
1725 	fin->fin_off = off;
1726 
1727 	/*
1728 	 * Call per-protocol setup and checking
1729 	 */
1730 	if (p == IPPROTO_AH) {
1731 		/*
1732 		 * Treat AH differently because we expect there to be another
1733 		 * layer 4 header after it.
1734 		 */
1735 		p = ipf_pr_ah(fin);
1736 	}
1737 
1738 	switch (p)
1739 	{
1740 	case IPPROTO_UDP :
1741 		ipf_pr_udp(fin);
1742 		break;
1743 	case IPPROTO_TCP :
1744 		ipf_pr_tcp(fin);
1745 		break;
1746 	case IPPROTO_ICMP :
1747 		ipf_pr_icmp(fin);
1748 		break;
1749 	case IPPROTO_ESP :
1750 		ipf_pr_esp(fin);
1751 		break;
1752 	case IPPROTO_GRE :
1753 		ipf_pr_gre(fin);
1754 		break;
1755 	}
1756 
1757 	ip = fin->fin_ip;
1758 	if (ip == NULL)
1759 		return;
1760 
1761 	/*
1762 	 * If it is a standard IP header (no options), set the flag fields
1763 	 * which relate to options to 0.
1764 	 */
1765 	if (hlen == sizeof(*ip)) {
1766 		fi->fi_optmsk = 0;
1767 		fi->fi_secmsk = 0;
1768 		fi->fi_auth = 0;
1769 		return;
1770 	}
1771 
1772 	/*
1773 	 * So the IP header has some IP options attached.  Walk the entire
1774 	 * list of options present with this packet and set flags to indicate
1775 	 * which ones are here and which ones are not.  For the somewhat out
1776 	 * of date and obscure security classification options, set a flag to
1777 	 * represent which classification is present.
1778 	 */
1779 	fi->fi_flx |= FI_OPTIONS;
1780 
1781 	for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) {
1782 		opt = *s;
1783 		if (opt == '\0')
1784 			break;
1785 		else if (opt == IPOPT_NOP)
1786 			ol = 1;
1787 		else {
1788 			if (hlen < 2)
1789 				break;
1790 			ol = (int)*(s + 1);
1791 			if (ol < 2 || ol > hlen)
1792 				break;
1793 		}
1794 		for (i = 9, mv = 4; mv >= 0; ) {
1795 			op = ipopts + i;
1796 
1797 			if ((opt == (u_char)op->ol_val) && (ol > 4)) {
1798 				u_32_t doi;
1799 
1800 				switch (opt)
1801 				{
1802 				case IPOPT_SECURITY :
1803 					if (optmsk & op->ol_bit) {
1804 						fin->fin_flx |= FI_BAD;
1805 						DT2(ipf_fi_bad_ipopt_security, fr_info_t *, fin, u_short, (optmsk & op->ol_bit));
1806 					} else {
1807 						doi = ipf_checkripso(s);
1808 						secmsk = doi >> 16;
1809 						auth = doi & 0xffff;
1810 					}
1811 					break;
1812 
1813 				case IPOPT_CIPSO :
1814 
1815 					if (optmsk & op->ol_bit) {
1816 						fin->fin_flx |= FI_BAD;
1817 						DT2(ipf_fi_bad_ipopt_cipso, fr_info_t *, fin, u_short, (optmsk & op->ol_bit));
1818 					} else {
1819 						doi = ipf_checkcipso(fin,
1820 								     s, ol);
1821 						secmsk = doi >> 16;
1822 						auth = doi & 0xffff;
1823 					}
1824 					break;
1825 				}
1826 				optmsk |= op->ol_bit;
1827 			}
1828 
1829 			if (opt < op->ol_val)
1830 				i -= mv;
1831 			else
1832 				i += mv;
1833 			mv--;
1834 		}
1835 		hlen -= ol;
1836 		s += ol;
1837 	}
1838 
1839 	/*
1840 	 *
1841 	 */
1842 	if (auth && !(auth & 0x0100))
1843 		auth &= 0xff00;
1844 	fi->fi_optmsk = optmsk;
1845 	fi->fi_secmsk = secmsk;
1846 	fi->fi_auth = auth;
1847 }
1848 
1849 
1850 /* ------------------------------------------------------------------------ */
1851 /* Function:    ipf_checkripso                                              */
1852 /* Returns:     void                                                        */
1853 /* Parameters:  s(I)   - pointer to start of RIPSO option                   */
1854 /*                                                                          */
1855 /* ------------------------------------------------------------------------ */
1856 static u_32_t
ipf_checkripso(u_char * s)1857 ipf_checkripso(u_char *s)
1858 {
1859 	const struct optlist *sp;
1860 	u_short secmsk = 0, auth = 0;
1861 	u_char sec;
1862 	int j, m;
1863 
1864 	sec = *(s + 2);	/* classification */
1865 	for (j = 3, m = 2; m >= 0; ) {
1866 		sp = secopt + j;
1867 		if (sec == sp->ol_val) {
1868 			secmsk |= sp->ol_bit;
1869 			auth = *(s + 3);
1870 			auth *= 256;
1871 			auth += *(s + 4);
1872 			break;
1873 		}
1874 		if (sec < sp->ol_val)
1875 			j -= m;
1876 		else
1877 			j += m;
1878 		m--;
1879 	}
1880 
1881 	return (secmsk << 16) | auth;
1882 }
1883 
1884 
1885 /* ------------------------------------------------------------------------ */
1886 /* Function:    ipf_checkcipso                                              */
1887 /* Returns:     u_32_t  - 0 = failure, else the doi from the header         */
1888 /* Parameters:  fin(IO) - pointer to packet information                     */
1889 /*              s(I)    - pointer to start of CIPSO option                  */
1890 /*              ol(I)   - length of CIPSO option field                      */
1891 /*                                                                          */
1892 /* This function returns the domain of integrity (DOI) field from the CIPSO */
1893 /* header and returns that whilst also storing the highest sensitivity      */
1894 /* value found in the fr_info_t structure.                                  */
1895 /*                                                                          */
1896 /* No attempt is made to extract the category bitmaps as these are defined  */
1897 /* by the user (rather than the protocol) and can be rather numerous on the */
1898 /* end nodes.                                                               */
1899 /* ------------------------------------------------------------------------ */
1900 static u_32_t
ipf_checkcipso(fr_info_t * fin,u_char * s,int ol)1901 ipf_checkcipso(fr_info_t *fin, u_char *s, int ol)
1902 {
1903 	ipf_main_softc_t *softc = fin->fin_main_soft;
1904 	fr_ip_t *fi;
1905 	u_32_t doi;
1906 	u_char *t, tag, tlen, sensitivity;
1907 	int len;
1908 
1909 	if (ol < 6 || ol > 40) {
1910 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_bad);
1911 		fin->fin_flx |= FI_BAD;
1912 		DT2(ipf_fi_bad_checkcipso_ol, fr_info_t *, fin, u_int, ol);
1913 		return (0);
1914 	}
1915 
1916 	fi = &fin->fin_fi;
1917 	fi->fi_sensitivity = 0;
1918 	/*
1919 	 * The DOI field MUST be there.
1920 	 */
1921 	bcopy(s + 2, &doi, sizeof(doi));
1922 
1923 	t = (u_char *)s + 6;
1924 	for (len = ol - 6; len >= 2; len -= tlen, t+= tlen) {
1925 		tag = *t;
1926 		tlen = *(t + 1);
1927 		if (tlen > len || tlen < 4 || tlen > 34) {
1928 			LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_tlen);
1929 			fin->fin_flx |= FI_BAD;
1930 			DT2(ipf_fi_bad_checkcipso_tlen, fr_info_t *, fin, u_int, tlen);
1931 			return (0);
1932 		}
1933 
1934 		sensitivity = 0;
1935 		/*
1936 		 * Tag numbers 0, 1, 2, 5 are laid out in the CIPSO Internet
1937 		 * draft (16 July 1992) that has expired.
1938 		 */
1939 		if (tag == 0) {
1940 			fin->fin_flx |= FI_BAD;
1941 			DT2(ipf_fi_bad_checkcipso_tag, fr_info_t *, fin, u_int, tag);
1942 			continue;
1943 		} else if (tag == 1) {
1944 			if (*(t + 2) != 0) {
1945 				fin->fin_flx |= FI_BAD;
1946 				DT2(ipf_fi_bad_checkcipso_tag1_t2, fr_info_t *, fin, u_int, (*t + 2));
1947 				continue;
1948 			}
1949 			sensitivity = *(t + 3);
1950 			/* Category bitmap for categories 0-239 */
1951 
1952 		} else if (tag == 4) {
1953 			if (*(t + 2) != 0) {
1954 				fin->fin_flx |= FI_BAD;
1955 				DT2(ipf_fi_bad_checkcipso_tag4_t2, fr_info_t *, fin, u_int, (*t + 2));
1956 				continue;
1957 			}
1958 			sensitivity = *(t + 3);
1959 			/* Enumerated categories, 16bits each, upto 15 */
1960 
1961 		} else if (tag == 5) {
1962 			if (*(t + 2) != 0) {
1963 				fin->fin_flx |= FI_BAD;
1964 				DT2(ipf_fi_bad_checkcipso_tag5_t2, fr_info_t *, fin, u_int, (*t + 2));
1965 				continue;
1966 			}
1967 			sensitivity = *(t + 3);
1968 			/* Range of categories (2*16bits), up to 7 pairs */
1969 
1970 		} else if (tag > 127) {
1971 			/* Custom defined DOI */
1972 			;
1973 		} else {
1974 			fin->fin_flx |= FI_BAD;
1975 			DT2(ipf_fi_bad_checkcipso_tag127, fr_info_t *, fin, u_int, tag);
1976 			continue;
1977 		}
1978 
1979 		if (sensitivity > fi->fi_sensitivity)
1980 			fi->fi_sensitivity = sensitivity;
1981 	}
1982 
1983 	return (doi);
1984 }
1985 
1986 
1987 /* ------------------------------------------------------------------------ */
1988 /* Function:    ipf_makefrip                                                */
1989 /* Returns:     int     - 0 == packet ok, -1 == packet freed                */
1990 /* Parameters:  hlen(I) - length of IP packet header                        */
1991 /*              ip(I)   - pointer to the IP header                          */
1992 /*              fin(IO) - pointer to packet information                     */
1993 /*                                                                          */
1994 /* Compact the IP header into a structure which contains just the info.     */
1995 /* which is useful for comparing IP headers with and store this information */
1996 /* in the fr_info_t structure pointer to by fin.  At present, it is assumed */
1997 /* this function will be called with either an IPv4 or IPv6 packet.         */
1998 /* ------------------------------------------------------------------------ */
1999 int
ipf_makefrip(int hlen,ip_t * ip,fr_info_t * fin)2000 ipf_makefrip(int hlen, ip_t *ip, fr_info_t *fin)
2001 {
2002 	ipf_main_softc_t *softc = fin->fin_main_soft;
2003 	int v;
2004 
2005 	fin->fin_depth = 0;
2006 	fin->fin_hlen = (u_short)hlen;
2007 	fin->fin_ip = ip;
2008 	fin->fin_rule = 0xffffffff;
2009 	fin->fin_group[0] = -1;
2010 	fin->fin_group[1] = '\0';
2011 	fin->fin_dp = (char *)ip + hlen;
2012 
2013 	v = fin->fin_v;
2014 	if (v == 4) {
2015 		fin->fin_plen = ntohs(ip->ip_len);
2016 		fin->fin_dlen = fin->fin_plen - hlen;
2017 		ipf_pr_ipv4hdr(fin);
2018 #ifdef	USE_INET6
2019 	} else if (v == 6) {
2020 		fin->fin_plen = ntohs(((ip6_t *)ip)->ip6_plen);
2021 		fin->fin_dlen = fin->fin_plen;
2022 		fin->fin_plen += hlen;
2023 
2024 		ipf_pr_ipv6hdr(fin);
2025 #endif
2026 	}
2027 	if (fin->fin_ip == NULL) {
2028 		LBUMP(ipf_stats[fin->fin_out].fr_ip_freed);
2029 		return (-1);
2030 	}
2031 	return (0);
2032 }
2033 
2034 
2035 /* ------------------------------------------------------------------------ */
2036 /* Function:    ipf_portcheck                                               */
2037 /* Returns:     int - 1 == port matched, 0 == port match failed             */
2038 /* Parameters:  frp(I) - pointer to port check `expression'                 */
2039 /*              pop(I) - port number to evaluate                            */
2040 /*                                                                          */
2041 /* Perform a comparison of a port number against some other(s), using a     */
2042 /* structure with compare information stored in it.                         */
2043 /* ------------------------------------------------------------------------ */
2044 static inline int
ipf_portcheck(frpcmp_t * frp,u_32_t pop)2045 ipf_portcheck(frpcmp_t *frp, u_32_t pop)
2046 {
2047 	int err = 1;
2048 	u_32_t po;
2049 
2050 	po = frp->frp_port;
2051 
2052 	/*
2053 	 * Do opposite test to that required and continue if that succeeds.
2054 	 */
2055 	switch (frp->frp_cmp)
2056 	{
2057 	case FR_EQUAL :
2058 		if (pop != po) /* EQUAL */
2059 			err = 0;
2060 		break;
2061 	case FR_NEQUAL :
2062 		if (pop == po) /* NOTEQUAL */
2063 			err = 0;
2064 		break;
2065 	case FR_LESST :
2066 		if (pop >= po) /* LESSTHAN */
2067 			err = 0;
2068 		break;
2069 	case FR_GREATERT :
2070 		if (pop <= po) /* GREATERTHAN */
2071 			err = 0;
2072 		break;
2073 	case FR_LESSTE :
2074 		if (pop > po) /* LT or EQ */
2075 			err = 0;
2076 		break;
2077 	case FR_GREATERTE :
2078 		if (pop < po) /* GT or EQ */
2079 			err = 0;
2080 		break;
2081 	case FR_OUTRANGE :
2082 		if (pop >= po && pop <= frp->frp_top) /* Out of range */
2083 			err = 0;
2084 		break;
2085 	case FR_INRANGE :
2086 		if (pop <= po || pop >= frp->frp_top) /* In range */
2087 			err = 0;
2088 		break;
2089 	case FR_INCRANGE :
2090 		if (pop < po || pop > frp->frp_top) /* Inclusive range */
2091 			err = 0;
2092 		break;
2093 	default :
2094 		break;
2095 	}
2096 	return (err);
2097 }
2098 
2099 
2100 /* ------------------------------------------------------------------------ */
2101 /* Function:    ipf_tcpudpchk                                               */
2102 /* Returns:     int - 1 == protocol matched, 0 == check failed              */
2103 /* Parameters:  fda(I) - pointer to packet information                      */
2104 /*              ft(I)  - pointer to structure with comparison data          */
2105 /*                                                                          */
2106 /* Compares the current pcket (assuming it is TCP/UDP) information with a   */
2107 /* structure containing information that we want to match against.          */
2108 /* ------------------------------------------------------------------------ */
2109 int
ipf_tcpudpchk(fr_ip_t * fi,frtuc_t * ft)2110 ipf_tcpudpchk(fr_ip_t *fi, frtuc_t *ft)
2111 {
2112 	int err = 1;
2113 
2114 	/*
2115 	 * Both ports should *always* be in the first fragment.
2116 	 * So far, I cannot find any cases where they can not be.
2117 	 *
2118 	 * compare destination ports
2119 	 */
2120 	if (ft->ftu_dcmp)
2121 		err = ipf_portcheck(&ft->ftu_dst, fi->fi_ports[1]);
2122 
2123 	/*
2124 	 * compare source ports
2125 	 */
2126 	if (err && ft->ftu_scmp)
2127 		err = ipf_portcheck(&ft->ftu_src, fi->fi_ports[0]);
2128 
2129 	/*
2130 	 * If we don't have all the TCP/UDP header, then how can we
2131 	 * expect to do any sort of match on it ?  If we were looking for
2132 	 * TCP flags, then NO match.  If not, then match (which should
2133 	 * satisfy the "short" class too).
2134 	 */
2135 	if (err && (fi->fi_p == IPPROTO_TCP)) {
2136 		if (fi->fi_flx & FI_SHORT)
2137 			return (!(ft->ftu_tcpf | ft->ftu_tcpfm));
2138 		/*
2139 		 * Match the flags ?  If not, abort this match.
2140 		 */
2141 		if (ft->ftu_tcpfm &&
2142 		    ft->ftu_tcpf != (fi->fi_tcpf & ft->ftu_tcpfm)) {
2143 			FR_DEBUG(("f. %#x & %#x != %#x\n", fi->fi_tcpf,
2144 				 ft->ftu_tcpfm, ft->ftu_tcpf));
2145 			err = 0;
2146 		}
2147 	}
2148 	return (err);
2149 }
2150 
2151 
2152 /* ------------------------------------------------------------------------ */
2153 /* Function:    ipf_check_ipf                                               */
2154 /* Returns:     int - 0 == match, else no match                             */
2155 /* Parameters:  fin(I)     - pointer to packet information                  */
2156 /*              fr(I)      - pointer to filter rule                         */
2157 /*              portcmp(I) - flag indicating whether to attempt matching on */
2158 /*                           TCP/UDP port data.                             */
2159 /*                                                                          */
2160 /* Check to see if a packet matches an IPFilter rule.  Checks of addresses, */
2161 /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */
2162 /* this function.                                                           */
2163 /* ------------------------------------------------------------------------ */
2164 static inline int
ipf_check_ipf(fr_info_t * fin,frentry_t * fr,int portcmp)2165 ipf_check_ipf(fr_info_t *fin, frentry_t *fr, int portcmp)
2166 {
2167 	u_32_t	*ld, *lm, *lip;
2168 	fripf_t *fri;
2169 	fr_ip_t *fi;
2170 	int i;
2171 
2172 	fi = &fin->fin_fi;
2173 	fri = fr->fr_ipf;
2174 	lip = (u_32_t *)fi;
2175 	lm = (u_32_t *)&fri->fri_mip;
2176 	ld = (u_32_t *)&fri->fri_ip;
2177 
2178 	/*
2179 	 * first 32 bits to check coversion:
2180 	 * IP version, TOS, TTL, protocol
2181 	 */
2182 	i = ((*lip & *lm) != *ld);
2183 	FR_DEBUG(("0. %#08x & %#08x != %#08x\n",
2184 		   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2185 	if (i)
2186 		return (1);
2187 
2188 	/*
2189 	 * Next 32 bits is a constructed bitmask indicating which IP options
2190 	 * are present (if any) in this packet.
2191 	 */
2192 	lip++, lm++, ld++;
2193 	i = ((*lip & *lm) != *ld);
2194 	FR_DEBUG(("1. %#08x & %#08x != %#08x\n",
2195 		   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2196 	if (i != 0)
2197 		return (1);
2198 
2199 	lip++, lm++, ld++;
2200 	/*
2201 	 * Unrolled loops (4 each, for 32 bits) for address checks.
2202 	 */
2203 	/*
2204 	 * Check the source address.
2205 	 */
2206 	if (fr->fr_satype == FRI_LOOKUP) {
2207 		i = (*fr->fr_srcfunc)(fin->fin_main_soft, fr->fr_srcptr,
2208 				      fi->fi_v, lip, fin->fin_plen);
2209 		if (i == -1)
2210 			return (1);
2211 		lip += 3;
2212 		lm += 3;
2213 		ld += 3;
2214 	} else {
2215 		i = ((*lip & *lm) != *ld);
2216 		FR_DEBUG(("2a. %#08x & %#08x != %#08x\n",
2217 			   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2218 		if (fi->fi_v == 6) {
2219 			lip++, lm++, ld++;
2220 			i |= ((*lip & *lm) != *ld);
2221 			FR_DEBUG(("2b. %#08x & %#08x != %#08x\n",
2222 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2223 			lip++, lm++, ld++;
2224 			i |= ((*lip & *lm) != *ld);
2225 			FR_DEBUG(("2c. %#08x & %#08x != %#08x\n",
2226 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2227 			lip++, lm++, ld++;
2228 			i |= ((*lip & *lm) != *ld);
2229 			FR_DEBUG(("2d. %#08x & %#08x != %#08x\n",
2230 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2231 		} else {
2232 			lip += 3;
2233 			lm += 3;
2234 			ld += 3;
2235 		}
2236 	}
2237 	i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6;
2238 	if (i != 0)
2239 		return (1);
2240 
2241 	/*
2242 	 * Check the destination address.
2243 	 */
2244 	lip++, lm++, ld++;
2245 	if (fr->fr_datype == FRI_LOOKUP) {
2246 		i = (*fr->fr_dstfunc)(fin->fin_main_soft, fr->fr_dstptr,
2247 				      fi->fi_v, lip, fin->fin_plen);
2248 		if (i == -1)
2249 			return (1);
2250 		lip += 3;
2251 		lm += 3;
2252 		ld += 3;
2253 	} else {
2254 		i = ((*lip & *lm) != *ld);
2255 		FR_DEBUG(("3a. %#08x & %#08x != %#08x\n",
2256 			   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2257 		if (fi->fi_v == 6) {
2258 			lip++, lm++, ld++;
2259 			i |= ((*lip & *lm) != *ld);
2260 			FR_DEBUG(("3b. %#08x & %#08x != %#08x\n",
2261 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2262 			lip++, lm++, ld++;
2263 			i |= ((*lip & *lm) != *ld);
2264 			FR_DEBUG(("3c. %#08x & %#08x != %#08x\n",
2265 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2266 			lip++, lm++, ld++;
2267 			i |= ((*lip & *lm) != *ld);
2268 			FR_DEBUG(("3d. %#08x & %#08x != %#08x\n",
2269 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2270 		} else {
2271 			lip += 3;
2272 			lm += 3;
2273 			ld += 3;
2274 		}
2275 	}
2276 	i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7;
2277 	if (i != 0)
2278 		return (1);
2279 	/*
2280 	 * IP addresses matched.  The next 32bits contains:
2281 	 * mast of old IP header security & authentication bits.
2282 	 */
2283 	lip++, lm++, ld++;
2284 	i = (*ld - (*lip & *lm));
2285 	FR_DEBUG(("4. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2286 
2287 	/*
2288 	 * Next we have 32 bits of packet flags.
2289 	 */
2290 	lip++, lm++, ld++;
2291 	i |= (*ld - (*lip & *lm));
2292 	FR_DEBUG(("5. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2293 
2294 	if (i == 0) {
2295 		/*
2296 		 * If a fragment, then only the first has what we're
2297 		 * looking for here...
2298 		 */
2299 		if (portcmp) {
2300 			if (!ipf_tcpudpchk(&fin->fin_fi, &fr->fr_tuc))
2301 				i = 1;
2302 		} else {
2303 			if (fr->fr_dcmp || fr->fr_scmp ||
2304 			    fr->fr_tcpf || fr->fr_tcpfm)
2305 				i = 1;
2306 			if (fr->fr_icmpm || fr->fr_icmp) {
2307 				if (((fi->fi_p != IPPROTO_ICMP) &&
2308 				     (fi->fi_p != IPPROTO_ICMPV6)) ||
2309 				    fin->fin_off || (fin->fin_dlen < 2))
2310 					i = 1;
2311 				else if ((fin->fin_data[0] & fr->fr_icmpm) !=
2312 					 fr->fr_icmp) {
2313 					FR_DEBUG(("i. %#x & %#x != %#x\n",
2314 						 fin->fin_data[0],
2315 						 fr->fr_icmpm, fr->fr_icmp));
2316 					i = 1;
2317 				}
2318 			}
2319 		}
2320 	}
2321 	return (i);
2322 }
2323 
2324 
2325 /* ------------------------------------------------------------------------ */
2326 /* Function:    ipf_scanlist                                                */
2327 /* Returns:     int - result flags of scanning filter list                  */
2328 /* Parameters:  fin(I) - pointer to packet information                      */
2329 /*              pass(I) - default result to return for filtering            */
2330 /*                                                                          */
2331 /* Check the input/output list of rules for a match to the current packet.  */
2332 /* If a match is found, the value of fr_flags from the rule becomes the     */
2333 /* return value and fin->fin_fr points to the matched rule.                 */
2334 /*                                                                          */
2335 /* This function may be called recursively upto 16 times (limit inbuilt.)   */
2336 /* When unwinding, it should finish up with fin_depth as 0.                 */
2337 /*                                                                          */
2338 /* Could be per interface, but this gets real nasty when you don't have,    */
2339 /* or can't easily change, the kernel source code to .                      */
2340 /* ------------------------------------------------------------------------ */
2341 int
ipf_scanlist(fr_info_t * fin,u_32_t pass)2342 ipf_scanlist(fr_info_t *fin, u_32_t pass)
2343 {
2344 	ipf_main_softc_t *softc = fin->fin_main_soft;
2345 	int rulen, portcmp, off, skip;
2346 	struct frentry *fr, *fnext;
2347 	u_32_t passt, passo;
2348 
2349 	/*
2350 	 * Do not allow nesting deeper than 16 levels.
2351 	 */
2352 	if (fin->fin_depth >= 16)
2353 		return (pass);
2354 
2355 	fr = fin->fin_fr;
2356 
2357 	/*
2358 	* If there are no rules in this list, return now.
2359 	 */
2360 	if (fr == NULL)
2361 		return (pass);
2362 
2363 	skip = 0;
2364 	portcmp = 0;
2365 	fin->fin_depth++;
2366 	fin->fin_fr = NULL;
2367 	off = fin->fin_off;
2368 
2369 	if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off)
2370 		portcmp = 1;
2371 
2372 	for (rulen = 0; fr; fr = fnext, rulen++) {
2373 		fnext = fr->fr_next;
2374 		if (skip != 0) {
2375 			FR_VERBOSE(("SKIP %d (%#x)\n", skip, fr->fr_flags));
2376 			skip--;
2377 			continue;
2378 		}
2379 
2380 		/*
2381 		 * In all checks below, a null (zero) value in the
2382 		 * filter struture is taken to mean a wildcard.
2383 		 *
2384 		 * check that we are working for the right interface
2385 		 */
2386 #ifdef	_KERNEL
2387 		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2388 			continue;
2389 #else
2390 		if (opts & (OPT_VERBOSE|OPT_DEBUG))
2391 			printf("\n");
2392 		FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' :
2393 				  FR_ISPASS(pass) ? 'p' :
2394 				  FR_ISACCOUNT(pass) ? 'A' :
2395 				  FR_ISAUTH(pass) ? 'a' :
2396 				  (pass & FR_NOMATCH) ? 'n' :'b'));
2397 		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2398 			continue;
2399 		FR_VERBOSE((":i"));
2400 #endif
2401 
2402 		switch (fr->fr_type)
2403 		{
2404 		case FR_T_IPF :
2405 		case FR_T_IPF_BUILTIN :
2406 			if (ipf_check_ipf(fin, fr, portcmp))
2407 				continue;
2408 			break;
2409 #if defined(IPFILTER_BPF)
2410 		case FR_T_BPFOPC :
2411 		case FR_T_BPFOPC_BUILTIN :
2412 		    {
2413 			u_char *mc;
2414 			int wlen;
2415 
2416 			if (*fin->fin_mp == NULL)
2417 				continue;
2418 			if (fin->fin_family != fr->fr_family)
2419 				continue;
2420 			mc = (u_char *)fin->fin_m;
2421 			wlen = fin->fin_dlen + fin->fin_hlen;
2422 			if (!bpf_filter(fr->fr_data, mc, wlen, 0))
2423 				continue;
2424 			break;
2425 		    }
2426 #endif
2427 		case FR_T_CALLFUNC_BUILTIN :
2428 		    {
2429 			frentry_t *f;
2430 
2431 			f = (*fr->fr_func)(fin, &pass);
2432 			if (f != NULL)
2433 				fr = f;
2434 			else
2435 				continue;
2436 			break;
2437 		    }
2438 
2439 		case FR_T_IPFEXPR :
2440 		case FR_T_IPFEXPR_BUILTIN :
2441 			if (fin->fin_family != fr->fr_family)
2442 				continue;
2443 			if (ipf_fr_matcharray(fin, fr->fr_data) == 0)
2444 				continue;
2445 			break;
2446 
2447 		default :
2448 			break;
2449 		}
2450 
2451 		if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) {
2452 			if (fin->fin_nattag == NULL)
2453 				continue;
2454 			if (ipf_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0)
2455 				continue;
2456 		}
2457 		FR_VERBOSE(("=%d/%d.%d *", fr->fr_grhead, fr->fr_group, rulen));
2458 
2459 		passt = fr->fr_flags;
2460 
2461 		/*
2462 		 * If the rule is a "call now" rule, then call the function
2463 		 * in the rule, if it exists and use the results from that.
2464 		 * If the function pointer is bad, just make like we ignore
2465 		 * it, except for increasing the hit counter.
2466 		 */
2467 		if ((passt & FR_CALLNOW) != 0) {
2468 			frentry_t *frs;
2469 
2470 			ATOMIC_INC64(fr->fr_hits);
2471 			if ((fr->fr_func == NULL) ||
2472 			    (fr->fr_func == (ipfunc_t)-1))
2473 				continue;
2474 
2475 			frs = fin->fin_fr;
2476 			fin->fin_fr = fr;
2477 			fr = (*fr->fr_func)(fin, &passt);
2478 			if (fr == NULL) {
2479 				fin->fin_fr = frs;
2480 				continue;
2481 			}
2482 			passt = fr->fr_flags;
2483 		}
2484 		fin->fin_fr = fr;
2485 
2486 #ifdef  IPFILTER_LOG
2487 		/*
2488 		 * Just log this packet...
2489 		 */
2490 		if ((passt & FR_LOGMASK) == FR_LOG) {
2491 			if (ipf_log_pkt(fin, passt) == -1) {
2492 				if (passt & FR_LOGORBLOCK) {
2493 					DT(frb_logfail);
2494 					passt &= ~FR_CMDMASK;
2495 					passt |= FR_BLOCK|FR_QUICK;
2496 					fin->fin_reason = FRB_LOGFAIL;
2497 				}
2498 			}
2499 		}
2500 #endif /* IPFILTER_LOG */
2501 
2502 		MUTEX_ENTER(&fr->fr_lock);
2503 		fr->fr_bytes += (U_QUAD_T)fin->fin_plen;
2504 		fr->fr_hits++;
2505 		MUTEX_EXIT(&fr->fr_lock);
2506 		fin->fin_rule = rulen;
2507 
2508 		passo = pass;
2509 		if (FR_ISSKIP(passt)) {
2510 			skip = fr->fr_arg;
2511 			continue;
2512 		} else if (((passt & FR_LOGMASK) != FR_LOG) &&
2513 			   ((passt & FR_LOGMASK) != FR_DECAPSULATE)) {
2514 			pass = passt;
2515 		}
2516 
2517 		if (passt & (FR_RETICMP|FR_FAKEICMP))
2518 			fin->fin_icode = fr->fr_icode;
2519 
2520 		if (fr->fr_group != -1) {
2521 			(void) strncpy(fin->fin_group,
2522 				       FR_NAME(fr, fr_group),
2523 				       strlen(FR_NAME(fr, fr_group)));
2524 		} else {
2525 			fin->fin_group[0] = '\0';
2526 		}
2527 
2528 		FR_DEBUG(("pass %#x/%#x/%x\n", passo, pass, passt));
2529 
2530 		if (fr->fr_grphead != NULL) {
2531 			fin->fin_fr = fr->fr_grphead->fg_start;
2532 			FR_VERBOSE(("group %s\n", FR_NAME(fr, fr_grhead)));
2533 
2534 			if (FR_ISDECAPS(passt))
2535 				passt = ipf_decaps(fin, pass, fr->fr_icode);
2536 			else
2537 				passt = ipf_scanlist(fin, pass);
2538 
2539 			if (fin->fin_fr == NULL) {
2540 				fin->fin_rule = rulen;
2541 				if (fr->fr_group != -1)
2542 					(void) strncpy(fin->fin_group,
2543 						       fr->fr_names +
2544 						       fr->fr_group,
2545 						       strlen(fr->fr_names +
2546 							      fr->fr_group));
2547 				fin->fin_fr = fr;
2548 				passt = pass;
2549 			}
2550 			pass = passt;
2551 		}
2552 
2553 		if (pass & FR_QUICK) {
2554 			/*
2555 			 * Finally, if we've asked to track state for this
2556 			 * packet, set it up.  Add state for "quick" rules
2557 			 * here so that if the action fails we can consider
2558 			 * the rule to "not match" and keep on processing
2559 			 * filter rules.
2560 			 */
2561 			if ((pass & FR_KEEPSTATE) && !FR_ISAUTH(pass) &&
2562 			    !(fin->fin_flx & FI_STATE)) {
2563 				int out = fin->fin_out;
2564 
2565 				fin->fin_fr = fr;
2566 				if (ipf_state_add(softc, fin, NULL, 0) == 0) {
2567 					LBUMPD(ipf_stats[out], fr_ads);
2568 				} else {
2569 					LBUMPD(ipf_stats[out], fr_bads);
2570 					pass = passo;
2571 					continue;
2572 				}
2573 			}
2574 			break;
2575 		}
2576 	}
2577 	fin->fin_depth--;
2578 	return (pass);
2579 }
2580 
2581 
2582 /* ------------------------------------------------------------------------ */
2583 /* Function:    ipf_acctpkt                                                 */
2584 /* Returns:     frentry_t* - always returns NULL                            */
2585 /* Parameters:  fin(I) - pointer to packet information                      */
2586 /*              passp(IO) - pointer to current/new filter decision (unused) */
2587 /*                                                                          */
2588 /* Checks a packet against accounting rules, if there are any for the given */
2589 /* IP protocol version.                                                     */
2590 /*                                                                          */
2591 /* N.B.: this function returns NULL to match the prototype used by other    */
2592 /* functions called from the IPFilter "mainline" in ipf_check().            */
2593 /* ------------------------------------------------------------------------ */
2594 frentry_t *
ipf_acctpkt(fr_info_t * fin,u_32_t * passp __unused)2595 ipf_acctpkt(fr_info_t *fin, u_32_t *passp __unused)
2596 {
2597 	ipf_main_softc_t *softc = fin->fin_main_soft;
2598 	char group[FR_GROUPLEN];
2599 	frentry_t *fr, *frsave;
2600 	u_32_t pass, rulen;
2601 
2602 	fr = softc->ipf_acct[fin->fin_out][softc->ipf_active];
2603 
2604 	if (fr != NULL) {
2605 		frsave = fin->fin_fr;
2606 		bcopy(fin->fin_group, group, FR_GROUPLEN);
2607 		rulen = fin->fin_rule;
2608 		fin->fin_fr = fr;
2609 		pass = ipf_scanlist(fin, FR_NOMATCH);
2610 		if (FR_ISACCOUNT(pass)) {
2611 			LBUMPD(ipf_stats[0], fr_acct);
2612 		}
2613 		fin->fin_fr = frsave;
2614 		bcopy(group, fin->fin_group, FR_GROUPLEN);
2615 		fin->fin_rule = rulen;
2616 	}
2617 	return (NULL);
2618 }
2619 
2620 
2621 /* ------------------------------------------------------------------------ */
2622 /* Function:    ipf_firewall                                                */
2623 /* Returns:     frentry_t* - returns pointer to matched rule, if no matches */
2624 /*                           were found, returns NULL.                      */
2625 /* Parameters:  fin(I) - pointer to packet information                      */
2626 /*              passp(IO) - pointer to current/new filter decision (unused) */
2627 /*                                                                          */
2628 /* Applies an appropriate set of firewall rules to the packet, to see if    */
2629 /* there are any matches.  The first check is to see if a match can be seen */
2630 /* in the cache.  If not, then search an appropriate list of rules.  Once a */
2631 /* matching rule is found, take any appropriate actions as defined by the   */
2632 /* rule - except logging.                                                   */
2633 /* ------------------------------------------------------------------------ */
2634 static frentry_t *
ipf_firewall(fr_info_t * fin,u_32_t * passp)2635 ipf_firewall(fr_info_t *fin, u_32_t *passp)
2636 {
2637 	ipf_main_softc_t *softc = fin->fin_main_soft;
2638 	frentry_t *fr;
2639 	u_32_t pass;
2640 	int out;
2641 
2642 	out = fin->fin_out;
2643 	pass = *passp;
2644 
2645 	/*
2646 	 * This rule cache will only affect packets that are not being
2647 	 * statefully filtered.
2648 	 */
2649 	fin->fin_fr = softc->ipf_rules[out][softc->ipf_active];
2650 	if (fin->fin_fr != NULL)
2651 		pass = ipf_scanlist(fin, softc->ipf_pass);
2652 
2653 	if ((pass & FR_NOMATCH)) {
2654 		LBUMPD(ipf_stats[out], fr_nom);
2655 	}
2656 	fr = fin->fin_fr;
2657 
2658 	/*
2659 	 * Apply packets per second rate-limiting to a rule as required.
2660 	 */
2661 	if ((fr != NULL) && (fr->fr_pps != 0) &&
2662 	    !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) {
2663 		DT2(frb_ppsrate, fr_info_t *, fin, frentry_t *, fr);
2664 		pass &= ~(FR_CMDMASK|FR_RETICMP|FR_RETRST);
2665 		pass |= FR_BLOCK;
2666 		LBUMPD(ipf_stats[out], fr_ppshit);
2667 		fin->fin_reason = FRB_PPSRATE;
2668 	}
2669 
2670 	/*
2671 	 * If we fail to add a packet to the authorization queue, then we
2672 	 * drop the packet later.  However, if it was added then pretend
2673 	 * we've dropped it already.
2674 	 */
2675 	if (FR_ISAUTH(pass)) {
2676 		if (ipf_auth_new(fin->fin_m, fin) != 0) {
2677 			DT1(frb_authnew, fr_info_t *, fin);
2678 			fin->fin_m = *fin->fin_mp = NULL;
2679 			fin->fin_reason = FRB_AUTHNEW;
2680 			fin->fin_error = 0;
2681 		} else {
2682 			IPFERROR(1);
2683 			fin->fin_error = ENOSPC;
2684 		}
2685 	}
2686 
2687 	if ((fr != NULL) && (fr->fr_func != NULL) &&
2688 	    (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW))
2689 		(void) (*fr->fr_func)(fin, &pass);
2690 
2691 	/*
2692 	 * If a rule is a pre-auth rule, check again in the list of rules
2693 	 * loaded for authenticated use.  It does not particulary matter
2694 	 * if this search fails because a "preauth" result, from a rule,
2695 	 * is treated as "not a pass", hence the packet is blocked.
2696 	 */
2697 	if (FR_ISPREAUTH(pass)) {
2698 		pass = ipf_auth_pre_scanlist(softc, fin, pass);
2699 	}
2700 
2701 	/*
2702 	 * If the rule has "keep frag" and the packet is actually a fragment,
2703 	 * then create a fragment state entry.
2704 	 */
2705 	if (pass & FR_KEEPFRAG) {
2706 		if (fin->fin_flx & FI_FRAG) {
2707 			if (ipf_frag_new(softc, fin, pass) == -1) {
2708 				LBUMP(ipf_stats[out].fr_bnfr);
2709 			} else {
2710 				LBUMP(ipf_stats[out].fr_nfr);
2711 			}
2712 		} else {
2713 			LBUMP(ipf_stats[out].fr_cfr);
2714 		}
2715 	}
2716 
2717 	fr = fin->fin_fr;
2718 	*passp = pass;
2719 
2720 	return (fr);
2721 }
2722 
2723 
2724 /* ------------------------------------------------------------------------ */
2725 /* Function:    ipf_check                                                   */
2726 /* Returns:     int -  0 == packet allowed through,                         */
2727 /*              User space:                                                 */
2728 /*                    -1 == packet blocked                                  */
2729 /*                     1 == packet not matched                              */
2730 /*                    -2 == requires authentication                         */
2731 /*              Kernel:                                                     */
2732 /*                   > 0 == filter error # for packet                       */
2733 /* Parameters: ctx(I)  - pointer to the instance context                    */
2734 /*             ip(I)   - pointer to start of IPv4/6 packet                  */
2735 /*             hlen(I) - length of header                                   */
2736 /*             ifp(I)  - pointer to interface this packet is on             */
2737 /*             out(I)  - 0 == packet going in, 1 == packet going out        */
2738 /*             mp(IO)  - pointer to caller's buffer pointer that holds this */
2739 /*                       IP packet.                                         */
2740 /* Solaris:                                                                 */
2741 /*             qpi(I)  - pointer to STREAMS queue information for this      */
2742 /*                       interface & direction.                             */
2743 /*                                                                          */
2744 /* ipf_check() is the master function for all IPFilter packet processing.   */
2745 /* It orchestrates: Network Address Translation (NAT), checking for packet  */
2746 /* authorisation (or pre-authorisation), presence of related state info.,   */
2747 /* generating log entries, IP packet accounting, routing of packets as      */
2748 /* directed by firewall rules and of course whether or not to allow the     */
2749 /* packet to be further processed by the kernel.                            */
2750 /*                                                                          */
2751 /* For packets blocked, the contents of "mp" will be NULL'd and the buffer  */
2752 /* freed.  Packets passed may be returned with the pointer pointed to by    */
2753 /* by "mp" changed to a new buffer.                                         */
2754 /* ------------------------------------------------------------------------ */
2755 int
ipf_check(void * ctx,ip_t * ip,int hlen,struct ifnet * ifp,int out,void * qif,mb_t ** mp)2756 ipf_check(void *ctx, ip_t *ip, int hlen, struct ifnet *ifp, int out
2757 #if defined(_KERNEL) && SOLARIS
2758 	, void* qif, mb_t **mp)
2759 #else
2760 	, mb_t **mp)
2761 #endif
2762 {
2763 	/*
2764 	 * The above really sucks, but short of writing a diff
2765 	 */
2766 	ipf_main_softc_t *softc = ctx;
2767 	fr_info_t frinfo;
2768 	fr_info_t *fin = &frinfo;
2769 	u_32_t pass = softc->ipf_pass;
2770 	frentry_t *fr = NULL;
2771 	int v = IP_V(ip);
2772 	mb_t *mc = NULL;
2773 	mb_t *m;
2774 	/*
2775 	 * The first part of ipf_check() deals with making sure that what goes
2776 	 * into the filtering engine makes some sense.  Information about the
2777 	 * the packet is distilled, collected into a fr_info_t structure and
2778 	 * the an attempt to ensure the buffer the packet is in is big enough
2779 	 * to hold all the required packet headers.
2780 	 */
2781 #ifdef	_KERNEL
2782 # if SOLARIS
2783 	qpktinfo_t *qpi = qif;
2784 
2785 #  ifdef __sparc
2786 	if ((u_int)ip & 0x3)
2787 		return (2);
2788 #  endif
2789 # else
2790 	SPL_INT(s);
2791 # endif
2792 
2793 	if (softc->ipf_running <= 0) {
2794 		return (0);
2795 	}
2796 
2797 	bzero((char *)fin, sizeof(*fin));
2798 
2799 # if SOLARIS
2800 	if (qpi->qpi_flags & QF_BROADCAST)
2801 		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2802 	if (qpi->qpi_flags & QF_MULTICAST)
2803 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2804 	m = qpi->qpi_m;
2805 	fin->fin_qfm = m;
2806 	fin->fin_qpi = qpi;
2807 # else /* SOLARIS */
2808 
2809 	m = *mp;
2810 
2811 #  if defined(M_MCAST)
2812 	if ((m->m_flags & M_MCAST) != 0)
2813 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2814 #  endif
2815 #  if defined(M_MLOOP)
2816 	if ((m->m_flags & M_MLOOP) != 0)
2817 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2818 #  endif
2819 #  if defined(M_BCAST)
2820 	if ((m->m_flags & M_BCAST) != 0)
2821 		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2822 #  endif
2823 #  ifdef M_CANFASTFWD
2824 	/*
2825 	 * XXX For now, IP Filter and fast-forwarding of cached flows
2826 	 * XXX are mutually exclusive.  Eventually, IP Filter should
2827 	 * XXX get a "can-fast-forward" filter rule.
2828 	 */
2829 	m->m_flags &= ~M_CANFASTFWD;
2830 #  endif /* M_CANFASTFWD */
2831 #  if defined(CSUM_DELAY_DATA) && !defined(__FreeBSD__)
2832 	/*
2833 	 * disable delayed checksums.
2834 	 */
2835 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2836 		in_delayed_cksum(m);
2837 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2838 	}
2839 #  endif /* CSUM_DELAY_DATA */
2840 # endif /* SOLARIS */
2841 #else
2842 	bzero((char *)fin, sizeof(*fin));
2843 	m = *mp;
2844 # if defined(M_MCAST)
2845 	if ((m->m_flags & M_MCAST) != 0)
2846 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2847 # endif
2848 # if defined(M_MLOOP)
2849 	if ((m->m_flags & M_MLOOP) != 0)
2850 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2851 # endif
2852 # if defined(M_BCAST)
2853 	if ((m->m_flags & M_BCAST) != 0)
2854 		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2855 # endif
2856 #endif /* _KERNEL */
2857 
2858 	fin->fin_v = v;
2859 	fin->fin_m = m;
2860 	fin->fin_ip = ip;
2861 	fin->fin_mp = mp;
2862 	fin->fin_out = out;
2863 	fin->fin_ifp = ifp;
2864 	fin->fin_error = ENETUNREACH;
2865 	fin->fin_hlen = (u_short)hlen;
2866 	fin->fin_dp = (char *)ip + hlen;
2867 	fin->fin_main_soft = softc;
2868 
2869 	fin->fin_ipoff = (char *)ip - MTOD(m, char *);
2870 
2871 	SPL_NET(s);
2872 
2873 #ifdef	USE_INET6
2874 	if (v == 6) {
2875 		LBUMP(ipf_stats[out].fr_ipv6);
2876 		/*
2877 		 * Jumbo grams are quite likely too big for internal buffer
2878 		 * structures to handle comfortably, for now, so just drop
2879 		 * them.
2880 		 */
2881 		if (((ip6_t *)ip)->ip6_plen == 0) {
2882 			DT1(frb_jumbo, ip6_t *, (ip6_t *)ip);
2883 			pass = FR_BLOCK|FR_NOMATCH;
2884 			fin->fin_reason = FRB_JUMBO;
2885 			goto finished;
2886 		}
2887 		fin->fin_family = AF_INET6;
2888 	} else
2889 #endif
2890 	{
2891 		fin->fin_family = AF_INET;
2892 	}
2893 
2894 	if (ipf_makefrip(hlen, ip, fin) == -1) {
2895 		DT1(frb_makefrip, fr_info_t *, fin);
2896 		pass = FR_BLOCK|FR_NOMATCH;
2897 		fin->fin_reason = FRB_MAKEFRIP;
2898 		goto finished;
2899 	}
2900 
2901 	/*
2902 	 * For at least IPv6 packets, if a m_pullup() fails then this pointer
2903 	 * becomes NULL and so we have no packet to free.
2904 	 */
2905 	if (*fin->fin_mp == NULL)
2906 		goto finished;
2907 
2908 	if (!out) {
2909 		if (v == 4) {
2910 			if (softc->ipf_chksrc && !ipf_verifysrc(fin)) {
2911 				LBUMPD(ipf_stats[0], fr_v4_badsrc);
2912 				fin->fin_flx |= FI_BADSRC;
2913 			}
2914 			if (fin->fin_ip->ip_ttl < softc->ipf_minttl) {
2915 				LBUMPD(ipf_stats[0], fr_v4_badttl);
2916 				fin->fin_flx |= FI_LOWTTL;
2917 			}
2918 		}
2919 #ifdef USE_INET6
2920 		else  if (v == 6) {
2921 			if (((ip6_t *)ip)->ip6_hlim < softc->ipf_minttl) {
2922 				LBUMPD(ipf_stats[0], fr_v6_badttl);
2923 				fin->fin_flx |= FI_LOWTTL;
2924 			}
2925 		}
2926 #endif
2927 	}
2928 
2929 	if (fin->fin_flx & FI_SHORT) {
2930 		LBUMPD(ipf_stats[out], fr_short);
2931 	}
2932 
2933 	READ_ENTER(&softc->ipf_mutex);
2934 
2935 	if (!out) {
2936 		switch (fin->fin_v)
2937 		{
2938 		case 4 :
2939 			if (ipf_nat_checkin(fin, &pass) == -1) {
2940 				goto filterdone;
2941 			}
2942 			break;
2943 #ifdef USE_INET6
2944 		case 6 :
2945 			if (ipf_nat6_checkin(fin, &pass) == -1) {
2946 				goto filterdone;
2947 			}
2948 			break;
2949 #endif
2950 		default :
2951 			break;
2952 		}
2953 	}
2954 	/*
2955 	 * Check auth now.
2956 	 * If a packet is found in the auth table, then skip checking
2957 	 * the access lists for permission but we do need to consider
2958 	 * the result as if it were from the ACL's.  In addition, being
2959 	 * found in the auth table means it has been seen before, so do
2960 	 * not pass it through accounting (again), lest it be counted twice.
2961 	 */
2962 	fr = ipf_auth_check(fin, &pass);
2963 	if (!out && (fr == NULL))
2964 		(void) ipf_acctpkt(fin, NULL);
2965 
2966 	if (fr == NULL) {
2967 		if ((fin->fin_flx & FI_FRAG) != 0)
2968 			fr = ipf_frag_known(fin, &pass);
2969 
2970 		if (fr == NULL)
2971 			fr = ipf_state_check(fin, &pass);
2972 	}
2973 
2974 	if ((pass & FR_NOMATCH) || (fr == NULL))
2975 		fr = ipf_firewall(fin, &pass);
2976 
2977 	/*
2978 	 * If we've asked to track state for this packet, set it up.
2979 	 * Here rather than ipf_firewall because ipf_checkauth may decide
2980 	* to return a packet for "keep state"
2981 	 */
2982 	if ((pass & FR_KEEPSTATE) && (fin->fin_m != NULL) &&
2983 	    !(fin->fin_flx & FI_STATE)) {
2984 		if (ipf_state_add(softc, fin, NULL, 0) == 0) {
2985 			LBUMP(ipf_stats[out].fr_ads);
2986 		} else {
2987 			LBUMP(ipf_stats[out].fr_bads);
2988 			if (FR_ISPASS(pass)) {
2989 				DT(frb_stateadd);
2990 				pass &= ~FR_CMDMASK;
2991 				pass |= FR_BLOCK;
2992 				fin->fin_reason = FRB_STATEADD;
2993 			}
2994 		}
2995 	}
2996 
2997 	fin->fin_fr = fr;
2998 	if ((fr != NULL) && !(fin->fin_flx & FI_STATE)) {
2999 		fin->fin_dif = &fr->fr_dif;
3000 		fin->fin_tif = &fr->fr_tifs[fin->fin_rev];
3001 	}
3002 
3003 	/*
3004 	 * Only count/translate packets which will be passed on, out the
3005 	 * interface.
3006 	 */
3007 	if (out && FR_ISPASS(pass)) {
3008 		(void) ipf_acctpkt(fin, NULL);
3009 
3010 		switch (fin->fin_v)
3011 		{
3012 		case 4 :
3013 			if (ipf_nat_checkout(fin, &pass) == -1) {
3014 				;
3015 			} else if ((softc->ipf_update_ipid != 0) && (v == 4)) {
3016 				if (ipf_updateipid(fin) == -1) {
3017 					DT(frb_updateipid);
3018 					LBUMP(ipf_stats[1].fr_ipud);
3019 					pass &= ~FR_CMDMASK;
3020 					pass |= FR_BLOCK;
3021 					fin->fin_reason = FRB_UPDATEIPID;
3022 				} else {
3023 					LBUMP(ipf_stats[0].fr_ipud);
3024 				}
3025 			}
3026 			break;
3027 #ifdef USE_INET6
3028 		case 6 :
3029 			(void) ipf_nat6_checkout(fin, &pass);
3030 			break;
3031 #endif
3032 		default :
3033 			break;
3034 		}
3035 	}
3036 
3037 filterdone:
3038 #ifdef	IPFILTER_LOG
3039 	if ((softc->ipf_flags & FF_LOGGING) || (pass & FR_LOGMASK)) {
3040 		(void) ipf_dolog(fin, &pass);
3041 	}
3042 #endif
3043 
3044 	/*
3045 	 * The FI_STATE flag is cleared here so that calling ipf_state_check
3046 	 * will work when called from inside of fr_fastroute.  Although
3047 	 * there is a similar flag, FI_NATED, for NAT, it does have the same
3048 	 * impact on code execution.
3049 	 */
3050 	fin->fin_flx &= ~FI_STATE;
3051 
3052 #if defined(FASTROUTE_RECURSION)
3053 	/*
3054 	 * Up the reference on fr_lock and exit ipf_mutex. The generation of
3055 	 * a packet below can sometimes cause a recursive call into IPFilter.
3056 	 * On those platforms where that does happen, we need to hang onto
3057 	 * the filter rule just in case someone decides to remove or flush it
3058 	 * in the meantime.
3059 	 */
3060 	if (fr != NULL) {
3061 		MUTEX_ENTER(&fr->fr_lock);
3062 		fr->fr_ref++;
3063 		MUTEX_EXIT(&fr->fr_lock);
3064 	}
3065 
3066 	RWLOCK_EXIT(&softc->ipf_mutex);
3067 #endif
3068 
3069 	if ((pass & FR_RETMASK) != 0) {
3070 		/*
3071 		* Should we return an ICMP packet to indicate error
3072 		 * status passing through the packet filter ?
3073 		 * WARNING: ICMP error packets AND TCP RST packets should
3074 		 * ONLY be sent in repsonse to incoming packets.  Sending
3075 		 * them in response to outbound packets can result in a
3076 		 * panic on some operating systems.
3077 		 */
3078 		if (!out) {
3079 			if (pass & FR_RETICMP) {
3080 				int dst;
3081 
3082 				if ((pass & FR_RETMASK) == FR_FAKEICMP)
3083 					dst = 1;
3084 				else
3085 					dst = 0;
3086 				(void) ipf_send_icmp_err(ICMP_UNREACH, fin,
3087 							 dst);
3088 				LBUMP(ipf_stats[0].fr_ret);
3089 			} else if (((pass & FR_RETMASK) == FR_RETRST) &&
3090 				   !(fin->fin_flx & FI_SHORT)) {
3091 				if (((fin->fin_flx & FI_OOW) != 0) ||
3092 				    (ipf_send_reset(fin) == 0)) {
3093 					LBUMP(ipf_stats[1].fr_ret);
3094 				}
3095 			}
3096 
3097 			/*
3098 			 * When using return-* with auth rules, the auth code
3099 			 * takes over disposing of this packet.
3100 			 */
3101 			if (FR_ISAUTH(pass) && (fin->fin_m != NULL)) {
3102 				DT1(frb_authcapture, fr_info_t *, fin);
3103 				fin->fin_m = *fin->fin_mp = NULL;
3104 				fin->fin_reason = FRB_AUTHCAPTURE;
3105 				m = NULL;
3106 			}
3107 		} else {
3108 			if (pass & FR_RETRST) {
3109 				fin->fin_error = ECONNRESET;
3110 			}
3111 		}
3112 	}
3113 
3114 	/*
3115 	 * After the above so that ICMP unreachables and TCP RSTs get
3116 	 * created properly.
3117 	 */
3118 	if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT))
3119 		ipf_nat_uncreate(fin);
3120 
3121 	/*
3122 	 * If we didn't drop off the bottom of the list of rules (and thus
3123 	 * the 'current' rule fr is not NULL), then we may have some extra
3124 	 * instructions about what to do with a packet.
3125 	* Once we're finished return to our caller, freeing the packet if
3126 	 * we are dropping it.
3127 	 */
3128 	if (fr != NULL) {
3129 		frdest_t *fdp;
3130 
3131 		/*
3132 		 * Generate a duplicated packet first because ipf_fastroute
3133 		 * can lead to fin_m being free'd... not good.
3134 		 */
3135 		fdp = fin->fin_dif;
3136 		if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3137 		    (fdp->fd_ptr != (void *)-1)) {
3138 			mc = M_COPY(fin->fin_m);
3139 			if (mc != NULL)
3140 				ipf_fastroute(mc, &mc, fin, fdp);
3141 		}
3142 
3143 		fdp = fin->fin_tif;
3144 		if (!out && (pass & FR_FASTROUTE)) {
3145 			/*
3146 			 * For fastroute rule, no destination interface defined
3147 			 * so pass NULL as the frdest_t parameter
3148 			 */
3149 			(void) ipf_fastroute(fin->fin_m, mp, fin, NULL);
3150 			m = *mp = NULL;
3151 		} else if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3152 			   (fdp->fd_ptr != (struct ifnet *)-1)) {
3153 			/* this is for to rules: */
3154 			ipf_fastroute(fin->fin_m, mp, fin, fdp);
3155 			m = *mp = NULL;
3156 		}
3157 
3158 #if defined(FASTROUTE_RECURSION)
3159 		(void) ipf_derefrule(softc, &fr);
3160 #endif
3161 	}
3162 #if !defined(FASTROUTE_RECURSION)
3163 	RWLOCK_EXIT(&softc->ipf_mutex);
3164 #endif
3165 
3166 finished:
3167 	if (!FR_ISPASS(pass)) {
3168 		LBUMP(ipf_stats[out].fr_block);
3169 		if (*mp != NULL) {
3170 #ifdef _KERNEL
3171 			FREE_MB_T(*mp);
3172 #endif
3173 			m = *mp = NULL;
3174 		}
3175 	} else {
3176 		LBUMP(ipf_stats[out].fr_pass);
3177 	}
3178 
3179 	SPL_X(s);
3180 
3181 	if (fin->fin_m == NULL && fin->fin_flx & FI_BAD &&
3182 	    fin->fin_reason == FRB_PULLUP) {
3183 		/* m_pullup() has freed the mbuf */
3184 		LBUMP(ipf_stats[out].fr_blocked[fin->fin_reason]);
3185 		return (-1);
3186 	}
3187 
3188 
3189 #ifdef _KERNEL
3190 	if (FR_ISPASS(pass))
3191 		return (0);
3192 	LBUMP(ipf_stats[out].fr_blocked[fin->fin_reason]);
3193 	return (fin->fin_error);
3194 #else /* _KERNEL */
3195 	if (*mp != NULL)
3196 		(*mp)->mb_ifp = fin->fin_ifp;
3197 	blockreason = fin->fin_reason;
3198 	FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass));
3199 	/*if ((pass & FR_CMDMASK) == (softc->ipf_pass & FR_CMDMASK))*/
3200 		if ((pass & FR_NOMATCH) != 0)
3201 			return (1);
3202 
3203 	if ((pass & FR_RETMASK) != 0)
3204 		switch (pass & FR_RETMASK)
3205 		{
3206 		case FR_RETRST :
3207 			return (3);
3208 		case FR_RETICMP :
3209 			return (4);
3210 		case FR_FAKEICMP :
3211 			return (5);
3212 		}
3213 
3214 	switch (pass & FR_CMDMASK)
3215 	{
3216 	case FR_PASS :
3217 		return (0);
3218 	case FR_BLOCK :
3219 		return (-1);
3220 	case FR_AUTH :
3221 		return (-2);
3222 	case FR_ACCOUNT :
3223 		return (-3);
3224 	case FR_PREAUTH :
3225 		return (-4);
3226 	}
3227 	return (2);
3228 #endif /* _KERNEL */
3229 }
3230 
3231 
3232 #ifdef	IPFILTER_LOG
3233 /* ------------------------------------------------------------------------ */
3234 /* Function:    ipf_dolog                                                   */
3235 /* Returns:     frentry_t* - returns contents of fin_fr (no change made)    */
3236 /* Parameters:  fin(I) - pointer to packet information                      */
3237 /*              passp(IO) - pointer to current/new filter decision (unused) */
3238 /*                                                                          */
3239 /* Checks flags set to see how a packet should be logged, if it is to be    */
3240 /* logged.  Adjust statistics based on its success or not.                  */
3241 /* ------------------------------------------------------------------------ */
3242 frentry_t *
ipf_dolog(fr_info_t * fin,u_32_t * passp)3243 ipf_dolog(fr_info_t *fin, u_32_t *passp)
3244 {
3245 	ipf_main_softc_t *softc = fin->fin_main_soft;
3246 	u_32_t pass;
3247 	int out;
3248 
3249 	out = fin->fin_out;
3250 	pass = *passp;
3251 
3252 	if ((softc->ipf_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) {
3253 		pass |= FF_LOGNOMATCH;
3254 		LBUMPD(ipf_stats[out], fr_npkl);
3255 		goto logit;
3256 
3257 	} else if (((pass & FR_LOGMASK) == FR_LOGP) ||
3258 	    (FR_ISPASS(pass) && (softc->ipf_flags & FF_LOGPASS))) {
3259 		if ((pass & FR_LOGMASK) != FR_LOGP)
3260 			pass |= FF_LOGPASS;
3261 		LBUMPD(ipf_stats[out], fr_ppkl);
3262 		goto logit;
3263 
3264 	} else if (((pass & FR_LOGMASK) == FR_LOGB) ||
3265 		   (FR_ISBLOCK(pass) && (softc->ipf_flags & FF_LOGBLOCK))) {
3266 		if ((pass & FR_LOGMASK) != FR_LOGB)
3267 			pass |= FF_LOGBLOCK;
3268 		LBUMPD(ipf_stats[out], fr_bpkl);
3269 
3270 logit:
3271 		if (ipf_log_pkt(fin, pass) == -1) {
3272 			/*
3273 			 * If the "or-block" option has been used then
3274 			 * block the packet if we failed to log it.
3275 			 */
3276 			if ((pass & FR_LOGORBLOCK) && FR_ISPASS(pass)) {
3277 				DT1(frb_logfail2, u_int, pass);
3278 				pass &= ~FR_CMDMASK;
3279 				pass |= FR_BLOCK;
3280 				fin->fin_reason = FRB_LOGFAIL2;
3281 			}
3282 		}
3283 		*passp = pass;
3284 	}
3285 
3286 	return (fin->fin_fr);
3287 }
3288 #endif /* IPFILTER_LOG */
3289 
3290 
3291 /* ------------------------------------------------------------------------ */
3292 /* Function:    ipf_cksum                                                   */
3293 /* Returns:     u_short - IP header checksum                                */
3294 /* Parameters:  addr(I) - pointer to start of buffer to checksum            */
3295 /*              len(I)  - length of buffer in bytes                         */
3296 /*                                                                          */
3297 /* Calculate the two's complement 16 bit checksum of the buffer passed.     */
3298 /*                                                                          */
3299 /* N.B.: addr should be 16bit aligned.                                      */
3300 /* ------------------------------------------------------------------------ */
3301 u_short
ipf_cksum(u_short * addr,int len)3302 ipf_cksum(u_short *addr, int len)
3303 {
3304 	u_32_t sum = 0;
3305 
3306 	for (sum = 0; len > 1; len -= 2)
3307 		sum += *addr++;
3308 
3309 	/* mop up an odd byte, if necessary */
3310 	if (len == 1)
3311 		sum += *(u_char *)addr;
3312 
3313 	/*
3314 	 * add back carry outs from top 16 bits to low 16 bits
3315 	 */
3316 	sum = (sum >> 16) + (sum & 0xffff);	/* add hi 16 to low 16 */
3317 	sum += (sum >> 16);			/* add carry */
3318 	return (u_short)(~sum);
3319 }
3320 
3321 
3322 /* ------------------------------------------------------------------------ */
3323 /* Function:    fr_cksum                                                    */
3324 /* Returns:     u_short - layer 4 checksum                                  */
3325 /* Parameters:  fin(I)     - pointer to packet information                  */
3326 /*              ip(I)      - pointer to IP header                           */
3327 /*              l4proto(I) - protocol to caclulate checksum for             */
3328 /*              l4hdr(I)   - pointer to layer 4 header                      */
3329 /*                                                                          */
3330 /* Calculates the TCP checksum for the packet held in "m", using the data   */
3331 /* in the IP header "ip" to seed it.                                        */
3332 /*                                                                          */
3333 /* NB: This function assumes we've pullup'd enough for all of the IP header */
3334 /* and the TCP header.  We also assume that data blocks aren't allocated in */
3335 /* odd sizes.                                                               */
3336 /*                                                                          */
3337 /* Expects ip_len and ip_off to be in network byte order when called.       */
3338 /* ------------------------------------------------------------------------ */
3339 u_short
fr_cksum(fr_info_t * fin,ip_t * ip,int l4proto,void * l4hdr)3340 fr_cksum(fr_info_t *fin, ip_t *ip, int l4proto, void *l4hdr)
3341 {
3342 	u_short *sp, slen, sumsave, *csump;
3343 	u_int sum, sum2;
3344 	int hlen;
3345 	int off;
3346 #ifdef	USE_INET6
3347 	ip6_t *ip6;
3348 #endif
3349 
3350 	csump = NULL;
3351 	sumsave = 0;
3352 	sp = NULL;
3353 	slen = 0;
3354 	hlen = 0;
3355 	sum = 0;
3356 
3357 	sum = htons((u_short)l4proto);
3358 	/*
3359 	 * Add up IP Header portion
3360 	 */
3361 #ifdef	USE_INET6
3362 	if (IP_V(ip) == 4) {
3363 #endif
3364 		hlen = IP_HL(ip) << 2;
3365 		off = hlen;
3366 		sp = (u_short *)&ip->ip_src;
3367 		sum += *sp++;	/* ip_src */
3368 		sum += *sp++;
3369 		sum += *sp++;	/* ip_dst */
3370 		sum += *sp++;
3371 		slen = fin->fin_plen - off;
3372 		sum += htons(slen);
3373 #ifdef	USE_INET6
3374 	} else if (IP_V(ip) == 6) {
3375 		mb_t *m;
3376 
3377 		m = fin->fin_m;
3378 		ip6 = (ip6_t *)ip;
3379 		off = ((caddr_t)ip6 - m->m_data) + sizeof(struct ip6_hdr);
3380 		int len = ntohs(ip6->ip6_plen) - (off - sizeof(*ip6));
3381 		return (ipf_pcksum6(m, ip6, off, len));
3382 	} else {
3383 		return (0xffff);
3384 	}
3385 #endif
3386 
3387 	switch (l4proto)
3388 	{
3389 	case IPPROTO_UDP :
3390 		csump = &((udphdr_t *)l4hdr)->uh_sum;
3391 		break;
3392 
3393 	case IPPROTO_TCP :
3394 		csump = &((tcphdr_t *)l4hdr)->th_sum;
3395 		break;
3396 	case IPPROTO_ICMP :
3397 		csump = &((icmphdr_t *)l4hdr)->icmp_cksum;
3398 		sum = 0;	/* Pseudo-checksum is not included */
3399 		break;
3400 #ifdef USE_INET6
3401 	case IPPROTO_ICMPV6 :
3402 		csump = &((struct icmp6_hdr *)l4hdr)->icmp6_cksum;
3403 		break;
3404 #endif
3405 	default :
3406 		break;
3407 	}
3408 
3409 	if (csump != NULL) {
3410 		sumsave = *csump;
3411 		*csump = 0;
3412 	}
3413 
3414 	sum2 = ipf_pcksum(fin, off, sum);
3415 	if (csump != NULL)
3416 		*csump = sumsave;
3417 	return (sum2);
3418 }
3419 
3420 
3421 /* ------------------------------------------------------------------------ */
3422 /* Function:    ipf_findgroup                                               */
3423 /* Returns:     frgroup_t * - NULL = group not found, else pointer to group */
3424 /* Parameters:  softc(I) - pointer to soft context main structure           */
3425 /*              group(I) - group name to search for                         */
3426 /*              unit(I)  - device to which this group belongs               */
3427 /*              set(I)   - which set of rules (inactive/inactive) this is   */
3428 /*              fgpp(O)  - pointer to place to store pointer to the pointer */
3429 /*                         to where to add the next (last) group or where   */
3430 /*                         to delete group from.                            */
3431 /*                                                                          */
3432 /* Search amongst the defined groups for a particular group number.         */
3433 /* ------------------------------------------------------------------------ */
3434 frgroup_t *
ipf_findgroup(ipf_main_softc_t * softc,char * group,minor_t unit,int set,frgroup_t *** fgpp)3435 ipf_findgroup(ipf_main_softc_t *softc, char *group, minor_t unit, int set,
3436 	frgroup_t ***fgpp)
3437 {
3438 	frgroup_t *fg, **fgp;
3439 
3440 	/*
3441 	 * Which list of groups to search in is dependent on which list of
3442 	 * rules are being operated on.
3443 	 */
3444 	fgp = &softc->ipf_groups[unit][set];
3445 
3446 	while ((fg = *fgp) != NULL) {
3447 		if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0)
3448 			break;
3449 		else
3450 			fgp = &fg->fg_next;
3451 	}
3452 	if (fgpp != NULL)
3453 		*fgpp = fgp;
3454 	return (fg);
3455 }
3456 
3457 
3458 /* ------------------------------------------------------------------------ */
3459 /* Function:    ipf_group_add                                               */
3460 /* Returns:     frgroup_t * - NULL == did not create group,                 */
3461 /*                            != NULL == pointer to the group               */
3462 /* Parameters:  softc(I) - pointer to soft context main structure           */
3463 /*              num(I)   - group number to add                              */
3464 /*              head(I)  - rule pointer that is using this as the head      */
3465 /*              flags(I) - rule flags which describe the type of rule it is */
3466 /*              unit(I)  - device to which this group will belong to        */
3467 /*              set(I)   - which set of rules (inactive/inactive) this is   */
3468 /* Write Locks: ipf_mutex                                                   */
3469 /*                                                                          */
3470 /* Add a new group head, or if it already exists, increase the reference    */
3471 /* count to it.                                                             */
3472 /* ------------------------------------------------------------------------ */
3473 frgroup_t *
ipf_group_add(ipf_main_softc_t * softc,char * group,void * head,u_32_t flags,minor_t unit,int set)3474 ipf_group_add(ipf_main_softc_t *softc, char *group, void *head, u_32_t flags,
3475 	minor_t unit, int set)
3476 {
3477 	frgroup_t *fg, **fgp;
3478 	u_32_t gflags;
3479 
3480 	if (group == NULL)
3481 		return (NULL);
3482 
3483 	if (unit == IPL_LOGIPF && *group == '\0')
3484 		return (NULL);
3485 
3486 	fgp = NULL;
3487 	gflags = flags & FR_INOUT;
3488 
3489 	fg = ipf_findgroup(softc, group, unit, set, &fgp);
3490 	if (fg != NULL) {
3491 		if (fg->fg_head == NULL && head != NULL)
3492 			fg->fg_head = head;
3493 		if (fg->fg_flags == 0)
3494 			fg->fg_flags = gflags;
3495 		else if (gflags != fg->fg_flags)
3496 			return (NULL);
3497 		fg->fg_ref++;
3498 		return (fg);
3499 	}
3500 
3501 	KMALLOC(fg, frgroup_t *);
3502 	if (fg != NULL) {
3503 		fg->fg_head = head;
3504 		fg->fg_start = NULL;
3505 		fg->fg_next = *fgp;
3506 		bcopy(group, fg->fg_name, strlen(group) + 1);
3507 		fg->fg_flags = gflags;
3508 		fg->fg_ref = 1;
3509 		fg->fg_set = &softc->ipf_groups[unit][set];
3510 		*fgp = fg;
3511 	}
3512 	return (fg);
3513 }
3514 
3515 
3516 /* ------------------------------------------------------------------------ */
3517 /* Function:    ipf_group_del                                               */
3518 /* Returns:     int      - number of rules deleted                          */
3519 /* Parameters:  softc(I) - pointer to soft context main structure           */
3520 /*              group(I) - group name to delete                             */
3521 /*              fr(I)    - filter rule from which group is referenced       */
3522 /* Write Locks: ipf_mutex                                                   */
3523 /*                                                                          */
3524 /* This function is called whenever a reference to a group is to be dropped */
3525 /* and thus its reference count needs to be lowered and the group free'd if */
3526 /* the reference count reaches zero. Passing in fr is really for the sole   */
3527 /* purpose of knowing when the head rule is being deleted.                  */
3528 /* ------------------------------------------------------------------------ */
3529 void
ipf_group_del(ipf_main_softc_t * softc,frgroup_t * group,frentry_t * fr)3530 ipf_group_del(ipf_main_softc_t *softc, frgroup_t *group, frentry_t *fr)
3531 {
3532 
3533 	if (group->fg_head == fr)
3534 		group->fg_head = NULL;
3535 
3536 	group->fg_ref--;
3537 	if ((group->fg_ref == 0) && (group->fg_start == NULL))
3538 		ipf_group_free(group);
3539 }
3540 
3541 
3542 /* ------------------------------------------------------------------------ */
3543 /* Function:    ipf_group_free                                              */
3544 /* Returns:     Nil                                                         */
3545 /* Parameters:  group(I) - pointer to filter rule group                     */
3546 /*                                                                          */
3547 /* Remove the group from the list of groups and free it.                    */
3548 /* ------------------------------------------------------------------------ */
3549 static void
ipf_group_free(frgroup_t * group)3550 ipf_group_free(frgroup_t *group)
3551 {
3552 	frgroup_t **gp;
3553 
3554 	for (gp = group->fg_set; *gp != NULL; gp = &(*gp)->fg_next) {
3555 		if (*gp == group) {
3556 			*gp = group->fg_next;
3557 			break;
3558 		}
3559 	}
3560 	KFREE(group);
3561 }
3562 
3563 
3564 /* ------------------------------------------------------------------------ */
3565 /* Function:    ipf_group_flush                                             */
3566 /* Returns:     int      - number of rules flush from group                 */
3567 /* Parameters:  softc(I) - pointer to soft context main structure           */
3568 /* Parameters:  group(I) - pointer to filter rule group                     */
3569 /*                                                                          */
3570 /* Remove all of the rules that currently are listed under the given group. */
3571 /* ------------------------------------------------------------------------ */
3572 static int
ipf_group_flush(ipf_main_softc_t * softc,frgroup_t * group)3573 ipf_group_flush(ipf_main_softc_t *softc, frgroup_t *group)
3574 {
3575 	int gone = 0;
3576 
3577 	(void) ipf_flushlist(softc, &gone, &group->fg_start);
3578 
3579 	return (gone);
3580 }
3581 
3582 
3583 /* ------------------------------------------------------------------------ */
3584 /* Function:    ipf_getrulen                                                */
3585 /* Returns:     frentry_t * - NULL == not found, else pointer to rule n     */
3586 /* Parameters:  softc(I) - pointer to soft context main structure           */
3587 /* Parameters:  unit(I)  - device for which to count the rule's number      */
3588 /*              flags(I) - which set of rules to find the rule in           */
3589 /*              group(I) - group name                                       */
3590 /*              n(I)     - rule number to find                              */
3591 /*                                                                          */
3592 /* Find rule # n in group # g and return a pointer to it.  Return NULl if   */
3593 /* group # g doesn't exist or there are less than n rules in the group.     */
3594 /* ------------------------------------------------------------------------ */
3595 frentry_t *
ipf_getrulen(ipf_main_softc_t * softc,int unit,char * group,u_32_t n)3596 ipf_getrulen(ipf_main_softc_t *softc, int unit, char *group, u_32_t n)
3597 {
3598 	frentry_t *fr;
3599 	frgroup_t *fg;
3600 
3601 	fg = ipf_findgroup(softc, group, unit, softc->ipf_active, NULL);
3602 	if (fg == NULL)
3603 		return (NULL);
3604 	for (fr = fg->fg_start; fr && n; fr = fr->fr_next, n--)
3605 		;
3606 	if (n != 0)
3607 		return (NULL);
3608 	return (fr);
3609 }
3610 
3611 
3612 /* ------------------------------------------------------------------------ */
3613 /* Function:    ipf_flushlist                                               */
3614 /* Returns:     int - >= 0 - number of flushed rules                        */
3615 /* Parameters:  softc(I)   - pointer to soft context main structure         */
3616 /*              nfreedp(O) - pointer to int where flush count is stored     */
3617 /*              listp(I)   - pointer to list to flush pointer               */
3618 /* Write Locks: ipf_mutex                                                   */
3619 /*                                                                          */
3620 /* Recursively flush rules from the list, descending groups as they are     */
3621 /* encountered.  if a rule is the head of a group and it has lost all its   */
3622 /* group members, then also delete the group reference.  nfreedp is needed  */
3623 /* to store the accumulating count of rules removed, whereas the returned   */
3624 /* value is just the number removed from the current list.  The latter is   */
3625 /* needed to correctly adjust reference counts on rules that define groups. */
3626 /*                                                                          */
3627 /* NOTE: Rules not loaded from user space cannot be flushed.                */
3628 /* ------------------------------------------------------------------------ */
3629 static int
ipf_flushlist(ipf_main_softc_t * softc,int * nfreedp,frentry_t ** listp)3630 ipf_flushlist(ipf_main_softc_t *softc, int *nfreedp, frentry_t **listp)
3631 {
3632 	int freed = 0;
3633 	frentry_t *fp;
3634 
3635 	while ((fp = *listp) != NULL) {
3636 		if ((fp->fr_type & FR_T_BUILTIN) ||
3637 		    !(fp->fr_flags & FR_COPIED)) {
3638 			listp = &fp->fr_next;
3639 			continue;
3640 		}
3641 		*listp = fp->fr_next;
3642 		if (fp->fr_next != NULL)
3643 			fp->fr_next->fr_pnext = fp->fr_pnext;
3644 		fp->fr_pnext = NULL;
3645 
3646 		if (fp->fr_grphead != NULL) {
3647 			freed += ipf_group_flush(softc, fp->fr_grphead);
3648 			fp->fr_names[fp->fr_grhead] = '\0';
3649 		}
3650 
3651 		if (fp->fr_icmpgrp != NULL) {
3652 			freed += ipf_group_flush(softc, fp->fr_icmpgrp);
3653 			fp->fr_names[fp->fr_icmphead] = '\0';
3654 		}
3655 
3656 		if (fp->fr_srctrack.ht_max_nodes)
3657 			ipf_rb_ht_flush(&fp->fr_srctrack);
3658 
3659 		fp->fr_next = NULL;
3660 
3661 		ASSERT(fp->fr_ref > 0);
3662 		if (ipf_derefrule(softc, &fp) == 0)
3663 			freed++;
3664 	}
3665 	*nfreedp += freed;
3666 	return (freed);
3667 }
3668 
3669 
3670 /* ------------------------------------------------------------------------ */
3671 /* Function:    ipf_flush                                                   */
3672 /* Returns:     int - >= 0 - number of flushed rules                        */
3673 /* Parameters:  softc(I) - pointer to soft context main structure           */
3674 /*              unit(I)  - device for which to flush rules                  */
3675 /*              flags(I) - which set of rules to flush                      */
3676 /*                                                                          */
3677 /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */
3678 /* and IPv6) as defined by the value of flags.                              */
3679 /* ------------------------------------------------------------------------ */
3680 int
ipf_flush(ipf_main_softc_t * softc,minor_t unit,int flags)3681 ipf_flush(ipf_main_softc_t *softc, minor_t unit, int flags)
3682 {
3683 	int flushed = 0, set;
3684 
3685 	WRITE_ENTER(&softc->ipf_mutex);
3686 
3687 	set = softc->ipf_active;
3688 	if ((flags & FR_INACTIVE) == FR_INACTIVE)
3689 		set = 1 - set;
3690 
3691 	if (flags & FR_OUTQUE) {
3692 		ipf_flushlist(softc, &flushed, &softc->ipf_rules[1][set]);
3693 		ipf_flushlist(softc, &flushed, &softc->ipf_acct[1][set]);
3694 	}
3695 	if (flags & FR_INQUE) {
3696 		ipf_flushlist(softc, &flushed, &softc->ipf_rules[0][set]);
3697 		ipf_flushlist(softc, &flushed, &softc->ipf_acct[0][set]);
3698 	}
3699 
3700 	flushed += ipf_flush_groups(softc, &softc->ipf_groups[unit][set],
3701 				    flags & (FR_INQUE|FR_OUTQUE));
3702 
3703 	RWLOCK_EXIT(&softc->ipf_mutex);
3704 
3705 	if (unit == IPL_LOGIPF) {
3706 		int tmp;
3707 
3708 		tmp = ipf_flush(softc, IPL_LOGCOUNT, flags);
3709 		if (tmp >= 0)
3710 			flushed += tmp;
3711 	}
3712 	return (flushed);
3713 }
3714 
3715 
3716 /* ------------------------------------------------------------------------ */
3717 /* Function:    ipf_flush_groups                                            */
3718 /* Returns:     int - >= 0 - number of flushed rules                        */
3719 /* Parameters:  softc(I)  - soft context pointerto work with                */
3720 /*              grhead(I) - pointer to the start of the group list to flush */
3721 /*              flags(I)  - which set of rules to flush                     */
3722 /*                                                                          */
3723 /* Walk through all of the groups under the given group head and remove all */
3724 /* of those that match the flags passed in. The for loop here is bit more   */
3725 /* complicated than usual because the removal of a rule with ipf_derefrule  */
3726 /* may end up removing not only the structure pointed to by "fg" but also   */
3727 /* what is fg_next and fg_next after that. So if a filter rule is actually  */
3728 /* removed from the group then it is necessary to start again.              */
3729 /* ------------------------------------------------------------------------ */
3730 static int
ipf_flush_groups(ipf_main_softc_t * softc,frgroup_t ** grhead,int flags)3731 ipf_flush_groups(ipf_main_softc_t *softc, frgroup_t **grhead, int flags)
3732 {
3733 	frentry_t *fr, **frp;
3734 	frgroup_t *fg, **fgp;
3735 	int flushed = 0;
3736 	int removed = 0;
3737 
3738 	for (fgp = grhead; (fg = *fgp) != NULL; ) {
3739 		while ((fg != NULL) && ((fg->fg_flags & flags) == 0))
3740 			fg = fg->fg_next;
3741 		if (fg == NULL)
3742 			break;
3743 		removed = 0;
3744 		frp = &fg->fg_start;
3745 		while ((removed == 0) && ((fr = *frp) != NULL)) {
3746 			if ((fr->fr_flags & flags) == 0) {
3747 				frp = &fr->fr_next;
3748 			} else {
3749 				if (fr->fr_next != NULL)
3750 					fr->fr_next->fr_pnext = fr->fr_pnext;
3751 				*frp = fr->fr_next;
3752 				fr->fr_pnext = NULL;
3753 				fr->fr_next = NULL;
3754 				(void) ipf_derefrule(softc, &fr);
3755 				flushed++;
3756 				removed++;
3757 			}
3758 		}
3759 		if (removed == 0)
3760 			fgp = &fg->fg_next;
3761 	}
3762 	return (flushed);
3763 }
3764 
3765 
3766 /* ------------------------------------------------------------------------ */
3767 /* Function:    memstr                                                      */
3768 /* Returns:     char *  - NULL if failed, != NULL pointer to matching bytes */
3769 /* Parameters:  src(I)  - pointer to byte sequence to match                 */
3770 /*              dst(I)  - pointer to byte sequence to search                */
3771 /*              slen(I) - match length                                      */
3772 /*              dlen(I) - length available to search in                     */
3773 /*                                                                          */
3774 /* Search dst for a sequence of bytes matching those at src and extend for  */
3775 /* slen bytes.                                                              */
3776 /* ------------------------------------------------------------------------ */
3777 char *
memstr(const char * src,char * dst,size_t slen,size_t dlen)3778 memstr(const char *src, char *dst, size_t slen, size_t dlen)
3779 {
3780 	char *s = NULL;
3781 
3782 	while (dlen >= slen) {
3783 		if (bcmp(src, dst, slen) == 0) {
3784 			s = dst;
3785 			break;
3786 		}
3787 		dst++;
3788 		dlen--;
3789 	}
3790 	return (s);
3791 }
3792 /* ------------------------------------------------------------------------ */
3793 /* Function:    ipf_fixskip                                                 */
3794 /* Returns:     Nil                                                         */
3795 /* Parameters:  listp(IO)    - pointer to start of list with skip rule      */
3796 /*              rp(I)        - rule added/removed with skip in it.          */
3797 /*              addremove(I) - adjustment (-1/+1) to make to skip count,    */
3798 /*                             depending on whether a rule was just added   */
3799 /*                             or removed.                                  */
3800 /*                                                                          */
3801 /* Adjust all the rules in a list which would have skip'd past the position */
3802 /* where we are inserting to skip to the right place given the change.      */
3803 /* ------------------------------------------------------------------------ */
3804 void
ipf_fixskip(frentry_t ** listp,frentry_t * rp,int addremove)3805 ipf_fixskip(frentry_t **listp, frentry_t *rp, int addremove)
3806 {
3807 	int rules, rn;
3808 	frentry_t *fp;
3809 
3810 	rules = 0;
3811 	for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next)
3812 		rules++;
3813 
3814 	if (fp == NULL)
3815 		return;
3816 
3817 	for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++)
3818 		if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules))
3819 			fp->fr_arg += addremove;
3820 }
3821 
3822 
3823 #ifdef	_KERNEL
3824 /* ------------------------------------------------------------------------ */
3825 /* Function:    count4bits                                                  */
3826 /* Returns:     int - >= 0 - number of consecutive bits in input            */
3827 /* Parameters:  ip(I) - 32bit IP address                                    */
3828 /*                                                                          */
3829 /* IPv4 ONLY                                                                */
3830 /* count consecutive 1's in bit mask.  If the mask generated by counting    */
3831 /* consecutive 1's is different to that passed, return -1, else return #    */
3832 /* of bits.                                                                 */
3833 /* ------------------------------------------------------------------------ */
3834 int
count4bits(u_32_t ip)3835 count4bits(u_32_t ip)
3836 {
3837 	u_32_t	ipn;
3838 	int	cnt = 0, i, j;
3839 
3840 	ip = ipn = ntohl(ip);
3841 	for (i = 32; i; i--, ipn *= 2)
3842 		if (ipn & 0x80000000)
3843 			cnt++;
3844 		else
3845 			break;
3846 	ipn = 0;
3847 	for (i = 32, j = cnt; i; i--, j--) {
3848 		ipn *= 2;
3849 		if (j > 0)
3850 			ipn++;
3851 	}
3852 	if (ipn == ip)
3853 		return (cnt);
3854 	return (-1);
3855 }
3856 
3857 
3858 /* ------------------------------------------------------------------------ */
3859 /* Function:    count6bits                                                  */
3860 /* Returns:     int - >= 0 - number of consecutive bits in input            */
3861 /* Parameters:  msk(I) - pointer to start of IPv6 bitmask                   */
3862 /*                                                                          */
3863 /* IPv6 ONLY                                                                */
3864 /* count consecutive 1's in bit mask.                                       */
3865 /* ------------------------------------------------------------------------ */
3866 # ifdef USE_INET6
3867 int
count6bits(u_32_t * msk)3868 count6bits(u_32_t *msk)
3869 {
3870 	int i = 0, k;
3871 	u_32_t j;
3872 
3873 	for (k = 3; k >= 0; k--)
3874 		if (msk[k] == 0xffffffff)
3875 			i += 32;
3876 		else {
3877 			for (j = msk[k]; j; j <<= 1)
3878 				if (j & 0x80000000)
3879 					i++;
3880 		}
3881 	return (i);
3882 }
3883 # endif
3884 #endif /* _KERNEL */
3885 
3886 
3887 /* ------------------------------------------------------------------------ */
3888 /* Function:    ipf_synclist                                                */
3889 /* Returns:     int    - 0 = no failures, else indication of first failure  */
3890 /* Parameters:  fr(I)  - start of filter list to sync interface names for   */
3891 /*              ifp(I) - interface pointer for limiting sync lookups        */
3892 /* Write Locks: ipf_mutex                                                   */
3893 /*                                                                          */
3894 /* Walk through a list of filter rules and resolve any interface names into */
3895 /* pointers.  Where dynamic addresses are used, also update the IP address  */
3896 /* used in the rule.  The interface pointer is used to limit the lookups to */
3897 /* a specific set of matching names if it is non-NULL.                      */
3898 /* Errors can occur when resolving the destination name of to/dup-to fields */
3899 /* when the name points to a pool and that pool doest not exist. If this    */
3900 /* does happen then it is necessary to check if there are any lookup refs   */
3901 /* that need to be dropped before returning with an error.                  */
3902 /* ------------------------------------------------------------------------ */
3903 static int
ipf_synclist(ipf_main_softc_t * softc,frentry_t * fr,void * ifp)3904 ipf_synclist(ipf_main_softc_t *softc, frentry_t *fr, void *ifp)
3905 {
3906 	frentry_t *frt, *start = fr;
3907 	frdest_t *fdp;
3908 	char *name;
3909 	int error;
3910 	void *ifa;
3911 	int v, i;
3912 
3913 	error = 0;
3914 
3915 	for (; fr; fr = fr->fr_next) {
3916 		if (fr->fr_family == AF_INET)
3917 			v = 4;
3918 		else if (fr->fr_family == AF_INET6)
3919 			v = 6;
3920 		else
3921 			v = 0;
3922 
3923 		/*
3924 		 * Lookup all the interface names that are part of the rule.
3925 		 */
3926 		for (i = 0; i < FR_NUM(fr->fr_ifas); i++) {
3927 			if ((ifp != NULL) && (fr->fr_ifas[i] != ifp))
3928 				continue;
3929 			if (fr->fr_ifnames[i] == -1)
3930 				continue;
3931 			name = FR_NAME(fr, fr_ifnames[i]);
3932 			fr->fr_ifas[i] = ipf_resolvenic(softc, name, v);
3933 		}
3934 
3935 		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
3936 			if (fr->fr_satype != FRI_NORMAL &&
3937 			    fr->fr_satype != FRI_LOOKUP) {
3938 				ifa = ipf_resolvenic(softc, fr->fr_names +
3939 						     fr->fr_sifpidx, v);
3940 				ipf_ifpaddr(softc, v, fr->fr_satype, ifa,
3941 					    &fr->fr_src6, &fr->fr_smsk6);
3942 			}
3943 			if (fr->fr_datype != FRI_NORMAL &&
3944 			    fr->fr_datype != FRI_LOOKUP) {
3945 				ifa = ipf_resolvenic(softc, fr->fr_names +
3946 						     fr->fr_sifpidx, v);
3947 				ipf_ifpaddr(softc, v, fr->fr_datype, ifa,
3948 					    &fr->fr_dst6, &fr->fr_dmsk6);
3949 			}
3950 		}
3951 
3952 		fdp = &fr->fr_tifs[0];
3953 		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
3954 			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
3955 			if (error != 0)
3956 				goto unwind;
3957 		}
3958 
3959 		fdp = &fr->fr_tifs[1];
3960 		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
3961 			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
3962 			if (error != 0)
3963 				goto unwind;
3964 		}
3965 
3966 		fdp = &fr->fr_dif;
3967 		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
3968 			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
3969 			if (error != 0)
3970 				goto unwind;
3971 		}
3972 
3973 		if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
3974 		    (fr->fr_satype == FRI_LOOKUP) && (fr->fr_srcptr == NULL)) {
3975 			fr->fr_srcptr = ipf_lookup_res_num(softc,
3976 							   fr->fr_srctype,
3977 							   IPL_LOGIPF,
3978 							   fr->fr_srcnum,
3979 							   &fr->fr_srcfunc);
3980 		}
3981 		if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
3982 		    (fr->fr_datype == FRI_LOOKUP) && (fr->fr_dstptr == NULL)) {
3983 			fr->fr_dstptr = ipf_lookup_res_num(softc,
3984 							   fr->fr_dsttype,
3985 							   IPL_LOGIPF,
3986 							   fr->fr_dstnum,
3987 							   &fr->fr_dstfunc);
3988 		}
3989 	}
3990 	return (0);
3991 
3992 unwind:
3993 	for (frt = start; frt != fr; fr = fr->fr_next) {
3994 		if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
3995 		    (frt->fr_satype == FRI_LOOKUP) && (frt->fr_srcptr != NULL))
3996 				ipf_lookup_deref(softc, frt->fr_srctype,
3997 						 frt->fr_srcptr);
3998 		if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
3999 		    (frt->fr_datype == FRI_LOOKUP) && (frt->fr_dstptr != NULL))
4000 				ipf_lookup_deref(softc, frt->fr_dsttype,
4001 						 frt->fr_dstptr);
4002 	}
4003 	return (error);
4004 }
4005 
4006 
4007 /* ------------------------------------------------------------------------ */
4008 /* Function:    ipf_sync                                                    */
4009 /* Returns:     void                                                        */
4010 /* Parameters:  Nil                                                         */
4011 /*                                                                          */
4012 /* ipf_sync() is called when we suspect that the interface list or          */
4013 /* information about interfaces (like IP#) has changed.  Go through all     */
4014 /* filter rules, NAT entries and the state table and check if anything      */
4015 /* needs to be changed/updated.                                             */
4016 /* ------------------------------------------------------------------------ */
4017 int
ipf_sync(ipf_main_softc_t * softc,void * ifp)4018 ipf_sync(ipf_main_softc_t *softc, void *ifp)
4019 {
4020 	int i;
4021 
4022 #if !SOLARIS
4023 	ipf_nat_sync(softc, ifp);
4024 	ipf_state_sync(softc, ifp);
4025 	ipf_lookup_sync(softc, ifp);
4026 #endif
4027 
4028 	WRITE_ENTER(&softc->ipf_mutex);
4029 	(void) ipf_synclist(softc, softc->ipf_acct[0][softc->ipf_active], ifp);
4030 	(void) ipf_synclist(softc, softc->ipf_acct[1][softc->ipf_active], ifp);
4031 	(void) ipf_synclist(softc, softc->ipf_rules[0][softc->ipf_active], ifp);
4032 	(void) ipf_synclist(softc, softc->ipf_rules[1][softc->ipf_active], ifp);
4033 
4034 	for (i = 0; i < IPL_LOGSIZE; i++) {
4035 		frgroup_t *g;
4036 
4037 		for (g = softc->ipf_groups[i][0]; g != NULL; g = g->fg_next)
4038 			(void) ipf_synclist(softc, g->fg_start, ifp);
4039 		for (g = softc->ipf_groups[i][1]; g != NULL; g = g->fg_next)
4040 			(void) ipf_synclist(softc, g->fg_start, ifp);
4041 	}
4042 	RWLOCK_EXIT(&softc->ipf_mutex);
4043 
4044 	return (0);
4045 }
4046 
4047 
4048 /*
4049  * In the functions below, bcopy() is called because the pointer being
4050  * copied _from_ in this instance is a pointer to a char buf (which could
4051  * end up being unaligned) and on the kernel's local stack.
4052  */
4053 /* ------------------------------------------------------------------------ */
4054 /* Function:    copyinptr                                                   */
4055 /* Returns:     int - 0 = success, else failure                             */
4056 /* Parameters:  src(I)  - pointer to the source address                     */
4057 /*              dst(I)  - destination address                               */
4058 /*              size(I) - number of bytes to copy                           */
4059 /*                                                                          */
4060 /* Copy a block of data in from user space, given a pointer to the pointer  */
4061 /* to start copying from (src) and a pointer to where to store it (dst).    */
4062 /* NB: src - pointer to user space pointer, dst - kernel space pointer      */
4063 /* ------------------------------------------------------------------------ */
4064 int
copyinptr(ipf_main_softc_t * softc,void * src,void * dst,size_t size)4065 copyinptr(ipf_main_softc_t *softc, void *src, void *dst, size_t size)
4066 {
4067 	caddr_t ca;
4068 	int error;
4069 
4070 #if SOLARIS
4071 	error = COPYIN(src, &ca, sizeof(ca));
4072 	if (error != 0)
4073 		return (error);
4074 #else
4075 	bcopy(src, (caddr_t)&ca, sizeof(ca));
4076 #endif
4077 	error = COPYIN(ca, dst, size);
4078 	if (error != 0) {
4079 		IPFERROR(3);
4080 		error = EFAULT;
4081 	}
4082 	return (error);
4083 }
4084 
4085 
4086 /* ------------------------------------------------------------------------ */
4087 /* Function:    copyoutptr                                                  */
4088 /* Returns:     int - 0 = success, else failure                             */
4089 /* Parameters:  src(I)  - pointer to the source address                     */
4090 /*              dst(I)  - destination address                               */
4091 /*              size(I) - number of bytes to copy                           */
4092 /*                                                                          */
4093 /* Copy a block of data out to user space, given a pointer to the pointer   */
4094 /* to start copying from (src) and a pointer to where to store it (dst).    */
4095 /* NB: src - kernel space pointer, dst - pointer to user space pointer.     */
4096 /* ------------------------------------------------------------------------ */
4097 int
copyoutptr(ipf_main_softc_t * softc,void * src,void * dst,size_t size)4098 copyoutptr(ipf_main_softc_t *softc, void *src, void *dst, size_t size)
4099 {
4100 	caddr_t ca;
4101 	int error;
4102 
4103 	bcopy(dst, (caddr_t)&ca, sizeof(ca));
4104 	error = COPYOUT(src, ca, size);
4105 	if (error != 0) {
4106 		IPFERROR(4);
4107 		error = EFAULT;
4108 	}
4109 	return (error);
4110 }
4111 
4112 
4113 /* ------------------------------------------------------------------------ */
4114 /* Function:    ipf_lock                                                    */
4115 /* Returns:     int      - 0 = success, else error                          */
4116 /* Parameters:  data(I)  - pointer to lock value to set                     */
4117 /*              lockp(O) - pointer to location to store old lock value      */
4118 /*                                                                          */
4119 /* Get the new value for the lock integer, set it and return the old value  */
4120 /* in *lockp.                                                               */
4121 /* ------------------------------------------------------------------------ */
4122 int
ipf_lock(caddr_t data,int * lockp)4123 ipf_lock(caddr_t data, int *lockp)
4124 {
4125 	int arg, err;
4126 
4127 	err = BCOPYIN(data, &arg, sizeof(arg));
4128 	if (err != 0)
4129 		return (EFAULT);
4130 	err = BCOPYOUT(lockp, data, sizeof(*lockp));
4131 	if (err != 0)
4132 		return (EFAULT);
4133 	*lockp = arg;
4134 	return (0);
4135 }
4136 
4137 
4138 /* ------------------------------------------------------------------------ */
4139 /* Function:    ipf_getstat                                                 */
4140 /* Returns:     Nil                                                         */
4141 /* Parameters:  softc(I) - pointer to soft context main structure           */
4142 /*              fiop(I)  - pointer to ipfilter stats structure              */
4143 /*              rev(I)   - version claim by program doing ioctl             */
4144 /*                                                                          */
4145 /* Stores a copy of current pointers, counters, etc, in the friostat        */
4146 /* structure.                                                               */
4147 /* If IPFILTER_COMPAT is compiled, we pretend to be whatever version the    */
4148 /* program is looking for. This ensure that validation of the version it    */
4149 /* expects will always succeed. Thus kernels with IPFILTER_COMPAT will      */
4150 /* allow older binaries to work but kernels without it will not.            */
4151 /* ------------------------------------------------------------------------ */
4152 /*ARGSUSED*/
4153 static void
ipf_getstat(ipf_main_softc_t * softc,friostat_t * fiop,int rev)4154 ipf_getstat(ipf_main_softc_t *softc, friostat_t *fiop, int rev)
4155 {
4156 	int i;
4157 
4158 	bcopy((char *)softc->ipf_stats, (char *)fiop->f_st,
4159 	      sizeof(ipf_statistics_t) * 2);
4160 	fiop->f_locks[IPL_LOGSTATE] = -1;
4161 	fiop->f_locks[IPL_LOGNAT] = -1;
4162 	fiop->f_locks[IPL_LOGIPF] = -1;
4163 	fiop->f_locks[IPL_LOGAUTH] = -1;
4164 
4165 	fiop->f_ipf[0][0] = softc->ipf_rules[0][0];
4166 	fiop->f_acct[0][0] = softc->ipf_acct[0][0];
4167 	fiop->f_ipf[0][1] = softc->ipf_rules[0][1];
4168 	fiop->f_acct[0][1] = softc->ipf_acct[0][1];
4169 	fiop->f_ipf[1][0] = softc->ipf_rules[1][0];
4170 	fiop->f_acct[1][0] = softc->ipf_acct[1][0];
4171 	fiop->f_ipf[1][1] = softc->ipf_rules[1][1];
4172 	fiop->f_acct[1][1] = softc->ipf_acct[1][1];
4173 
4174 	fiop->f_ticks = softc->ipf_ticks;
4175 	fiop->f_active = softc->ipf_active;
4176 	fiop->f_froute[0] = softc->ipf_frouteok[0];
4177 	fiop->f_froute[1] = softc->ipf_frouteok[1];
4178 	fiop->f_rb_no_mem = softc->ipf_rb_no_mem;
4179 	fiop->f_rb_node_max = softc->ipf_rb_node_max;
4180 
4181 	fiop->f_running = softc->ipf_running;
4182 	for (i = 0; i < IPL_LOGSIZE; i++) {
4183 		fiop->f_groups[i][0] = softc->ipf_groups[i][0];
4184 		fiop->f_groups[i][1] = softc->ipf_groups[i][1];
4185 	}
4186 #ifdef  IPFILTER_LOG
4187 	fiop->f_log_ok = ipf_log_logok(softc, IPL_LOGIPF);
4188 	fiop->f_log_fail = ipf_log_failures(softc, IPL_LOGIPF);
4189 	fiop->f_logging = 1;
4190 #else
4191 	fiop->f_log_ok = 0;
4192 	fiop->f_log_fail = 0;
4193 	fiop->f_logging = 0;
4194 #endif
4195 	fiop->f_defpass = softc->ipf_pass;
4196 	fiop->f_features = ipf_features;
4197 
4198 #ifdef IPFILTER_COMPAT
4199 	snprintf(fiop->f_version, sizeof(friostat.f_version), "IP Filter: v%d.%d.%d",
4200 		(rev / 1000000) % 100,
4201 		(rev / 10000) % 100,
4202 		(rev / 100) % 100);
4203 #else
4204 	(void)rev; /* UNUSED */
4205 	(void) strncpy(fiop->f_version, ipfilter_version,
4206 		       sizeof(fiop->f_version));
4207 #endif
4208 }
4209 
4210 
4211 #ifdef	USE_INET6
4212 int icmptoicmp6types[ICMP_MAXTYPE+1] = {
4213 	ICMP6_ECHO_REPLY,	/* 0: ICMP_ECHOREPLY */
4214 	-1,			/* 1: UNUSED */
4215 	-1,			/* 2: UNUSED */
4216 	ICMP6_DST_UNREACH,	/* 3: ICMP_UNREACH */
4217 	-1,			/* 4: ICMP_SOURCEQUENCH */
4218 	ND_REDIRECT,		/* 5: ICMP_REDIRECT */
4219 	-1,			/* 6: UNUSED */
4220 	-1,			/* 7: UNUSED */
4221 	ICMP6_ECHO_REQUEST,	/* 8: ICMP_ECHO */
4222 	-1,			/* 9: UNUSED */
4223 	-1,			/* 10: UNUSED */
4224 	ICMP6_TIME_EXCEEDED,	/* 11: ICMP_TIMXCEED */
4225 	ICMP6_PARAM_PROB,	/* 12: ICMP_PARAMPROB */
4226 	-1,			/* 13: ICMP_TSTAMP */
4227 	-1,			/* 14: ICMP_TSTAMPREPLY */
4228 	-1,			/* 15: ICMP_IREQ */
4229 	-1,			/* 16: ICMP_IREQREPLY */
4230 	-1,			/* 17: ICMP_MASKREQ */
4231 	-1,			/* 18: ICMP_MASKREPLY */
4232 };
4233 
4234 
4235 int	icmptoicmp6unreach[ICMP_MAX_UNREACH] = {
4236 	ICMP6_DST_UNREACH_ADDR,		/* 0: ICMP_UNREACH_NET */
4237 	ICMP6_DST_UNREACH_ADDR,		/* 1: ICMP_UNREACH_HOST */
4238 	-1,				/* 2: ICMP_UNREACH_PROTOCOL */
4239 	ICMP6_DST_UNREACH_NOPORT,	/* 3: ICMP_UNREACH_PORT */
4240 	-1,				/* 4: ICMP_UNREACH_NEEDFRAG */
4241 	ICMP6_DST_UNREACH_NOTNEIGHBOR,	/* 5: ICMP_UNREACH_SRCFAIL */
4242 	ICMP6_DST_UNREACH_ADDR,		/* 6: ICMP_UNREACH_NET_UNKNOWN */
4243 	ICMP6_DST_UNREACH_ADDR,		/* 7: ICMP_UNREACH_HOST_UNKNOWN */
4244 	-1,				/* 8: ICMP_UNREACH_ISOLATED */
4245 	ICMP6_DST_UNREACH_ADMIN,	/* 9: ICMP_UNREACH_NET_PROHIB */
4246 	ICMP6_DST_UNREACH_ADMIN,	/* 10: ICMP_UNREACH_HOST_PROHIB */
4247 	-1,				/* 11: ICMP_UNREACH_TOSNET */
4248 	-1,				/* 12: ICMP_UNREACH_TOSHOST */
4249 	ICMP6_DST_UNREACH_ADMIN,	/* 13: ICMP_UNREACH_ADMIN_PROHIBIT */
4250 };
4251 int	icmpreplytype6[ICMP6_MAXTYPE + 1];
4252 #endif
4253 
4254 int	icmpreplytype4[ICMP_MAXTYPE + 1];
4255 
4256 
4257 /* ------------------------------------------------------------------------ */
4258 /* Function:    ipf_matchicmpqueryreply                                     */
4259 /* Returns:     int - 1 if "icmp" is a valid reply to "ic" else 0.          */
4260 /* Parameters:  v(I)    - IP protocol version (4 or 6)                      */
4261 /*              ic(I)   - ICMP information                                  */
4262 /*              icmp(I) - ICMP packet header                                */
4263 /*              rev(I)  - direction (0 = forward/1 = reverse) of packet     */
4264 /*                                                                          */
4265 /* Check if the ICMP packet defined by the header pointed to by icmp is a   */
4266 /* reply to one as described by what's in ic.  If it is a match, return 1,  */
4267 /* else return 0 for no match.                                              */
4268 /* ------------------------------------------------------------------------ */
4269 int
ipf_matchicmpqueryreply(int v,icmpinfo_t * ic,icmphdr_t * icmp,int rev)4270 ipf_matchicmpqueryreply(int v, icmpinfo_t *ic, icmphdr_t *icmp, int rev)
4271 {
4272 	int ictype;
4273 
4274 	ictype = ic->ici_type;
4275 
4276 	if (v == 4) {
4277 		/*
4278 		 * If we matched its type on the way in, then when going out
4279 		 * it will still be the same type.
4280 		 */
4281 		if ((!rev && (icmp->icmp_type == ictype)) ||
4282 		    (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) {
4283 			if (icmp->icmp_type != ICMP_ECHOREPLY)
4284 				return (1);
4285 			if (icmp->icmp_id == ic->ici_id)
4286 				return (1);
4287 		}
4288 	}
4289 #ifdef	USE_INET6
4290 	else if (v == 6) {
4291 		if ((!rev && (icmp->icmp_type == ictype)) ||
4292 		    (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) {
4293 			if (icmp->icmp_type != ICMP6_ECHO_REPLY)
4294 				return (1);
4295 			if (icmp->icmp_id == ic->ici_id)
4296 				return (1);
4297 		}
4298 	}
4299 #endif
4300 	return (0);
4301 }
4302 
4303 
4304 /*
4305  * IFNAMES are located in the variable length field starting at
4306  * frentry.fr_names. As pointers within the struct cannot be passed
4307  * to the kernel from ipf(8), an offset is used. An offset of -1 means it
4308  * is unused (invalid). If it is used (valid) it is an offset to the
4309  * character string of an interface name or a comment. The following
4310  * macros will assist those who follow to understand the code.
4311  */
4312 #define IPF_IFNAME_VALID(_a)	(_a != -1)
4313 #define IPF_IFNAME_INVALID(_a)	(_a == -1)
4314 #define IPF_IFNAMES_DIFFERENT(_a)	\
4315 	!((IPF_IFNAME_INVALID(fr1->_a) &&	\
4316 	IPF_IFNAME_INVALID(fr2->_a)) ||	\
4317 	(IPF_IFNAME_VALID(fr1->_a) &&	\
4318 	IPF_IFNAME_VALID(fr2->_a) &&	\
4319 	!strcmp(FR_NAME(fr1, _a), FR_NAME(fr2, _a))))
4320 #define IPF_FRDEST_DIFFERENT(_a)	\
4321 	(memcmp(&fr1->_a.fd_addr, &fr2->_a.fd_addr,	\
4322 	offsetof(frdest_t, fd_name) - offsetof(frdest_t, fd_addr)) ||	\
4323 	IPF_IFNAMES_DIFFERENT(_a.fd_name))
4324 
4325 
4326 /* ------------------------------------------------------------------------ */
4327 /* Function:    ipf_rule_compare                                            */
4328 /* Parameters:  fr1(I) - first rule structure to compare                    */
4329 /*              fr2(I) - second rule structure to compare                   */
4330 /* Returns:     int    - 0 == rules are the same, else mismatch             */
4331 /*                                                                          */
4332 /* Compare two rules and return 0 if they match or a number indicating      */
4333 /* which of the individual checks failed.                                   */
4334 /* ------------------------------------------------------------------------ */
4335 static int
ipf_rule_compare(frentry_t * fr1,frentry_t * fr2)4336 ipf_rule_compare(frentry_t *fr1, frentry_t *fr2)
4337 {
4338 	int i;
4339 
4340 	if (fr1->fr_cksum != fr2->fr_cksum)
4341 		return (1);
4342 	if (fr1->fr_size != fr2->fr_size)
4343 		return (2);
4344 	if (fr1->fr_dsize != fr2->fr_dsize)
4345 		return (3);
4346 	if (bcmp((char *)&fr1->fr_func, (char *)&fr2->fr_func, FR_CMPSIZ)
4347 	    != 0)
4348 		return (4);
4349 	/*
4350 	 * XXX:	There is still a bug here as different rules with the
4351 	 *	the same interfaces but in a different order will compare
4352 	 *	differently. But since multiple interfaces in a rule doesn't
4353 	 *	work anyway a simple straightforward compare is performed
4354 	 *	here. Ultimately frentry_t creation will need to be
4355 	 *	revisited in ipf_y.y. While the other issue, recognition
4356 	 *	of only the first interface in a list of interfaces will
4357 	 *	need to be separately addressed along with why only four.
4358 	 */
4359 	for (i = 0; i < FR_NUM(fr1->fr_ifnames); i++) {
4360 		/*
4361 		 * XXX:	It's either the same index or uninitialized.
4362 		 * 	We assume this because multiple interfaces
4363 		 *	referenced by the same rule doesn't work anyway.
4364 		 */
4365 		if (IPF_IFNAMES_DIFFERENT(fr_ifnames[i]))
4366 			return (5);
4367 	}
4368 
4369 	if (IPF_FRDEST_DIFFERENT(fr_tif))
4370 		return (6);
4371 	if (IPF_FRDEST_DIFFERENT(fr_rif))
4372 		return (7);
4373 	if (IPF_FRDEST_DIFFERENT(fr_dif))
4374 		return (8);
4375 	if (!fr1->fr_data && !fr2->fr_data)
4376 		return (0);	/* move along, nothing to see here */
4377 	if (fr1->fr_data && fr2->fr_data) {
4378 		if (bcmp(fr1->fr_caddr, fr2->fr_caddr, fr1->fr_dsize) == 0)
4379 			return (0);	/* same */
4380 	}
4381 	return (9);
4382 }
4383 
4384 
4385 /* ------------------------------------------------------------------------ */
4386 /* Function:    frrequest                                                   */
4387 /* Returns:     int - 0 == success, > 0 == errno value                      */
4388 /* Parameters:  unit(I)     - device for which this is for                  */
4389 /*              req(I)      - ioctl command (SIOC*)                         */
4390 /*              data(I)     - pointr to ioctl data                          */
4391 /*              set(I)      - 1 or 0 (filter set)                           */
4392 /*              makecopy(I) - flag indicating whether data points to a rule */
4393 /*                            in kernel space & hence doesn't need copying. */
4394 /*                                                                          */
4395 /* This function handles all the requests which operate on the list of      */
4396 /* filter rules.  This includes adding, deleting, insertion.  It is also    */
4397 /* responsible for creating groups when a "head" rule is loaded.  Interface */
4398 /* names are resolved here and other sanity checks are made on the content  */
4399 /* of the rule structure being loaded.  If a rule has user defined timeouts */
4400 /* then make sure they are created and initialised before exiting.          */
4401 /* ------------------------------------------------------------------------ */
4402 int
frrequest(ipf_main_softc_t * softc,int unit,ioctlcmd_t req,caddr_t data,int set,int makecopy)4403 frrequest(ipf_main_softc_t *softc, int unit, ioctlcmd_t req, caddr_t data,
4404 	int set, int makecopy)
4405 {
4406 	int error = 0, in, family, need_free = 0, interr, i;
4407 	int interr_tbl[3] = { 152, 156, 153};
4408 	enum {	OP_ADD,		/* add rule */
4409 		OP_REM,		/* remove rule */
4410 		OP_ZERO 	/* zero statistics and counters */ }
4411 		addrem = OP_ADD;
4412 	frentry_t frd, *fp, *f, **fprev, **ftail;
4413 	void *ptr, *uptr;
4414 	u_int *p, *pp;
4415 	frgroup_t *fg;
4416 	char *group;
4417 
4418 	ptr = NULL;
4419 	fg = NULL;
4420 	fp = &frd;
4421 	if (makecopy != 0) {
4422 		bzero(fp, sizeof(frd));
4423 		error = ipf_inobj(softc, data, NULL, fp, IPFOBJ_FRENTRY);
4424 		if (error) {
4425 			return (error);
4426 		}
4427 		if ((fp->fr_type & FR_T_BUILTIN) != 0) {
4428 			IPFERROR(6);
4429 			return (EINVAL);
4430 		}
4431 		if (fp->fr_size < sizeof(frd)) {
4432 			return (EINVAL);
4433 		}
4434 		if (sizeof(frd) + fp->fr_namelen != fp->fr_size ) {
4435 			IPFERROR(155);
4436 			return (EINVAL);
4437 		}
4438 		if (fp->fr_namelen < 0 || fp->fr_namelen > softc->ipf_max_namelen) {
4439 			IPFERROR(156);
4440 			return (EINVAL);
4441 		}
4442 		KMALLOCS(f, frentry_t *, fp->fr_size);
4443 		if (f == NULL) {
4444 			IPFERROR(131);
4445 			return (ENOMEM);
4446 		}
4447 		bzero(f, fp->fr_size);
4448 		error = ipf_inobjsz(softc, data, f, IPFOBJ_FRENTRY,
4449 				    fp->fr_size);
4450 		if (error) {
4451 			KFREES(f, fp->fr_size);
4452 			return (error);
4453 		}
4454 
4455 		fp = f;
4456 		f = NULL;
4457 		fp->fr_next = NULL;
4458 		fp->fr_dnext = NULL;
4459 		fp->fr_pnext = NULL;
4460 		fp->fr_pdnext = NULL;
4461 		fp->fr_grp = NULL;
4462 		fp->fr_grphead = NULL;
4463 		fp->fr_icmpgrp = NULL;
4464 		fp->fr_isc = (void *)-1;
4465 		fp->fr_ptr = NULL;
4466 		fp->fr_ref = 0;
4467 		fp->fr_flags |= FR_COPIED;
4468 
4469 		for (i = 0; i <= 3; i++) {
4470 			if ((interr = ipf_check_names_string(fp->fr_names, fp->fr_namelen, fp->fr_ifnames[i])) != 0) {
4471 				IPFERROR(interr_tbl[interr-1]);
4472 				error = EINVAL;
4473 				goto donenolock;
4474 			}
4475 		}
4476 		if ((interr = ipf_check_names_string(fp->fr_names, fp->fr_namelen, fp->fr_comment)) != 0) {
4477 			IPFERROR(interr_tbl[interr-1]);
4478 			error = EINVAL;
4479 			goto donenolock;
4480 		}
4481 		if ((interr = ipf_check_names_string(fp->fr_names, fp->fr_namelen, fp->fr_group)) != 0) {
4482 			IPFERROR(interr_tbl[interr-1]);
4483 			error = EINVAL;
4484 			goto donenolock;
4485 		}
4486 		if ((interr = ipf_check_names_string(fp->fr_names, fp->fr_namelen, fp->fr_grhead)) != 0) {
4487 			IPFERROR(interr_tbl[interr-1]);
4488 			error = EINVAL;
4489 			goto donenolock;
4490 		}
4491 		if ((interr = ipf_check_names_string(fp->fr_names, fp->fr_namelen, fp->fr_tif.fd_name)) != 0) {
4492 			IPFERROR(interr_tbl[interr-1]);
4493 			error = EINVAL;
4494 			goto donenolock;
4495 		}
4496 		if ((interr = ipf_check_names_string(fp->fr_names, fp->fr_namelen, fp->fr_rif.fd_name)) != 0) {
4497 			IPFERROR(interr_tbl[interr-1]);
4498 			error = EINVAL;
4499 			goto donenolock;
4500 		}
4501 		if ((interr = ipf_check_names_string(fp->fr_names, fp->fr_namelen, fp->fr_dif.fd_name)) != 0) {
4502 			IPFERROR(interr_tbl[interr-1]);
4503 			error = EINVAL;
4504 			goto donenolock;
4505 		}
4506 	} else {
4507 		fp = (frentry_t *)data;
4508 		if ((fp->fr_type & FR_T_BUILTIN) == 0) {
4509 			IPFERROR(7);
4510 			return (EINVAL);
4511 		}
4512 		fp->fr_flags &= ~FR_COPIED;
4513 	}
4514 
4515 	if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) ||
4516 	    ((fp->fr_dsize != 0) && (fp->fr_data == NULL))) {
4517 		IPFERROR(8);
4518 		error = EINVAL;
4519 		goto donenolock;
4520 	}
4521 
4522 	family = fp->fr_family;
4523 	uptr = fp->fr_data;
4524 
4525 	if (req == (ioctlcmd_t)SIOCINAFR || req == (ioctlcmd_t)SIOCINIFR ||
4526 	    req == (ioctlcmd_t)SIOCADAFR || req == (ioctlcmd_t)SIOCADIFR)
4527 		addrem = OP_ADD;	/* Add rule */
4528 	else if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR)
4529 		addrem = OP_REM;		/* Remove rule */
4530 	else if (req == (ioctlcmd_t)SIOCZRLST)
4531 		addrem = OP_ZERO;	/* Zero statistics and counters */
4532 	else {
4533 		IPFERROR(9);
4534 		error = EINVAL;
4535 		goto donenolock;
4536 	}
4537 
4538 	/*
4539 	 * Only filter rules for IPv4 or IPv6 are accepted.
4540 	 */
4541 	if (family == AF_INET) {
4542 		/*EMPTY*/;
4543 #ifdef	USE_INET6
4544 	} else if (family == AF_INET6) {
4545 		/*EMPTY*/;
4546 #endif
4547 	} else if (family != 0) {
4548 		IPFERROR(10);
4549 		error = EINVAL;
4550 		goto donenolock;
4551 	}
4552 
4553 	/*
4554 	 * If the rule is being loaded from user space, i.e. we had to copy it
4555 	 * into kernel space, then do not trust the function pointer in the
4556 	 * rule.
4557 	 */
4558 	if ((makecopy == 1) && (fp->fr_func != NULL)) {
4559 		if (ipf_findfunc(fp->fr_func) == NULL) {
4560 			IPFERROR(11);
4561 			error = ESRCH;
4562 			goto donenolock;
4563 		}
4564 
4565 		if (addrem == OP_ADD) {
4566 			error = ipf_funcinit(softc, fp);
4567 			if (error != 0)
4568 				goto donenolock;
4569 		}
4570 	}
4571 	if ((fp->fr_flags & FR_CALLNOW) &&
4572 	    ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4573 		IPFERROR(142);
4574 		error = ESRCH;
4575 		goto donenolock;
4576 	}
4577 	if (((fp->fr_flags & FR_CMDMASK) == FR_CALL) &&
4578 	    ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4579 		IPFERROR(143);
4580 		error = ESRCH;
4581 		goto donenolock;
4582 	}
4583 
4584 	ptr = NULL;
4585 
4586 	if (FR_ISACCOUNT(fp->fr_flags))
4587 		unit = IPL_LOGCOUNT;
4588 
4589 	/*
4590 	 * Check that each group name in the rule has a start index that
4591 	 * is valid.
4592 	 */
4593 	if (fp->fr_icmphead != -1) {
4594 		if ((fp->fr_icmphead < 0) ||
4595 		    (fp->fr_icmphead >= fp->fr_namelen)) {
4596 			IPFERROR(136);
4597 			error = EINVAL;
4598 			goto donenolock;
4599 		}
4600 		if (!strcmp(FR_NAME(fp, fr_icmphead), "0"))
4601 			fp->fr_names[fp->fr_icmphead] = '\0';
4602 	}
4603 
4604 	if (fp->fr_grhead != -1) {
4605 		if ((fp->fr_grhead < 0) ||
4606 		    (fp->fr_grhead >= fp->fr_namelen)) {
4607 			IPFERROR(137);
4608 			error = EINVAL;
4609 			goto donenolock;
4610 		}
4611 		if (!strcmp(FR_NAME(fp, fr_grhead), "0"))
4612 			fp->fr_names[fp->fr_grhead] = '\0';
4613 	}
4614 
4615 	if (fp->fr_group != -1) {
4616 		if ((fp->fr_group < 0) ||
4617 		    (fp->fr_group >= fp->fr_namelen)) {
4618 			IPFERROR(138);
4619 			error = EINVAL;
4620 			goto donenolock;
4621 		}
4622 		if ((req != (int)SIOCZRLST) && (fp->fr_group != -1)) {
4623 			/*
4624 			 * Allow loading rules that are in groups to cause
4625 			 * them to be created if they don't already exit.
4626 			 */
4627 			group = FR_NAME(fp, fr_group);
4628 			if (addrem == OP_ADD) {
4629 				fg = ipf_group_add(softc, group, NULL,
4630 						   fp->fr_flags, unit, set);
4631 				fp->fr_grp = fg;
4632 			} else {
4633 				fg = ipf_findgroup(softc, group, unit,
4634 						   set, NULL);
4635 				if (fg == NULL) {
4636 					IPFERROR(12);
4637 					error = ESRCH;
4638 					goto donenolock;
4639 				}
4640 			}
4641 
4642 			if (fg->fg_flags == 0) {
4643 				fg->fg_flags = fp->fr_flags & FR_INOUT;
4644 			} else if (fg->fg_flags != (fp->fr_flags & FR_INOUT)) {
4645 				IPFERROR(13);
4646 				error = ESRCH;
4647 				goto donenolock;
4648 			}
4649 		}
4650 	} else {
4651 		/*
4652 		 * If a rule is going to be part of a group then it does
4653 		 * not matter whether it is an in or out rule, but if it
4654 		 * isn't in a group, then it does...
4655 		 */
4656 		if ((fp->fr_flags & (FR_INQUE|FR_OUTQUE)) == 0) {
4657 			IPFERROR(14);
4658 			error = EINVAL;
4659 			goto donenolock;
4660 		}
4661 	}
4662 	in = (fp->fr_flags & FR_INQUE) ? 0 : 1;
4663 
4664 	/*
4665 	 * Work out which rule list this change is being applied to.
4666 	 */
4667 	ftail = NULL;
4668 	fprev = NULL;
4669 	if (unit == IPL_LOGAUTH) {
4670 		if ((fp->fr_tifs[0].fd_ptr != NULL) ||
4671 		    (fp->fr_tifs[1].fd_ptr != NULL) ||
4672 		    (fp->fr_dif.fd_ptr != NULL) ||
4673 		    (fp->fr_flags & FR_FASTROUTE)) {
4674 			softc->ipf_interror = 145;
4675 			error = EINVAL;
4676 			goto donenolock;
4677 		}
4678 		fprev = ipf_auth_rulehead(softc);
4679 	} else {
4680 		if (FR_ISACCOUNT(fp->fr_flags))
4681 			fprev = &softc->ipf_acct[in][set];
4682 		else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0)
4683 			fprev = &softc->ipf_rules[in][set];
4684 	}
4685 	if (fprev == NULL) {
4686 		IPFERROR(15);
4687 		error = ESRCH;
4688 		goto donenolock;
4689 	}
4690 
4691 	if (fg != NULL)
4692 		fprev = &fg->fg_start;
4693 
4694 	/*
4695 	 * Copy in extra data for the rule.
4696 	 */
4697 	if (fp->fr_dsize != 0) {
4698 		if (makecopy != 0) {
4699 			KMALLOCS(ptr, void *, fp->fr_dsize);
4700 			if (ptr == NULL) {
4701 				IPFERROR(16);
4702 				error = ENOMEM;
4703 				goto donenolock;
4704 			}
4705 
4706 			/*
4707 			 * The bcopy case is for when the data is appended
4708 			 * to the rule by ipf_in_compat().
4709 			 */
4710 			if (uptr >= (void *)fp &&
4711 			    uptr < (void *)((char *)fp + fp->fr_size)) {
4712 				bcopy(uptr, ptr, fp->fr_dsize);
4713 				error = 0;
4714 			} else {
4715 				error = COPYIN(uptr, ptr, fp->fr_dsize);
4716 				if (error != 0) {
4717 					IPFERROR(17);
4718 					error = EFAULT;
4719 					goto donenolock;
4720 				}
4721 			}
4722 		} else {
4723 			ptr = uptr;
4724 		}
4725 		fp->fr_data = ptr;
4726 	} else {
4727 		fp->fr_data = NULL;
4728 	}
4729 
4730 	/*
4731 	 * Perform per-rule type sanity checks of their members.
4732 	 * All code after this needs to be aware that allocated memory
4733 	 * may need to be free'd before exiting.
4734 	 */
4735 	switch (fp->fr_type & ~FR_T_BUILTIN)
4736 	{
4737 #if defined(IPFILTER_BPF)
4738 	case FR_T_BPFOPC :
4739 		if (fp->fr_dsize == 0) {
4740 			IPFERROR(19);
4741 			error = EINVAL;
4742 			break;
4743 		}
4744 		if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) {
4745 			IPFERROR(20);
4746 			error = EINVAL;
4747 			break;
4748 		}
4749 		break;
4750 #endif
4751 	case FR_T_IPF :
4752 		/*
4753 		 * Preparation for error case at the bottom of this function.
4754 		 */
4755 		if (fp->fr_datype == FRI_LOOKUP)
4756 			fp->fr_dstptr = NULL;
4757 		if (fp->fr_satype == FRI_LOOKUP)
4758 			fp->fr_srcptr = NULL;
4759 
4760 		if (fp->fr_dsize != sizeof(fripf_t)) {
4761 			IPFERROR(21);
4762 			error = EINVAL;
4763 			break;
4764 		}
4765 
4766 		/*
4767 		 * Allowing a rule with both "keep state" and "with oow" is
4768 		 * pointless because adding a state entry to the table will
4769 		 * fail with the out of window (oow) flag set.
4770 		 */
4771 		if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) {
4772 			IPFERROR(22);
4773 			error = EINVAL;
4774 			break;
4775 		}
4776 
4777 		switch (fp->fr_satype)
4778 		{
4779 		case FRI_BROADCAST :
4780 		case FRI_DYNAMIC :
4781 		case FRI_NETWORK :
4782 		case FRI_NETMASKED :
4783 		case FRI_PEERADDR :
4784 			if (fp->fr_sifpidx < 0) {
4785 				IPFERROR(23);
4786 				error = EINVAL;
4787 			}
4788 			break;
4789 		case FRI_LOOKUP :
4790 			fp->fr_srcptr = ipf_findlookup(softc, unit, fp,
4791 						       &fp->fr_src6,
4792 						       &fp->fr_smsk6);
4793 			if (fp->fr_srcfunc == NULL) {
4794 				IPFERROR(132);
4795 				error = ESRCH;
4796 				break;
4797 			}
4798 			break;
4799 		case FRI_NORMAL :
4800 			break;
4801 		default :
4802 			IPFERROR(133);
4803 			error = EINVAL;
4804 			break;
4805 		}
4806 		if (error != 0)
4807 			break;
4808 
4809 		switch (fp->fr_datype)
4810 		{
4811 		case FRI_BROADCAST :
4812 		case FRI_DYNAMIC :
4813 		case FRI_NETWORK :
4814 		case FRI_NETMASKED :
4815 		case FRI_PEERADDR :
4816 			if (fp->fr_difpidx < 0) {
4817 				IPFERROR(24);
4818 				error = EINVAL;
4819 			}
4820 			break;
4821 		case FRI_LOOKUP :
4822 			fp->fr_dstptr = ipf_findlookup(softc, unit, fp,
4823 						       &fp->fr_dst6,
4824 						       &fp->fr_dmsk6);
4825 			if (fp->fr_dstfunc == NULL) {
4826 				IPFERROR(134);
4827 				error = ESRCH;
4828 			}
4829 			break;
4830 		case FRI_NORMAL :
4831 			break;
4832 		default :
4833 			IPFERROR(135);
4834 			error = EINVAL;
4835 		}
4836 		break;
4837 
4838 	case FR_T_NONE :
4839 	case FR_T_CALLFUNC :
4840 	case FR_T_COMPIPF :
4841 		break;
4842 
4843 	case FR_T_IPFEXPR :
4844 		if (ipf_matcharray_verify(fp->fr_data, fp->fr_dsize) == -1) {
4845 			IPFERROR(25);
4846 			error = EINVAL;
4847 		}
4848 		break;
4849 
4850 	default :
4851 		IPFERROR(26);
4852 		error = EINVAL;
4853 		break;
4854 	}
4855 	if (error != 0)
4856 		goto donenolock;
4857 
4858 	if (fp->fr_tif.fd_name != -1) {
4859 		if ((fp->fr_tif.fd_name < 0) ||
4860 		    (fp->fr_tif.fd_name >= fp->fr_namelen)) {
4861 			IPFERROR(139);
4862 			error = EINVAL;
4863 			goto donenolock;
4864 		}
4865 	}
4866 
4867 	if (fp->fr_dif.fd_name != -1) {
4868 		if ((fp->fr_dif.fd_name < 0) ||
4869 		    (fp->fr_dif.fd_name >= fp->fr_namelen)) {
4870 			IPFERROR(140);
4871 			error = EINVAL;
4872 			goto donenolock;
4873 		}
4874 	}
4875 
4876 	if (fp->fr_rif.fd_name != -1) {
4877 		if ((fp->fr_rif.fd_name < 0) ||
4878 		    (fp->fr_rif.fd_name >= fp->fr_namelen)) {
4879 			IPFERROR(141);
4880 			error = EINVAL;
4881 			goto donenolock;
4882 		}
4883 	}
4884 
4885 	/*
4886 	 * Lookup all the interface names that are part of the rule.
4887 	 */
4888 	error = ipf_synclist(softc, fp, NULL);
4889 	if (error != 0)
4890 		goto donenolock;
4891 	fp->fr_statecnt = 0;
4892 	if (fp->fr_srctrack.ht_max_nodes != 0)
4893 		ipf_rb_ht_init(&fp->fr_srctrack);
4894 
4895 	/*
4896 	 * Look for an existing matching filter rule, but don't include the
4897 	 * next or interface pointer in the comparison (fr_next, fr_ifa).
4898 	 * This elminates rules which are indentical being loaded.  Checksum
4899 	 * the constant part of the filter rule to make comparisons quicker
4900 	 * (this meaning no pointers are included).
4901 	 */
4902 	pp = (u_int *)(fp->fr_caddr + fp->fr_dsize);
4903 	for (fp->fr_cksum = 0, p = (u_int *)fp->fr_data; p < pp; p++)
4904 		fp->fr_cksum += *p;
4905 
4906 	WRITE_ENTER(&softc->ipf_mutex);
4907 
4908 	/*
4909 	 * Now that the filter rule lists are locked, we can walk the
4910 	 * chain of them without fear.
4911 	 */
4912 	ftail = fprev;
4913 	for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) {
4914 		if (fp->fr_collect <= f->fr_collect) {
4915 			ftail = fprev;
4916 			f = NULL;
4917 			break;
4918 		}
4919 		fprev = ftail;
4920 	}
4921 
4922 	for (; (f = *ftail) != NULL; ftail = &f->fr_next) {
4923 		if (ipf_rule_compare(fp, f) == 0)
4924 			break;
4925 	}
4926 
4927 	/*
4928 	 * If zero'ing statistics, copy current to caller and zero.
4929 	 */
4930 	if (addrem == OP_ZERO) {
4931 		if (f == NULL) {
4932 			IPFERROR(27);
4933 			error = ESRCH;
4934 		} else {
4935 			/*
4936 			 * Copy and reduce lock because of impending copyout.
4937 			 * Well we should, but if we do then the atomicity of
4938 			 * this call and the correctness of fr_hits and
4939 			 * fr_bytes cannot be guaranteed.  As it is, this code
4940 			 * only resets them to 0 if they are successfully
4941 			 * copied out into user space.
4942 			 */
4943 			bcopy((char *)f, (char *)fp, f->fr_size);
4944 			/* MUTEX_DOWNGRADE(&softc->ipf_mutex); */
4945 
4946 			/*
4947 			 * When we copy this rule back out, set the data
4948 			 * pointer to be what it was in user space.
4949 			 */
4950 			fp->fr_data = uptr;
4951 			error = ipf_outobj(softc, data, fp, IPFOBJ_FRENTRY);
4952 
4953 			if (error == 0) {
4954 				if ((f->fr_dsize != 0) && (uptr != NULL)) {
4955 					error = COPYOUT(f->fr_data, uptr,
4956 							f->fr_dsize);
4957 					if (error == 0) {
4958 						f->fr_hits = 0;
4959 						f->fr_bytes = 0;
4960 					} else {
4961 						IPFERROR(28);
4962 						error = EFAULT;
4963 					}
4964 				}
4965 			}
4966 		}
4967 
4968 		if (makecopy != 0) {
4969 			if (ptr != NULL) {
4970 				KFREES(ptr, fp->fr_dsize);
4971 			}
4972 			KFREES(fp, fp->fr_size);
4973 		}
4974 		RWLOCK_EXIT(&softc->ipf_mutex);
4975 		return (error);
4976 	}
4977 
4978 	if (f == NULL) {
4979 		/*
4980 		 * At the end of this, ftail must point to the place where the
4981 		 * new rule is to be saved/inserted/added.
4982 		 * For SIOCAD*FR, this should be the last rule in the group of
4983 		 * rules that have equal fr_collect fields.
4984 		 * For SIOCIN*FR, ...
4985 		 */
4986 		if (req == (ioctlcmd_t)SIOCADAFR ||
4987 		    req == (ioctlcmd_t)SIOCADIFR) {
4988 
4989 			for (ftail = fprev; (f = *ftail) != NULL; ) {
4990 				if (f->fr_collect > fp->fr_collect)
4991 					break;
4992 				ftail = &f->fr_next;
4993 				fprev = ftail;
4994 			}
4995 			ftail = fprev;
4996 			f = NULL;
4997 			ptr = NULL;
4998 		} else if (req == (ioctlcmd_t)SIOCINAFR ||
4999 			   req == (ioctlcmd_t)SIOCINIFR) {
5000 			while ((f = *fprev) != NULL) {
5001 				if (f->fr_collect >= fp->fr_collect)
5002 					break;
5003 				fprev = &f->fr_next;
5004 			}
5005   			ftail = fprev;
5006   			if (fp->fr_hits != 0) {
5007 				while (fp->fr_hits && (f = *ftail)) {
5008 					if (f->fr_collect != fp->fr_collect)
5009 						break;
5010 					fprev = ftail;
5011   					ftail = &f->fr_next;
5012 					fp->fr_hits--;
5013 				}
5014   			}
5015   			f = NULL;
5016   			ptr = NULL;
5017 		}
5018 	}
5019 
5020 	/*
5021 	 * Request to remove a rule.
5022 	 */
5023 	if (addrem == OP_REM) {
5024 		if (f == NULL) {
5025 			IPFERROR(29);
5026 			error = ESRCH;
5027 		} else {
5028 			/*
5029 			 * Do not allow activity from user space to interfere
5030 			 * with rules not loaded that way.
5031 			 */
5032 			if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) {
5033 				IPFERROR(30);
5034 				error = EPERM;
5035 				goto done;
5036 			}
5037 
5038 			/*
5039 			 * Return EBUSY if the rule is being reference by
5040 			 * something else (eg state information.)
5041 			 */
5042 			if (f->fr_ref > 1) {
5043 				IPFERROR(31);
5044 				error = EBUSY;
5045 				goto done;
5046 			}
5047 #ifdef	IPFILTER_SCAN
5048 			if (f->fr_isctag != -1 &&
5049 			    (f->fr_isc != (struct ipscan *)-1))
5050 				ipf_scan_detachfr(f);
5051 #endif
5052 
5053 			if (unit == IPL_LOGAUTH) {
5054 				error = ipf_auth_precmd(softc, req, f, ftail);
5055 				goto done;
5056 			}
5057 
5058 			ipf_rule_delete(softc, f, unit, set);
5059 
5060 			need_free = makecopy;
5061 		}
5062 	} else {
5063 		/*
5064 		 * Not removing, so we must be adding/inserting a rule.
5065 		 */
5066 		if (f != NULL) {
5067 			IPFERROR(32);
5068 			error = EEXIST;
5069 			goto done;
5070 		}
5071 		if (unit == IPL_LOGAUTH) {
5072 			error = ipf_auth_precmd(softc, req, fp, ftail);
5073 			goto done;
5074 		}
5075 
5076 		MUTEX_NUKE(&fp->fr_lock);
5077 		MUTEX_INIT(&fp->fr_lock, "filter rule lock");
5078 		if (fp->fr_die != 0)
5079 			ipf_rule_expire_insert(softc, fp, set);
5080 
5081 		fp->fr_hits = 0;
5082 		if (makecopy != 0)
5083 			fp->fr_ref = 1;
5084 		fp->fr_pnext = ftail;
5085 		fp->fr_next = *ftail;
5086 		if (fp->fr_next != NULL)
5087 			fp->fr_next->fr_pnext = &fp->fr_next;
5088 		*ftail = fp;
5089 		ipf_fixskip(ftail, fp, 1);
5090 
5091 		fp->fr_icmpgrp = NULL;
5092 		if (fp->fr_icmphead != -1) {
5093 			group = FR_NAME(fp, fr_icmphead);
5094 			fg = ipf_group_add(softc, group, fp, 0, unit, set);
5095 			fp->fr_icmpgrp = fg;
5096 		}
5097 
5098 		fp->fr_grphead = NULL;
5099 		if (fp->fr_grhead != -1) {
5100 			group = FR_NAME(fp, fr_grhead);
5101 			fg = ipf_group_add(softc, group, fp, fp->fr_flags,
5102 					   unit, set);
5103 			fp->fr_grphead = fg;
5104 		}
5105 	}
5106 done:
5107 	RWLOCK_EXIT(&softc->ipf_mutex);
5108 donenolock:
5109 	if (need_free || (error != 0)) {
5110 		if ((fp->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
5111 			if ((fp->fr_satype == FRI_LOOKUP) &&
5112 			    (fp->fr_srcptr != NULL))
5113 				ipf_lookup_deref(softc, fp->fr_srctype,
5114 						 fp->fr_srcptr);
5115 			if ((fp->fr_datype == FRI_LOOKUP) &&
5116 			    (fp->fr_dstptr != NULL))
5117 				ipf_lookup_deref(softc, fp->fr_dsttype,
5118 						 fp->fr_dstptr);
5119 		}
5120 		if (fp->fr_grp != NULL) {
5121 			WRITE_ENTER(&softc->ipf_mutex);
5122 			ipf_group_del(softc, fp->fr_grp, fp);
5123 			RWLOCK_EXIT(&softc->ipf_mutex);
5124 		}
5125 		if ((ptr != NULL) && (makecopy != 0)) {
5126 			KFREES(ptr, fp->fr_dsize);
5127 		}
5128 		KFREES(fp, fp->fr_size);
5129 	}
5130 	return (error);
5131 }
5132 
5133 
5134 /* ------------------------------------------------------------------------ */
5135 /* Function:   ipf_rule_delete                                              */
5136 /* Returns:    Nil                                                          */
5137 /* Parameters: softc(I) - pointer to soft context main structure            */
5138 /*             f(I)     - pointer to the rule being deleted                 */
5139 /*             ftail(I) - pointer to the pointer to f                       */
5140 /*             unit(I)  - device for which this is for                      */
5141 /*             set(I)   - 1 or 0 (filter set)                               */
5142 /*                                                                          */
5143 /* This function attempts to do what it can to delete a filter rule: remove */
5144 /* it from any linked lists and remove any groups it is responsible for.    */
5145 /* But in the end, removing a rule can only drop the reference count - we   */
5146 /* must use that as the guide for whether or not it can be freed.           */
5147 /* ------------------------------------------------------------------------ */
5148 static void
ipf_rule_delete(ipf_main_softc_t * softc,frentry_t * f,int unit,int set)5149 ipf_rule_delete(ipf_main_softc_t *softc, frentry_t *f, int unit, int set)
5150 {
5151 
5152 	/*
5153 	 * If fr_pdnext is set, then the rule is on the expire list, so
5154 	 * remove it from there.
5155 	 */
5156 	if (f->fr_pdnext != NULL) {
5157 		*f->fr_pdnext = f->fr_dnext;
5158 		if (f->fr_dnext != NULL)
5159 			f->fr_dnext->fr_pdnext = f->fr_pdnext;
5160 		f->fr_pdnext = NULL;
5161 		f->fr_dnext = NULL;
5162 	}
5163 
5164 	ipf_fixskip(f->fr_pnext, f, -1);
5165 	if (f->fr_pnext != NULL)
5166 		*f->fr_pnext = f->fr_next;
5167 	if (f->fr_next != NULL)
5168 		f->fr_next->fr_pnext = f->fr_pnext;
5169 	f->fr_pnext = NULL;
5170 	f->fr_next = NULL;
5171 
5172 	(void) ipf_derefrule(softc, &f);
5173 }
5174 
5175 /* ------------------------------------------------------------------------ */
5176 /* Function:   ipf_rule_expire_insert                                       */
5177 /* Returns:    Nil                                                          */
5178 /* Parameters: softc(I) - pointer to soft context main structure            */
5179 /*             f(I)     - pointer to rule to be added to expire list        */
5180 /*             set(I)   - 1 or 0 (filter set)                               */
5181 /*                                                                          */
5182 /* If the new rule has a given expiration time, insert it into the list of  */
5183 /* expiring rules with the ones to be removed first added to the front of   */
5184 /* the list. The insertion is O(n) but it is kept sorted for quick scans at */
5185 /* expiration interval checks.                                              */
5186 /* ------------------------------------------------------------------------ */
5187 static void
ipf_rule_expire_insert(ipf_main_softc_t * softc,frentry_t * f,int set)5188 ipf_rule_expire_insert(ipf_main_softc_t *softc, frentry_t *f, int set)
5189 {
5190 	frentry_t *fr;
5191 
5192 	/*
5193 	 */
5194 
5195 	f->fr_die = softc->ipf_ticks + IPF_TTLVAL(f->fr_die);
5196 	for (fr = softc->ipf_rule_explist[set]; fr != NULL;
5197 	     fr = fr->fr_dnext) {
5198 		if (f->fr_die < fr->fr_die)
5199 			break;
5200 		if (fr->fr_dnext == NULL) {
5201 			/*
5202 			 * We've got to the last rule and everything
5203 			 * wanted to be expired before this new node,
5204 			 * so we have to tack it on the end...
5205 			 */
5206 			fr->fr_dnext = f;
5207 			f->fr_pdnext = &fr->fr_dnext;
5208 			fr = NULL;
5209 			break;
5210 		}
5211 	}
5212 
5213 	if (softc->ipf_rule_explist[set] == NULL) {
5214 		softc->ipf_rule_explist[set] = f;
5215 		f->fr_pdnext = &softc->ipf_rule_explist[set];
5216 	} else if (fr != NULL) {
5217 		f->fr_dnext = fr;
5218 		f->fr_pdnext = fr->fr_pdnext;
5219 		fr->fr_pdnext = &f->fr_dnext;
5220 	}
5221 }
5222 
5223 
5224 /* ------------------------------------------------------------------------ */
5225 /* Function:   ipf_findlookup                                               */
5226 /* Returns:    NULL = failure, else success                                 */
5227 /* Parameters: softc(I) - pointer to soft context main structure            */
5228 /*             unit(I)  - ipf device we want to find match for              */
5229 /*             fp(I)    - rule for which lookup is for                      */
5230 /*             addrp(I) - pointer to lookup information in address struct   */
5231 /*             maskp(O) - pointer to lookup information for storage         */
5232 /*                                                                          */
5233 /* When using pools and hash tables to store addresses for matching in      */
5234 /* rules, it is necessary to resolve both the object referred to by the     */
5235 /* name or address (and return that pointer) and also provide the means by  */
5236 /* which to determine if an address belongs to that object to make the      */
5237 /* packet matching quicker.                                                 */
5238 /* ------------------------------------------------------------------------ */
5239 static void *
ipf_findlookup(ipf_main_softc_t * softc,int unit,frentry_t * fr,i6addr_t * addrp,i6addr_t * maskp)5240 ipf_findlookup(ipf_main_softc_t *softc, int unit, frentry_t *fr,
5241 	i6addr_t *addrp, i6addr_t *maskp)
5242 {
5243 	void *ptr = NULL;
5244 
5245 	switch (addrp->iplookupsubtype)
5246 	{
5247 	case 0 :
5248 		ptr = ipf_lookup_res_num(softc, unit, addrp->iplookuptype,
5249 					 addrp->iplookupnum,
5250 					 &maskp->iplookupfunc);
5251 		break;
5252 	case 1 :
5253 		if (addrp->iplookupname < 0)
5254 			break;
5255 		if (addrp->iplookupname >= fr->fr_namelen)
5256 			break;
5257 		ptr = ipf_lookup_res_name(softc, unit, addrp->iplookuptype,
5258 					  fr->fr_names + addrp->iplookupname,
5259 					  &maskp->iplookupfunc);
5260 		break;
5261 	default :
5262 		break;
5263 	}
5264 
5265 	return (ptr);
5266 }
5267 
5268 
5269 /* ------------------------------------------------------------------------ */
5270 /* Function:    ipf_funcinit                                                */
5271 /* Returns:     int - 0 == success, else ESRCH: cannot resolve rule details */
5272 /* Parameters:  softc(I) - pointer to soft context main structure           */
5273 /*              fr(I)    - pointer to filter rule                           */
5274 /*                                                                          */
5275 /* If a rule is a call rule, then check if the function it points to needs  */
5276 /* an init function to be called now the rule has been loaded.              */
5277 /* ------------------------------------------------------------------------ */
5278 static int
ipf_funcinit(ipf_main_softc_t * softc,frentry_t * fr)5279 ipf_funcinit(ipf_main_softc_t *softc, frentry_t *fr)
5280 {
5281 	ipfunc_resolve_t *ft;
5282 	int err;
5283 
5284 	IPFERROR(34);
5285 	err = ESRCH;
5286 
5287 	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5288 		if (ft->ipfu_addr == fr->fr_func) {
5289 			err = 0;
5290 			if (ft->ipfu_init != NULL)
5291 				err = (*ft->ipfu_init)(softc, fr);
5292 			break;
5293 		}
5294 	return (err);
5295 }
5296 
5297 
5298 /* ------------------------------------------------------------------------ */
5299 /* Function:    ipf_funcfini                                                */
5300 /* Returns:     Nil                                                         */
5301 /* Parameters:  softc(I) - pointer to soft context main structure           */
5302 /*              fr(I)    - pointer to filter rule                           */
5303 /*                                                                          */
5304 /* For a given filter rule, call the matching "fini" function if the rule   */
5305 /* is using a known function that would have resulted in the "init" being   */
5306 /* called for ealier.                                                       */
5307 /* ------------------------------------------------------------------------ */
5308 static void
ipf_funcfini(ipf_main_softc_t * softc,frentry_t * fr)5309 ipf_funcfini(ipf_main_softc_t *softc, frentry_t *fr)
5310 {
5311 	ipfunc_resolve_t *ft;
5312 
5313 	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5314 		if (ft->ipfu_addr == fr->fr_func) {
5315 			if (ft->ipfu_fini != NULL)
5316 				(void) (*ft->ipfu_fini)(softc, fr);
5317 			break;
5318 		}
5319 }
5320 
5321 
5322 /* ------------------------------------------------------------------------ */
5323 /* Function:    ipf_findfunc                                                */
5324 /* Returns:     ipfunc_t - pointer to function if found, else NULL          */
5325 /* Parameters:  funcptr(I) - function pointer to lookup                     */
5326 /*                                                                          */
5327 /* Look for a function in the table of known functions.                     */
5328 /* ------------------------------------------------------------------------ */
5329 static ipfunc_t
ipf_findfunc(ipfunc_t funcptr)5330 ipf_findfunc(ipfunc_t funcptr)
5331 {
5332 	ipfunc_resolve_t *ft;
5333 
5334 	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5335 		if (ft->ipfu_addr == funcptr)
5336 			return (funcptr);
5337 	return (NULL);
5338 }
5339 
5340 
5341 /* ------------------------------------------------------------------------ */
5342 /* Function:    ipf_resolvefunc                                             */
5343 /* Returns:     int - 0 == success, else error                              */
5344 /* Parameters:  data(IO) - ioctl data pointer to ipfunc_resolve_t struct    */
5345 /*                                                                          */
5346 /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */
5347 /* This will either be the function name (if the pointer is set) or the     */
5348 /* function pointer if the name is set.  When found, fill in the other one  */
5349 /* so that the entire, complete, structure can be copied back to user space.*/
5350 /* ------------------------------------------------------------------------ */
5351 int
ipf_resolvefunc(ipf_main_softc_t * softc,void * data)5352 ipf_resolvefunc(ipf_main_softc_t *softc, void *data)
5353 {
5354 	ipfunc_resolve_t res, *ft;
5355 	int error;
5356 
5357 	error = BCOPYIN(data, &res, sizeof(res));
5358 	if (error != 0) {
5359 		IPFERROR(123);
5360 		return (EFAULT);
5361 	}
5362 
5363 	if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') {
5364 		for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5365 			if (strncmp(res.ipfu_name, ft->ipfu_name,
5366 				    sizeof(res.ipfu_name)) == 0) {
5367 				res.ipfu_addr = ft->ipfu_addr;
5368 				res.ipfu_init = ft->ipfu_init;
5369 				if (COPYOUT(&res, data, sizeof(res)) != 0) {
5370 					IPFERROR(35);
5371 					return (EFAULT);
5372 				}
5373 				return (0);
5374 			}
5375 	}
5376 	if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') {
5377 		for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5378 			if (ft->ipfu_addr == res.ipfu_addr) {
5379 				(void) strncpy(res.ipfu_name, ft->ipfu_name,
5380 					       sizeof(res.ipfu_name));
5381 				res.ipfu_init = ft->ipfu_init;
5382 				if (COPYOUT(&res, data, sizeof(res)) != 0) {
5383 					IPFERROR(36);
5384 					return (EFAULT);
5385 				}
5386 				return (0);
5387 			}
5388 	}
5389 	IPFERROR(37);
5390 	return (ESRCH);
5391 }
5392 
5393 
5394 #if !defined(_KERNEL) || SOLARIS
5395 /*
5396  * From: NetBSD
5397  * ppsratecheck(): packets (or events) per second limitation.
5398  */
5399 int
ppsratecheck(struct timeval * lasttime,int * curpps,int maxpps)5400 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
5401 	/* maxpps: maximum pps allowed */
5402 {
5403 	struct timeval tv, delta;
5404 	int rv;
5405 
5406 	GETKTIME(&tv);
5407 
5408 	delta.tv_sec = tv.tv_sec - lasttime->tv_sec;
5409 	delta.tv_usec = tv.tv_usec - lasttime->tv_usec;
5410 	if (delta.tv_usec < 0) {
5411 		delta.tv_sec--;
5412 		delta.tv_usec += 1000000;
5413 	}
5414 
5415 	/*
5416 	 * check for 0,0 is so that the message will be seen at least once.
5417 	 * if more than one second have passed since the last update of
5418 	 * lasttime, reset the counter.
5419 	 *
5420 	 * we do increment *curpps even in *curpps < maxpps case, as some may
5421 	 * try to use *curpps for stat purposes as well.
5422 	 */
5423 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
5424 	    delta.tv_sec >= 1) {
5425 		*lasttime = tv;
5426 		*curpps = 0;
5427 		rv = 1;
5428 	} else if (maxpps < 0)
5429 		rv = 1;
5430 	else if (*curpps < maxpps)
5431 		rv = 1;
5432 	else
5433 		rv = 0;
5434 	*curpps = *curpps + 1;
5435 
5436 	return (rv);
5437 }
5438 #endif
5439 
5440 
5441 /* ------------------------------------------------------------------------ */
5442 /* Function:    ipf_derefrule                                               */
5443 /* Returns:     int   - 0 == rule freed up, else rule not freed             */
5444 /* Parameters:  fr(I) - pointer to filter rule                              */
5445 /*                                                                          */
5446 /* Decrement the reference counter to a rule by one.  If it reaches zero,   */
5447 /* free it and any associated storage space being used by it.               */
5448 /* ------------------------------------------------------------------------ */
5449 int
ipf_derefrule(ipf_main_softc_t * softc,frentry_t ** frp)5450 ipf_derefrule(ipf_main_softc_t *softc, frentry_t **frp)
5451 {
5452 	frentry_t *fr;
5453 	frdest_t *fdp;
5454 
5455 	fr = *frp;
5456 	*frp = NULL;
5457 
5458 	MUTEX_ENTER(&fr->fr_lock);
5459 	fr->fr_ref--;
5460 	if (fr->fr_ref == 0) {
5461 		MUTEX_EXIT(&fr->fr_lock);
5462 		MUTEX_DESTROY(&fr->fr_lock);
5463 
5464 		ipf_funcfini(softc, fr);
5465 
5466 		fdp = &fr->fr_tif;
5467 		if (fdp->fd_type == FRD_DSTLIST)
5468 			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5469 
5470 		fdp = &fr->fr_rif;
5471 		if (fdp->fd_type == FRD_DSTLIST)
5472 			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5473 
5474 		fdp = &fr->fr_dif;
5475 		if (fdp->fd_type == FRD_DSTLIST)
5476 			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5477 
5478 		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5479 		    fr->fr_satype == FRI_LOOKUP)
5480 			ipf_lookup_deref(softc, fr->fr_srctype, fr->fr_srcptr);
5481 		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5482 		    fr->fr_datype == FRI_LOOKUP)
5483 			ipf_lookup_deref(softc, fr->fr_dsttype, fr->fr_dstptr);
5484 
5485 		if (fr->fr_grp != NULL)
5486 			ipf_group_del(softc, fr->fr_grp, fr);
5487 
5488 		if (fr->fr_grphead != NULL)
5489 			ipf_group_del(softc, fr->fr_grphead, fr);
5490 
5491 		if (fr->fr_icmpgrp != NULL)
5492 			ipf_group_del(softc, fr->fr_icmpgrp, fr);
5493 
5494 		if ((fr->fr_flags & FR_COPIED) != 0) {
5495 			if (fr->fr_dsize) {
5496 				KFREES(fr->fr_data, fr->fr_dsize);
5497 			}
5498 			KFREES(fr, fr->fr_size);
5499 			return (0);
5500 		}
5501 		return (1);
5502 	} else {
5503 		MUTEX_EXIT(&fr->fr_lock);
5504 	}
5505 	return (-1);
5506 }
5507 
5508 
5509 /* ------------------------------------------------------------------------ */
5510 /* Function:    ipf_grpmapinit                                              */
5511 /* Returns:     int - 0 == success, else ESRCH because table entry not found*/
5512 /* Parameters:  fr(I) - pointer to rule to find hash table for              */
5513 /*                                                                          */
5514 /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr.  */
5515 /* fr_ptr is later used by ipf_srcgrpmap and ipf_dstgrpmap.                 */
5516 /* ------------------------------------------------------------------------ */
5517 static int
ipf_grpmapinit(ipf_main_softc_t * softc,frentry_t * fr)5518 ipf_grpmapinit(ipf_main_softc_t *softc, frentry_t *fr)
5519 {
5520 	char name[FR_GROUPLEN];
5521 	iphtable_t *iph;
5522 
5523 	(void) snprintf(name, sizeof(name), "%d", fr->fr_arg);
5524 	iph = ipf_lookup_find_htable(softc, IPL_LOGIPF, name);
5525 	if (iph == NULL) {
5526 		IPFERROR(38);
5527 		return (ESRCH);
5528 	}
5529 	if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT)) {
5530 		IPFERROR(39);
5531 		return (ESRCH);
5532 	}
5533 	iph->iph_ref++;
5534 	fr->fr_ptr = iph;
5535 	return (0);
5536 }
5537 
5538 
5539 /* ------------------------------------------------------------------------ */
5540 /* Function:    ipf_grpmapfini                                              */
5541 /* Returns:     int - 0 == success, else ESRCH because table entry not found*/
5542 /* Parameters:  softc(I) - pointer to soft context main structure           */
5543 /*              fr(I)    - pointer to rule to release hash table for        */
5544 /*                                                                          */
5545 /* For rules that have had ipf_grpmapinit called, ipf_lookup_deref needs to */
5546 /* be called to undo what ipf_grpmapinit caused to be done.                 */
5547 /* ------------------------------------------------------------------------ */
5548 static int
ipf_grpmapfini(ipf_main_softc_t * softc,frentry_t * fr)5549 ipf_grpmapfini(ipf_main_softc_t *softc, frentry_t *fr)
5550 {
5551 	iphtable_t *iph;
5552 	iph = fr->fr_ptr;
5553 	if (iph != NULL)
5554 		ipf_lookup_deref(softc, IPLT_HASH, iph);
5555 	return (0);
5556 }
5557 
5558 
5559 /* ------------------------------------------------------------------------ */
5560 /* Function:    ipf_srcgrpmap                                               */
5561 /* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
5562 /* Parameters:  fin(I)    - pointer to packet information                   */
5563 /*              passp(IO) - pointer to current/new filter decision (unused) */
5564 /*                                                                          */
5565 /* Look for a rule group head in a hash table, using the source address as  */
5566 /* the key, and descend into that group and continue matching rules against */
5567 /* the packet.                                                              */
5568 /* ------------------------------------------------------------------------ */
5569 frentry_t *
ipf_srcgrpmap(fr_info_t * fin,u_32_t * passp)5570 ipf_srcgrpmap(fr_info_t *fin, u_32_t *passp)
5571 {
5572 	frgroup_t *fg;
5573 	void *rval;
5574 
5575 	rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5576 				 &fin->fin_src);
5577 	if (rval == NULL)
5578 		return (NULL);
5579 
5580 	fg = rval;
5581 	fin->fin_fr = fg->fg_start;
5582 	(void) ipf_scanlist(fin, *passp);
5583 	return (fin->fin_fr);
5584 }
5585 
5586 
5587 /* ------------------------------------------------------------------------ */
5588 /* Function:    ipf_dstgrpmap                                               */
5589 /* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
5590 /* Parameters:  fin(I)    - pointer to packet information                   */
5591 /*              passp(IO) - pointer to current/new filter decision (unused) */
5592 /*                                                                          */
5593 /* Look for a rule group head in a hash table, using the destination        */
5594 /* address as the key, and descend into that group and continue matching    */
5595 /* rules against  the packet.                                               */
5596 /* ------------------------------------------------------------------------ */
5597 frentry_t *
ipf_dstgrpmap(fr_info_t * fin,u_32_t * passp)5598 ipf_dstgrpmap(fr_info_t *fin, u_32_t *passp)
5599 {
5600 	frgroup_t *fg;
5601 	void *rval;
5602 
5603 	rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5604 				 &fin->fin_dst);
5605 	if (rval == NULL)
5606 		return (NULL);
5607 
5608 	fg = rval;
5609 	fin->fin_fr = fg->fg_start;
5610 	(void) ipf_scanlist(fin, *passp);
5611 	return (fin->fin_fr);
5612 }
5613 
5614 /*
5615  * Queue functions
5616  * ===============
5617  * These functions manage objects on queues for efficient timeouts.  There
5618  * are a number of system defined queues as well as user defined timeouts.
5619  * It is expected that a lock is held in the domain in which the queue
5620  * belongs (i.e. either state or NAT) when calling any of these functions
5621  * that prevents ipf_freetimeoutqueue() from being called at the same time
5622  * as any other.
5623  */
5624 
5625 
5626 /* ------------------------------------------------------------------------ */
5627 /* Function:    ipf_addtimeoutqueue                                         */
5628 /* Returns:     struct ifqtq * - NULL if malloc fails, else pointer to      */
5629 /*                               timeout queue with given interval.         */
5630 /* Parameters:  parent(I)  - pointer to pointer to parent node of this list */
5631 /*                           of interface queues.                           */
5632 /*              seconds(I) - timeout value in seconds for this queue.       */
5633 /*                                                                          */
5634 /* This routine first looks for a timeout queue that matches the interval   */
5635 /* being requested.  If it finds one, increments the reference counter and  */
5636 /* returns a pointer to it.  If none are found, it allocates a new one and  */
5637 /* inserts it at the top of the list.                                       */
5638 /*                                                                          */
5639 /* Locking.                                                                 */
5640 /* It is assumed that the caller of this function has an appropriate lock   */
5641 /* held (exclusively) in the domain that encompases 'parent'.               */
5642 /* ------------------------------------------------------------------------ */
5643 ipftq_t *
ipf_addtimeoutqueue(ipf_main_softc_t * softc,ipftq_t ** parent,u_int seconds)5644 ipf_addtimeoutqueue(ipf_main_softc_t *softc, ipftq_t **parent, u_int seconds)
5645 {
5646 	ipftq_t *ifq;
5647 	u_int period;
5648 
5649 	period = seconds * IPF_HZ_DIVIDE;
5650 
5651 	MUTEX_ENTER(&softc->ipf_timeoutlock);
5652 	for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) {
5653 		if (ifq->ifq_ttl == period) {
5654 			/*
5655 			 * Reset the delete flag, if set, so the structure
5656 			 * gets reused rather than freed and reallocated.
5657 			 */
5658 			MUTEX_ENTER(&ifq->ifq_lock);
5659 			ifq->ifq_flags &= ~IFQF_DELETE;
5660 			ifq->ifq_ref++;
5661 			MUTEX_EXIT(&ifq->ifq_lock);
5662 			MUTEX_EXIT(&softc->ipf_timeoutlock);
5663 
5664 			return (ifq);
5665 		}
5666 	}
5667 
5668 	KMALLOC(ifq, ipftq_t *);
5669 	if (ifq != NULL) {
5670 		MUTEX_NUKE(&ifq->ifq_lock);
5671 		IPFTQ_INIT(ifq, period, "ipftq mutex");
5672 		ifq->ifq_next = *parent;
5673 		ifq->ifq_pnext = parent;
5674 		ifq->ifq_flags = IFQF_USER;
5675 		ifq->ifq_ref++;
5676 		*parent = ifq;
5677 		softc->ipf_userifqs++;
5678 	}
5679 	MUTEX_EXIT(&softc->ipf_timeoutlock);
5680 	return (ifq);
5681 }
5682 
5683 
5684 /* ------------------------------------------------------------------------ */
5685 /* Function:    ipf_deletetimeoutqueue                                      */
5686 /* Returns:     int    - new reference count value of the timeout queue     */
5687 /* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
5688 /* Locks:       ifq->ifq_lock                                               */
5689 /*                                                                          */
5690 /* This routine must be called when we're discarding a pointer to a timeout */
5691 /* queue object, taking care of the reference counter.                      */
5692 /*                                                                          */
5693 /* Now that this just sets a DELETE flag, it requires the expire code to    */
5694 /* check the list of user defined timeout queues and call the free function */
5695 /* below (currently commented out) to stop memory leaking.  It is done this */
5696 /* way because the locking may not be sufficient to safely do a free when   */
5697 /* this function is called.                                                 */
5698 /* ------------------------------------------------------------------------ */
5699 int
ipf_deletetimeoutqueue(ipftq_t * ifq)5700 ipf_deletetimeoutqueue(ipftq_t *ifq)
5701 {
5702 
5703 	ifq->ifq_ref--;
5704 	if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) {
5705 		ifq->ifq_flags |= IFQF_DELETE;
5706 	}
5707 
5708 	return (ifq->ifq_ref);
5709 }
5710 
5711 
5712 /* ------------------------------------------------------------------------ */
5713 /* Function:    ipf_freetimeoutqueue                                        */
5714 /* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
5715 /* Returns:     Nil                                                         */
5716 /*                                                                          */
5717 /* Locking:                                                                 */
5718 /* It is assumed that the caller of this function has an appropriate lock   */
5719 /* held (exclusively) in the domain that encompases the callers "domain".   */
5720 /* The ifq_lock for this structure should not be held.                      */
5721 /*                                                                          */
5722 /* Remove a user defined timeout queue from the list of queues it is in and */
5723 /* tidy up after this is done.                                              */
5724 /* ------------------------------------------------------------------------ */
5725 void
ipf_freetimeoutqueue(ipf_main_softc_t * softc,ipftq_t * ifq)5726 ipf_freetimeoutqueue(ipf_main_softc_t *softc, ipftq_t *ifq)
5727 {
5728 
5729 	if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) ||
5730 	    ((ifq->ifq_flags & IFQF_USER) == 0)) {
5731 		printf("ipf_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n",
5732 		       (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl,
5733 		       ifq->ifq_ref);
5734 		return;
5735 	}
5736 
5737 	/*
5738 	 * Remove from its position in the list.
5739 	 */
5740 	*ifq->ifq_pnext = ifq->ifq_next;
5741 	if (ifq->ifq_next != NULL)
5742 		ifq->ifq_next->ifq_pnext = ifq->ifq_pnext;
5743 	ifq->ifq_next = NULL;
5744 	ifq->ifq_pnext = NULL;
5745 
5746 	MUTEX_DESTROY(&ifq->ifq_lock);
5747 	ATOMIC_DEC(softc->ipf_userifqs);
5748 	KFREE(ifq);
5749 }
5750 
5751 
5752 /* ------------------------------------------------------------------------ */
5753 /* Function:    ipf_deletequeueentry                                        */
5754 /* Returns:     Nil                                                         */
5755 /* Parameters:  tqe(I) - timeout queue entry to delete                      */
5756 /*                                                                          */
5757 /* Remove a tail queue entry from its queue and make it an orphan.          */
5758 /* ipf_deletetimeoutqueue is called to make sure the reference count on the */
5759 /* queue is correct.  We can't, however, call ipf_freetimeoutqueue because  */
5760 /* the correct lock(s) may not be held that would make it safe to do so.    */
5761 /* ------------------------------------------------------------------------ */
5762 void
ipf_deletequeueentry(ipftqent_t * tqe)5763 ipf_deletequeueentry(ipftqent_t *tqe)
5764 {
5765 	ipftq_t *ifq;
5766 
5767 	ifq = tqe->tqe_ifq;
5768 
5769 	MUTEX_ENTER(&ifq->ifq_lock);
5770 
5771 	if (tqe->tqe_pnext != NULL) {
5772 		*tqe->tqe_pnext = tqe->tqe_next;
5773 		if (tqe->tqe_next != NULL)
5774 			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5775 		else    /* we must be the tail anyway */
5776 			ifq->ifq_tail = tqe->tqe_pnext;
5777 
5778 		tqe->tqe_pnext = NULL;
5779 		tqe->tqe_ifq = NULL;
5780 	}
5781 
5782 	(void) ipf_deletetimeoutqueue(ifq);
5783 	ASSERT(ifq->ifq_ref > 0);
5784 
5785 	MUTEX_EXIT(&ifq->ifq_lock);
5786 }
5787 
5788 
5789 /* ------------------------------------------------------------------------ */
5790 /* Function:    ipf_queuefront                                              */
5791 /* Returns:     Nil                                                         */
5792 /* Parameters:  tqe(I) - pointer to timeout queue entry                     */
5793 /*                                                                          */
5794 /* Move a queue entry to the front of the queue, if it isn't already there. */
5795 /* ------------------------------------------------------------------------ */
5796 void
ipf_queuefront(ipftqent_t * tqe)5797 ipf_queuefront(ipftqent_t *tqe)
5798 {
5799 	ipftq_t *ifq;
5800 
5801 	ifq = tqe->tqe_ifq;
5802 	if (ifq == NULL)
5803 		return;
5804 
5805 	MUTEX_ENTER(&ifq->ifq_lock);
5806 	if (ifq->ifq_head != tqe) {
5807 		*tqe->tqe_pnext = tqe->tqe_next;
5808 		if (tqe->tqe_next)
5809 			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5810 		else
5811 			ifq->ifq_tail = tqe->tqe_pnext;
5812 
5813 		tqe->tqe_next = ifq->ifq_head;
5814 		ifq->ifq_head->tqe_pnext = &tqe->tqe_next;
5815 		ifq->ifq_head = tqe;
5816 		tqe->tqe_pnext = &ifq->ifq_head;
5817 	}
5818 	MUTEX_EXIT(&ifq->ifq_lock);
5819 }
5820 
5821 
5822 /* ------------------------------------------------------------------------ */
5823 /* Function:    ipf_queueback                                               */
5824 /* Returns:     Nil                                                         */
5825 /* Parameters:  ticks(I) - ipf tick time to use with this call              */
5826 /*              tqe(I)   - pointer to timeout queue entry                   */
5827 /*                                                                          */
5828 /* Move a queue entry to the back of the queue, if it isn't already there.  */
5829 /* We use use ticks to calculate the expiration and mark for when we last   */
5830 /* touched the structure.                                                   */
5831 /* ------------------------------------------------------------------------ */
5832 void
ipf_queueback(u_long ticks,ipftqent_t * tqe)5833 ipf_queueback(u_long ticks, ipftqent_t *tqe)
5834 {
5835 	ipftq_t *ifq;
5836 
5837 	ifq = tqe->tqe_ifq;
5838 	if (ifq == NULL)
5839 		return;
5840 	tqe->tqe_die = ticks + ifq->ifq_ttl;
5841 	tqe->tqe_touched = ticks;
5842 
5843 	MUTEX_ENTER(&ifq->ifq_lock);
5844 	if (tqe->tqe_next != NULL) {		/* at the end already ? */
5845 		/*
5846 		 * Remove from list
5847 		 */
5848 		*tqe->tqe_pnext = tqe->tqe_next;
5849 		tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5850 
5851 		/*
5852 		 * Make it the last entry.
5853 		 */
5854 		tqe->tqe_next = NULL;
5855 		tqe->tqe_pnext = ifq->ifq_tail;
5856 		*ifq->ifq_tail = tqe;
5857 		ifq->ifq_tail = &tqe->tqe_next;
5858 	}
5859 	MUTEX_EXIT(&ifq->ifq_lock);
5860 }
5861 
5862 
5863 /* ------------------------------------------------------------------------ */
5864 /* Function:    ipf_queueappend                                             */
5865 /* Returns:     Nil                                                         */
5866 /* Parameters:  ticks(I)  - ipf tick time to use with this call             */
5867 /*              tqe(I)    - pointer to timeout queue entry                  */
5868 /*              ifq(I)    - pointer to timeout queue                        */
5869 /*              parent(I) - owing object pointer                            */
5870 /*                                                                          */
5871 /* Add a new item to this queue and put it on the very end.                 */
5872 /* We use use ticks to calculate the expiration and mark for when we last   */
5873 /* touched the structure.                                                   */
5874 /* ------------------------------------------------------------------------ */
5875 void
ipf_queueappend(u_long ticks,ipftqent_t * tqe,ipftq_t * ifq,void * parent)5876 ipf_queueappend(u_long ticks, ipftqent_t *tqe, ipftq_t *ifq, void *parent)
5877 {
5878 
5879 	MUTEX_ENTER(&ifq->ifq_lock);
5880 	tqe->tqe_parent = parent;
5881 	tqe->tqe_pnext = ifq->ifq_tail;
5882 	*ifq->ifq_tail = tqe;
5883 	ifq->ifq_tail = &tqe->tqe_next;
5884 	tqe->tqe_next = NULL;
5885 	tqe->tqe_ifq = ifq;
5886 	tqe->tqe_die = ticks + ifq->ifq_ttl;
5887 	tqe->tqe_touched = ticks;
5888 	ifq->ifq_ref++;
5889 	MUTEX_EXIT(&ifq->ifq_lock);
5890 }
5891 
5892 
5893 /* ------------------------------------------------------------------------ */
5894 /* Function:    ipf_movequeue                                               */
5895 /* Returns:     Nil                                                         */
5896 /* Parameters:  tq(I)   - pointer to timeout queue information              */
5897 /*              oifp(I) - old timeout queue entry was on                    */
5898 /*              nifp(I) - new timeout queue to put entry on                 */
5899 /*                                                                          */
5900 /* Move a queue entry from one timeout queue to another timeout queue.      */
5901 /* If it notices that the current entry is already last and does not need   */
5902 /* to move queue, the return.                                               */
5903 /* ------------------------------------------------------------------------ */
5904 void
ipf_movequeue(u_long ticks,ipftqent_t * tqe,ipftq_t * oifq,ipftq_t * nifq)5905 ipf_movequeue(u_long ticks, ipftqent_t *tqe, ipftq_t *oifq, ipftq_t *nifq)
5906 {
5907 
5908 	/*
5909 	 * If the queue hasn't changed and we last touched this entry at the
5910 	 * same ipf time, then we're not going to achieve anything by either
5911 	 * changing the ttl or moving it on the queue.
5912 	 */
5913 	if (oifq == nifq && tqe->tqe_touched == ticks)
5914 		return;
5915 
5916 	/*
5917 	 * For any of this to be outside the lock, there is a risk that two
5918 	 * packets entering simultaneously, with one changing to a different
5919 	 * queue and one not, could end up with things in a bizarre state.
5920 	 */
5921 	MUTEX_ENTER(&oifq->ifq_lock);
5922 
5923 	tqe->tqe_touched = ticks;
5924 	tqe->tqe_die = ticks + nifq->ifq_ttl;
5925 	/*
5926 	 * Is the operation here going to be a no-op ?
5927 	 */
5928 	if (oifq == nifq) {
5929 		if ((tqe->tqe_next == NULL) ||
5930 		    (tqe->tqe_next->tqe_die == tqe->tqe_die)) {
5931 			MUTEX_EXIT(&oifq->ifq_lock);
5932 			return;
5933 		}
5934 	}
5935 
5936 	/*
5937 	 * Remove from the old queue
5938 	 */
5939 	*tqe->tqe_pnext = tqe->tqe_next;
5940 	if (tqe->tqe_next)
5941 		tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5942 	else
5943 		oifq->ifq_tail = tqe->tqe_pnext;
5944 	tqe->tqe_next = NULL;
5945 
5946 	/*
5947 	 * If we're moving from one queue to another, release the
5948 	 * lock on the old queue and get a lock on the new queue.
5949 	 * For user defined queues, if we're moving off it, call
5950 	 * delete in case it can now be freed.
5951 	 */
5952 	if (oifq != nifq) {
5953 		tqe->tqe_ifq = NULL;
5954 
5955 		(void) ipf_deletetimeoutqueue(oifq);
5956 
5957 		MUTEX_EXIT(&oifq->ifq_lock);
5958 
5959 		MUTEX_ENTER(&nifq->ifq_lock);
5960 
5961 		tqe->tqe_ifq = nifq;
5962 		nifq->ifq_ref++;
5963 	}
5964 
5965 	/*
5966 	 * Add to the bottom of the new queue
5967 	 */
5968 	tqe->tqe_pnext = nifq->ifq_tail;
5969 	*nifq->ifq_tail = tqe;
5970 	nifq->ifq_tail = &tqe->tqe_next;
5971 	MUTEX_EXIT(&nifq->ifq_lock);
5972 }
5973 
5974 
5975 /* ------------------------------------------------------------------------ */
5976 /* Function:    ipf_updateipid                                              */
5977 /* Returns:     int - 0 == success, -1 == error (packet should be droppped) */
5978 /* Parameters:  fin(I) - pointer to packet information                      */
5979 /*                                                                          */
5980 /* When we are doing NAT, change the IP of every packet to represent a      */
5981 /* single sequence of packets coming from the host, hiding any host         */
5982 /* specific sequencing that might otherwise be revealed.  If the packet is  */
5983 /* a fragment, then store the 'new' IPid in the fragment cache and look up  */
5984 /* the fragment cache for non-leading fragments.  If a non-leading fragment */
5985 /* has no match in the cache, return an error.                              */
5986 /* ------------------------------------------------------------------------ */
5987 static int
ipf_updateipid(fr_info_t * fin)5988 ipf_updateipid(fr_info_t *fin)
5989 {
5990 	u_short id, ido, sums;
5991 	u_32_t sumd, sum;
5992 	ip_t *ip;
5993 
5994 	ip = fin->fin_ip;
5995 	ido = ntohs(ip->ip_id);
5996 	if (fin->fin_off != 0) {
5997 		sum = ipf_frag_ipidknown(fin);
5998 		if (sum == 0xffffffff)
5999 			return (-1);
6000 		sum &= 0xffff;
6001 		id = (u_short)sum;
6002 		ip->ip_id = htons(id);
6003 	} else {
6004 		ip_fillid(ip, V_ip_random_id);
6005 		id = ntohs(ip->ip_id);
6006 		if ((fin->fin_flx & FI_FRAG) != 0)
6007 			(void) ipf_frag_ipidnew(fin, (u_32_t)id);
6008 	}
6009 
6010 	if (id == ido)
6011 		return (0);
6012 	CALC_SUMD(ido, id, sumd);	/* DESTRUCTIVE MACRO! id,ido change */
6013 	sum = (~ntohs(ip->ip_sum)) & 0xffff;
6014 	sum += sumd;
6015 	sum = (sum >> 16) + (sum & 0xffff);
6016 	sum = (sum >> 16) + (sum & 0xffff);
6017 	sums = ~(u_short)sum;
6018 	ip->ip_sum = htons(sums);
6019 	return (0);
6020 }
6021 
6022 
6023 #ifdef	NEED_FRGETIFNAME
6024 /* ------------------------------------------------------------------------ */
6025 /* Function:    ipf_getifname                                               */
6026 /* Returns:     char *    - pointer to interface name                       */
6027 /* Parameters:  ifp(I)    - pointer to network interface                    */
6028 /*              buffer(O) - pointer to where to store interface name        */
6029 /*                                                                          */
6030 /* Constructs an interface name in the buffer passed.  The buffer passed is */
6031 /* expected to be at least LIFNAMSIZ in bytes big.  If buffer is passed in  */
6032 /* as a NULL pointer then return a pointer to a static array.               */
6033 /* ------------------------------------------------------------------------ */
6034 char *
ipf_getifname(struct ifnet * ifp,char * buffer)6035 ipf_getifname(struct ifnet *ifp, char *buffer)
6036 {
6037 	static char namebuf[LIFNAMSIZ];
6038 # if SOLARIS || defined(__FreeBSD__)
6039 	int unit, space;
6040 	char temp[20];
6041 	char *s;
6042 # endif
6043 
6044 	if (buffer == NULL)
6045 		buffer = namebuf;
6046 	(void) strncpy(buffer, ifp->if_name, LIFNAMSIZ);
6047 	buffer[LIFNAMSIZ - 1] = '\0';
6048 # if SOLARIS || defined(__FreeBSD__)
6049 	for (s = buffer; *s; s++)
6050 		;
6051 	unit = ifp->if_unit;
6052 	space = LIFNAMSIZ - (s - buffer);
6053 	if ((space > 0) && (unit >= 0)) {
6054 		(void) snprintf(temp, sizeof(name), "%d", unit);
6055 		(void) strncpy(s, temp, space);
6056 	}
6057 # endif
6058 	return (buffer);
6059 }
6060 #endif
6061 
6062 
6063 /* ------------------------------------------------------------------------ */
6064 /* Function:    ipf_ioctlswitch                                             */
6065 /* Returns:     int     - -1 continue processing, else ioctl return value   */
6066 /* Parameters:  unit(I) - device unit opened                                */
6067 /*              data(I) - pointer to ioctl data                             */
6068 /*              cmd(I)  - ioctl command                                     */
6069 /*              mode(I) - mode value                                        */
6070 /*              uid(I)  - uid making the ioctl call                         */
6071 /*              ctx(I)  - pointer to context data                           */
6072 /*                                                                          */
6073 /* Based on the value of unit, call the appropriate ioctl handler or return */
6074 /* EIO if ipfilter is not running.   Also checks if write perms are req'd   */
6075 /* for the device in order to execute the ioctl.  A special case is made    */
6076 /* SIOCIPFINTERROR so that the same code isn't required in every handler.   */
6077 /* The context data pointer is passed through as this is used as the key    */
6078 /* for locating a matching token for continued access for walking lists,    */
6079 /* etc.                                                                     */
6080 /* ------------------------------------------------------------------------ */
6081 int
ipf_ioctlswitch(ipf_main_softc_t * softc,int unit,void * data,ioctlcmd_t cmd,int mode,int uid,void * ctx)6082 ipf_ioctlswitch(ipf_main_softc_t *softc, int unit, void *data, ioctlcmd_t cmd,
6083 	int mode, int uid, void *ctx)
6084 {
6085 	int error = 0;
6086 
6087 	switch (cmd)
6088 	{
6089 	case SIOCIPFINTERROR :
6090 		error = BCOPYOUT(&softc->ipf_interror, data,
6091 				 sizeof(softc->ipf_interror));
6092 		if (error != 0) {
6093 			IPFERROR(40);
6094 			error = EFAULT;
6095 		}
6096 		return (error);
6097 	default :
6098 		break;
6099 	}
6100 
6101 	switch (unit)
6102 	{
6103 	case IPL_LOGIPF :
6104 		error = ipf_ipf_ioctl(softc, data, cmd, mode, uid, ctx);
6105 		break;
6106 	case IPL_LOGNAT :
6107 		if (softc->ipf_running > 0) {
6108 			error = ipf_nat_ioctl(softc, data, cmd, mode,
6109 					      uid, ctx);
6110 		} else {
6111 			IPFERROR(42);
6112 			error = EIO;
6113 		}
6114 		break;
6115 	case IPL_LOGSTATE :
6116 		if (softc->ipf_running > 0) {
6117 			error = ipf_state_ioctl(softc, data, cmd, mode,
6118 						uid, ctx);
6119 		} else {
6120 			IPFERROR(43);
6121 			error = EIO;
6122 		}
6123 		break;
6124 	case IPL_LOGAUTH :
6125 		if (softc->ipf_running > 0) {
6126 			error = ipf_auth_ioctl(softc, data, cmd, mode,
6127 					       uid, ctx);
6128 		} else {
6129 			IPFERROR(44);
6130 			error = EIO;
6131 		}
6132 		break;
6133 	case IPL_LOGSYNC :
6134 		if (softc->ipf_running > 0) {
6135 			error = ipf_sync_ioctl(softc, data, cmd, mode,
6136 					       uid, ctx);
6137 		} else {
6138 			error = EIO;
6139 			IPFERROR(45);
6140 		}
6141 		break;
6142 	case IPL_LOGSCAN :
6143 #ifdef IPFILTER_SCAN
6144 		if (softc->ipf_running > 0)
6145 			error = ipf_scan_ioctl(softc, data, cmd, mode,
6146 					       uid, ctx);
6147 		else
6148 #endif
6149 		{
6150 			error = EIO;
6151 			IPFERROR(46);
6152 		}
6153 		break;
6154 	case IPL_LOGLOOKUP :
6155 		if (softc->ipf_running > 0) {
6156 			error = ipf_lookup_ioctl(softc, data, cmd, mode,
6157 						 uid, ctx);
6158 		} else {
6159 			error = EIO;
6160 			IPFERROR(47);
6161 		}
6162 		break;
6163 	default :
6164 		IPFERROR(48);
6165 		error = EIO;
6166 		break;
6167 	}
6168 
6169 	return (error);
6170 }
6171 
6172 
6173 /*
6174  * This array defines the expected size of objects coming into the kernel
6175  * for the various recognised object types. The first column is flags (see
6176  * below), 2nd column is current size, 3rd column is the version number of
6177  * when the current size became current.
6178  * Flags:
6179  * 1 = minimum size, not absolute size
6180  */
6181 static const int	ipf_objbytes[IPFOBJ_COUNT][3] = {
6182 	{ 1,	sizeof(struct frentry),		5010000 },	/* 0 */
6183 	{ 1,	sizeof(struct friostat),	5010000 },
6184 	{ 0,	sizeof(struct fr_info),		5010000 },
6185 	{ 0,	sizeof(struct ipf_authstat),	4010100 },
6186 	{ 0,	sizeof(struct ipfrstat),	5010000 },
6187 	{ 1,	sizeof(struct ipnat),		5010000 },	/* 5 */
6188 	{ 0,	sizeof(struct natstat),		5010000 },
6189 	{ 0,	sizeof(struct ipstate_save),	5010000 },
6190 	{ 1,	sizeof(struct nat_save),	5010000 },
6191 	{ 0,	sizeof(struct natlookup),	5010000 },
6192 	{ 1,	sizeof(struct ipstate),		5010000 },	/* 10 */
6193 	{ 0,	sizeof(struct ips_stat),	5010000 },
6194 	{ 0,	sizeof(struct frauth),		5010000 },
6195 	{ 0,	sizeof(struct ipftune),		4010100 },
6196 	{ 0,	sizeof(struct nat),		5010000 },
6197 	{ 0,	sizeof(struct ipfruleiter),	4011400 },	/* 15 */
6198 	{ 0,	sizeof(struct ipfgeniter),	4011400 },
6199 	{ 0,	sizeof(struct ipftable),	4011400 },
6200 	{ 0,	sizeof(struct ipflookupiter),	4011400 },
6201 	{ 0,	sizeof(struct ipftq) * IPF_TCP_NSTATES },
6202 	{ 1,	0,				0	}, /* IPFEXPR */
6203 	{ 0,	0,				0	}, /* PROXYCTL */
6204 	{ 0,	sizeof (struct fripf),		5010000	}
6205 };
6206 
6207 
6208 /* ------------------------------------------------------------------------ */
6209 /* Function:    ipf_inobj                                                   */
6210 /* Returns:     int     - 0 = success, else failure                         */
6211 /* Parameters:  softc(I) - soft context pointerto work with                 */
6212 /*              data(I)  - pointer to ioctl data                            */
6213 /*              objp(O)  - where to store ipfobj structure                  */
6214 /*              ptr(I)   - pointer to data to copy out                      */
6215 /*              type(I)  - type of structure being moved                    */
6216 /*                                                                          */
6217 /* Copy in the contents of what the ipfobj_t points to.  In future, we      */
6218 /* add things to check for version numbers, sizes, etc, to make it backward */
6219 /* compatible at the ABI for user land.                                     */
6220 /* If objp is not NULL then we assume that the caller wants to see what is  */
6221 /* in the ipfobj_t structure being copied in. As an example, this can tell  */
6222 /* the caller what version of ipfilter the ioctl program was written to.    */
6223 /* ------------------------------------------------------------------------ */
6224 int
ipf_inobj(ipf_main_softc_t * softc,void * data,ipfobj_t * objp,void * ptr,int type)6225 ipf_inobj(ipf_main_softc_t *softc, void *data, ipfobj_t *objp, void *ptr,
6226 	int type)
6227 {
6228 	ipfobj_t obj;
6229 	int error;
6230 	int size;
6231 
6232 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6233 		IPFERROR(49);
6234 		return (EINVAL);
6235 	}
6236 
6237 	if (objp == NULL)
6238 		objp = &obj;
6239 	error = BCOPYIN(data, objp, sizeof(*objp));
6240 	if (error != 0) {
6241 		IPFERROR(124);
6242 		return (EFAULT);
6243 	}
6244 
6245 	if (objp->ipfo_type != type) {
6246 		IPFERROR(50);
6247 		return (EINVAL);
6248 	}
6249 
6250 	if (objp->ipfo_rev >= ipf_objbytes[type][2]) {
6251 		if ((ipf_objbytes[type][0] & 1) != 0) {
6252 			if (objp->ipfo_size < ipf_objbytes[type][1]) {
6253 				IPFERROR(51);
6254 				return (EINVAL);
6255 			}
6256 			size =  ipf_objbytes[type][1];
6257 		} else if (objp->ipfo_size == ipf_objbytes[type][1]) {
6258 			size =  objp->ipfo_size;
6259 		} else {
6260 			IPFERROR(52);
6261 			return (EINVAL);
6262 		}
6263 		error = COPYIN(objp->ipfo_ptr, ptr, size);
6264 		if (error != 0) {
6265 			IPFERROR(55);
6266 			error = EFAULT;
6267 		}
6268 	} else {
6269 #ifdef  IPFILTER_COMPAT
6270 		error = ipf_in_compat(softc, objp, ptr, 0);
6271 #else
6272 		IPFERROR(54);
6273 		error = EINVAL;
6274 #endif
6275 	}
6276 	return (error);
6277 }
6278 
6279 
6280 /* ------------------------------------------------------------------------ */
6281 /* Function:    ipf_inobjsz                                                 */
6282 /* Returns:     int     - 0 = success, else failure                         */
6283 /* Parameters:  softc(I) - soft context pointerto work with                 */
6284 /*              data(I)  - pointer to ioctl data                            */
6285 /*              ptr(I)   - pointer to store real data in                    */
6286 /*              type(I)  - type of structure being moved                    */
6287 /*              sz(I)    - size of data to copy                             */
6288 /*                                                                          */
6289 /* As per ipf_inobj, except the size of the object to copy in is passed in  */
6290 /* but it must not be smaller than the size defined for the type and the    */
6291 /* type must allow for varied sized objects.  The extra requirement here is */
6292 /* that sz must match the size of the object being passed in - this is not  */
6293 /* not possible nor required in ipf_inobj().                                */
6294 /* ------------------------------------------------------------------------ */
6295 int
ipf_inobjsz(ipf_main_softc_t * softc,void * data,void * ptr,int type,int sz)6296 ipf_inobjsz(ipf_main_softc_t *softc, void *data, void *ptr, int type, int sz)
6297 {
6298 	ipfobj_t obj;
6299 	int error;
6300 
6301 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6302 		IPFERROR(56);
6303 		return (EINVAL);
6304 	}
6305 
6306 	error = BCOPYIN(data, &obj, sizeof(obj));
6307 	if (error != 0) {
6308 		IPFERROR(125);
6309 		return (EFAULT);
6310 	}
6311 
6312 	if (obj.ipfo_type != type) {
6313 		IPFERROR(58);
6314 		return (EINVAL);
6315 	}
6316 
6317 	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6318 		if (((ipf_objbytes[type][0] & 1) == 0) ||
6319 		    (sz < ipf_objbytes[type][1])) {
6320 			IPFERROR(57);
6321 			return (EINVAL);
6322 		}
6323 		error = COPYIN(obj.ipfo_ptr, ptr, sz);
6324 		if (error != 0) {
6325 			IPFERROR(61);
6326 			error = EFAULT;
6327 		}
6328 	} else {
6329 #ifdef	IPFILTER_COMPAT
6330 		error = ipf_in_compat(softc, &obj, ptr, sz);
6331 #else
6332 		IPFERROR(60);
6333 		error = EINVAL;
6334 #endif
6335 	}
6336 	return (error);
6337 }
6338 
6339 
6340 /* ------------------------------------------------------------------------ */
6341 /* Function:    ipf_outobjsz                                                */
6342 /* Returns:     int     - 0 = success, else failure                         */
6343 /* Parameters:  data(I) - pointer to ioctl data                             */
6344 /*              ptr(I)  - pointer to store real data in                     */
6345 /*              type(I) - type of structure being moved                     */
6346 /*              sz(I)   - size of data to copy                              */
6347 /*                                                                          */
6348 /* As per ipf_outobj, except the size of the object to copy out is passed in*/
6349 /* but it must not be smaller than the size defined for the type and the    */
6350 /* type must allow for varied sized objects.  The extra requirement here is */
6351 /* that sz must match the size of the object being passed in - this is not  */
6352 /* not possible nor required in ipf_outobj().                               */
6353 /* ------------------------------------------------------------------------ */
6354 int
ipf_outobjsz(ipf_main_softc_t * softc,void * data,void * ptr,int type,int sz)6355 ipf_outobjsz(ipf_main_softc_t *softc, void *data, void *ptr, int type, int sz)
6356 {
6357 	ipfobj_t obj;
6358 	int error;
6359 
6360 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6361 		IPFERROR(62);
6362 		return (EINVAL);
6363 	}
6364 
6365 	error = BCOPYIN(data, &obj, sizeof(obj));
6366 	if (error != 0) {
6367 		IPFERROR(127);
6368 		return (EFAULT);
6369 	}
6370 
6371 	if (obj.ipfo_type != type) {
6372 		IPFERROR(63);
6373 		return (EINVAL);
6374 	}
6375 
6376 	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6377 		if (((ipf_objbytes[type][0] & 1) == 0) ||
6378 		    (sz < ipf_objbytes[type][1])) {
6379 			IPFERROR(146);
6380 			return (EINVAL);
6381 		}
6382 		error = COPYOUT(ptr, obj.ipfo_ptr, sz);
6383 		if (error != 0) {
6384 			IPFERROR(66);
6385 			error = EFAULT;
6386 		}
6387 	} else {
6388 #ifdef	IPFILTER_COMPAT
6389 		error = ipf_out_compat(softc, &obj, ptr);
6390 #else
6391 		IPFERROR(65);
6392 		error = EINVAL;
6393 #endif
6394 	}
6395 	return (error);
6396 }
6397 
6398 
6399 /* ------------------------------------------------------------------------ */
6400 /* Function:    ipf_outobj                                                  */
6401 /* Returns:     int     - 0 = success, else failure                         */
6402 /* Parameters:  data(I) - pointer to ioctl data                             */
6403 /*              ptr(I)  - pointer to store real data in                     */
6404 /*              type(I) - type of structure being moved                     */
6405 /*                                                                          */
6406 /* Copy out the contents of what ptr is to where ipfobj points to.  In      */
6407 /* future, we add things to check for version numbers, sizes, etc, to make  */
6408 /* it backward  compatible at the ABI for user land.                        */
6409 /* ------------------------------------------------------------------------ */
6410 int
ipf_outobj(ipf_main_softc_t * softc,void * data,void * ptr,int type)6411 ipf_outobj(ipf_main_softc_t *softc, void *data, void *ptr, int type)
6412 {
6413 	ipfobj_t obj;
6414 	int error;
6415 
6416 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6417 		IPFERROR(67);
6418 		return (EINVAL);
6419 	}
6420 
6421 	error = BCOPYIN(data, &obj, sizeof(obj));
6422 	if (error != 0) {
6423 		IPFERROR(126);
6424 		return (EFAULT);
6425 	}
6426 
6427 	if (obj.ipfo_type != type) {
6428 		IPFERROR(68);
6429 		return (EINVAL);
6430 	}
6431 
6432 	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6433 		if ((ipf_objbytes[type][0] & 1) != 0) {
6434 			if (obj.ipfo_size < ipf_objbytes[type][1]) {
6435 				IPFERROR(69);
6436 				return (EINVAL);
6437 			}
6438 		} else if (obj.ipfo_size != ipf_objbytes[type][1]) {
6439 			IPFERROR(70);
6440 			return (EINVAL);
6441 		}
6442 
6443 		error = COPYOUT(ptr, obj.ipfo_ptr, obj.ipfo_size);
6444 		if (error != 0) {
6445 			IPFERROR(73);
6446 			error = EFAULT;
6447 		}
6448 	} else {
6449 #ifdef	IPFILTER_COMPAT
6450 		error = ipf_out_compat(softc, &obj, ptr);
6451 #else
6452 		IPFERROR(72);
6453 		error = EINVAL;
6454 #endif
6455 	}
6456 	return (error);
6457 }
6458 
6459 
6460 /* ------------------------------------------------------------------------ */
6461 /* Function:    ipf_outobjk                                                 */
6462 /* Returns:     int     - 0 = success, else failure                         */
6463 /* Parameters:  obj(I)  - pointer to data description structure             */
6464 /*              ptr(I)  - pointer to kernel data to copy out                */
6465 /*                                                                          */
6466 /* In the above functions, the ipfobj_t structure is copied into the kernel,*/
6467 /* telling ipfilter how to copy out data. In this instance, the ipfobj_t is */
6468 /* already populated with information and now we just need to use it.       */
6469 /* There is no need for this function to have a "type" parameter as there   */
6470 /* is no point in validating information that comes from the kernel with    */
6471 /* itself.                                                                  */
6472 /* ------------------------------------------------------------------------ */
6473 int
ipf_outobjk(ipf_main_softc_t * softc,ipfobj_t * obj,void * ptr)6474 ipf_outobjk(ipf_main_softc_t *softc, ipfobj_t *obj, void *ptr)
6475 {
6476 	int type = obj->ipfo_type;
6477 	int error;
6478 
6479 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6480 		IPFERROR(147);
6481 		return (EINVAL);
6482 	}
6483 
6484 	if (obj->ipfo_rev >= ipf_objbytes[type][2]) {
6485 		if ((ipf_objbytes[type][0] & 1) != 0) {
6486 			if (obj->ipfo_size < ipf_objbytes[type][1]) {
6487 				IPFERROR(148);
6488 				return (EINVAL);
6489 			}
6490 
6491 		} else if (obj->ipfo_size != ipf_objbytes[type][1]) {
6492 			IPFERROR(149);
6493 			return (EINVAL);
6494 		}
6495 
6496 		error = COPYOUT(ptr, obj->ipfo_ptr, obj->ipfo_size);
6497 		if (error != 0) {
6498 			IPFERROR(150);
6499 			error = EFAULT;
6500 		}
6501 	} else {
6502 #ifdef  IPFILTER_COMPAT
6503 		error = ipf_out_compat(softc, obj, ptr);
6504 #else
6505 		IPFERROR(151);
6506 		error = EINVAL;
6507 #endif
6508 	}
6509 	return (error);
6510 }
6511 
6512 
6513 /* ------------------------------------------------------------------------ */
6514 /* Function:    ipf_checkl4sum                                              */
6515 /* Returns:     int     - 0 = good, -1 = bad, 1 = cannot check              */
6516 /* Parameters:  fin(I) - pointer to packet information                      */
6517 /*                                                                          */
6518 /* If possible, calculate the layer 4 checksum for the packet.  If this is  */
6519 /* not possible, return without indicating a failure or success but in a    */
6520 /* way that is ditinguishable. This function should only be called by the   */
6521 /* ipf_checkv6sum() for each platform.                                      */
6522 /* ------------------------------------------------------------------------ */
6523 inline int
ipf_checkl4sum(fr_info_t * fin)6524 ipf_checkl4sum(fr_info_t *fin)
6525 {
6526 	u_short sum, hdrsum, *csump;
6527 	udphdr_t *udp;
6528 	int dosum;
6529 
6530 	/*
6531 	 * If the TCP packet isn't a fragment, isn't too short and otherwise
6532 	 * isn't already considered "bad", then validate the checksum.  If
6533 	 * this check fails then considered the packet to be "bad".
6534 	 */
6535 	if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0)
6536 		return (1);
6537 
6538 	DT2(l4sumo, int, fin->fin_out, int, (int)fin->fin_p);
6539 	if (fin->fin_out == 1) {
6540 		fin->fin_cksum = FI_CK_SUMOK;
6541 		return (0);
6542 	}
6543 
6544 	csump = NULL;
6545 	hdrsum = 0;
6546 	dosum = 0;
6547 	sum = 0;
6548 
6549 	switch (fin->fin_p)
6550 	{
6551 	case IPPROTO_TCP :
6552 		csump = &((tcphdr_t *)fin->fin_dp)->th_sum;
6553 		dosum = 1;
6554 		break;
6555 
6556 	case IPPROTO_UDP :
6557 		udp = fin->fin_dp;
6558 		if (udp->uh_sum != 0) {
6559 			csump = &udp->uh_sum;
6560 			dosum = 1;
6561 		}
6562 		break;
6563 
6564 #ifdef USE_INET6
6565 	case IPPROTO_ICMPV6 :
6566 		csump = &((struct icmp6_hdr *)fin->fin_dp)->icmp6_cksum;
6567 		dosum = 1;
6568 		break;
6569 #endif
6570 
6571 	case IPPROTO_ICMP :
6572 		csump = &((struct icmp *)fin->fin_dp)->icmp_cksum;
6573 		dosum = 1;
6574 		break;
6575 
6576 	default :
6577 		return (1);
6578 		/*NOTREACHED*/
6579 	}
6580 
6581 	if (csump != NULL) {
6582 		hdrsum = *csump;
6583 		if (fin->fin_p == IPPROTO_UDP && hdrsum == 0xffff)
6584 			hdrsum = 0x0000;
6585 	}
6586 
6587 	if (dosum) {
6588 		sum = fr_cksum(fin, fin->fin_ip, fin->fin_p, fin->fin_dp);
6589 	}
6590 #if !defined(_KERNEL)
6591 	if (sum == hdrsum) {
6592 		FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum));
6593 	} else {
6594 		FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum));
6595 	}
6596 #endif
6597 	DT3(l4sums, u_short, hdrsum, u_short, sum, fr_info_t *, fin);
6598 #ifdef USE_INET6
6599 	if (hdrsum == sum || (sum == 0 && IP_V(fin->fin_ip) == 6)) {
6600 #else
6601 	if (hdrsum == sum) {
6602 #endif
6603 		fin->fin_cksum = FI_CK_SUMOK;
6604 		return (0);
6605 	}
6606 	fin->fin_cksum = FI_CK_BAD;
6607 	return (-1);
6608 }
6609 
6610 
6611 /* ------------------------------------------------------------------------ */
6612 /* Function:    ipf_ifpfillv4addr                                           */
6613 /* Returns:     int     - 0 = address update, -1 = address not updated      */
6614 /* Parameters:  atype(I)   - type of network address update to perform      */
6615 /*              sin(I)     - pointer to source of address information       */
6616 /*              mask(I)    - pointer to source of netmask information       */
6617 /*              inp(I)     - pointer to destination address store           */
6618 /*              inpmask(I) - pointer to destination netmask store           */
6619 /*                                                                          */
6620 /* Given a type of network address update (atype) to perform, copy          */
6621 /* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
6622 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
6623 /* which case the operation fails.  For all values of atype other than      */
6624 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
6625 /* value.                                                                   */
6626 /* ------------------------------------------------------------------------ */
6627 int
6628 ipf_ifpfillv4addr(int atype, struct sockaddr_in *sin, struct sockaddr_in *mask,
6629 	struct in_addr *inp, struct in_addr *inpmask)
6630 {
6631 	if (inpmask != NULL && atype != FRI_NETMASKED)
6632 		inpmask->s_addr = 0xffffffff;
6633 
6634 	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6635 		if (atype == FRI_NETMASKED) {
6636 			if (inpmask == NULL)
6637 				return (-1);
6638 			inpmask->s_addr = mask->sin_addr.s_addr;
6639 		}
6640 		inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr;
6641 	} else {
6642 		inp->s_addr = sin->sin_addr.s_addr;
6643 	}
6644 	return (0);
6645 }
6646 
6647 
6648 #ifdef	USE_INET6
6649 /* ------------------------------------------------------------------------ */
6650 /* Function:    ipf_ifpfillv6addr                                           */
6651 /* Returns:     int     - 0 = address update, -1 = address not updated      */
6652 /* Parameters:  atype(I)   - type of network address update to perform      */
6653 /*              sin(I)     - pointer to source of address information       */
6654 /*              mask(I)    - pointer to source of netmask information       */
6655 /*              inp(I)     - pointer to destination address store           */
6656 /*              inpmask(I) - pointer to destination netmask store           */
6657 /*                                                                          */
6658 /* Given a type of network address update (atype) to perform, copy          */
6659 /* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
6660 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
6661 /* which case the operation fails.  For all values of atype other than      */
6662 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
6663 /* value.                                                                   */
6664 /* ------------------------------------------------------------------------ */
6665 int
6666 ipf_ifpfillv6addr(int atype, struct sockaddr_in6 *sin,
6667 	struct sockaddr_in6 *mask, i6addr_t *inp, i6addr_t *inpmask)
6668 {
6669 	i6addr_t *src, *and;
6670 
6671 	src = (i6addr_t *)&sin->sin6_addr;
6672 	and = (i6addr_t *)&mask->sin6_addr;
6673 
6674 	if (inpmask != NULL && atype != FRI_NETMASKED) {
6675 		inpmask->i6[0] = 0xffffffff;
6676 		inpmask->i6[1] = 0xffffffff;
6677 		inpmask->i6[2] = 0xffffffff;
6678 		inpmask->i6[3] = 0xffffffff;
6679 	}
6680 
6681 	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6682 		if (atype == FRI_NETMASKED) {
6683 			if (inpmask == NULL)
6684 				return (-1);
6685 			inpmask->i6[0] = and->i6[0];
6686 			inpmask->i6[1] = and->i6[1];
6687 			inpmask->i6[2] = and->i6[2];
6688 			inpmask->i6[3] = and->i6[3];
6689 		}
6690 
6691 		inp->i6[0] = src->i6[0] & and->i6[0];
6692 		inp->i6[1] = src->i6[1] & and->i6[1];
6693 		inp->i6[2] = src->i6[2] & and->i6[2];
6694 		inp->i6[3] = src->i6[3] & and->i6[3];
6695 	} else {
6696 		inp->i6[0] = src->i6[0];
6697 		inp->i6[1] = src->i6[1];
6698 		inp->i6[2] = src->i6[2];
6699 		inp->i6[3] = src->i6[3];
6700 	}
6701 	return (0);
6702 }
6703 #endif
6704 
6705 
6706 /* ------------------------------------------------------------------------ */
6707 /* Function:    ipf_matchtag                                                */
6708 /* Returns:     0 == mismatch, 1 == match.                                  */
6709 /* Parameters:  tag1(I) - pointer to first tag to compare                   */
6710 /*              tag2(I) - pointer to second tag to compare                  */
6711 /*                                                                          */
6712 /* Returns true (non-zero) or false(0) if the two tag structures can be     */
6713 /* considered to be a match or not match, respectively.  The tag is 16      */
6714 /* bytes long (16 characters) but that is overlayed with 4 32bit ints so    */
6715 /* compare the ints instead, for speed. tag1 is the master of the           */
6716 /* comparison.  This function should only be called with both tag1 and tag2 */
6717 /* as non-NULL pointers.                                                    */
6718 /* ------------------------------------------------------------------------ */
6719 int
6720 ipf_matchtag(ipftag_t *tag1, ipftag_t *tag2)
6721 {
6722 	if (tag1 == tag2)
6723 		return (1);
6724 
6725 	if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0))
6726 		return (1);
6727 
6728 	if ((tag1->ipt_num[0] == tag2->ipt_num[0]) &&
6729 	    (tag1->ipt_num[1] == tag2->ipt_num[1]) &&
6730 	    (tag1->ipt_num[2] == tag2->ipt_num[2]) &&
6731 	    (tag1->ipt_num[3] == tag2->ipt_num[3]))
6732 		return (1);
6733 	return (0);
6734 }
6735 
6736 
6737 /* ------------------------------------------------------------------------ */
6738 /* Function:    ipf_coalesce                                                */
6739 /* Returns:     1 == success, -1 == failure, 0 == no change                 */
6740 /* Parameters:  fin(I) - pointer to packet information                      */
6741 /*                                                                          */
6742 /* Attempt to get all of the packet data into a single, contiguous buffer.  */
6743 /* If this call returns a failure then the buffers have also been freed.    */
6744 /* ------------------------------------------------------------------------ */
6745 int
6746 ipf_coalesce(fr_info_t *fin)
6747 {
6748 
6749 	if ((fin->fin_flx & FI_COALESCE) != 0)
6750 		return (1);
6751 
6752 	/*
6753 	 * If the mbuf pointers indicate that there is no mbuf to work with,
6754 	* return but do not indicate success or failure.
6755 	 */
6756 	if (fin->fin_m == NULL || fin->fin_mp == NULL)
6757 		return (0);
6758 
6759 #if defined(_KERNEL)
6760 	if (ipf_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) {
6761 		ipf_main_softc_t *softc = fin->fin_main_soft;
6762 
6763 		DT1(frb_coalesce, fr_info_t *, fin);
6764 		LBUMP(ipf_stats[fin->fin_out].fr_badcoalesces);
6765 # if SOLARIS
6766 		FREE_MB_T(*fin->fin_mp);
6767 # endif
6768 		fin->fin_reason = FRB_COALESCE;
6769 		*fin->fin_mp = NULL;
6770 		fin->fin_m = NULL;
6771 		return (-1);
6772 	}
6773 #else
6774 	fin = fin;	/* LINT */
6775 #endif
6776 	return (1);
6777 }
6778 
6779 
6780 /*
6781  * The following table lists all of the tunable variables that can be
6782  * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXt.  The format of each row
6783  * in the table below is as follows:
6784  *
6785  * pointer to value, name of value, minimum, maximum, size of the value's
6786  *     container, value attribute flags
6787  *
6788  * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED
6789  * means the value can only be written to when IPFilter is loaded but disabled.
6790  * The obvious implication is if neither of these are set then the value can be
6791  * changed at any time without harm.
6792  */
6793 
6794 
6795 /* ------------------------------------------------------------------------ */
6796 /* Function:    ipf_tune_findbycookie                                       */
6797 /* Returns:     NULL = search failed, else pointer to tune struct           */
6798 /* Parameters:  cookie(I) - cookie value to search for amongst tuneables    */
6799 /*              next(O)   - pointer to place to store the cookie for the    */
6800 /*                          "next" tuneable, if it is desired.              */
6801 /*                                                                          */
6802 /* This function is used to walk through all of the existing tunables with  */
6803 /* successive calls.  It searches the known tunables for the one which has  */
6804 /* a matching value for "cookie" - ie its address.  When returning a match, */
6805 /* the next one to be found may be returned inside next.                    */
6806 /* ------------------------------------------------------------------------ */
6807 static ipftuneable_t *
6808 ipf_tune_findbycookie(ipftuneable_t **ptop, void *cookie, void **next)
6809 {
6810 	ipftuneable_t *ta, **tap;
6811 
6812 	for (ta = *ptop; ta->ipft_name != NULL; ta++)
6813 		if (ta == cookie) {
6814 			if (next != NULL) {
6815 				/*
6816 				 * If the next entry in the array has a name
6817 				* present, then return a pointer to it for
6818 				* where to go next, else return a pointer to
6819 				 * the dynaminc list as a key to search there
6820 				 * next.  This facilitates a weak linking of
6821 				 * the two "lists" together.
6822 				 */
6823 				if ((ta + 1)->ipft_name != NULL)
6824 					*next = ta + 1;
6825 				else
6826 					*next = ptop;
6827 			}
6828 			return (ta);
6829 		}
6830 
6831 	for (tap = ptop; (ta = *tap) != NULL; tap = &ta->ipft_next)
6832 		if (tap == cookie) {
6833 			if (next != NULL)
6834 				*next = &ta->ipft_next;
6835 			return (ta);
6836 		}
6837 
6838 	if (next != NULL)
6839 		*next = NULL;
6840 	return (NULL);
6841 }
6842 
6843 
6844 /* ------------------------------------------------------------------------ */
6845 /* Function:    ipf_tune_findbyname                                         */
6846 /* Returns:     NULL = search failed, else pointer to tune struct           */
6847 /* Parameters:  name(I) - name of the tuneable entry to find.               */
6848 /*                                                                          */
6849 /* Search the static array of tuneables and the list of dynamic tuneables   */
6850 /* for an entry with a matching name.  If we can find one, return a pointer */
6851 /* to the matching structure.                                               */
6852 /* ------------------------------------------------------------------------ */
6853 static ipftuneable_t *
6854 ipf_tune_findbyname(ipftuneable_t *top, const char *name)
6855 {
6856 	ipftuneable_t *ta;
6857 
6858 	for (ta = top; ta != NULL; ta = ta->ipft_next)
6859 		if (!strcmp(ta->ipft_name, name)) {
6860 			return (ta);
6861 		}
6862 
6863 	return (NULL);
6864 }
6865 
6866 
6867 /* ------------------------------------------------------------------------ */
6868 /* Function:    ipf_tune_add_array                                          */
6869 /* Returns:     int - 0 == success, else failure                            */
6870 /* Parameters:  newtune - pointer to new tune array to add to tuneables     */
6871 /*                                                                          */
6872 /* Appends tune structures from the array passed in (newtune) to the end of */
6873 /* the current list of "dynamic" tuneable parameters.                       */
6874 /* If any entry to be added is already present (by name) then the operation */
6875 /* is aborted - entries that have been added are removed before returning.  */
6876 /* An entry with no name (NULL) is used as the indication that the end of   */
6877 /* the array has been reached.                                              */
6878 /* ------------------------------------------------------------------------ */
6879 int
6880 ipf_tune_add_array(ipf_main_softc_t *softc, ipftuneable_t *newtune)
6881 {
6882 	ipftuneable_t *nt, *dt;
6883 	int error = 0;
6884 
6885 	for (nt = newtune; nt->ipft_name != NULL; nt++) {
6886 		error = ipf_tune_add(softc, nt);
6887 		if (error != 0) {
6888 			for (dt = newtune; dt != nt; dt++) {
6889 				(void) ipf_tune_del(softc, dt);
6890 			}
6891 		}
6892 	}
6893 
6894 	return (error);
6895 }
6896 
6897 
6898 /* ------------------------------------------------------------------------ */
6899 /* Function:    ipf_tune_array_link                                         */
6900 /* Returns:     0 == success, -1 == failure                                 */
6901 /* Parameters:  softc(I) - soft context pointerto work with                 */
6902 /*              array(I) - pointer to an array of tuneables                 */
6903 /*                                                                          */
6904 /* Given an array of tunables (array), append them to the current list of   */
6905 /* tuneables for this context (softc->ipf_tuners.) To properly prepare the  */
6906 /* the array for being appended to the list, initialise all of the next     */
6907 /* pointers so we don't need to walk parts of it with ++ and others with    */
6908 /* next. The array is expected to have an entry with a NULL name as the     */
6909 /* terminator. Trying to add an array with no non-NULL names will return as */
6910 /* a failure.                                                               */
6911 /* ------------------------------------------------------------------------ */
6912 int
6913 ipf_tune_array_link(ipf_main_softc_t *softc, ipftuneable_t *array)
6914 {
6915 	ipftuneable_t *t, **p;
6916 
6917 	t = array;
6918 	if (t->ipft_name == NULL)
6919 		return (-1);
6920 
6921 	for (; t[1].ipft_name != NULL; t++)
6922 		t[0].ipft_next = &t[1];
6923 	t->ipft_next = NULL;
6924 
6925 	/*
6926 	 * Since a pointer to the last entry isn't kept, we need to find it
6927 	 * each time we want to add new variables to the list.
6928 	 */
6929 	for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
6930 		if (t->ipft_name == NULL)
6931 			break;
6932 	*p = array;
6933 
6934 	return (0);
6935 }
6936 
6937 
6938 /* ------------------------------------------------------------------------ */
6939 /* Function:    ipf_tune_array_unlink                                       */
6940 /* Returns:     0 == success, -1 == failure                                 */
6941 /* Parameters:  softc(I) - soft context pointerto work with                 */
6942 /*              array(I) - pointer to an array of tuneables                 */
6943 /*                                                                          */
6944 /* ------------------------------------------------------------------------ */
6945 int
6946 ipf_tune_array_unlink(ipf_main_softc_t *softc, ipftuneable_t *array)
6947 {
6948 	ipftuneable_t *t, **p;
6949 
6950 	for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
6951 		if (t == array)
6952 			break;
6953 	if (t == NULL)
6954 		return (-1);
6955 
6956 	for (; t[1].ipft_name != NULL; t++)
6957 		;
6958 
6959 	*p = t->ipft_next;
6960 
6961 	return (0);
6962 }
6963 
6964 
6965 /* ------------------------------------------------------------------------ */
6966 /* Function:   ipf_tune_array_copy                                          */
6967 /* Returns:    NULL = failure, else pointer to new array                    */
6968 /* Parameters: base(I)     - pointer to structure base                      */
6969 /*             size(I)     - size of the array at template                  */
6970 /*             template(I) - original array to copy                         */
6971 /*                                                                          */
6972 /* Allocate memory for a new set of tuneable values and copy everything     */
6973 /* from template into the new region of memory.  The new region is full of  */
6974 /* uninitialised pointers (ipft_next) so set them up.  Now, ipftp_offset... */
6975 /*                                                                          */
6976 /* NOTE: the following assumes that sizeof(long) == sizeof(void *)          */
6977 /* In the array template, ipftp_offset is the offset (in bytes) of the      */
6978 /* location of the tuneable value inside the structure pointed to by base.  */
6979 /* As ipftp_offset is a union over the pointers to the tuneable values, if  */
6980 /* we add base to the copy's ipftp_offset, copy ends up with a pointer in   */
6981 /* ipftp_void that points to the stored value.                              */
6982 /* ------------------------------------------------------------------------ */
6983 ipftuneable_t *
6984 ipf_tune_array_copy(void *base, size_t size, ipftuneable_t *template)
6985 {
6986 	ipftuneable_t *copy;
6987 	int i;
6988 
6989 
6990 	KMALLOCS(copy, ipftuneable_t *, size);
6991 	if (copy == NULL) {
6992 		return (NULL);
6993 	}
6994 	bcopy(template, copy, size);
6995 
6996 	for (i = 0; copy[i].ipft_name; i++) {
6997 		copy[i].ipft_una.ipftp_offset += (u_long)base;
6998 		copy[i].ipft_next = copy + i + 1;
6999 	}
7000 
7001 	return (copy);
7002 }
7003 
7004 
7005 /* ------------------------------------------------------------------------ */
7006 /* Function:    ipf_tune_add                                                */
7007 /* Returns:     int - 0 == success, else failure                            */
7008 /* Parameters:  newtune - pointer to new tune entry to add to tuneables     */
7009 /*                                                                          */
7010 /* Appends tune structures from the array passed in (newtune) to the end of */
7011 /* the current list of "dynamic" tuneable parameters.  Once added, the      */
7012 /* owner of the object is not expected to ever change "ipft_next".          */
7013 /* ------------------------------------------------------------------------ */
7014 int
7015 ipf_tune_add(ipf_main_softc_t *softc, ipftuneable_t *newtune)
7016 {
7017 	ipftuneable_t *ta, **tap;
7018 
7019 	ta = ipf_tune_findbyname(softc->ipf_tuners, newtune->ipft_name);
7020 	if (ta != NULL) {
7021 		IPFERROR(74);
7022 		return (EEXIST);
7023 	}
7024 
7025 	for (tap = &softc->ipf_tuners; *tap != NULL; tap = &(*tap)->ipft_next)
7026 		;
7027 
7028 	newtune->ipft_next = NULL;
7029 	*tap = newtune;
7030 	return (0);
7031 }
7032 
7033 
7034 /* ------------------------------------------------------------------------ */
7035 /* Function:    ipf_tune_del                                                */
7036 /* Returns:     int - 0 == success, else failure                            */
7037 /* Parameters:  oldtune - pointer to tune entry to remove from the list of  */
7038 /*                        current dynamic tuneables                         */
7039 /*                                                                          */
7040 /* Search for the tune structure, by pointer, in the list of those that are */
7041 /* dynamically added at run time.  If found, adjust the list so that this   */
7042 /* structure is no longer part of it.                                       */
7043 /* ------------------------------------------------------------------------ */
7044 int
7045 ipf_tune_del(ipf_main_softc_t *softc, ipftuneable_t *oldtune)
7046 {
7047 	ipftuneable_t *ta, **tap;
7048 	int error = 0;
7049 
7050 	for (tap = &softc->ipf_tuners; (ta = *tap) != NULL;
7051 	     tap = &ta->ipft_next) {
7052 		if (ta == oldtune) {
7053 			*tap = oldtune->ipft_next;
7054 			oldtune->ipft_next = NULL;
7055 			break;
7056 		}
7057 	}
7058 
7059 	if (ta == NULL) {
7060 		error = ESRCH;
7061 		IPFERROR(75);
7062 	}
7063 	return (error);
7064 }
7065 
7066 
7067 /* ------------------------------------------------------------------------ */
7068 /* Function:    ipf_tune_del_array                                          */
7069 /* Returns:     int - 0 == success, else failure                            */
7070 /* Parameters:  oldtune - pointer to tuneables array                        */
7071 /*                                                                          */
7072 /* Remove each tuneable entry in the array from the list of "dynamic"       */
7073 /* tunables.  If one entry should fail to be found, an error will be        */
7074 /* returned and no further ones removed.                                    */
7075 /* An entry with a NULL name is used as the indicator of the last entry in  */
7076 /* the array.                                                               */
7077 /* ------------------------------------------------------------------------ */
7078 int
7079 ipf_tune_del_array(ipf_main_softc_t *softc, ipftuneable_t *oldtune)
7080 {
7081 	ipftuneable_t *ot;
7082 	int error = 0;
7083 
7084 	for (ot = oldtune; ot->ipft_name != NULL; ot++) {
7085 		error = ipf_tune_del(softc, ot);
7086 		if (error != 0)
7087 			break;
7088 	}
7089 
7090 	return (error);
7091 
7092 }
7093 
7094 
7095 /* ------------------------------------------------------------------------ */
7096 /* Function:    ipf_tune                                                    */
7097 /* Returns:     int - 0 == success, else failure                            */
7098 /* Parameters:  cmd(I)  - ioctl command number                              */
7099 /*              data(I) - pointer to ioctl data structure                   */
7100 /*                                                                          */
7101 /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET.  These  */
7102 /* three ioctls provide the means to access and control global variables    */
7103 /* within IPFilter, allowing (for example) timeouts and table sizes to be   */
7104 /* changed without rebooting, reloading or recompiling.  The initialisation */
7105 /* and 'destruction' routines of the various components of ipfilter are all */
7106 /* each responsible for handling their own values being too big.            */
7107 /* ------------------------------------------------------------------------ */
7108 int
7109 ipf_ipftune(ipf_main_softc_t *softc, ioctlcmd_t cmd, void *data)
7110 {
7111 	ipftuneable_t *ta;
7112 	ipftune_t tu;
7113 	void *cookie;
7114 	int error;
7115 
7116 	error = ipf_inobj(softc, data, NULL, &tu, IPFOBJ_TUNEABLE);
7117 	if (error != 0)
7118 		return (error);
7119 
7120 	tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0';
7121 	cookie = tu.ipft_cookie;
7122 	ta = NULL;
7123 
7124 	switch (cmd)
7125 	{
7126 	case SIOCIPFGETNEXT :
7127 		/*
7128 		 * If cookie is non-NULL, assume it to be a pointer to the last
7129 		* entry we looked at, so find it (if possible) and return a
7130 		 * pointer to the next one after it.  The last entry in the
7131 		 * the table is a NULL entry, so when we get to it, set cookie
7132 		* to NULL and return that, indicating end of list, erstwhile
7133 		 * if we come in with cookie set to NULL, we are starting anew
7134 		 * at the front of the list.
7135 		 */
7136 		if (cookie != NULL) {
7137 			ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7138 						   cookie, &tu.ipft_cookie);
7139 		} else {
7140 			ta = softc->ipf_tuners;
7141 			tu.ipft_cookie = ta + 1;
7142 		}
7143 		if (ta != NULL) {
7144 			/*
7145 			 * Entry found, but does the data pointed to by that
7146 			 * row fit in what we can return?
7147 			 */
7148 			if (ta->ipft_sz > sizeof(tu.ipft_un)) {
7149 				IPFERROR(76);
7150 				return (EINVAL);
7151 			}
7152 
7153 			tu.ipft_vlong = 0;
7154 			if (ta->ipft_sz == sizeof(u_long))
7155 				tu.ipft_vlong = *ta->ipft_plong;
7156 			else if (ta->ipft_sz == sizeof(u_int))
7157 				tu.ipft_vint = *ta->ipft_pint;
7158 			else if (ta->ipft_sz == sizeof(u_short))
7159 				tu.ipft_vshort = *ta->ipft_pshort;
7160 			else if (ta->ipft_sz == sizeof(u_char))
7161 				tu.ipft_vchar = *ta->ipft_pchar;
7162 
7163 			tu.ipft_sz = ta->ipft_sz;
7164 			tu.ipft_min = ta->ipft_min;
7165 			tu.ipft_max = ta->ipft_max;
7166 			tu.ipft_flags = ta->ipft_flags;
7167 			bcopy(ta->ipft_name, tu.ipft_name,
7168 			      MIN(sizeof(tu.ipft_name),
7169 				  strlen(ta->ipft_name) + 1));
7170 		}
7171 		error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7172 		break;
7173 
7174 	case SIOCIPFGET :
7175 	case SIOCIPFSET :
7176 		/*
7177 		 * Search by name or by cookie value for a particular entry
7178 		 * in the tuning parameter table.
7179 		 */
7180 		IPFERROR(77);
7181 		error = ESRCH;
7182 		if (cookie != NULL) {
7183 			ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7184 						   cookie, NULL);
7185 			if (ta != NULL)
7186 				error = 0;
7187 		} else if (tu.ipft_name[0] != '\0') {
7188 			ta = ipf_tune_findbyname(softc->ipf_tuners,
7189 						 tu.ipft_name);
7190 			if (ta != NULL)
7191 				error = 0;
7192 		}
7193 		if (error != 0)
7194 			break;
7195 
7196 		if (cmd == (ioctlcmd_t)SIOCIPFGET) {
7197 			/*
7198 			 * Fetch the tuning parameters for a particular value
7199 			 */
7200 			tu.ipft_vlong = 0;
7201 			if (ta->ipft_sz == sizeof(u_long))
7202 				tu.ipft_vlong = *ta->ipft_plong;
7203 			else if (ta->ipft_sz == sizeof(u_int))
7204 				tu.ipft_vint = *ta->ipft_pint;
7205 			else if (ta->ipft_sz == sizeof(u_short))
7206 				tu.ipft_vshort = *ta->ipft_pshort;
7207 			else if (ta->ipft_sz == sizeof(u_char))
7208 				tu.ipft_vchar = *ta->ipft_pchar;
7209 			tu.ipft_cookie = ta;
7210 			tu.ipft_sz = ta->ipft_sz;
7211 			tu.ipft_min = ta->ipft_min;
7212 			tu.ipft_max = ta->ipft_max;
7213 			tu.ipft_flags = ta->ipft_flags;
7214 			error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7215 
7216 		} else if (cmd == (ioctlcmd_t)SIOCIPFSET) {
7217 			/*
7218 			 * Set an internal parameter.  The hard part here is
7219 			 * getting the new value safely and correctly out of
7220 			 * the kernel (given we only know its size, not type.)
7221 			 */
7222 			u_long in;
7223 
7224 			if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) &&
7225 			    (softc->ipf_running > 0)) {
7226 				IPFERROR(78);
7227 				error = EBUSY;
7228 				break;
7229 			}
7230 
7231 			in = tu.ipft_vlong;
7232 			if (in < ta->ipft_min || in > ta->ipft_max) {
7233 				IPFERROR(79);
7234 				error = EINVAL;
7235 				break;
7236 			}
7237 
7238 			if (ta->ipft_func != NULL) {
7239 				SPL_INT(s);
7240 
7241 				SPL_NET(s);
7242 				error = (*ta->ipft_func)(softc, ta,
7243 							 &tu.ipft_un);
7244 				SPL_X(s);
7245 
7246 			} else if (ta->ipft_sz == sizeof(u_long)) {
7247 				tu.ipft_vlong = *ta->ipft_plong;
7248 				*ta->ipft_plong = in;
7249 
7250 			} else if (ta->ipft_sz == sizeof(u_int)) {
7251 				tu.ipft_vint = *ta->ipft_pint;
7252 				*ta->ipft_pint = (u_int)(in & 0xffffffff);
7253 
7254 			} else if (ta->ipft_sz == sizeof(u_short)) {
7255 				tu.ipft_vshort = *ta->ipft_pshort;
7256 				*ta->ipft_pshort = (u_short)(in & 0xffff);
7257 
7258 			} else if (ta->ipft_sz == sizeof(u_char)) {
7259 				tu.ipft_vchar = *ta->ipft_pchar;
7260 				*ta->ipft_pchar = (u_char)(in & 0xff);
7261 			}
7262 			error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7263 		}
7264 		break;
7265 
7266 	default :
7267 		IPFERROR(80);
7268 		error = EINVAL;
7269 		break;
7270 	}
7271 
7272 	return (error);
7273 }
7274 
7275 
7276 /* ------------------------------------------------------------------------ */
7277 /* Function:    ipf_zerostats                                               */
7278 /* Returns:     int - 0 = success, else failure                             */
7279 /* Parameters:  data(O) - pointer to pointer for copying data back to       */
7280 /*                                                                          */
7281 /* Copies the current statistics out to userspace and then zero's the       */
7282 /* current ones in the kernel. The lock is only held across the bzero() as  */
7283 /* the copyout may result in paging (ie network activity.)                  */
7284 /* ------------------------------------------------------------------------ */
7285 int
7286 ipf_zerostats(ipf_main_softc_t *softc, caddr_t data)
7287 {
7288 	friostat_t fio;
7289 	ipfobj_t obj;
7290 	int error;
7291 
7292 	error = ipf_inobj(softc, data, &obj, &fio, IPFOBJ_IPFSTAT);
7293 	if (error != 0)
7294 		return (error);
7295 	ipf_getstat(softc, &fio, obj.ipfo_rev);
7296 	error = ipf_outobj(softc, data, &fio, IPFOBJ_IPFSTAT);
7297 	if (error != 0)
7298 		return (error);
7299 
7300 	WRITE_ENTER(&softc->ipf_mutex);
7301 	bzero(&softc->ipf_stats, sizeof(softc->ipf_stats));
7302 	RWLOCK_EXIT(&softc->ipf_mutex);
7303 
7304 	return (0);
7305 }
7306 
7307 
7308 /* ------------------------------------------------------------------------ */
7309 /* Function:    ipf_resolvedest                                             */
7310 /* Returns:     Nil                                                         */
7311 /* Parameters:  softc(I) - pointer to soft context main structure           */
7312 /*              base(I)  - where strings are stored                         */
7313 /*              fdp(IO)  - pointer to destination information to resolve    */
7314 /*              v(I)     - IP protocol version to match                     */
7315 /*                                                                          */
7316 /* Looks up an interface name in the frdest structure pointed to by fdp and */
7317 /* if a matching name can be found for the particular IP protocol version   */
7318 /* then store the interface pointer in the frdest struct.  If no match is   */
7319 /* found, then set the interface pointer to be -1 as NULL is considered to  */
7320 /* indicate there is no information at all in the structure.                */
7321 /* ------------------------------------------------------------------------ */
7322 int
7323 ipf_resolvedest(ipf_main_softc_t *softc, char *base, frdest_t *fdp, int v)
7324 {
7325 	int errval = 0;
7326 	void *ifp;
7327 
7328 	ifp = NULL;
7329 
7330 	if (fdp->fd_name != -1) {
7331 		if (fdp->fd_type == FRD_DSTLIST) {
7332 			ifp = ipf_lookup_res_name(softc, IPL_LOGIPF,
7333 						  IPLT_DSTLIST,
7334 						  base + fdp->fd_name,
7335 						  NULL);
7336 			if (ifp == NULL) {
7337 				IPFERROR(144);
7338 				errval = ESRCH;
7339 			}
7340 		} else {
7341 			ifp = GETIFP(base + fdp->fd_name, v);
7342 			if (ifp == NULL)
7343 				ifp = (void *)-1;
7344 		}
7345 	}
7346 	fdp->fd_ptr = ifp;
7347 
7348 	return (errval);
7349 }
7350 
7351 
7352 /* ------------------------------------------------------------------------ */
7353 /* Function:    ipf_resolvenic                                              */
7354 /* Returns:     void* - NULL = wildcard name, -1 = failed to find NIC, else */
7355 /*                      pointer to interface structure for NIC              */
7356 /* Parameters:  softc(I)- pointer to soft context main structure            */
7357 /*              name(I) - complete interface name                           */
7358 /*              v(I)    - IP protocol version                               */
7359 /*                                                                          */
7360 /* Look for a network interface structure that firstly has a matching name  */
7361 /* to that passed in and that is also being used for that IP protocol       */
7362 /* version (necessary on some platforms where there are separate listings   */
7363 /* for both IPv4 and IPv6 on the same physical NIC.                         */
7364 /* ------------------------------------------------------------------------ */
7365 void *
7366 ipf_resolvenic(ipf_main_softc_t *softc __unused, char *name, int v)
7367 {
7368 	void *nic;
7369 
7370 	if (name[0] == '\0')
7371 		return (NULL);
7372 
7373 	if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) {
7374 		return (NULL);
7375 	}
7376 
7377 	nic = GETIFP(name, v);
7378 	if (nic == NULL)
7379 		nic = (void *)-1;
7380 	return (nic);
7381 }
7382 
7383 
7384 /* ------------------------------------------------------------------------ */
7385 /* Function:    ipf_token_expire                                            */
7386 /* Returns:     None.                                                       */
7387 /* Parameters:  softc(I) - pointer to soft context main structure           */
7388 /*                                                                          */
7389 /* This function is run every ipf tick to see if there are any tokens that  */
7390 /* have been held for too long and need to be freed up.                     */
7391 /* ------------------------------------------------------------------------ */
7392 void
7393 ipf_token_expire(ipf_main_softc_t *softc)
7394 {
7395 	ipftoken_t *it;
7396 
7397 	WRITE_ENTER(&softc->ipf_tokens);
7398 	while ((it = softc->ipf_token_head) != NULL) {
7399 		if (it->ipt_die > softc->ipf_ticks)
7400 			break;
7401 
7402 		ipf_token_deref(softc, it);
7403 	}
7404 	RWLOCK_EXIT(&softc->ipf_tokens);
7405 }
7406 
7407 
7408 /* ------------------------------------------------------------------------ */
7409 /* Function:    ipf_token_flush                                             */
7410 /* Returns:     None.                                                       */
7411 /* Parameters:  softc(I) - pointer to soft context main structure           */
7412 /*                                                                          */
7413 /* Loop through all of the existing tokens and call deref to see if they    */
7414 /* can be freed. Normally a function like this might just loop on           */
7415 /* ipf_token_head but there is a chance that a token might have a ref count */
7416 /* of greater than one and in that case the reference would drop twice      */
7417 /* by code that is only entitled to drop it once.                           */
7418 /* ------------------------------------------------------------------------ */
7419 static void
7420 ipf_token_flush(ipf_main_softc_t *softc)
7421 {
7422 	ipftoken_t *it, *next;
7423 
7424 	WRITE_ENTER(&softc->ipf_tokens);
7425 	for (it = softc->ipf_token_head; it != NULL; it = next) {
7426 		next = it->ipt_next;
7427 		(void) ipf_token_deref(softc, it);
7428 	}
7429 	RWLOCK_EXIT(&softc->ipf_tokens);
7430 }
7431 
7432 
7433 /* ------------------------------------------------------------------------ */
7434 /* Function:    ipf_token_del                                               */
7435 /* Returns:     int     - 0 = success, else error                           */
7436 /* Parameters:  softc(I)- pointer to soft context main structure            */
7437 /*              type(I) - the token type to match                           */
7438 /*              uid(I)  - uid owning the token                              */
7439 /*              ptr(I)  - context pointer for the token                     */
7440 /*                                                                          */
7441 /* This function looks for a token in the current list that matches up      */
7442 /* the fields (type, uid, ptr).  If none is found, ESRCH is returned, else  */
7443 /* call ipf_token_dewref() to remove it from the list. In the event that    */
7444 /* the token has a reference held elsewhere, setting ipt_complete to 2      */
7445 /* enables debugging to distinguish between the two paths that ultimately   */
7446 /* lead to a token to be deleted.                                           */
7447 /* ------------------------------------------------------------------------ */
7448 int
7449 ipf_token_del(ipf_main_softc_t *softc, int type, int uid, void *ptr)
7450 {
7451 	ipftoken_t *it;
7452 	int error;
7453 
7454 	IPFERROR(82);
7455 	error = ESRCH;
7456 
7457 	WRITE_ENTER(&softc->ipf_tokens);
7458 	for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7459 		if (ptr == it->ipt_ctx && type == it->ipt_type &&
7460 		    uid == it->ipt_uid) {
7461 			it->ipt_complete = 2;
7462 			ipf_token_deref(softc, it);
7463 			error = 0;
7464 			break;
7465 		}
7466 	}
7467 	RWLOCK_EXIT(&softc->ipf_tokens);
7468 
7469 	return (error);
7470 }
7471 
7472 
7473 /* ------------------------------------------------------------------------ */
7474 /* Function:    ipf_token_mark_complete                                     */
7475 /* Returns:     None.                                                       */
7476 /* Parameters:  token(I) - pointer to token structure                       */
7477 /*                                                                          */
7478 /* Mark a token as being ineligable for being found with ipf_token_find.    */
7479 /* ------------------------------------------------------------------------ */
7480 void
7481 ipf_token_mark_complete(ipftoken_t *token)
7482 {
7483 	if (token->ipt_complete == 0)
7484 		token->ipt_complete = 1;
7485 }
7486 
7487 
7488 /* ------------------------------------------------------------------------ */
7489 /* Function:    ipf_token_find                                               */
7490 /* Returns:     ipftoken_t * - NULL if no memory, else pointer to token     */
7491 /* Parameters:  softc(I)- pointer to soft context main structure            */
7492 /*              type(I) - the token type to match                           */
7493 /*              uid(I)  - uid owning the token                              */
7494 /*              ptr(I)  - context pointer for the token                     */
7495 /*                                                                          */
7496 /* This function looks for a live token in the list of current tokens that  */
7497 /* matches the tuple (type, uid, ptr).  If one cannot be found then one is  */
7498 /* allocated.  If one is found then it is moved to the top of the list of   */
7499 /* currently active tokens.                                                 */
7500 /* ------------------------------------------------------------------------ */
7501 ipftoken_t *
7502 ipf_token_find(ipf_main_softc_t *softc, int type, int uid, void *ptr)
7503 {
7504 	ipftoken_t *it, *new;
7505 
7506 	KMALLOC(new, ipftoken_t *);
7507 	if (new != NULL)
7508 		bzero((char *)new, sizeof(*new));
7509 
7510 	WRITE_ENTER(&softc->ipf_tokens);
7511 	for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7512 		if ((ptr == it->ipt_ctx) && (type == it->ipt_type) &&
7513 		    (uid == it->ipt_uid) && (it->ipt_complete < 2))
7514 			break;
7515 	}
7516 
7517 	if (it == NULL) {
7518 		it = new;
7519 		new = NULL;
7520 		if (it == NULL) {
7521 			RWLOCK_EXIT(&softc->ipf_tokens);
7522 			return (NULL);
7523 		}
7524 		it->ipt_ctx = ptr;
7525 		it->ipt_uid = uid;
7526 		it->ipt_type = type;
7527 		it->ipt_ref = 1;
7528 	} else {
7529 		if (new != NULL) {
7530 			KFREE(new);
7531 			new = NULL;
7532 		}
7533 
7534 		if (it->ipt_complete > 0)
7535 			it = NULL;
7536 		else
7537 			ipf_token_unlink(softc, it);
7538 	}
7539 
7540 	if (it != NULL) {
7541 		it->ipt_pnext = softc->ipf_token_tail;
7542 		*softc->ipf_token_tail = it;
7543 		softc->ipf_token_tail = &it->ipt_next;
7544 		it->ipt_next = NULL;
7545 		it->ipt_ref++;
7546 
7547 		it->ipt_die = softc->ipf_ticks + 20;
7548 	}
7549 
7550 	RWLOCK_EXIT(&softc->ipf_tokens);
7551 
7552 	return (it);
7553 }
7554 
7555 
7556 /* ------------------------------------------------------------------------ */
7557 /* Function:    ipf_token_unlink                                            */
7558 /* Returns:     None.                                                       */
7559 /* Parameters:  softc(I) - pointer to soft context main structure           */
7560 /*              token(I) - pointer to token structure                       */
7561 /* Write Locks: ipf_tokens                                                  */
7562 /*                                                                          */
7563 /* This function unlinks a token structure from the linked list of tokens   */
7564 /* that "own" it.  The head pointer never needs to be explicitly adjusted   */
7565 /* but the tail does due to the linked list implementation.                 */
7566 /* ------------------------------------------------------------------------ */
7567 static void
7568 ipf_token_unlink(ipf_main_softc_t *softc, ipftoken_t *token)
7569 {
7570 
7571 	if (softc->ipf_token_tail == &token->ipt_next)
7572 		softc->ipf_token_tail = token->ipt_pnext;
7573 
7574 	*token->ipt_pnext = token->ipt_next;
7575 	if (token->ipt_next != NULL)
7576 		token->ipt_next->ipt_pnext = token->ipt_pnext;
7577 	token->ipt_next = NULL;
7578 	token->ipt_pnext = NULL;
7579 }
7580 
7581 
7582 /* ------------------------------------------------------------------------ */
7583 /* Function:    ipf_token_deref                                             */
7584 /* Returns:     int      - 0 == token freed, else reference count           */
7585 /* Parameters:  softc(I) - pointer to soft context main structure           */
7586 /*              token(I) - pointer to token structure                       */
7587 /* Write Locks: ipf_tokens                                                  */
7588 /*                                                                          */
7589 /* Drop the reference count on the token structure and if it drops to zero, */
7590 /* call the dereference function for the token type because it is then      */
7591 /* possible to free the token data structure.                               */
7592 /* ------------------------------------------------------------------------ */
7593 int
7594 ipf_token_deref(ipf_main_softc_t *softc, ipftoken_t *token)
7595 {
7596 	void *data, **datap;
7597 
7598 	ASSERT(token->ipt_ref > 0);
7599 	token->ipt_ref--;
7600 	if (token->ipt_ref > 0)
7601 		return (token->ipt_ref);
7602 
7603 	data = token->ipt_data;
7604 	datap = &data;
7605 
7606 	if ((data != NULL) && (data != (void *)-1)) {
7607 		switch (token->ipt_type)
7608 		{
7609 		case IPFGENITER_IPF :
7610 			(void) ipf_derefrule(softc, (frentry_t **)datap);
7611 			break;
7612 		case IPFGENITER_IPNAT :
7613 			WRITE_ENTER(&softc->ipf_nat);
7614 			ipf_nat_rule_deref(softc, (ipnat_t **)datap);
7615 			RWLOCK_EXIT(&softc->ipf_nat);
7616 			break;
7617 		case IPFGENITER_NAT :
7618 			ipf_nat_deref(softc, (nat_t **)datap);
7619 			break;
7620 		case IPFGENITER_STATE :
7621 			ipf_state_deref(softc, (ipstate_t **)datap);
7622 			break;
7623 		case IPFGENITER_FRAG :
7624 			ipf_frag_pkt_deref(softc, (ipfr_t **)datap);
7625 			break;
7626 		case IPFGENITER_NATFRAG :
7627 			ipf_frag_nat_deref(softc, (ipfr_t **)datap);
7628 			break;
7629 		case IPFGENITER_HOSTMAP :
7630 			WRITE_ENTER(&softc->ipf_nat);
7631 			ipf_nat_hostmapdel(softc, (hostmap_t **)datap);
7632 			RWLOCK_EXIT(&softc->ipf_nat);
7633 			break;
7634 		default :
7635 			ipf_lookup_iterderef(softc, token->ipt_type, data);
7636 			break;
7637 		}
7638 	}
7639 
7640 	ipf_token_unlink(softc, token);
7641 	KFREE(token);
7642 	return (0);
7643 }
7644 
7645 
7646 /* ------------------------------------------------------------------------ */
7647 /* Function:    ipf_nextrule                                                */
7648 /* Returns:     frentry_t * - NULL == no more rules, else pointer to next   */
7649 /* Parameters:  softc(I)    - pointer to soft context main structure        */
7650 /*              fr(I)       - pointer to filter rule                        */
7651 /*              out(I)      - 1 == out rules, 0 == input rules              */
7652 /*                                                                          */
7653 /* Starting with "fr", find the next rule to visit. This includes visiting  */
7654 /* the list of rule groups if either fr is NULL (empty list) or it is the   */
7655 /* last rule in the list. When walking rule lists, it is either input or    */
7656 /* output rules that are returned, never both.                              */
7657 /* ------------------------------------------------------------------------ */
7658 static frentry_t *
7659 ipf_nextrule(ipf_main_softc_t *softc, int active, int unit, frentry_t *fr,
7660 	int out)
7661 {
7662 	frentry_t *next;
7663 	frgroup_t *fg;
7664 
7665 	if (fr != NULL && fr->fr_group != -1) {
7666 		fg = ipf_findgroup(softc, fr->fr_names + fr->fr_group,
7667 				   unit, active, NULL);
7668 		if (fg != NULL)
7669 			fg = fg->fg_next;
7670 	} else {
7671 		fg = softc->ipf_groups[unit][active];
7672 	}
7673 
7674 	while (fg != NULL) {
7675 		next = fg->fg_start;
7676 		while (next != NULL) {
7677 			if (out) {
7678 				if (next->fr_flags & FR_OUTQUE)
7679 					return (next);
7680 			} else if (next->fr_flags & FR_INQUE) {
7681 				return (next);
7682 			}
7683 			next = next->fr_next;
7684 		}
7685 		if (next == NULL)
7686 			fg = fg->fg_next;
7687 	}
7688 
7689 	return (NULL);
7690 }
7691 
7692 /* ------------------------------------------------------------------------ */
7693 /* Function:    ipf_getnextrule                                             */
7694 /* Returns:     int - 0 = success, else error                               */
7695 /* Parameters:  softc(I)- pointer to soft context main structure            */
7696 /*              t(I)   - pointer to destination information to resolve      */
7697 /*              ptr(I) - pointer to ipfobj_t to copyin from user space      */
7698 /*                                                                          */
7699 /* This function's first job is to bring in the ipfruleiter_t structure via */
7700 /* the ipfobj_t structure to determine what should be the next rule to      */
7701 /* return. Once the ipfruleiter_t has been brought in, it then tries to     */
7702 /* find the 'next rule'.  This may include searching rule group lists or    */
7703 /* just be as simple as looking at the 'next' field in the rule structure.  */
7704 /* When we have found the rule to return, increase its reference count and  */
7705 /* if we used an existing rule to get here, decrease its reference count.   */
7706 /* ------------------------------------------------------------------------ */
7707 int
7708 ipf_getnextrule(ipf_main_softc_t *softc, ipftoken_t *t, void *ptr)
7709 {
7710 	frentry_t *fr, *next, zero;
7711 	ipfruleiter_t it;
7712 	int error, out;
7713 	frgroup_t *fg;
7714 	ipfobj_t obj;
7715 	int predict;
7716 	char *dst;
7717 	int unit;
7718 
7719 	if (t == NULL || ptr == NULL) {
7720 		IPFERROR(84);
7721 		return (EFAULT);
7722 	}
7723 
7724 	error = ipf_inobj(softc, ptr, &obj, &it, IPFOBJ_IPFITER);
7725 	if (error != 0)
7726 		return (error);
7727 
7728 	if ((it.iri_inout < 0) || (it.iri_inout > 3)) {
7729 		IPFERROR(85);
7730 		return (EINVAL);
7731 	}
7732 	if ((it.iri_active != 0) && (it.iri_active != 1)) {
7733 		IPFERROR(86);
7734 		return (EINVAL);
7735 	}
7736 	if (it.iri_nrules == 0) {
7737 		IPFERROR(87);
7738 		return (ENOSPC);
7739 	}
7740 	if (it.iri_rule == NULL) {
7741 		IPFERROR(88);
7742 		return (EFAULT);
7743 	}
7744 
7745 	fg = NULL;
7746 	fr = t->ipt_data;
7747 	if ((it.iri_inout & F_OUT) != 0)
7748 		out = 1;
7749 	else
7750 		out = 0;
7751 	if ((it.iri_inout & F_ACIN) != 0)
7752 		unit = IPL_LOGCOUNT;
7753 	else
7754 		unit = IPL_LOGIPF;
7755 
7756 	READ_ENTER(&softc->ipf_mutex);
7757 	if (fr == NULL) {
7758 		if (*it.iri_group == '\0') {
7759 			if (unit == IPL_LOGCOUNT) {
7760 				next = softc->ipf_acct[out][it.iri_active];
7761 			} else {
7762 				next = softc->ipf_rules[out][it.iri_active];
7763 			}
7764 			if (next == NULL)
7765 				next = ipf_nextrule(softc, it.iri_active,
7766 						    unit, NULL, out);
7767 		} else {
7768 			fg = ipf_findgroup(softc, it.iri_group, unit,
7769 					   it.iri_active, NULL);
7770 			if (fg != NULL)
7771 				next = fg->fg_start;
7772 			else
7773 				next = NULL;
7774 		}
7775 	} else {
7776 		next = fr->fr_next;
7777 		if (next == NULL)
7778 			next = ipf_nextrule(softc, it.iri_active, unit,
7779 					    fr, out);
7780 	}
7781 
7782 	if (next != NULL && next->fr_next != NULL)
7783 		predict = 1;
7784 	else if (ipf_nextrule(softc, it.iri_active, unit, next, out) != NULL)
7785 		predict = 1;
7786 	else
7787 		predict = 0;
7788 
7789 	if (fr != NULL)
7790 		(void) ipf_derefrule(softc, &fr);
7791 
7792 	obj.ipfo_type = IPFOBJ_FRENTRY;
7793 	dst = (char *)it.iri_rule;
7794 
7795 	if (next != NULL) {
7796 		obj.ipfo_size = next->fr_size;
7797 		MUTEX_ENTER(&next->fr_lock);
7798 		next->fr_ref++;
7799 		MUTEX_EXIT(&next->fr_lock);
7800 		t->ipt_data = next;
7801 	} else {
7802 		obj.ipfo_size = sizeof(frentry_t);
7803 		bzero(&zero, sizeof(zero));
7804 		next = &zero;
7805 		t->ipt_data = NULL;
7806 	}
7807 	it.iri_rule = predict ? next : NULL;
7808 	if (predict == 0)
7809 		ipf_token_mark_complete(t);
7810 
7811 	RWLOCK_EXIT(&softc->ipf_mutex);
7812 
7813 	obj.ipfo_ptr = dst;
7814 	error = ipf_outobjk(softc, &obj, next);
7815 	if (error == 0 && t->ipt_data != NULL) {
7816 		dst += obj.ipfo_size;
7817 		if (next->fr_data != NULL) {
7818 			ipfobj_t dobj;
7819 
7820 			if (next->fr_type == FR_T_IPFEXPR)
7821 				dobj.ipfo_type = IPFOBJ_IPFEXPR;
7822 			else
7823 				dobj.ipfo_type = IPFOBJ_FRIPF;
7824 			dobj.ipfo_size = next->fr_dsize;
7825 			dobj.ipfo_rev = obj.ipfo_rev;
7826 			dobj.ipfo_ptr = dst;
7827 			error = ipf_outobjk(softc, &dobj, next->fr_data);
7828 		}
7829 	}
7830 
7831 	if ((fr != NULL) && (next == &zero))
7832 		(void) ipf_derefrule(softc, &fr);
7833 
7834 	return (error);
7835 }
7836 
7837 
7838 /* ------------------------------------------------------------------------ */
7839 /* Function:    ipf_frruleiter                                              */
7840 /* Returns:     int - 0 = success, else error                               */
7841 /* Parameters:  softc(I)- pointer to soft context main structure            */
7842 /*              data(I) - the token type to match                           */
7843 /*              uid(I)  - uid owning the token                              */
7844 /*              ptr(I)  - context pointer for the token                     */
7845 /*                                                                          */
7846 /* This function serves as a stepping stone between ipf_ipf_ioctl and       */
7847 /* ipf_getnextrule.  It's role is to find the right token in the kernel for */
7848 /* the process doing the ioctl and use that to ask for the next rule.       */
7849 /* ------------------------------------------------------------------------ */
7850 static int
7851 ipf_frruleiter(ipf_main_softc_t *softc, void *data, int uid, void *ctx)
7852 {
7853 	ipftoken_t *token;
7854 	ipfruleiter_t it;
7855 	ipfobj_t obj;
7856 	int error;
7857 
7858 	token = ipf_token_find(softc, IPFGENITER_IPF, uid, ctx);
7859 	if (token != NULL) {
7860 		error = ipf_getnextrule(softc, token, data);
7861 		WRITE_ENTER(&softc->ipf_tokens);
7862 		ipf_token_deref(softc, token);
7863 		RWLOCK_EXIT(&softc->ipf_tokens);
7864 	} else {
7865 		error = ipf_inobj(softc, data, &obj, &it, IPFOBJ_IPFITER);
7866 		if (error != 0)
7867 			return (error);
7868 		it.iri_rule = NULL;
7869 		error = ipf_outobj(softc, data, &it, IPFOBJ_IPFITER);
7870 	}
7871 
7872 	return (error);
7873 }
7874 
7875 
7876 /* ------------------------------------------------------------------------ */
7877 /* Function:    ipf_geniter                                                 */
7878 /* Returns:     int - 0 = success, else error                               */
7879 /* Parameters:  softc(I) - pointer to soft context main structure           */
7880 /*              token(I) - pointer to ipftoken_t structure                  */
7881 /*              itp(I)   - pointer to iterator data                         */
7882 /*                                                                          */
7883 /* Decide which iterator function to call using information passed through  */
7884 /* the ipfgeniter_t structure at itp.                                       */
7885 /* ------------------------------------------------------------------------ */
7886 static int
7887 ipf_geniter(ipf_main_softc_t *softc, ipftoken_t *token, ipfgeniter_t *itp)
7888 {
7889 	int error;
7890 
7891 	switch (itp->igi_type)
7892 	{
7893 	case IPFGENITER_FRAG :
7894 		error = ipf_frag_pkt_next(softc, token, itp);
7895 		break;
7896 	default :
7897 		IPFERROR(92);
7898 		error = EINVAL;
7899 		break;
7900 	}
7901 
7902 	return (error);
7903 }
7904 
7905 
7906 /* ------------------------------------------------------------------------ */
7907 /* Function:    ipf_genericiter                                             */
7908 /* Returns:     int - 0 = success, else error                               */
7909 /* Parameters:  softc(I)- pointer to soft context main structure            */
7910 /*              data(I) - the token type to match                           */
7911 /*              uid(I)  - uid owning the token                              */
7912 /*              ptr(I)  - context pointer for the token                     */
7913 /*                                                                          */
7914 /* Handle the SIOCGENITER ioctl for the ipfilter device. The primary role   */
7915 /* ------------------------------------------------------------------------ */
7916 int
7917 ipf_genericiter(ipf_main_softc_t *softc, void *data, int uid, void *ctx)
7918 {
7919 	ipftoken_t *token;
7920 	ipfgeniter_t iter;
7921 	int error;
7922 
7923 	error = ipf_inobj(softc, data, NULL, &iter, IPFOBJ_GENITER);
7924 	if (error != 0)
7925 		return (error);
7926 
7927 	token = ipf_token_find(softc, iter.igi_type, uid, ctx);
7928 	if (token != NULL) {
7929 		token->ipt_subtype = iter.igi_type;
7930 		error = ipf_geniter(softc, token, &iter);
7931 		WRITE_ENTER(&softc->ipf_tokens);
7932 		ipf_token_deref(softc, token);
7933 		RWLOCK_EXIT(&softc->ipf_tokens);
7934 	} else {
7935 		IPFERROR(93);
7936 		error = 0;
7937 	}
7938 
7939 	return (error);
7940 }
7941 
7942 
7943 /* ------------------------------------------------------------------------ */
7944 /* Function:    ipf_ipf_ioctl                                               */
7945 /* Returns:     int - 0 = success, else error                               */
7946 /* Parameters:  softc(I)- pointer to soft context main structure            */
7947 /*              data(I) - the token type to match                           */
7948 /*              cmd(I)  - the ioctl command number                          */
7949 /*              mode(I) - mode flags for the ioctl                          */
7950 /*              uid(I)  - uid owning the token                              */
7951 /*              ptr(I)  - context pointer for the token                     */
7952 /*                                                                          */
7953 /* This function handles all of the ioctl command that are actually issued  */
7954 /* to the /dev/ipl device.                                                  */
7955 /* ------------------------------------------------------------------------ */
7956 int
7957 ipf_ipf_ioctl(ipf_main_softc_t *softc, caddr_t data, ioctlcmd_t cmd, int mode,
7958 	int uid, void *ctx)
7959 {
7960 	friostat_t fio;
7961 	int error, tmp;
7962 	ipfobj_t obj;
7963 	SPL_INT(s);
7964 
7965 	switch (cmd)
7966 	{
7967 	case SIOCFRENB :
7968 		if (!(mode & FWRITE)) {
7969 			IPFERROR(94);
7970 			error = EPERM;
7971 		} else {
7972 			error = BCOPYIN(data, &tmp, sizeof(tmp));
7973 			if (error != 0) {
7974 				IPFERROR(95);
7975 				error = EFAULT;
7976 				break;
7977 			}
7978 
7979 			WRITE_ENTER(&softc->ipf_global);
7980 			if (tmp) {
7981 				if (softc->ipf_running > 0)
7982 					error = 0;
7983 				else
7984 					error = ipfattach(softc);
7985 				if (error == 0)
7986 					softc->ipf_running = 1;
7987 				else
7988 					(void) ipfdetach(softc);
7989 			} else {
7990 				if (softc->ipf_running == 1)
7991 					error = ipfdetach(softc);
7992 				else
7993 					error = 0;
7994 				if (error == 0)
7995 					softc->ipf_running = -1;
7996 			}
7997 			RWLOCK_EXIT(&softc->ipf_global);
7998 		}
7999 		break;
8000 
8001 	case SIOCIPFSET :
8002 		if (!(mode & FWRITE)) {
8003 			IPFERROR(96);
8004 			error = EPERM;
8005 			break;
8006 		}
8007 		/* FALLTHRU */
8008 	case SIOCIPFGETNEXT :
8009 	case SIOCIPFGET :
8010 		error = ipf_ipftune(softc, cmd, (void *)data);
8011 		break;
8012 
8013 	case SIOCSETFF :
8014 		if (!(mode & FWRITE)) {
8015 			IPFERROR(97);
8016 			error = EPERM;
8017 		} else {
8018 			error = BCOPYIN(data, &softc->ipf_flags,
8019 					sizeof(softc->ipf_flags));
8020 			if (error != 0) {
8021 				IPFERROR(98);
8022 				error = EFAULT;
8023 			}
8024 		}
8025 		break;
8026 
8027 	case SIOCGETFF :
8028 		error = BCOPYOUT(&softc->ipf_flags, data,
8029 				 sizeof(softc->ipf_flags));
8030 		if (error != 0) {
8031 			IPFERROR(99);
8032 			error = EFAULT;
8033 		}
8034 		break;
8035 
8036 	case SIOCFUNCL :
8037 		error = ipf_resolvefunc(softc, (void *)data);
8038 		break;
8039 
8040 	case SIOCINAFR :
8041 	case SIOCRMAFR :
8042 	case SIOCADAFR :
8043 	case SIOCZRLST :
8044 		if (!(mode & FWRITE)) {
8045 			IPFERROR(100);
8046 			error = EPERM;
8047 		} else {
8048 			error = frrequest(softc, IPL_LOGIPF, cmd, (caddr_t)data,
8049 					  softc->ipf_active, 1);
8050 		}
8051 		break;
8052 
8053 	case SIOCINIFR :
8054 	case SIOCRMIFR :
8055 	case SIOCADIFR :
8056 		if (!(mode & FWRITE)) {
8057 			IPFERROR(101);
8058 			error = EPERM;
8059 		} else {
8060 			error = frrequest(softc, IPL_LOGIPF, cmd, (caddr_t)data,
8061 					  1 - softc->ipf_active, 1);
8062 		}
8063 		break;
8064 
8065 	case SIOCSWAPA :
8066 		if (!(mode & FWRITE)) {
8067 			IPFERROR(102);
8068 			error = EPERM;
8069 		} else {
8070 			WRITE_ENTER(&softc->ipf_mutex);
8071 			error = BCOPYOUT(&softc->ipf_active, data,
8072 					 sizeof(softc->ipf_active));
8073 			if (error != 0) {
8074 				IPFERROR(103);
8075 				error = EFAULT;
8076 			} else {
8077 				softc->ipf_active = 1 - softc->ipf_active;
8078 			}
8079 			RWLOCK_EXIT(&softc->ipf_mutex);
8080 		}
8081 		break;
8082 
8083 	case SIOCGETFS :
8084 		error = ipf_inobj(softc, (void *)data, &obj, &fio,
8085 				  IPFOBJ_IPFSTAT);
8086 		if (error != 0)
8087 			break;
8088 		ipf_getstat(softc, &fio, obj.ipfo_rev);
8089 		error = ipf_outobj(softc, (void *)data, &fio, IPFOBJ_IPFSTAT);
8090 		break;
8091 
8092 	case SIOCFRZST :
8093 		if (!(mode & FWRITE)) {
8094 			IPFERROR(104);
8095 			error = EPERM;
8096 		} else
8097 			error = ipf_zerostats(softc, (caddr_t)data);
8098 		break;
8099 
8100 	case SIOCIPFFL :
8101 		if (!(mode & FWRITE)) {
8102 			IPFERROR(105);
8103 			error = EPERM;
8104 		} else {
8105 			error = BCOPYIN(data, &tmp, sizeof(tmp));
8106 			if (!error) {
8107 				tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
8108 				error = BCOPYOUT(&tmp, data, sizeof(tmp));
8109 				if (error != 0) {
8110 					IPFERROR(106);
8111 					error = EFAULT;
8112 				}
8113 			} else {
8114 				IPFERROR(107);
8115 				error = EFAULT;
8116 			}
8117 		}
8118 		break;
8119 
8120 #ifdef USE_INET6
8121 	case SIOCIPFL6 :
8122 		if (!(mode & FWRITE)) {
8123 			IPFERROR(108);
8124 			error = EPERM;
8125 		} else {
8126 			error = BCOPYIN(data, &tmp, sizeof(tmp));
8127 			if (!error) {
8128 				tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
8129 				error = BCOPYOUT(&tmp, data, sizeof(tmp));
8130 				if (error != 0) {
8131 					IPFERROR(109);
8132 					error = EFAULT;
8133 				}
8134 			} else {
8135 				IPFERROR(110);
8136 				error = EFAULT;
8137 			}
8138 		}
8139 		break;
8140 #endif
8141 
8142 	case SIOCSTLCK :
8143 		if (!(mode & FWRITE)) {
8144 			IPFERROR(122);
8145 			error = EPERM;
8146 		} else {
8147 			error = BCOPYIN(data, &tmp, sizeof(tmp));
8148 			if (error == 0) {
8149 				ipf_state_setlock(softc->ipf_state_soft, tmp);
8150 				ipf_nat_setlock(softc->ipf_nat_soft, tmp);
8151 				ipf_frag_setlock(softc->ipf_frag_soft, tmp);
8152 				ipf_auth_setlock(softc->ipf_auth_soft, tmp);
8153 			} else {
8154 				IPFERROR(111);
8155 				error = EFAULT;
8156 			}
8157 		}
8158 		break;
8159 
8160 #ifdef	IPFILTER_LOG
8161 	case SIOCIPFFB :
8162 		if (!(mode & FWRITE)) {
8163 			IPFERROR(112);
8164 			error = EPERM;
8165 		} else {
8166 			tmp = ipf_log_clear(softc, IPL_LOGIPF);
8167 			error = BCOPYOUT(&tmp, data, sizeof(tmp));
8168 			if (error) {
8169 				IPFERROR(113);
8170 				error = EFAULT;
8171 			}
8172 		}
8173 		break;
8174 #endif /* IPFILTER_LOG */
8175 
8176 	case SIOCFRSYN :
8177 		if (!(mode & FWRITE)) {
8178 			IPFERROR(114);
8179 			error = EPERM;
8180 		} else {
8181 			WRITE_ENTER(&softc->ipf_global);
8182 #if (SOLARIS && defined(_KERNEL)) && !defined(INSTANCES)
8183 			error = ipfsync();
8184 #else
8185 			ipf_sync(softc, NULL);
8186 			error = 0;
8187 #endif
8188 			RWLOCK_EXIT(&softc->ipf_global);
8189 
8190 		}
8191 		break;
8192 
8193 	case SIOCGFRST :
8194 		error = ipf_outobj(softc, (void *)data,
8195 				   ipf_frag_stats(softc->ipf_frag_soft),
8196 				   IPFOBJ_FRAGSTAT);
8197 		break;
8198 
8199 #ifdef	IPFILTER_LOG
8200 	case FIONREAD :
8201 		tmp = ipf_log_bytesused(softc, IPL_LOGIPF);
8202 		error = BCOPYOUT(&tmp, data, sizeof(tmp));
8203 		break;
8204 #endif
8205 
8206 	case SIOCIPFITER :
8207 		SPL_SCHED(s);
8208 		error = ipf_frruleiter(softc, data, uid, ctx);
8209 		SPL_X(s);
8210 		break;
8211 
8212 	case SIOCGENITER :
8213 		SPL_SCHED(s);
8214 		error = ipf_genericiter(softc, data, uid, ctx);
8215 		SPL_X(s);
8216 		break;
8217 
8218 	case SIOCIPFDELTOK :
8219 		error = BCOPYIN(data, &tmp, sizeof(tmp));
8220 		if (error == 0) {
8221 			SPL_SCHED(s);
8222 			error = ipf_token_del(softc, tmp, uid, ctx);
8223 			SPL_X(s);
8224 		}
8225 		break;
8226 
8227 	default :
8228 		IPFERROR(115);
8229 		error = EINVAL;
8230 		break;
8231 	}
8232 
8233 	return (error);
8234 }
8235 
8236 
8237 /* ------------------------------------------------------------------------ */
8238 /* Function:    ipf_decaps                                                  */
8239 /* Returns:     int        - -1 == decapsulation failed, else bit mask of   */
8240 /*                           flags indicating packet filtering decision.    */
8241 /* Parameters:  fin(I)     - pointer to packet information                  */
8242 /*              pass(I)    - IP protocol version to match                   */
8243 /*              l5proto(I) - layer 5 protocol to decode UDP data as.        */
8244 /*                                                                          */
8245 /* This function is called for packets that are wrapt up in other packets,  */
8246 /* for example, an IP packet that is the entire data segment for another IP */
8247 /* packet.  If the basic constraints for this are satisfied, change the     */
8248 /* buffer to point to the start of the inner packet and start processing    */
8249 /* rules belonging to the head group this rule specifies.                   */
8250 /* ------------------------------------------------------------------------ */
8251 u_32_t
8252 ipf_decaps(fr_info_t *fin, u_32_t pass, int l5proto)
8253 {
8254 	fr_info_t fin2, *fino = NULL;
8255 	int elen, hlen, nh;
8256 	grehdr_t gre;
8257 	ip_t *ip;
8258 	mb_t *m;
8259 
8260 	if ((fin->fin_flx & FI_COALESCE) == 0)
8261 		if (ipf_coalesce(fin) == -1)
8262 			goto cantdecaps;
8263 
8264 	m = fin->fin_m;
8265 	hlen = fin->fin_hlen;
8266 
8267 	switch (fin->fin_p)
8268 	{
8269 	case IPPROTO_UDP :
8270 		/*
8271 		 * In this case, the specific protocol being decapsulated
8272 		 * inside UDP frames comes from the rule.
8273 		 */
8274 		nh = fin->fin_fr->fr_icode;
8275 		break;
8276 
8277 	case IPPROTO_GRE :	/* 47 */
8278 		bcopy(fin->fin_dp, (char *)&gre, sizeof(gre));
8279 		hlen += sizeof(grehdr_t);
8280 		if (gre.gr_R|gre.gr_s)
8281 			goto cantdecaps;
8282 		if (gre.gr_C)
8283 			hlen += 4;
8284 		if (gre.gr_K)
8285 			hlen += 4;
8286 		if (gre.gr_S)
8287 			hlen += 4;
8288 
8289 		nh = IPPROTO_IP;
8290 
8291 		/*
8292 		 * If the routing options flag is set, validate that it is
8293 		 * there and bounce over it.
8294 		 */
8295 #if 0
8296 		/* This is really heavy weight and lots of room for error, */
8297 		/* so for now, put it off and get the simple stuff right.  */
8298 		if (gre.gr_R) {
8299 			u_char off, len, *s;
8300 			u_short af;
8301 			int end;
8302 
8303 			end = 0;
8304 			s = fin->fin_dp;
8305 			s += hlen;
8306 			aplen = fin->fin_plen - hlen;
8307 			while (aplen > 3) {
8308 				af = (s[0] << 8) | s[1];
8309 				off = s[2];
8310 				len = s[3];
8311 				aplen -= 4;
8312 				s += 4;
8313 				if (af == 0 && len == 0) {
8314 					end = 1;
8315 					break;
8316 				}
8317 				if (aplen < len)
8318 					break;
8319 				s += len;
8320 				aplen -= len;
8321 			}
8322 			if (end != 1)
8323 				goto cantdecaps;
8324 			hlen = s - (u_char *)fin->fin_dp;
8325 		}
8326 #endif
8327 		break;
8328 
8329 #ifdef IPPROTO_IPIP
8330 	case IPPROTO_IPIP :	/* 4 */
8331 #endif
8332 		nh = IPPROTO_IP;
8333 		break;
8334 
8335 	default :	/* Includes ESP, AH is special for IPv4 */
8336 		goto cantdecaps;
8337 	}
8338 
8339 	switch (nh)
8340 	{
8341 	case IPPROTO_IP :
8342 	case IPPROTO_IPV6 :
8343 		break;
8344 	default :
8345 		goto cantdecaps;
8346 	}
8347 
8348 	bcopy((char *)fin, (char *)&fin2, sizeof(fin2));
8349 	fino = fin;
8350 	fin = &fin2;
8351 	elen = hlen;
8352 #if SOLARIS && defined(_KERNEL)
8353 	m->b_rptr += elen;
8354 #else
8355 	m->m_data += elen;
8356 	m->m_len -= elen;
8357 #endif
8358 	fin->fin_plen -= elen;
8359 
8360 	ip = (ip_t *)((char *)fin->fin_ip + elen);
8361 
8362 	/*
8363 	 * Make sure we have at least enough data for the network layer
8364 	 * header.
8365 	 */
8366 	if (IP_V(ip) == 4)
8367 		hlen = IP_HL(ip) << 2;
8368 #ifdef USE_INET6
8369 	else if (IP_V(ip) == 6)
8370 		hlen = sizeof(ip6_t);
8371 #endif
8372 	else
8373 		goto cantdecaps2;
8374 
8375 	if (fin->fin_plen < hlen)
8376 		goto cantdecaps2;
8377 
8378 	fin->fin_dp = (char *)ip + hlen;
8379 
8380 	if (IP_V(ip) == 4) {
8381 		/*
8382 		 * Perform IPv4 header checksum validation.
8383 		 */
8384 		if (ipf_cksum((u_short *)ip, hlen))
8385 			goto cantdecaps2;
8386 	}
8387 
8388 	if (ipf_makefrip(hlen, ip, fin) == -1) {
8389 cantdecaps2:
8390 		if (m != NULL) {
8391 #if SOLARIS && defined(_KERNEL)
8392 			m->b_rptr -= elen;
8393 #else
8394 			m->m_data -= elen;
8395 			m->m_len += elen;
8396 #endif
8397 		}
8398 cantdecaps:
8399 		DT1(frb_decapfrip, fr_info_t *, fin);
8400 		pass &= ~FR_CMDMASK;
8401 		pass |= FR_BLOCK|FR_QUICK;
8402 		fin->fin_reason = FRB_DECAPFRIP;
8403 		return (-1);
8404 	}
8405 
8406 	pass = ipf_scanlist(fin, pass);
8407 
8408 	/*
8409 	 * Copy the packet filter "result" fields out of the fr_info_t struct
8410 	 * that is local to the decapsulation processing and back into the
8411 	 * one we were called with.
8412 	 */
8413 	fino->fin_flx = fin->fin_flx;
8414 	fino->fin_rev = fin->fin_rev;
8415 	fino->fin_icode = fin->fin_icode;
8416 	fino->fin_rule = fin->fin_rule;
8417 	(void) strncpy(fino->fin_group, fin->fin_group, FR_GROUPLEN);
8418 	fino->fin_fr = fin->fin_fr;
8419 	fino->fin_error = fin->fin_error;
8420 	fino->fin_mp = fin->fin_mp;
8421 	fino->fin_m = fin->fin_m;
8422 	m = fin->fin_m;
8423 	if (m != NULL) {
8424 #if SOLARIS && defined(_KERNEL)
8425 		m->b_rptr -= elen;
8426 #else
8427 		m->m_data -= elen;
8428 		m->m_len += elen;
8429 #endif
8430 	}
8431 	return (pass);
8432 }
8433 
8434 
8435 /* ------------------------------------------------------------------------ */
8436 /* Function:    ipf_matcharray_load                                         */
8437 /* Returns:     int         - 0 = success, else error                       */
8438 /* Parameters:  softc(I)    - pointer to soft context main structure        */
8439 /*              data(I)     - pointer to ioctl data                         */
8440 /*              objp(I)     - ipfobj_t structure to load data into          */
8441 /*              arrayptr(I) - pointer to location to store array pointer    */
8442 /*                                                                          */
8443 /* This function loads in a mathing array through the ipfobj_t struct that  */
8444 /* describes it.  Sanity checking and array size limitations are enforced   */
8445 /* in this function to prevent userspace from trying to load in something   */
8446 /* that is insanely big.  Once the size of the array is known, the memory   */
8447 /* required is malloc'd and returned through changing *arrayptr.  The       */
8448 /* contents of the array are verified before returning.  Only in the event  */
8449 /* of a successful call is the caller required to free up the malloc area.  */
8450 /* ------------------------------------------------------------------------ */
8451 int
8452 ipf_matcharray_load(ipf_main_softc_t *softc, caddr_t data, ipfobj_t *objp,
8453 	int **arrayptr)
8454 {
8455 	int arraysize, *array, error;
8456 
8457 	*arrayptr = NULL;
8458 
8459 	error = BCOPYIN(data, objp, sizeof(*objp));
8460 	if (error != 0) {
8461 		IPFERROR(116);
8462 		return (EFAULT);
8463 	}
8464 
8465 	if (objp->ipfo_type != IPFOBJ_IPFEXPR) {
8466 		IPFERROR(117);
8467 		return (EINVAL);
8468 	}
8469 
8470 	if (((objp->ipfo_size & 3) != 0) || (objp->ipfo_size == 0) ||
8471 	    (objp->ipfo_size > 1024)) {
8472 		IPFERROR(118);
8473 		return (EINVAL);
8474 	}
8475 
8476 	arraysize = objp->ipfo_size * sizeof(*array);
8477 	KMALLOCS(array, int *, arraysize);
8478 	if (array == NULL) {
8479 		IPFERROR(119);
8480 		return (ENOMEM);
8481 	}
8482 
8483 	error = COPYIN(objp->ipfo_ptr, array, arraysize);
8484 	if (error != 0) {
8485 		KFREES(array, arraysize);
8486 		IPFERROR(120);
8487 		return (EFAULT);
8488 	}
8489 
8490 	if (ipf_matcharray_verify(array, arraysize) != 0) {
8491 		KFREES(array, arraysize);
8492 		IPFERROR(121);
8493 		return (EINVAL);
8494 	}
8495 
8496 	*arrayptr = array;
8497 	return (0);
8498 }
8499 
8500 
8501 /* ------------------------------------------------------------------------ */
8502 /* Function:    ipf_matcharray_verify                                       */
8503 /* Returns:     Nil                                                         */
8504 /* Parameters:  array(I)     - pointer to matching array                    */
8505 /*              arraysize(I) - number of elements in the array              */
8506 /*                                                                          */
8507 /* Verify the contents of a matching array by stepping through each element */
8508 /* in it.  The actual commands in the array are not verified for            */
8509 /* correctness, only that all of the sizes are correctly within limits.     */
8510 /* ------------------------------------------------------------------------ */
8511 int
8512 ipf_matcharray_verify(int *array, int arraysize)
8513 {
8514 	int i, nelem, maxidx;
8515 	ipfexp_t *e;
8516 
8517 	nelem = arraysize / sizeof(*array);
8518 
8519 	/*
8520 	 * Currently, it makes no sense to have an array less than 6
8521 	 * elements long - the initial size at the from, a single operation
8522 	 * (minimum 4 in length) and a trailer, for a total of 6.
8523 	 */
8524 	if ((array[0] < 6) || (arraysize < 24) || (arraysize > 4096)) {
8525 		return (-1);
8526 	}
8527 
8528 	/*
8529 	 * Verify the size of data pointed to by array with how long
8530 	 * the array claims to be itself.
8531 	 */
8532 	if (array[0] * sizeof(*array) != arraysize) {
8533 		return (-1);
8534 	}
8535 
8536 	maxidx = nelem - 1;
8537 	/*
8538 	 * The last opcode in this array should be an IPF_EXP_END.
8539 	 */
8540 	if (array[maxidx] != IPF_EXP_END) {
8541 		return (-1);
8542 	}
8543 
8544 	for (i = 1; i < maxidx; ) {
8545 		e = (ipfexp_t *)(array + i);
8546 
8547 		/*
8548 		 * The length of the bits to check must be at least 1
8549 		 * (or else there is nothing to comapre with!) and it
8550 		 * cannot exceed the length of the data present.
8551 		 */
8552 		if ((e->ipfe_size < 1 ) ||
8553 		    (e->ipfe_size + i > maxidx)) {
8554 			return (-1);
8555 		}
8556 		i += e->ipfe_size;
8557 	}
8558 	return (0);
8559 }
8560 
8561 
8562 /* ------------------------------------------------------------------------ */
8563 /* Function:    ipf_fr_matcharray                                           */
8564 /* Returns:     int      - 0 = match failed, else positive match            */
8565 /* Parameters:  fin(I)   - pointer to packet information                    */
8566 /*              array(I) - pointer to matching array                        */
8567 /*                                                                          */
8568 /* This function is used to apply a matching array against a packet and     */
8569 /* return an indication of whether or not the packet successfully matches   */
8570 /* all of the commands in it.                                               */
8571 /* ------------------------------------------------------------------------ */
8572 static int
8573 ipf_fr_matcharray(fr_info_t *fin, int *array)
8574 {
8575 	int i, n, *x, rv, p;
8576 	ipfexp_t *e;
8577 
8578 	rv = 0;
8579 	n = array[0];
8580 	x = array + 1;
8581 
8582 	for (; n > 0; x += 3 + x[3], rv = 0) {
8583 		e = (ipfexp_t *)x;
8584 		if (e->ipfe_cmd == IPF_EXP_END)
8585 			break;
8586 		n -= e->ipfe_size;
8587 
8588 		/*
8589 		 * The upper 16 bits currently store the protocol value.
8590 		 * This is currently used with TCP and UDP port compares and
8591 		 * allows "tcp.port = 80" without requiring an explicit
8592 		 " "ip.pr = tcp" first.
8593 		 */
8594 		p = e->ipfe_cmd >> 16;
8595 		if ((p != 0) && (p != fin->fin_p))
8596 			break;
8597 
8598 		switch (e->ipfe_cmd)
8599 		{
8600 		case IPF_EXP_IP_PR :
8601 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8602 				rv |= (fin->fin_p == e->ipfe_arg0[i]);
8603 			}
8604 			break;
8605 
8606 		case IPF_EXP_IP_SRCADDR :
8607 			if (fin->fin_v != 4)
8608 				break;
8609 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8610 				rv |= ((fin->fin_saddr &
8611 					e->ipfe_arg0[i * 2 + 1]) ==
8612 				       e->ipfe_arg0[i * 2]);
8613 			}
8614 			break;
8615 
8616 		case IPF_EXP_IP_DSTADDR :
8617 			if (fin->fin_v != 4)
8618 				break;
8619 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8620 				rv |= ((fin->fin_daddr &
8621 					e->ipfe_arg0[i * 2 + 1]) ==
8622 				       e->ipfe_arg0[i * 2]);
8623 			}
8624 			break;
8625 
8626 		case IPF_EXP_IP_ADDR :
8627 			if (fin->fin_v != 4)
8628 				break;
8629 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8630 				rv |= ((fin->fin_saddr &
8631 					e->ipfe_arg0[i * 2 + 1]) ==
8632 				       e->ipfe_arg0[i * 2]) ||
8633 				      ((fin->fin_daddr &
8634 					e->ipfe_arg0[i * 2 + 1]) ==
8635 				       e->ipfe_arg0[i * 2]);
8636 			}
8637 			break;
8638 
8639 #ifdef USE_INET6
8640 		case IPF_EXP_IP6_SRCADDR :
8641 			if (fin->fin_v != 6)
8642 				break;
8643 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8644 				rv |= IP6_MASKEQ(&fin->fin_src6,
8645 						 &e->ipfe_arg0[i * 8 + 4],
8646 						 &e->ipfe_arg0[i * 8]);
8647 			}
8648 			break;
8649 
8650 		case IPF_EXP_IP6_DSTADDR :
8651 			if (fin->fin_v != 6)
8652 				break;
8653 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8654 				rv |= IP6_MASKEQ(&fin->fin_dst6,
8655 						 &e->ipfe_arg0[i * 8 + 4],
8656 						 &e->ipfe_arg0[i * 8]);
8657 			}
8658 			break;
8659 
8660 		case IPF_EXP_IP6_ADDR :
8661 			if (fin->fin_v != 6)
8662 				break;
8663 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8664 				rv |= IP6_MASKEQ(&fin->fin_src6,
8665 						 &e->ipfe_arg0[i * 8 + 4],
8666 						 &e->ipfe_arg0[i * 8]) ||
8667 				      IP6_MASKEQ(&fin->fin_dst6,
8668 						 &e->ipfe_arg0[i * 8 + 4],
8669 						 &e->ipfe_arg0[i * 8]);
8670 			}
8671 			break;
8672 #endif
8673 
8674 		case IPF_EXP_UDP_PORT :
8675 		case IPF_EXP_TCP_PORT :
8676 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8677 				rv |= (fin->fin_sport == e->ipfe_arg0[i]) ||
8678 				      (fin->fin_dport == e->ipfe_arg0[i]);
8679 			}
8680 			break;
8681 
8682 		case IPF_EXP_UDP_SPORT :
8683 		case IPF_EXP_TCP_SPORT :
8684 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8685 				rv |= (fin->fin_sport == e->ipfe_arg0[i]);
8686 			}
8687 			break;
8688 
8689 		case IPF_EXP_UDP_DPORT :
8690 		case IPF_EXP_TCP_DPORT :
8691 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8692 				rv |= (fin->fin_dport == e->ipfe_arg0[i]);
8693 			}
8694 			break;
8695 
8696 		case IPF_EXP_TCP_FLAGS :
8697 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8698 				rv |= ((fin->fin_tcpf &
8699 					e->ipfe_arg0[i * 2 + 1]) ==
8700 				       e->ipfe_arg0[i * 2]);
8701 			}
8702 			break;
8703 		}
8704 		rv ^= e->ipfe_not;
8705 
8706 		if (rv == 0)
8707 			break;
8708 	}
8709 
8710 	return (rv);
8711 }
8712 
8713 
8714 /* ------------------------------------------------------------------------ */
8715 /* Function:    ipf_queueflush                                              */
8716 /* Returns:     int - number of entries flushed (0 = none)                  */
8717 /* Parameters:  softc(I)    - pointer to soft context main structure        */
8718 /*              deletefn(I) - function to call to delete entry              */
8719 /*              ipfqs(I)    - top of the list of ipf internal queues        */
8720 /*              userqs(I)   - top of the list of user defined timeouts      */
8721 /*                                                                          */
8722 /* This fucntion gets called when the state/NAT hash tables fill up and we  */
8723 /* need to try a bit harder to free up some space.  The algorithm used here */
8724 /* split into two parts but both halves have the same goal: to reduce the   */
8725 /* number of connections considered to be "active" to the low watermark.    */
8726 /* There are two steps in doing this:                                       */
8727 /* 1) Remove any TCP connections that are already considered to be "closed" */
8728 /*    but have not yet been removed from the state table.  The two states   */
8729 /*    TCPS_TIME_WAIT and TCPS_CLOSED are considered to be the perfect       */
8730 /*    candidates for this style of removal.  If freeing up entries in       */
8731 /*    CLOSED or both CLOSED and TIME_WAIT brings us to the low watermark,   */
8732 /*    we do not go on to step 2.                                            */
8733 /*                                                                          */
8734 /* 2) Look for the oldest entries on each timeout queue and free them if    */
8735 /*    they are within the given window we are considering.  Where the       */
8736 /*    window starts and the steps taken to increase its size depend upon    */
8737 /*    how long ipf has been running (ipf_ticks.)  Anything modified in the  */
8738 /*    last 30 seconds is not touched.                                       */
8739 /*                                              touched                     */
8740 /*         die     ipf_ticks  30*1.5    1800*1.5   |  43200*1.5             */
8741 /*           |          |        |           |     |     |                  */
8742 /* future <--+----------+--------+-----------+-----+-----+-----------> past */
8743 /*                     now        \_int=30s_/ \_int=1hr_/ \_int=12hr        */
8744 /*                                                                          */
8745 /* Points to note:                                                          */
8746 /* - tqe_die is the time, in the future, when entries die.                  */
8747 /* - tqe_die - ipf_ticks is how long left the connection has to live in ipf */
8748 /*   ticks.                                                                 */
8749 /* - tqe_touched is when the entry was last used by NAT/state               */
8750 /* - the closer tqe_touched is to ipf_ticks, the further tqe_die will be    */
8751 /*   ipf_ticks any given timeout queue and vice versa.                      */
8752 /* - both tqe_die and tqe_touched increase over time                        */
8753 /* - timeout queues are sorted with the highest value of tqe_die at the     */
8754 /*   bottom and therefore the smallest values of each are at the top        */
8755 /* - the pointer passed in as ipfqs should point to an array of timeout     */
8756 /*   queues representing each of the TCP states                             */
8757 /*                                                                          */
8758 /* We start by setting up a maximum range to scan for things to move of     */
8759 /* iend (newest) to istart (oldest) in chunks of "interval".  If nothing is */
8760 /* found in that range, "interval" is adjusted (so long as it isn't 30) and */
8761 /* we start again with a new value for "iend" and "istart".  This is        */
8762 /* continued until we either finish the scan of 30 second intervals or the  */
8763 /* low water mark is reached.                                               */
8764 /* ------------------------------------------------------------------------ */
8765 int
8766 ipf_queueflush(ipf_main_softc_t *softc, ipftq_delete_fn_t deletefn,
8767 	ipftq_t *ipfqs, ipftq_t *userqs, u_int *activep, int size, int low)
8768 {
8769 	u_long interval, istart, iend;
8770 	ipftq_t *ifq, *ifqnext;
8771 	ipftqent_t *tqe, *tqn;
8772 	int removed = 0;
8773 
8774 	for (tqn = ipfqs[IPF_TCPS_CLOSED].ifq_head; ((tqe = tqn) != NULL); ) {
8775 		tqn = tqe->tqe_next;
8776 		if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8777 			removed++;
8778 	}
8779 	if ((*activep * 100 / size) > low) {
8780 		for (tqn = ipfqs[IPF_TCPS_TIME_WAIT].ifq_head;
8781 		     ((tqe = tqn) != NULL); ) {
8782 			tqn = tqe->tqe_next;
8783 			if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8784 				removed++;
8785 		}
8786 	}
8787 
8788 	if ((*activep * 100 / size) <= low) {
8789 		return (removed);
8790 	}
8791 
8792 	/*
8793 	 * NOTE: Use of "* 15 / 10" is required here because if "* 1.5" is
8794 	 *       used then the operations are upgraded to floating point
8795 	 *       and kernels don't like floating point...
8796 	 */
8797 	if (softc->ipf_ticks > IPF_TTLVAL(43200 * 15 / 10)) {
8798 		istart = IPF_TTLVAL(86400 * 4);
8799 		interval = IPF_TTLVAL(43200);
8800 	} else if (softc->ipf_ticks > IPF_TTLVAL(1800 * 15 / 10)) {
8801 		istart = IPF_TTLVAL(43200);
8802 		interval = IPF_TTLVAL(1800);
8803 	} else if (softc->ipf_ticks > IPF_TTLVAL(30 * 15 / 10)) {
8804 		istart = IPF_TTLVAL(1800);
8805 		interval = IPF_TTLVAL(30);
8806 	} else {
8807 		return (0);
8808 	}
8809 	if (istart > softc->ipf_ticks) {
8810 		if (softc->ipf_ticks - interval < interval)
8811 			istart = interval;
8812 		else
8813 			istart = (softc->ipf_ticks / interval) * interval;
8814 	}
8815 
8816 	iend = softc->ipf_ticks - interval;
8817 
8818 	while ((*activep * 100 / size) > low) {
8819 		u_long try;
8820 
8821 		try = softc->ipf_ticks - istart;
8822 
8823 		for (ifq = ipfqs; ifq != NULL; ifq = ifq->ifq_next) {
8824 			for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
8825 				if (try < tqe->tqe_touched)
8826 					break;
8827 				tqn = tqe->tqe_next;
8828 				if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8829 					removed++;
8830 			}
8831 		}
8832 
8833 		for (ifq = userqs; ifq != NULL; ifq = ifqnext) {
8834 			ifqnext = ifq->ifq_next;
8835 
8836 			for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
8837 				if (try < tqe->tqe_touched)
8838 					break;
8839 				tqn = tqe->tqe_next;
8840 				if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8841 					removed++;
8842 			}
8843 		}
8844 
8845 		if (try >= iend) {
8846 			if (interval == IPF_TTLVAL(43200)) {
8847 				interval = IPF_TTLVAL(1800);
8848 			} else if (interval == IPF_TTLVAL(1800)) {
8849 				interval = IPF_TTLVAL(30);
8850 			} else {
8851 				break;
8852 			}
8853 			if (interval >= softc->ipf_ticks)
8854 				break;
8855 
8856 			iend = softc->ipf_ticks - interval;
8857 		}
8858 		istart -= interval;
8859 	}
8860 
8861 	return (removed);
8862 }
8863 
8864 
8865 /* ------------------------------------------------------------------------ */
8866 /* Function:    ipf_deliverlocal                                            */
8867 /* Returns:     int - 1 = local address, 0 = non-local address              */
8868 /* Parameters:  softc(I)     - pointer to soft context main structure       */
8869 /*              ipversion(I) - IP protocol version (4 or 6)                 */
8870 /*              ifp(I)       - network interface pointer                    */
8871 /*              ipaddr(I)    - IPv4/6 destination address                   */
8872 /*                                                                          */
8873 /* This fucntion is used to determine in the address "ipaddr" belongs to    */
8874 /* the network interface represented by ifp.                                */
8875 /* ------------------------------------------------------------------------ */
8876 int
8877 ipf_deliverlocal(ipf_main_softc_t *softc, int ipversion, void *ifp,
8878 	i6addr_t *ipaddr)
8879 {
8880 	i6addr_t addr;
8881 	int islocal = 0;
8882 
8883 	if (ipversion == 4) {
8884 		if (ipf_ifpaddr(softc, 4, FRI_NORMAL, ifp, &addr, NULL) == 0) {
8885 			if (addr.in4.s_addr == ipaddr->in4.s_addr)
8886 				islocal = 1;
8887 		}
8888 
8889 #ifdef USE_INET6
8890 	} else if (ipversion == 6) {
8891 		if (ipf_ifpaddr(softc, 6, FRI_NORMAL, ifp, &addr, NULL) == 0) {
8892 			if (IP6_EQ(&addr, ipaddr))
8893 				islocal = 1;
8894 		}
8895 #endif
8896 	}
8897 
8898 	return (islocal);
8899 }
8900 
8901 
8902 /* ------------------------------------------------------------------------ */
8903 /* Function:    ipf_settimeout                                              */
8904 /* Returns:     int - 0 = success, -1 = failure                             */
8905 /* Parameters:  softc(I) - pointer to soft context main structure           */
8906 /*              t(I)     - pointer to tuneable array entry                  */
8907 /*              p(I)     - pointer to values passed in to apply             */
8908 /*                                                                          */
8909 /* This function is called to set the timeout values for each distinct      */
8910 /* queue timeout that is available.  When called, it calls into both the    */
8911 /* state and NAT code, telling them to update their timeout queues.         */
8912 /* ------------------------------------------------------------------------ */
8913 static int
8914 ipf_settimeout(struct ipf_main_softc_s *softc, ipftuneable_t *t,
8915 	ipftuneval_t *p)
8916 {
8917 
8918 	/*
8919 	 * ipf_interror should be set by the functions called here, not
8920 	 * by this function - it's just a middle man.
8921 	 */
8922 	if (ipf_state_settimeout(softc, t, p) == -1)
8923 		return (-1);
8924 	if (ipf_nat_settimeout(softc, t, p) == -1)
8925 		return (-1);
8926 	return (0);
8927 }
8928 
8929 
8930 /* ------------------------------------------------------------------------ */
8931 /* Function:    ipf_apply_timeout                                           */
8932 /* Returns:     int - 0 = success, -1 = failure                             */
8933 /* Parameters:  head(I)    - pointer to tuneable array entry                */
8934 /*              seconds(I) - pointer to values passed in to apply           */
8935 /*                                                                          */
8936 /* This function applies a timeout of "seconds" to the timeout queue that   */
8937 /* is pointed to by "head".  All entries on this list have an expiration    */
8938 /* set to be the current tick value of ipf plus the ttl.  Given that this   */
8939 /* function should only be called when the delta is non-zero, the task is   */
8940 /* to walk the entire list and apply the change.  The sort order will not   */
8941 /* change.  The only catch is that this is O(n) across the list, so if the  */
8942 /* queue has lots of entries (10s of thousands or 100s of thousands), it    */
8943 /* could take a relatively long time to work through them all.              */
8944 /* ------------------------------------------------------------------------ */
8945 void
8946 ipf_apply_timeout(ipftq_t *head, u_int seconds)
8947 {
8948 	u_int oldtimeout, newtimeout;
8949 	ipftqent_t *tqe;
8950 	int delta;
8951 
8952 	MUTEX_ENTER(&head->ifq_lock);
8953 	oldtimeout = head->ifq_ttl;
8954 	newtimeout = IPF_TTLVAL(seconds);
8955 	delta = oldtimeout - newtimeout;
8956 
8957 	head->ifq_ttl = newtimeout;
8958 
8959 	for (tqe = head->ifq_head; tqe != NULL; tqe = tqe->tqe_next) {
8960 		tqe->tqe_die += delta;
8961 	}
8962 	MUTEX_EXIT(&head->ifq_lock);
8963 }
8964 
8965 
8966 /* ------------------------------------------------------------------------ */
8967 /* Function:   ipf_settimeout_tcp                                           */
8968 /* Returns:    int - 0 = successfully applied, -1 = failed                  */
8969 /* Parameters: t(I)   - pointer to tuneable to change                       */
8970 /*             p(I)   - pointer to new timeout information                  */
8971 /*             tab(I) - pointer to table of TCP queues                      */
8972 /*                                                                          */
8973 /* This function applies the new timeout (p) to the TCP tunable (t) and     */
8974 /* updates all of the entries on the relevant timeout queue by calling      */
8975 /* ipf_apply_timeout().                                                     */
8976 /* ------------------------------------------------------------------------ */
8977 int
8978 ipf_settimeout_tcp(ipftuneable_t *t, ipftuneval_t *p, ipftq_t *tab)
8979 {
8980 	if (!strcmp(t->ipft_name, "tcp_idle_timeout") ||
8981 	    !strcmp(t->ipft_name, "tcp_established")) {
8982 		ipf_apply_timeout(&tab[IPF_TCPS_ESTABLISHED], p->ipftu_int);
8983 	} else if (!strcmp(t->ipft_name, "tcp_close_wait")) {
8984 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSE_WAIT], p->ipftu_int);
8985 	} else if (!strcmp(t->ipft_name, "tcp_last_ack")) {
8986 		ipf_apply_timeout(&tab[IPF_TCPS_LAST_ACK], p->ipftu_int);
8987 	} else if (!strcmp(t->ipft_name, "tcp_timeout")) {
8988 		ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
8989 		ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
8990 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
8991 	} else if (!strcmp(t->ipft_name, "tcp_listen")) {
8992 		ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
8993 	} else if (!strcmp(t->ipft_name, "tcp_half_established")) {
8994 		ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
8995 	} else if (!strcmp(t->ipft_name, "tcp_closing")) {
8996 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
8997 	} else if (!strcmp(t->ipft_name, "tcp_syn_received")) {
8998 		ipf_apply_timeout(&tab[IPF_TCPS_SYN_RECEIVED], p->ipftu_int);
8999 	} else if (!strcmp(t->ipft_name, "tcp_syn_sent")) {
9000 		ipf_apply_timeout(&tab[IPF_TCPS_SYN_SENT], p->ipftu_int);
9001 	} else if (!strcmp(t->ipft_name, "tcp_closed")) {
9002 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
9003 	} else if (!strcmp(t->ipft_name, "tcp_half_closed")) {
9004 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
9005 	} else if (!strcmp(t->ipft_name, "tcp_time_wait")) {
9006 		ipf_apply_timeout(&tab[IPF_TCPS_TIME_WAIT], p->ipftu_int);
9007 	} else {
9008 		/*
9009 		 * ipf_interror isn't set here because it should be set
9010 		 * by whatever called this function.
9011 		 */
9012 		return (-1);
9013 	}
9014 	return (0);
9015 }
9016 
9017 
9018 /* ------------------------------------------------------------------------ */
9019 /* Function:   ipf_main_soft_create                                         */
9020 /* Returns:    NULL = failure, else success                                 */
9021 /* Parameters: arg(I) - pointer to soft context structure if already allocd */
9022 /*                                                                          */
9023 /* Create the foundation soft context structure. In circumstances where it  */
9024 /* is not required to dynamically allocate the context, a pointer can be    */
9025 /* passed in (rather than NULL) to a structure to be initialised.           */
9026 /* The main thing of interest is that a number of locks are initialised     */
9027 /* here instead of in the where might be expected - in the relevant create  */
9028 /* function elsewhere.  This is done because the current locking design has */
9029 /* some areas where these locks are used outside of their module.           */
9030 /* Possibly the most important exercise that is done here is setting of all */
9031 /* the timeout values, allowing them to be changed before init().           */
9032 /* ------------------------------------------------------------------------ */
9033 void *
9034 ipf_main_soft_create(void *arg)
9035 {
9036 	ipf_main_softc_t *softc;
9037 
9038 	if (arg == NULL) {
9039 		KMALLOC(softc, ipf_main_softc_t *);
9040 		if (softc == NULL)
9041 			return (NULL);
9042 	} else {
9043 		softc = arg;
9044 	}
9045 
9046 	bzero((char *)softc, sizeof(*softc));
9047 
9048 	/*
9049 	 * This serves as a flag as to whether or not the softc should be
9050 	 * free'd when _destroy is called.
9051 	 */
9052 	softc->ipf_dynamic_softc = (arg == NULL) ? 1 : 0;
9053 
9054 	softc->ipf_tuners = ipf_tune_array_copy(softc,
9055 						sizeof(ipf_main_tuneables),
9056 						ipf_main_tuneables);
9057 	if (softc->ipf_tuners == NULL) {
9058 		ipf_main_soft_destroy(softc);
9059 		return (NULL);
9060 	}
9061 
9062 	MUTEX_INIT(&softc->ipf_rw, "ipf rw mutex");
9063 	MUTEX_INIT(&softc->ipf_timeoutlock, "ipf timeout lock");
9064 	RWLOCK_INIT(&softc->ipf_global, "ipf filter load/unload mutex");
9065 	RWLOCK_INIT(&softc->ipf_mutex, "ipf filter rwlock");
9066 	RWLOCK_INIT(&softc->ipf_tokens, "ipf token rwlock");
9067 	RWLOCK_INIT(&softc->ipf_state, "ipf state rwlock");
9068 	RWLOCK_INIT(&softc->ipf_nat, "ipf IP NAT rwlock");
9069 	RWLOCK_INIT(&softc->ipf_poolrw, "ipf pool rwlock");
9070 	RWLOCK_INIT(&softc->ipf_frag, "ipf frag rwlock");
9071 
9072 	softc->ipf_token_head = NULL;
9073 	softc->ipf_token_tail = &softc->ipf_token_head;
9074 
9075 	softc->ipf_tcpidletimeout = FIVE_DAYS;
9076 	softc->ipf_tcpclosewait = IPF_TTLVAL(2 * TCP_MSL);
9077 	softc->ipf_tcplastack = IPF_TTLVAL(30);
9078 	softc->ipf_tcptimewait = IPF_TTLVAL(2 * TCP_MSL);
9079 	softc->ipf_tcptimeout = IPF_TTLVAL(2 * TCP_MSL);
9080 	softc->ipf_tcpsynsent = IPF_TTLVAL(2 * TCP_MSL);
9081 	softc->ipf_tcpsynrecv = IPF_TTLVAL(2 * TCP_MSL);
9082 	softc->ipf_tcpclosed = IPF_TTLVAL(30);
9083 	softc->ipf_tcphalfclosed = IPF_TTLVAL(2 * 3600);
9084 	softc->ipf_udptimeout = IPF_TTLVAL(120);
9085 	softc->ipf_udpacktimeout = IPF_TTLVAL(12);
9086 	softc->ipf_icmptimeout = IPF_TTLVAL(60);
9087 	softc->ipf_icmpacktimeout = IPF_TTLVAL(6);
9088 	softc->ipf_iptimeout = IPF_TTLVAL(60);
9089 
9090 #if defined(IPFILTER_DEFAULT_BLOCK)
9091 	softc->ipf_pass = FR_BLOCK|FR_NOMATCH;
9092 #else
9093 	softc->ipf_pass = (IPF_DEFAULT_PASS)|FR_NOMATCH;
9094 #endif
9095 	softc->ipf_minttl = 4;
9096 	softc->ipf_icmpminfragmtu = 68;
9097 	softc->ipf_max_namelen = 128;
9098 	softc->ipf_flags = IPF_LOGGING;
9099 
9100 #ifdef LARGE_NAT
9101 	softc->ipf_large_nat = 1;
9102 #endif
9103 	ipf_fbsd_kenv_get(softc);
9104 
9105 	return (softc);
9106 }
9107 
9108 /* ------------------------------------------------------------------------ */
9109 /* Function:   ipf_main_soft_init                                           */
9110 /* Returns:    0 = success, -1 = failure                                    */
9111 /* Parameters: softc(I) - pointer to soft context main structure            */
9112 /*                                                                          */
9113 /* A null-op function that exists as a placeholder so that the flow in      */
9114 /* other functions is obvious.                                              */
9115 /* ------------------------------------------------------------------------ */
9116 /*ARGSUSED*/
9117 int
9118 ipf_main_soft_init(ipf_main_softc_t *softc)
9119 {
9120 	return (0);
9121 }
9122 
9123 
9124 /* ------------------------------------------------------------------------ */
9125 /* Function:   ipf_main_soft_destroy                                        */
9126 /* Returns:    void                                                         */
9127 /* Parameters: softc(I) - pointer to soft context main structure            */
9128 /*                                                                          */
9129 /* Undo everything that we did in ipf_main_soft_create.                     */
9130 /*                                                                          */
9131 /* The most important check that needs to be made here is whether or not    */
9132 /* the structure was allocated by ipf_main_soft_create() by checking what   */
9133 /* value is stored in ipf_dynamic_main.                                     */
9134 /* ------------------------------------------------------------------------ */
9135 /*ARGSUSED*/
9136 void
9137 ipf_main_soft_destroy(ipf_main_softc_t *softc)
9138 {
9139 
9140 	RW_DESTROY(&softc->ipf_frag);
9141 	RW_DESTROY(&softc->ipf_poolrw);
9142 	RW_DESTROY(&softc->ipf_nat);
9143 	RW_DESTROY(&softc->ipf_state);
9144 	RW_DESTROY(&softc->ipf_tokens);
9145 	RW_DESTROY(&softc->ipf_mutex);
9146 	RW_DESTROY(&softc->ipf_global);
9147 	MUTEX_DESTROY(&softc->ipf_timeoutlock);
9148 	MUTEX_DESTROY(&softc->ipf_rw);
9149 
9150 	if (softc->ipf_tuners != NULL) {
9151 		KFREES(softc->ipf_tuners, sizeof(ipf_main_tuneables));
9152 	}
9153 	if (softc->ipf_dynamic_softc == 1) {
9154 		KFREE(softc);
9155 	}
9156 }
9157 
9158 
9159 /* ------------------------------------------------------------------------ */
9160 /* Function:   ipf_main_soft_fini                                           */
9161 /* Returns:    0 = success, -1 = failure                                    */
9162 /* Parameters: softc(I) - pointer to soft context main structure            */
9163 /*                                                                          */
9164 /* Clean out the rules which have been added since _init was last called,   */
9165 /* the only dynamic part of the mainline.                                   */
9166 /* ------------------------------------------------------------------------ */
9167 int
9168 ipf_main_soft_fini(ipf_main_softc_t *softc)
9169 {
9170 	(void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9171 	(void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE);
9172 	(void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9173 	(void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE);
9174 
9175 	return (0);
9176 }
9177 
9178 
9179 /* ------------------------------------------------------------------------ */
9180 /* Function:   ipf_main_load                                                */
9181 /* Returns:    0 = success, -1 = failure                                    */
9182 /* Parameters: none                                                         */
9183 /*                                                                          */
9184 /* Handle global initialisation that needs to be done for the base part of  */
9185 /* IPFilter. At present this just amounts to initialising some ICMP lookup  */
9186 /* arrays that get used by the state/NAT code.                              */
9187 /* ------------------------------------------------------------------------ */
9188 int
9189 ipf_main_load(void)
9190 {
9191 	int i;
9192 
9193 	/* fill icmp reply type table */
9194 	for (i = 0; i <= ICMP_MAXTYPE; i++)
9195 		icmpreplytype4[i] = -1;
9196 	icmpreplytype4[ICMP_ECHO] = ICMP_ECHOREPLY;
9197 	icmpreplytype4[ICMP_TSTAMP] = ICMP_TSTAMPREPLY;
9198 	icmpreplytype4[ICMP_IREQ] = ICMP_IREQREPLY;
9199 	icmpreplytype4[ICMP_MASKREQ] = ICMP_MASKREPLY;
9200 
9201 #ifdef  USE_INET6
9202 	/* fill icmp reply type table */
9203 	for (i = 0; i <= ICMP6_MAXTYPE; i++)
9204 		icmpreplytype6[i] = -1;
9205 	icmpreplytype6[ICMP6_ECHO_REQUEST] = ICMP6_ECHO_REPLY;
9206 	icmpreplytype6[ICMP6_MEMBERSHIP_QUERY] = ICMP6_MEMBERSHIP_REPORT;
9207 	icmpreplytype6[ICMP6_NI_QUERY] = ICMP6_NI_REPLY;
9208 	icmpreplytype6[ND_ROUTER_SOLICIT] = ND_ROUTER_ADVERT;
9209 	icmpreplytype6[ND_NEIGHBOR_SOLICIT] = ND_NEIGHBOR_ADVERT;
9210 #endif
9211 
9212 	return (0);
9213 }
9214 
9215 
9216 /* ------------------------------------------------------------------------ */
9217 /* Function:   ipf_main_unload                                              */
9218 /* Returns:    0 = success, -1 = failure                                    */
9219 /* Parameters: none                                                         */
9220 /*                                                                          */
9221 /* A null-op function that exists as a placeholder so that the flow in      */
9222 /* other functions is obvious.                                              */
9223 /* ------------------------------------------------------------------------ */
9224 int
9225 ipf_main_unload(void)
9226 {
9227 	return (0);
9228 }
9229 
9230 
9231 /* ------------------------------------------------------------------------ */
9232 /* Function:   ipf_load_all                                                 */
9233 /* Returns:    0 = success, -1 = failure                                    */
9234 /* Parameters: none                                                         */
9235 /*                                                                          */
9236 /* Work through all of the subsystems inside IPFilter and call the load     */
9237 /* function for each in an order that won't lead to a crash :)              */
9238 /* ------------------------------------------------------------------------ */
9239 int
9240 ipf_load_all(void)
9241 {
9242 	if (ipf_main_load() == -1)
9243 		return (-1);
9244 
9245 	if (ipf_state_main_load() == -1)
9246 		return (-1);
9247 
9248 	if (ipf_nat_main_load() == -1)
9249 		return (-1);
9250 
9251 	if (ipf_frag_main_load() == -1)
9252 		return (-1);
9253 
9254 	if (ipf_auth_main_load() == -1)
9255 		return (-1);
9256 
9257 	if (ipf_proxy_main_load() == -1)
9258 		return (-1);
9259 
9260 	return (0);
9261 }
9262 
9263 
9264 /* ------------------------------------------------------------------------ */
9265 /* Function:   ipf_unload_all                                               */
9266 /* Returns:    0 = success, -1 = failure                                    */
9267 /* Parameters: none                                                         */
9268 /*                                                                          */
9269 /* Work through all of the subsystems inside IPFilter and call the unload   */
9270 /* function for each in an order that won't lead to a crash :)              */
9271 /* ------------------------------------------------------------------------ */
9272 int
9273 ipf_unload_all(void)
9274 {
9275 	if (ipf_proxy_main_unload() == -1)
9276 		return (-1);
9277 
9278 	if (ipf_auth_main_unload() == -1)
9279 		return (-1);
9280 
9281 	if (ipf_frag_main_unload() == -1)
9282 		return (-1);
9283 
9284 	if (ipf_nat_main_unload() == -1)
9285 		return (-1);
9286 
9287 	if (ipf_state_main_unload() == -1)
9288 		return (-1);
9289 
9290 	if (ipf_main_unload() == -1)
9291 		return (-1);
9292 
9293 	return (0);
9294 }
9295 
9296 
9297 /* ------------------------------------------------------------------------ */
9298 /* Function:   ipf_create_all                                               */
9299 /* Returns:    NULL = failure, else success                                 */
9300 /* Parameters: arg(I) - pointer to soft context main structure              */
9301 /*                                                                          */
9302 /* Work through all of the subsystems inside IPFilter and call the create   */
9303 /* function for each in an order that won't lead to a crash :)              */
9304 /* ------------------------------------------------------------------------ */
9305 ipf_main_softc_t *
9306 ipf_create_all(void *arg)
9307 {
9308 	ipf_main_softc_t *softc;
9309 
9310 	softc = ipf_main_soft_create(arg);
9311 	if (softc == NULL)
9312 		return (NULL);
9313 
9314 #ifdef IPFILTER_LOG
9315 	softc->ipf_log_soft = ipf_log_soft_create(softc);
9316 	if (softc->ipf_log_soft == NULL) {
9317 		ipf_destroy_all(softc);
9318 		return (NULL);
9319 	}
9320 #endif
9321 
9322 	softc->ipf_lookup_soft = ipf_lookup_soft_create(softc);
9323 	if (softc->ipf_lookup_soft == NULL) {
9324 		ipf_destroy_all(softc);
9325 		return (NULL);
9326 	}
9327 
9328 	softc->ipf_sync_soft = ipf_sync_soft_create(softc);
9329 	if (softc->ipf_sync_soft == NULL) {
9330 		ipf_destroy_all(softc);
9331 		return (NULL);
9332 	}
9333 
9334 	softc->ipf_state_soft = ipf_state_soft_create(softc);
9335 	if (softc->ipf_state_soft == NULL) {
9336 		ipf_destroy_all(softc);
9337 		return (NULL);
9338 	}
9339 
9340 	softc->ipf_nat_soft = ipf_nat_soft_create(softc);
9341 	if (softc->ipf_nat_soft == NULL) {
9342 		ipf_destroy_all(softc);
9343 		return (NULL);
9344 	}
9345 
9346 	softc->ipf_frag_soft = ipf_frag_soft_create(softc);
9347 	if (softc->ipf_frag_soft == NULL) {
9348 		ipf_destroy_all(softc);
9349 		return (NULL);
9350 	}
9351 
9352 	softc->ipf_auth_soft = ipf_auth_soft_create(softc);
9353 	if (softc->ipf_auth_soft == NULL) {
9354 		ipf_destroy_all(softc);
9355 		return (NULL);
9356 	}
9357 
9358 	softc->ipf_proxy_soft = ipf_proxy_soft_create(softc);
9359 	if (softc->ipf_proxy_soft == NULL) {
9360 		ipf_destroy_all(softc);
9361 		return (NULL);
9362 	}
9363 
9364 	return (softc);
9365 }
9366 
9367 
9368 /* ------------------------------------------------------------------------ */
9369 /* Function:   ipf_destroy_all                                              */
9370 /* Returns:    void                                                         */
9371 /* Parameters: softc(I) - pointer to soft context main structure            */
9372 /*                                                                          */
9373 /* Work through all of the subsystems inside IPFilter and call the destroy  */
9374 /* function for each in an order that won't lead to a crash :)              */
9375 /*                                                                          */
9376 /* Every one of these functions is expected to succeed, so there is no      */
9377 /* checking of return values.                                               */
9378 /* ------------------------------------------------------------------------ */
9379 void
9380 ipf_destroy_all(ipf_main_softc_t *softc)
9381 {
9382 
9383 	if (softc->ipf_state_soft != NULL) {
9384 		ipf_state_soft_destroy(softc, softc->ipf_state_soft);
9385 		softc->ipf_state_soft = NULL;
9386 	}
9387 
9388 	if (softc->ipf_nat_soft != NULL) {
9389 		ipf_nat_soft_destroy(softc, softc->ipf_nat_soft);
9390 		softc->ipf_nat_soft = NULL;
9391 	}
9392 
9393 	if (softc->ipf_frag_soft != NULL) {
9394 		ipf_frag_soft_destroy(softc, softc->ipf_frag_soft);
9395 		softc->ipf_frag_soft = NULL;
9396 	}
9397 
9398 	if (softc->ipf_auth_soft != NULL) {
9399 		ipf_auth_soft_destroy(softc, softc->ipf_auth_soft);
9400 		softc->ipf_auth_soft = NULL;
9401 	}
9402 
9403 	if (softc->ipf_proxy_soft != NULL) {
9404 		ipf_proxy_soft_destroy(softc, softc->ipf_proxy_soft);
9405 		softc->ipf_proxy_soft = NULL;
9406 	}
9407 
9408 	if (softc->ipf_sync_soft != NULL) {
9409 		ipf_sync_soft_destroy(softc, softc->ipf_sync_soft);
9410 		softc->ipf_sync_soft = NULL;
9411 	}
9412 
9413 	if (softc->ipf_lookup_soft != NULL) {
9414 		ipf_lookup_soft_destroy(softc, softc->ipf_lookup_soft);
9415 		softc->ipf_lookup_soft = NULL;
9416 	}
9417 
9418 #ifdef IPFILTER_LOG
9419 	if (softc->ipf_log_soft != NULL) {
9420 		ipf_log_soft_destroy(softc, softc->ipf_log_soft);
9421 		softc->ipf_log_soft = NULL;
9422 	}
9423 #endif
9424 
9425 	ipf_main_soft_destroy(softc);
9426 }
9427 
9428 
9429 /* ------------------------------------------------------------------------ */
9430 /* Function:   ipf_init_all                                                 */
9431 /* Returns:    0 = success, -1 = failure                                    */
9432 /* Parameters: softc(I) - pointer to soft context main structure            */
9433 /*                                                                          */
9434 /* Work through all of the subsystems inside IPFilter and call the init     */
9435 /* function for each in an order that won't lead to a crash :)              */
9436 /* ------------------------------------------------------------------------ */
9437 int
9438 ipf_init_all(ipf_main_softc_t *softc)
9439 {
9440 
9441 	if (ipf_main_soft_init(softc) == -1)
9442 		return (-1);
9443 
9444 #ifdef IPFILTER_LOG
9445 	if (ipf_log_soft_init(softc, softc->ipf_log_soft) == -1)
9446 		return (-1);
9447 #endif
9448 
9449 	if (ipf_lookup_soft_init(softc, softc->ipf_lookup_soft) == -1)
9450 		return (-1);
9451 
9452 	if (ipf_sync_soft_init(softc, softc->ipf_sync_soft) == -1)
9453 		return (-1);
9454 
9455 	if (ipf_state_soft_init(softc, softc->ipf_state_soft) == -1)
9456 		return (-1);
9457 
9458 	if (ipf_nat_soft_init(softc, softc->ipf_nat_soft) == -1)
9459 		return (-1);
9460 
9461 	if (ipf_frag_soft_init(softc, softc->ipf_frag_soft) == -1)
9462 		return (-1);
9463 
9464 	if (ipf_auth_soft_init(softc, softc->ipf_auth_soft) == -1)
9465 		return (-1);
9466 
9467 	if (ipf_proxy_soft_init(softc, softc->ipf_proxy_soft) == -1)
9468 		return (-1);
9469 
9470 	return (0);
9471 }
9472 
9473 
9474 /* ------------------------------------------------------------------------ */
9475 /* Function:   ipf_fini_all                                                 */
9476 /* Returns:    0 = success, -1 = failure                                    */
9477 /* Parameters: softc(I) - pointer to soft context main structure            */
9478 /*                                                                          */
9479 /* Work through all of the subsystems inside IPFilter and call the fini     */
9480 /* function for each in an order that won't lead to a crash :)              */
9481 /* ------------------------------------------------------------------------ */
9482 int
9483 ipf_fini_all(ipf_main_softc_t *softc)
9484 {
9485 
9486 	ipf_token_flush(softc);
9487 
9488 	if (ipf_proxy_soft_fini(softc, softc->ipf_proxy_soft) == -1)
9489 		return (-1);
9490 
9491 	if (ipf_auth_soft_fini(softc, softc->ipf_auth_soft) == -1)
9492 		return (-1);
9493 
9494 	if (ipf_frag_soft_fini(softc, softc->ipf_frag_soft) == -1)
9495 		return (-1);
9496 
9497 	if (ipf_nat_soft_fini(softc, softc->ipf_nat_soft) == -1)
9498 		return (-1);
9499 
9500 	if (ipf_state_soft_fini(softc, softc->ipf_state_soft) == -1)
9501 		return (-1);
9502 
9503 	if (ipf_sync_soft_fini(softc, softc->ipf_sync_soft) == -1)
9504 		return (-1);
9505 
9506 	if (ipf_lookup_soft_fini(softc, softc->ipf_lookup_soft) == -1)
9507 		return (-1);
9508 
9509 #ifdef IPFILTER_LOG
9510 	if (ipf_log_soft_fini(softc, softc->ipf_log_soft) == -1)
9511 		return (-1);
9512 #endif
9513 
9514 	if (ipf_main_soft_fini(softc) == -1)
9515 		return (-1);
9516 
9517 	return (0);
9518 }
9519 
9520 
9521 /* ------------------------------------------------------------------------ */
9522 /* Function:    ipf_rule_expire                                             */
9523 /* Returns:     Nil                                                         */
9524 /* Parameters:  softc(I) - pointer to soft context main structure           */
9525 /*                                                                          */
9526 /* At present this function exists just to support temporary addition of    */
9527 /* firewall rules. Both inactive and active lists are scanned for items to  */
9528 /* purge, as by rights, the expiration is computed as soon as the rule is   */
9529 /* loaded in.                                                               */
9530 /* ------------------------------------------------------------------------ */
9531 void
9532 ipf_rule_expire(ipf_main_softc_t *softc)
9533 {
9534 	frentry_t *fr;
9535 
9536 	if ((softc->ipf_rule_explist[0] == NULL) &&
9537 	    (softc->ipf_rule_explist[1] == NULL))
9538 		return;
9539 
9540 	WRITE_ENTER(&softc->ipf_mutex);
9541 
9542 	while ((fr = softc->ipf_rule_explist[0]) != NULL) {
9543 		/*
9544 		 * Because the list is kept sorted on insertion, the fist
9545 		 * one that dies in the future means no more work to do.
9546 		 */
9547 		if (fr->fr_die > softc->ipf_ticks)
9548 			break;
9549 		ipf_rule_delete(softc, fr, IPL_LOGIPF, 0);
9550 	}
9551 
9552 	while ((fr = softc->ipf_rule_explist[1]) != NULL) {
9553 		/*
9554 		 * Because the list is kept sorted on insertion, the fist
9555 		 * one that dies in the future means no more work to do.
9556 		 */
9557 		if (fr->fr_die > softc->ipf_ticks)
9558 			break;
9559 		ipf_rule_delete(softc, fr, IPL_LOGIPF, 1);
9560 	}
9561 
9562 	RWLOCK_EXIT(&softc->ipf_mutex);
9563 }
9564 
9565 
9566 static int ipf_ht_node_cmp(struct host_node_s *, struct host_node_s *);
9567 static void ipf_ht_node_make_key(host_track_t *, host_node_t *, int,
9568 				      i6addr_t *);
9569 
9570 host_node_t RBI_ZERO(ipf_rb);
9571 RBI_CODE(ipf_rb, host_node_t, hn_entry, ipf_ht_node_cmp)
9572 
9573 
9574 /* ------------------------------------------------------------------------ */
9575 /* Function:    ipf_ht_node_cmp                                             */
9576 /* Returns:     int   - 0 == nodes are the same, ..                         */
9577 /* Parameters:  k1(I) - pointer to first key to compare                     */
9578 /*              k2(I) - pointer to second key to compare                    */
9579 /*                                                                          */
9580 /* The "key" for the node is a combination of two fields: the address       */
9581 /* family and the address itself.                                           */
9582 /*                                                                          */
9583 /* Because we're not actually interpreting the address data, it isn't       */
9584 /* necessary to convert them to/from network/host byte order. The mask is   */
9585 /* just used to remove bits that aren't significant - it doesn't matter     */
9586 /* where they are, as long as they're always in the same place.             */
9587 /*                                                                          */
9588 /* As with IP6_EQ, comparing IPv6 addresses starts at the bottom because    */
9589 /* this is where individual ones will differ the most - but not true for    */
9590 /* for /48's, etc.                                                          */
9591 /* ------------------------------------------------------------------------ */
9592 static int
9593 ipf_ht_node_cmp(struct host_node_s *k1, struct host_node_s *k2)
9594 {
9595 	int i;
9596 
9597 	i = (k2->hn_addr.adf_family - k1->hn_addr.adf_family);
9598 	if (i != 0)
9599 		return (i);
9600 
9601 	if (k1->hn_addr.adf_family == AF_INET)
9602 		return (k2->hn_addr.adf_addr.in4.s_addr -
9603 			k1->hn_addr.adf_addr.in4.s_addr);
9604 
9605 	i = k2->hn_addr.adf_addr.i6[3] - k1->hn_addr.adf_addr.i6[3];
9606 	if (i != 0)
9607 		return (i);
9608 	i = k2->hn_addr.adf_addr.i6[2] - k1->hn_addr.adf_addr.i6[2];
9609 	if (i != 0)
9610 		return (i);
9611 	i = k2->hn_addr.adf_addr.i6[1] - k1->hn_addr.adf_addr.i6[1];
9612 	if (i != 0)
9613 		return (i);
9614 	i = k2->hn_addr.adf_addr.i6[0] - k1->hn_addr.adf_addr.i6[0];
9615 	return (i);
9616 }
9617 
9618 
9619 /* ------------------------------------------------------------------------ */
9620 /* Function:    ipf_ht_node_make_key                                        */
9621 /* Returns:     Nil                                                         */
9622 /* parameters:  htp(I)    - pointer to address tracking structure           */
9623 /*              key(I)    - where to store masked address for lookup        */
9624 /*              family(I) - protocol family of address                      */
9625 /*              addr(I)   - pointer to network address                      */
9626 /*                                                                          */
9627 /* Using the "netmask" (number of bits) stored parent host tracking struct, */
9628 /* copy the address passed in into the key structure whilst masking out the */
9629 /* bits that we don't want.                                                 */
9630 /*                                                                          */
9631 /* Because the parser will set ht_netmask to 128 if there is no protocol    */
9632 /* specified (the parser doesn't know if it should be a v4 or v6 rule), we  */
9633 /* have to be wary of that and not allow 32-128 to happen.                  */
9634 /* ------------------------------------------------------------------------ */
9635 static void
9636 ipf_ht_node_make_key(host_track_t *htp, host_node_t *key, int family,
9637 	i6addr_t *addr)
9638 {
9639 	key->hn_addr.adf_family = family;
9640 	if (family == AF_INET) {
9641 		u_32_t mask;
9642 		int bits;
9643 
9644 		key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in4);
9645 		bits = htp->ht_netmask;
9646 		if (bits >= 32) {
9647 			mask = 0xffffffff;
9648 		} else {
9649 			mask = htonl(0xffffffff << (32 - bits));
9650 		}
9651 		key->hn_addr.adf_addr.in4.s_addr = addr->in4.s_addr & mask;
9652 #ifdef USE_INET6
9653 	} else {
9654 		int bits = htp->ht_netmask;
9655 
9656 		key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in6);
9657 		if (bits > 96) {
9658 			key->hn_addr.adf_addr.i6[3] = addr->i6[3] &
9659 					     htonl(0xffffffff << (128 - bits));
9660 			key->hn_addr.adf_addr.i6[2] = addr->i6[2];
9661 			key->hn_addr.adf_addr.i6[1] = addr->i6[2];
9662 			key->hn_addr.adf_addr.i6[0] = addr->i6[2];
9663 		} else if (bits > 64) {
9664 			key->hn_addr.adf_addr.i6[3] = 0;
9665 			key->hn_addr.adf_addr.i6[2] = addr->i6[2] &
9666 					     htonl(0xffffffff << (96 - bits));
9667 			key->hn_addr.adf_addr.i6[1] = addr->i6[1];
9668 			key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9669 		} else if (bits > 32) {
9670 			key->hn_addr.adf_addr.i6[3] = 0;
9671 			key->hn_addr.adf_addr.i6[2] = 0;
9672 			key->hn_addr.adf_addr.i6[1] = addr->i6[1] &
9673 					     htonl(0xffffffff << (64 - bits));
9674 			key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9675 		} else {
9676 			key->hn_addr.adf_addr.i6[3] = 0;
9677 			key->hn_addr.adf_addr.i6[2] = 0;
9678 			key->hn_addr.adf_addr.i6[1] = 0;
9679 			key->hn_addr.adf_addr.i6[0] = addr->i6[0] &
9680 					     htonl(0xffffffff << (32 - bits));
9681 		}
9682 #endif
9683 	}
9684 }
9685 
9686 
9687 /* ------------------------------------------------------------------------ */
9688 /* Function:    ipf_ht_node_add                                             */
9689 /* Returns:     int       - 0 == success,  -1 == failure                    */
9690 /* Parameters:  softc(I)  - pointer to soft context main structure          */
9691 /*              htp(I)    - pointer to address tracking structure           */
9692 /*              family(I) - protocol family of address                      */
9693 /*              addr(I)   - pointer to network address                      */
9694 /*                                                                          */
9695 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS  */
9696 /*       ipf_ht_node_del FROM RUNNING CONCURRENTLY ON THE SAME htp.         */
9697 /*                                                                          */
9698 /* After preparing the key with the address information to find, look in    */
9699 /* the red-black tree to see if the address is known. A successful call to  */
9700 /* this function can mean one of two things: a new node was added to the    */
9701 /* tree or a matching node exists and we're able to bump up its activity.   */
9702 /* ------------------------------------------------------------------------ */
9703 int
9704 ipf_ht_node_add(ipf_main_softc_t *softc, host_track_t *htp, int family,
9705 	i6addr_t *addr)
9706 {
9707 	host_node_t *h;
9708 	host_node_t k;
9709 
9710 	ipf_ht_node_make_key(htp, &k, family, addr);
9711 
9712 	h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
9713 	if (h == NULL) {
9714 		if (htp->ht_cur_nodes >= htp->ht_max_nodes)
9715 			return (-1);
9716 		KMALLOC(h, host_node_t *);
9717 		if (h == NULL) {
9718 			DT(ipf_rb_no_mem);
9719 			LBUMP(ipf_rb_no_mem);
9720 			return (-1);
9721 		}
9722 
9723 		/*
9724 		 * If there was a macro to initialise the RB node then that
9725 		 * would get used here, but there isn't...
9726 		 */
9727 		bzero((char *)h, sizeof(*h));
9728 		h->hn_addr = k.hn_addr;
9729 		h->hn_addr.adf_family = k.hn_addr.adf_family;
9730 		RBI_INSERT(ipf_rb, &htp->ht_root, h);
9731 		htp->ht_cur_nodes++;
9732 	} else {
9733 		if ((htp->ht_max_per_node != 0) &&
9734 		    (h->hn_active >= htp->ht_max_per_node)) {
9735 			DT(ipf_rb_node_max);
9736 			LBUMP(ipf_rb_node_max);
9737 			return (-1);
9738 		}
9739 	}
9740 
9741 	h->hn_active++;
9742 
9743 	return (0);
9744 }
9745 
9746 
9747 /* ------------------------------------------------------------------------ */
9748 /* Function:    ipf_ht_node_del                                             */
9749 /* Returns:     int       - 0 == success,  -1 == failure                    */
9750 /* parameters:  htp(I)    - pointer to address tracking structure           */
9751 /*              family(I) - protocol family of address                      */
9752 /*              addr(I)   - pointer to network address                      */
9753 /*                                                                          */
9754 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS  */
9755 /*       ipf_ht_node_add FROM RUNNING CONCURRENTLY ON THE SAME htp.         */
9756 /*                                                                          */
9757 /* Try and find the address passed in amongst the leavese on this tree to   */
9758 /* be friend. If found then drop the active account for that node drops by  */
9759 /* one. If that count reaches 0, it is time to free it all up.              */
9760 /* ------------------------------------------------------------------------ */
9761 int
9762 ipf_ht_node_del(host_track_t *htp, int family, i6addr_t *addr)
9763 {
9764 	host_node_t *h;
9765 	host_node_t k;
9766 
9767 	ipf_ht_node_make_key(htp, &k, family, addr);
9768 
9769 	h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
9770 	if (h == NULL) {
9771 		return (-1);
9772 	} else {
9773 		h->hn_active--;
9774 		if (h->hn_active == 0) {
9775 			(void) RBI_DELETE(ipf_rb, &htp->ht_root, h);
9776 			htp->ht_cur_nodes--;
9777 			KFREE(h);
9778 		}
9779 	}
9780 
9781 	return (0);
9782 }
9783 
9784 
9785 /* ------------------------------------------------------------------------ */
9786 /* Function:    ipf_rb_ht_init                                              */
9787 /* Returns:     Nil                                                         */
9788 /* Parameters:  head(I) - pointer to host tracking structure                */
9789 /*                                                                          */
9790 /* Initialise the host tracking structure to be ready for use above.        */
9791 /* ------------------------------------------------------------------------ */
9792 void
9793 ipf_rb_ht_init(host_track_t *head)
9794 {
9795 	RBI_INIT(ipf_rb, &head->ht_root);
9796 }
9797 
9798 
9799 /* ------------------------------------------------------------------------ */
9800 /* Function:    ipf_rb_ht_freenode                                          */
9801 /* Returns:     Nil                                                         */
9802 /* Parameters:  head(I) - pointer to host tracking structure                */
9803 /*              arg(I)  - additional argument from walk caller              */
9804 /*                                                                          */
9805 /* Free an actual host_node_t structure.                                    */
9806 /* ------------------------------------------------------------------------ */
9807 void
9808 ipf_rb_ht_freenode(host_node_t *node, void *arg)
9809 {
9810 	KFREE(node);
9811 }
9812 
9813 
9814 /* ------------------------------------------------------------------------ */
9815 /* Function:    ipf_rb_ht_flush                                             */
9816 /* Returns:     Nil                                                         */
9817 /* Parameters:  head(I) - pointer to host tracking structure                */
9818 /*                                                                          */
9819 /* Remove all of the nodes in the tree tracking hosts by calling a walker   */
9820 /* and free'ing each one.                                                   */
9821 /* ------------------------------------------------------------------------ */
9822 void
9823 ipf_rb_ht_flush(host_track_t *head)
9824 {
9825 	RBI_WALK(ipf_rb, &head->ht_root, ipf_rb_ht_freenode, NULL);
9826 }
9827 
9828 
9829 /* ------------------------------------------------------------------------ */
9830 /* Function:    ipf_slowtimer                                               */
9831 /* Returns:     Nil                                                         */
9832 /* Parameters:  ptr(I) - pointer to main ipf soft context structure         */
9833 /*                                                                          */
9834 /* Slowly expire held state for fragments.  Timeouts are set * in           */
9835 /* expectation of this being called twice per second.                       */
9836 /* ------------------------------------------------------------------------ */
9837 void
9838 ipf_slowtimer(ipf_main_softc_t *softc)
9839 {
9840 
9841 	ipf_token_expire(softc);
9842 	ipf_frag_expire(softc);
9843 	ipf_state_expire(softc);
9844 	ipf_nat_expire(softc);
9845 	ipf_auth_expire(softc);
9846 	ipf_lookup_expire(softc);
9847 	ipf_rule_expire(softc);
9848 	ipf_sync_expire(softc);
9849 	softc->ipf_ticks++;
9850 }
9851 
9852 
9853 /* ------------------------------------------------------------------------ */
9854 /* Function:    ipf_inet_mask_add                                           */
9855 /* Returns:     Nil                                                         */
9856 /* Parameters:  bits(I) - pointer to nat context information                */
9857 /*              mtab(I) - pointer to mask hash table structure              */
9858 /*                                                                          */
9859 /* When called, bits represents the mask of a new NAT rule that has just    */
9860 /* been added. This function inserts a bitmask into the array of masks to   */
9861 /* search when searching for a matching NAT rule for a packet.              */
9862 /* Prevention of duplicate masks is achieved by checking the use count for  */
9863 /* a given netmask.                                                         */
9864 /* ------------------------------------------------------------------------ */
9865 void
9866 ipf_inet_mask_add(int bits, ipf_v4_masktab_t *mtab)
9867 {
9868 	u_32_t mask;
9869 	int i, j;
9870 
9871 	mtab->imt4_masks[bits]++;
9872 	if (mtab->imt4_masks[bits] > 1)
9873 		return;
9874 
9875 	if (bits == 0)
9876 		mask = 0;
9877 	else
9878 		mask = 0xffffffff << (32 - bits);
9879 
9880 	for (i = 0; i < 33; i++) {
9881 		if (ntohl(mtab->imt4_active[i]) < mask) {
9882 			for (j = 32; j > i; j--)
9883 				mtab->imt4_active[j] = mtab->imt4_active[j - 1];
9884 			mtab->imt4_active[i] = htonl(mask);
9885 			break;
9886 		}
9887 	}
9888 	mtab->imt4_max++;
9889 }
9890 
9891 
9892 /* ------------------------------------------------------------------------ */
9893 /* Function:    ipf_inet_mask_del                                           */
9894 /* Returns:     Nil                                                         */
9895 /* Parameters:  bits(I) - number of bits set in the netmask                 */
9896 /*              mtab(I) - pointer to mask hash table structure              */
9897 /*                                                                          */
9898 /* Remove the 32bit bitmask represented by "bits" from the collection of    */
9899 /* netmasks stored inside of mtab.                                          */
9900 /* ------------------------------------------------------------------------ */
9901 void
9902 ipf_inet_mask_del(int bits, ipf_v4_masktab_t *mtab)
9903 {
9904 	u_32_t mask;
9905 	int i, j;
9906 
9907 	mtab->imt4_masks[bits]--;
9908 	if (mtab->imt4_masks[bits] > 0)
9909 		return;
9910 
9911 	mask = htonl(0xffffffff << (32 - bits));
9912 	for (i = 0; i < 33; i++) {
9913 		if (mtab->imt4_active[i] == mask) {
9914 			for (j = i + 1; j < 33; j++)
9915 				mtab->imt4_active[j - 1] = mtab->imt4_active[j];
9916 			break;
9917 		}
9918 	}
9919 	mtab->imt4_max--;
9920 	ASSERT(mtab->imt4_max >= 0);
9921 }
9922 
9923 
9924 #ifdef USE_INET6
9925 /* ------------------------------------------------------------------------ */
9926 /* Function:    ipf_inet6_mask_add                                          */
9927 /* Returns:     Nil                                                         */
9928 /* Parameters:  bits(I) - number of bits set in mask                        */
9929 /*              mask(I) - pointer to mask to add                            */
9930 /*              mtab(I) - pointer to mask hash table structure              */
9931 /*                                                                          */
9932 /* When called, bitcount represents the mask of a IPv6 NAT map rule that    */
9933 /* has just been added. This function inserts a bitmask into the array of   */
9934 /* masks to search when searching for a matching NAT rule for a packet.     */
9935 /* Prevention of duplicate masks is achieved by checking the use count for  */
9936 /* a given netmask.                                                         */
9937 /* ------------------------------------------------------------------------ */
9938 void
9939 ipf_inet6_mask_add(int bits, i6addr_t *mask, ipf_v6_masktab_t *mtab)
9940 {
9941 	i6addr_t zero;
9942 	int i, j;
9943 
9944 	mtab->imt6_masks[bits]++;
9945 	if (mtab->imt6_masks[bits] > 1)
9946 		return;
9947 
9948 	if (bits == 0) {
9949 		mask = &zero;
9950 		zero.i6[0] = 0;
9951 		zero.i6[1] = 0;
9952 		zero.i6[2] = 0;
9953 		zero.i6[3] = 0;
9954 	}
9955 
9956 	for (i = 0; i < 129; i++) {
9957 		if (IP6_LT(&mtab->imt6_active[i], mask)) {
9958 			for (j = 128; j > i; j--)
9959 				mtab->imt6_active[j] = mtab->imt6_active[j - 1];
9960 			mtab->imt6_active[i] = *mask;
9961 			break;
9962 		}
9963 	}
9964 	mtab->imt6_max++;
9965 }
9966 
9967 
9968 /* ------------------------------------------------------------------------ */
9969 /* Function:    ipf_inet6_mask_del                                          */
9970 /* Returns:     Nil                                                         */
9971 /* Parameters:  bits(I) - number of bits set in mask                        */
9972 /*              mask(I) - pointer to mask to remove                         */
9973 /*              mtab(I) - pointer to mask hash table structure              */
9974 /*                                                                          */
9975 /* Remove the 128bit bitmask represented by "bits" from the collection of   */
9976 /* netmasks stored inside of mtab.                                          */
9977 /* ------------------------------------------------------------------------ */
9978 void
9979 ipf_inet6_mask_del(int bits, i6addr_t *mask, ipf_v6_masktab_t *mtab)
9980 {
9981 	i6addr_t zero;
9982 	int i, j;
9983 
9984 	mtab->imt6_masks[bits]--;
9985 	if (mtab->imt6_masks[bits] > 0)
9986 		return;
9987 
9988 	if (bits == 0)
9989 		mask = &zero;
9990 	zero.i6[0] = 0;
9991 	zero.i6[1] = 0;
9992 	zero.i6[2] = 0;
9993 	zero.i6[3] = 0;
9994 
9995 	for (i = 0; i < 129; i++) {
9996 		if (IP6_EQ(&mtab->imt6_active[i], mask)) {
9997 			for (j = i + 1; j < 129; j++) {
9998 				mtab->imt6_active[j - 1] = mtab->imt6_active[j];
9999 				if (IP6_EQ(&mtab->imt6_active[j - 1], &zero))
10000 					break;
10001 			}
10002 			break;
10003 		}
10004 	}
10005 	mtab->imt6_max--;
10006 	ASSERT(mtab->imt6_max >= 0);
10007 }
10008 #endif
10009 
10010 /* ------------------------------------------------------------------------ */
10011 /* Function:    ipf_check_names_string                                      */
10012 /* Returns:     int       -  0 == success                                   */
10013 /*                        -  1 == negative offset                           */
10014 /*                        -  2 == offset exceds namelen                     */
10015 /*                        -  3 == string exceeds the names string           */
10016 /* Parameters:  names   - pointer to names string                           */
10017 /*              namelen - total length of names string                      */
10018 /*              offset  - offset into names string                          */
10019 /*                                                                          */
10020 /* Validate the names string (fr_names for ipfilter, in_names for ipnat).   */
10021 /* ------------------------------------------------------------------------ */
10022 int
10023 ipf_check_names_string(char *names, int namelen, int offset)
10024 {
10025 	const char *name;
10026 	size_t len;
10027 
10028 	if (offset == -1)
10029 		return (0);
10030 	if (offset < 0)
10031 		return (1);
10032 	if (offset > namelen)
10033 		return (2);
10034 	name = &names[offset];
10035 	len = strnlen(name, namelen - offset);
10036 	if (len == namelen - offset)
10037 		return (3);
10038 	return (0);
10039 }
10040