1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 #include "opt_inet.h"
34 #include "opt_ipsec.h"
35 #include "opt_kern_tls.h"
36 #include "opt_mbuf_stress_test.h"
37 #include "opt_ratelimit.h"
38 #include "opt_route.h"
39 #include "opt_rss.h"
40 #include "opt_sctp.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/ktls.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/priv.h>
50 #include <sys/proc.h>
51 #include <sys/protosw.h>
52 #include <sys/sdt.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/sysctl.h>
56 #include <sys/ucred.h>
57
58 #include <net/if.h>
59 #include <net/if_var.h>
60 #include <net/if_private.h>
61 #include <net/if_vlan_var.h>
62 #include <net/if_llatbl.h>
63 #include <net/ethernet.h>
64 #include <net/netisr.h>
65 #include <net/pfil.h>
66 #include <net/route.h>
67 #include <net/route/nhop.h>
68 #include <net/rss_config.h>
69 #include <net/vnet.h>
70
71 #include <netinet/in.h>
72 #include <netinet/in_fib.h>
73 #include <netinet/in_kdtrace.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/ip.h>
76 #include <netinet/in_fib.h>
77 #include <netinet/in_pcb.h>
78 #include <netinet/in_rss.h>
79 #include <netinet/in_var.h>
80 #include <netinet/ip_var.h>
81 #include <netinet/ip_options.h>
82
83 #include <netinet/udp.h>
84 #include <netinet/udp_var.h>
85
86 #if defined(SCTP) || defined(SCTP_SUPPORT)
87 #include <netinet/sctp.h>
88 #include <netinet/sctp_crc32.h>
89 #endif
90
91 #include <netipsec/ipsec_support.h>
92
93 #include <machine/in_cksum.h>
94
95 #include <security/mac/mac_framework.h>
96
97 #ifdef MBUF_STRESS_TEST
98 static int mbuf_frag_size = 0;
99 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
100 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
101 #endif
102
103 static void ip_mloopback(struct ifnet *, const struct mbuf *, int);
104
105 extern int in_mcast_loop;
106
107 static inline int
ip_output_pfil(struct mbuf ** mp,struct ifnet * ifp,int flags,struct inpcb * inp,struct sockaddr_in * dst,int * fibnum,int * error)108 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, int flags,
109 struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error)
110 {
111 struct m_tag *fwd_tag = NULL;
112 struct mbuf *m;
113 struct in_addr odst;
114 struct ip *ip;
115 int ret;
116
117 m = *mp;
118 ip = mtod(m, struct ip *);
119
120 /* Run through list of hooks for output packets. */
121 odst.s_addr = ip->ip_dst.s_addr;
122 if (flags & IP_FORWARDING)
123 ret = pfil_mbuf_fwd(V_inet_pfil_head, mp, ifp, inp);
124 else
125 ret = pfil_mbuf_out(V_inet_pfil_head, mp, ifp, inp);
126
127 switch (ret) {
128 case PFIL_DROPPED:
129 *error = EACCES;
130 /* FALLTHROUGH */
131 case PFIL_CONSUMED:
132 return 1; /* Finished */
133 case PFIL_PASS:
134 *error = 0;
135 }
136 m = *mp;
137 ip = mtod(m, struct ip *);
138
139 /* See if destination IP address was changed by packet filter. */
140 if (odst.s_addr != ip->ip_dst.s_addr) {
141 m->m_flags |= M_SKIP_FIREWALL;
142 /* If destination is now ourself drop to ip_input(). */
143 if (in_localip(ip->ip_dst)) {
144 m->m_flags |= M_FASTFWD_OURS;
145 if (m->m_pkthdr.rcvif == NULL)
146 m->m_pkthdr.rcvif = V_loif;
147 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
148 m->m_pkthdr.csum_flags |=
149 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
150 m->m_pkthdr.csum_data = 0xffff;
151 }
152 m->m_pkthdr.csum_flags |=
153 CSUM_IP_CHECKED | CSUM_IP_VALID;
154 #if defined(SCTP) || defined(SCTP_SUPPORT)
155 if (m->m_pkthdr.csum_flags & CSUM_SCTP)
156 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
157 #endif
158 *error = netisr_queue(NETISR_IP, m);
159 return 1; /* Finished */
160 }
161
162 bzero(dst, sizeof(*dst));
163 dst->sin_family = AF_INET;
164 dst->sin_len = sizeof(*dst);
165 dst->sin_addr = ip->ip_dst;
166
167 return -1; /* Reloop */
168 }
169 /* See if fib was changed by packet filter. */
170 if ((*fibnum) != M_GETFIB(m)) {
171 m->m_flags |= M_SKIP_FIREWALL;
172 *fibnum = M_GETFIB(m);
173 return -1; /* Reloop for FIB change */
174 }
175
176 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
177 if (m->m_flags & M_FASTFWD_OURS) {
178 if (m->m_pkthdr.rcvif == NULL)
179 m->m_pkthdr.rcvif = V_loif;
180 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
181 m->m_pkthdr.csum_flags |=
182 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
183 m->m_pkthdr.csum_data = 0xffff;
184 }
185 #if defined(SCTP) || defined(SCTP_SUPPORT)
186 if (m->m_pkthdr.csum_flags & CSUM_SCTP)
187 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
188 #endif
189 m->m_pkthdr.csum_flags |=
190 CSUM_IP_CHECKED | CSUM_IP_VALID;
191
192 *error = netisr_queue(NETISR_IP, m);
193 return 1; /* Finished */
194 }
195 /* Or forward to some other address? */
196 if ((m->m_flags & M_IP_NEXTHOP) &&
197 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) {
198 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
199 m->m_flags |= M_SKIP_FIREWALL;
200 m->m_flags &= ~M_IP_NEXTHOP;
201 m_tag_delete(m, fwd_tag);
202
203 return -1; /* Reloop for CHANGE of dst */
204 }
205
206 return 0;
207 }
208
209 static int
ip_output_send(struct inpcb * inp,struct ifnet * ifp,struct mbuf * m,const struct sockaddr * gw,struct route * ro,bool stamp_tag)210 ip_output_send(struct inpcb *inp, struct ifnet *ifp, struct mbuf *m,
211 const struct sockaddr *gw, struct route *ro, bool stamp_tag)
212 {
213 #ifdef KERN_TLS
214 struct ktls_session *tls = NULL;
215 #endif
216 struct m_snd_tag *mst;
217 int error;
218
219 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
220 mst = NULL;
221
222 #ifdef KERN_TLS
223 /*
224 * If this is an unencrypted TLS record, save a reference to
225 * the record. This local reference is used to call
226 * ktls_output_eagain after the mbuf has been freed (thus
227 * dropping the mbuf's reference) in if_output.
228 */
229 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) {
230 tls = ktls_hold(m->m_next->m_epg_tls);
231 mst = tls->snd_tag;
232
233 /*
234 * If a TLS session doesn't have a valid tag, it must
235 * have had an earlier ifp mismatch, so drop this
236 * packet.
237 */
238 if (mst == NULL) {
239 m_freem(m);
240 error = EAGAIN;
241 goto done;
242 }
243 /*
244 * Always stamp tags that include NIC ktls.
245 */
246 stamp_tag = true;
247 }
248 #endif
249 #ifdef RATELIMIT
250 if (inp != NULL && mst == NULL) {
251 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 ||
252 (inp->inp_snd_tag != NULL &&
253 inp->inp_snd_tag->ifp != ifp))
254 in_pcboutput_txrtlmt(inp, ifp, m);
255
256 if (inp->inp_snd_tag != NULL)
257 mst = inp->inp_snd_tag;
258 }
259 #endif
260 if (stamp_tag && mst != NULL) {
261 KASSERT(m->m_pkthdr.rcvif == NULL,
262 ("trying to add a send tag to a forwarded packet"));
263 if (mst->ifp != ifp) {
264 m_freem(m);
265 error = EAGAIN;
266 goto done;
267 }
268
269 /* stamp send tag on mbuf */
270 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst);
271 m->m_pkthdr.csum_flags |= CSUM_SND_TAG;
272 }
273
274 error = (*ifp->if_output)(ifp, m, gw, ro);
275
276 done:
277 /* Check for route change invalidating send tags. */
278 #ifdef KERN_TLS
279 if (tls != NULL) {
280 if (error == EAGAIN)
281 error = ktls_output_eagain(inp, tls);
282 ktls_free(tls);
283 }
284 #endif
285 #ifdef RATELIMIT
286 if (error == EAGAIN)
287 in_pcboutput_eagain(inp);
288 #endif
289 return (error);
290 }
291
292 /* rte<>ro_flags translation */
293 static inline void
rt_update_ro_flags(struct route * ro,const struct nhop_object * nh)294 rt_update_ro_flags(struct route *ro, const struct nhop_object *nh)
295 {
296 int nh_flags = nh->nh_flags;
297
298 ro->ro_flags &= ~ (RT_REJECT|RT_BLACKHOLE|RT_HAS_GW);
299
300 ro->ro_flags |= (nh_flags & NHF_REJECT) ? RT_REJECT : 0;
301 ro->ro_flags |= (nh_flags & NHF_BLACKHOLE) ? RT_BLACKHOLE : 0;
302 ro->ro_flags |= (nh_flags & NHF_GATEWAY) ? RT_HAS_GW : 0;
303 }
304
305 /*
306 * IP output. The packet in mbuf chain m contains a skeletal IP
307 * header (with len, off, ttl, proto, tos, src, dst).
308 * The mbuf chain containing the packet will be freed.
309 * The mbuf opt, if present, will not be freed.
310 * If route ro is present and has ro_rt initialized, route lookup would be
311 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
312 * then result of route lookup is stored in ro->ro_rt.
313 *
314 * In the IP forwarding case, the packet will arrive with options already
315 * inserted, so must have a NULL opt pointer.
316 */
317 int
ip_output(struct mbuf * m,struct mbuf * opt,struct route * ro,int flags,struct ip_moptions * imo,struct inpcb * inp)318 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
319 struct ip_moptions *imo, struct inpcb *inp)
320 {
321 struct ip *ip;
322 struct ifnet *ifp = NULL; /* keep compiler happy */
323 struct mbuf *m0;
324 int hlen = sizeof (struct ip);
325 int mtu = 0;
326 int error = 0;
327 int vlan_pcp = -1;
328 struct sockaddr_in *dst;
329 const struct sockaddr *gw;
330 struct in_ifaddr *ia = NULL;
331 struct in_addr src;
332 bool isbroadcast;
333 uint16_t ip_len, ip_off;
334 struct route iproute;
335 uint32_t fibnum;
336 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
337 int no_route_but_check_spd = 0;
338 #endif
339
340 M_ASSERTPKTHDR(m);
341 NET_EPOCH_ASSERT();
342
343 if (inp != NULL) {
344 INP_LOCK_ASSERT(inp);
345 M_SETFIB(m, inp->inp_inc.inc_fibnum);
346 if ((flags & IP_NODEFAULTFLOWID) == 0) {
347 m->m_pkthdr.flowid = inp->inp_flowid;
348 M_HASHTYPE_SET(m, inp->inp_flowtype);
349 }
350 if ((inp->inp_flags2 & INP_2PCP_SET) != 0)
351 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >>
352 INP_2PCP_SHIFT;
353 #ifdef NUMA
354 m->m_pkthdr.numa_domain = inp->inp_numa_domain;
355 #endif
356 }
357
358 if (opt) {
359 int len = 0;
360 m = ip_insertoptions(m, opt, &len);
361 if (len != 0)
362 hlen = len; /* ip->ip_hl is updated above */
363 }
364 ip = mtod(m, struct ip *);
365 ip_len = ntohs(ip->ip_len);
366 ip_off = ntohs(ip->ip_off);
367
368 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
369 ip->ip_v = IPVERSION;
370 ip->ip_hl = hlen >> 2;
371 ip_fillid(ip, V_ip_random_id);
372 } else {
373 /* Header already set, fetch hlen from there */
374 hlen = ip->ip_hl << 2;
375 }
376 if ((flags & IP_FORWARDING) == 0)
377 IPSTAT_INC(ips_localout);
378
379 /*
380 * dst/gw handling:
381 *
382 * gw is readonly but can point either to dst OR rt_gateway,
383 * therefore we need restore gw if we're redoing lookup.
384 */
385 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m);
386 if (ro == NULL) {
387 ro = &iproute;
388 bzero(ro, sizeof (*ro));
389 }
390 dst = (struct sockaddr_in *)&ro->ro_dst;
391 if (ro->ro_nh == NULL) {
392 dst->sin_family = AF_INET;
393 dst->sin_len = sizeof(*dst);
394 dst->sin_addr = ip->ip_dst;
395 }
396 gw = (const struct sockaddr *)dst;
397 again:
398 /*
399 * Validate route against routing table additions;
400 * a better/more specific route might have been added.
401 */
402 if (inp != NULL && ro->ro_nh != NULL)
403 NH_VALIDATE(ro, &inp->inp_rt_cookie, fibnum);
404 /*
405 * If there is a cached route,
406 * check that it is to the same destination
407 * and is still up. If not, free it and try again.
408 * The address family should also be checked in case of sharing the
409 * cache with IPv6.
410 * Also check whether routing cache needs invalidation.
411 */
412 if (ro->ro_nh != NULL &&
413 ((!NH_IS_VALID(ro->ro_nh)) || dst->sin_family != AF_INET ||
414 dst->sin_addr.s_addr != ip->ip_dst.s_addr))
415 RO_INVALIDATE_CACHE(ro);
416 ia = NULL;
417 /*
418 * If routing to interface only, short circuit routing lookup.
419 * The use of an all-ones broadcast address implies this; an
420 * interface is specified by the broadcast address of an interface,
421 * or the destination address of a ptp interface.
422 */
423 if (flags & IP_SENDONES) {
424 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst),
425 M_GETFIB(m)))) == NULL &&
426 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst),
427 M_GETFIB(m)))) == NULL) {
428 IPSTAT_INC(ips_noroute);
429 error = ENETUNREACH;
430 goto bad;
431 }
432 ip->ip_dst.s_addr = INADDR_BROADCAST;
433 dst->sin_addr = ip->ip_dst;
434 ifp = ia->ia_ifp;
435 mtu = ifp->if_mtu;
436 ip->ip_ttl = 1;
437 isbroadcast = true;
438 src = IA_SIN(ia)->sin_addr;
439 } else if (flags & IP_ROUTETOIF) {
440 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst),
441 M_GETFIB(m)))) == NULL &&
442 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0,
443 M_GETFIB(m)))) == NULL) {
444 IPSTAT_INC(ips_noroute);
445 error = ENETUNREACH;
446 goto bad;
447 }
448 ifp = ia->ia_ifp;
449 mtu = ifp->if_mtu;
450 ip->ip_ttl = 1;
451 isbroadcast = ifp->if_flags & IFF_BROADCAST ?
452 (in_broadcast(ip->ip_dst) ||
453 in_ifaddr_broadcast(dst->sin_addr, ia)) : 0;
454 src = IA_SIN(ia)->sin_addr;
455 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
456 imo != NULL && imo->imo_multicast_ifp != NULL) {
457 /*
458 * Bypass the normal routing lookup for multicast
459 * packets if the interface is specified.
460 */
461 ifp = imo->imo_multicast_ifp;
462 mtu = ifp->if_mtu;
463 IFP_TO_IA(ifp, ia);
464 isbroadcast = false;
465 /* Interface may have no addresses. */
466 if (ia != NULL)
467 src = IA_SIN(ia)->sin_addr;
468 else
469 src.s_addr = INADDR_ANY;
470 } else if (ro != &iproute) {
471 if (ro->ro_nh == NULL) {
472 /*
473 * We want to do any cloning requested by the link
474 * layer, as this is probably required in all cases
475 * for correct operation (as it is for ARP).
476 */
477 uint32_t flowid;
478 flowid = m->m_pkthdr.flowid;
479 ro->ro_nh = fib4_lookup(fibnum, dst->sin_addr, 0,
480 NHR_REF, flowid);
481
482 if (ro->ro_nh == NULL || (!NH_IS_VALID(ro->ro_nh))) {
483 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
484 /*
485 * There is no route for this packet, but it is
486 * possible that a matching SPD entry exists.
487 */
488 no_route_but_check_spd = 1;
489 goto sendit;
490 #endif
491 IPSTAT_INC(ips_noroute);
492 error = EHOSTUNREACH;
493 goto bad;
494 }
495 }
496 struct nhop_object *nh = ro->ro_nh;
497
498 ia = ifatoia(nh->nh_ifa);
499 ifp = nh->nh_ifp;
500 counter_u64_add(nh->nh_pksent, 1);
501 rt_update_ro_flags(ro, nh);
502 if (nh->nh_flags & NHF_GATEWAY)
503 gw = &nh->gw_sa;
504 if (nh->nh_flags & NHF_HOST)
505 isbroadcast = (nh->nh_flags & NHF_BROADCAST);
506 else if ((ifp->if_flags & IFF_BROADCAST) &&
507 (gw->sa_family == AF_INET))
508 isbroadcast = in_broadcast(ip->ip_dst) ||
509 in_ifaddr_broadcast(
510 ((const struct sockaddr_in *)gw)->sin_addr, ia);
511 else
512 isbroadcast = false;
513 mtu = nh->nh_mtu;
514 src = IA_SIN(ia)->sin_addr;
515 } else {
516 struct nhop_object *nh;
517
518 nh = fib4_lookup(M_GETFIB(m), dst->sin_addr, 0, NHR_NONE,
519 m->m_pkthdr.flowid);
520 if (nh == NULL) {
521 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
522 /*
523 * There is no route for this packet, but it is
524 * possible that a matching SPD entry exists.
525 */
526 no_route_but_check_spd = 1;
527 goto sendit;
528 #endif
529 IPSTAT_INC(ips_noroute);
530 error = EHOSTUNREACH;
531 goto bad;
532 }
533 ifp = nh->nh_ifp;
534 mtu = nh->nh_mtu;
535 rt_update_ro_flags(ro, nh);
536 if (nh->nh_flags & NHF_GATEWAY)
537 gw = &nh->gw_sa;
538 ia = ifatoia(nh->nh_ifa);
539 src = IA_SIN(ia)->sin_addr;
540 isbroadcast = ((nh->nh_flags & (NHF_HOST | NHF_BROADCAST)) ==
541 (NHF_HOST | NHF_BROADCAST)) ||
542 ((ifp->if_flags & IFF_BROADCAST) &&
543 (gw->sa_family == AF_INET) &&
544 (in_broadcast(ip->ip_dst) || in_ifaddr_broadcast(
545 ((const struct sockaddr_in *)gw)->sin_addr, ia)));
546 }
547
548 /* Catch a possible divide by zero later. */
549 KASSERT(mtu > 0, ("%s: mtu %d <= 0, ro=%p (nh_flags=0x%08x) ifp=%p",
550 __func__, mtu, ro,
551 (ro != NULL && ro->ro_nh != NULL) ? ro->ro_nh->nh_flags : 0, ifp));
552
553 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
554 m->m_flags |= M_MCAST;
555 /*
556 * IP destination address is multicast. Make sure "gw"
557 * still points to the address in "ro". (It may have been
558 * changed to point to a gateway address, above.)
559 */
560 gw = (const struct sockaddr *)dst;
561 /*
562 * See if the caller provided any multicast options
563 */
564 if (imo != NULL) {
565 ip->ip_ttl = imo->imo_multicast_ttl;
566 if (imo->imo_multicast_vif != -1)
567 ip->ip_src.s_addr =
568 ip_mcast_src ?
569 ip_mcast_src(imo->imo_multicast_vif) :
570 INADDR_ANY;
571 } else
572 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
573 /*
574 * Confirm that the outgoing interface supports multicast.
575 */
576 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
577 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
578 IPSTAT_INC(ips_noroute);
579 error = ENETUNREACH;
580 goto bad;
581 }
582 }
583 /*
584 * If source address not specified yet, use address
585 * of outgoing interface.
586 */
587 if (ip->ip_src.s_addr == INADDR_ANY)
588 ip->ip_src = src;
589
590 if ((imo == NULL && in_mcast_loop) ||
591 (imo && imo->imo_multicast_loop)) {
592 /*
593 * Loop back multicast datagram if not expressly
594 * forbidden to do so, even if we are not a member
595 * of the group; ip_input() will filter it later,
596 * thus deferring a hash lookup and mutex acquisition
597 * at the expense of a cheap copy using m_copym().
598 */
599 ip_mloopback(ifp, m, hlen);
600 } else {
601 /*
602 * If we are acting as a multicast router, perform
603 * multicast forwarding as if the packet had just
604 * arrived on the interface to which we are about
605 * to send. The multicast forwarding function
606 * recursively calls this function, using the
607 * IP_FORWARDING flag to prevent infinite recursion.
608 *
609 * Multicasts that are looped back by ip_mloopback(),
610 * above, will be forwarded by the ip_input() routine,
611 * if necessary.
612 */
613 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) {
614 /*
615 * If rsvp daemon is not running, do not
616 * set ip_moptions. This ensures that the packet
617 * is multicast and not just sent down one link
618 * as prescribed by rsvpd.
619 */
620 if (!V_rsvp_on)
621 imo = NULL;
622 if (ip_mforward &&
623 ip_mforward(ip, ifp, m, imo) != 0) {
624 m_freem(m);
625 goto done;
626 }
627 }
628 }
629
630 /*
631 * Multicasts with a time-to-live of zero may be looped-
632 * back, above, but must not be transmitted on a network.
633 * Also, multicasts addressed to the loopback interface
634 * are not sent -- the above call to ip_mloopback() will
635 * loop back a copy. ip_input() will drop the copy if
636 * this host does not belong to the destination group on
637 * the loopback interface.
638 */
639 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
640 m_freem(m);
641 goto done;
642 }
643
644 goto sendit;
645 }
646
647 /*
648 * If the source address is not specified yet, use the address
649 * of the outoing interface.
650 */
651 if (ip->ip_src.s_addr == INADDR_ANY)
652 ip->ip_src = src;
653
654 /*
655 * Look for broadcast address and
656 * verify user is allowed to send
657 * such a packet.
658 */
659 if (isbroadcast) {
660 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
661 error = EADDRNOTAVAIL;
662 goto bad;
663 }
664 if ((flags & IP_ALLOWBROADCAST) == 0) {
665 error = EACCES;
666 goto bad;
667 }
668 /* don't allow broadcast messages to be fragmented */
669 if (ip_len > mtu) {
670 error = EMSGSIZE;
671 goto bad;
672 }
673 m->m_flags |= M_BCAST;
674 } else {
675 m->m_flags &= ~M_BCAST;
676 }
677
678 sendit:
679 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
680 if (IPSEC_ENABLED(ipv4)) {
681 struct ip ip_hdr;
682
683 if ((error = IPSEC_OUTPUT(ipv4, ifp, m, inp, mtu)) != 0) {
684 if (error == EINPROGRESS)
685 error = 0;
686 goto done;
687 }
688
689 /* Update variables that are affected by ipsec4_output(). */
690 m_copydata(m, 0, sizeof(ip_hdr), (char *)&ip_hdr);
691 hlen = ip_hdr.ip_hl << 2;
692 }
693
694 /*
695 * Check if there was a route for this packet; return error if not.
696 */
697 if (no_route_but_check_spd) {
698 IPSTAT_INC(ips_noroute);
699 error = EHOSTUNREACH;
700 goto bad;
701 }
702 #endif /* IPSEC */
703
704 /* Jump over all PFIL processing if hooks are not active. */
705 if (PFIL_HOOKED_OUT(V_inet_pfil_head)) {
706 switch (ip_output_pfil(&m, ifp, flags, inp, dst, &fibnum,
707 &error)) {
708 case 1: /* Finished */
709 goto done;
710
711 case 0: /* Continue normally */
712 ip = mtod(m, struct ip *);
713 ip_len = ntohs(ip->ip_len);
714 break;
715
716 case -1: /* Need to try again */
717 /* Reset everything for a new round */
718 if (ro != NULL) {
719 RO_NHFREE(ro);
720 ro->ro_prepend = NULL;
721 }
722 gw = (const struct sockaddr *)dst;
723 ip = mtod(m, struct ip *);
724 goto again;
725 }
726 }
727
728 if (vlan_pcp > -1)
729 EVL_APPLY_PRI(m, vlan_pcp);
730
731 /* IN_LOOPBACK must not appear on the wire - RFC1122. */
732 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) ||
733 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) {
734 if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
735 IPSTAT_INC(ips_badaddr);
736 error = EADDRNOTAVAIL;
737 goto bad;
738 }
739 }
740
741 /* Ensure the packet data is mapped if the interface requires it. */
742 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) {
743 struct mbuf *m1;
744
745 error = mb_unmapped_to_ext(m, &m1);
746 if (error != 0) {
747 if (error == EINVAL) {
748 if_printf(ifp, "TLS packet\n");
749 /* XXXKIB */
750 } else if (error == ENOMEM) {
751 error = ENOBUFS;
752 }
753 IPSTAT_INC(ips_odropped);
754 goto done;
755 } else {
756 m = m1;
757 }
758 }
759
760 m->m_pkthdr.csum_flags |= CSUM_IP;
761 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
762 in_delayed_cksum(m);
763 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
764 }
765 #if defined(SCTP) || defined(SCTP_SUPPORT)
766 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
767 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2));
768 m->m_pkthdr.csum_flags &= ~CSUM_SCTP;
769 }
770 #endif
771
772 /*
773 * If small enough for interface, or the interface will take
774 * care of the fragmentation for us, we can just send directly.
775 * Note that if_vxlan could have requested TSO even though the outer
776 * frame is UDP. It is correct to not fragment such datagrams and
777 * instead just pass them on to the driver.
778 */
779 if (ip_len <= mtu ||
780 (m->m_pkthdr.csum_flags & ifp->if_hwassist &
781 (CSUM_TSO | CSUM_INNER_TSO)) != 0) {
782 ip->ip_sum = 0;
783 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
784 ip->ip_sum = in_cksum(m, hlen);
785 m->m_pkthdr.csum_flags &= ~CSUM_IP;
786 }
787
788 /*
789 * Record statistics for this interface address.
790 * With CSUM_TSO the byte/packet count will be slightly
791 * incorrect because we count the IP+TCP headers only
792 * once instead of for every generated packet.
793 */
794 if (!(flags & IP_FORWARDING) && ia) {
795 if (m->m_pkthdr.csum_flags &
796 (CSUM_TSO | CSUM_INNER_TSO))
797 counter_u64_add(ia->ia_ifa.ifa_opackets,
798 m->m_pkthdr.len / m->m_pkthdr.tso_segsz);
799 else
800 counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
801
802 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len);
803 }
804 #ifdef MBUF_STRESS_TEST
805 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
806 m = m_fragment(m, M_NOWAIT, mbuf_frag_size);
807 #endif
808 /*
809 * Reset layer specific mbuf flags
810 * to avoid confusing lower layers.
811 */
812 m_clrprotoflags(m);
813 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL);
814 error = ip_output_send(inp, ifp, m, gw, ro,
815 (flags & IP_NO_SND_TAG_RL) ? false : true);
816 goto done;
817 }
818
819 /* Balk when DF bit is set or the interface didn't support TSO. */
820 if ((ip_off & IP_DF) ||
821 (m->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_INNER_TSO))) {
822 error = EMSGSIZE;
823 IPSTAT_INC(ips_cantfrag);
824 goto bad;
825 }
826
827 /*
828 * Too large for interface; fragment if possible. If successful,
829 * on return, m will point to a list of packets to be sent.
830 */
831 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist);
832 if (error)
833 goto bad;
834 for (; m; m = m0) {
835 m0 = m->m_nextpkt;
836 m->m_nextpkt = 0;
837 if (error == 0) {
838 /* Record statistics for this interface address. */
839 if (ia != NULL) {
840 counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
841 counter_u64_add(ia->ia_ifa.ifa_obytes,
842 m->m_pkthdr.len);
843 }
844 /*
845 * Reset layer specific mbuf flags
846 * to avoid confusing upper layers.
847 */
848 m_clrprotoflags(m);
849
850 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp,
851 mtod(m, struct ip *), NULL);
852 error = ip_output_send(inp, ifp, m, gw, ro, true);
853 } else
854 m_freem(m);
855 }
856
857 if (error == 0)
858 IPSTAT_INC(ips_fragmented);
859
860 done:
861 return (error);
862 bad:
863 m_freem(m);
864 goto done;
865 }
866
867 /*
868 * Create a chain of fragments which fit the given mtu. m_frag points to the
869 * mbuf to be fragmented; on return it points to the chain with the fragments.
870 * Return 0 if no error. If error, m_frag may contain a partially built
871 * chain of fragments that should be freed by the caller.
872 *
873 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
874 */
875 int
ip_fragment(struct ip * ip,struct mbuf ** m_frag,int mtu,u_long if_hwassist_flags)876 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
877 u_long if_hwassist_flags)
878 {
879 int error = 0;
880 int hlen = ip->ip_hl << 2;
881 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */
882 int off;
883 struct mbuf *m0 = *m_frag; /* the original packet */
884 int firstlen;
885 struct mbuf **mnext;
886 int nfrags;
887 uint16_t ip_len, ip_off;
888
889 ip_len = ntohs(ip->ip_len);
890 ip_off = ntohs(ip->ip_off);
891
892 /*
893 * Packet shall not have "Don't Fragment" flag and have at least 8
894 * bytes of payload.
895 */
896 if (__predict_false((ip_off & IP_DF) || len < 8)) {
897 IPSTAT_INC(ips_cantfrag);
898 return (EMSGSIZE);
899 }
900
901 /*
902 * If the interface will not calculate checksums on
903 * fragmented packets, then do it here.
904 */
905 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
906 in_delayed_cksum(m0);
907 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
908 }
909 #if defined(SCTP) || defined(SCTP_SUPPORT)
910 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) {
911 sctp_delayed_cksum(m0, hlen);
912 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
913 }
914 #endif
915 if (len > PAGE_SIZE) {
916 /*
917 * Fragment large datagrams such that each segment
918 * contains a multiple of PAGE_SIZE amount of data,
919 * plus headers. This enables a receiver to perform
920 * page-flipping zero-copy optimizations.
921 *
922 * XXX When does this help given that sender and receiver
923 * could have different page sizes, and also mtu could
924 * be less than the receiver's page size ?
925 */
926 int newlen;
927
928 off = MIN(mtu, m0->m_pkthdr.len);
929
930 /*
931 * firstlen (off - hlen) must be aligned on an
932 * 8-byte boundary
933 */
934 if (off < hlen)
935 goto smart_frag_failure;
936 off = ((off - hlen) & ~7) + hlen;
937 newlen = (~PAGE_MASK) & mtu;
938 if ((newlen + sizeof (struct ip)) > mtu) {
939 /* we failed, go back the default */
940 smart_frag_failure:
941 newlen = len;
942 off = hlen + len;
943 }
944 len = newlen;
945
946 } else {
947 off = hlen + len;
948 }
949
950 firstlen = off - hlen;
951 mnext = &m0->m_nextpkt; /* pointer to next packet */
952
953 /*
954 * Loop through length of segment after first fragment,
955 * make new header and copy data of each part and link onto chain.
956 * Here, m0 is the original packet, m is the fragment being created.
957 * The fragments are linked off the m_nextpkt of the original
958 * packet, which after processing serves as the first fragment.
959 */
960 for (nfrags = 1; off < ip_len; off += len, nfrags++) {
961 struct ip *mhip; /* ip header on the fragment */
962 struct mbuf *m;
963 int mhlen = sizeof (struct ip);
964
965 m = m_gethdr(M_NOWAIT, MT_DATA);
966 if (m == NULL) {
967 error = ENOBUFS;
968 IPSTAT_INC(ips_odropped);
969 goto done;
970 }
971 /*
972 * Make sure the complete packet header gets copied
973 * from the originating mbuf to the newly created
974 * mbuf. This also ensures that existing firewall
975 * classification(s), VLAN tags and so on get copied
976 * to the resulting fragmented packet(s):
977 */
978 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) {
979 m_free(m);
980 error = ENOBUFS;
981 IPSTAT_INC(ips_odropped);
982 goto done;
983 }
984 /*
985 * In the first mbuf, leave room for the link header, then
986 * copy the original IP header including options. The payload
987 * goes into an additional mbuf chain returned by m_copym().
988 */
989 m->m_data += max_linkhdr;
990 mhip = mtod(m, struct ip *);
991 *mhip = *ip;
992 if (hlen > sizeof (struct ip)) {
993 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
994 mhip->ip_v = IPVERSION;
995 mhip->ip_hl = mhlen >> 2;
996 }
997 m->m_len = mhlen;
998 /* XXX do we need to add ip_off below ? */
999 mhip->ip_off = ((off - hlen) >> 3) + ip_off;
1000 if (off + len >= ip_len)
1001 len = ip_len - off;
1002 else
1003 mhip->ip_off |= IP_MF;
1004 mhip->ip_len = htons((u_short)(len + mhlen));
1005 m->m_next = m_copym(m0, off, len, M_NOWAIT);
1006 if (m->m_next == NULL) { /* copy failed */
1007 m_free(m);
1008 error = ENOBUFS; /* ??? */
1009 IPSTAT_INC(ips_odropped);
1010 goto done;
1011 }
1012 m->m_pkthdr.len = mhlen + len;
1013 #ifdef MAC
1014 mac_netinet_fragment(m0, m);
1015 #endif
1016 mhip->ip_off = htons(mhip->ip_off);
1017 mhip->ip_sum = 0;
1018 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
1019 mhip->ip_sum = in_cksum(m, mhlen);
1020 m->m_pkthdr.csum_flags &= ~CSUM_IP;
1021 }
1022 *mnext = m;
1023 mnext = &m->m_nextpkt;
1024 }
1025 IPSTAT_ADD(ips_ofragments, nfrags);
1026
1027 /*
1028 * Update first fragment by trimming what's been copied out
1029 * and updating header.
1030 */
1031 m_adj(m0, hlen + firstlen - ip_len);
1032 m0->m_pkthdr.len = hlen + firstlen;
1033 ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1034 ip->ip_off = htons(ip_off | IP_MF);
1035 ip->ip_sum = 0;
1036 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
1037 ip->ip_sum = in_cksum(m0, hlen);
1038 m0->m_pkthdr.csum_flags &= ~CSUM_IP;
1039 }
1040
1041 done:
1042 *m_frag = m0;
1043 return error;
1044 }
1045
1046 void
in_delayed_cksum(struct mbuf * m)1047 in_delayed_cksum(struct mbuf *m)
1048 {
1049 struct ip *ip;
1050 struct udphdr *uh;
1051 uint16_t cklen, csum, offset;
1052
1053 ip = mtod(m, struct ip *);
1054 offset = ip->ip_hl << 2 ;
1055
1056 if (m->m_pkthdr.csum_flags & CSUM_UDP) {
1057 /* if udp header is not in the first mbuf copy udplen */
1058 if (offset + sizeof(struct udphdr) > m->m_len) {
1059 m_copydata(m, offset + offsetof(struct udphdr,
1060 uh_ulen), sizeof(cklen), (caddr_t)&cklen);
1061 cklen = ntohs(cklen);
1062 } else {
1063 uh = (struct udphdr *)mtodo(m, offset);
1064 cklen = ntohs(uh->uh_ulen);
1065 }
1066 csum = in_cksum_skip(m, cklen + offset, offset);
1067 if (csum == 0)
1068 csum = 0xffff;
1069 } else {
1070 cklen = ntohs(ip->ip_len);
1071 csum = in_cksum_skip(m, cklen, offset);
1072 }
1073 offset += m->m_pkthdr.csum_data; /* checksum offset */
1074
1075 if (offset + sizeof(csum) > m->m_len)
1076 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum);
1077 else
1078 *(u_short *)mtodo(m, offset) = csum;
1079 }
1080
1081 /*
1082 * IP socket option processing.
1083 */
1084 int
ip_ctloutput(struct socket * so,struct sockopt * sopt)1085 ip_ctloutput(struct socket *so, struct sockopt *sopt)
1086 {
1087 struct inpcb *inp = sotoinpcb(so);
1088 int error, optval;
1089 #ifdef RSS
1090 uint32_t rss_bucket;
1091 int retval;
1092 #endif
1093
1094 error = optval = 0;
1095 if (sopt->sopt_level != IPPROTO_IP) {
1096 error = EINVAL;
1097
1098 if (sopt->sopt_level == SOL_SOCKET &&
1099 sopt->sopt_dir == SOPT_SET) {
1100 switch (sopt->sopt_name) {
1101 case SO_SETFIB:
1102 error = sooptcopyin(sopt, &optval,
1103 sizeof(optval), sizeof(optval));
1104 if (error != 0)
1105 break;
1106
1107 INP_WLOCK(inp);
1108 if ((inp->inp_flags & INP_BOUNDFIB) != 0 &&
1109 optval != so->so_fibnum) {
1110 INP_WUNLOCK(inp);
1111 error = EISCONN;
1112 break;
1113 }
1114 error = sosetfib(inp->inp_socket, optval);
1115 if (error == 0)
1116 inp->inp_inc.inc_fibnum = optval;
1117 INP_WUNLOCK(inp);
1118 break;
1119 case SO_MAX_PACING_RATE:
1120 #ifdef RATELIMIT
1121 INP_WLOCK(inp);
1122 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
1123 INP_WUNLOCK(inp);
1124 error = 0;
1125 #else
1126 error = EOPNOTSUPP;
1127 #endif
1128 break;
1129 default:
1130 break;
1131 }
1132 }
1133 return (error);
1134 }
1135
1136 switch (sopt->sopt_dir) {
1137 case SOPT_SET:
1138 switch (sopt->sopt_name) {
1139 case IP_OPTIONS:
1140 #ifdef notyet
1141 case IP_RETOPTS:
1142 #endif
1143 {
1144 struct mbuf *m;
1145 if (sopt->sopt_valsize > MLEN) {
1146 error = EMSGSIZE;
1147 break;
1148 }
1149 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
1150 if (m == NULL) {
1151 error = ENOBUFS;
1152 break;
1153 }
1154 m->m_len = sopt->sopt_valsize;
1155 error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1156 m->m_len);
1157 if (error) {
1158 m_free(m);
1159 break;
1160 }
1161 INP_WLOCK(inp);
1162 error = ip_pcbopts(inp, sopt->sopt_name, m);
1163 INP_WUNLOCK(inp);
1164 return (error);
1165 }
1166
1167 case IP_BINDANY:
1168 if (sopt->sopt_td != NULL) {
1169 error = priv_check(sopt->sopt_td,
1170 PRIV_NETINET_BINDANY);
1171 if (error)
1172 break;
1173 }
1174 /* FALLTHROUGH */
1175 case IP_TOS:
1176 case IP_TTL:
1177 case IP_MINTTL:
1178 case IP_RECVOPTS:
1179 case IP_RECVRETOPTS:
1180 case IP_ORIGDSTADDR:
1181 case IP_RECVDSTADDR:
1182 case IP_RECVTTL:
1183 case IP_RECVIF:
1184 case IP_ONESBCAST:
1185 case IP_DONTFRAG:
1186 case IP_RECVTOS:
1187 case IP_RECVFLOWID:
1188 #ifdef RSS
1189 case IP_RECVRSSBUCKETID:
1190 #endif
1191 case IP_VLAN_PCP:
1192 error = sooptcopyin(sopt, &optval, sizeof optval,
1193 sizeof optval);
1194 if (error)
1195 break;
1196
1197 switch (sopt->sopt_name) {
1198 case IP_TOS:
1199 inp->inp_ip_tos = optval;
1200 break;
1201
1202 case IP_TTL:
1203 inp->inp_ip_ttl = optval;
1204 break;
1205
1206 case IP_MINTTL:
1207 if (optval >= 0 && optval <= MAXTTL)
1208 inp->inp_ip_minttl = optval;
1209 else
1210 error = EINVAL;
1211 break;
1212
1213 #define OPTSET(bit) do { \
1214 INP_WLOCK(inp); \
1215 if (optval) \
1216 inp->inp_flags |= bit; \
1217 else \
1218 inp->inp_flags &= ~bit; \
1219 INP_WUNLOCK(inp); \
1220 } while (0)
1221
1222 #define OPTSET2(bit, val) do { \
1223 INP_WLOCK(inp); \
1224 if (val) \
1225 inp->inp_flags2 |= bit; \
1226 else \
1227 inp->inp_flags2 &= ~bit; \
1228 INP_WUNLOCK(inp); \
1229 } while (0)
1230
1231 case IP_RECVOPTS:
1232 OPTSET(INP_RECVOPTS);
1233 break;
1234
1235 case IP_RECVRETOPTS:
1236 OPTSET(INP_RECVRETOPTS);
1237 break;
1238
1239 case IP_RECVDSTADDR:
1240 OPTSET(INP_RECVDSTADDR);
1241 break;
1242
1243 case IP_ORIGDSTADDR:
1244 OPTSET2(INP_ORIGDSTADDR, optval);
1245 break;
1246
1247 case IP_RECVTTL:
1248 OPTSET(INP_RECVTTL);
1249 break;
1250
1251 case IP_RECVIF:
1252 OPTSET(INP_RECVIF);
1253 break;
1254
1255 case IP_ONESBCAST:
1256 OPTSET(INP_ONESBCAST);
1257 break;
1258 case IP_DONTFRAG:
1259 OPTSET(INP_DONTFRAG);
1260 break;
1261 case IP_BINDANY:
1262 OPTSET(INP_BINDANY);
1263 break;
1264 case IP_RECVTOS:
1265 OPTSET(INP_RECVTOS);
1266 break;
1267 case IP_RECVFLOWID:
1268 OPTSET2(INP_RECVFLOWID, optval);
1269 break;
1270 #ifdef RSS
1271 case IP_RECVRSSBUCKETID:
1272 OPTSET2(INP_RECVRSSBUCKETID, optval);
1273 break;
1274 #endif
1275 case IP_VLAN_PCP:
1276 if ((optval >= -1) && (optval <=
1277 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) {
1278 if (optval == -1) {
1279 INP_WLOCK(inp);
1280 inp->inp_flags2 &=
1281 ~(INP_2PCP_SET |
1282 INP_2PCP_MASK);
1283 INP_WUNLOCK(inp);
1284 } else {
1285 INP_WLOCK(inp);
1286 inp->inp_flags2 |=
1287 INP_2PCP_SET;
1288 inp->inp_flags2 &=
1289 ~INP_2PCP_MASK;
1290 inp->inp_flags2 |=
1291 optval << INP_2PCP_SHIFT;
1292 INP_WUNLOCK(inp);
1293 }
1294 } else
1295 error = EINVAL;
1296 break;
1297 }
1298 break;
1299 #undef OPTSET
1300 #undef OPTSET2
1301
1302 /*
1303 * Multicast socket options are processed by the in_mcast
1304 * module.
1305 */
1306 case IP_MULTICAST_IF:
1307 case IP_MULTICAST_VIF:
1308 case IP_MULTICAST_TTL:
1309 case IP_MULTICAST_LOOP:
1310 case IP_ADD_MEMBERSHIP:
1311 case IP_DROP_MEMBERSHIP:
1312 case IP_ADD_SOURCE_MEMBERSHIP:
1313 case IP_DROP_SOURCE_MEMBERSHIP:
1314 case IP_BLOCK_SOURCE:
1315 case IP_UNBLOCK_SOURCE:
1316 case IP_MSFILTER:
1317 case MCAST_JOIN_GROUP:
1318 case MCAST_LEAVE_GROUP:
1319 case MCAST_JOIN_SOURCE_GROUP:
1320 case MCAST_LEAVE_SOURCE_GROUP:
1321 case MCAST_BLOCK_SOURCE:
1322 case MCAST_UNBLOCK_SOURCE:
1323 error = inp_setmoptions(inp, sopt);
1324 break;
1325
1326 case IP_PORTRANGE:
1327 error = sooptcopyin(sopt, &optval, sizeof optval,
1328 sizeof optval);
1329 if (error)
1330 break;
1331
1332 INP_WLOCK(inp);
1333 switch (optval) {
1334 case IP_PORTRANGE_DEFAULT:
1335 inp->inp_flags &= ~(INP_LOWPORT);
1336 inp->inp_flags &= ~(INP_HIGHPORT);
1337 break;
1338
1339 case IP_PORTRANGE_HIGH:
1340 inp->inp_flags &= ~(INP_LOWPORT);
1341 inp->inp_flags |= INP_HIGHPORT;
1342 break;
1343
1344 case IP_PORTRANGE_LOW:
1345 inp->inp_flags &= ~(INP_HIGHPORT);
1346 inp->inp_flags |= INP_LOWPORT;
1347 break;
1348
1349 default:
1350 error = EINVAL;
1351 break;
1352 }
1353 INP_WUNLOCK(inp);
1354 break;
1355
1356 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1357 case IP_IPSEC_POLICY:
1358 if (IPSEC_ENABLED(ipv4)) {
1359 error = IPSEC_PCBCTL(ipv4, inp, sopt);
1360 break;
1361 }
1362 /* FALLTHROUGH */
1363 #endif /* IPSEC */
1364
1365 default:
1366 error = ENOPROTOOPT;
1367 break;
1368 }
1369 break;
1370
1371 case SOPT_GET:
1372 switch (sopt->sopt_name) {
1373 case IP_OPTIONS:
1374 case IP_RETOPTS:
1375 INP_RLOCK(inp);
1376 if (inp->inp_options) {
1377 struct mbuf *options;
1378
1379 options = m_copym(inp->inp_options, 0,
1380 M_COPYALL, M_NOWAIT);
1381 INP_RUNLOCK(inp);
1382 if (options != NULL) {
1383 error = sooptcopyout(sopt,
1384 mtod(options, char *),
1385 options->m_len);
1386 m_freem(options);
1387 } else
1388 error = ENOMEM;
1389 } else {
1390 INP_RUNLOCK(inp);
1391 sopt->sopt_valsize = 0;
1392 }
1393 break;
1394
1395 case IP_TOS:
1396 case IP_TTL:
1397 case IP_MINTTL:
1398 case IP_RECVOPTS:
1399 case IP_RECVRETOPTS:
1400 case IP_ORIGDSTADDR:
1401 case IP_RECVDSTADDR:
1402 case IP_RECVTTL:
1403 case IP_RECVIF:
1404 case IP_PORTRANGE:
1405 case IP_ONESBCAST:
1406 case IP_DONTFRAG:
1407 case IP_BINDANY:
1408 case IP_RECVTOS:
1409 case IP_FLOWID:
1410 case IP_FLOWTYPE:
1411 case IP_RECVFLOWID:
1412 #ifdef RSS
1413 case IP_RSSBUCKETID:
1414 case IP_RECVRSSBUCKETID:
1415 #endif
1416 case IP_VLAN_PCP:
1417 switch (sopt->sopt_name) {
1418 case IP_TOS:
1419 optval = inp->inp_ip_tos;
1420 break;
1421
1422 case IP_TTL:
1423 optval = inp->inp_ip_ttl;
1424 break;
1425
1426 case IP_MINTTL:
1427 optval = inp->inp_ip_minttl;
1428 break;
1429
1430 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1431 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0)
1432
1433 case IP_RECVOPTS:
1434 optval = OPTBIT(INP_RECVOPTS);
1435 break;
1436
1437 case IP_RECVRETOPTS:
1438 optval = OPTBIT(INP_RECVRETOPTS);
1439 break;
1440
1441 case IP_RECVDSTADDR:
1442 optval = OPTBIT(INP_RECVDSTADDR);
1443 break;
1444
1445 case IP_ORIGDSTADDR:
1446 optval = OPTBIT2(INP_ORIGDSTADDR);
1447 break;
1448
1449 case IP_RECVTTL:
1450 optval = OPTBIT(INP_RECVTTL);
1451 break;
1452
1453 case IP_RECVIF:
1454 optval = OPTBIT(INP_RECVIF);
1455 break;
1456
1457 case IP_PORTRANGE:
1458 if (inp->inp_flags & INP_HIGHPORT)
1459 optval = IP_PORTRANGE_HIGH;
1460 else if (inp->inp_flags & INP_LOWPORT)
1461 optval = IP_PORTRANGE_LOW;
1462 else
1463 optval = 0;
1464 break;
1465
1466 case IP_ONESBCAST:
1467 optval = OPTBIT(INP_ONESBCAST);
1468 break;
1469 case IP_DONTFRAG:
1470 optval = OPTBIT(INP_DONTFRAG);
1471 break;
1472 case IP_BINDANY:
1473 optval = OPTBIT(INP_BINDANY);
1474 break;
1475 case IP_RECVTOS:
1476 optval = OPTBIT(INP_RECVTOS);
1477 break;
1478 case IP_FLOWID:
1479 optval = inp->inp_flowid;
1480 break;
1481 case IP_FLOWTYPE:
1482 optval = inp->inp_flowtype;
1483 break;
1484 case IP_RECVFLOWID:
1485 optval = OPTBIT2(INP_RECVFLOWID);
1486 break;
1487 #ifdef RSS
1488 case IP_RSSBUCKETID:
1489 retval = rss_hash2bucket(inp->inp_flowid,
1490 inp->inp_flowtype,
1491 &rss_bucket);
1492 if (retval == 0)
1493 optval = rss_bucket;
1494 else
1495 error = EINVAL;
1496 break;
1497 case IP_RECVRSSBUCKETID:
1498 optval = OPTBIT2(INP_RECVRSSBUCKETID);
1499 break;
1500 #endif
1501 case IP_VLAN_PCP:
1502 if (OPTBIT2(INP_2PCP_SET)) {
1503 optval = (inp->inp_flags2 &
1504 INP_2PCP_MASK) >> INP_2PCP_SHIFT;
1505 } else {
1506 optval = -1;
1507 }
1508 break;
1509 }
1510 error = sooptcopyout(sopt, &optval, sizeof optval);
1511 break;
1512
1513 /*
1514 * Multicast socket options are processed by the in_mcast
1515 * module.
1516 */
1517 case IP_MULTICAST_IF:
1518 case IP_MULTICAST_VIF:
1519 case IP_MULTICAST_TTL:
1520 case IP_MULTICAST_LOOP:
1521 case IP_MSFILTER:
1522 error = inp_getmoptions(inp, sopt);
1523 break;
1524
1525 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1526 case IP_IPSEC_POLICY:
1527 if (IPSEC_ENABLED(ipv4)) {
1528 error = IPSEC_PCBCTL(ipv4, inp, sopt);
1529 break;
1530 }
1531 /* FALLTHROUGH */
1532 #endif /* IPSEC */
1533
1534 default:
1535 error = ENOPROTOOPT;
1536 break;
1537 }
1538 break;
1539 }
1540 return (error);
1541 }
1542
1543 /*
1544 * Routine called from ip_output() to loop back a copy of an IP multicast
1545 * packet to the input queue of a specified interface. Note that this
1546 * calls the output routine of the loopback "driver", but with an interface
1547 * pointer that might NOT be a loopback interface -- evil, but easier than
1548 * replicating that code here.
1549 */
1550 static void
ip_mloopback(struct ifnet * ifp,const struct mbuf * m,int hlen)1551 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen)
1552 {
1553 struct ip *ip;
1554 struct mbuf *copym;
1555
1556 /*
1557 * Make a deep copy of the packet because we're going to
1558 * modify the pack in order to generate checksums.
1559 */
1560 copym = m_dup(m, M_NOWAIT);
1561 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen))
1562 copym = m_pullup(copym, hlen);
1563 if (copym != NULL) {
1564 /* If needed, compute the checksum and mark it as valid. */
1565 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1566 in_delayed_cksum(copym);
1567 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1568 copym->m_pkthdr.csum_flags |=
1569 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1570 copym->m_pkthdr.csum_data = 0xffff;
1571 }
1572 /*
1573 * We don't bother to fragment if the IP length is greater
1574 * than the interface's MTU. Can this possibly matter?
1575 */
1576 ip = mtod(copym, struct ip *);
1577 ip->ip_sum = 0;
1578 ip->ip_sum = in_cksum(copym, hlen);
1579 if_simloop(ifp, copym, AF_INET, 0);
1580 }
1581 }
1582