1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 1990 Mentat Inc.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright 2013 Joyent, Inc.
26 * Copyright (c) 2014, OmniTI Computer Consulting, Inc. All rights reserved.
27 */
28
29 /*
30 * This file contains the interface control functions for IP.
31 */
32
33 #include <sys/types.h>
34 #include <sys/stream.h>
35 #include <sys/dlpi.h>
36 #include <sys/stropts.h>
37 #include <sys/strsun.h>
38 #include <sys/sysmacros.h>
39 #include <sys/strsubr.h>
40 #include <sys/strlog.h>
41 #include <sys/ddi.h>
42 #include <sys/sunddi.h>
43 #include <sys/cmn_err.h>
44 #include <sys/kstat.h>
45 #include <sys/debug.h>
46 #include <sys/zone.h>
47 #include <sys/sunldi.h>
48 #include <sys/file.h>
49 #include <sys/bitmap.h>
50 #include <sys/cpuvar.h>
51 #include <sys/time.h>
52 #include <sys/ctype.h>
53 #include <sys/kmem.h>
54 #include <sys/systm.h>
55 #include <sys/param.h>
56 #include <sys/socket.h>
57 #include <sys/isa_defs.h>
58 #include <net/if.h>
59 #include <net/if_arp.h>
60 #include <net/if_types.h>
61 #include <net/if_dl.h>
62 #include <net/route.h>
63 #include <sys/sockio.h>
64 #include <netinet/in.h>
65 #include <netinet/ip6.h>
66 #include <netinet/icmp6.h>
67 #include <netinet/igmp_var.h>
68 #include <sys/policy.h>
69 #include <sys/ethernet.h>
70 #include <sys/callb.h>
71 #include <sys/md5.h>
72
73 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */
74 #include <inet/mi.h>
75 #include <inet/nd.h>
76 #include <inet/tunables.h>
77 #include <inet/arp.h>
78 #include <inet/ip_arp.h>
79 #include <inet/mib2.h>
80 #include <inet/ip.h>
81 #include <inet/ip6.h>
82 #include <inet/ip6_asp.h>
83 #include <inet/tcp.h>
84 #include <inet/ip_multi.h>
85 #include <inet/ip_ire.h>
86 #include <inet/ip_ftable.h>
87 #include <inet/ip_rts.h>
88 #include <inet/ip_ndp.h>
89 #include <inet/ip_if.h>
90 #include <inet/ip_impl.h>
91 #include <inet/sctp_ip.h>
92 #include <inet/ip_netinfo.h>
93 #include <inet/ilb_ip.h>
94
95 #include <netinet/igmp.h>
96 #include <inet/ip_listutils.h>
97 #include <inet/ipclassifier.h>
98 #include <sys/mac_client.h>
99 #include <sys/dld.h>
100 #include <sys/mac_flow.h>
101
102 #include <sys/systeminfo.h>
103 #include <sys/bootconf.h>
104
105 #include <sys/tsol/tndb.h>
106 #include <sys/tsol/tnet.h>
107
108 #include <inet/rawip_impl.h> /* needed for icmp_stack_t */
109 #include <inet/udp_impl.h> /* needed for udp_stack_t */
110
111 /* The character which tells where the ill_name ends */
112 #define IPIF_SEPARATOR_CHAR ':'
113
114 /* IP ioctl function table entry */
115 typedef struct ipft_s {
116 int ipft_cmd;
117 pfi_t ipft_pfi;
118 int ipft_min_size;
119 int ipft_flags;
120 } ipft_t;
121 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */
122 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */
123
124 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *);
125 static int nd_ill_forward_set(queue_t *q, mblk_t *mp,
126 char *value, caddr_t cp, cred_t *ioc_cr);
127
128 static boolean_t ill_is_quiescent(ill_t *);
129 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask);
130 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type);
131 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
132 mblk_t *mp, boolean_t need_up);
133 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
134 mblk_t *mp, boolean_t need_up);
135 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
136 queue_t *q, mblk_t *mp, boolean_t need_up);
137 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q,
138 mblk_t *mp);
139 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
140 mblk_t *mp);
141 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t,
142 queue_t *q, mblk_t *mp, boolean_t need_up);
143 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp,
144 int ioccmd, struct linkblk *li);
145 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *);
146 static void ip_wput_ioctl(queue_t *q, mblk_t *mp);
147 static void ipsq_flush(ill_t *ill);
148
149 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen,
150 queue_t *q, mblk_t *mp, boolean_t need_up);
151 static void ipsq_delete(ipsq_t *);
152
153 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type,
154 boolean_t initialize, boolean_t insert, int *errorp);
155 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep);
156 static void ipif_delete_bcast_ires(ipif_t *ipif);
157 static int ipif_add_ires_v4(ipif_t *, boolean_t);
158 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif,
159 boolean_t isv6);
160 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp);
161 static void ipif_free(ipif_t *ipif);
162 static void ipif_free_tail(ipif_t *ipif);
163 static void ipif_set_default(ipif_t *ipif);
164 static int ipif_set_values(queue_t *q, mblk_t *mp,
165 char *interf_name, uint_t *ppa);
166 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp,
167 queue_t *q);
168 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen,
169 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid,
170 ip_stack_t *);
171 static ipif_t *ipif_lookup_on_name_async(char *name, size_t namelen,
172 boolean_t isv6, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func,
173 int *error, ip_stack_t *);
174
175 static int ill_alloc_ppa(ill_if_t *, ill_t *);
176 static void ill_delete_interface_type(ill_if_t *);
177 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q);
178 static void ill_dl_down(ill_t *ill);
179 static void ill_down(ill_t *ill);
180 static void ill_down_ipifs(ill_t *, boolean_t);
181 static void ill_free_mib(ill_t *ill);
182 static void ill_glist_delete(ill_t *);
183 static void ill_phyint_reinit(ill_t *ill);
184 static void ill_set_nce_router_flags(ill_t *, boolean_t);
185 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *);
186 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *);
187
188 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid;
189 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid;
190 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid;
191 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid;
192 static ip_v4mapinfo_func_t ip_ether_v4_mapping;
193 static ip_v6mapinfo_func_t ip_ether_v6_mapping;
194 static ip_v4mapinfo_func_t ip_ib_v4_mapping;
195 static ip_v6mapinfo_func_t ip_ib_v6_mapping;
196 static ip_v4mapinfo_func_t ip_mbcast_mapping;
197 static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *);
198 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *);
199 static void phyint_free(phyint_t *);
200
201 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *);
202 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
203 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
204 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
205 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *);
206 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *,
207 dl_capability_sub_t *);
208 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *);
209 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *);
210 static void ill_capability_dld_ack(ill_t *, mblk_t *,
211 dl_capability_sub_t *);
212 static void ill_capability_dld_enable(ill_t *);
213 static void ill_capability_ack_thr(void *);
214 static void ill_capability_lso_enable(ill_t *);
215
216 static ill_t *ill_prev_usesrc(ill_t *);
217 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t);
218 static void ill_disband_usesrc_group(ill_t *);
219 static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int);
220
221 #ifdef DEBUG
222 static void ill_trace_cleanup(const ill_t *);
223 static void ipif_trace_cleanup(const ipif_t *);
224 #endif
225
226 static void ill_dlpi_clear_deferred(ill_t *ill);
227
228 static void phyint_flags_init(phyint_t *, t_uscalar_t);
229
230 /*
231 * if we go over the memory footprint limit more than once in this msec
232 * interval, we'll start pruning aggressively.
233 */
234 int ip_min_frag_prune_time = 0;
235
236 static ipft_t ip_ioctl_ftbl[] = {
237 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 },
238 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t),
239 IPFT_F_NO_REPLY },
240 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY },
241 { 0 }
242 };
243
244 /* Simple ICMP IP Header Template */
245 static ipha_t icmp_ipha = {
246 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
247 };
248
249 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
250
251 static ip_m_t ip_m_tbl[] = {
252 { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
253 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid,
254 ip_nodef_v6intfid },
255 { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6,
256 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
257 ip_nodef_v6intfid },
258 { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6,
259 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
260 ip_nodef_v6intfid },
261 { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6,
262 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
263 ip_nodef_v6intfid },
264 { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6,
265 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid,
266 ip_nodef_v6intfid },
267 { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6,
268 ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid,
269 ip_nodef_v6intfid },
270 { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6,
271 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid,
272 ip_ipv4_v6destintfid },
273 { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6,
274 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid,
275 ip_ipv6_v6destintfid },
276 { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6,
277 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid,
278 ip_nodef_v6intfid },
279 { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
280 NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid },
281 { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
282 NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid },
283 { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
284 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
285 ip_nodef_v6intfid }
286 };
287
288 char ipif_loopback_name[] = "lo0";
289
290 /* These are used by all IP network modules. */
291 sin6_t sin6_null; /* Zero address for quick clears */
292 sin_t sin_null; /* Zero address for quick clears */
293
294 /* When set search for unused ipif_seqid */
295 static ipif_t ipif_zero;
296
297 /*
298 * ppa arena is created after these many
299 * interfaces have been plumbed.
300 */
301 uint_t ill_no_arena = 12; /* Setable in /etc/system */
302
303 /*
304 * Allocate per-interface mibs.
305 * Returns true if ok. False otherwise.
306 * ipsq may not yet be allocated (loopback case ).
307 */
308 static boolean_t
ill_allocate_mibs(ill_t * ill)309 ill_allocate_mibs(ill_t *ill)
310 {
311 /* Already allocated? */
312 if (ill->ill_ip_mib != NULL) {
313 if (ill->ill_isv6)
314 ASSERT(ill->ill_icmp6_mib != NULL);
315 return (B_TRUE);
316 }
317
318 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib),
319 KM_NOSLEEP);
320 if (ill->ill_ip_mib == NULL) {
321 return (B_FALSE);
322 }
323
324 /* Setup static information */
325 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize,
326 sizeof (mib2_ipIfStatsEntry_t));
327 if (ill->ill_isv6) {
328 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
329 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
330 sizeof (mib2_ipv6AddrEntry_t));
331 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
332 sizeof (mib2_ipv6RouteEntry_t));
333 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
334 sizeof (mib2_ipv6NetToMediaEntry_t));
335 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
336 sizeof (ipv6_member_t));
337 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
338 sizeof (ipv6_grpsrc_t));
339 } else {
340 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
341 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
342 sizeof (mib2_ipAddrEntry_t));
343 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
344 sizeof (mib2_ipRouteEntry_t));
345 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
346 sizeof (mib2_ipNetToMediaEntry_t));
347 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
348 sizeof (ip_member_t));
349 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
350 sizeof (ip_grpsrc_t));
351
352 /*
353 * For a v4 ill, we are done at this point, because per ill
354 * icmp mibs are only used for v6.
355 */
356 return (B_TRUE);
357 }
358
359 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib),
360 KM_NOSLEEP);
361 if (ill->ill_icmp6_mib == NULL) {
362 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
363 ill->ill_ip_mib = NULL;
364 return (B_FALSE);
365 }
366 /* static icmp info */
367 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize =
368 sizeof (mib2_ipv6IfIcmpEntry_t);
369 /*
370 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later
371 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert
372 * -> ill_phyint_reinit
373 */
374 return (B_TRUE);
375 }
376
377 /*
378 * Completely vaporize a lower level tap and all associated interfaces.
379 * ill_delete is called only out of ip_close when the device control
380 * stream is being closed.
381 */
382 void
ill_delete(ill_t * ill)383 ill_delete(ill_t *ill)
384 {
385 ipif_t *ipif;
386 ill_t *prev_ill;
387 ip_stack_t *ipst = ill->ill_ipst;
388
389 /*
390 * ill_delete may be forcibly entering the ipsq. The previous
391 * ioctl may not have completed and may need to be aborted.
392 * ipsq_flush takes care of it. If we don't need to enter the
393 * the ipsq forcibly, the 2nd invocation of ipsq_flush in
394 * ill_delete_tail is sufficient.
395 */
396 ipsq_flush(ill);
397
398 /*
399 * Nuke all interfaces. ipif_free will take down the interface,
400 * remove it from the list, and free the data structure.
401 * Walk down the ipif list and remove the logical interfaces
402 * first before removing the main ipif. We can't unplumb
403 * zeroth interface first in the case of IPv6 as update_conn_ill
404 * -> ip_ll_multireq de-references ill_ipif for checking
405 * POINTOPOINT.
406 *
407 * If ill_ipif was not properly initialized (i.e low on memory),
408 * then no interfaces to clean up. In this case just clean up the
409 * ill.
410 */
411 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
412 ipif_free(ipif);
413
414 /*
415 * clean out all the nce_t entries that depend on this
416 * ill for the ill_phys_addr.
417 */
418 nce_flush(ill, B_TRUE);
419
420 /* Clean up msgs on pending upcalls for mrouted */
421 reset_mrt_ill(ill);
422
423 update_conn_ill(ill, ipst);
424
425 /*
426 * Remove multicast references added as a result of calls to
427 * ip_join_allmulti().
428 */
429 ip_purge_allmulti(ill);
430
431 /*
432 * If the ill being deleted is under IPMP, boot it out of the illgrp.
433 */
434 if (IS_UNDER_IPMP(ill))
435 ipmp_ill_leave_illgrp(ill);
436
437 /*
438 * ill_down will arrange to blow off any IRE's dependent on this
439 * ILL, and shut down fragmentation reassembly.
440 */
441 ill_down(ill);
442
443 /* Let SCTP know, so that it can remove this from its list. */
444 sctp_update_ill(ill, SCTP_ILL_REMOVE);
445
446 /*
447 * Walk all CONNs that can have a reference on an ire or nce for this
448 * ill (we actually walk all that now have stale references).
449 */
450 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst);
451
452 /* With IPv6 we have dce_ifindex. Cleanup for neatness */
453 if (ill->ill_isv6)
454 dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst);
455
456 /*
457 * If an address on this ILL is being used as a source address then
458 * clear out the pointers in other ILLs that point to this ILL.
459 */
460 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
461 if (ill->ill_usesrc_grp_next != NULL) {
462 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */
463 ill_disband_usesrc_group(ill);
464 } else { /* consumer of the usesrc ILL */
465 prev_ill = ill_prev_usesrc(ill);
466 prev_ill->ill_usesrc_grp_next =
467 ill->ill_usesrc_grp_next;
468 }
469 }
470 rw_exit(&ipst->ips_ill_g_usesrc_lock);
471 }
472
473 static void
ipif_non_duplicate(ipif_t * ipif)474 ipif_non_duplicate(ipif_t *ipif)
475 {
476 ill_t *ill = ipif->ipif_ill;
477 mutex_enter(&ill->ill_lock);
478 if (ipif->ipif_flags & IPIF_DUPLICATE) {
479 ipif->ipif_flags &= ~IPIF_DUPLICATE;
480 ASSERT(ill->ill_ipif_dup_count > 0);
481 ill->ill_ipif_dup_count--;
482 }
483 mutex_exit(&ill->ill_lock);
484 }
485
486 /*
487 * ill_delete_tail is called from ip_modclose after all references
488 * to the closing ill are gone. The wait is done in ip_modclose
489 */
490 void
ill_delete_tail(ill_t * ill)491 ill_delete_tail(ill_t *ill)
492 {
493 mblk_t **mpp;
494 ipif_t *ipif;
495 ip_stack_t *ipst = ill->ill_ipst;
496
497 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
498 ipif_non_duplicate(ipif);
499 (void) ipif_down_tail(ipif);
500 }
501
502 ASSERT(ill->ill_ipif_dup_count == 0);
503
504 /*
505 * If polling capability is enabled (which signifies direct
506 * upcall into IP and driver has ill saved as a handle),
507 * we need to make sure that unbind has completed before we
508 * let the ill disappear and driver no longer has any reference
509 * to this ill.
510 */
511 mutex_enter(&ill->ill_lock);
512 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS)
513 cv_wait(&ill->ill_cv, &ill->ill_lock);
514 mutex_exit(&ill->ill_lock);
515 ASSERT(!(ill->ill_capabilities &
516 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT)));
517
518 if (ill->ill_net_type != IRE_LOOPBACK)
519 qprocsoff(ill->ill_rq);
520
521 /*
522 * We do an ipsq_flush once again now. New messages could have
523 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls
524 * could also have landed up if an ioctl thread had looked up
525 * the ill before we set the ILL_CONDEMNED flag, but not yet
526 * enqueued the ioctl when we did the ipsq_flush last time.
527 */
528 ipsq_flush(ill);
529
530 /*
531 * Free capabilities.
532 */
533 if (ill->ill_hcksum_capab != NULL) {
534 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t));
535 ill->ill_hcksum_capab = NULL;
536 }
537
538 if (ill->ill_zerocopy_capab != NULL) {
539 kmem_free(ill->ill_zerocopy_capab,
540 sizeof (ill_zerocopy_capab_t));
541 ill->ill_zerocopy_capab = NULL;
542 }
543
544 if (ill->ill_lso_capab != NULL) {
545 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
546 ill->ill_lso_capab = NULL;
547 }
548
549 if (ill->ill_dld_capab != NULL) {
550 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t));
551 ill->ill_dld_capab = NULL;
552 }
553
554 /* Clean up ill_allowed_ips* related state */
555 if (ill->ill_allowed_ips != NULL) {
556 ASSERT(ill->ill_allowed_ips_cnt > 0);
557 kmem_free(ill->ill_allowed_ips,
558 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
559 ill->ill_allowed_ips = NULL;
560 ill->ill_allowed_ips_cnt = 0;
561 }
562
563 while (ill->ill_ipif != NULL)
564 ipif_free_tail(ill->ill_ipif);
565
566 /*
567 * We have removed all references to ilm from conn and the ones joined
568 * within the kernel.
569 *
570 * We don't walk conns, mrts and ires because
571 *
572 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts.
573 * 2) ill_down ->ill_downi walks all the ires and cleans up
574 * ill references.
575 */
576
577 /*
578 * If this ill is an IPMP meta-interface, blow away the illgrp. This
579 * is safe to do because the illgrp has already been unlinked from the
580 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it.
581 */
582 if (IS_IPMP(ill)) {
583 ipmp_illgrp_destroy(ill->ill_grp);
584 ill->ill_grp = NULL;
585 }
586
587 if (ill->ill_mphysaddr_list != NULL) {
588 multiphysaddr_t *mpa, *tmpa;
589
590 mpa = ill->ill_mphysaddr_list;
591 ill->ill_mphysaddr_list = NULL;
592 while (mpa) {
593 tmpa = mpa->mpa_next;
594 kmem_free(mpa, sizeof (*mpa));
595 mpa = tmpa;
596 }
597 }
598 /*
599 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free
600 * could free the phyint. No more reference to the phyint after this
601 * point.
602 */
603 (void) ill_glist_delete(ill);
604
605 if (ill->ill_frag_ptr != NULL) {
606 uint_t count;
607
608 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
609 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock);
610 }
611 mi_free(ill->ill_frag_ptr);
612 ill->ill_frag_ptr = NULL;
613 ill->ill_frag_hash_tbl = NULL;
614 }
615
616 freemsg(ill->ill_nd_lla_mp);
617 /* Free all retained control messages. */
618 mpp = &ill->ill_first_mp_to_free;
619 do {
620 while (mpp[0]) {
621 mblk_t *mp;
622 mblk_t *mp1;
623
624 mp = mpp[0];
625 mpp[0] = mp->b_next;
626 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
627 mp1->b_next = NULL;
628 mp1->b_prev = NULL;
629 }
630 freemsg(mp);
631 }
632 } while (mpp++ != &ill->ill_last_mp_to_free);
633
634 ill_free_mib(ill);
635
636 #ifdef DEBUG
637 ill_trace_cleanup(ill);
638 #endif
639
640 /* The default multicast interface might have changed */
641 ire_increment_multicast_generation(ipst, ill->ill_isv6);
642
643 /* Drop refcnt here */
644 netstack_rele(ill->ill_ipst->ips_netstack);
645 ill->ill_ipst = NULL;
646 }
647
648 static void
ill_free_mib(ill_t * ill)649 ill_free_mib(ill_t *ill)
650 {
651 ip_stack_t *ipst = ill->ill_ipst;
652
653 /*
654 * MIB statistics must not be lost, so when an interface
655 * goes away the counter values will be added to the global
656 * MIBs.
657 */
658 if (ill->ill_ip_mib != NULL) {
659 if (ill->ill_isv6) {
660 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib,
661 ill->ill_ip_mib);
662 } else {
663 ip_mib2_add_ip_stats(&ipst->ips_ip_mib,
664 ill->ill_ip_mib);
665 }
666
667 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
668 ill->ill_ip_mib = NULL;
669 }
670 if (ill->ill_icmp6_mib != NULL) {
671 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib,
672 ill->ill_icmp6_mib);
673 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib));
674 ill->ill_icmp6_mib = NULL;
675 }
676 }
677
678 /*
679 * Concatenate together a physical address and a sap.
680 *
681 * Sap_lengths are interpreted as follows:
682 * sap_length == 0 ==> no sap
683 * sap_length > 0 ==> sap is at the head of the dlpi address
684 * sap_length < 0 ==> sap is at the tail of the dlpi address
685 */
686 static void
ill_dlur_copy_address(uchar_t * phys_src,uint_t phys_length,t_scalar_t sap_src,t_scalar_t sap_length,uchar_t * dst)687 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length,
688 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst)
689 {
690 uint16_t sap_addr = (uint16_t)sap_src;
691
692 if (sap_length == 0) {
693 if (phys_src == NULL)
694 bzero(dst, phys_length);
695 else
696 bcopy(phys_src, dst, phys_length);
697 } else if (sap_length < 0) {
698 if (phys_src == NULL)
699 bzero(dst, phys_length);
700 else
701 bcopy(phys_src, dst, phys_length);
702 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr));
703 } else {
704 bcopy(&sap_addr, dst, sizeof (sap_addr));
705 if (phys_src == NULL)
706 bzero((char *)dst + sap_length, phys_length);
707 else
708 bcopy(phys_src, (char *)dst + sap_length, phys_length);
709 }
710 }
711
712 /*
713 * Generate a dl_unitdata_req mblk for the device and address given.
714 * addr_length is the length of the physical portion of the address.
715 * If addr is NULL include an all zero address of the specified length.
716 * TRUE? In any case, addr_length is taken to be the entire length of the
717 * dlpi address, including the absolute value of sap_length.
718 */
719 mblk_t *
ill_dlur_gen(uchar_t * addr,uint_t addr_length,t_uscalar_t sap,t_scalar_t sap_length)720 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap,
721 t_scalar_t sap_length)
722 {
723 dl_unitdata_req_t *dlur;
724 mblk_t *mp;
725 t_scalar_t abs_sap_length; /* absolute value */
726
727 abs_sap_length = ABS(sap_length);
728 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length,
729 DL_UNITDATA_REQ);
730 if (mp == NULL)
731 return (NULL);
732 dlur = (dl_unitdata_req_t *)mp->b_rptr;
733 /* HACK: accomodate incompatible DLPI drivers */
734 if (addr_length == 8)
735 addr_length = 6;
736 dlur->dl_dest_addr_length = addr_length + abs_sap_length;
737 dlur->dl_dest_addr_offset = sizeof (*dlur);
738 dlur->dl_priority.dl_min = 0;
739 dlur->dl_priority.dl_max = 0;
740 ill_dlur_copy_address(addr, addr_length, sap, sap_length,
741 (uchar_t *)&dlur[1]);
742 return (mp);
743 }
744
745 /*
746 * Add the pending mp to the list. There can be only 1 pending mp
747 * in the list. Any exclusive ioctl that needs to wait for a response
748 * from another module or driver needs to use this function to set
749 * the ipx_pending_mp to the ioctl mblk and wait for the response from
750 * the other module/driver. This is also used while waiting for the
751 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif.
752 */
753 boolean_t
ipsq_pending_mp_add(conn_t * connp,ipif_t * ipif,queue_t * q,mblk_t * add_mp,int waitfor)754 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp,
755 int waitfor)
756 {
757 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop;
758
759 ASSERT(IAM_WRITER_IPIF(ipif));
760 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
761 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
762 ASSERT(ipx->ipx_pending_mp == NULL);
763 /*
764 * The caller may be using a different ipif than the one passed into
765 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4
766 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT
767 * that `ipx_current_ipif == ipif'.
768 */
769 ASSERT(ipx->ipx_current_ipif != NULL);
770
771 /*
772 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the
773 * driver.
774 */
775 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) ||
776 (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) ||
777 (DB_TYPE(add_mp) == M_PCPROTO));
778
779 if (connp != NULL) {
780 ASSERT(MUTEX_HELD(&connp->conn_lock));
781 /*
782 * Return error if the conn has started closing. The conn
783 * could have finished cleaning up the pending mp list,
784 * If so we should not add another mp to the list negating
785 * the cleanup.
786 */
787 if (connp->conn_state_flags & CONN_CLOSING)
788 return (B_FALSE);
789 }
790 mutex_enter(&ipx->ipx_lock);
791 ipx->ipx_pending_ipif = ipif;
792 /*
793 * Note down the queue in b_queue. This will be returned by
794 * ipsq_pending_mp_get. Caller will then use these values to restart
795 * the processing
796 */
797 add_mp->b_next = NULL;
798 add_mp->b_queue = q;
799 ipx->ipx_pending_mp = add_mp;
800 ipx->ipx_waitfor = waitfor;
801 mutex_exit(&ipx->ipx_lock);
802
803 if (connp != NULL)
804 connp->conn_oper_pending_ill = ipif->ipif_ill;
805
806 return (B_TRUE);
807 }
808
809 /*
810 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp
811 * queued in the list.
812 */
813 mblk_t *
ipsq_pending_mp_get(ipsq_t * ipsq,conn_t ** connpp)814 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp)
815 {
816 mblk_t *curr = NULL;
817 ipxop_t *ipx = ipsq->ipsq_xop;
818
819 *connpp = NULL;
820 mutex_enter(&ipx->ipx_lock);
821 if (ipx->ipx_pending_mp == NULL) {
822 mutex_exit(&ipx->ipx_lock);
823 return (NULL);
824 }
825
826 /* There can be only 1 such excl message */
827 curr = ipx->ipx_pending_mp;
828 ASSERT(curr->b_next == NULL);
829 ipx->ipx_pending_ipif = NULL;
830 ipx->ipx_pending_mp = NULL;
831 ipx->ipx_waitfor = 0;
832 mutex_exit(&ipx->ipx_lock);
833
834 if (CONN_Q(curr->b_queue)) {
835 /*
836 * This mp did a refhold on the conn, at the start of the ioctl.
837 * So we can safely return a pointer to the conn to the caller.
838 */
839 *connpp = Q_TO_CONN(curr->b_queue);
840 } else {
841 *connpp = NULL;
842 }
843 curr->b_next = NULL;
844 curr->b_prev = NULL;
845 return (curr);
846 }
847
848 /*
849 * Cleanup the ioctl mp queued in ipx_pending_mp
850 * - Called in the ill_delete path
851 * - Called in the M_ERROR or M_HANGUP path on the ill.
852 * - Called in the conn close path.
853 *
854 * Returns success on finding the pending mblk associated with the ioctl or
855 * exclusive operation in progress, failure otherwise.
856 */
857 boolean_t
ipsq_pending_mp_cleanup(ill_t * ill,conn_t * connp)858 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp)
859 {
860 mblk_t *mp;
861 ipxop_t *ipx;
862 queue_t *q;
863 ipif_t *ipif;
864 int cmd;
865
866 ASSERT(IAM_WRITER_ILL(ill));
867 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
868
869 mutex_enter(&ipx->ipx_lock);
870 mp = ipx->ipx_pending_mp;
871 if (connp != NULL) {
872 if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) {
873 /*
874 * Nothing to clean since the conn that is closing
875 * does not have a matching pending mblk in
876 * ipx_pending_mp.
877 */
878 mutex_exit(&ipx->ipx_lock);
879 return (B_FALSE);
880 }
881 } else {
882 /*
883 * A non-zero ill_error signifies we are called in the
884 * M_ERROR or M_HANGUP path and we need to unconditionally
885 * abort any current ioctl and do the corresponding cleanup.
886 * A zero ill_error means we are in the ill_delete path and
887 * we do the cleanup only if there is a pending mp.
888 */
889 if (mp == NULL && ill->ill_error == 0) {
890 mutex_exit(&ipx->ipx_lock);
891 return (B_FALSE);
892 }
893 }
894
895 /* Now remove from the ipx_pending_mp */
896 ipx->ipx_pending_mp = NULL;
897 ipif = ipx->ipx_pending_ipif;
898 ipx->ipx_pending_ipif = NULL;
899 ipx->ipx_waitfor = 0;
900 ipx->ipx_current_ipif = NULL;
901 cmd = ipx->ipx_current_ioctl;
902 ipx->ipx_current_ioctl = 0;
903 ipx->ipx_current_done = B_TRUE;
904 mutex_exit(&ipx->ipx_lock);
905
906 if (mp == NULL)
907 return (B_FALSE);
908
909 q = mp->b_queue;
910 mp->b_next = NULL;
911 mp->b_prev = NULL;
912 mp->b_queue = NULL;
913
914 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) {
915 DTRACE_PROBE4(ipif__ioctl,
916 char *, "ipsq_pending_mp_cleanup",
917 int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill,
918 ipif_t *, ipif);
919 if (connp == NULL) {
920 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
921 } else {
922 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL);
923 mutex_enter(&ipif->ipif_ill->ill_lock);
924 ipif->ipif_state_flags &= ~IPIF_CHANGING;
925 mutex_exit(&ipif->ipif_ill->ill_lock);
926 }
927 } else {
928 inet_freemsg(mp);
929 }
930 return (B_TRUE);
931 }
932
933 /*
934 * Called in the conn close path and ill delete path
935 */
936 static void
ipsq_xopq_mp_cleanup(ill_t * ill,conn_t * connp)937 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp)
938 {
939 ipsq_t *ipsq;
940 mblk_t *prev;
941 mblk_t *curr;
942 mblk_t *next;
943 queue_t *wq, *rq = NULL;
944 mblk_t *tmp_list = NULL;
945
946 ASSERT(IAM_WRITER_ILL(ill));
947 if (connp != NULL)
948 wq = CONNP_TO_WQ(connp);
949 else
950 wq = ill->ill_wq;
951
952 /*
953 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard
954 * against this here.
955 */
956 if (wq != NULL)
957 rq = RD(wq);
958
959 ipsq = ill->ill_phyint->phyint_ipsq;
960 /*
961 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any.
962 * In the case of ioctl from a conn, there can be only 1 mp
963 * queued on the ipsq. If an ill is being unplumbed flush all
964 * the messages.
965 */
966 mutex_enter(&ipsq->ipsq_lock);
967 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL;
968 curr = next) {
969 next = curr->b_next;
970 if (connp == NULL ||
971 (curr->b_queue == wq || curr->b_queue == rq)) {
972 /* Unlink the mblk from the pending mp list */
973 if (prev != NULL) {
974 prev->b_next = curr->b_next;
975 } else {
976 ASSERT(ipsq->ipsq_xopq_mphead == curr);
977 ipsq->ipsq_xopq_mphead = curr->b_next;
978 }
979 if (ipsq->ipsq_xopq_mptail == curr)
980 ipsq->ipsq_xopq_mptail = prev;
981 /*
982 * Create a temporary list and release the ipsq lock
983 * New elements are added to the head of the tmp_list
984 */
985 curr->b_next = tmp_list;
986 tmp_list = curr;
987 } else {
988 prev = curr;
989 }
990 }
991 mutex_exit(&ipsq->ipsq_lock);
992
993 while (tmp_list != NULL) {
994 curr = tmp_list;
995 tmp_list = curr->b_next;
996 curr->b_next = NULL;
997 curr->b_prev = NULL;
998 wq = curr->b_queue;
999 curr->b_queue = NULL;
1000 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) {
1001 DTRACE_PROBE4(ipif__ioctl,
1002 char *, "ipsq_xopq_mp_cleanup",
1003 int, 0, ill_t *, NULL, ipif_t *, NULL);
1004 ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ?
1005 CONN_CLOSE : NO_COPYOUT, NULL);
1006 } else {
1007 /*
1008 * IP-MT XXX In the case of TLI/XTI bind / optmgmt
1009 * this can't be just inet_freemsg. we have to
1010 * restart it otherwise the thread will be stuck.
1011 */
1012 inet_freemsg(curr);
1013 }
1014 }
1015 }
1016
1017 /*
1018 * This conn has started closing. Cleanup any pending ioctl from this conn.
1019 * STREAMS ensures that there can be at most 1 active ioctl on a stream.
1020 */
1021 void
conn_ioctl_cleanup(conn_t * connp)1022 conn_ioctl_cleanup(conn_t *connp)
1023 {
1024 ipsq_t *ipsq;
1025 ill_t *ill;
1026 boolean_t refheld;
1027
1028 /*
1029 * Check for a queued ioctl. If the ioctl has not yet started, the mp
1030 * is pending in the list headed by ipsq_xopq_head. If the ioctl has
1031 * started the mp could be present in ipx_pending_mp. Note that if
1032 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and
1033 * not yet queued anywhere. In this case, the conn close code will wait
1034 * until the conn_ref is dropped. If the stream was a tcp stream, then
1035 * tcp_close will wait first until all ioctls have completed for this
1036 * conn.
1037 */
1038 mutex_enter(&connp->conn_lock);
1039 ill = connp->conn_oper_pending_ill;
1040 if (ill == NULL) {
1041 mutex_exit(&connp->conn_lock);
1042 return;
1043 }
1044
1045 /*
1046 * We may not be able to refhold the ill if the ill/ipif
1047 * is changing. But we need to make sure that the ill will
1048 * not vanish. So we just bump up the ill_waiter count.
1049 */
1050 refheld = ill_waiter_inc(ill);
1051 mutex_exit(&connp->conn_lock);
1052 if (refheld) {
1053 if (ipsq_enter(ill, B_TRUE, NEW_OP)) {
1054 ill_waiter_dcr(ill);
1055 /*
1056 * Check whether this ioctl has started and is
1057 * pending. If it is not found there then check
1058 * whether this ioctl has not even started and is in
1059 * the ipsq_xopq list.
1060 */
1061 if (!ipsq_pending_mp_cleanup(ill, connp))
1062 ipsq_xopq_mp_cleanup(ill, connp);
1063 ipsq = ill->ill_phyint->phyint_ipsq;
1064 ipsq_exit(ipsq);
1065 return;
1066 }
1067 }
1068
1069 /*
1070 * The ill is also closing and we could not bump up the
1071 * ill_waiter_count or we could not enter the ipsq. Leave
1072 * the cleanup to ill_delete
1073 */
1074 mutex_enter(&connp->conn_lock);
1075 while (connp->conn_oper_pending_ill != NULL)
1076 cv_wait(&connp->conn_refcv, &connp->conn_lock);
1077 mutex_exit(&connp->conn_lock);
1078 if (refheld)
1079 ill_waiter_dcr(ill);
1080 }
1081
1082 /*
1083 * ipcl_walk function for cleaning up conn_*_ill fields.
1084 * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and
1085 * conn_bound_if in place. We prefer dropping
1086 * packets instead of sending them out the wrong interface, or accepting
1087 * packets from the wrong ifindex.
1088 */
1089 static void
conn_cleanup_ill(conn_t * connp,caddr_t arg)1090 conn_cleanup_ill(conn_t *connp, caddr_t arg)
1091 {
1092 ill_t *ill = (ill_t *)arg;
1093
1094 mutex_enter(&connp->conn_lock);
1095 if (connp->conn_dhcpinit_ill == ill) {
1096 connp->conn_dhcpinit_ill = NULL;
1097 ASSERT(ill->ill_dhcpinit != 0);
1098 atomic_dec_32(&ill->ill_dhcpinit);
1099 ill_set_inputfn(ill);
1100 }
1101 mutex_exit(&connp->conn_lock);
1102 }
1103
1104 static int
ill_down_ipifs_tail(ill_t * ill)1105 ill_down_ipifs_tail(ill_t *ill)
1106 {
1107 ipif_t *ipif;
1108 int err;
1109
1110 ASSERT(IAM_WRITER_ILL(ill));
1111 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
1112 ipif_non_duplicate(ipif);
1113 /*
1114 * ipif_down_tail will call arp_ll_down on the last ipif
1115 * and typically return EINPROGRESS when the DL_UNBIND is sent.
1116 */
1117 if ((err = ipif_down_tail(ipif)) != 0)
1118 return (err);
1119 }
1120 return (0);
1121 }
1122
1123 /* ARGSUSED */
1124 void
ipif_all_down_tail(ipsq_t * ipsq,queue_t * q,mblk_t * mp,void * dummy_arg)1125 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
1126 {
1127 ASSERT(IAM_WRITER_IPSQ(ipsq));
1128 (void) ill_down_ipifs_tail(q->q_ptr);
1129 freemsg(mp);
1130 ipsq_current_finish(ipsq);
1131 }
1132
1133 /*
1134 * ill_down_start is called when we want to down this ill and bring it up again
1135 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down
1136 * all interfaces, but don't tear down any plumbing.
1137 */
1138 boolean_t
ill_down_start(queue_t * q,mblk_t * mp)1139 ill_down_start(queue_t *q, mblk_t *mp)
1140 {
1141 ill_t *ill = q->q_ptr;
1142 ipif_t *ipif;
1143
1144 ASSERT(IAM_WRITER_ILL(ill));
1145 /*
1146 * It is possible that some ioctl is already in progress while we
1147 * received the M_ERROR / M_HANGUP in which case, we need to abort
1148 * the ioctl. ill_down_start() is being processed as CUR_OP rather
1149 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent
1150 * the in progress ioctl from ever completing.
1151 *
1152 * The thread that started the ioctl (if any) must have returned,
1153 * since we are now executing as writer. After the 2 calls below,
1154 * the state of the ipsq and the ill would reflect no trace of any
1155 * pending operation. Subsequently if there is any response to the
1156 * original ioctl from the driver, it would be discarded as an
1157 * unsolicited message from the driver.
1158 */
1159 (void) ipsq_pending_mp_cleanup(ill, NULL);
1160 ill_dlpi_clear_deferred(ill);
1161
1162 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
1163 (void) ipif_down(ipif, NULL, NULL);
1164
1165 ill_down(ill);
1166
1167 /*
1168 * Walk all CONNs that can have a reference on an ire or nce for this
1169 * ill (we actually walk all that now have stale references).
1170 */
1171 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst);
1172
1173 /* With IPv6 we have dce_ifindex. Cleanup for neatness */
1174 if (ill->ill_isv6)
1175 dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst);
1176
1177 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0);
1178
1179 /*
1180 * Atomically test and add the pending mp if references are active.
1181 */
1182 mutex_enter(&ill->ill_lock);
1183 if (!ill_is_quiescent(ill)) {
1184 /* call cannot fail since `conn_t *' argument is NULL */
1185 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
1186 mp, ILL_DOWN);
1187 mutex_exit(&ill->ill_lock);
1188 return (B_FALSE);
1189 }
1190 mutex_exit(&ill->ill_lock);
1191 return (B_TRUE);
1192 }
1193
1194 static void
ill_down(ill_t * ill)1195 ill_down(ill_t *ill)
1196 {
1197 mblk_t *mp;
1198 ip_stack_t *ipst = ill->ill_ipst;
1199
1200 /*
1201 * Blow off any IREs dependent on this ILL.
1202 * The caller needs to handle conn_ixa_cleanup
1203 */
1204 ill_delete_ires(ill);
1205
1206 ire_walk_ill(0, 0, ill_downi, ill, ill);
1207
1208 /* Remove any conn_*_ill depending on this ill */
1209 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst);
1210
1211 /*
1212 * Free state for additional IREs.
1213 */
1214 mutex_enter(&ill->ill_saved_ire_lock);
1215 mp = ill->ill_saved_ire_mp;
1216 ill->ill_saved_ire_mp = NULL;
1217 ill->ill_saved_ire_cnt = 0;
1218 mutex_exit(&ill->ill_saved_ire_lock);
1219 freemsg(mp);
1220 }
1221
1222 /*
1223 * ire_walk routine used to delete every IRE that depends on
1224 * 'ill'. (Always called as writer, and may only be called from ire_walk.)
1225 *
1226 * Note: since the routes added by the kernel are deleted separately,
1227 * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE.
1228 *
1229 * We also remove references on ire_nce_cache entries that refer to the ill.
1230 */
1231 void
ill_downi(ire_t * ire,char * ill_arg)1232 ill_downi(ire_t *ire, char *ill_arg)
1233 {
1234 ill_t *ill = (ill_t *)ill_arg;
1235 nce_t *nce;
1236
1237 mutex_enter(&ire->ire_lock);
1238 nce = ire->ire_nce_cache;
1239 if (nce != NULL && nce->nce_ill == ill)
1240 ire->ire_nce_cache = NULL;
1241 else
1242 nce = NULL;
1243 mutex_exit(&ire->ire_lock);
1244 if (nce != NULL)
1245 nce_refrele(nce);
1246 if (ire->ire_ill == ill) {
1247 /*
1248 * The existing interface binding for ire must be
1249 * deleted before trying to bind the route to another
1250 * interface. However, since we are using the contents of the
1251 * ire after ire_delete, the caller has to ensure that
1252 * CONDEMNED (deleted) ire's are not removed from the list
1253 * when ire_delete() returns. Currently ill_downi() is
1254 * only called as part of ire_walk*() routines, so that
1255 * the irb_refhold() done by ire_walk*() will ensure that
1256 * ire_delete() does not lead to ire_inactive().
1257 */
1258 ASSERT(ire->ire_bucket->irb_refcnt > 0);
1259 ire_delete(ire);
1260 if (ire->ire_unbound)
1261 ire_rebind(ire);
1262 }
1263 }
1264
1265 /* Remove IRE_IF_CLONE on this ill */
1266 void
ill_downi_if_clone(ire_t * ire,char * ill_arg)1267 ill_downi_if_clone(ire_t *ire, char *ill_arg)
1268 {
1269 ill_t *ill = (ill_t *)ill_arg;
1270
1271 ASSERT(ire->ire_type & IRE_IF_CLONE);
1272 if (ire->ire_ill == ill)
1273 ire_delete(ire);
1274 }
1275
1276 /* Consume an M_IOCACK of the fastpath probe. */
1277 void
ill_fastpath_ack(ill_t * ill,mblk_t * mp)1278 ill_fastpath_ack(ill_t *ill, mblk_t *mp)
1279 {
1280 mblk_t *mp1 = mp;
1281
1282 /*
1283 * If this was the first attempt turn on the fastpath probing.
1284 */
1285 mutex_enter(&ill->ill_lock);
1286 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS)
1287 ill->ill_dlpi_fastpath_state = IDS_OK;
1288 mutex_exit(&ill->ill_lock);
1289
1290 /* Free the M_IOCACK mblk, hold on to the data */
1291 mp = mp->b_cont;
1292 freeb(mp1);
1293 if (mp == NULL)
1294 return;
1295 if (mp->b_cont != NULL)
1296 nce_fastpath_update(ill, mp);
1297 else
1298 ip0dbg(("ill_fastpath_ack: no b_cont\n"));
1299 freemsg(mp);
1300 }
1301
1302 /*
1303 * Throw an M_IOCTL message downstream asking "do you know fastpath?"
1304 * The data portion of the request is a dl_unitdata_req_t template for
1305 * what we would send downstream in the absence of a fastpath confirmation.
1306 */
1307 int
ill_fastpath_probe(ill_t * ill,mblk_t * dlur_mp)1308 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp)
1309 {
1310 struct iocblk *ioc;
1311 mblk_t *mp;
1312
1313 if (dlur_mp == NULL)
1314 return (EINVAL);
1315
1316 mutex_enter(&ill->ill_lock);
1317 switch (ill->ill_dlpi_fastpath_state) {
1318 case IDS_FAILED:
1319 /*
1320 * Driver NAKed the first fastpath ioctl - assume it doesn't
1321 * support it.
1322 */
1323 mutex_exit(&ill->ill_lock);
1324 return (ENOTSUP);
1325 case IDS_UNKNOWN:
1326 /* This is the first probe */
1327 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS;
1328 break;
1329 default:
1330 break;
1331 }
1332 mutex_exit(&ill->ill_lock);
1333
1334 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL)
1335 return (EAGAIN);
1336
1337 mp->b_cont = copyb(dlur_mp);
1338 if (mp->b_cont == NULL) {
1339 freeb(mp);
1340 return (EAGAIN);
1341 }
1342
1343 ioc = (struct iocblk *)mp->b_rptr;
1344 ioc->ioc_count = msgdsize(mp->b_cont);
1345
1346 DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe",
1347 char *, "DL_IOC_HDR_INFO", ill_t *, ill);
1348 putnext(ill->ill_wq, mp);
1349 return (0);
1350 }
1351
1352 void
ill_capability_probe(ill_t * ill)1353 ill_capability_probe(ill_t *ill)
1354 {
1355 mblk_t *mp;
1356
1357 ASSERT(IAM_WRITER_ILL(ill));
1358
1359 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN &&
1360 ill->ill_dlpi_capab_state != IDCS_FAILED)
1361 return;
1362
1363 /*
1364 * We are starting a new cycle of capability negotiation.
1365 * Free up the capab reset messages of any previous incarnation.
1366 * We will do a fresh allocation when we get the response to our probe
1367 */
1368 if (ill->ill_capab_reset_mp != NULL) {
1369 freemsg(ill->ill_capab_reset_mp);
1370 ill->ill_capab_reset_mp = NULL;
1371 }
1372
1373 ip1dbg(("ill_capability_probe: starting capability negotiation\n"));
1374
1375 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ);
1376 if (mp == NULL)
1377 return;
1378
1379 ill_capability_send(ill, mp);
1380 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT;
1381 }
1382
1383 void
ill_capability_reset(ill_t * ill,boolean_t reneg)1384 ill_capability_reset(ill_t *ill, boolean_t reneg)
1385 {
1386 ASSERT(IAM_WRITER_ILL(ill));
1387
1388 if (ill->ill_dlpi_capab_state != IDCS_OK)
1389 return;
1390
1391 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT;
1392
1393 ill_capability_send(ill, ill->ill_capab_reset_mp);
1394 ill->ill_capab_reset_mp = NULL;
1395 /*
1396 * We turn off all capabilities except those pertaining to
1397 * direct function call capabilities viz. ILL_CAPAB_DLD*
1398 * which will be turned off by the corresponding reset functions.
1399 */
1400 ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY);
1401 }
1402
1403 static void
ill_capability_reset_alloc(ill_t * ill)1404 ill_capability_reset_alloc(ill_t *ill)
1405 {
1406 mblk_t *mp;
1407 size_t size = 0;
1408 int err;
1409 dl_capability_req_t *capb;
1410
1411 ASSERT(IAM_WRITER_ILL(ill));
1412 ASSERT(ill->ill_capab_reset_mp == NULL);
1413
1414 if (ILL_HCKSUM_CAPABLE(ill)) {
1415 size += sizeof (dl_capability_sub_t) +
1416 sizeof (dl_capab_hcksum_t);
1417 }
1418
1419 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) {
1420 size += sizeof (dl_capability_sub_t) +
1421 sizeof (dl_capab_zerocopy_t);
1422 }
1423
1424 if (ill->ill_capabilities & ILL_CAPAB_DLD) {
1425 size += sizeof (dl_capability_sub_t) +
1426 sizeof (dl_capab_dld_t);
1427 }
1428
1429 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED,
1430 STR_NOSIG, &err);
1431
1432 mp->b_datap->db_type = M_PROTO;
1433 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t));
1434
1435 capb = (dl_capability_req_t *)mp->b_rptr;
1436 capb->dl_primitive = DL_CAPABILITY_REQ;
1437 capb->dl_sub_offset = sizeof (dl_capability_req_t);
1438 capb->dl_sub_length = size;
1439
1440 mp->b_wptr += sizeof (dl_capability_req_t);
1441
1442 /*
1443 * Each handler fills in the corresponding dl_capability_sub_t
1444 * inside the mblk,
1445 */
1446 ill_capability_hcksum_reset_fill(ill, mp);
1447 ill_capability_zerocopy_reset_fill(ill, mp);
1448 ill_capability_dld_reset_fill(ill, mp);
1449
1450 ill->ill_capab_reset_mp = mp;
1451 }
1452
1453 static void
ill_capability_id_ack(ill_t * ill,mblk_t * mp,dl_capability_sub_t * outers)1454 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers)
1455 {
1456 dl_capab_id_t *id_ic;
1457 uint_t sub_dl_cap = outers->dl_cap;
1458 dl_capability_sub_t *inners;
1459 uint8_t *capend;
1460
1461 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER);
1462
1463 /*
1464 * Note: range checks here are not absolutely sufficient to
1465 * make us robust against malformed messages sent by drivers;
1466 * this is in keeping with the rest of IP's dlpi handling.
1467 * (Remember, it's coming from something else in the kernel
1468 * address space)
1469 */
1470
1471 capend = (uint8_t *)(outers + 1) + outers->dl_length;
1472 if (capend > mp->b_wptr) {
1473 cmn_err(CE_WARN, "ill_capability_id_ack: "
1474 "malformed sub-capability too long for mblk");
1475 return;
1476 }
1477
1478 id_ic = (dl_capab_id_t *)(outers + 1);
1479
1480 if (outers->dl_length < sizeof (*id_ic) ||
1481 (inners = &id_ic->id_subcap,
1482 inners->dl_length > (outers->dl_length - sizeof (*inners)))) {
1483 cmn_err(CE_WARN, "ill_capability_id_ack: malformed "
1484 "encapsulated capab type %d too long for mblk",
1485 inners->dl_cap);
1486 return;
1487 }
1488
1489 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) {
1490 ip1dbg(("ill_capability_id_ack: mid token for capab type %d "
1491 "isn't as expected; pass-thru module(s) detected, "
1492 "discarding capability\n", inners->dl_cap));
1493 return;
1494 }
1495
1496 /* Process the encapsulated sub-capability */
1497 ill_capability_dispatch(ill, mp, inners);
1498 }
1499
1500 static void
ill_capability_dld_reset_fill(ill_t * ill,mblk_t * mp)1501 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp)
1502 {
1503 dl_capability_sub_t *dl_subcap;
1504
1505 if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
1506 return;
1507
1508 /*
1509 * The dl_capab_dld_t that follows the dl_capability_sub_t is not
1510 * initialized below since it is not used by DLD.
1511 */
1512 dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1513 dl_subcap->dl_cap = DL_CAPAB_DLD;
1514 dl_subcap->dl_length = sizeof (dl_capab_dld_t);
1515
1516 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t);
1517 }
1518
1519 static void
ill_capability_dispatch(ill_t * ill,mblk_t * mp,dl_capability_sub_t * subp)1520 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp)
1521 {
1522 /*
1523 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK
1524 * is only to get the VRRP capability.
1525 *
1526 * Note that we cannot check ill_ipif_up_count here since
1527 * ill_ipif_up_count is only incremented when the resolver is setup.
1528 * That is done asynchronously, and can race with this function.
1529 */
1530 if (!ill->ill_dl_up) {
1531 if (subp->dl_cap == DL_CAPAB_VRRP)
1532 ill_capability_vrrp_ack(ill, mp, subp);
1533 return;
1534 }
1535
1536 switch (subp->dl_cap) {
1537 case DL_CAPAB_HCKSUM:
1538 ill_capability_hcksum_ack(ill, mp, subp);
1539 break;
1540 case DL_CAPAB_ZEROCOPY:
1541 ill_capability_zerocopy_ack(ill, mp, subp);
1542 break;
1543 case DL_CAPAB_DLD:
1544 ill_capability_dld_ack(ill, mp, subp);
1545 break;
1546 case DL_CAPAB_VRRP:
1547 break;
1548 default:
1549 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n",
1550 subp->dl_cap));
1551 }
1552 }
1553
1554 /*
1555 * Process the vrrp capability received from a DLS Provider. isub must point
1556 * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message.
1557 */
1558 static void
ill_capability_vrrp_ack(ill_t * ill,mblk_t * mp,dl_capability_sub_t * isub)1559 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1560 {
1561 dl_capab_vrrp_t *vrrp;
1562 uint_t sub_dl_cap = isub->dl_cap;
1563 uint8_t *capend;
1564
1565 ASSERT(IAM_WRITER_ILL(ill));
1566 ASSERT(sub_dl_cap == DL_CAPAB_VRRP);
1567
1568 /*
1569 * Note: range checks here are not absolutely sufficient to
1570 * make us robust against malformed messages sent by drivers;
1571 * this is in keeping with the rest of IP's dlpi handling.
1572 * (Remember, it's coming from something else in the kernel
1573 * address space)
1574 */
1575 capend = (uint8_t *)(isub + 1) + isub->dl_length;
1576 if (capend > mp->b_wptr) {
1577 cmn_err(CE_WARN, "ill_capability_vrrp_ack: "
1578 "malformed sub-capability too long for mblk");
1579 return;
1580 }
1581 vrrp = (dl_capab_vrrp_t *)(isub + 1);
1582
1583 /*
1584 * Compare the IP address family and set ILLF_VRRP for the right ill.
1585 */
1586 if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) ||
1587 (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) {
1588 ill->ill_flags |= ILLF_VRRP;
1589 }
1590 }
1591
1592 /*
1593 * Process a hardware checksum offload capability negotiation ack received
1594 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM)
1595 * of a DL_CAPABILITY_ACK message.
1596 */
1597 static void
ill_capability_hcksum_ack(ill_t * ill,mblk_t * mp,dl_capability_sub_t * isub)1598 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1599 {
1600 dl_capability_req_t *ocap;
1601 dl_capab_hcksum_t *ihck, *ohck;
1602 ill_hcksum_capab_t **ill_hcksum;
1603 mblk_t *nmp = NULL;
1604 uint_t sub_dl_cap = isub->dl_cap;
1605 uint8_t *capend;
1606
1607 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM);
1608
1609 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab;
1610
1611 /*
1612 * Note: range checks here are not absolutely sufficient to
1613 * make us robust against malformed messages sent by drivers;
1614 * this is in keeping with the rest of IP's dlpi handling.
1615 * (Remember, it's coming from something else in the kernel
1616 * address space)
1617 */
1618 capend = (uint8_t *)(isub + 1) + isub->dl_length;
1619 if (capend > mp->b_wptr) {
1620 cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1621 "malformed sub-capability too long for mblk");
1622 return;
1623 }
1624
1625 /*
1626 * There are two types of acks we process here:
1627 * 1. acks in reply to a (first form) generic capability req
1628 * (no ENABLE flag set)
1629 * 2. acks in reply to a ENABLE capability req.
1630 * (ENABLE flag set)
1631 */
1632 ihck = (dl_capab_hcksum_t *)(isub + 1);
1633
1634 if (ihck->hcksum_version != HCKSUM_VERSION_1) {
1635 cmn_err(CE_CONT, "ill_capability_hcksum_ack: "
1636 "unsupported hardware checksum "
1637 "sub-capability (version %d, expected %d)",
1638 ihck->hcksum_version, HCKSUM_VERSION_1);
1639 return;
1640 }
1641
1642 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) {
1643 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware "
1644 "checksum capability isn't as expected; pass-thru "
1645 "module(s) detected, discarding capability\n"));
1646 return;
1647 }
1648
1649 #define CURR_HCKSUM_CAPAB \
1650 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \
1651 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM)
1652
1653 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) &&
1654 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) {
1655 /* do ENABLE processing */
1656 if (*ill_hcksum == NULL) {
1657 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t),
1658 KM_NOSLEEP);
1659
1660 if (*ill_hcksum == NULL) {
1661 cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1662 "could not enable hcksum version %d "
1663 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION,
1664 ill->ill_name);
1665 return;
1666 }
1667 }
1668
1669 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version;
1670 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags;
1671 ill->ill_capabilities |= ILL_CAPAB_HCKSUM;
1672 ip1dbg(("ill_capability_hcksum_ack: interface %s "
1673 "has enabled hardware checksumming\n ",
1674 ill->ill_name));
1675 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) {
1676 /*
1677 * Enabling hardware checksum offload
1678 * Currently IP supports {TCP,UDP}/IPv4
1679 * partial and full cksum offload and
1680 * IPv4 header checksum offload.
1681 * Allocate new mblk which will
1682 * contain a new capability request
1683 * to enable hardware checksum offload.
1684 */
1685 uint_t size;
1686 uchar_t *rptr;
1687
1688 size = sizeof (dl_capability_req_t) +
1689 sizeof (dl_capability_sub_t) + isub->dl_length;
1690
1691 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1692 cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1693 "could not enable hardware cksum for %s (ENOMEM)\n",
1694 ill->ill_name);
1695 return;
1696 }
1697
1698 rptr = nmp->b_rptr;
1699 /* initialize dl_capability_req_t */
1700 ocap = (dl_capability_req_t *)nmp->b_rptr;
1701 ocap->dl_sub_offset =
1702 sizeof (dl_capability_req_t);
1703 ocap->dl_sub_length =
1704 sizeof (dl_capability_sub_t) +
1705 isub->dl_length;
1706 nmp->b_rptr += sizeof (dl_capability_req_t);
1707
1708 /* initialize dl_capability_sub_t */
1709 bcopy(isub, nmp->b_rptr, sizeof (*isub));
1710 nmp->b_rptr += sizeof (*isub);
1711
1712 /* initialize dl_capab_hcksum_t */
1713 ohck = (dl_capab_hcksum_t *)nmp->b_rptr;
1714 bcopy(ihck, ohck, sizeof (*ihck));
1715
1716 nmp->b_rptr = rptr;
1717 ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
1718
1719 /* Set ENABLE flag */
1720 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB;
1721 ohck->hcksum_txflags |= HCKSUM_ENABLE;
1722
1723 /*
1724 * nmp points to a DL_CAPABILITY_REQ message to enable
1725 * hardware checksum acceleration.
1726 */
1727 ill_capability_send(ill, nmp);
1728 } else {
1729 ip1dbg(("ill_capability_hcksum_ack: interface %s has "
1730 "advertised %x hardware checksum capability flags\n",
1731 ill->ill_name, ihck->hcksum_txflags));
1732 }
1733 }
1734
1735 static void
ill_capability_hcksum_reset_fill(ill_t * ill,mblk_t * mp)1736 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp)
1737 {
1738 dl_capab_hcksum_t *hck_subcap;
1739 dl_capability_sub_t *dl_subcap;
1740
1741 if (!ILL_HCKSUM_CAPABLE(ill))
1742 return;
1743
1744 ASSERT(ill->ill_hcksum_capab != NULL);
1745
1746 dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1747 dl_subcap->dl_cap = DL_CAPAB_HCKSUM;
1748 dl_subcap->dl_length = sizeof (*hck_subcap);
1749
1750 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1);
1751 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version;
1752 hck_subcap->hcksum_txflags = 0;
1753
1754 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap);
1755 }
1756
1757 static void
ill_capability_zerocopy_ack(ill_t * ill,mblk_t * mp,dl_capability_sub_t * isub)1758 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1759 {
1760 mblk_t *nmp = NULL;
1761 dl_capability_req_t *oc;
1762 dl_capab_zerocopy_t *zc_ic, *zc_oc;
1763 ill_zerocopy_capab_t **ill_zerocopy_capab;
1764 uint_t sub_dl_cap = isub->dl_cap;
1765 uint8_t *capend;
1766
1767 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY);
1768
1769 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab;
1770
1771 /*
1772 * Note: range checks here are not absolutely sufficient to
1773 * make us robust against malformed messages sent by drivers;
1774 * this is in keeping with the rest of IP's dlpi handling.
1775 * (Remember, it's coming from something else in the kernel
1776 * address space)
1777 */
1778 capend = (uint8_t *)(isub + 1) + isub->dl_length;
1779 if (capend > mp->b_wptr) {
1780 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1781 "malformed sub-capability too long for mblk");
1782 return;
1783 }
1784
1785 zc_ic = (dl_capab_zerocopy_t *)(isub + 1);
1786 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) {
1787 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: "
1788 "unsupported ZEROCOPY sub-capability (version %d, "
1789 "expected %d)", zc_ic->zerocopy_version,
1790 ZEROCOPY_VERSION_1);
1791 return;
1792 }
1793
1794 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) {
1795 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy "
1796 "capability isn't as expected; pass-thru module(s) "
1797 "detected, discarding capability\n"));
1798 return;
1799 }
1800
1801 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) {
1802 if (*ill_zerocopy_capab == NULL) {
1803 *ill_zerocopy_capab =
1804 kmem_zalloc(sizeof (ill_zerocopy_capab_t),
1805 KM_NOSLEEP);
1806
1807 if (*ill_zerocopy_capab == NULL) {
1808 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1809 "could not enable Zero-copy version %d "
1810 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1,
1811 ill->ill_name);
1812 return;
1813 }
1814 }
1815
1816 ip1dbg(("ill_capability_zerocopy_ack: interface %s "
1817 "supports Zero-copy version %d\n", ill->ill_name,
1818 ZEROCOPY_VERSION_1));
1819
1820 (*ill_zerocopy_capab)->ill_zerocopy_version =
1821 zc_ic->zerocopy_version;
1822 (*ill_zerocopy_capab)->ill_zerocopy_flags =
1823 zc_ic->zerocopy_flags;
1824
1825 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY;
1826 } else {
1827 uint_t size;
1828 uchar_t *rptr;
1829
1830 size = sizeof (dl_capability_req_t) +
1831 sizeof (dl_capability_sub_t) +
1832 sizeof (dl_capab_zerocopy_t);
1833
1834 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1835 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1836 "could not enable zerocopy for %s (ENOMEM)\n",
1837 ill->ill_name);
1838 return;
1839 }
1840
1841 rptr = nmp->b_rptr;
1842 /* initialize dl_capability_req_t */
1843 oc = (dl_capability_req_t *)rptr;
1844 oc->dl_sub_offset = sizeof (dl_capability_req_t);
1845 oc->dl_sub_length = sizeof (dl_capability_sub_t) +
1846 sizeof (dl_capab_zerocopy_t);
1847 rptr += sizeof (dl_capability_req_t);
1848
1849 /* initialize dl_capability_sub_t */
1850 bcopy(isub, rptr, sizeof (*isub));
1851 rptr += sizeof (*isub);
1852
1853 /* initialize dl_capab_zerocopy_t */
1854 zc_oc = (dl_capab_zerocopy_t *)rptr;
1855 *zc_oc = *zc_ic;
1856
1857 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s "
1858 "to enable zero-copy version %d\n", ill->ill_name,
1859 ZEROCOPY_VERSION_1));
1860
1861 /* set VMSAFE_MEM flag */
1862 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM;
1863
1864 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */
1865 ill_capability_send(ill, nmp);
1866 }
1867 }
1868
1869 static void
ill_capability_zerocopy_reset_fill(ill_t * ill,mblk_t * mp)1870 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp)
1871 {
1872 dl_capab_zerocopy_t *zerocopy_subcap;
1873 dl_capability_sub_t *dl_subcap;
1874
1875 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY))
1876 return;
1877
1878 ASSERT(ill->ill_zerocopy_capab != NULL);
1879
1880 dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1881 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY;
1882 dl_subcap->dl_length = sizeof (*zerocopy_subcap);
1883
1884 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1);
1885 zerocopy_subcap->zerocopy_version =
1886 ill->ill_zerocopy_capab->ill_zerocopy_version;
1887 zerocopy_subcap->zerocopy_flags = 0;
1888
1889 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap);
1890 }
1891
1892 /*
1893 * DLD capability
1894 * Refer to dld.h for more information regarding the purpose and usage
1895 * of this capability.
1896 */
1897 static void
ill_capability_dld_ack(ill_t * ill,mblk_t * mp,dl_capability_sub_t * isub)1898 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1899 {
1900 dl_capab_dld_t *dld_ic, dld;
1901 uint_t sub_dl_cap = isub->dl_cap;
1902 uint8_t *capend;
1903 ill_dld_capab_t *idc;
1904
1905 ASSERT(IAM_WRITER_ILL(ill));
1906 ASSERT(sub_dl_cap == DL_CAPAB_DLD);
1907
1908 /*
1909 * Note: range checks here are not absolutely sufficient to
1910 * make us robust against malformed messages sent by drivers;
1911 * this is in keeping with the rest of IP's dlpi handling.
1912 * (Remember, it's coming from something else in the kernel
1913 * address space)
1914 */
1915 capend = (uint8_t *)(isub + 1) + isub->dl_length;
1916 if (capend > mp->b_wptr) {
1917 cmn_err(CE_WARN, "ill_capability_dld_ack: "
1918 "malformed sub-capability too long for mblk");
1919 return;
1920 }
1921 dld_ic = (dl_capab_dld_t *)(isub + 1);
1922 if (dld_ic->dld_version != DLD_CURRENT_VERSION) {
1923 cmn_err(CE_CONT, "ill_capability_dld_ack: "
1924 "unsupported DLD sub-capability (version %d, "
1925 "expected %d)", dld_ic->dld_version,
1926 DLD_CURRENT_VERSION);
1927 return;
1928 }
1929 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) {
1930 ip1dbg(("ill_capability_dld_ack: mid token for dld "
1931 "capability isn't as expected; pass-thru module(s) "
1932 "detected, discarding capability\n"));
1933 return;
1934 }
1935
1936 /*
1937 * Copy locally to ensure alignment.
1938 */
1939 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t));
1940
1941 if ((idc = ill->ill_dld_capab) == NULL) {
1942 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP);
1943 if (idc == NULL) {
1944 cmn_err(CE_WARN, "ill_capability_dld_ack: "
1945 "could not enable DLD version %d "
1946 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION,
1947 ill->ill_name);
1948 return;
1949 }
1950 ill->ill_dld_capab = idc;
1951 }
1952 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab;
1953 idc->idc_capab_dh = (void *)dld.dld_capab_handle;
1954 ip1dbg(("ill_capability_dld_ack: interface %s "
1955 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION));
1956
1957 ill_capability_dld_enable(ill);
1958 }
1959
1960 /*
1961 * Typically capability negotiation between IP and the driver happens via
1962 * DLPI message exchange. However GLD also offers a direct function call
1963 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities,
1964 * But arbitrary function calls into IP or GLD are not permitted, since both
1965 * of them are protected by their own perimeter mechanism. The perimeter can
1966 * be viewed as a coarse lock or serialization mechanism. The hierarchy of
1967 * these perimeters is IP -> MAC. Thus for example to enable the squeue
1968 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter
1969 * to enter the mac perimeter and then do the direct function calls into
1970 * GLD to enable squeue polling. The ring related callbacks from the mac into
1971 * the stack to add, bind, quiesce, restart or cleanup a ring are all
1972 * protected by the mac perimeter.
1973 */
1974 static void
ill_mac_perim_enter(ill_t * ill,mac_perim_handle_t * mphp)1975 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp)
1976 {
1977 ill_dld_capab_t *idc = ill->ill_dld_capab;
1978 int err;
1979
1980 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp,
1981 DLD_ENABLE);
1982 ASSERT(err == 0);
1983 }
1984
1985 static void
ill_mac_perim_exit(ill_t * ill,mac_perim_handle_t mph)1986 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph)
1987 {
1988 ill_dld_capab_t *idc = ill->ill_dld_capab;
1989 int err;
1990
1991 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph,
1992 DLD_DISABLE);
1993 ASSERT(err == 0);
1994 }
1995
1996 boolean_t
ill_mac_perim_held(ill_t * ill)1997 ill_mac_perim_held(ill_t *ill)
1998 {
1999 ill_dld_capab_t *idc = ill->ill_dld_capab;
2000
2001 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL,
2002 DLD_QUERY));
2003 }
2004
2005 static void
ill_capability_direct_enable(ill_t * ill)2006 ill_capability_direct_enable(ill_t *ill)
2007 {
2008 ill_dld_capab_t *idc = ill->ill_dld_capab;
2009 ill_dld_direct_t *idd = &idc->idc_direct;
2010 dld_capab_direct_t direct;
2011 int rc;
2012
2013 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
2014
2015 bzero(&direct, sizeof (direct));
2016 direct.di_rx_cf = (uintptr_t)ip_input;
2017 direct.di_rx_ch = ill;
2018
2019 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct,
2020 DLD_ENABLE);
2021 if (rc == 0) {
2022 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df;
2023 idd->idd_tx_dh = direct.di_tx_dh;
2024 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df;
2025 idd->idd_tx_cb_dh = direct.di_tx_cb_dh;
2026 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df;
2027 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh;
2028 ASSERT(idd->idd_tx_cb_df != NULL);
2029 ASSERT(idd->idd_tx_fctl_df != NULL);
2030 ASSERT(idd->idd_tx_df != NULL);
2031 /*
2032 * One time registration of flow enable callback function
2033 */
2034 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh,
2035 ill_flow_enable, ill);
2036 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT;
2037 DTRACE_PROBE1(direct_on, (ill_t *), ill);
2038 } else {
2039 cmn_err(CE_WARN, "warning: could not enable DIRECT "
2040 "capability, rc = %d\n", rc);
2041 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc);
2042 }
2043 }
2044
2045 static void
ill_capability_poll_enable(ill_t * ill)2046 ill_capability_poll_enable(ill_t *ill)
2047 {
2048 ill_dld_capab_t *idc = ill->ill_dld_capab;
2049 dld_capab_poll_t poll;
2050 int rc;
2051
2052 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
2053
2054 bzero(&poll, sizeof (poll));
2055 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring;
2056 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring;
2057 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring;
2058 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring;
2059 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring;
2060 poll.poll_ring_ch = ill;
2061 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll,
2062 DLD_ENABLE);
2063 if (rc == 0) {
2064 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL;
2065 DTRACE_PROBE1(poll_on, (ill_t *), ill);
2066 } else {
2067 ip1dbg(("warning: could not enable POLL "
2068 "capability, rc = %d\n", rc));
2069 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc);
2070 }
2071 }
2072
2073 /*
2074 * Enable the LSO capability.
2075 */
2076 static void
ill_capability_lso_enable(ill_t * ill)2077 ill_capability_lso_enable(ill_t *ill)
2078 {
2079 ill_dld_capab_t *idc = ill->ill_dld_capab;
2080 dld_capab_lso_t lso;
2081 int rc;
2082
2083 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
2084
2085 if (ill->ill_lso_capab == NULL) {
2086 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t),
2087 KM_NOSLEEP);
2088 if (ill->ill_lso_capab == NULL) {
2089 cmn_err(CE_WARN, "ill_capability_lso_enable: "
2090 "could not enable LSO for %s (ENOMEM)\n",
2091 ill->ill_name);
2092 return;
2093 }
2094 }
2095
2096 bzero(&lso, sizeof (lso));
2097 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso,
2098 DLD_ENABLE)) == 0) {
2099 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags;
2100 ill->ill_lso_capab->ill_lso_max = lso.lso_max;
2101 ill->ill_capabilities |= ILL_CAPAB_LSO;
2102 ip1dbg(("ill_capability_lso_enable: interface %s "
2103 "has enabled LSO\n ", ill->ill_name));
2104 } else {
2105 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
2106 ill->ill_lso_capab = NULL;
2107 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc);
2108 }
2109 }
2110
2111 static void
ill_capability_dld_enable(ill_t * ill)2112 ill_capability_dld_enable(ill_t *ill)
2113 {
2114 mac_perim_handle_t mph;
2115
2116 ASSERT(IAM_WRITER_ILL(ill));
2117
2118 if (ill->ill_isv6)
2119 return;
2120
2121 ill_mac_perim_enter(ill, &mph);
2122 if (!ill->ill_isv6) {
2123 ill_capability_direct_enable(ill);
2124 ill_capability_poll_enable(ill);
2125 ill_capability_lso_enable(ill);
2126 }
2127 ill->ill_capabilities |= ILL_CAPAB_DLD;
2128 ill_mac_perim_exit(ill, mph);
2129 }
2130
2131 static void
ill_capability_dld_disable(ill_t * ill)2132 ill_capability_dld_disable(ill_t *ill)
2133 {
2134 ill_dld_capab_t *idc;
2135 ill_dld_direct_t *idd;
2136 mac_perim_handle_t mph;
2137
2138 ASSERT(IAM_WRITER_ILL(ill));
2139
2140 if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
2141 return;
2142
2143 ill_mac_perim_enter(ill, &mph);
2144
2145 idc = ill->ill_dld_capab;
2146 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) {
2147 /*
2148 * For performance we avoid locks in the transmit data path
2149 * and don't maintain a count of the number of threads using
2150 * direct calls. Thus some threads could be using direct
2151 * transmit calls to GLD, even after the capability mechanism
2152 * turns it off. This is still safe since the handles used in
2153 * the direct calls continue to be valid until the unplumb is
2154 * completed. Remove the callback that was added (1-time) at
2155 * capab enable time.
2156 */
2157 mutex_enter(&ill->ill_lock);
2158 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT;
2159 mutex_exit(&ill->ill_lock);
2160 if (ill->ill_flownotify_mh != NULL) {
2161 idd = &idc->idc_direct;
2162 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL,
2163 ill->ill_flownotify_mh);
2164 ill->ill_flownotify_mh = NULL;
2165 }
2166 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT,
2167 NULL, DLD_DISABLE);
2168 }
2169
2170 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) {
2171 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL;
2172 ip_squeue_clean_all(ill);
2173 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL,
2174 NULL, DLD_DISABLE);
2175 }
2176
2177 if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) {
2178 ASSERT(ill->ill_lso_capab != NULL);
2179 /*
2180 * Clear the capability flag for LSO but retain the
2181 * ill_lso_capab structure since it's possible that another
2182 * thread is still referring to it. The structure only gets
2183 * deallocated when we destroy the ill.
2184 */
2185
2186 ill->ill_capabilities &= ~ILL_CAPAB_LSO;
2187 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO,
2188 NULL, DLD_DISABLE);
2189 }
2190
2191 ill->ill_capabilities &= ~ILL_CAPAB_DLD;
2192 ill_mac_perim_exit(ill, mph);
2193 }
2194
2195 /*
2196 * Capability Negotiation protocol
2197 *
2198 * We don't wait for DLPI capability operations to finish during interface
2199 * bringup or teardown. Doing so would introduce more asynchrony and the
2200 * interface up/down operations will need multiple return and restarts.
2201 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as
2202 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next
2203 * exclusive operation won't start until the DLPI operations of the previous
2204 * exclusive operation complete.
2205 *
2206 * The capability state machine is shown below.
2207 *
2208 * state next state event, action
2209 *
2210 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe
2211 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack
2212 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack)
2213 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG
2214 * IDCS_OK IDCS_RESET_SENT ill_capability_reset
2215 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr
2216 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr ->
2217 * ill_capability_probe.
2218 */
2219
2220 /*
2221 * Dedicated thread started from ip_stack_init that handles capability
2222 * disable. This thread ensures the taskq dispatch does not fail by waiting
2223 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure
2224 * that direct calls to DLD are done in a cv_waitable context.
2225 */
2226 void
ill_taskq_dispatch(ip_stack_t * ipst)2227 ill_taskq_dispatch(ip_stack_t *ipst)
2228 {
2229 callb_cpr_t cprinfo;
2230 char name[64];
2231 mblk_t *mp;
2232
2233 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d",
2234 ipst->ips_netstack->netstack_stackid);
2235 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr,
2236 name);
2237 mutex_enter(&ipst->ips_capab_taskq_lock);
2238
2239 for (;;) {
2240 mp = ipst->ips_capab_taskq_head;
2241 while (mp != NULL) {
2242 ipst->ips_capab_taskq_head = mp->b_next;
2243 if (ipst->ips_capab_taskq_head == NULL)
2244 ipst->ips_capab_taskq_tail = NULL;
2245 mutex_exit(&ipst->ips_capab_taskq_lock);
2246 mp->b_next = NULL;
2247
2248 VERIFY(taskq_dispatch(system_taskq,
2249 ill_capability_ack_thr, mp, TQ_SLEEP) != 0);
2250 mutex_enter(&ipst->ips_capab_taskq_lock);
2251 mp = ipst->ips_capab_taskq_head;
2252 }
2253
2254 if (ipst->ips_capab_taskq_quit)
2255 break;
2256 CALLB_CPR_SAFE_BEGIN(&cprinfo);
2257 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock);
2258 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock);
2259 }
2260 VERIFY(ipst->ips_capab_taskq_head == NULL);
2261 VERIFY(ipst->ips_capab_taskq_tail == NULL);
2262 CALLB_CPR_EXIT(&cprinfo);
2263 thread_exit();
2264 }
2265
2266 /*
2267 * Consume a new-style hardware capabilities negotiation ack.
2268 * Called via taskq on receipt of DL_CAPABILITY_ACK.
2269 */
2270 static void
ill_capability_ack_thr(void * arg)2271 ill_capability_ack_thr(void *arg)
2272 {
2273 mblk_t *mp = arg;
2274 dl_capability_ack_t *capp;
2275 dl_capability_sub_t *subp, *endp;
2276 ill_t *ill;
2277 boolean_t reneg;
2278
2279 ill = (ill_t *)mp->b_prev;
2280 mp->b_prev = NULL;
2281
2282 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE);
2283
2284 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT ||
2285 ill->ill_dlpi_capab_state == IDCS_RENEG) {
2286 /*
2287 * We have received the ack for our DL_CAPAB reset request.
2288 * There isnt' anything in the message that needs processing.
2289 * All message based capabilities have been disabled, now
2290 * do the function call based capability disable.
2291 */
2292 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG;
2293 ill_capability_dld_disable(ill);
2294 ill->ill_dlpi_capab_state = IDCS_UNKNOWN;
2295 if (reneg)
2296 ill_capability_probe(ill);
2297 goto done;
2298 }
2299
2300 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
2301 ill->ill_dlpi_capab_state = IDCS_OK;
2302
2303 capp = (dl_capability_ack_t *)mp->b_rptr;
2304
2305 if (capp->dl_sub_length == 0) {
2306 /* no new-style capabilities */
2307 goto done;
2308 }
2309
2310 /* make sure the driver supplied correct dl_sub_length */
2311 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) {
2312 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, "
2313 "invalid dl_sub_length (%d)\n", capp->dl_sub_length));
2314 goto done;
2315 }
2316
2317 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset))
2318 /*
2319 * There are sub-capabilities. Process the ones we know about.
2320 * Loop until we don't have room for another sub-cap header..
2321 */
2322 for (subp = SC(capp, capp->dl_sub_offset),
2323 endp = SC(subp, capp->dl_sub_length - sizeof (*subp));
2324 subp <= endp;
2325 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) {
2326
2327 switch (subp->dl_cap) {
2328 case DL_CAPAB_ID_WRAPPER:
2329 ill_capability_id_ack(ill, mp, subp);
2330 break;
2331 default:
2332 ill_capability_dispatch(ill, mp, subp);
2333 break;
2334 }
2335 }
2336 #undef SC
2337 done:
2338 inet_freemsg(mp);
2339 ill_capability_done(ill);
2340 ipsq_exit(ill->ill_phyint->phyint_ipsq);
2341 }
2342
2343 /*
2344 * This needs to be started in a taskq thread to provide a cv_waitable
2345 * context.
2346 */
2347 void
ill_capability_ack(ill_t * ill,mblk_t * mp)2348 ill_capability_ack(ill_t *ill, mblk_t *mp)
2349 {
2350 ip_stack_t *ipst = ill->ill_ipst;
2351
2352 mp->b_prev = (mblk_t *)ill;
2353 ASSERT(mp->b_next == NULL);
2354
2355 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp,
2356 TQ_NOSLEEP) != 0)
2357 return;
2358
2359 /*
2360 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread
2361 * which will do the dispatch using TQ_SLEEP to guarantee success.
2362 */
2363 mutex_enter(&ipst->ips_capab_taskq_lock);
2364 if (ipst->ips_capab_taskq_head == NULL) {
2365 ASSERT(ipst->ips_capab_taskq_tail == NULL);
2366 ipst->ips_capab_taskq_head = mp;
2367 } else {
2368 ipst->ips_capab_taskq_tail->b_next = mp;
2369 }
2370 ipst->ips_capab_taskq_tail = mp;
2371
2372 cv_signal(&ipst->ips_capab_taskq_cv);
2373 mutex_exit(&ipst->ips_capab_taskq_lock);
2374 }
2375
2376 /*
2377 * This routine is called to scan the fragmentation reassembly table for
2378 * the specified ILL for any packets that are starting to smell.
2379 * dead_interval is the maximum time in seconds that will be tolerated. It
2380 * will either be the value specified in ip_g_frag_timeout, or zero if the
2381 * ILL is shutting down and it is time to blow everything off.
2382 *
2383 * It returns the number of seconds (as a time_t) that the next frag timer
2384 * should be scheduled for, 0 meaning that the timer doesn't need to be
2385 * re-started. Note that the method of calculating next_timeout isn't
2386 * entirely accurate since time will flow between the time we grab
2387 * current_time and the time we schedule the next timeout. This isn't a
2388 * big problem since this is the timer for sending an ICMP reassembly time
2389 * exceeded messages, and it doesn't have to be exactly accurate.
2390 *
2391 * This function is
2392 * sometimes called as writer, although this is not required.
2393 */
2394 time_t
ill_frag_timeout(ill_t * ill,time_t dead_interval)2395 ill_frag_timeout(ill_t *ill, time_t dead_interval)
2396 {
2397 ipfb_t *ipfb;
2398 ipfb_t *endp;
2399 ipf_t *ipf;
2400 ipf_t *ipfnext;
2401 mblk_t *mp;
2402 time_t current_time = gethrestime_sec();
2403 time_t next_timeout = 0;
2404 uint32_t hdr_length;
2405 mblk_t *send_icmp_head;
2406 mblk_t *send_icmp_head_v6;
2407 ip_stack_t *ipst = ill->ill_ipst;
2408 ip_recv_attr_t iras;
2409
2410 bzero(&iras, sizeof (iras));
2411 iras.ira_flags = 0;
2412 iras.ira_ill = iras.ira_rill = ill;
2413 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
2414 iras.ira_rifindex = iras.ira_ruifindex;
2415
2416 ipfb = ill->ill_frag_hash_tbl;
2417 if (ipfb == NULL)
2418 return (B_FALSE);
2419 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT];
2420 /* Walk the frag hash table. */
2421 for (; ipfb < endp; ipfb++) {
2422 send_icmp_head = NULL;
2423 send_icmp_head_v6 = NULL;
2424 mutex_enter(&ipfb->ipfb_lock);
2425 while ((ipf = ipfb->ipfb_ipf) != 0) {
2426 time_t frag_time = current_time - ipf->ipf_timestamp;
2427 time_t frag_timeout;
2428
2429 if (frag_time < dead_interval) {
2430 /*
2431 * There are some outstanding fragments
2432 * that will timeout later. Make note of
2433 * the time so that we can reschedule the
2434 * next timeout appropriately.
2435 */
2436 frag_timeout = dead_interval - frag_time;
2437 if (next_timeout == 0 ||
2438 frag_timeout < next_timeout) {
2439 next_timeout = frag_timeout;
2440 }
2441 break;
2442 }
2443 /* Time's up. Get it out of here. */
2444 hdr_length = ipf->ipf_nf_hdr_len;
2445 ipfnext = ipf->ipf_hash_next;
2446 if (ipfnext)
2447 ipfnext->ipf_ptphn = ipf->ipf_ptphn;
2448 *ipf->ipf_ptphn = ipfnext;
2449 mp = ipf->ipf_mp->b_cont;
2450 for (; mp; mp = mp->b_cont) {
2451 /* Extra points for neatness. */
2452 IP_REASS_SET_START(mp, 0);
2453 IP_REASS_SET_END(mp, 0);
2454 }
2455 mp = ipf->ipf_mp->b_cont;
2456 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count);
2457 ASSERT(ipfb->ipfb_count >= ipf->ipf_count);
2458 ipfb->ipfb_count -= ipf->ipf_count;
2459 ASSERT(ipfb->ipfb_frag_pkts > 0);
2460 ipfb->ipfb_frag_pkts--;
2461 /*
2462 * We do not send any icmp message from here because
2463 * we currently are holding the ipfb_lock for this
2464 * hash chain. If we try and send any icmp messages
2465 * from here we may end up via a put back into ip
2466 * trying to get the same lock, causing a recursive
2467 * mutex panic. Instead we build a list and send all
2468 * the icmp messages after we have dropped the lock.
2469 */
2470 if (ill->ill_isv6) {
2471 if (hdr_length != 0) {
2472 mp->b_next = send_icmp_head_v6;
2473 send_icmp_head_v6 = mp;
2474 } else {
2475 freemsg(mp);
2476 }
2477 } else {
2478 if (hdr_length != 0) {
2479 mp->b_next = send_icmp_head;
2480 send_icmp_head = mp;
2481 } else {
2482 freemsg(mp);
2483 }
2484 }
2485 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
2486 ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill);
2487 freeb(ipf->ipf_mp);
2488 }
2489 mutex_exit(&ipfb->ipfb_lock);
2490 /*
2491 * Now need to send any icmp messages that we delayed from
2492 * above.
2493 */
2494 while (send_icmp_head_v6 != NULL) {
2495 ip6_t *ip6h;
2496
2497 mp = send_icmp_head_v6;
2498 send_icmp_head_v6 = send_icmp_head_v6->b_next;
2499 mp->b_next = NULL;
2500 ip6h = (ip6_t *)mp->b_rptr;
2501 iras.ira_flags = 0;
2502 /*
2503 * This will result in an incorrect ALL_ZONES zoneid
2504 * for multicast packets, but we
2505 * don't send ICMP errors for those in any case.
2506 */
2507 iras.ira_zoneid =
2508 ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst,
2509 ill, ipst);
2510 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill);
2511 icmp_time_exceeded_v6(mp,
2512 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE,
2513 &iras);
2514 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
2515 }
2516 while (send_icmp_head != NULL) {
2517 ipaddr_t dst;
2518
2519 mp = send_icmp_head;
2520 send_icmp_head = send_icmp_head->b_next;
2521 mp->b_next = NULL;
2522
2523 dst = ((ipha_t *)mp->b_rptr)->ipha_dst;
2524
2525 iras.ira_flags = IRAF_IS_IPV4;
2526 /*
2527 * This will result in an incorrect ALL_ZONES zoneid
2528 * for broadcast and multicast packets, but we
2529 * don't send ICMP errors for those in any case.
2530 */
2531 iras.ira_zoneid = ipif_lookup_addr_zoneid(dst,
2532 ill, ipst);
2533 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill);
2534 icmp_time_exceeded(mp,
2535 ICMP_REASSEMBLY_TIME_EXCEEDED, &iras);
2536 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
2537 }
2538 }
2539 /*
2540 * A non-dying ILL will use the return value to decide whether to
2541 * restart the frag timer, and for how long.
2542 */
2543 return (next_timeout);
2544 }
2545
2546 /*
2547 * This routine is called when the approximate count of mblk memory used
2548 * for the specified ILL has exceeded max_count.
2549 */
2550 void
ill_frag_prune(ill_t * ill,uint_t max_count)2551 ill_frag_prune(ill_t *ill, uint_t max_count)
2552 {
2553 ipfb_t *ipfb;
2554 ipf_t *ipf;
2555 size_t count;
2556 clock_t now;
2557
2558 /*
2559 * If we are here within ip_min_frag_prune_time msecs remove
2560 * ill_frag_free_num_pkts oldest packets from each bucket and increment
2561 * ill_frag_free_num_pkts.
2562 */
2563 mutex_enter(&ill->ill_lock);
2564 now = ddi_get_lbolt();
2565 if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <=
2566 (ip_min_frag_prune_time != 0 ?
2567 ip_min_frag_prune_time : msec_per_tick)) {
2568
2569 ill->ill_frag_free_num_pkts++;
2570
2571 } else {
2572 ill->ill_frag_free_num_pkts = 0;
2573 }
2574 ill->ill_last_frag_clean_time = now;
2575 mutex_exit(&ill->ill_lock);
2576
2577 /*
2578 * free ill_frag_free_num_pkts oldest packets from each bucket.
2579 */
2580 if (ill->ill_frag_free_num_pkts != 0) {
2581 int ix;
2582
2583 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
2584 ipfb = &ill->ill_frag_hash_tbl[ix];
2585 mutex_enter(&ipfb->ipfb_lock);
2586 if (ipfb->ipfb_ipf != NULL) {
2587 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf,
2588 ill->ill_frag_free_num_pkts);
2589 }
2590 mutex_exit(&ipfb->ipfb_lock);
2591 }
2592 }
2593 /*
2594 * While the reassembly list for this ILL is too big, prune a fragment
2595 * queue by age, oldest first.
2596 */
2597 while (ill->ill_frag_count > max_count) {
2598 int ix;
2599 ipfb_t *oipfb = NULL;
2600 uint_t oldest = UINT_MAX;
2601
2602 count = 0;
2603 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
2604 ipfb = &ill->ill_frag_hash_tbl[ix];
2605 mutex_enter(&ipfb->ipfb_lock);
2606 ipf = ipfb->ipfb_ipf;
2607 if (ipf != NULL && ipf->ipf_gen < oldest) {
2608 oldest = ipf->ipf_gen;
2609 oipfb = ipfb;
2610 }
2611 count += ipfb->ipfb_count;
2612 mutex_exit(&ipfb->ipfb_lock);
2613 }
2614 if (oipfb == NULL)
2615 break;
2616
2617 if (count <= max_count)
2618 return; /* Somebody beat us to it, nothing to do */
2619 mutex_enter(&oipfb->ipfb_lock);
2620 ipf = oipfb->ipfb_ipf;
2621 if (ipf != NULL) {
2622 ill_frag_free_pkts(ill, oipfb, ipf, 1);
2623 }
2624 mutex_exit(&oipfb->ipfb_lock);
2625 }
2626 }
2627
2628 /*
2629 * free 'free_cnt' fragmented packets starting at ipf.
2630 */
2631 void
ill_frag_free_pkts(ill_t * ill,ipfb_t * ipfb,ipf_t * ipf,int free_cnt)2632 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt)
2633 {
2634 size_t count;
2635 mblk_t *mp;
2636 mblk_t *tmp;
2637 ipf_t **ipfp = ipf->ipf_ptphn;
2638
2639 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock));
2640 ASSERT(ipfp != NULL);
2641 ASSERT(ipf != NULL);
2642
2643 while (ipf != NULL && free_cnt-- > 0) {
2644 count = ipf->ipf_count;
2645 mp = ipf->ipf_mp;
2646 ipf = ipf->ipf_hash_next;
2647 for (tmp = mp; tmp; tmp = tmp->b_cont) {
2648 IP_REASS_SET_START(tmp, 0);
2649 IP_REASS_SET_END(tmp, 0);
2650 }
2651 atomic_add_32(&ill->ill_frag_count, -count);
2652 ASSERT(ipfb->ipfb_count >= count);
2653 ipfb->ipfb_count -= count;
2654 ASSERT(ipfb->ipfb_frag_pkts > 0);
2655 ipfb->ipfb_frag_pkts--;
2656 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
2657 ip_drop_input("ipIfStatsReasmFails", mp, ill);
2658 freemsg(mp);
2659 }
2660
2661 if (ipf)
2662 ipf->ipf_ptphn = ipfp;
2663 ipfp[0] = ipf;
2664 }
2665
2666 /*
2667 * Helper function for ill_forward_set().
2668 */
2669 static void
ill_forward_set_on_ill(ill_t * ill,boolean_t enable)2670 ill_forward_set_on_ill(ill_t *ill, boolean_t enable)
2671 {
2672 ip_stack_t *ipst = ill->ill_ipst;
2673
2674 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
2675
2676 ip1dbg(("ill_forward_set: %s %s forwarding on %s",
2677 (enable ? "Enabling" : "Disabling"),
2678 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name));
2679 mutex_enter(&ill->ill_lock);
2680 if (enable)
2681 ill->ill_flags |= ILLF_ROUTER;
2682 else
2683 ill->ill_flags &= ~ILLF_ROUTER;
2684 mutex_exit(&ill->ill_lock);
2685 if (ill->ill_isv6)
2686 ill_set_nce_router_flags(ill, enable);
2687 /* Notify routing socket listeners of this change. */
2688 if (ill->ill_ipif != NULL)
2689 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
2690 }
2691
2692 /*
2693 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing
2694 * socket messages for each interface whose flags we change.
2695 */
2696 int
ill_forward_set(ill_t * ill,boolean_t enable)2697 ill_forward_set(ill_t *ill, boolean_t enable)
2698 {
2699 ipmp_illgrp_t *illg;
2700 ip_stack_t *ipst = ill->ill_ipst;
2701
2702 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
2703
2704 if ((enable && (ill->ill_flags & ILLF_ROUTER)) ||
2705 (!enable && !(ill->ill_flags & ILLF_ROUTER)))
2706 return (0);
2707
2708 if (IS_LOOPBACK(ill))
2709 return (EINVAL);
2710
2711 if (enable && ill->ill_allowed_ips_cnt > 0)
2712 return (EPERM);
2713
2714 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) {
2715 /*
2716 * Update all of the interfaces in the group.
2717 */
2718 illg = ill->ill_grp;
2719 ill = list_head(&illg->ig_if);
2720 for (; ill != NULL; ill = list_next(&illg->ig_if, ill))
2721 ill_forward_set_on_ill(ill, enable);
2722
2723 /*
2724 * Update the IPMP meta-interface.
2725 */
2726 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable);
2727 return (0);
2728 }
2729
2730 ill_forward_set_on_ill(ill, enable);
2731 return (0);
2732 }
2733
2734 /*
2735 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for
2736 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately
2737 * set or clear.
2738 */
2739 static void
ill_set_nce_router_flags(ill_t * ill,boolean_t enable)2740 ill_set_nce_router_flags(ill_t *ill, boolean_t enable)
2741 {
2742 ipif_t *ipif;
2743 ncec_t *ncec;
2744 nce_t *nce;
2745
2746 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
2747 /*
2748 * NOTE: we match across the illgrp because nce's for
2749 * addresses on IPMP interfaces have an nce_ill that points to
2750 * the bound underlying ill.
2751 */
2752 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr);
2753 if (nce != NULL) {
2754 ncec = nce->nce_common;
2755 mutex_enter(&ncec->ncec_lock);
2756 if (enable)
2757 ncec->ncec_flags |= NCE_F_ISROUTER;
2758 else
2759 ncec->ncec_flags &= ~NCE_F_ISROUTER;
2760 mutex_exit(&ncec->ncec_lock);
2761 nce_refrele(nce);
2762 }
2763 }
2764 }
2765
2766 /*
2767 * Intializes the context structure and returns the first ill in the list
2768 * cuurently start_list and end_list can have values:
2769 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists.
2770 * IP_V4_G_HEAD Traverse IPV4 list only.
2771 * IP_V6_G_HEAD Traverse IPV6 list only.
2772 */
2773
2774 /*
2775 * We don't check for CONDEMNED ills here. Caller must do that if
2776 * necessary under the ill lock.
2777 */
2778 ill_t *
ill_first(int start_list,int end_list,ill_walk_context_t * ctx,ip_stack_t * ipst)2779 ill_first(int start_list, int end_list, ill_walk_context_t *ctx,
2780 ip_stack_t *ipst)
2781 {
2782 ill_if_t *ifp;
2783 ill_t *ill;
2784 avl_tree_t *avl_tree;
2785
2786 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
2787 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0);
2788
2789 /*
2790 * setup the lists to search
2791 */
2792 if (end_list != MAX_G_HEADS) {
2793 ctx->ctx_current_list = start_list;
2794 ctx->ctx_last_list = end_list;
2795 } else {
2796 ctx->ctx_last_list = MAX_G_HEADS - 1;
2797 ctx->ctx_current_list = 0;
2798 }
2799
2800 while (ctx->ctx_current_list <= ctx->ctx_last_list) {
2801 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
2802 if (ifp != (ill_if_t *)
2803 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
2804 avl_tree = &ifp->illif_avl_by_ppa;
2805 ill = avl_first(avl_tree);
2806 /*
2807 * ill is guaranteed to be non NULL or ifp should have
2808 * not existed.
2809 */
2810 ASSERT(ill != NULL);
2811 return (ill);
2812 }
2813 ctx->ctx_current_list++;
2814 }
2815
2816 return (NULL);
2817 }
2818
2819 /*
2820 * returns the next ill in the list. ill_first() must have been called
2821 * before calling ill_next() or bad things will happen.
2822 */
2823
2824 /*
2825 * We don't check for CONDEMNED ills here. Caller must do that if
2826 * necessary under the ill lock.
2827 */
2828 ill_t *
ill_next(ill_walk_context_t * ctx,ill_t * lastill)2829 ill_next(ill_walk_context_t *ctx, ill_t *lastill)
2830 {
2831 ill_if_t *ifp;
2832 ill_t *ill;
2833 ip_stack_t *ipst = lastill->ill_ipst;
2834
2835 ASSERT(lastill->ill_ifptr != (ill_if_t *)
2836 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst));
2837 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill,
2838 AVL_AFTER)) != NULL) {
2839 return (ill);
2840 }
2841
2842 /* goto next ill_ifp in the list. */
2843 ifp = lastill->ill_ifptr->illif_next;
2844
2845 /* make sure not at end of circular list */
2846 while (ifp ==
2847 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
2848 if (++ctx->ctx_current_list > ctx->ctx_last_list)
2849 return (NULL);
2850 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
2851 }
2852
2853 return (avl_first(&ifp->illif_avl_by_ppa));
2854 }
2855
2856 /*
2857 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+
2858 * The final number (PPA) must not have any leading zeros. Upon success, a
2859 * pointer to the start of the PPA is returned; otherwise NULL is returned.
2860 */
2861 static char *
ill_get_ppa_ptr(char * name)2862 ill_get_ppa_ptr(char *name)
2863 {
2864 int namelen = strlen(name);
2865 int end_ndx = namelen - 1;
2866 int ppa_ndx, i;
2867
2868 /*
2869 * Check that the first character is [a-zA-Z], and that the last
2870 * character is [0-9].
2871 */
2872 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx]))
2873 return (NULL);
2874
2875 /*
2876 * Set `ppa_ndx' to the PPA start, and check for leading zeroes.
2877 */
2878 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--)
2879 if (!isdigit(name[ppa_ndx - 1]))
2880 break;
2881
2882 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx)
2883 return (NULL);
2884
2885 /*
2886 * Check that the intermediate characters are [a-z0-9.]
2887 */
2888 for (i = 1; i < ppa_ndx; i++) {
2889 if (!isalpha(name[i]) && !isdigit(name[i]) &&
2890 name[i] != '.' && name[i] != '_') {
2891 return (NULL);
2892 }
2893 }
2894
2895 return (name + ppa_ndx);
2896 }
2897
2898 /*
2899 * use avl tree to locate the ill.
2900 */
2901 static ill_t *
ill_find_by_name(char * name,boolean_t isv6,ip_stack_t * ipst)2902 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst)
2903 {
2904 char *ppa_ptr = NULL;
2905 int len;
2906 uint_t ppa;
2907 ill_t *ill = NULL;
2908 ill_if_t *ifp;
2909 int list;
2910
2911 /*
2912 * get ppa ptr
2913 */
2914 if (isv6)
2915 list = IP_V6_G_HEAD;
2916 else
2917 list = IP_V4_G_HEAD;
2918
2919 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) {
2920 return (NULL);
2921 }
2922
2923 len = ppa_ptr - name + 1;
2924
2925 ppa = stoi(&ppa_ptr);
2926
2927 ifp = IP_VX_ILL_G_LIST(list, ipst);
2928
2929 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
2930 /*
2931 * match is done on len - 1 as the name is not null
2932 * terminated it contains ppa in addition to the interface
2933 * name.
2934 */
2935 if ((ifp->illif_name_len == len) &&
2936 bcmp(ifp->illif_name, name, len - 1) == 0) {
2937 break;
2938 } else {
2939 ifp = ifp->illif_next;
2940 }
2941 }
2942
2943 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
2944 /*
2945 * Even the interface type does not exist.
2946 */
2947 return (NULL);
2948 }
2949
2950 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL);
2951 if (ill != NULL) {
2952 mutex_enter(&ill->ill_lock);
2953 if (ILL_CAN_LOOKUP(ill)) {
2954 ill_refhold_locked(ill);
2955 mutex_exit(&ill->ill_lock);
2956 return (ill);
2957 }
2958 mutex_exit(&ill->ill_lock);
2959 }
2960 return (NULL);
2961 }
2962
2963 /*
2964 * comparison function for use with avl.
2965 */
2966 static int
ill_compare_ppa(const void * ppa_ptr,const void * ill_ptr)2967 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr)
2968 {
2969 uint_t ppa;
2970 uint_t ill_ppa;
2971
2972 ASSERT(ppa_ptr != NULL && ill_ptr != NULL);
2973
2974 ppa = *((uint_t *)ppa_ptr);
2975 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa;
2976 /*
2977 * We want the ill with the lowest ppa to be on the
2978 * top.
2979 */
2980 if (ill_ppa < ppa)
2981 return (1);
2982 if (ill_ppa > ppa)
2983 return (-1);
2984 return (0);
2985 }
2986
2987 /*
2988 * remove an interface type from the global list.
2989 */
2990 static void
ill_delete_interface_type(ill_if_t * interface)2991 ill_delete_interface_type(ill_if_t *interface)
2992 {
2993 ASSERT(interface != NULL);
2994 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0);
2995
2996 avl_destroy(&interface->illif_avl_by_ppa);
2997 if (interface->illif_ppa_arena != NULL)
2998 vmem_destroy(interface->illif_ppa_arena);
2999
3000 remque(interface);
3001
3002 mi_free(interface);
3003 }
3004
3005 /*
3006 * remove ill from the global list.
3007 */
3008 static void
ill_glist_delete(ill_t * ill)3009 ill_glist_delete(ill_t *ill)
3010 {
3011 ip_stack_t *ipst;
3012 phyint_t *phyi;
3013
3014 if (ill == NULL)
3015 return;
3016 ipst = ill->ill_ipst;
3017 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
3018
3019 /*
3020 * If the ill was never inserted into the AVL tree
3021 * we skip the if branch.
3022 */
3023 if (ill->ill_ifptr != NULL) {
3024 /*
3025 * remove from AVL tree and free ppa number
3026 */
3027 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill);
3028
3029 if (ill->ill_ifptr->illif_ppa_arena != NULL) {
3030 vmem_free(ill->ill_ifptr->illif_ppa_arena,
3031 (void *)(uintptr_t)(ill->ill_ppa+1), 1);
3032 }
3033 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) {
3034 ill_delete_interface_type(ill->ill_ifptr);
3035 }
3036
3037 /*
3038 * Indicate ill is no longer in the list.
3039 */
3040 ill->ill_ifptr = NULL;
3041 ill->ill_name_length = 0;
3042 ill->ill_name[0] = '\0';
3043 ill->ill_ppa = UINT_MAX;
3044 }
3045
3046 /* Generate one last event for this ill. */
3047 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name,
3048 ill->ill_name_length);
3049
3050 ASSERT(ill->ill_phyint != NULL);
3051 phyi = ill->ill_phyint;
3052 ill->ill_phyint = NULL;
3053
3054 /*
3055 * ill_init allocates a phyint always to store the copy
3056 * of flags relevant to phyint. At that point in time, we could
3057 * not assign the name and hence phyint_illv4/v6 could not be
3058 * initialized. Later in ipif_set_values, we assign the name to
3059 * the ill, at which point in time we assign phyint_illv4/v6.
3060 * Thus we don't rely on phyint_illv6 to be initialized always.
3061 */
3062 if (ill->ill_flags & ILLF_IPV6)
3063 phyi->phyint_illv6 = NULL;
3064 else
3065 phyi->phyint_illv4 = NULL;
3066
3067 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) {
3068 rw_exit(&ipst->ips_ill_g_lock);
3069 return;
3070 }
3071
3072 /*
3073 * There are no ills left on this phyint; pull it out of the phyint
3074 * avl trees, and free it.
3075 */
3076 if (phyi->phyint_ifindex > 0) {
3077 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3078 phyi);
3079 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
3080 phyi);
3081 }
3082 rw_exit(&ipst->ips_ill_g_lock);
3083
3084 phyint_free(phyi);
3085 }
3086
3087 /*
3088 * allocate a ppa, if the number of plumbed interfaces of this type are
3089 * less than ill_no_arena do a linear search to find a unused ppa.
3090 * When the number goes beyond ill_no_arena switch to using an arena.
3091 * Note: ppa value of zero cannot be allocated from vmem_arena as it
3092 * is the return value for an error condition, so allocation starts at one
3093 * and is decremented by one.
3094 */
3095 static int
ill_alloc_ppa(ill_if_t * ifp,ill_t * ill)3096 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill)
3097 {
3098 ill_t *tmp_ill;
3099 uint_t start, end;
3100 int ppa;
3101
3102 if (ifp->illif_ppa_arena == NULL &&
3103 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) {
3104 /*
3105 * Create an arena.
3106 */
3107 ifp->illif_ppa_arena = vmem_create(ifp->illif_name,
3108 (void *)1, UINT_MAX - 1, 1, NULL, NULL,
3109 NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
3110 /* allocate what has already been assigned */
3111 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa);
3112 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa,
3113 tmp_ill, AVL_AFTER)) {
3114 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
3115 1, /* size */
3116 1, /* align/quantum */
3117 0, /* phase */
3118 0, /* nocross */
3119 /* minaddr */
3120 (void *)((uintptr_t)tmp_ill->ill_ppa + 1),
3121 /* maxaddr */
3122 (void *)((uintptr_t)tmp_ill->ill_ppa + 2),
3123 VM_NOSLEEP|VM_FIRSTFIT);
3124 if (ppa == 0) {
3125 ip1dbg(("ill_alloc_ppa: ppa allocation"
3126 " failed while switching"));
3127 vmem_destroy(ifp->illif_ppa_arena);
3128 ifp->illif_ppa_arena = NULL;
3129 break;
3130 }
3131 }
3132 }
3133
3134 if (ifp->illif_ppa_arena != NULL) {
3135 if (ill->ill_ppa == UINT_MAX) {
3136 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena,
3137 1, VM_NOSLEEP|VM_FIRSTFIT);
3138 if (ppa == 0)
3139 return (EAGAIN);
3140 ill->ill_ppa = --ppa;
3141 } else {
3142 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
3143 1, /* size */
3144 1, /* align/quantum */
3145 0, /* phase */
3146 0, /* nocross */
3147 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */
3148 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */
3149 VM_NOSLEEP|VM_FIRSTFIT);
3150 /*
3151 * Most likely the allocation failed because
3152 * the requested ppa was in use.
3153 */
3154 if (ppa == 0)
3155 return (EEXIST);
3156 }
3157 return (0);
3158 }
3159
3160 /*
3161 * No arena is in use and not enough (>ill_no_arena) interfaces have
3162 * been plumbed to create one. Do a linear search to get a unused ppa.
3163 */
3164 if (ill->ill_ppa == UINT_MAX) {
3165 end = UINT_MAX - 1;
3166 start = 0;
3167 } else {
3168 end = start = ill->ill_ppa;
3169 }
3170
3171 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL);
3172 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) {
3173 if (start++ >= end) {
3174 if (ill->ill_ppa == UINT_MAX)
3175 return (EAGAIN);
3176 else
3177 return (EEXIST);
3178 }
3179 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER);
3180 }
3181 ill->ill_ppa = start;
3182 return (0);
3183 }
3184
3185 /*
3186 * Insert ill into the list of configured ill's. Once this function completes,
3187 * the ill is globally visible and is available through lookups. More precisely
3188 * this happens after the caller drops the ill_g_lock.
3189 */
3190 static int
ill_glist_insert(ill_t * ill,char * name,boolean_t isv6)3191 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6)
3192 {
3193 ill_if_t *ill_interface;
3194 avl_index_t where = 0;
3195 int error;
3196 int name_length;
3197 int index;
3198 boolean_t check_length = B_FALSE;
3199 ip_stack_t *ipst = ill->ill_ipst;
3200
3201 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
3202
3203 name_length = mi_strlen(name) + 1;
3204
3205 if (isv6)
3206 index = IP_V6_G_HEAD;
3207 else
3208 index = IP_V4_G_HEAD;
3209
3210 ill_interface = IP_VX_ILL_G_LIST(index, ipst);
3211 /*
3212 * Search for interface type based on name
3213 */
3214 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
3215 if ((ill_interface->illif_name_len == name_length) &&
3216 (strcmp(ill_interface->illif_name, name) == 0)) {
3217 break;
3218 }
3219 ill_interface = ill_interface->illif_next;
3220 }
3221
3222 /*
3223 * Interface type not found, create one.
3224 */
3225 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
3226 ill_g_head_t ghead;
3227
3228 /*
3229 * allocate ill_if_t structure
3230 */
3231 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t));
3232 if (ill_interface == NULL) {
3233 return (ENOMEM);
3234 }
3235
3236 (void) strcpy(ill_interface->illif_name, name);
3237 ill_interface->illif_name_len = name_length;
3238
3239 avl_create(&ill_interface->illif_avl_by_ppa,
3240 ill_compare_ppa, sizeof (ill_t),
3241 offsetof(struct ill_s, ill_avl_byppa));
3242
3243 /*
3244 * link the structure in the back to maintain order
3245 * of configuration for ifconfig output.
3246 */
3247 ghead = ipst->ips_ill_g_heads[index];
3248 insque(ill_interface, ghead.ill_g_list_tail);
3249 }
3250
3251 if (ill->ill_ppa == UINT_MAX)
3252 check_length = B_TRUE;
3253
3254 error = ill_alloc_ppa(ill_interface, ill);
3255 if (error != 0) {
3256 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
3257 ill_delete_interface_type(ill->ill_ifptr);
3258 return (error);
3259 }
3260
3261 /*
3262 * When the ppa is choosen by the system, check that there is
3263 * enough space to insert ppa. if a specific ppa was passed in this
3264 * check is not required as the interface name passed in will have
3265 * the right ppa in it.
3266 */
3267 if (check_length) {
3268 /*
3269 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars.
3270 */
3271 char buf[sizeof (uint_t) * 3];
3272
3273 /*
3274 * convert ppa to string to calculate the amount of space
3275 * required for it in the name.
3276 */
3277 numtos(ill->ill_ppa, buf);
3278
3279 /* Do we have enough space to insert ppa ? */
3280
3281 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) {
3282 /* Free ppa and interface type struct */
3283 if (ill_interface->illif_ppa_arena != NULL) {
3284 vmem_free(ill_interface->illif_ppa_arena,
3285 (void *)(uintptr_t)(ill->ill_ppa+1), 1);
3286 }
3287 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
3288 ill_delete_interface_type(ill->ill_ifptr);
3289
3290 return (EINVAL);
3291 }
3292 }
3293
3294 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa);
3295 ill->ill_name_length = mi_strlen(ill->ill_name) + 1;
3296
3297 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa,
3298 &where);
3299 ill->ill_ifptr = ill_interface;
3300 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where);
3301
3302 ill_phyint_reinit(ill);
3303 return (0);
3304 }
3305
3306 /* Initialize the per phyint ipsq used for serialization */
3307 static boolean_t
ipsq_init(ill_t * ill,boolean_t enter)3308 ipsq_init(ill_t *ill, boolean_t enter)
3309 {
3310 ipsq_t *ipsq;
3311 ipxop_t *ipx;
3312
3313 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL)
3314 return (B_FALSE);
3315
3316 ill->ill_phyint->phyint_ipsq = ipsq;
3317 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop;
3318 ipx->ipx_ipsq = ipsq;
3319 ipsq->ipsq_next = ipsq;
3320 ipsq->ipsq_phyint = ill->ill_phyint;
3321 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0);
3322 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0);
3323 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */
3324 if (enter) {
3325 ipx->ipx_writer = curthread;
3326 ipx->ipx_forced = B_FALSE;
3327 ipx->ipx_reentry_cnt = 1;
3328 #ifdef DEBUG
3329 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
3330 #endif
3331 }
3332 return (B_TRUE);
3333 }
3334
3335 /*
3336 * Here we perform initialisation of the ill_t common to both regular
3337 * interface ILLs and the special loopback ILL created by ill_lookup_on_name.
3338 */
3339 static int
ill_init_common(ill_t * ill,queue_t * q,boolean_t isv6,boolean_t is_loopback,boolean_t ipsq_enter)3340 ill_init_common(ill_t *ill, queue_t *q, boolean_t isv6, boolean_t is_loopback,
3341 boolean_t ipsq_enter)
3342 {
3343 int count;
3344 uchar_t *frag_ptr;
3345
3346 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0);
3347 mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL);
3348 ill->ill_saved_ire_cnt = 0;
3349
3350 if (is_loopback) {
3351 ill->ill_max_frag = isv6 ? ip_loopback_mtu_v6plus :
3352 ip_loopback_mtuplus;
3353 /*
3354 * No resolver here.
3355 */
3356 ill->ill_net_type = IRE_LOOPBACK;
3357 } else {
3358 ill->ill_rq = q;
3359 ill->ill_wq = WR(q);
3360 ill->ill_ppa = UINT_MAX;
3361 }
3362
3363 ill->ill_isv6 = isv6;
3364
3365 /*
3366 * Allocate sufficient space to contain our fragment hash table and
3367 * the device name.
3368 */
3369 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 2 * LIFNAMSIZ);
3370 if (frag_ptr == NULL)
3371 return (ENOMEM);
3372 ill->ill_frag_ptr = frag_ptr;
3373 ill->ill_frag_free_num_pkts = 0;
3374 ill->ill_last_frag_clean_time = 0;
3375 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr;
3376 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE);
3377 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
3378 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock,
3379 NULL, MUTEX_DEFAULT, NULL);
3380 }
3381
3382 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
3383 if (ill->ill_phyint == NULL) {
3384 mi_free(frag_ptr);
3385 return (ENOMEM);
3386 }
3387
3388 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
3389 if (isv6) {
3390 ill->ill_phyint->phyint_illv6 = ill;
3391 } else {
3392 ill->ill_phyint->phyint_illv4 = ill;
3393 }
3394 if (is_loopback) {
3395 phyint_flags_init(ill->ill_phyint, DL_LOOP);
3396 }
3397
3398 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node));
3399
3400 ill_set_inputfn(ill);
3401
3402 if (!ipsq_init(ill, ipsq_enter)) {
3403 mi_free(frag_ptr);
3404 mi_free(ill->ill_phyint);
3405 return (ENOMEM);
3406 }
3407
3408 /* Frag queue limit stuff */
3409 ill->ill_frag_count = 0;
3410 ill->ill_ipf_gen = 0;
3411
3412 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL);
3413 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL);
3414 ill->ill_global_timer = INFINITY;
3415 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
3416 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
3417 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
3418 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
3419
3420 /*
3421 * Initialize IPv6 configuration variables. The IP module is always
3422 * opened as an IPv4 module. Instead tracking down the cases where
3423 * it switches to do ipv6, we'll just initialize the IPv6 configuration
3424 * here for convenience, this has no effect until the ill is set to do
3425 * IPv6.
3426 */
3427 ill->ill_reachable_time = ND_REACHABLE_TIME;
3428 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT;
3429 ill->ill_max_buf = ND_MAX_Q;
3430 ill->ill_refcnt = 0;
3431
3432 return (0);
3433 }
3434
3435 /*
3436 * ill_init is called by ip_open when a device control stream is opened.
3437 * It does a few initializations, and shoots a DL_INFO_REQ message down
3438 * to the driver. The response is later picked up in ip_rput_dlpi and
3439 * used to set up default mechanisms for talking to the driver. (Always
3440 * called as writer.)
3441 *
3442 * If this function returns error, ip_open will call ip_close which in
3443 * turn will call ill_delete to clean up any memory allocated here that
3444 * is not yet freed.
3445 *
3446 * Note: ill_ipst and ill_zoneid must be set before calling ill_init.
3447 */
3448 int
ill_init(queue_t * q,ill_t * ill)3449 ill_init(queue_t *q, ill_t *ill)
3450 {
3451 int ret;
3452 dl_info_req_t *dlir;
3453 mblk_t *info_mp;
3454
3455 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)),
3456 BPRI_HI);
3457 if (info_mp == NULL)
3458 return (ENOMEM);
3459
3460 /*
3461 * For now pretend this is a v4 ill. We need to set phyint_ill*
3462 * at this point because of the following reason. If we can't
3463 * enter the ipsq at some point and cv_wait, the writer that
3464 * wakes us up tries to locate us using the list of all phyints
3465 * in an ipsq and the ills from the phyint thru the phyint_ill*.
3466 * If we don't set it now, we risk a missed wakeup.
3467 */
3468 if ((ret = ill_init_common(ill, q, B_FALSE, B_FALSE, B_TRUE)) != 0) {
3469 freemsg(info_mp);
3470 return (ret);
3471 }
3472
3473 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING;
3474
3475 /* Send down the Info Request to the driver. */
3476 info_mp->b_datap->db_type = M_PCPROTO;
3477 dlir = (dl_info_req_t *)info_mp->b_rptr;
3478 info_mp->b_wptr = (uchar_t *)&dlir[1];
3479 dlir->dl_primitive = DL_INFO_REQ;
3480
3481 ill->ill_dlpi_pending = DL_PRIM_INVAL;
3482
3483 qprocson(q);
3484 ill_dlpi_send(ill, info_mp);
3485
3486 return (0);
3487 }
3488
3489 /*
3490 * ill_dls_info
3491 * creates datalink socket info from the device.
3492 */
3493 int
ill_dls_info(struct sockaddr_dl * sdl,const ill_t * ill)3494 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill)
3495 {
3496 size_t len;
3497
3498 sdl->sdl_family = AF_LINK;
3499 sdl->sdl_index = ill_get_upper_ifindex(ill);
3500 sdl->sdl_type = ill->ill_type;
3501 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data));
3502 len = strlen(sdl->sdl_data);
3503 ASSERT(len < 256);
3504 sdl->sdl_nlen = (uchar_t)len;
3505 sdl->sdl_alen = ill->ill_phys_addr_length;
3506 sdl->sdl_slen = 0;
3507 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL)
3508 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen);
3509
3510 return (sizeof (struct sockaddr_dl));
3511 }
3512
3513 /*
3514 * ill_xarp_info
3515 * creates xarp info from the device.
3516 */
3517 static int
ill_xarp_info(struct sockaddr_dl * sdl,ill_t * ill)3518 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill)
3519 {
3520 sdl->sdl_family = AF_LINK;
3521 sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
3522 sdl->sdl_type = ill->ill_type;
3523 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data));
3524 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data);
3525 sdl->sdl_alen = ill->ill_phys_addr_length;
3526 sdl->sdl_slen = 0;
3527 return (sdl->sdl_nlen);
3528 }
3529
3530 static int
loopback_kstat_update(kstat_t * ksp,int rw)3531 loopback_kstat_update(kstat_t *ksp, int rw)
3532 {
3533 kstat_named_t *kn;
3534 netstackid_t stackid;
3535 netstack_t *ns;
3536 ip_stack_t *ipst;
3537
3538 if (ksp == NULL || ksp->ks_data == NULL)
3539 return (EIO);
3540
3541 if (rw == KSTAT_WRITE)
3542 return (EACCES);
3543
3544 kn = KSTAT_NAMED_PTR(ksp);
3545 stackid = (zoneid_t)(uintptr_t)ksp->ks_private;
3546
3547 ns = netstack_find_by_stackid(stackid);
3548 if (ns == NULL)
3549 return (-1);
3550
3551 ipst = ns->netstack_ip;
3552 if (ipst == NULL) {
3553 netstack_rele(ns);
3554 return (-1);
3555 }
3556 kn[0].value.ui32 = ipst->ips_loopback_packets;
3557 kn[1].value.ui32 = ipst->ips_loopback_packets;
3558 netstack_rele(ns);
3559 return (0);
3560 }
3561
3562 /*
3563 * Has ifindex been plumbed already?
3564 */
3565 static boolean_t
phyint_exists(uint_t index,ip_stack_t * ipst)3566 phyint_exists(uint_t index, ip_stack_t *ipst)
3567 {
3568 ASSERT(index != 0);
3569 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
3570
3571 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3572 &index, NULL) != NULL);
3573 }
3574
3575 /*
3576 * Pick a unique ifindex.
3577 * When the index counter passes IF_INDEX_MAX for the first time, the wrap
3578 * flag is set so that next time time ip_assign_ifindex() is called, it
3579 * falls through and resets the index counter back to 1, the minimum value
3580 * for the interface index. The logic below assumes that ips_ill_index
3581 * can hold a value of IF_INDEX_MAX+1 without there being any loss
3582 * (i.e. reset back to 0.)
3583 */
3584 boolean_t
ip_assign_ifindex(uint_t * indexp,ip_stack_t * ipst)3585 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst)
3586 {
3587 uint_t loops;
3588
3589 if (!ipst->ips_ill_index_wrap) {
3590 *indexp = ipst->ips_ill_index++;
3591 if (ipst->ips_ill_index > IF_INDEX_MAX) {
3592 /*
3593 * Reached the maximum ifindex value, set the wrap
3594 * flag to indicate that it is no longer possible
3595 * to assume that a given index is unallocated.
3596 */
3597 ipst->ips_ill_index_wrap = B_TRUE;
3598 }
3599 return (B_TRUE);
3600 }
3601
3602 if (ipst->ips_ill_index > IF_INDEX_MAX)
3603 ipst->ips_ill_index = 1;
3604
3605 /*
3606 * Start reusing unused indexes. Note that we hold the ill_g_lock
3607 * at this point and don't want to call any function that attempts
3608 * to get the lock again.
3609 */
3610 for (loops = IF_INDEX_MAX; loops > 0; loops--) {
3611 if (!phyint_exists(ipst->ips_ill_index, ipst)) {
3612 /* found unused index - use it */
3613 *indexp = ipst->ips_ill_index;
3614 return (B_TRUE);
3615 }
3616
3617 ipst->ips_ill_index++;
3618 if (ipst->ips_ill_index > IF_INDEX_MAX)
3619 ipst->ips_ill_index = 1;
3620 }
3621
3622 /*
3623 * all interface indicies are inuse.
3624 */
3625 return (B_FALSE);
3626 }
3627
3628 /*
3629 * Assign a unique interface index for the phyint.
3630 */
3631 static boolean_t
phyint_assign_ifindex(phyint_t * phyi,ip_stack_t * ipst)3632 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst)
3633 {
3634 ASSERT(phyi->phyint_ifindex == 0);
3635 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst));
3636 }
3637
3638 /*
3639 * Initialize the flags on `phyi' as per the provided mactype.
3640 */
3641 static void
phyint_flags_init(phyint_t * phyi,t_uscalar_t mactype)3642 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype)
3643 {
3644 uint64_t flags = 0;
3645
3646 /*
3647 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces,
3648 * we always presume the underlying hardware is working and set
3649 * PHYI_RUNNING (if it's not, the driver will subsequently send a
3650 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization
3651 * there are no active interfaces in the group so we set PHYI_FAILED.
3652 */
3653 if (mactype == SUNW_DL_IPMP)
3654 flags |= PHYI_FAILED;
3655 else
3656 flags |= PHYI_RUNNING;
3657
3658 switch (mactype) {
3659 case SUNW_DL_VNI:
3660 flags |= PHYI_VIRTUAL;
3661 break;
3662 case SUNW_DL_IPMP:
3663 flags |= PHYI_IPMP;
3664 break;
3665 case DL_LOOP:
3666 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL);
3667 break;
3668 }
3669
3670 mutex_enter(&phyi->phyint_lock);
3671 phyi->phyint_flags |= flags;
3672 mutex_exit(&phyi->phyint_lock);
3673 }
3674
3675 /*
3676 * Return a pointer to the ill which matches the supplied name. Note that
3677 * the ill name length includes the null termination character. (May be
3678 * called as writer.)
3679 * If do_alloc and the interface is "lo0" it will be automatically created.
3680 * Cannot bump up reference on condemned ills. So dup detect can't be done
3681 * using this func.
3682 */
3683 ill_t *
ill_lookup_on_name(char * name,boolean_t do_alloc,boolean_t isv6,boolean_t * did_alloc,ip_stack_t * ipst)3684 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6,
3685 boolean_t *did_alloc, ip_stack_t *ipst)
3686 {
3687 ill_t *ill;
3688 ipif_t *ipif;
3689 ipsq_t *ipsq;
3690 kstat_named_t *kn;
3691 boolean_t isloopback;
3692 in6_addr_t ov6addr;
3693
3694 isloopback = mi_strcmp(name, ipif_loopback_name) == 0;
3695
3696 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3697 ill = ill_find_by_name(name, isv6, ipst);
3698 rw_exit(&ipst->ips_ill_g_lock);
3699 if (ill != NULL)
3700 return (ill);
3701
3702 /*
3703 * Couldn't find it. Does this happen to be a lookup for the
3704 * loopback device and are we allowed to allocate it?
3705 */
3706 if (!isloopback || !do_alloc)
3707 return (NULL);
3708
3709 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
3710 ill = ill_find_by_name(name, isv6, ipst);
3711 if (ill != NULL) {
3712 rw_exit(&ipst->ips_ill_g_lock);
3713 return (ill);
3714 }
3715
3716 /* Create the loopback device on demand */
3717 ill = (ill_t *)(mi_alloc(sizeof (ill_t) +
3718 sizeof (ipif_loopback_name), BPRI_MED));
3719 if (ill == NULL)
3720 goto done;
3721
3722 bzero(ill, sizeof (*ill));
3723 ill->ill_ipst = ipst;
3724 netstack_hold(ipst->ips_netstack);
3725 /*
3726 * For exclusive stacks we set the zoneid to zero
3727 * to make IP operate as if in the global zone.
3728 */
3729 ill->ill_zoneid = GLOBAL_ZONEID;
3730
3731 if (ill_init_common(ill, NULL, isv6, B_TRUE, B_FALSE) != 0)
3732 goto done;
3733
3734 if (!ill_allocate_mibs(ill))
3735 goto done;
3736
3737 ill->ill_current_frag = ill->ill_max_frag;
3738 ill->ill_mtu = ill->ill_max_frag; /* Initial value */
3739 ill->ill_mc_mtu = ill->ill_mtu;
3740 /*
3741 * ipif_loopback_name can't be pointed at directly because its used
3742 * by both the ipv4 and ipv6 interfaces. When the ill is removed
3743 * from the glist, ill_glist_delete() sets the first character of
3744 * ill_name to '\0'.
3745 */
3746 ill->ill_name = (char *)ill + sizeof (*ill);
3747 (void) strcpy(ill->ill_name, ipif_loopback_name);
3748 ill->ill_name_length = sizeof (ipif_loopback_name);
3749 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */
3750 ill->ill_dlpi_pending = DL_PRIM_INVAL;
3751
3752 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL);
3753 if (ipif == NULL)
3754 goto done;
3755
3756 ill->ill_flags = ILLF_MULTICAST;
3757
3758 ov6addr = ipif->ipif_v6lcl_addr;
3759 /* Set up default loopback address and mask. */
3760 if (!isv6) {
3761 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK);
3762
3763 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr);
3764 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask);
3765 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
3766 ipif->ipif_v6subnet);
3767 ill->ill_flags |= ILLF_IPV4;
3768 } else {
3769 ipif->ipif_v6lcl_addr = ipv6_loopback;
3770 ipif->ipif_v6net_mask = ipv6_all_ones;
3771 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
3772 ipif->ipif_v6subnet);
3773 ill->ill_flags |= ILLF_IPV6;
3774 }
3775
3776 /*
3777 * Chain us in at the end of the ill list. hold the ill
3778 * before we make it globally visible. 1 for the lookup.
3779 */
3780 ill_refhold(ill);
3781
3782 ipsq = ill->ill_phyint->phyint_ipsq;
3783
3784 if (ill_glist_insert(ill, "lo", isv6) != 0)
3785 cmn_err(CE_PANIC, "cannot insert loopback interface");
3786
3787 /* Let SCTP know so that it can add this to its list */
3788 sctp_update_ill(ill, SCTP_ILL_INSERT);
3789
3790 /*
3791 * We have already assigned ipif_v6lcl_addr above, but we need to
3792 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which
3793 * requires to be after ill_glist_insert() since we need the
3794 * ill_index set. Pass on ipv6_loopback as the old address.
3795 */
3796 sctp_update_ipif_addr(ipif, ov6addr);
3797
3798 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);
3799
3800 /*
3801 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs.
3802 * If so, free our original one.
3803 */
3804 if (ipsq != ill->ill_phyint->phyint_ipsq)
3805 ipsq_delete(ipsq);
3806
3807 if (ipst->ips_loopback_ksp == NULL) {
3808 /* Export loopback interface statistics */
3809 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0,
3810 ipif_loopback_name, "net",
3811 KSTAT_TYPE_NAMED, 2, 0,
3812 ipst->ips_netstack->netstack_stackid);
3813 if (ipst->ips_loopback_ksp != NULL) {
3814 ipst->ips_loopback_ksp->ks_update =
3815 loopback_kstat_update;
3816 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp);
3817 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32);
3818 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32);
3819 ipst->ips_loopback_ksp->ks_private =
3820 (void *)(uintptr_t)ipst->ips_netstack->
3821 netstack_stackid;
3822 kstat_install(ipst->ips_loopback_ksp);
3823 }
3824 }
3825
3826 *did_alloc = B_TRUE;
3827 rw_exit(&ipst->ips_ill_g_lock);
3828 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id),
3829 NE_PLUMB, ill->ill_name, ill->ill_name_length);
3830 return (ill);
3831 done:
3832 if (ill != NULL) {
3833 if (ill->ill_phyint != NULL) {
3834 ipsq = ill->ill_phyint->phyint_ipsq;
3835 if (ipsq != NULL) {
3836 ipsq->ipsq_phyint = NULL;
3837 ipsq_delete(ipsq);
3838 }
3839 mi_free(ill->ill_phyint);
3840 }
3841 ill_free_mib(ill);
3842 if (ill->ill_ipst != NULL)
3843 netstack_rele(ill->ill_ipst->ips_netstack);
3844 mi_free(ill);
3845 }
3846 rw_exit(&ipst->ips_ill_g_lock);
3847 return (NULL);
3848 }
3849
3850 /*
3851 * For IPP calls - use the ip_stack_t for global stack.
3852 */
3853 ill_t *
ill_lookup_on_ifindex_global_instance(uint_t index,boolean_t isv6)3854 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6)
3855 {
3856 ip_stack_t *ipst;
3857 ill_t *ill;
3858
3859 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip;
3860 if (ipst == NULL) {
3861 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n");
3862 return (NULL);
3863 }
3864
3865 ill = ill_lookup_on_ifindex(index, isv6, ipst);
3866 netstack_rele(ipst->ips_netstack);
3867 return (ill);
3868 }
3869
3870 /*
3871 * Return a pointer to the ill which matches the index and IP version type.
3872 */
3873 ill_t *
ill_lookup_on_ifindex(uint_t index,boolean_t isv6,ip_stack_t * ipst)3874 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
3875 {
3876 ill_t *ill;
3877 phyint_t *phyi;
3878
3879 /*
3880 * Indexes are stored in the phyint - a common structure
3881 * to both IPv4 and IPv6.
3882 */
3883 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3884 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3885 (void *) &index, NULL);
3886 if (phyi != NULL) {
3887 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4;
3888 if (ill != NULL) {
3889 mutex_enter(&ill->ill_lock);
3890 if (!ILL_IS_CONDEMNED(ill)) {
3891 ill_refhold_locked(ill);
3892 mutex_exit(&ill->ill_lock);
3893 rw_exit(&ipst->ips_ill_g_lock);
3894 return (ill);
3895 }
3896 mutex_exit(&ill->ill_lock);
3897 }
3898 }
3899 rw_exit(&ipst->ips_ill_g_lock);
3900 return (NULL);
3901 }
3902
3903 /*
3904 * Verify whether or not an interface index is valid for the specified zoneid
3905 * to transmit packets.
3906 * It can be zero (meaning "reset") or an interface index assigned
3907 * to a non-VNI interface. (We don't use VNI interface to send packets.)
3908 */
3909 boolean_t
ip_xmit_ifindex_valid(uint_t ifindex,zoneid_t zoneid,boolean_t isv6,ip_stack_t * ipst)3910 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6,
3911 ip_stack_t *ipst)
3912 {
3913 ill_t *ill;
3914
3915 if (ifindex == 0)
3916 return (B_TRUE);
3917
3918 ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst);
3919 if (ill == NULL)
3920 return (B_FALSE);
3921 if (IS_VNI(ill)) {
3922 ill_refrele(ill);
3923 return (B_FALSE);
3924 }
3925 ill_refrele(ill);
3926 return (B_TRUE);
3927 }
3928
3929 /*
3930 * Return the ifindex next in sequence after the passed in ifindex.
3931 * If there is no next ifindex for the given protocol, return 0.
3932 */
3933 uint_t
ill_get_next_ifindex(uint_t index,boolean_t isv6,ip_stack_t * ipst)3934 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
3935 {
3936 phyint_t *phyi;
3937 phyint_t *phyi_initial;
3938 uint_t ifindex;
3939
3940 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3941
3942 if (index == 0) {
3943 phyi = avl_first(
3944 &ipst->ips_phyint_g_list->phyint_list_avl_by_index);
3945 } else {
3946 phyi = phyi_initial = avl_find(
3947 &ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3948 (void *) &index, NULL);
3949 }
3950
3951 for (; phyi != NULL;
3952 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3953 phyi, AVL_AFTER)) {
3954 /*
3955 * If we're not returning the first interface in the tree
3956 * and we still haven't moved past the phyint_t that
3957 * corresponds to index, avl_walk needs to be called again
3958 */
3959 if (!((index != 0) && (phyi == phyi_initial))) {
3960 if (isv6) {
3961 if ((phyi->phyint_illv6) &&
3962 ILL_CAN_LOOKUP(phyi->phyint_illv6) &&
3963 (phyi->phyint_illv6->ill_isv6 == 1))
3964 break;
3965 } else {
3966 if ((phyi->phyint_illv4) &&
3967 ILL_CAN_LOOKUP(phyi->phyint_illv4) &&
3968 (phyi->phyint_illv4->ill_isv6 == 0))
3969 break;
3970 }
3971 }
3972 }
3973
3974 rw_exit(&ipst->ips_ill_g_lock);
3975
3976 if (phyi != NULL)
3977 ifindex = phyi->phyint_ifindex;
3978 else
3979 ifindex = 0;
3980
3981 return (ifindex);
3982 }
3983
3984 /*
3985 * Return the ifindex for the named interface.
3986 * If there is no next ifindex for the interface, return 0.
3987 */
3988 uint_t
ill_get_ifindex_by_name(char * name,ip_stack_t * ipst)3989 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst)
3990 {
3991 phyint_t *phyi;
3992 avl_index_t where = 0;
3993 uint_t ifindex;
3994
3995 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3996
3997 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
3998 name, &where)) == NULL) {
3999 rw_exit(&ipst->ips_ill_g_lock);
4000 return (0);
4001 }
4002
4003 ifindex = phyi->phyint_ifindex;
4004
4005 rw_exit(&ipst->ips_ill_g_lock);
4006
4007 return (ifindex);
4008 }
4009
4010 /*
4011 * Return the ifindex to be used by upper layer protocols for instance
4012 * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill.
4013 */
4014 uint_t
ill_get_upper_ifindex(const ill_t * ill)4015 ill_get_upper_ifindex(const ill_t *ill)
4016 {
4017 if (IS_UNDER_IPMP(ill))
4018 return (ipmp_ill_get_ipmp_ifindex(ill));
4019 else
4020 return (ill->ill_phyint->phyint_ifindex);
4021 }
4022
4023
4024 /*
4025 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt
4026 * that gives a running thread a reference to the ill. This reference must be
4027 * released by the thread when it is done accessing the ill and related
4028 * objects. ill_refcnt can not be used to account for static references
4029 * such as other structures pointing to an ill. Callers must generally
4030 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros
4031 * or be sure that the ill is not being deleted or changing state before
4032 * calling the refhold functions. A non-zero ill_refcnt ensures that the
4033 * ill won't change any of its critical state such as address, netmask etc.
4034 */
4035 void
ill_refhold(ill_t * ill)4036 ill_refhold(ill_t *ill)
4037 {
4038 mutex_enter(&ill->ill_lock);
4039 ill->ill_refcnt++;
4040 ILL_TRACE_REF(ill);
4041 mutex_exit(&ill->ill_lock);
4042 }
4043
4044 void
ill_refhold_locked(ill_t * ill)4045 ill_refhold_locked(ill_t *ill)
4046 {
4047 ASSERT(MUTEX_HELD(&ill->ill_lock));
4048 ill->ill_refcnt++;
4049 ILL_TRACE_REF(ill);
4050 }
4051
4052 /* Returns true if we managed to get a refhold */
4053 boolean_t
ill_check_and_refhold(ill_t * ill)4054 ill_check_and_refhold(ill_t *ill)
4055 {
4056 mutex_enter(&ill->ill_lock);
4057 if (!ILL_IS_CONDEMNED(ill)) {
4058 ill_refhold_locked(ill);
4059 mutex_exit(&ill->ill_lock);
4060 return (B_TRUE);
4061 }
4062 mutex_exit(&ill->ill_lock);
4063 return (B_FALSE);
4064 }
4065
4066 /*
4067 * Must not be called while holding any locks. Otherwise if this is
4068 * the last reference to be released, there is a chance of recursive mutex
4069 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
4070 * to restart an ioctl.
4071 */
4072 void
ill_refrele(ill_t * ill)4073 ill_refrele(ill_t *ill)
4074 {
4075 mutex_enter(&ill->ill_lock);
4076 ASSERT(ill->ill_refcnt != 0);
4077 ill->ill_refcnt--;
4078 ILL_UNTRACE_REF(ill);
4079 if (ill->ill_refcnt != 0) {
4080 /* Every ire pointing to the ill adds 1 to ill_refcnt */
4081 mutex_exit(&ill->ill_lock);
4082 return;
4083 }
4084
4085 /* Drops the ill_lock */
4086 ipif_ill_refrele_tail(ill);
4087 }
4088
4089 /*
4090 * Obtain a weak reference count on the ill. This reference ensures the
4091 * ill won't be freed, but the ill may change any of its critical state
4092 * such as netmask, address etc. Returns an error if the ill has started
4093 * closing.
4094 */
4095 boolean_t
ill_waiter_inc(ill_t * ill)4096 ill_waiter_inc(ill_t *ill)
4097 {
4098 mutex_enter(&ill->ill_lock);
4099 if (ill->ill_state_flags & ILL_CONDEMNED) {
4100 mutex_exit(&ill->ill_lock);
4101 return (B_FALSE);
4102 }
4103 ill->ill_waiters++;
4104 mutex_exit(&ill->ill_lock);
4105 return (B_TRUE);
4106 }
4107
4108 void
ill_waiter_dcr(ill_t * ill)4109 ill_waiter_dcr(ill_t *ill)
4110 {
4111 mutex_enter(&ill->ill_lock);
4112 ill->ill_waiters--;
4113 if (ill->ill_waiters == 0)
4114 cv_broadcast(&ill->ill_cv);
4115 mutex_exit(&ill->ill_lock);
4116 }
4117
4118 /*
4119 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the
4120 * driver. We construct best guess defaults for lower level information that
4121 * we need. If an interface is brought up without injection of any overriding
4122 * information from outside, we have to be ready to go with these defaults.
4123 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ)
4124 * we primarely want the dl_provider_style.
4125 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND
4126 * at which point we assume the other part of the information is valid.
4127 */
4128 void
ip_ll_subnet_defaults(ill_t * ill,mblk_t * mp)4129 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp)
4130 {
4131 uchar_t *brdcst_addr;
4132 uint_t brdcst_addr_length, phys_addr_length;
4133 t_scalar_t sap_length;
4134 dl_info_ack_t *dlia;
4135 ip_m_t *ipm;
4136 dl_qos_cl_sel1_t *sel1;
4137 int min_mtu;
4138
4139 ASSERT(IAM_WRITER_ILL(ill));
4140
4141 /*
4142 * Till the ill is fully up the ill is not globally visible.
4143 * So no need for a lock.
4144 */
4145 dlia = (dl_info_ack_t *)mp->b_rptr;
4146 ill->ill_mactype = dlia->dl_mac_type;
4147
4148 ipm = ip_m_lookup(dlia->dl_mac_type);
4149 if (ipm == NULL) {
4150 ipm = ip_m_lookup(DL_OTHER);
4151 ASSERT(ipm != NULL);
4152 }
4153 ill->ill_media = ipm;
4154
4155 /*
4156 * When the new DLPI stuff is ready we'll pull lengths
4157 * from dlia.
4158 */
4159 if (dlia->dl_version == DL_VERSION_2) {
4160 brdcst_addr_length = dlia->dl_brdcst_addr_length;
4161 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset,
4162 brdcst_addr_length);
4163 if (brdcst_addr == NULL) {
4164 brdcst_addr_length = 0;
4165 }
4166 sap_length = dlia->dl_sap_length;
4167 phys_addr_length = dlia->dl_addr_length - ABS(sap_length);
4168 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n",
4169 brdcst_addr_length, sap_length, phys_addr_length));
4170 } else {
4171 brdcst_addr_length = 6;
4172 brdcst_addr = ip_six_byte_all_ones;
4173 sap_length = -2;
4174 phys_addr_length = brdcst_addr_length;
4175 }
4176
4177 ill->ill_bcast_addr_length = brdcst_addr_length;
4178 ill->ill_phys_addr_length = phys_addr_length;
4179 ill->ill_sap_length = sap_length;
4180
4181 /*
4182 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU,
4183 * but we must ensure a minimum IP MTU is used since other bits of
4184 * IP will fly apart otherwise.
4185 */
4186 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU;
4187 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu);
4188 ill->ill_current_frag = ill->ill_max_frag;
4189 ill->ill_mtu = ill->ill_max_frag;
4190 ill->ill_mc_mtu = ill->ill_mtu; /* Overridden by DL_NOTE_SDU_SIZE2 */
4191
4192 ill->ill_type = ipm->ip_m_type;
4193
4194 if (!ill->ill_dlpi_style_set) {
4195 if (dlia->dl_provider_style == DL_STYLE2)
4196 ill->ill_needs_attach = 1;
4197
4198 phyint_flags_init(ill->ill_phyint, ill->ill_mactype);
4199
4200 /*
4201 * Allocate the first ipif on this ill. We don't delay it
4202 * further as ioctl handling assumes at least one ipif exists.
4203 *
4204 * At this point we don't know whether the ill is v4 or v6.
4205 * We will know this whan the SIOCSLIFNAME happens and
4206 * the correct value for ill_isv6 will be assigned in
4207 * ipif_set_values(). We need to hold the ill lock and
4208 * clear the ILL_LL_SUBNET_PENDING flag and atomically do
4209 * the wakeup.
4210 */
4211 (void) ipif_allocate(ill, 0, IRE_LOCAL,
4212 dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL);
4213 mutex_enter(&ill->ill_lock);
4214 ASSERT(ill->ill_dlpi_style_set == 0);
4215 ill->ill_dlpi_style_set = 1;
4216 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING;
4217 cv_broadcast(&ill->ill_cv);
4218 mutex_exit(&ill->ill_lock);
4219 freemsg(mp);
4220 return;
4221 }
4222 ASSERT(ill->ill_ipif != NULL);
4223 /*
4224 * We know whether it is IPv4 or IPv6 now, as this is the
4225 * second DL_INFO_ACK we are recieving in response to the
4226 * DL_INFO_REQ sent in ipif_set_values.
4227 */
4228 ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap;
4229 /*
4230 * Clear all the flags that were set based on ill_bcast_addr_length
4231 * and ill_phys_addr_length (in ipif_set_values) as these could have
4232 * changed now and we need to re-evaluate.
4233 */
4234 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP);
4235 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT);
4236
4237 /*
4238 * Free ill_bcast_mp as things could have changed now.
4239 *
4240 * NOTE: The IPMP meta-interface is special-cased because it starts
4241 * with no underlying interfaces (and thus an unknown broadcast
4242 * address length), but we enforce that an interface is broadcast-
4243 * capable as part of allowing it to join a group.
4244 */
4245 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) {
4246 if (ill->ill_bcast_mp != NULL)
4247 freemsg(ill->ill_bcast_mp);
4248 ill->ill_net_type = IRE_IF_NORESOLVER;
4249
4250 ill->ill_bcast_mp = ill_dlur_gen(NULL,
4251 ill->ill_phys_addr_length,
4252 ill->ill_sap,
4253 ill->ill_sap_length);
4254
4255 if (ill->ill_isv6)
4256 /*
4257 * Note: xresolv interfaces will eventually need NOARP
4258 * set here as well, but that will require those
4259 * external resolvers to have some knowledge of
4260 * that flag and act appropriately. Not to be changed
4261 * at present.
4262 */
4263 ill->ill_flags |= ILLF_NONUD;
4264 else
4265 ill->ill_flags |= ILLF_NOARP;
4266
4267 if (ill->ill_mactype == SUNW_DL_VNI) {
4268 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT;
4269 } else if (ill->ill_phys_addr_length == 0 ||
4270 ill->ill_mactype == DL_IPV4 ||
4271 ill->ill_mactype == DL_IPV6) {
4272 /*
4273 * The underying link is point-to-point, so mark the
4274 * interface as such. We can do IP multicast over
4275 * such a link since it transmits all network-layer
4276 * packets to the remote side the same way.
4277 */
4278 ill->ill_flags |= ILLF_MULTICAST;
4279 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT;
4280 }
4281 } else {
4282 ill->ill_net_type = IRE_IF_RESOLVER;
4283 if (ill->ill_bcast_mp != NULL)
4284 freemsg(ill->ill_bcast_mp);
4285 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr,
4286 ill->ill_bcast_addr_length, ill->ill_sap,
4287 ill->ill_sap_length);
4288 /*
4289 * Later detect lack of DLPI driver multicast
4290 * capability by catching DL_ENABMULTI errors in
4291 * ip_rput_dlpi.
4292 */
4293 ill->ill_flags |= ILLF_MULTICAST;
4294 if (!ill->ill_isv6)
4295 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST;
4296 }
4297
4298 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */
4299 if (ill->ill_mactype == SUNW_DL_IPMP)
4300 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP);
4301
4302 /* By default an interface does not support any CoS marking */
4303 ill->ill_flags &= ~ILLF_COS_ENABLED;
4304
4305 /*
4306 * If we get QoS information in DL_INFO_ACK, the device supports
4307 * some form of CoS marking, set ILLF_COS_ENABLED.
4308 */
4309 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset,
4310 dlia->dl_qos_length);
4311 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) {
4312 ill->ill_flags |= ILLF_COS_ENABLED;
4313 }
4314
4315 /* Clear any previous error indication. */
4316 ill->ill_error = 0;
4317 freemsg(mp);
4318 }
4319
4320 /*
4321 * Perform various checks to verify that an address would make sense as a
4322 * local, remote, or subnet interface address.
4323 */
4324 static boolean_t
ip_addr_ok_v4(ipaddr_t addr,ipaddr_t subnet_mask)4325 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask)
4326 {
4327 ipaddr_t net_mask;
4328
4329 /*
4330 * Don't allow all zeroes, or all ones, but allow
4331 * all ones netmask.
4332 */
4333 if ((net_mask = ip_net_mask(addr)) == 0)
4334 return (B_FALSE);
4335 /* A given netmask overrides the "guess" netmask */
4336 if (subnet_mask != 0)
4337 net_mask = subnet_mask;
4338 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) ||
4339 (addr == (addr | ~net_mask)))) {
4340 return (B_FALSE);
4341 }
4342
4343 /*
4344 * Even if the netmask is all ones, we do not allow address to be
4345 * 255.255.255.255
4346 */
4347 if (addr == INADDR_BROADCAST)
4348 return (B_FALSE);
4349
4350 if (CLASSD(addr))
4351 return (B_FALSE);
4352
4353 return (B_TRUE);
4354 }
4355
4356 #define V6_IPIF_LINKLOCAL(p) \
4357 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr)
4358
4359 /*
4360 * Compare two given ipifs and check if the second one is better than
4361 * the first one using the order of preference (not taking deprecated
4362 * into acount) specified in ipif_lookup_multicast().
4363 */
4364 static boolean_t
ipif_comp_multi(ipif_t * old_ipif,ipif_t * new_ipif,boolean_t isv6)4365 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6)
4366 {
4367 /* Check the least preferred first. */
4368 if (IS_LOOPBACK(old_ipif->ipif_ill)) {
4369 /* If both ipifs are the same, use the first one. */
4370 if (IS_LOOPBACK(new_ipif->ipif_ill))
4371 return (B_FALSE);
4372 else
4373 return (B_TRUE);
4374 }
4375
4376 /* For IPv6, check for link local address. */
4377 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) {
4378 if (IS_LOOPBACK(new_ipif->ipif_ill) ||
4379 V6_IPIF_LINKLOCAL(new_ipif)) {
4380 /* The second one is equal or less preferred. */
4381 return (B_FALSE);
4382 } else {
4383 return (B_TRUE);
4384 }
4385 }
4386
4387 /* Then check for point to point interface. */
4388 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) {
4389 if (IS_LOOPBACK(new_ipif->ipif_ill) ||
4390 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) ||
4391 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) {
4392 return (B_FALSE);
4393 } else {
4394 return (B_TRUE);
4395 }
4396 }
4397
4398 /* old_ipif is a normal interface, so no need to use the new one. */
4399 return (B_FALSE);
4400 }
4401
4402 /*
4403 * Find a mulitcast-capable ipif given an IP instance and zoneid.
4404 * The ipif must be up, and its ill must multicast-capable, not
4405 * condemned, not an underlying interface in an IPMP group, and
4406 * not a VNI interface. Order of preference:
4407 *
4408 * 1a. normal
4409 * 1b. normal, but deprecated
4410 * 2a. point to point
4411 * 2b. point to point, but deprecated
4412 * 3a. link local
4413 * 3b. link local, but deprecated
4414 * 4. loopback.
4415 */
4416 static ipif_t *
ipif_lookup_multicast(ip_stack_t * ipst,zoneid_t zoneid,boolean_t isv6)4417 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
4418 {
4419 ill_t *ill;
4420 ill_walk_context_t ctx;
4421 ipif_t *ipif;
4422 ipif_t *saved_ipif = NULL;
4423 ipif_t *dep_ipif = NULL;
4424
4425 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4426 if (isv6)
4427 ill = ILL_START_WALK_V6(&ctx, ipst);
4428 else
4429 ill = ILL_START_WALK_V4(&ctx, ipst);
4430
4431 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4432 mutex_enter(&ill->ill_lock);
4433 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) ||
4434 ILL_IS_CONDEMNED(ill) ||
4435 !(ill->ill_flags & ILLF_MULTICAST)) {
4436 mutex_exit(&ill->ill_lock);
4437 continue;
4438 }
4439 for (ipif = ill->ill_ipif; ipif != NULL;
4440 ipif = ipif->ipif_next) {
4441 if (zoneid != ipif->ipif_zoneid &&
4442 zoneid != ALL_ZONES &&
4443 ipif->ipif_zoneid != ALL_ZONES) {
4444 continue;
4445 }
4446 if (!(ipif->ipif_flags & IPIF_UP) ||
4447 IPIF_IS_CONDEMNED(ipif)) {
4448 continue;
4449 }
4450
4451 /*
4452 * Found one candidate. If it is deprecated,
4453 * remember it in dep_ipif. If it is not deprecated,
4454 * remember it in saved_ipif.
4455 */
4456 if (ipif->ipif_flags & IPIF_DEPRECATED) {
4457 if (dep_ipif == NULL) {
4458 dep_ipif = ipif;
4459 } else if (ipif_comp_multi(dep_ipif, ipif,
4460 isv6)) {
4461 /*
4462 * If the previous dep_ipif does not
4463 * belong to the same ill, we've done
4464 * a ipif_refhold() on it. So we need
4465 * to release it.
4466 */
4467 if (dep_ipif->ipif_ill != ill)
4468 ipif_refrele(dep_ipif);
4469 dep_ipif = ipif;
4470 }
4471 continue;
4472 }
4473 if (saved_ipif == NULL) {
4474 saved_ipif = ipif;
4475 } else {
4476 if (ipif_comp_multi(saved_ipif, ipif, isv6)) {
4477 if (saved_ipif->ipif_ill != ill)
4478 ipif_refrele(saved_ipif);
4479 saved_ipif = ipif;
4480 }
4481 }
4482 }
4483 /*
4484 * Before going to the next ill, do a ipif_refhold() on the
4485 * saved ones.
4486 */
4487 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill)
4488 ipif_refhold_locked(saved_ipif);
4489 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill)
4490 ipif_refhold_locked(dep_ipif);
4491 mutex_exit(&ill->ill_lock);
4492 }
4493 rw_exit(&ipst->ips_ill_g_lock);
4494
4495 /*
4496 * If we have only the saved_ipif, return it. But if we have both
4497 * saved_ipif and dep_ipif, check to see which one is better.
4498 */
4499 if (saved_ipif != NULL) {
4500 if (dep_ipif != NULL) {
4501 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) {
4502 ipif_refrele(saved_ipif);
4503 return (dep_ipif);
4504 } else {
4505 ipif_refrele(dep_ipif);
4506 return (saved_ipif);
4507 }
4508 }
4509 return (saved_ipif);
4510 } else {
4511 return (dep_ipif);
4512 }
4513 }
4514
4515 ill_t *
ill_lookup_multicast(ip_stack_t * ipst,zoneid_t zoneid,boolean_t isv6)4516 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
4517 {
4518 ipif_t *ipif;
4519 ill_t *ill;
4520
4521 ipif = ipif_lookup_multicast(ipst, zoneid, isv6);
4522 if (ipif == NULL)
4523 return (NULL);
4524
4525 ill = ipif->ipif_ill;
4526 ill_refhold(ill);
4527 ipif_refrele(ipif);
4528 return (ill);
4529 }
4530
4531 /*
4532 * This function is called when an application does not specify an interface
4533 * to be used for multicast traffic (joining a group/sending data). It
4534 * calls ire_lookup_multi() to look for an interface route for the
4535 * specified multicast group. Doing this allows the administrator to add
4536 * prefix routes for multicast to indicate which interface to be used for
4537 * multicast traffic in the above scenario. The route could be for all
4538 * multicast (224.0/4), for a single multicast group (a /32 route) or
4539 * anything in between. If there is no such multicast route, we just find
4540 * any multicast capable interface and return it. The returned ipif
4541 * is refhold'ed.
4542 *
4543 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the
4544 * unicast table. This is used by CGTP.
4545 */
4546 ill_t *
ill_lookup_group_v4(ipaddr_t group,zoneid_t zoneid,ip_stack_t * ipst,boolean_t * multirtp,ipaddr_t * setsrcp)4547 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst,
4548 boolean_t *multirtp, ipaddr_t *setsrcp)
4549 {
4550 ill_t *ill;
4551
4552 ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp);
4553 if (ill != NULL)
4554 return (ill);
4555
4556 return (ill_lookup_multicast(ipst, zoneid, B_FALSE));
4557 }
4558
4559 /*
4560 * Look for an ipif with the specified interface address and destination.
4561 * The destination address is used only for matching point-to-point interfaces.
4562 */
4563 ipif_t *
ipif_lookup_interface(ipaddr_t if_addr,ipaddr_t dst,ip_stack_t * ipst)4564 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst)
4565 {
4566 ipif_t *ipif;
4567 ill_t *ill;
4568 ill_walk_context_t ctx;
4569
4570 /*
4571 * First match all the point-to-point interfaces
4572 * before looking at non-point-to-point interfaces.
4573 * This is done to avoid returning non-point-to-point
4574 * ipif instead of unnumbered point-to-point ipif.
4575 */
4576 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4577 ill = ILL_START_WALK_V4(&ctx, ipst);
4578 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4579 mutex_enter(&ill->ill_lock);
4580 for (ipif = ill->ill_ipif; ipif != NULL;
4581 ipif = ipif->ipif_next) {
4582 /* Allow the ipif to be down */
4583 if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
4584 (ipif->ipif_lcl_addr == if_addr) &&
4585 (ipif->ipif_pp_dst_addr == dst)) {
4586 if (!IPIF_IS_CONDEMNED(ipif)) {
4587 ipif_refhold_locked(ipif);
4588 mutex_exit(&ill->ill_lock);
4589 rw_exit(&ipst->ips_ill_g_lock);
4590 return (ipif);
4591 }
4592 }
4593 }
4594 mutex_exit(&ill->ill_lock);
4595 }
4596 rw_exit(&ipst->ips_ill_g_lock);
4597
4598 /* lookup the ipif based on interface address */
4599 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst);
4600 ASSERT(ipif == NULL || !ipif->ipif_isv6);
4601 return (ipif);
4602 }
4603
4604 /*
4605 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact().
4606 */
4607 static ipif_t *
ipif_lookup_addr_common(ipaddr_t addr,ill_t * match_ill,uint32_t match_flags,zoneid_t zoneid,ip_stack_t * ipst)4608 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags,
4609 zoneid_t zoneid, ip_stack_t *ipst)
4610 {
4611 ipif_t *ipif;
4612 ill_t *ill;
4613 boolean_t ptp = B_FALSE;
4614 ill_walk_context_t ctx;
4615 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP);
4616 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP);
4617
4618 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4619 /*
4620 * Repeat twice, first based on local addresses and
4621 * next time for pointopoint.
4622 */
4623 repeat:
4624 ill = ILL_START_WALK_V4(&ctx, ipst);
4625 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4626 if (match_ill != NULL && ill != match_ill &&
4627 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) {
4628 continue;
4629 }
4630 mutex_enter(&ill->ill_lock);
4631 for (ipif = ill->ill_ipif; ipif != NULL;
4632 ipif = ipif->ipif_next) {
4633 if (zoneid != ALL_ZONES &&
4634 zoneid != ipif->ipif_zoneid &&
4635 ipif->ipif_zoneid != ALL_ZONES)
4636 continue;
4637
4638 if (no_duplicate && !(ipif->ipif_flags & IPIF_UP))
4639 continue;
4640
4641 /* Allow the ipif to be down */
4642 if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
4643 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
4644 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
4645 (ipif->ipif_pp_dst_addr == addr))) {
4646 if (!IPIF_IS_CONDEMNED(ipif)) {
4647 ipif_refhold_locked(ipif);
4648 mutex_exit(&ill->ill_lock);
4649 rw_exit(&ipst->ips_ill_g_lock);
4650 return (ipif);
4651 }
4652 }
4653 }
4654 mutex_exit(&ill->ill_lock);
4655 }
4656
4657 /* If we already did the ptp case, then we are done */
4658 if (ptp) {
4659 rw_exit(&ipst->ips_ill_g_lock);
4660 return (NULL);
4661 }
4662 ptp = B_TRUE;
4663 goto repeat;
4664 }
4665
4666 /*
4667 * Lookup an ipif with the specified address. For point-to-point links we
4668 * look for matches on either the destination address or the local address,
4669 * but we skip the local address check if IPIF_UNNUMBERED is set. If the
4670 * `match_ill' argument is non-NULL, the lookup is restricted to that ill
4671 * (or illgrp if `match_ill' is in an IPMP group).
4672 */
4673 ipif_t *
ipif_lookup_addr(ipaddr_t addr,ill_t * match_ill,zoneid_t zoneid,ip_stack_t * ipst)4674 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid,
4675 ip_stack_t *ipst)
4676 {
4677 return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP,
4678 zoneid, ipst));
4679 }
4680
4681 /*
4682 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr,
4683 * except that we will only return an address if it is not marked as
4684 * IPIF_DUPLICATE
4685 */
4686 ipif_t *
ipif_lookup_addr_nondup(ipaddr_t addr,ill_t * match_ill,zoneid_t zoneid,ip_stack_t * ipst)4687 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid,
4688 ip_stack_t *ipst)
4689 {
4690 return (ipif_lookup_addr_common(addr, match_ill,
4691 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP),
4692 zoneid, ipst));
4693 }
4694
4695 /*
4696 * Special abbreviated version of ipif_lookup_addr() that doesn't match
4697 * `match_ill' across the IPMP group. This function is only needed in some
4698 * corner-cases; almost everything should use ipif_lookup_addr().
4699 */
4700 ipif_t *
ipif_lookup_addr_exact(ipaddr_t addr,ill_t * match_ill,ip_stack_t * ipst)4701 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
4702 {
4703 ASSERT(match_ill != NULL);
4704 return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES,
4705 ipst));
4706 }
4707
4708 /*
4709 * Look for an ipif with the specified address. For point-point links
4710 * we look for matches on either the destination address and the local
4711 * address, but we ignore the check on the local address if IPIF_UNNUMBERED
4712 * is set.
4713 * If the `match_ill' argument is non-NULL, the lookup is restricted to that
4714 * ill (or illgrp if `match_ill' is in an IPMP group).
4715 * Return the zoneid for the ipif which matches. ALL_ZONES if no match.
4716 */
4717 zoneid_t
ipif_lookup_addr_zoneid(ipaddr_t addr,ill_t * match_ill,ip_stack_t * ipst)4718 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
4719 {
4720 zoneid_t zoneid;
4721 ipif_t *ipif;
4722 ill_t *ill;
4723 boolean_t ptp = B_FALSE;
4724 ill_walk_context_t ctx;
4725
4726 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4727 /*
4728 * Repeat twice, first based on local addresses and
4729 * next time for pointopoint.
4730 */
4731 repeat:
4732 ill = ILL_START_WALK_V4(&ctx, ipst);
4733 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4734 if (match_ill != NULL && ill != match_ill &&
4735 !IS_IN_SAME_ILLGRP(ill, match_ill)) {
4736 continue;
4737 }
4738 mutex_enter(&ill->ill_lock);
4739 for (ipif = ill->ill_ipif; ipif != NULL;
4740 ipif = ipif->ipif_next) {
4741 /* Allow the ipif to be down */
4742 if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
4743 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
4744 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
4745 (ipif->ipif_pp_dst_addr == addr)) &&
4746 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
4747 zoneid = ipif->ipif_zoneid;
4748 mutex_exit(&ill->ill_lock);
4749 rw_exit(&ipst->ips_ill_g_lock);
4750 /*
4751 * If ipif_zoneid was ALL_ZONES then we have
4752 * a trusted extensions shared IP address.
4753 * In that case GLOBAL_ZONEID works to send.
4754 */
4755 if (zoneid == ALL_ZONES)
4756 zoneid = GLOBAL_ZONEID;
4757 return (zoneid);
4758 }
4759 }
4760 mutex_exit(&ill->ill_lock);
4761 }
4762
4763 /* If we already did the ptp case, then we are done */
4764 if (ptp) {
4765 rw_exit(&ipst->ips_ill_g_lock);
4766 return (ALL_ZONES);
4767 }
4768 ptp = B_TRUE;
4769 goto repeat;
4770 }
4771
4772 /*
4773 * Look for an ipif that matches the specified remote address i.e. the
4774 * ipif that would receive the specified packet.
4775 * First look for directly connected interfaces and then do a recursive
4776 * IRE lookup and pick the first ipif corresponding to the source address in the
4777 * ire.
4778 * Returns: held ipif
4779 *
4780 * This is only used for ICMP_ADDRESS_MASK_REQUESTs
4781 */
4782 ipif_t *
ipif_lookup_remote(ill_t * ill,ipaddr_t addr,zoneid_t zoneid)4783 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid)
4784 {
4785 ipif_t *ipif;
4786
4787 ASSERT(!ill->ill_isv6);
4788
4789 /*
4790 * Someone could be changing this ipif currently or change it
4791 * after we return this. Thus a few packets could use the old
4792 * old values. However structure updates/creates (ire, ilg, ilm etc)
4793 * will atomically be updated or cleaned up with the new value
4794 * Thus we don't need a lock to check the flags or other attrs below.
4795 */
4796 mutex_enter(&ill->ill_lock);
4797 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4798 if (IPIF_IS_CONDEMNED(ipif))
4799 continue;
4800 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid &&
4801 ipif->ipif_zoneid != ALL_ZONES)
4802 continue;
4803 /* Allow the ipif to be down */
4804 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
4805 if ((ipif->ipif_pp_dst_addr == addr) ||
4806 (!(ipif->ipif_flags & IPIF_UNNUMBERED) &&
4807 ipif->ipif_lcl_addr == addr)) {
4808 ipif_refhold_locked(ipif);
4809 mutex_exit(&ill->ill_lock);
4810 return (ipif);
4811 }
4812 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) {
4813 ipif_refhold_locked(ipif);
4814 mutex_exit(&ill->ill_lock);
4815 return (ipif);
4816 }
4817 }
4818 mutex_exit(&ill->ill_lock);
4819 /*
4820 * For a remote destination it isn't possible to nail down a particular
4821 * ipif.
4822 */
4823
4824 /* Pick the first interface */
4825 ipif = ipif_get_next_ipif(NULL, ill);
4826 return (ipif);
4827 }
4828
4829 /*
4830 * This func does not prevent refcnt from increasing. But if
4831 * the caller has taken steps to that effect, then this func
4832 * can be used to determine whether the ill has become quiescent
4833 */
4834 static boolean_t
ill_is_quiescent(ill_t * ill)4835 ill_is_quiescent(ill_t *ill)
4836 {
4837 ipif_t *ipif;
4838
4839 ASSERT(MUTEX_HELD(&ill->ill_lock));
4840
4841 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4842 if (ipif->ipif_refcnt != 0)
4843 return (B_FALSE);
4844 }
4845 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) {
4846 return (B_FALSE);
4847 }
4848 return (B_TRUE);
4849 }
4850
4851 boolean_t
ill_is_freeable(ill_t * ill)4852 ill_is_freeable(ill_t *ill)
4853 {
4854 ipif_t *ipif;
4855
4856 ASSERT(MUTEX_HELD(&ill->ill_lock));
4857
4858 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4859 if (ipif->ipif_refcnt != 0) {
4860 return (B_FALSE);
4861 }
4862 }
4863 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) {
4864 return (B_FALSE);
4865 }
4866 return (B_TRUE);
4867 }
4868
4869 /*
4870 * This func does not prevent refcnt from increasing. But if
4871 * the caller has taken steps to that effect, then this func
4872 * can be used to determine whether the ipif has become quiescent
4873 */
4874 static boolean_t
ipif_is_quiescent(ipif_t * ipif)4875 ipif_is_quiescent(ipif_t *ipif)
4876 {
4877 ill_t *ill;
4878
4879 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
4880
4881 if (ipif->ipif_refcnt != 0)
4882 return (B_FALSE);
4883
4884 ill = ipif->ipif_ill;
4885 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
4886 ill->ill_logical_down) {
4887 return (B_TRUE);
4888 }
4889
4890 /* This is the last ipif going down or being deleted on this ill */
4891 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) {
4892 return (B_FALSE);
4893 }
4894
4895 return (B_TRUE);
4896 }
4897
4898 /*
4899 * return true if the ipif can be destroyed: the ipif has to be quiescent
4900 * with zero references from ire/ilm to it.
4901 */
4902 static boolean_t
ipif_is_freeable(ipif_t * ipif)4903 ipif_is_freeable(ipif_t *ipif)
4904 {
4905 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
4906 ASSERT(ipif->ipif_id != 0);
4907 return (ipif->ipif_refcnt == 0);
4908 }
4909
4910 /*
4911 * The ipif/ill/ire has been refreled. Do the tail processing.
4912 * Determine if the ipif or ill in question has become quiescent and if so
4913 * wakeup close and/or restart any queued pending ioctl that is waiting
4914 * for the ipif_down (or ill_down)
4915 */
4916 void
ipif_ill_refrele_tail(ill_t * ill)4917 ipif_ill_refrele_tail(ill_t *ill)
4918 {
4919 mblk_t *mp;
4920 conn_t *connp;
4921 ipsq_t *ipsq;
4922 ipxop_t *ipx;
4923 ipif_t *ipif;
4924 dl_notify_ind_t *dlindp;
4925
4926 ASSERT(MUTEX_HELD(&ill->ill_lock));
4927
4928 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) {
4929 /* ip_modclose() may be waiting */
4930 cv_broadcast(&ill->ill_cv);
4931 }
4932
4933 ipsq = ill->ill_phyint->phyint_ipsq;
4934 mutex_enter(&ipsq->ipsq_lock);
4935 ipx = ipsq->ipsq_xop;
4936 mutex_enter(&ipx->ipx_lock);
4937 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */
4938 goto unlock;
4939
4940 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL);
4941
4942 ipif = ipx->ipx_pending_ipif;
4943 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */
4944 goto unlock;
4945
4946 switch (ipx->ipx_waitfor) {
4947 case IPIF_DOWN:
4948 if (!ipif_is_quiescent(ipif))
4949 goto unlock;
4950 break;
4951 case IPIF_FREE:
4952 if (!ipif_is_freeable(ipif))
4953 goto unlock;
4954 break;
4955 case ILL_DOWN:
4956 if (!ill_is_quiescent(ill))
4957 goto unlock;
4958 break;
4959 case ILL_FREE:
4960 /*
4961 * ILL_FREE is only for loopback; normal ill teardown waits
4962 * synchronously in ip_modclose() without using ipx_waitfor,
4963 * handled by the cv_broadcast() at the top of this function.
4964 */
4965 if (!ill_is_freeable(ill))
4966 goto unlock;
4967 break;
4968 default:
4969 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n",
4970 (void *)ipsq, ipx->ipx_waitfor);
4971 }
4972
4973 ill_refhold_locked(ill); /* for qwriter_ip() call below */
4974 mutex_exit(&ipx->ipx_lock);
4975 mp = ipsq_pending_mp_get(ipsq, &connp);
4976 mutex_exit(&ipsq->ipsq_lock);
4977 mutex_exit(&ill->ill_lock);
4978
4979 ASSERT(mp != NULL);
4980 /*
4981 * NOTE: all of the qwriter_ip() calls below use CUR_OP since
4982 * we can only get here when the current operation decides it
4983 * it needs to quiesce via ipsq_pending_mp_add().
4984 */
4985 switch (mp->b_datap->db_type) {
4986 case M_PCPROTO:
4987 case M_PROTO:
4988 /*
4989 * For now, only DL_NOTIFY_IND messages can use this facility.
4990 */
4991 dlindp = (dl_notify_ind_t *)mp->b_rptr;
4992 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND);
4993
4994 switch (dlindp->dl_notification) {
4995 case DL_NOTE_PHYS_ADDR:
4996 qwriter_ip(ill, ill->ill_rq, mp,
4997 ill_set_phys_addr_tail, CUR_OP, B_TRUE);
4998 return;
4999 case DL_NOTE_REPLUMB:
5000 qwriter_ip(ill, ill->ill_rq, mp,
5001 ill_replumb_tail, CUR_OP, B_TRUE);
5002 return;
5003 default:
5004 ASSERT(0);
5005 ill_refrele(ill);
5006 }
5007 break;
5008
5009 case M_ERROR:
5010 case M_HANGUP:
5011 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP,
5012 B_TRUE);
5013 return;
5014
5015 case M_IOCTL:
5016 case M_IOCDATA:
5017 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) :
5018 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE);
5019 return;
5020
5021 default:
5022 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p "
5023 "db_type %d\n", (void *)mp, mp->b_datap->db_type);
5024 }
5025 return;
5026 unlock:
5027 mutex_exit(&ipsq->ipsq_lock);
5028 mutex_exit(&ipx->ipx_lock);
5029 mutex_exit(&ill->ill_lock);
5030 }
5031
5032 #ifdef DEBUG
5033 /* Reuse trace buffer from beginning (if reached the end) and record trace */
5034 static void
th_trace_rrecord(th_trace_t * th_trace)5035 th_trace_rrecord(th_trace_t *th_trace)
5036 {
5037 tr_buf_t *tr_buf;
5038 uint_t lastref;
5039
5040 lastref = th_trace->th_trace_lastref;
5041 lastref++;
5042 if (lastref == TR_BUF_MAX)
5043 lastref = 0;
5044 th_trace->th_trace_lastref = lastref;
5045 tr_buf = &th_trace->th_trbuf[lastref];
5046 tr_buf->tr_time = ddi_get_lbolt();
5047 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH);
5048 }
5049
5050 static void
th_trace_free(void * value)5051 th_trace_free(void *value)
5052 {
5053 th_trace_t *th_trace = value;
5054
5055 ASSERT(th_trace->th_refcnt == 0);
5056 kmem_free(th_trace, sizeof (*th_trace));
5057 }
5058
5059 /*
5060 * Find or create the per-thread hash table used to track object references.
5061 * The ipst argument is NULL if we shouldn't allocate.
5062 *
5063 * Accesses per-thread data, so there's no need to lock here.
5064 */
5065 static mod_hash_t *
th_trace_gethash(ip_stack_t * ipst)5066 th_trace_gethash(ip_stack_t *ipst)
5067 {
5068 th_hash_t *thh;
5069
5070 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) {
5071 mod_hash_t *mh;
5072 char name[256];
5073 size_t objsize, rshift;
5074 int retv;
5075
5076 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL)
5077 return (NULL);
5078 (void) snprintf(name, sizeof (name), "th_trace_%p",
5079 (void *)curthread);
5080
5081 /*
5082 * We use mod_hash_create_extended here rather than the more
5083 * obvious mod_hash_create_ptrhash because the latter has a
5084 * hard-coded KM_SLEEP, and we'd prefer to fail rather than
5085 * block.
5086 */
5087 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)),
5088 MAX(sizeof (ire_t), sizeof (ncec_t)));
5089 rshift = highbit(objsize);
5090 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor,
5091 th_trace_free, mod_hash_byptr, (void *)rshift,
5092 mod_hash_ptrkey_cmp, KM_NOSLEEP);
5093 if (mh == NULL) {
5094 kmem_free(thh, sizeof (*thh));
5095 return (NULL);
5096 }
5097 thh->thh_hash = mh;
5098 thh->thh_ipst = ipst;
5099 /*
5100 * We trace ills, ipifs, ires, and nces. All of these are
5101 * per-IP-stack, so the lock on the thread list is as well.
5102 */
5103 rw_enter(&ip_thread_rwlock, RW_WRITER);
5104 list_insert_tail(&ip_thread_list, thh);
5105 rw_exit(&ip_thread_rwlock);
5106 retv = tsd_set(ip_thread_data, thh);
5107 ASSERT(retv == 0);
5108 }
5109 return (thh != NULL ? thh->thh_hash : NULL);
5110 }
5111
5112 boolean_t
th_trace_ref(const void * obj,ip_stack_t * ipst)5113 th_trace_ref(const void *obj, ip_stack_t *ipst)
5114 {
5115 th_trace_t *th_trace;
5116 mod_hash_t *mh;
5117 mod_hash_val_t val;
5118
5119 if ((mh = th_trace_gethash(ipst)) == NULL)
5120 return (B_FALSE);
5121
5122 /*
5123 * Attempt to locate the trace buffer for this obj and thread.
5124 * If it does not exist, then allocate a new trace buffer and
5125 * insert into the hash.
5126 */
5127 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) {
5128 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP);
5129 if (th_trace == NULL)
5130 return (B_FALSE);
5131
5132 th_trace->th_id = curthread;
5133 if (mod_hash_insert(mh, (mod_hash_key_t)obj,
5134 (mod_hash_val_t)th_trace) != 0) {
5135 kmem_free(th_trace, sizeof (th_trace_t));
5136 return (B_FALSE);
5137 }
5138 } else {
5139 th_trace = (th_trace_t *)val;
5140 }
5141
5142 ASSERT(th_trace->th_refcnt >= 0 &&
5143 th_trace->th_refcnt < TR_BUF_MAX - 1);
5144
5145 th_trace->th_refcnt++;
5146 th_trace_rrecord(th_trace);
5147 return (B_TRUE);
5148 }
5149
5150 /*
5151 * For the purpose of tracing a reference release, we assume that global
5152 * tracing is always on and that the same thread initiated the reference hold
5153 * is releasing.
5154 */
5155 void
th_trace_unref(const void * obj)5156 th_trace_unref(const void *obj)
5157 {
5158 int retv;
5159 mod_hash_t *mh;
5160 th_trace_t *th_trace;
5161 mod_hash_val_t val;
5162
5163 mh = th_trace_gethash(NULL);
5164 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val);
5165 ASSERT(retv == 0);
5166 th_trace = (th_trace_t *)val;
5167
5168 ASSERT(th_trace->th_refcnt > 0);
5169 th_trace->th_refcnt--;
5170 th_trace_rrecord(th_trace);
5171 }
5172
5173 /*
5174 * If tracing has been disabled, then we assume that the reference counts are
5175 * now useless, and we clear them out before destroying the entries.
5176 */
5177 void
th_trace_cleanup(const void * obj,boolean_t trace_disable)5178 th_trace_cleanup(const void *obj, boolean_t trace_disable)
5179 {
5180 th_hash_t *thh;
5181 mod_hash_t *mh;
5182 mod_hash_val_t val;
5183 th_trace_t *th_trace;
5184 int retv;
5185
5186 rw_enter(&ip_thread_rwlock, RW_READER);
5187 for (thh = list_head(&ip_thread_list); thh != NULL;
5188 thh = list_next(&ip_thread_list, thh)) {
5189 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj,
5190 &val) == 0) {
5191 th_trace = (th_trace_t *)val;
5192 if (trace_disable)
5193 th_trace->th_refcnt = 0;
5194 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj);
5195 ASSERT(retv == 0);
5196 }
5197 }
5198 rw_exit(&ip_thread_rwlock);
5199 }
5200
5201 void
ipif_trace_ref(ipif_t * ipif)5202 ipif_trace_ref(ipif_t *ipif)
5203 {
5204 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5205
5206 if (ipif->ipif_trace_disable)
5207 return;
5208
5209 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) {
5210 ipif->ipif_trace_disable = B_TRUE;
5211 ipif_trace_cleanup(ipif);
5212 }
5213 }
5214
5215 void
ipif_untrace_ref(ipif_t * ipif)5216 ipif_untrace_ref(ipif_t *ipif)
5217 {
5218 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5219
5220 if (!ipif->ipif_trace_disable)
5221 th_trace_unref(ipif);
5222 }
5223
5224 void
ill_trace_ref(ill_t * ill)5225 ill_trace_ref(ill_t *ill)
5226 {
5227 ASSERT(MUTEX_HELD(&ill->ill_lock));
5228
5229 if (ill->ill_trace_disable)
5230 return;
5231
5232 if (!th_trace_ref(ill, ill->ill_ipst)) {
5233 ill->ill_trace_disable = B_TRUE;
5234 ill_trace_cleanup(ill);
5235 }
5236 }
5237
5238 void
ill_untrace_ref(ill_t * ill)5239 ill_untrace_ref(ill_t *ill)
5240 {
5241 ASSERT(MUTEX_HELD(&ill->ill_lock));
5242
5243 if (!ill->ill_trace_disable)
5244 th_trace_unref(ill);
5245 }
5246
5247 /*
5248 * Called when ipif is unplumbed or when memory alloc fails. Note that on
5249 * failure, ipif_trace_disable is set.
5250 */
5251 static void
ipif_trace_cleanup(const ipif_t * ipif)5252 ipif_trace_cleanup(const ipif_t *ipif)
5253 {
5254 th_trace_cleanup(ipif, ipif->ipif_trace_disable);
5255 }
5256
5257 /*
5258 * Called when ill is unplumbed or when memory alloc fails. Note that on
5259 * failure, ill_trace_disable is set.
5260 */
5261 static void
ill_trace_cleanup(const ill_t * ill)5262 ill_trace_cleanup(const ill_t *ill)
5263 {
5264 th_trace_cleanup(ill, ill->ill_trace_disable);
5265 }
5266 #endif /* DEBUG */
5267
5268 void
ipif_refhold_locked(ipif_t * ipif)5269 ipif_refhold_locked(ipif_t *ipif)
5270 {
5271 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5272 ipif->ipif_refcnt++;
5273 IPIF_TRACE_REF(ipif);
5274 }
5275
5276 void
ipif_refhold(ipif_t * ipif)5277 ipif_refhold(ipif_t *ipif)
5278 {
5279 ill_t *ill;
5280
5281 ill = ipif->ipif_ill;
5282 mutex_enter(&ill->ill_lock);
5283 ipif->ipif_refcnt++;
5284 IPIF_TRACE_REF(ipif);
5285 mutex_exit(&ill->ill_lock);
5286 }
5287
5288 /*
5289 * Must not be called while holding any locks. Otherwise if this is
5290 * the last reference to be released there is a chance of recursive mutex
5291 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
5292 * to restart an ioctl.
5293 */
5294 void
ipif_refrele(ipif_t * ipif)5295 ipif_refrele(ipif_t *ipif)
5296 {
5297 ill_t *ill;
5298
5299 ill = ipif->ipif_ill;
5300
5301 mutex_enter(&ill->ill_lock);
5302 ASSERT(ipif->ipif_refcnt != 0);
5303 ipif->ipif_refcnt--;
5304 IPIF_UNTRACE_REF(ipif);
5305 if (ipif->ipif_refcnt != 0) {
5306 mutex_exit(&ill->ill_lock);
5307 return;
5308 }
5309
5310 /* Drops the ill_lock */
5311 ipif_ill_refrele_tail(ill);
5312 }
5313
5314 ipif_t *
ipif_get_next_ipif(ipif_t * curr,ill_t * ill)5315 ipif_get_next_ipif(ipif_t *curr, ill_t *ill)
5316 {
5317 ipif_t *ipif;
5318
5319 mutex_enter(&ill->ill_lock);
5320 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next);
5321 ipif != NULL; ipif = ipif->ipif_next) {
5322 if (IPIF_IS_CONDEMNED(ipif))
5323 continue;
5324 ipif_refhold_locked(ipif);
5325 mutex_exit(&ill->ill_lock);
5326 return (ipif);
5327 }
5328 mutex_exit(&ill->ill_lock);
5329 return (NULL);
5330 }
5331
5332 /*
5333 * TODO: make this table extendible at run time
5334 * Return a pointer to the mac type info for 'mac_type'
5335 */
5336 static ip_m_t *
ip_m_lookup(t_uscalar_t mac_type)5337 ip_m_lookup(t_uscalar_t mac_type)
5338 {
5339 ip_m_t *ipm;
5340
5341 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++)
5342 if (ipm->ip_m_mac_type == mac_type)
5343 return (ipm);
5344 return (NULL);
5345 }
5346
5347 /*
5348 * Make a link layer address from the multicast IP address *addr.
5349 * To form the link layer address, invoke the ip_m_v*mapping function
5350 * associated with the link-layer type.
5351 */
5352 void
ip_mcast_mapping(ill_t * ill,uchar_t * addr,uchar_t * hwaddr)5353 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr)
5354 {
5355 ip_m_t *ipm;
5356
5357 if (ill->ill_net_type == IRE_IF_NORESOLVER)
5358 return;
5359
5360 ASSERT(addr != NULL);
5361
5362 ipm = ip_m_lookup(ill->ill_mactype);
5363 if (ipm == NULL ||
5364 (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) ||
5365 (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) {
5366 ip0dbg(("no mapping for ill %s mactype 0x%x\n",
5367 ill->ill_name, ill->ill_mactype));
5368 return;
5369 }
5370 if (ill->ill_isv6)
5371 (*ipm->ip_m_v6mapping)(ill, addr, hwaddr);
5372 else
5373 (*ipm->ip_m_v4mapping)(ill, addr, hwaddr);
5374 }
5375
5376 /*
5377 * Returns B_FALSE if the IPv4 netmask pointed by `mask' is non-contiguous.
5378 * Otherwise returns B_TRUE.
5379 *
5380 * The netmask can be verified to be contiguous with 32 shifts and or
5381 * operations. Take the contiguous mask (in host byte order) and compute
5382 * mask | mask << 1 | mask << 2 | ... | mask << 31
5383 * the result will be the same as the 'mask' for contiguous mask.
5384 */
5385 static boolean_t
ip_contiguous_mask(uint32_t mask)5386 ip_contiguous_mask(uint32_t mask)
5387 {
5388 uint32_t m = mask;
5389 int i;
5390
5391 for (i = 1; i < 32; i++)
5392 m |= (mask << i);
5393
5394 return (m == mask);
5395 }
5396
5397 /*
5398 * ip_rt_add is called to add an IPv4 route to the forwarding table.
5399 * ill is passed in to associate it with the correct interface.
5400 * If ire_arg is set, then we return the held IRE in that location.
5401 */
5402 int
ip_rt_add(ipaddr_t dst_addr,ipaddr_t mask,ipaddr_t gw_addr,ipaddr_t src_addr,int flags,ill_t * ill,ire_t ** ire_arg,boolean_t ioctl_msg,struct rtsa_s * sp,ip_stack_t * ipst,zoneid_t zoneid)5403 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
5404 ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg,
5405 boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid)
5406 {
5407 ire_t *ire, *nire;
5408 ire_t *gw_ire = NULL;
5409 ipif_t *ipif = NULL;
5410 uint_t type;
5411 int match_flags = MATCH_IRE_TYPE;
5412 tsol_gc_t *gc = NULL;
5413 tsol_gcgrp_t *gcgrp = NULL;
5414 boolean_t gcgrp_xtraref = B_FALSE;
5415 boolean_t cgtp_broadcast;
5416 boolean_t unbound = B_FALSE;
5417
5418 ip1dbg(("ip_rt_add:"));
5419
5420 if (ire_arg != NULL)
5421 *ire_arg = NULL;
5422
5423 /* disallow non-contiguous netmasks */
5424 if (!ip_contiguous_mask(ntohl(mask)))
5425 return (ENOTSUP);
5426
5427 /*
5428 * If this is the case of RTF_HOST being set, then we set the netmask
5429 * to all ones (regardless if one was supplied).
5430 */
5431 if (flags & RTF_HOST)
5432 mask = IP_HOST_MASK;
5433
5434 /*
5435 * Prevent routes with a zero gateway from being created (since
5436 * interfaces can currently be plumbed and brought up no assigned
5437 * address).
5438 */
5439 if (gw_addr == 0)
5440 return (ENETUNREACH);
5441 /*
5442 * Get the ipif, if any, corresponding to the gw_addr
5443 * If -ifp was specified we restrict ourselves to the ill, otherwise
5444 * we match on the gatway and destination to handle unnumbered pt-pt
5445 * interfaces.
5446 */
5447 if (ill != NULL)
5448 ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst);
5449 else
5450 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst);
5451 if (ipif != NULL) {
5452 if (IS_VNI(ipif->ipif_ill)) {
5453 ipif_refrele(ipif);
5454 return (EINVAL);
5455 }
5456 }
5457
5458 /*
5459 * GateD will attempt to create routes with a loopback interface
5460 * address as the gateway and with RTF_GATEWAY set. We allow
5461 * these routes to be added, but create them as interface routes
5462 * since the gateway is an interface address.
5463 */
5464 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) {
5465 flags &= ~RTF_GATEWAY;
5466 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK &&
5467 mask == IP_HOST_MASK) {
5468 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK,
5469 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
5470 NULL);
5471 if (ire != NULL) {
5472 ire_refrele(ire);
5473 ipif_refrele(ipif);
5474 return (EEXIST);
5475 }
5476 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x"
5477 "for 0x%x\n", (void *)ipif,
5478 ipif->ipif_ire_type,
5479 ntohl(ipif->ipif_lcl_addr)));
5480 ire = ire_create(
5481 (uchar_t *)&dst_addr, /* dest address */
5482 (uchar_t *)&mask, /* mask */
5483 NULL, /* no gateway */
5484 ipif->ipif_ire_type, /* LOOPBACK */
5485 ipif->ipif_ill,
5486 zoneid,
5487 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0,
5488 NULL,
5489 ipst);
5490
5491 if (ire == NULL) {
5492 ipif_refrele(ipif);
5493 return (ENOMEM);
5494 }
5495 /* src address assigned by the caller? */
5496 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5497 ire->ire_setsrc_addr = src_addr;
5498
5499 nire = ire_add(ire);
5500 if (nire == NULL) {
5501 /*
5502 * In the result of failure, ire_add() will have
5503 * already deleted the ire in question, so there
5504 * is no need to do that here.
5505 */
5506 ipif_refrele(ipif);
5507 return (ENOMEM);
5508 }
5509 /*
5510 * Check if it was a duplicate entry. This handles
5511 * the case of two racing route adds for the same route
5512 */
5513 if (nire != ire) {
5514 ASSERT(nire->ire_identical_ref > 1);
5515 ire_delete(nire);
5516 ire_refrele(nire);
5517 ipif_refrele(ipif);
5518 return (EEXIST);
5519 }
5520 ire = nire;
5521 goto save_ire;
5522 }
5523 }
5524
5525 /*
5526 * The routes for multicast with CGTP are quite special in that
5527 * the gateway is the local interface address, yet RTF_GATEWAY
5528 * is set. We turn off RTF_GATEWAY to provide compatibility with
5529 * this undocumented and unusual use of multicast routes.
5530 */
5531 if ((flags & RTF_MULTIRT) && ipif != NULL)
5532 flags &= ~RTF_GATEWAY;
5533
5534 /*
5535 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set
5536 * and the gateway address provided is one of the system's interface
5537 * addresses. By using the routing socket interface and supplying an
5538 * RTA_IFP sockaddr with an interface index, an alternate method of
5539 * specifying an interface route to be created is available which uses
5540 * the interface index that specifies the outgoing interface rather than
5541 * the address of an outgoing interface (which may not be able to
5542 * uniquely identify an interface). When coupled with the RTF_GATEWAY
5543 * flag, routes can be specified which not only specify the next-hop to
5544 * be used when routing to a certain prefix, but also which outgoing
5545 * interface should be used.
5546 *
5547 * Previously, interfaces would have unique addresses assigned to them
5548 * and so the address assigned to a particular interface could be used
5549 * to identify a particular interface. One exception to this was the
5550 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
5551 *
5552 * With the advent of IPv6 and its link-local addresses, this
5553 * restriction was relaxed and interfaces could share addresses between
5554 * themselves. In fact, typically all of the link-local interfaces on
5555 * an IPv6 node or router will have the same link-local address. In
5556 * order to differentiate between these interfaces, the use of an
5557 * interface index is necessary and this index can be carried inside a
5558 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction
5559 * of using the interface index, however, is that all of the ipif's that
5560 * are part of an ill have the same index and so the RTA_IFP sockaddr
5561 * cannot be used to differentiate between ipif's (or logical
5562 * interfaces) that belong to the same ill (physical interface).
5563 *
5564 * For example, in the following case involving IPv4 interfaces and
5565 * logical interfaces
5566 *
5567 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0
5568 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0
5569 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0
5570 *
5571 * the ipif's corresponding to each of these interface routes can be
5572 * uniquely identified by the "gateway" (actually interface address).
5573 *
5574 * In this case involving multiple IPv6 default routes to a particular
5575 * link-local gateway, the use of RTA_IFP is necessary to specify which
5576 * default route is of interest:
5577 *
5578 * default fe80::123:4567:89ab:cdef U if0
5579 * default fe80::123:4567:89ab:cdef U if1
5580 */
5581
5582 /* RTF_GATEWAY not set */
5583 if (!(flags & RTF_GATEWAY)) {
5584 if (sp != NULL) {
5585 ip2dbg(("ip_rt_add: gateway security attributes "
5586 "cannot be set with interface route\n"));
5587 if (ipif != NULL)
5588 ipif_refrele(ipif);
5589 return (EINVAL);
5590 }
5591
5592 /*
5593 * Whether or not ill (RTA_IFP) is set, we require that
5594 * the gateway is one of our local addresses.
5595 */
5596 if (ipif == NULL)
5597 return (ENETUNREACH);
5598
5599 /*
5600 * We use MATCH_IRE_ILL here. If the caller specified an
5601 * interface (from the RTA_IFP sockaddr) we use it, otherwise
5602 * we use the ill derived from the gateway address.
5603 * We can always match the gateway address since we record it
5604 * in ire_gateway_addr.
5605 * We don't allow RTA_IFP to specify a different ill than the
5606 * one matching the ipif to make sure we can delete the route.
5607 */
5608 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL;
5609 if (ill == NULL) {
5610 ill = ipif->ipif_ill;
5611 } else if (ill != ipif->ipif_ill) {
5612 ipif_refrele(ipif);
5613 return (EINVAL);
5614 }
5615
5616 /*
5617 * We check for an existing entry at this point.
5618 *
5619 * Since a netmask isn't passed in via the ioctl interface
5620 * (SIOCADDRT), we don't check for a matching netmask in that
5621 * case.
5622 */
5623 if (!ioctl_msg)
5624 match_flags |= MATCH_IRE_MASK;
5625 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr,
5626 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst,
5627 NULL);
5628 if (ire != NULL) {
5629 ire_refrele(ire);
5630 ipif_refrele(ipif);
5631 return (EEXIST);
5632 }
5633
5634 /*
5635 * Some software (for example, GateD and Sun Cluster) attempts
5636 * to create (what amount to) IRE_PREFIX routes with the
5637 * loopback address as the gateway. This is primarily done to
5638 * set up prefixes with the RTF_REJECT flag set (for example,
5639 * when generating aggregate routes.)
5640 *
5641 * If the IRE type (as defined by ill->ill_net_type) would be
5642 * IRE_LOOPBACK, then we map the request into a
5643 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as
5644 * these interface routes, by definition, can only be that.
5645 *
5646 * Needless to say, the real IRE_LOOPBACK is NOT created by this
5647 * routine, but rather using ire_create() directly.
5648 *
5649 */
5650 type = ill->ill_net_type;
5651 if (type == IRE_LOOPBACK) {
5652 type = IRE_IF_NORESOLVER;
5653 flags |= RTF_BLACKHOLE;
5654 }
5655
5656 /*
5657 * Create a copy of the IRE_IF_NORESOLVER or
5658 * IRE_IF_RESOLVER with the modified address, netmask, and
5659 * gateway.
5660 */
5661 ire = ire_create(
5662 (uchar_t *)&dst_addr,
5663 (uint8_t *)&mask,
5664 (uint8_t *)&gw_addr,
5665 type,
5666 ill,
5667 zoneid,
5668 flags,
5669 NULL,
5670 ipst);
5671 if (ire == NULL) {
5672 ipif_refrele(ipif);
5673 return (ENOMEM);
5674 }
5675
5676 /* src address assigned by the caller? */
5677 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5678 ire->ire_setsrc_addr = src_addr;
5679
5680 nire = ire_add(ire);
5681 if (nire == NULL) {
5682 /*
5683 * In the result of failure, ire_add() will have
5684 * already deleted the ire in question, so there
5685 * is no need to do that here.
5686 */
5687 ipif_refrele(ipif);
5688 return (ENOMEM);
5689 }
5690 /*
5691 * Check if it was a duplicate entry. This handles
5692 * the case of two racing route adds for the same route
5693 */
5694 if (nire != ire) {
5695 ire_delete(nire);
5696 ire_refrele(nire);
5697 ipif_refrele(ipif);
5698 return (EEXIST);
5699 }
5700 ire = nire;
5701 goto save_ire;
5702 }
5703
5704 /*
5705 * Get an interface IRE for the specified gateway.
5706 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
5707 * gateway, it is currently unreachable and we fail the request
5708 * accordingly. We reject any RTF_GATEWAY routes where the gateway
5709 * is an IRE_LOCAL or IRE_LOOPBACK.
5710 * If RTA_IFP was specified we look on that particular ill.
5711 */
5712 if (ill != NULL)
5713 match_flags |= MATCH_IRE_ILL;
5714
5715 /* Check whether the gateway is reachable. */
5716 again:
5717 type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK;
5718 if (flags & RTF_INDIRECT)
5719 type |= IRE_OFFLINK;
5720
5721 gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill,
5722 ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
5723 if (gw_ire == NULL) {
5724 /*
5725 * With IPMP, we allow host routes to influence in.mpathd's
5726 * target selection. However, if the test addresses are on
5727 * their own network, the above lookup will fail since the
5728 * underlying IRE_INTERFACEs are marked hidden. So allow
5729 * hidden test IREs to be found and try again.
5730 */
5731 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) {
5732 match_flags |= MATCH_IRE_TESTHIDDEN;
5733 goto again;
5734 }
5735 if (ipif != NULL)
5736 ipif_refrele(ipif);
5737 return (ENETUNREACH);
5738 }
5739 if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
5740 ire_refrele(gw_ire);
5741 if (ipif != NULL)
5742 ipif_refrele(ipif);
5743 return (ENETUNREACH);
5744 }
5745
5746 if (ill == NULL && !(flags & RTF_INDIRECT)) {
5747 unbound = B_TRUE;
5748 if (ipst->ips_ip_strict_src_multihoming > 0)
5749 ill = gw_ire->ire_ill;
5750 }
5751
5752 /*
5753 * We create one of three types of IREs as a result of this request
5754 * based on the netmask. A netmask of all ones (which is automatically
5755 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
5756 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
5757 * created. Otherwise, an IRE_PREFIX route is created for the
5758 * destination prefix.
5759 */
5760 if (mask == IP_HOST_MASK)
5761 type = IRE_HOST;
5762 else if (mask == 0)
5763 type = IRE_DEFAULT;
5764 else
5765 type = IRE_PREFIX;
5766
5767 /* check for a duplicate entry */
5768 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill,
5769 ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW,
5770 0, ipst, NULL);
5771 if (ire != NULL) {
5772 if (ipif != NULL)
5773 ipif_refrele(ipif);
5774 ire_refrele(gw_ire);
5775 ire_refrele(ire);
5776 return (EEXIST);
5777 }
5778
5779 /* Security attribute exists */
5780 if (sp != NULL) {
5781 tsol_gcgrp_addr_t ga;
5782
5783 /* find or create the gateway credentials group */
5784 ga.ga_af = AF_INET;
5785 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr);
5786
5787 /* we hold reference to it upon success */
5788 gcgrp = gcgrp_lookup(&ga, B_TRUE);
5789 if (gcgrp == NULL) {
5790 if (ipif != NULL)
5791 ipif_refrele(ipif);
5792 ire_refrele(gw_ire);
5793 return (ENOMEM);
5794 }
5795
5796 /*
5797 * Create and add the security attribute to the group; a
5798 * reference to the group is made upon allocating a new
5799 * entry successfully. If it finds an already-existing
5800 * entry for the security attribute in the group, it simply
5801 * returns it and no new reference is made to the group.
5802 */
5803 gc = gc_create(sp, gcgrp, &gcgrp_xtraref);
5804 if (gc == NULL) {
5805 if (ipif != NULL)
5806 ipif_refrele(ipif);
5807 /* release reference held by gcgrp_lookup */
5808 GCGRP_REFRELE(gcgrp);
5809 ire_refrele(gw_ire);
5810 return (ENOMEM);
5811 }
5812 }
5813
5814 /* Create the IRE. */
5815 ire = ire_create(
5816 (uchar_t *)&dst_addr, /* dest address */
5817 (uchar_t *)&mask, /* mask */
5818 (uchar_t *)&gw_addr, /* gateway address */
5819 (ushort_t)type, /* IRE type */
5820 ill,
5821 zoneid,
5822 flags,
5823 gc, /* security attribute */
5824 ipst);
5825
5826 /*
5827 * The ire holds a reference to the 'gc' and the 'gc' holds a
5828 * reference to the 'gcgrp'. We can now release the extra reference
5829 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used.
5830 */
5831 if (gcgrp_xtraref)
5832 GCGRP_REFRELE(gcgrp);
5833 if (ire == NULL) {
5834 if (gc != NULL)
5835 GC_REFRELE(gc);
5836 if (ipif != NULL)
5837 ipif_refrele(ipif);
5838 ire_refrele(gw_ire);
5839 return (ENOMEM);
5840 }
5841
5842 /* Before we add, check if an extra CGTP broadcast is needed */
5843 cgtp_broadcast = ((flags & RTF_MULTIRT) &&
5844 ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST);
5845
5846 /* src address assigned by the caller? */
5847 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5848 ire->ire_setsrc_addr = src_addr;
5849
5850 ire->ire_unbound = unbound;
5851
5852 /*
5853 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
5854 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0?
5855 */
5856
5857 /* Add the new IRE. */
5858 nire = ire_add(ire);
5859 if (nire == NULL) {
5860 /*
5861 * In the result of failure, ire_add() will have
5862 * already deleted the ire in question, so there
5863 * is no need to do that here.
5864 */
5865 if (ipif != NULL)
5866 ipif_refrele(ipif);
5867 ire_refrele(gw_ire);
5868 return (ENOMEM);
5869 }
5870 /*
5871 * Check if it was a duplicate entry. This handles
5872 * the case of two racing route adds for the same route
5873 */
5874 if (nire != ire) {
5875 ire_delete(nire);
5876 ire_refrele(nire);
5877 if (ipif != NULL)
5878 ipif_refrele(ipif);
5879 ire_refrele(gw_ire);
5880 return (EEXIST);
5881 }
5882 ire = nire;
5883
5884 if (flags & RTF_MULTIRT) {
5885 /*
5886 * Invoke the CGTP (multirouting) filtering module
5887 * to add the dst address in the filtering database.
5888 * Replicated inbound packets coming from that address
5889 * will be filtered to discard the duplicates.
5890 * It is not necessary to call the CGTP filter hook
5891 * when the dst address is a broadcast or multicast,
5892 * because an IP source address cannot be a broadcast
5893 * or a multicast.
5894 */
5895 if (cgtp_broadcast) {
5896 ip_cgtp_bcast_add(ire, ipst);
5897 goto save_ire;
5898 }
5899 if (ipst->ips_ip_cgtp_filter_ops != NULL &&
5900 !CLASSD(ire->ire_addr)) {
5901 int res;
5902 ipif_t *src_ipif;
5903
5904 /* Find the source address corresponding to gw_ire */
5905 src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr,
5906 NULL, zoneid, ipst);
5907 if (src_ipif != NULL) {
5908 res = ipst->ips_ip_cgtp_filter_ops->
5909 cfo_add_dest_v4(
5910 ipst->ips_netstack->netstack_stackid,
5911 ire->ire_addr,
5912 ire->ire_gateway_addr,
5913 ire->ire_setsrc_addr,
5914 src_ipif->ipif_lcl_addr);
5915 ipif_refrele(src_ipif);
5916 } else {
5917 res = EADDRNOTAVAIL;
5918 }
5919 if (res != 0) {
5920 if (ipif != NULL)
5921 ipif_refrele(ipif);
5922 ire_refrele(gw_ire);
5923 ire_delete(ire);
5924 ire_refrele(ire); /* Held in ire_add */
5925 return (res);
5926 }
5927 }
5928 }
5929
5930 save_ire:
5931 if (gw_ire != NULL) {
5932 ire_refrele(gw_ire);
5933 gw_ire = NULL;
5934 }
5935 if (ill != NULL) {
5936 /*
5937 * Save enough information so that we can recreate the IRE if
5938 * the interface goes down and then up. The metrics associated
5939 * with the route will be saved as well when rts_setmetrics() is
5940 * called after the IRE has been created. In the case where
5941 * memory cannot be allocated, none of this information will be
5942 * saved.
5943 */
5944 ill_save_ire(ill, ire);
5945 }
5946 if (ioctl_msg)
5947 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst);
5948 if (ire_arg != NULL) {
5949 /*
5950 * Store the ire that was successfully added into where ire_arg
5951 * points to so that callers don't have to look it up
5952 * themselves (but they are responsible for ire_refrele()ing
5953 * the ire when they are finished with it).
5954 */
5955 *ire_arg = ire;
5956 } else {
5957 ire_refrele(ire); /* Held in ire_add */
5958 }
5959 if (ipif != NULL)
5960 ipif_refrele(ipif);
5961 return (0);
5962 }
5963
5964 /*
5965 * ip_rt_delete is called to delete an IPv4 route.
5966 * ill is passed in to associate it with the correct interface.
5967 */
5968 /* ARGSUSED4 */
5969 int
ip_rt_delete(ipaddr_t dst_addr,ipaddr_t mask,ipaddr_t gw_addr,uint_t rtm_addrs,int flags,ill_t * ill,boolean_t ioctl_msg,ip_stack_t * ipst,zoneid_t zoneid)5970 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
5971 uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg,
5972 ip_stack_t *ipst, zoneid_t zoneid)
5973 {
5974 ire_t *ire = NULL;
5975 ipif_t *ipif;
5976 uint_t type;
5977 uint_t match_flags = MATCH_IRE_TYPE;
5978 int err = 0;
5979
5980 ip1dbg(("ip_rt_delete:"));
5981 /*
5982 * If this is the case of RTF_HOST being set, then we set the netmask
5983 * to all ones. Otherwise, we use the netmask if one was supplied.
5984 */
5985 if (flags & RTF_HOST) {
5986 mask = IP_HOST_MASK;
5987 match_flags |= MATCH_IRE_MASK;
5988 } else if (rtm_addrs & RTA_NETMASK) {
5989 match_flags |= MATCH_IRE_MASK;
5990 }
5991
5992 /*
5993 * Note that RTF_GATEWAY is never set on a delete, therefore
5994 * we check if the gateway address is one of our interfaces first,
5995 * and fall back on RTF_GATEWAY routes.
5996 *
5997 * This makes it possible to delete an original
5998 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
5999 * However, we have RTF_KERNEL set on the ones created by ipif_up
6000 * and those can not be deleted here.
6001 *
6002 * We use MATCH_IRE_ILL if we know the interface. If the caller
6003 * specified an interface (from the RTA_IFP sockaddr) we use it,
6004 * otherwise we use the ill derived from the gateway address.
6005 * We can always match the gateway address since we record it
6006 * in ire_gateway_addr.
6007 *
6008 * For more detail on specifying routes by gateway address and by
6009 * interface index, see the comments in ip_rt_add().
6010 */
6011 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst);
6012 if (ipif != NULL) {
6013 ill_t *ill_match;
6014
6015 if (ill != NULL)
6016 ill_match = ill;
6017 else
6018 ill_match = ipif->ipif_ill;
6019
6020 match_flags |= MATCH_IRE_ILL;
6021 if (ipif->ipif_ire_type == IRE_LOOPBACK) {
6022 ire = ire_ftable_lookup_v4(dst_addr, mask, 0,
6023 IRE_LOOPBACK, ill_match, ALL_ZONES, NULL,
6024 match_flags, 0, ipst, NULL);
6025 }
6026 if (ire == NULL) {
6027 match_flags |= MATCH_IRE_GW;
6028 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr,
6029 IRE_INTERFACE, ill_match, ALL_ZONES, NULL,
6030 match_flags, 0, ipst, NULL);
6031 }
6032 /* Avoid deleting routes created by kernel from an ipif */
6033 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) {
6034 ire_refrele(ire);
6035 ire = NULL;
6036 }
6037
6038 /* Restore in case we didn't find a match */
6039 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL);
6040 }
6041
6042 if (ire == NULL) {
6043 /*
6044 * At this point, the gateway address is not one of our own
6045 * addresses or a matching interface route was not found. We
6046 * set the IRE type to lookup based on whether
6047 * this is a host route, a default route or just a prefix.
6048 *
6049 * If an ill was passed in, then the lookup is based on an
6050 * interface index so MATCH_IRE_ILL is added to match_flags.
6051 */
6052 match_flags |= MATCH_IRE_GW;
6053 if (ill != NULL)
6054 match_flags |= MATCH_IRE_ILL;
6055 if (mask == IP_HOST_MASK)
6056 type = IRE_HOST;
6057 else if (mask == 0)
6058 type = IRE_DEFAULT;
6059 else
6060 type = IRE_PREFIX;
6061 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill,
6062 ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
6063 }
6064
6065 if (ipif != NULL) {
6066 ipif_refrele(ipif);
6067 ipif = NULL;
6068 }
6069
6070 if (ire == NULL)
6071 return (ESRCH);
6072
6073 if (ire->ire_flags & RTF_MULTIRT) {
6074 /*
6075 * Invoke the CGTP (multirouting) filtering module
6076 * to remove the dst address from the filtering database.
6077 * Packets coming from that address will no longer be
6078 * filtered to remove duplicates.
6079 */
6080 if (ipst->ips_ip_cgtp_filter_ops != NULL) {
6081 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4(
6082 ipst->ips_netstack->netstack_stackid,
6083 ire->ire_addr, ire->ire_gateway_addr);
6084 }
6085 ip_cgtp_bcast_delete(ire, ipst);
6086 }
6087
6088 ill = ire->ire_ill;
6089 if (ill != NULL)
6090 ill_remove_saved_ire(ill, ire);
6091 if (ioctl_msg)
6092 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst);
6093 ire_delete(ire);
6094 ire_refrele(ire);
6095 return (err);
6096 }
6097
6098 /*
6099 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL.
6100 */
6101 /* ARGSUSED */
6102 int
ip_siocaddrt(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_if_req)6103 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
6104 ip_ioctl_cmd_t *ipip, void *dummy_if_req)
6105 {
6106 ipaddr_t dst_addr;
6107 ipaddr_t gw_addr;
6108 ipaddr_t mask;
6109 int error = 0;
6110 mblk_t *mp1;
6111 struct rtentry *rt;
6112 ipif_t *ipif = NULL;
6113 ip_stack_t *ipst;
6114
6115 ASSERT(q->q_next == NULL);
6116 ipst = CONNQ_TO_IPST(q);
6117
6118 ip1dbg(("ip_siocaddrt:"));
6119 /* Existence of mp1 verified in ip_wput_nondata */
6120 mp1 = mp->b_cont->b_cont;
6121 rt = (struct rtentry *)mp1->b_rptr;
6122
6123 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
6124 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
6125
6126 /*
6127 * If the RTF_HOST flag is on, this is a request to assign a gateway
6128 * to a particular host address. In this case, we set the netmask to
6129 * all ones for the particular destination address. Otherwise,
6130 * determine the netmask to be used based on dst_addr and the interfaces
6131 * in use.
6132 */
6133 if (rt->rt_flags & RTF_HOST) {
6134 mask = IP_HOST_MASK;
6135 } else {
6136 /*
6137 * Note that ip_subnet_mask returns a zero mask in the case of
6138 * default (an all-zeroes address).
6139 */
6140 mask = ip_subnet_mask(dst_addr, &ipif, ipst);
6141 }
6142
6143 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL,
6144 B_TRUE, NULL, ipst, ALL_ZONES);
6145 if (ipif != NULL)
6146 ipif_refrele(ipif);
6147 return (error);
6148 }
6149
6150 /*
6151 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL.
6152 */
6153 /* ARGSUSED */
6154 int
ip_siocdelrt(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_if_req)6155 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
6156 ip_ioctl_cmd_t *ipip, void *dummy_if_req)
6157 {
6158 ipaddr_t dst_addr;
6159 ipaddr_t gw_addr;
6160 ipaddr_t mask;
6161 int error;
6162 mblk_t *mp1;
6163 struct rtentry *rt;
6164 ipif_t *ipif = NULL;
6165 ip_stack_t *ipst;
6166
6167 ASSERT(q->q_next == NULL);
6168 ipst = CONNQ_TO_IPST(q);
6169
6170 ip1dbg(("ip_siocdelrt:"));
6171 /* Existence of mp1 verified in ip_wput_nondata */
6172 mp1 = mp->b_cont->b_cont;
6173 rt = (struct rtentry *)mp1->b_rptr;
6174
6175 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
6176 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
6177
6178 /*
6179 * If the RTF_HOST flag is on, this is a request to delete a gateway
6180 * to a particular host address. In this case, we set the netmask to
6181 * all ones for the particular destination address. Otherwise,
6182 * determine the netmask to be used based on dst_addr and the interfaces
6183 * in use.
6184 */
6185 if (rt->rt_flags & RTF_HOST) {
6186 mask = IP_HOST_MASK;
6187 } else {
6188 /*
6189 * Note that ip_subnet_mask returns a zero mask in the case of
6190 * default (an all-zeroes address).
6191 */
6192 mask = ip_subnet_mask(dst_addr, &ipif, ipst);
6193 }
6194
6195 error = ip_rt_delete(dst_addr, mask, gw_addr,
6196 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE,
6197 ipst, ALL_ZONES);
6198 if (ipif != NULL)
6199 ipif_refrele(ipif);
6200 return (error);
6201 }
6202
6203 /*
6204 * Enqueue the mp onto the ipsq, chained by b_next.
6205 * b_prev stores the function to be executed later, and b_queue the queue
6206 * where this mp originated.
6207 */
6208 void
ipsq_enq(ipsq_t * ipsq,queue_t * q,mblk_t * mp,ipsq_func_t func,int type,ill_t * pending_ill)6209 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
6210 ill_t *pending_ill)
6211 {
6212 conn_t *connp;
6213 ipxop_t *ipx = ipsq->ipsq_xop;
6214
6215 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
6216 ASSERT(MUTEX_HELD(&ipx->ipx_lock));
6217 ASSERT(func != NULL);
6218
6219 mp->b_queue = q;
6220 mp->b_prev = (void *)func;
6221 mp->b_next = NULL;
6222
6223 switch (type) {
6224 case CUR_OP:
6225 if (ipx->ipx_mptail != NULL) {
6226 ASSERT(ipx->ipx_mphead != NULL);
6227 ipx->ipx_mptail->b_next = mp;
6228 } else {
6229 ASSERT(ipx->ipx_mphead == NULL);
6230 ipx->ipx_mphead = mp;
6231 }
6232 ipx->ipx_mptail = mp;
6233 break;
6234
6235 case NEW_OP:
6236 if (ipsq->ipsq_xopq_mptail != NULL) {
6237 ASSERT(ipsq->ipsq_xopq_mphead != NULL);
6238 ipsq->ipsq_xopq_mptail->b_next = mp;
6239 } else {
6240 ASSERT(ipsq->ipsq_xopq_mphead == NULL);
6241 ipsq->ipsq_xopq_mphead = mp;
6242 }
6243 ipsq->ipsq_xopq_mptail = mp;
6244 ipx->ipx_ipsq_queued = B_TRUE;
6245 break;
6246
6247 case SWITCH_OP:
6248 ASSERT(ipsq->ipsq_swxop != NULL);
6249 /* only one switch operation is currently allowed */
6250 ASSERT(ipsq->ipsq_switch_mp == NULL);
6251 ipsq->ipsq_switch_mp = mp;
6252 ipx->ipx_ipsq_queued = B_TRUE;
6253 break;
6254 default:
6255 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type);
6256 }
6257
6258 if (CONN_Q(q) && pending_ill != NULL) {
6259 connp = Q_TO_CONN(q);
6260 ASSERT(MUTEX_HELD(&connp->conn_lock));
6261 connp->conn_oper_pending_ill = pending_ill;
6262 }
6263 }
6264
6265 /*
6266 * Dequeue the next message that requested exclusive access to this IPSQ's
6267 * xop. Specifically:
6268 *
6269 * 1. If we're still processing the current operation on `ipsq', then
6270 * dequeue the next message for the operation (from ipx_mphead), or
6271 * return NULL if there are no queued messages for the operation.
6272 * These messages are queued via CUR_OP to qwriter_ip() and friends.
6273 *
6274 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is
6275 * not set) see if the ipsq has requested an xop switch. If so, switch
6276 * `ipsq' to a different xop. Xop switches only happen when joining or
6277 * leaving IPMP groups and require a careful dance -- see the comments
6278 * in-line below for details. If we're leaving a group xop or if we're
6279 * joining a group xop and become writer on it, then we proceed to (3).
6280 * Otherwise, we return NULL and exit the xop.
6281 *
6282 * 3. For each IPSQ in the xop, return any switch operation stored on
6283 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before
6284 * any other messages queued on the IPSQ. Otherwise, dequeue the next
6285 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead.
6286 * Note that if the phyint tied to `ipsq' is not using IPMP there will
6287 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for
6288 * each phyint in the group, including the IPMP meta-interface phyint.
6289 */
6290 static mblk_t *
ipsq_dq(ipsq_t * ipsq)6291 ipsq_dq(ipsq_t *ipsq)
6292 {
6293 ill_t *illv4, *illv6;
6294 mblk_t *mp;
6295 ipsq_t *xopipsq;
6296 ipsq_t *leftipsq = NULL;
6297 ipxop_t *ipx;
6298 phyint_t *phyi = ipsq->ipsq_phyint;
6299 ip_stack_t *ipst = ipsq->ipsq_ipst;
6300 boolean_t emptied = B_FALSE;
6301
6302 /*
6303 * Grab all the locks we need in the defined order (ill_g_lock ->
6304 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next.
6305 */
6306 rw_enter(&ipst->ips_ill_g_lock,
6307 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER);
6308 mutex_enter(&ipsq->ipsq_lock);
6309 ipx = ipsq->ipsq_xop;
6310 mutex_enter(&ipx->ipx_lock);
6311
6312 /*
6313 * Dequeue the next message associated with the current exclusive
6314 * operation, if any.
6315 */
6316 if ((mp = ipx->ipx_mphead) != NULL) {
6317 ipx->ipx_mphead = mp->b_next;
6318 if (ipx->ipx_mphead == NULL)
6319 ipx->ipx_mptail = NULL;
6320 mp->b_next = (void *)ipsq;
6321 goto out;
6322 }
6323
6324 if (ipx->ipx_current_ipif != NULL)
6325 goto empty;
6326
6327 if (ipsq->ipsq_swxop != NULL) {
6328 /*
6329 * The exclusive operation that is now being completed has
6330 * requested a switch to a different xop. This happens
6331 * when an interface joins or leaves an IPMP group. Joins
6332 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()).
6333 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb
6334 * (phyint_free()), or interface plumb for an ill type
6335 * not in the IPMP group (ip_rput_dlpi_writer()).
6336 *
6337 * Xop switches are not allowed on the IPMP meta-interface.
6338 */
6339 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP));
6340 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
6341 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq);
6342
6343 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) {
6344 /*
6345 * We're switching back to our own xop, so we have two
6346 * xop's to drain/exit: our own, and the group xop
6347 * that we are leaving.
6348 *
6349 * First, pull ourselves out of the group ipsq list.
6350 * This is safe since we're writer on ill_g_lock.
6351 */
6352 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop);
6353
6354 xopipsq = ipx->ipx_ipsq;
6355 while (xopipsq->ipsq_next != ipsq)
6356 xopipsq = xopipsq->ipsq_next;
6357
6358 xopipsq->ipsq_next = ipsq->ipsq_next;
6359 ipsq->ipsq_next = ipsq;
6360 ipsq->ipsq_xop = ipsq->ipsq_swxop;
6361 ipsq->ipsq_swxop = NULL;
6362
6363 /*
6364 * Second, prepare to exit the group xop. The actual
6365 * ipsq_exit() is done at the end of this function
6366 * since we cannot hold any locks across ipsq_exit().
6367 * Note that although we drop the group's ipx_lock, no
6368 * threads can proceed since we're still ipx_writer.
6369 */
6370 leftipsq = xopipsq;
6371 mutex_exit(&ipx->ipx_lock);
6372
6373 /*
6374 * Third, set ipx to point to our own xop (which was
6375 * inactive and therefore can be entered).
6376 */
6377 ipx = ipsq->ipsq_xop;
6378 mutex_enter(&ipx->ipx_lock);
6379 ASSERT(ipx->ipx_writer == NULL);
6380 ASSERT(ipx->ipx_current_ipif == NULL);
6381 } else {
6382 /*
6383 * We're switching from our own xop to a group xop.
6384 * The requestor of the switch must ensure that the
6385 * group xop cannot go away (e.g. by ensuring the
6386 * phyint associated with the xop cannot go away).
6387 *
6388 * If we can become writer on our new xop, then we'll
6389 * do the drain. Otherwise, the current writer of our
6390 * new xop will do the drain when it exits.
6391 *
6392 * First, splice ourselves into the group IPSQ list.
6393 * This is safe since we're writer on ill_g_lock.
6394 */
6395 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
6396
6397 xopipsq = ipsq->ipsq_swxop->ipx_ipsq;
6398 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq)
6399 xopipsq = xopipsq->ipsq_next;
6400
6401 xopipsq->ipsq_next = ipsq;
6402 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq;
6403 ipsq->ipsq_xop = ipsq->ipsq_swxop;
6404 ipsq->ipsq_swxop = NULL;
6405
6406 /*
6407 * Second, exit our own xop, since it's now unused.
6408 * This is safe since we've got the only reference.
6409 */
6410 ASSERT(ipx->ipx_writer == curthread);
6411 ipx->ipx_writer = NULL;
6412 VERIFY(--ipx->ipx_reentry_cnt == 0);
6413 ipx->ipx_ipsq_queued = B_FALSE;
6414 mutex_exit(&ipx->ipx_lock);
6415
6416 /*
6417 * Third, set ipx to point to our new xop, and check
6418 * if we can become writer on it. If we cannot, then
6419 * the current writer will drain the IPSQ group when
6420 * it exits. Our ipsq_xop is guaranteed to be stable
6421 * because we're still holding ipsq_lock.
6422 */
6423 ipx = ipsq->ipsq_xop;
6424 mutex_enter(&ipx->ipx_lock);
6425 if (ipx->ipx_writer != NULL ||
6426 ipx->ipx_current_ipif != NULL) {
6427 goto out;
6428 }
6429 }
6430
6431 /*
6432 * Fourth, become writer on our new ipx before we continue
6433 * with the drain. Note that we never dropped ipsq_lock
6434 * above, so no other thread could've raced with us to
6435 * become writer first. Also, we're holding ipx_lock, so
6436 * no other thread can examine the ipx right now.
6437 */
6438 ASSERT(ipx->ipx_current_ipif == NULL);
6439 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
6440 VERIFY(ipx->ipx_reentry_cnt++ == 0);
6441 ipx->ipx_writer = curthread;
6442 ipx->ipx_forced = B_FALSE;
6443 #ifdef DEBUG
6444 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6445 #endif
6446 }
6447
6448 xopipsq = ipsq;
6449 do {
6450 /*
6451 * So that other operations operate on a consistent and
6452 * complete phyint, a switch message on an IPSQ must be
6453 * handled prior to any other operations on that IPSQ.
6454 */
6455 if ((mp = xopipsq->ipsq_switch_mp) != NULL) {
6456 xopipsq->ipsq_switch_mp = NULL;
6457 ASSERT(mp->b_next == NULL);
6458 mp->b_next = (void *)xopipsq;
6459 goto out;
6460 }
6461
6462 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) {
6463 xopipsq->ipsq_xopq_mphead = mp->b_next;
6464 if (xopipsq->ipsq_xopq_mphead == NULL)
6465 xopipsq->ipsq_xopq_mptail = NULL;
6466 mp->b_next = (void *)xopipsq;
6467 goto out;
6468 }
6469 } while ((xopipsq = xopipsq->ipsq_next) != ipsq);
6470 empty:
6471 /*
6472 * There are no messages. Further, we are holding ipx_lock, hence no
6473 * new messages can end up on any IPSQ in the xop.
6474 */
6475 ipx->ipx_writer = NULL;
6476 ipx->ipx_forced = B_FALSE;
6477 VERIFY(--ipx->ipx_reentry_cnt == 0);
6478 ipx->ipx_ipsq_queued = B_FALSE;
6479 emptied = B_TRUE;
6480 #ifdef DEBUG
6481 ipx->ipx_depth = 0;
6482 #endif
6483 out:
6484 mutex_exit(&ipx->ipx_lock);
6485 mutex_exit(&ipsq->ipsq_lock);
6486
6487 /*
6488 * If we completely emptied the xop, then wake up any threads waiting
6489 * to enter any of the IPSQ's associated with it.
6490 */
6491 if (emptied) {
6492 xopipsq = ipsq;
6493 do {
6494 if ((phyi = xopipsq->ipsq_phyint) == NULL)
6495 continue;
6496
6497 illv4 = phyi->phyint_illv4;
6498 illv6 = phyi->phyint_illv6;
6499
6500 GRAB_ILL_LOCKS(illv4, illv6);
6501 if (illv4 != NULL)
6502 cv_broadcast(&illv4->ill_cv);
6503 if (illv6 != NULL)
6504 cv_broadcast(&illv6->ill_cv);
6505 RELEASE_ILL_LOCKS(illv4, illv6);
6506 } while ((xopipsq = xopipsq->ipsq_next) != ipsq);
6507 }
6508 rw_exit(&ipst->ips_ill_g_lock);
6509
6510 /*
6511 * Now that all locks are dropped, exit the IPSQ we left.
6512 */
6513 if (leftipsq != NULL)
6514 ipsq_exit(leftipsq);
6515
6516 return (mp);
6517 }
6518
6519 /*
6520 * Return completion status of previously initiated DLPI operations on
6521 * ills in the purview of an ipsq.
6522 */
6523 static boolean_t
ipsq_dlpi_done(ipsq_t * ipsq)6524 ipsq_dlpi_done(ipsq_t *ipsq)
6525 {
6526 ipsq_t *ipsq_start;
6527 phyint_t *phyi;
6528 ill_t *ill;
6529
6530 ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock));
6531 ipsq_start = ipsq;
6532
6533 do {
6534 /*
6535 * The only current users of this function are ipsq_try_enter
6536 * and ipsq_enter which have made sure that ipsq_writer is
6537 * NULL before we reach here. ill_dlpi_pending is modified
6538 * only by an ipsq writer
6539 */
6540 ASSERT(ipsq->ipsq_xop->ipx_writer == NULL);
6541 phyi = ipsq->ipsq_phyint;
6542 /*
6543 * phyi could be NULL if a phyint that is part of an
6544 * IPMP group is being unplumbed. A more detailed
6545 * comment is in ipmp_grp_update_kstats()
6546 */
6547 if (phyi != NULL) {
6548 ill = phyi->phyint_illv4;
6549 if (ill != NULL &&
6550 (ill->ill_dlpi_pending != DL_PRIM_INVAL ||
6551 ill->ill_arl_dlpi_pending))
6552 return (B_FALSE);
6553
6554 ill = phyi->phyint_illv6;
6555 if (ill != NULL &&
6556 ill->ill_dlpi_pending != DL_PRIM_INVAL)
6557 return (B_FALSE);
6558 }
6559
6560 } while ((ipsq = ipsq->ipsq_next) != ipsq_start);
6561
6562 return (B_TRUE);
6563 }
6564
6565 /*
6566 * Enter the ipsq corresponding to ill, by waiting synchronously till
6567 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq
6568 * will have to drain completely before ipsq_enter returns success.
6569 * ipx_current_ipif will be set if some exclusive op is in progress,
6570 * and the ipsq_exit logic will start the next enqueued op after
6571 * completion of the current op. If 'force' is used, we don't wait
6572 * for the enqueued ops. This is needed when a conn_close wants to
6573 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb
6574 * of an ill can also use this option. But we dont' use it currently.
6575 */
6576 #define ENTER_SQ_WAIT_TICKS 100
6577 boolean_t
ipsq_enter(ill_t * ill,boolean_t force,int type)6578 ipsq_enter(ill_t *ill, boolean_t force, int type)
6579 {
6580 ipsq_t *ipsq;
6581 ipxop_t *ipx;
6582 boolean_t waited_enough = B_FALSE;
6583 ip_stack_t *ipst = ill->ill_ipst;
6584
6585 /*
6586 * Note that the relationship between ill and ipsq is fixed as long as
6587 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the
6588 * relationship between the IPSQ and xop cannot change. However,
6589 * since we cannot hold ipsq_lock across the cv_wait(), it may change
6590 * while we're waiting. We wait on ill_cv and rely on ipsq_exit()
6591 * waking up all ills in the xop when it becomes available.
6592 */
6593 for (;;) {
6594 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6595 mutex_enter(&ill->ill_lock);
6596 if (ill->ill_state_flags & ILL_CONDEMNED) {
6597 mutex_exit(&ill->ill_lock);
6598 rw_exit(&ipst->ips_ill_g_lock);
6599 return (B_FALSE);
6600 }
6601
6602 ipsq = ill->ill_phyint->phyint_ipsq;
6603 mutex_enter(&ipsq->ipsq_lock);
6604 ipx = ipsq->ipsq_xop;
6605 mutex_enter(&ipx->ipx_lock);
6606
6607 if (ipx->ipx_writer == NULL && (type == CUR_OP ||
6608 (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) ||
6609 waited_enough))
6610 break;
6611
6612 rw_exit(&ipst->ips_ill_g_lock);
6613
6614 if (!force || ipx->ipx_writer != NULL) {
6615 mutex_exit(&ipx->ipx_lock);
6616 mutex_exit(&ipsq->ipsq_lock);
6617 cv_wait(&ill->ill_cv, &ill->ill_lock);
6618 } else {
6619 mutex_exit(&ipx->ipx_lock);
6620 mutex_exit(&ipsq->ipsq_lock);
6621 (void) cv_reltimedwait(&ill->ill_cv,
6622 &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK);
6623 waited_enough = B_TRUE;
6624 }
6625 mutex_exit(&ill->ill_lock);
6626 }
6627
6628 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
6629 ASSERT(ipx->ipx_reentry_cnt == 0);
6630 ipx->ipx_writer = curthread;
6631 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL);
6632 ipx->ipx_reentry_cnt++;
6633 #ifdef DEBUG
6634 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6635 #endif
6636 mutex_exit(&ipx->ipx_lock);
6637 mutex_exit(&ipsq->ipsq_lock);
6638 mutex_exit(&ill->ill_lock);
6639 rw_exit(&ipst->ips_ill_g_lock);
6640
6641 return (B_TRUE);
6642 }
6643
6644 /*
6645 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock
6646 * across the call to the core interface ipsq_try_enter() and hence calls this
6647 * function directly. This is explained more fully in ipif_set_values().
6648 * In order to support the above constraint, ipsq_try_enter is implemented as
6649 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently
6650 */
6651 static ipsq_t *
ipsq_try_enter_internal(ill_t * ill,queue_t * q,mblk_t * mp,ipsq_func_t func,int type,boolean_t reentry_ok)6652 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func,
6653 int type, boolean_t reentry_ok)
6654 {
6655 ipsq_t *ipsq;
6656 ipxop_t *ipx;
6657 ip_stack_t *ipst = ill->ill_ipst;
6658
6659 /*
6660 * lock ordering:
6661 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock.
6662 *
6663 * ipx of an ipsq can't change when ipsq_lock is held.
6664 */
6665 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
6666 GRAB_CONN_LOCK(q);
6667 mutex_enter(&ill->ill_lock);
6668 ipsq = ill->ill_phyint->phyint_ipsq;
6669 mutex_enter(&ipsq->ipsq_lock);
6670 ipx = ipsq->ipsq_xop;
6671 mutex_enter(&ipx->ipx_lock);
6672
6673 /*
6674 * 1. Enter the ipsq if we are already writer and reentry is ok.
6675 * (Note: If the caller does not specify reentry_ok then neither
6676 * 'func' nor any of its callees must ever attempt to enter the ipsq
6677 * again. Otherwise it can lead to an infinite loop
6678 * 2. Enter the ipsq if there is no current writer and this attempted
6679 * entry is part of the current operation
6680 * 3. Enter the ipsq if there is no current writer and this is a new
6681 * operation and the operation queue is empty and there is no
6682 * operation currently in progress and if all previously initiated
6683 * DLPI operations have completed.
6684 */
6685 if ((ipx->ipx_writer == curthread && reentry_ok) ||
6686 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP &&
6687 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL &&
6688 ipsq_dlpi_done(ipsq))))) {
6689 /* Success. */
6690 ipx->ipx_reentry_cnt++;
6691 ipx->ipx_writer = curthread;
6692 ipx->ipx_forced = B_FALSE;
6693 mutex_exit(&ipx->ipx_lock);
6694 mutex_exit(&ipsq->ipsq_lock);
6695 mutex_exit(&ill->ill_lock);
6696 RELEASE_CONN_LOCK(q);
6697 #ifdef DEBUG
6698 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6699 #endif
6700 return (ipsq);
6701 }
6702
6703 if (func != NULL)
6704 ipsq_enq(ipsq, q, mp, func, type, ill);
6705
6706 mutex_exit(&ipx->ipx_lock);
6707 mutex_exit(&ipsq->ipsq_lock);
6708 mutex_exit(&ill->ill_lock);
6709 RELEASE_CONN_LOCK(q);
6710 return (NULL);
6711 }
6712
6713 /*
6714 * The ipsq_t (ipsq) is the synchronization data structure used to serialize
6715 * certain critical operations like plumbing (i.e. most set ioctls), etc.
6716 * There is one ipsq per phyint. The ipsq
6717 * serializes exclusive ioctls issued by applications on a per ipsq basis in
6718 * ipsq_xopq_mphead. It also protects against multiple threads executing in
6719 * the ipsq. Responses from the driver pertain to the current ioctl (say a
6720 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing
6721 * up the interface) and are enqueued in ipx_mphead.
6722 *
6723 * If a thread does not want to reenter the ipsq when it is already writer,
6724 * it must make sure that the specified reentry point to be called later
6725 * when the ipsq is empty, nor any code path starting from the specified reentry
6726 * point must never ever try to enter the ipsq again. Otherwise it can lead
6727 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example.
6728 * When the thread that is currently exclusive finishes, it (ipsq_exit)
6729 * dequeues the requests waiting to become exclusive in ipx_mphead and calls
6730 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit
6731 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next
6732 * ioctl if the current ioctl has completed. If the current ioctl is still
6733 * in progress it simply returns. The current ioctl could be waiting for
6734 * a response from another module (the driver or could be waiting for
6735 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp
6736 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the
6737 * execution of the ioctl and ipsq_exit does not start the next ioctl unless
6738 * ipx_current_ipif is NULL which happens only once the ioctl is complete and
6739 * all associated DLPI operations have completed.
6740 */
6741
6742 /*
6743 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif'
6744 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ
6745 * on success, or NULL on failure. The caller ensures ipif/ill is valid by
6746 * refholding it as necessary. If the IPSQ cannot be entered and `func' is
6747 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ
6748 * can be entered. If `func' is NULL, then `q' and `mp' are ignored.
6749 */
6750 ipsq_t *
ipsq_try_enter(ipif_t * ipif,ill_t * ill,queue_t * q,mblk_t * mp,ipsq_func_t func,int type,boolean_t reentry_ok)6751 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
6752 ipsq_func_t func, int type, boolean_t reentry_ok)
6753 {
6754 ip_stack_t *ipst;
6755 ipsq_t *ipsq;
6756
6757 /* Only 1 of ipif or ill can be specified */
6758 ASSERT((ipif != NULL) ^ (ill != NULL));
6759
6760 if (ipif != NULL)
6761 ill = ipif->ipif_ill;
6762 ipst = ill->ill_ipst;
6763
6764 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6765 ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok);
6766 rw_exit(&ipst->ips_ill_g_lock);
6767
6768 return (ipsq);
6769 }
6770
6771 /*
6772 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures
6773 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ
6774 * cannot be entered, the mp is queued for completion.
6775 */
6776 void
qwriter_ip(ill_t * ill,queue_t * q,mblk_t * mp,ipsq_func_t func,int type,boolean_t reentry_ok)6777 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
6778 boolean_t reentry_ok)
6779 {
6780 ipsq_t *ipsq;
6781
6782 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok);
6783
6784 /*
6785 * Drop the caller's refhold on the ill. This is safe since we either
6786 * entered the IPSQ (and thus are exclusive), or failed to enter the
6787 * IPSQ, in which case we return without accessing ill anymore. This
6788 * is needed because func needs to see the correct refcount.
6789 * e.g. removeif can work only then.
6790 */
6791 ill_refrele(ill);
6792 if (ipsq != NULL) {
6793 (*func)(ipsq, q, mp, NULL);
6794 ipsq_exit(ipsq);
6795 }
6796 }
6797
6798 /*
6799 * Exit the specified IPSQ. If this is the final exit on it then drain it
6800 * prior to exiting. Caller must be writer on the specified IPSQ.
6801 */
6802 void
ipsq_exit(ipsq_t * ipsq)6803 ipsq_exit(ipsq_t *ipsq)
6804 {
6805 mblk_t *mp;
6806 ipsq_t *mp_ipsq;
6807 queue_t *q;
6808 phyint_t *phyi;
6809 ipsq_func_t func;
6810
6811 ASSERT(IAM_WRITER_IPSQ(ipsq));
6812
6813 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1);
6814 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) {
6815 ipsq->ipsq_xop->ipx_reentry_cnt--;
6816 return;
6817 }
6818
6819 for (;;) {
6820 phyi = ipsq->ipsq_phyint;
6821 mp = ipsq_dq(ipsq);
6822 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next;
6823
6824 /*
6825 * If we've changed to a new IPSQ, and the phyint associated
6826 * with the old one has gone away, free the old IPSQ. Note
6827 * that this cannot happen while the IPSQ is in a group.
6828 */
6829 if (mp_ipsq != ipsq && phyi == NULL) {
6830 ASSERT(ipsq->ipsq_next == ipsq);
6831 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
6832 ipsq_delete(ipsq);
6833 }
6834
6835 if (mp == NULL)
6836 break;
6837
6838 q = mp->b_queue;
6839 func = (ipsq_func_t)mp->b_prev;
6840 ipsq = mp_ipsq;
6841 mp->b_next = mp->b_prev = NULL;
6842 mp->b_queue = NULL;
6843
6844 /*
6845 * If 'q' is an conn queue, it is valid, since we did a
6846 * a refhold on the conn at the start of the ioctl.
6847 * If 'q' is an ill queue, it is valid, since close of an
6848 * ill will clean up its IPSQ.
6849 */
6850 (*func)(ipsq, q, mp, NULL);
6851 }
6852 }
6853
6854 /*
6855 * Used to start any igmp or mld timers that could not be started
6856 * while holding ill_mcast_lock. The timers can't be started while holding
6857 * the lock, since mld/igmp_start_timers may need to call untimeout()
6858 * which can't be done while holding the lock which the timeout handler
6859 * acquires. Otherwise
6860 * there could be a deadlock since the timeout handlers
6861 * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire
6862 * ill_mcast_lock.
6863 */
6864 void
ill_mcast_timer_start(ip_stack_t * ipst)6865 ill_mcast_timer_start(ip_stack_t *ipst)
6866 {
6867 int next;
6868
6869 mutex_enter(&ipst->ips_igmp_timer_lock);
6870 next = ipst->ips_igmp_deferred_next;
6871 ipst->ips_igmp_deferred_next = INFINITY;
6872 mutex_exit(&ipst->ips_igmp_timer_lock);
6873
6874 if (next != INFINITY)
6875 igmp_start_timers(next, ipst);
6876
6877 mutex_enter(&ipst->ips_mld_timer_lock);
6878 next = ipst->ips_mld_deferred_next;
6879 ipst->ips_mld_deferred_next = INFINITY;
6880 mutex_exit(&ipst->ips_mld_timer_lock);
6881
6882 if (next != INFINITY)
6883 mld_start_timers(next, ipst);
6884 }
6885
6886 /*
6887 * Start the current exclusive operation on `ipsq'; associate it with `ipif'
6888 * and `ioccmd'.
6889 */
6890 void
ipsq_current_start(ipsq_t * ipsq,ipif_t * ipif,int ioccmd)6891 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd)
6892 {
6893 ill_t *ill = ipif->ipif_ill;
6894 ipxop_t *ipx = ipsq->ipsq_xop;
6895
6896 ASSERT(IAM_WRITER_IPSQ(ipsq));
6897 ASSERT(ipx->ipx_current_ipif == NULL);
6898 ASSERT(ipx->ipx_current_ioctl == 0);
6899
6900 ipx->ipx_current_done = B_FALSE;
6901 ipx->ipx_current_ioctl = ioccmd;
6902 mutex_enter(&ipx->ipx_lock);
6903 ipx->ipx_current_ipif = ipif;
6904 mutex_exit(&ipx->ipx_lock);
6905
6906 /*
6907 * Set IPIF_CHANGING on one or more ipifs associated with the
6908 * current exclusive operation. IPIF_CHANGING prevents any new
6909 * references to the ipif (so that the references will eventually
6910 * drop to zero) and also prevents any "get" operations (e.g.,
6911 * SIOCGLIFFLAGS) from being able to access the ipif until the
6912 * operation has completed and the ipif is again in a stable state.
6913 *
6914 * For ioctls, IPIF_CHANGING is set on the ipif associated with the
6915 * ioctl. For internal operations (where ioccmd is zero), all ipifs
6916 * on the ill are marked with IPIF_CHANGING since it's unclear which
6917 * ipifs will be affected.
6918 *
6919 * Note that SIOCLIFREMOVEIF is a special case as it sets
6920 * IPIF_CONDEMNED internally after identifying the right ipif to
6921 * operate on.
6922 */
6923 switch (ioccmd) {
6924 case SIOCLIFREMOVEIF:
6925 break;
6926 case 0:
6927 mutex_enter(&ill->ill_lock);
6928 ipif = ipif->ipif_ill->ill_ipif;
6929 for (; ipif != NULL; ipif = ipif->ipif_next)
6930 ipif->ipif_state_flags |= IPIF_CHANGING;
6931 mutex_exit(&ill->ill_lock);
6932 break;
6933 default:
6934 mutex_enter(&ill->ill_lock);
6935 ipif->ipif_state_flags |= IPIF_CHANGING;
6936 mutex_exit(&ill->ill_lock);
6937 }
6938 }
6939
6940 /*
6941 * Finish the current exclusive operation on `ipsq'. Usually, this will allow
6942 * the next exclusive operation to begin once we ipsq_exit(). However, if
6943 * pending DLPI operations remain, then we will wait for the queue to drain
6944 * before allowing the next exclusive operation to begin. This ensures that
6945 * DLPI operations from one exclusive operation are never improperly processed
6946 * as part of a subsequent exclusive operation.
6947 */
6948 void
ipsq_current_finish(ipsq_t * ipsq)6949 ipsq_current_finish(ipsq_t *ipsq)
6950 {
6951 ipxop_t *ipx = ipsq->ipsq_xop;
6952 t_uscalar_t dlpi_pending = DL_PRIM_INVAL;
6953 ipif_t *ipif = ipx->ipx_current_ipif;
6954
6955 ASSERT(IAM_WRITER_IPSQ(ipsq));
6956
6957 /*
6958 * For SIOCLIFREMOVEIF, the ipif has been already been blown away
6959 * (but in that case, IPIF_CHANGING will already be clear and no
6960 * pending DLPI messages can remain).
6961 */
6962 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) {
6963 ill_t *ill = ipif->ipif_ill;
6964
6965 mutex_enter(&ill->ill_lock);
6966 dlpi_pending = ill->ill_dlpi_pending;
6967 if (ipx->ipx_current_ioctl == 0) {
6968 ipif = ill->ill_ipif;
6969 for (; ipif != NULL; ipif = ipif->ipif_next)
6970 ipif->ipif_state_flags &= ~IPIF_CHANGING;
6971 } else {
6972 ipif->ipif_state_flags &= ~IPIF_CHANGING;
6973 }
6974 mutex_exit(&ill->ill_lock);
6975 }
6976
6977 ASSERT(!ipx->ipx_current_done);
6978 ipx->ipx_current_done = B_TRUE;
6979 ipx->ipx_current_ioctl = 0;
6980 if (dlpi_pending == DL_PRIM_INVAL) {
6981 mutex_enter(&ipx->ipx_lock);
6982 ipx->ipx_current_ipif = NULL;
6983 mutex_exit(&ipx->ipx_lock);
6984 }
6985 }
6986
6987 /*
6988 * The ill is closing. Flush all messages on the ipsq that originated
6989 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead
6990 * for this ill since ipsq_enter could not have entered until then.
6991 * New messages can't be queued since the CONDEMNED flag is set.
6992 */
6993 static void
ipsq_flush(ill_t * ill)6994 ipsq_flush(ill_t *ill)
6995 {
6996 queue_t *q;
6997 mblk_t *prev;
6998 mblk_t *mp;
6999 mblk_t *mp_next;
7000 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
7001
7002 ASSERT(IAM_WRITER_ILL(ill));
7003
7004 /*
7005 * Flush any messages sent up by the driver.
7006 */
7007 mutex_enter(&ipx->ipx_lock);
7008 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) {
7009 mp_next = mp->b_next;
7010 q = mp->b_queue;
7011 if (q == ill->ill_rq || q == ill->ill_wq) {
7012 /* dequeue mp */
7013 if (prev == NULL)
7014 ipx->ipx_mphead = mp->b_next;
7015 else
7016 prev->b_next = mp->b_next;
7017 if (ipx->ipx_mptail == mp) {
7018 ASSERT(mp_next == NULL);
7019 ipx->ipx_mptail = prev;
7020 }
7021 inet_freemsg(mp);
7022 } else {
7023 prev = mp;
7024 }
7025 }
7026 mutex_exit(&ipx->ipx_lock);
7027 (void) ipsq_pending_mp_cleanup(ill, NULL);
7028 ipsq_xopq_mp_cleanup(ill, NULL);
7029 }
7030
7031 /*
7032 * Parse an ifreq or lifreq struct coming down ioctls and refhold
7033 * and return the associated ipif.
7034 * Return value:
7035 * Non zero: An error has occurred. ci may not be filled out.
7036 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and
7037 * a held ipif in ci.ci_ipif.
7038 */
7039 int
ip_extract_lifreq(queue_t * q,mblk_t * mp,const ip_ioctl_cmd_t * ipip,cmd_info_t * ci)7040 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
7041 cmd_info_t *ci)
7042 {
7043 char *name;
7044 struct ifreq *ifr;
7045 struct lifreq *lifr;
7046 ipif_t *ipif = NULL;
7047 ill_t *ill;
7048 conn_t *connp;
7049 boolean_t isv6;
7050 int err;
7051 mblk_t *mp1;
7052 zoneid_t zoneid;
7053 ip_stack_t *ipst;
7054
7055 if (q->q_next != NULL) {
7056 ill = (ill_t *)q->q_ptr;
7057 isv6 = ill->ill_isv6;
7058 connp = NULL;
7059 zoneid = ALL_ZONES;
7060 ipst = ill->ill_ipst;
7061 } else {
7062 ill = NULL;
7063 connp = Q_TO_CONN(q);
7064 isv6 = (connp->conn_family == AF_INET6);
7065 zoneid = connp->conn_zoneid;
7066 if (zoneid == GLOBAL_ZONEID) {
7067 /* global zone can access ipifs in all zones */
7068 zoneid = ALL_ZONES;
7069 }
7070 ipst = connp->conn_netstack->netstack_ip;
7071 }
7072
7073 /* Has been checked in ip_wput_nondata */
7074 mp1 = mp->b_cont->b_cont;
7075
7076 if (ipip->ipi_cmd_type == IF_CMD) {
7077 /* This a old style SIOC[GS]IF* command */
7078 ifr = (struct ifreq *)mp1->b_rptr;
7079 /*
7080 * Null terminate the string to protect against buffer
7081 * overrun. String was generated by user code and may not
7082 * be trusted.
7083 */
7084 ifr->ifr_name[IFNAMSIZ - 1] = '\0';
7085 name = ifr->ifr_name;
7086 ci->ci_sin = (sin_t *)&ifr->ifr_addr;
7087 ci->ci_sin6 = NULL;
7088 ci->ci_lifr = (struct lifreq *)ifr;
7089 } else {
7090 /* This a new style SIOC[GS]LIF* command */
7091 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
7092 lifr = (struct lifreq *)mp1->b_rptr;
7093 /*
7094 * Null terminate the string to protect against buffer
7095 * overrun. String was generated by user code and may not
7096 * be trusted.
7097 */
7098 lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
7099 name = lifr->lifr_name;
7100 ci->ci_sin = (sin_t *)&lifr->lifr_addr;
7101 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr;
7102 ci->ci_lifr = lifr;
7103 }
7104
7105 if (ipip->ipi_cmd == SIOCSLIFNAME) {
7106 /*
7107 * The ioctl will be failed if the ioctl comes down
7108 * an conn stream
7109 */
7110 if (ill == NULL) {
7111 /*
7112 * Not an ill queue, return EINVAL same as the
7113 * old error code.
7114 */
7115 return (ENXIO);
7116 }
7117 ipif = ill->ill_ipif;
7118 ipif_refhold(ipif);
7119 } else {
7120 /*
7121 * Ensure that ioctls don't see any internal state changes
7122 * caused by set ioctls by deferring them if IPIF_CHANGING is
7123 * set.
7124 */
7125 ipif = ipif_lookup_on_name_async(name, mi_strlen(name),
7126 isv6, zoneid, q, mp, ip_process_ioctl, &err, ipst);
7127 if (ipif == NULL) {
7128 if (err == EINPROGRESS)
7129 return (err);
7130 err = 0; /* Ensure we don't use it below */
7131 }
7132 }
7133
7134 /*
7135 * Old style [GS]IFCMD does not admit IPv6 ipif
7136 */
7137 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) {
7138 ipif_refrele(ipif);
7139 return (ENXIO);
7140 }
7141
7142 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL &&
7143 name[0] == '\0') {
7144 /*
7145 * Handle a or a SIOC?IF* with a null name
7146 * during plumb (on the ill queue before the I_PLINK).
7147 */
7148 ipif = ill->ill_ipif;
7149 ipif_refhold(ipif);
7150 }
7151
7152 if (ipif == NULL)
7153 return (ENXIO);
7154
7155 DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq",
7156 int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif);
7157
7158 ci->ci_ipif = ipif;
7159 return (0);
7160 }
7161
7162 /*
7163 * Return the total number of ipifs.
7164 */
7165 static uint_t
ip_get_numifs(zoneid_t zoneid,ip_stack_t * ipst)7166 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst)
7167 {
7168 uint_t numifs = 0;
7169 ill_t *ill;
7170 ill_walk_context_t ctx;
7171 ipif_t *ipif;
7172
7173 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7174 ill = ILL_START_WALK_V4(&ctx, ipst);
7175 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7176 if (IS_UNDER_IPMP(ill))
7177 continue;
7178 for (ipif = ill->ill_ipif; ipif != NULL;
7179 ipif = ipif->ipif_next) {
7180 if (ipif->ipif_zoneid == zoneid ||
7181 ipif->ipif_zoneid == ALL_ZONES)
7182 numifs++;
7183 }
7184 }
7185 rw_exit(&ipst->ips_ill_g_lock);
7186 return (numifs);
7187 }
7188
7189 /*
7190 * Return the total number of ipifs.
7191 */
7192 static uint_t
ip_get_numlifs(int family,int lifn_flags,zoneid_t zoneid,ip_stack_t * ipst)7193 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst)
7194 {
7195 uint_t numifs = 0;
7196 ill_t *ill;
7197 ipif_t *ipif;
7198 ill_walk_context_t ctx;
7199
7200 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid));
7201
7202 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7203 if (family == AF_INET)
7204 ill = ILL_START_WALK_V4(&ctx, ipst);
7205 else if (family == AF_INET6)
7206 ill = ILL_START_WALK_V6(&ctx, ipst);
7207 else
7208 ill = ILL_START_WALK_ALL(&ctx, ipst);
7209
7210 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7211 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP))
7212 continue;
7213
7214 for (ipif = ill->ill_ipif; ipif != NULL;
7215 ipif = ipif->ipif_next) {
7216 if ((ipif->ipif_flags & IPIF_NOXMIT) &&
7217 !(lifn_flags & LIFC_NOXMIT))
7218 continue;
7219 if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
7220 !(lifn_flags & LIFC_TEMPORARY))
7221 continue;
7222 if (((ipif->ipif_flags &
7223 (IPIF_NOXMIT|IPIF_NOLOCAL|
7224 IPIF_DEPRECATED)) ||
7225 IS_LOOPBACK(ill) ||
7226 !(ipif->ipif_flags & IPIF_UP)) &&
7227 (lifn_flags & LIFC_EXTERNAL_SOURCE))
7228 continue;
7229
7230 if (zoneid != ipif->ipif_zoneid &&
7231 ipif->ipif_zoneid != ALL_ZONES &&
7232 (zoneid != GLOBAL_ZONEID ||
7233 !(lifn_flags & LIFC_ALLZONES)))
7234 continue;
7235
7236 numifs++;
7237 }
7238 }
7239 rw_exit(&ipst->ips_ill_g_lock);
7240 return (numifs);
7241 }
7242
7243 uint_t
ip_get_lifsrcofnum(ill_t * ill)7244 ip_get_lifsrcofnum(ill_t *ill)
7245 {
7246 uint_t numifs = 0;
7247 ill_t *ill_head = ill;
7248 ip_stack_t *ipst = ill->ill_ipst;
7249
7250 /*
7251 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some
7252 * other thread may be trying to relink the ILLs in this usesrc group
7253 * and adjusting the ill_usesrc_grp_next pointers
7254 */
7255 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
7256 if ((ill->ill_usesrc_ifindex == 0) &&
7257 (ill->ill_usesrc_grp_next != NULL)) {
7258 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head);
7259 ill = ill->ill_usesrc_grp_next)
7260 numifs++;
7261 }
7262 rw_exit(&ipst->ips_ill_g_usesrc_lock);
7263
7264 return (numifs);
7265 }
7266
7267 /* Null values are passed in for ipif, sin, and ifreq */
7268 /* ARGSUSED */
7269 int
ip_sioctl_get_ifnum(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)7270 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7271 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7272 {
7273 int *nump;
7274 conn_t *connp = Q_TO_CONN(q);
7275
7276 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
7277
7278 /* Existence of b_cont->b_cont checked in ip_wput_nondata */
7279 nump = (int *)mp->b_cont->b_cont->b_rptr;
7280
7281 *nump = ip_get_numifs(connp->conn_zoneid,
7282 connp->conn_netstack->netstack_ip);
7283 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump));
7284 return (0);
7285 }
7286
7287 /* Null values are passed in for ipif, sin, and ifreq */
7288 /* ARGSUSED */
7289 int
ip_sioctl_get_lifnum(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)7290 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin,
7291 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7292 {
7293 struct lifnum *lifn;
7294 mblk_t *mp1;
7295 conn_t *connp = Q_TO_CONN(q);
7296
7297 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
7298
7299 /* Existence checked in ip_wput_nondata */
7300 mp1 = mp->b_cont->b_cont;
7301
7302 lifn = (struct lifnum *)mp1->b_rptr;
7303 switch (lifn->lifn_family) {
7304 case AF_UNSPEC:
7305 case AF_INET:
7306 case AF_INET6:
7307 break;
7308 default:
7309 return (EAFNOSUPPORT);
7310 }
7311
7312 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags,
7313 connp->conn_zoneid, connp->conn_netstack->netstack_ip);
7314 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count));
7315 return (0);
7316 }
7317
7318 /* ARGSUSED */
7319 int
ip_sioctl_get_ifconf(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)7320 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7321 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7322 {
7323 STRUCT_HANDLE(ifconf, ifc);
7324 mblk_t *mp1;
7325 struct iocblk *iocp;
7326 struct ifreq *ifr;
7327 ill_walk_context_t ctx;
7328 ill_t *ill;
7329 ipif_t *ipif;
7330 struct sockaddr_in *sin;
7331 int32_t ifclen;
7332 zoneid_t zoneid;
7333 ip_stack_t *ipst = CONNQ_TO_IPST(q);
7334
7335 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */
7336
7337 ip1dbg(("ip_sioctl_get_ifconf"));
7338 /* Existence verified in ip_wput_nondata */
7339 mp1 = mp->b_cont->b_cont;
7340 iocp = (struct iocblk *)mp->b_rptr;
7341 zoneid = Q_TO_CONN(q)->conn_zoneid;
7342
7343 /*
7344 * The original SIOCGIFCONF passed in a struct ifconf which specified
7345 * the user buffer address and length into which the list of struct
7346 * ifreqs was to be copied. Since AT&T Streams does not seem to
7347 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS,
7348 * the SIOCGIFCONF operation was redefined to simply provide
7349 * a large output buffer into which we are supposed to jam the ifreq
7350 * array. The same ioctl command code was used, despite the fact that
7351 * both the applications and the kernel code had to change, thus making
7352 * it impossible to support both interfaces.
7353 *
7354 * For reasons not good enough to try to explain, the following
7355 * algorithm is used for deciding what to do with one of these:
7356 * If the IOCTL comes in as an I_STR, it is assumed to be of the new
7357 * form with the output buffer coming down as the continuation message.
7358 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style,
7359 * and we have to copy in the ifconf structure to find out how big the
7360 * output buffer is and where to copy out to. Sure no problem...
7361 *
7362 */
7363 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL);
7364 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) {
7365 int numifs = 0;
7366 size_t ifc_bufsize;
7367
7368 /*
7369 * Must be (better be!) continuation of a TRANSPARENT
7370 * IOCTL. We just copied in the ifconf structure.
7371 */
7372 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag,
7373 (struct ifconf *)mp1->b_rptr);
7374
7375 /*
7376 * Allocate a buffer to hold requested information.
7377 *
7378 * If ifc_len is larger than what is needed, we only
7379 * allocate what we will use.
7380 *
7381 * If ifc_len is smaller than what is needed, return
7382 * EINVAL.
7383 *
7384 * XXX: the ill_t structure can hava 2 counters, for
7385 * v4 and v6 (not just ill_ipif_up_count) to store the
7386 * number of interfaces for a device, so we don't need
7387 * to count them here...
7388 */
7389 numifs = ip_get_numifs(zoneid, ipst);
7390
7391 ifclen = STRUCT_FGET(ifc, ifc_len);
7392 ifc_bufsize = numifs * sizeof (struct ifreq);
7393 if (ifc_bufsize > ifclen) {
7394 if (iocp->ioc_cmd == O_SIOCGIFCONF) {
7395 /* old behaviour */
7396 return (EINVAL);
7397 } else {
7398 ifc_bufsize = ifclen;
7399 }
7400 }
7401
7402 mp1 = mi_copyout_alloc(q, mp,
7403 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE);
7404 if (mp1 == NULL)
7405 return (ENOMEM);
7406
7407 mp1->b_wptr = mp1->b_rptr + ifc_bufsize;
7408 }
7409 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
7410 /*
7411 * the SIOCGIFCONF ioctl only knows about
7412 * IPv4 addresses, so don't try to tell
7413 * it about interfaces with IPv6-only
7414 * addresses. (Last parm 'isv6' is B_FALSE)
7415 */
7416
7417 ifr = (struct ifreq *)mp1->b_rptr;
7418
7419 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7420 ill = ILL_START_WALK_V4(&ctx, ipst);
7421 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7422 if (IS_UNDER_IPMP(ill))
7423 continue;
7424 for (ipif = ill->ill_ipif; ipif != NULL;
7425 ipif = ipif->ipif_next) {
7426 if (zoneid != ipif->ipif_zoneid &&
7427 ipif->ipif_zoneid != ALL_ZONES)
7428 continue;
7429 if ((uchar_t *)&ifr[1] > mp1->b_wptr) {
7430 if (iocp->ioc_cmd == O_SIOCGIFCONF) {
7431 /* old behaviour */
7432 rw_exit(&ipst->ips_ill_g_lock);
7433 return (EINVAL);
7434 } else {
7435 goto if_copydone;
7436 }
7437 }
7438 ipif_get_name(ipif, ifr->ifr_name,
7439 sizeof (ifr->ifr_name));
7440 sin = (sin_t *)&ifr->ifr_addr;
7441 *sin = sin_null;
7442 sin->sin_family = AF_INET;
7443 sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
7444 ifr++;
7445 }
7446 }
7447 if_copydone:
7448 rw_exit(&ipst->ips_ill_g_lock);
7449 mp1->b_wptr = (uchar_t *)ifr;
7450
7451 if (STRUCT_BUF(ifc) != NULL) {
7452 STRUCT_FSET(ifc, ifc_len,
7453 (int)((uchar_t *)ifr - mp1->b_rptr));
7454 }
7455 return (0);
7456 }
7457
7458 /*
7459 * Get the interfaces using the address hosted on the interface passed in,
7460 * as a source adddress
7461 */
7462 /* ARGSUSED */
7463 int
ip_sioctl_get_lifsrcof(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)7464 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7465 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7466 {
7467 mblk_t *mp1;
7468 ill_t *ill, *ill_head;
7469 ipif_t *ipif, *orig_ipif;
7470 int numlifs = 0;
7471 size_t lifs_bufsize, lifsmaxlen;
7472 struct lifreq *lifr;
7473 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7474 uint_t ifindex;
7475 zoneid_t zoneid;
7476 boolean_t isv6 = B_FALSE;
7477 struct sockaddr_in *sin;
7478 struct sockaddr_in6 *sin6;
7479 STRUCT_HANDLE(lifsrcof, lifs);
7480 ip_stack_t *ipst;
7481
7482 ipst = CONNQ_TO_IPST(q);
7483
7484 ASSERT(q->q_next == NULL);
7485
7486 zoneid = Q_TO_CONN(q)->conn_zoneid;
7487
7488 /* Existence verified in ip_wput_nondata */
7489 mp1 = mp->b_cont->b_cont;
7490
7491 /*
7492 * Must be (better be!) continuation of a TRANSPARENT
7493 * IOCTL. We just copied in the lifsrcof structure.
7494 */
7495 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag,
7496 (struct lifsrcof *)mp1->b_rptr);
7497
7498 if (MBLKL(mp1) != STRUCT_SIZE(lifs))
7499 return (EINVAL);
7500
7501 ifindex = STRUCT_FGET(lifs, lifs_ifindex);
7502 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6;
7503 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst);
7504 if (ipif == NULL) {
7505 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n",
7506 ifindex));
7507 return (ENXIO);
7508 }
7509
7510 /* Allocate a buffer to hold requested information */
7511 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill);
7512 lifs_bufsize = numlifs * sizeof (struct lifreq);
7513 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen);
7514 /* The actual size needed is always returned in lifs_len */
7515 STRUCT_FSET(lifs, lifs_len, lifs_bufsize);
7516
7517 /* If the amount we need is more than what is passed in, abort */
7518 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) {
7519 ipif_refrele(ipif);
7520 return (0);
7521 }
7522
7523 mp1 = mi_copyout_alloc(q, mp,
7524 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE);
7525 if (mp1 == NULL) {
7526 ipif_refrele(ipif);
7527 return (ENOMEM);
7528 }
7529
7530 mp1->b_wptr = mp1->b_rptr + lifs_bufsize;
7531 bzero(mp1->b_rptr, lifs_bufsize);
7532
7533 lifr = (struct lifreq *)mp1->b_rptr;
7534
7535 ill = ill_head = ipif->ipif_ill;
7536 orig_ipif = ipif;
7537
7538 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */
7539 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
7540 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7541
7542 ill = ill->ill_usesrc_grp_next; /* start from next ill */
7543 for (; (ill != NULL) && (ill != ill_head);
7544 ill = ill->ill_usesrc_grp_next) {
7545
7546 if ((uchar_t *)&lifr[1] > mp1->b_wptr)
7547 break;
7548
7549 ipif = ill->ill_ipif;
7550 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name));
7551 if (ipif->ipif_isv6) {
7552 sin6 = (sin6_t *)&lifr->lifr_addr;
7553 *sin6 = sin6_null;
7554 sin6->sin6_family = AF_INET6;
7555 sin6->sin6_addr = ipif->ipif_v6lcl_addr;
7556 lifr->lifr_addrlen = ip_mask_to_plen_v6(
7557 &ipif->ipif_v6net_mask);
7558 } else {
7559 sin = (sin_t *)&lifr->lifr_addr;
7560 *sin = sin_null;
7561 sin->sin_family = AF_INET;
7562 sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
7563 lifr->lifr_addrlen = ip_mask_to_plen(
7564 ipif->ipif_net_mask);
7565 }
7566 lifr++;
7567 }
7568 rw_exit(&ipst->ips_ill_g_lock);
7569 rw_exit(&ipst->ips_ill_g_usesrc_lock);
7570 ipif_refrele(orig_ipif);
7571 mp1->b_wptr = (uchar_t *)lifr;
7572 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr));
7573
7574 return (0);
7575 }
7576
7577 /* ARGSUSED */
7578 int
ip_sioctl_get_lifconf(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)7579 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7580 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7581 {
7582 mblk_t *mp1;
7583 int list;
7584 ill_t *ill;
7585 ipif_t *ipif;
7586 int flags;
7587 int numlifs = 0;
7588 size_t lifc_bufsize;
7589 struct lifreq *lifr;
7590 sa_family_t family;
7591 struct sockaddr_in *sin;
7592 struct sockaddr_in6 *sin6;
7593 ill_walk_context_t ctx;
7594 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7595 int32_t lifclen;
7596 zoneid_t zoneid;
7597 STRUCT_HANDLE(lifconf, lifc);
7598 ip_stack_t *ipst = CONNQ_TO_IPST(q);
7599
7600 ip1dbg(("ip_sioctl_get_lifconf"));
7601
7602 ASSERT(q->q_next == NULL);
7603
7604 zoneid = Q_TO_CONN(q)->conn_zoneid;
7605
7606 /* Existence verified in ip_wput_nondata */
7607 mp1 = mp->b_cont->b_cont;
7608
7609 /*
7610 * An extended version of SIOCGIFCONF that takes an
7611 * additional address family and flags field.
7612 * AF_UNSPEC retrieve both IPv4 and IPv6.
7613 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT
7614 * interfaces are omitted.
7615 * Similarly, IPIF_TEMPORARY interfaces are omitted
7616 * unless LIFC_TEMPORARY is specified.
7617 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT,
7618 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and
7619 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE
7620 * has priority over LIFC_NOXMIT.
7621 */
7622 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL);
7623
7624 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc))
7625 return (EINVAL);
7626
7627 /*
7628 * Must be (better be!) continuation of a TRANSPARENT
7629 * IOCTL. We just copied in the lifconf structure.
7630 */
7631 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr);
7632
7633 family = STRUCT_FGET(lifc, lifc_family);
7634 flags = STRUCT_FGET(lifc, lifc_flags);
7635
7636 switch (family) {
7637 case AF_UNSPEC:
7638 /*
7639 * walk all ILL's.
7640 */
7641 list = MAX_G_HEADS;
7642 break;
7643 case AF_INET:
7644 /*
7645 * walk only IPV4 ILL's.
7646 */
7647 list = IP_V4_G_HEAD;
7648 break;
7649 case AF_INET6:
7650 /*
7651 * walk only IPV6 ILL's.
7652 */
7653 list = IP_V6_G_HEAD;
7654 break;
7655 default:
7656 return (EAFNOSUPPORT);
7657 }
7658
7659 /*
7660 * Allocate a buffer to hold requested information.
7661 *
7662 * If lifc_len is larger than what is needed, we only
7663 * allocate what we will use.
7664 *
7665 * If lifc_len is smaller than what is needed, return
7666 * EINVAL.
7667 */
7668 numlifs = ip_get_numlifs(family, flags, zoneid, ipst);
7669 lifc_bufsize = numlifs * sizeof (struct lifreq);
7670 lifclen = STRUCT_FGET(lifc, lifc_len);
7671 if (lifc_bufsize > lifclen) {
7672 if (iocp->ioc_cmd == O_SIOCGLIFCONF)
7673 return (EINVAL);
7674 else
7675 lifc_bufsize = lifclen;
7676 }
7677
7678 mp1 = mi_copyout_alloc(q, mp,
7679 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE);
7680 if (mp1 == NULL)
7681 return (ENOMEM);
7682
7683 mp1->b_wptr = mp1->b_rptr + lifc_bufsize;
7684 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
7685
7686 lifr = (struct lifreq *)mp1->b_rptr;
7687
7688 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7689 ill = ill_first(list, list, &ctx, ipst);
7690 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7691 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP))
7692 continue;
7693
7694 for (ipif = ill->ill_ipif; ipif != NULL;
7695 ipif = ipif->ipif_next) {
7696 if ((ipif->ipif_flags & IPIF_NOXMIT) &&
7697 !(flags & LIFC_NOXMIT))
7698 continue;
7699
7700 if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
7701 !(flags & LIFC_TEMPORARY))
7702 continue;
7703
7704 if (((ipif->ipif_flags &
7705 (IPIF_NOXMIT|IPIF_NOLOCAL|
7706 IPIF_DEPRECATED)) ||
7707 IS_LOOPBACK(ill) ||
7708 !(ipif->ipif_flags & IPIF_UP)) &&
7709 (flags & LIFC_EXTERNAL_SOURCE))
7710 continue;
7711
7712 if (zoneid != ipif->ipif_zoneid &&
7713 ipif->ipif_zoneid != ALL_ZONES &&
7714 (zoneid != GLOBAL_ZONEID ||
7715 !(flags & LIFC_ALLZONES)))
7716 continue;
7717
7718 if ((uchar_t *)&lifr[1] > mp1->b_wptr) {
7719 if (iocp->ioc_cmd == O_SIOCGLIFCONF) {
7720 rw_exit(&ipst->ips_ill_g_lock);
7721 return (EINVAL);
7722 } else {
7723 goto lif_copydone;
7724 }
7725 }
7726
7727 ipif_get_name(ipif, lifr->lifr_name,
7728 sizeof (lifr->lifr_name));
7729 lifr->lifr_type = ill->ill_type;
7730 if (ipif->ipif_isv6) {
7731 sin6 = (sin6_t *)&lifr->lifr_addr;
7732 *sin6 = sin6_null;
7733 sin6->sin6_family = AF_INET6;
7734 sin6->sin6_addr =
7735 ipif->ipif_v6lcl_addr;
7736 lifr->lifr_addrlen =
7737 ip_mask_to_plen_v6(
7738 &ipif->ipif_v6net_mask);
7739 } else {
7740 sin = (sin_t *)&lifr->lifr_addr;
7741 *sin = sin_null;
7742 sin->sin_family = AF_INET;
7743 sin->sin_addr.s_addr =
7744 ipif->ipif_lcl_addr;
7745 lifr->lifr_addrlen =
7746 ip_mask_to_plen(
7747 ipif->ipif_net_mask);
7748 }
7749 lifr++;
7750 }
7751 }
7752 lif_copydone:
7753 rw_exit(&ipst->ips_ill_g_lock);
7754
7755 mp1->b_wptr = (uchar_t *)lifr;
7756 if (STRUCT_BUF(lifc) != NULL) {
7757 STRUCT_FSET(lifc, lifc_len,
7758 (int)((uchar_t *)lifr - mp1->b_rptr));
7759 }
7760 return (0);
7761 }
7762
7763 static void
ip_sioctl_ip6addrpolicy(queue_t * q,mblk_t * mp)7764 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp)
7765 {
7766 ip6_asp_t *table;
7767 size_t table_size;
7768 mblk_t *data_mp;
7769 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7770 ip_stack_t *ipst;
7771
7772 if (q->q_next == NULL)
7773 ipst = CONNQ_TO_IPST(q);
7774 else
7775 ipst = ILLQ_TO_IPST(q);
7776
7777 /* These two ioctls are I_STR only */
7778 if (iocp->ioc_count == TRANSPARENT) {
7779 miocnak(q, mp, 0, EINVAL);
7780 return;
7781 }
7782
7783 data_mp = mp->b_cont;
7784 if (data_mp == NULL) {
7785 /* The user passed us a NULL argument */
7786 table = NULL;
7787 table_size = iocp->ioc_count;
7788 } else {
7789 /*
7790 * The user provided a table. The stream head
7791 * may have copied in the user data in chunks,
7792 * so make sure everything is pulled up
7793 * properly.
7794 */
7795 if (MBLKL(data_mp) < iocp->ioc_count) {
7796 mblk_t *new_data_mp;
7797 if ((new_data_mp = msgpullup(data_mp, -1)) ==
7798 NULL) {
7799 miocnak(q, mp, 0, ENOMEM);
7800 return;
7801 }
7802 freemsg(data_mp);
7803 data_mp = new_data_mp;
7804 mp->b_cont = data_mp;
7805 }
7806 table = (ip6_asp_t *)data_mp->b_rptr;
7807 table_size = iocp->ioc_count;
7808 }
7809
7810 switch (iocp->ioc_cmd) {
7811 case SIOCGIP6ADDRPOLICY:
7812 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst);
7813 if (iocp->ioc_rval == -1)
7814 iocp->ioc_error = EINVAL;
7815 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
7816 else if (table != NULL &&
7817 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) {
7818 ip6_asp_t *src = table;
7819 ip6_asp32_t *dst = (void *)table;
7820 int count = table_size / sizeof (ip6_asp_t);
7821 int i;
7822
7823 /*
7824 * We need to do an in-place shrink of the array
7825 * to match the alignment attributes of the
7826 * 32-bit ABI looking at it.
7827 */
7828 /* LINTED: logical expression always true: op "||" */
7829 ASSERT(sizeof (*src) > sizeof (*dst));
7830 for (i = 1; i < count; i++)
7831 bcopy(src + i, dst + i, sizeof (*dst));
7832 }
7833 #endif
7834 break;
7835
7836 case SIOCSIP6ADDRPOLICY:
7837 ASSERT(mp->b_prev == NULL);
7838 mp->b_prev = (void *)q;
7839 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
7840 /*
7841 * We pass in the datamodel here so that the ip6_asp_replace()
7842 * routine can handle converting from 32-bit to native formats
7843 * where necessary.
7844 *
7845 * A better way to handle this might be to convert the inbound
7846 * data structure here, and hang it off a new 'mp'; thus the
7847 * ip6_asp_replace() logic would always be dealing with native
7848 * format data structures..
7849 *
7850 * (An even simpler way to handle these ioctls is to just
7851 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure
7852 * and just recompile everything that depends on it.)
7853 */
7854 #endif
7855 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst,
7856 iocp->ioc_flag & IOC_MODELS);
7857 return;
7858 }
7859
7860 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK;
7861 qreply(q, mp);
7862 }
7863
7864 static void
ip_sioctl_dstinfo(queue_t * q,mblk_t * mp)7865 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp)
7866 {
7867 mblk_t *data_mp;
7868 struct dstinforeq *dir;
7869 uint8_t *end, *cur;
7870 in6_addr_t *daddr, *saddr;
7871 ipaddr_t v4daddr;
7872 ire_t *ire;
7873 ipaddr_t v4setsrc;
7874 in6_addr_t v6setsrc;
7875 char *slabel, *dlabel;
7876 boolean_t isipv4;
7877 int match_ire;
7878 ill_t *dst_ill;
7879 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7880 conn_t *connp = Q_TO_CONN(q);
7881 zoneid_t zoneid = IPCL_ZONEID(connp);
7882 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
7883 uint64_t ipif_flags;
7884
7885 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
7886
7887 /*
7888 * This ioctl is I_STR only, and must have a
7889 * data mblk following the M_IOCTL mblk.
7890 */
7891 data_mp = mp->b_cont;
7892 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) {
7893 miocnak(q, mp, 0, EINVAL);
7894 return;
7895 }
7896
7897 if (MBLKL(data_mp) < iocp->ioc_count) {
7898 mblk_t *new_data_mp;
7899
7900 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) {
7901 miocnak(q, mp, 0, ENOMEM);
7902 return;
7903 }
7904 freemsg(data_mp);
7905 data_mp = new_data_mp;
7906 mp->b_cont = data_mp;
7907 }
7908 match_ire = MATCH_IRE_DSTONLY;
7909
7910 for (cur = data_mp->b_rptr, end = data_mp->b_wptr;
7911 end - cur >= sizeof (struct dstinforeq);
7912 cur += sizeof (struct dstinforeq)) {
7913 dir = (struct dstinforeq *)cur;
7914 daddr = &dir->dir_daddr;
7915 saddr = &dir->dir_saddr;
7916
7917 /*
7918 * ip_addr_scope_v6() and ip6_asp_lookup() handle
7919 * v4 mapped addresses; ire_ftable_lookup_v6()
7920 * and ip_select_source_v6() do not.
7921 */
7922 dir->dir_dscope = ip_addr_scope_v6(daddr);
7923 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst);
7924
7925 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr);
7926 if (isipv4) {
7927 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr);
7928 v4setsrc = INADDR_ANY;
7929 ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid,
7930 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc,
7931 NULL, NULL);
7932 } else {
7933 v6setsrc = ipv6_all_zeros;
7934 ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid,
7935 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc,
7936 NULL, NULL);
7937 }
7938 ASSERT(ire != NULL);
7939 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
7940 ire_refrele(ire);
7941 dir->dir_dreachable = 0;
7942
7943 /* move on to next dst addr */
7944 continue;
7945 }
7946 dir->dir_dreachable = 1;
7947
7948 dst_ill = ire_nexthop_ill(ire);
7949 if (dst_ill == NULL) {
7950 ire_refrele(ire);
7951 continue;
7952 }
7953
7954 /* With ipmp we most likely look at the ipmp ill here */
7955 dir->dir_dmactype = dst_ill->ill_mactype;
7956
7957 if (isipv4) {
7958 ipaddr_t v4saddr;
7959
7960 if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr,
7961 connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst,
7962 &v4saddr, NULL, &ipif_flags) != 0) {
7963 v4saddr = INADDR_ANY;
7964 ipif_flags = 0;
7965 }
7966 IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr);
7967 } else {
7968 if (ip_select_source_v6(dst_ill, &v6setsrc, daddr,
7969 zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT,
7970 saddr, NULL, &ipif_flags) != 0) {
7971 *saddr = ipv6_all_zeros;
7972 ipif_flags = 0;
7973 }
7974 }
7975
7976 dir->dir_sscope = ip_addr_scope_v6(saddr);
7977 slabel = ip6_asp_lookup(saddr, NULL, ipst);
7978 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel);
7979 dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0;
7980 ire_refrele(ire);
7981 ill_refrele(dst_ill);
7982 }
7983 miocack(q, mp, iocp->ioc_count, 0);
7984 }
7985
7986 /*
7987 * Check if this is an address assigned to this machine.
7988 * Skips interfaces that are down by using ire checks.
7989 * Translates mapped addresses to v4 addresses and then
7990 * treats them as such, returning true if the v4 address
7991 * associated with this mapped address is configured.
7992 * Note: Applications will have to be careful what they do
7993 * with the response; use of mapped addresses limits
7994 * what can be done with the socket, especially with
7995 * respect to socket options and ioctls - neither IPv4
7996 * options nor IPv6 sticky options/ancillary data options
7997 * may be used.
7998 */
7999 /* ARGSUSED */
8000 int
ip_sioctl_tmyaddr(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_ifreq)8001 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
8002 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
8003 {
8004 struct sioc_addrreq *sia;
8005 sin_t *sin;
8006 ire_t *ire;
8007 mblk_t *mp1;
8008 zoneid_t zoneid;
8009 ip_stack_t *ipst;
8010
8011 ip1dbg(("ip_sioctl_tmyaddr"));
8012
8013 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8014 zoneid = Q_TO_CONN(q)->conn_zoneid;
8015 ipst = CONNQ_TO_IPST(q);
8016
8017 /* Existence verified in ip_wput_nondata */
8018 mp1 = mp->b_cont->b_cont;
8019 sia = (struct sioc_addrreq *)mp1->b_rptr;
8020 sin = (sin_t *)&sia->sa_addr;
8021 switch (sin->sin_family) {
8022 case AF_INET6: {
8023 sin6_t *sin6 = (sin6_t *)sin;
8024
8025 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
8026 ipaddr_t v4_addr;
8027
8028 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
8029 v4_addr);
8030 ire = ire_ftable_lookup_v4(v4_addr, 0, 0,
8031 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL,
8032 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8033 } else {
8034 in6_addr_t v6addr;
8035
8036 v6addr = sin6->sin6_addr;
8037 ire = ire_ftable_lookup_v6(&v6addr, 0, 0,
8038 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL,
8039 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8040 }
8041 break;
8042 }
8043 case AF_INET: {
8044 ipaddr_t v4addr;
8045
8046 v4addr = sin->sin_addr.s_addr;
8047 ire = ire_ftable_lookup_v4(v4addr, 0, 0,
8048 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
8049 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8050 break;
8051 }
8052 default:
8053 return (EAFNOSUPPORT);
8054 }
8055 if (ire != NULL) {
8056 sia->sa_res = 1;
8057 ire_refrele(ire);
8058 } else {
8059 sia->sa_res = 0;
8060 }
8061 return (0);
8062 }
8063
8064 /*
8065 * Check if this is an address assigned on-link i.e. neighbor,
8066 * and makes sure it's reachable from the current zone.
8067 * Returns true for my addresses as well.
8068 * Translates mapped addresses to v4 addresses and then
8069 * treats them as such, returning true if the v4 address
8070 * associated with this mapped address is configured.
8071 * Note: Applications will have to be careful what they do
8072 * with the response; use of mapped addresses limits
8073 * what can be done with the socket, especially with
8074 * respect to socket options and ioctls - neither IPv4
8075 * options nor IPv6 sticky options/ancillary data options
8076 * may be used.
8077 */
8078 /* ARGSUSED */
8079 int
ip_sioctl_tonlink(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * duymmy_ifreq)8080 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
8081 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq)
8082 {
8083 struct sioc_addrreq *sia;
8084 sin_t *sin;
8085 mblk_t *mp1;
8086 ire_t *ire = NULL;
8087 zoneid_t zoneid;
8088 ip_stack_t *ipst;
8089
8090 ip1dbg(("ip_sioctl_tonlink"));
8091
8092 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8093 zoneid = Q_TO_CONN(q)->conn_zoneid;
8094 ipst = CONNQ_TO_IPST(q);
8095
8096 /* Existence verified in ip_wput_nondata */
8097 mp1 = mp->b_cont->b_cont;
8098 sia = (struct sioc_addrreq *)mp1->b_rptr;
8099 sin = (sin_t *)&sia->sa_addr;
8100
8101 /*
8102 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST
8103 * to make sure we only look at on-link unicast address.
8104 */
8105 switch (sin->sin_family) {
8106 case AF_INET6: {
8107 sin6_t *sin6 = (sin6_t *)sin;
8108
8109 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
8110 ipaddr_t v4_addr;
8111
8112 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
8113 v4_addr);
8114 if (!CLASSD(v4_addr)) {
8115 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0,
8116 NULL, zoneid, NULL, MATCH_IRE_DSTONLY,
8117 0, ipst, NULL);
8118 }
8119 } else {
8120 in6_addr_t v6addr;
8121
8122 v6addr = sin6->sin6_addr;
8123 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) {
8124 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0,
8125 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0,
8126 ipst, NULL);
8127 }
8128 }
8129 break;
8130 }
8131 case AF_INET: {
8132 ipaddr_t v4addr;
8133
8134 v4addr = sin->sin_addr.s_addr;
8135 if (!CLASSD(v4addr)) {
8136 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL,
8137 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
8138 }
8139 break;
8140 }
8141 default:
8142 return (EAFNOSUPPORT);
8143 }
8144 sia->sa_res = 0;
8145 if (ire != NULL) {
8146 ASSERT(!(ire->ire_type & IRE_MULTICAST));
8147
8148 if ((ire->ire_type & IRE_ONLINK) &&
8149 !(ire->ire_type & IRE_BROADCAST))
8150 sia->sa_res = 1;
8151 ire_refrele(ire);
8152 }
8153 return (0);
8154 }
8155
8156 /*
8157 * TBD: implement when kernel maintaines a list of site prefixes.
8158 */
8159 /* ARGSUSED */
8160 int
ip_sioctl_tmysite(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)8161 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8162 ip_ioctl_cmd_t *ipip, void *ifreq)
8163 {
8164 return (ENXIO);
8165 }
8166
8167 /* ARP IOCTLs. */
8168 /* ARGSUSED */
8169 int
ip_sioctl_arp(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_ifreq)8170 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8171 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
8172 {
8173 int err;
8174 ipaddr_t ipaddr;
8175 struct iocblk *iocp;
8176 conn_t *connp;
8177 struct arpreq *ar;
8178 struct xarpreq *xar;
8179 int arp_flags, flags, alength;
8180 uchar_t *lladdr;
8181 ip_stack_t *ipst;
8182 ill_t *ill = ipif->ipif_ill;
8183 ill_t *proxy_ill = NULL;
8184 ipmp_arpent_t *entp = NULL;
8185 boolean_t proxyarp = B_FALSE;
8186 boolean_t if_arp_ioctl = B_FALSE;
8187 ncec_t *ncec = NULL;
8188 nce_t *nce;
8189
8190 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
8191 connp = Q_TO_CONN(q);
8192 ipst = connp->conn_netstack->netstack_ip;
8193 iocp = (struct iocblk *)mp->b_rptr;
8194
8195 if (ipip->ipi_cmd_type == XARP_CMD) {
8196 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */
8197 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr;
8198 ar = NULL;
8199
8200 arp_flags = xar->xarp_flags;
8201 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha);
8202 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0);
8203 /*
8204 * Validate against user's link layer address length
8205 * input and name and addr length limits.
8206 */
8207 alength = ill->ill_phys_addr_length;
8208 if (ipip->ipi_cmd == SIOCSXARP) {
8209 if (alength != xar->xarp_ha.sdl_alen ||
8210 (alength + xar->xarp_ha.sdl_nlen >
8211 sizeof (xar->xarp_ha.sdl_data)))
8212 return (EINVAL);
8213 }
8214 } else {
8215 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */
8216 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr;
8217 xar = NULL;
8218
8219 arp_flags = ar->arp_flags;
8220 lladdr = (uchar_t *)ar->arp_ha.sa_data;
8221 /*
8222 * Theoretically, the sa_family could tell us what link
8223 * layer type this operation is trying to deal with. By
8224 * common usage AF_UNSPEC means ethernet. We'll assume
8225 * any attempt to use the SIOC?ARP ioctls is for ethernet,
8226 * for now. Our new SIOC*XARP ioctls can be used more
8227 * generally.
8228 *
8229 * If the underlying media happens to have a non 6 byte
8230 * address, arp module will fail set/get, but the del
8231 * operation will succeed.
8232 */
8233 alength = 6;
8234 if ((ipip->ipi_cmd != SIOCDARP) &&
8235 (alength != ill->ill_phys_addr_length)) {
8236 return (EINVAL);
8237 }
8238 }
8239
8240 /* Translate ATF* flags to NCE* flags */
8241 flags = 0;
8242 if (arp_flags & ATF_AUTHORITY)
8243 flags |= NCE_F_AUTHORITY;
8244 if (arp_flags & ATF_PERM)
8245 flags |= NCE_F_NONUD; /* not subject to aging */
8246 if (arp_flags & ATF_PUBL)
8247 flags |= NCE_F_PUBLISH;
8248
8249 /*
8250 * IPMP ARP special handling:
8251 *
8252 * 1. Since ARP mappings must appear consistent across the group,
8253 * prohibit changing ARP mappings on the underlying interfaces.
8254 *
8255 * 2. Since ARP mappings for IPMP data addresses are maintained by
8256 * IP itself, prohibit changing them.
8257 *
8258 * 3. For proxy ARP, use a functioning hardware address in the group,
8259 * provided one exists. If one doesn't, just add the entry as-is;
8260 * ipmp_illgrp_refresh_arpent() will refresh it if things change.
8261 */
8262 if (IS_UNDER_IPMP(ill)) {
8263 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP)
8264 return (EPERM);
8265 }
8266 if (IS_IPMP(ill)) {
8267 ipmp_illgrp_t *illg = ill->ill_grp;
8268
8269 switch (ipip->ipi_cmd) {
8270 case SIOCSARP:
8271 case SIOCSXARP:
8272 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength);
8273 if (proxy_ill != NULL) {
8274 proxyarp = B_TRUE;
8275 if (!ipmp_ill_is_active(proxy_ill))
8276 proxy_ill = ipmp_illgrp_next_ill(illg);
8277 if (proxy_ill != NULL)
8278 lladdr = proxy_ill->ill_phys_addr;
8279 }
8280 /* FALLTHRU */
8281 }
8282 }
8283
8284 ipaddr = sin->sin_addr.s_addr;
8285 /*
8286 * don't match across illgrp per case (1) and (2).
8287 * XXX use IS_IPMP(ill) like ndp_sioc_update?
8288 */
8289 nce = nce_lookup_v4(ill, &ipaddr);
8290 if (nce != NULL)
8291 ncec = nce->nce_common;
8292
8293 switch (iocp->ioc_cmd) {
8294 case SIOCDARP:
8295 case SIOCDXARP: {
8296 /*
8297 * Delete the NCE if any.
8298 */
8299 if (ncec == NULL) {
8300 iocp->ioc_error = ENXIO;
8301 break;
8302 }
8303 /* Don't allow changes to arp mappings of local addresses. */
8304 if (NCE_MYADDR(ncec)) {
8305 nce_refrele(nce);
8306 return (ENOTSUP);
8307 }
8308 iocp->ioc_error = 0;
8309
8310 /*
8311 * Delete the nce_common which has ncec_ill set to ipmp_ill.
8312 * This will delete all the nce entries on the under_ills.
8313 */
8314 ncec_delete(ncec);
8315 /*
8316 * Once the NCE has been deleted, then the ire_dep* consistency
8317 * mechanism will find any IRE which depended on the now
8318 * condemned NCE (as part of sending packets).
8319 * That mechanism handles redirects by deleting redirects
8320 * that refer to UNREACHABLE nces.
8321 */
8322 break;
8323 }
8324 case SIOCGARP:
8325 case SIOCGXARP:
8326 if (ncec != NULL) {
8327 lladdr = ncec->ncec_lladdr;
8328 flags = ncec->ncec_flags;
8329 iocp->ioc_error = 0;
8330 ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags);
8331 } else {
8332 iocp->ioc_error = ENXIO;
8333 }
8334 break;
8335 case SIOCSARP:
8336 case SIOCSXARP:
8337 /* Don't allow changes to arp mappings of local addresses. */
8338 if (ncec != NULL && NCE_MYADDR(ncec)) {
8339 nce_refrele(nce);
8340 return (ENOTSUP);
8341 }
8342
8343 /* static arp entries will undergo NUD if ATF_PERM is not set */
8344 flags |= NCE_F_STATIC;
8345 if (!if_arp_ioctl) {
8346 ip_nce_lookup_and_update(&ipaddr, NULL, ipst,
8347 lladdr, alength, flags);
8348 } else {
8349 ipif_t *ipif = ipif_get_next_ipif(NULL, ill);
8350 if (ipif != NULL) {
8351 ip_nce_lookup_and_update(&ipaddr, ipif, ipst,
8352 lladdr, alength, flags);
8353 ipif_refrele(ipif);
8354 }
8355 }
8356 if (nce != NULL) {
8357 nce_refrele(nce);
8358 nce = NULL;
8359 }
8360 /*
8361 * NCE_F_STATIC entries will be added in state ND_REACHABLE
8362 * by nce_add_common()
8363 */
8364 err = nce_lookup_then_add_v4(ill, lladdr,
8365 ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED,
8366 &nce);
8367 if (err == EEXIST) {
8368 ncec = nce->nce_common;
8369 mutex_enter(&ncec->ncec_lock);
8370 ncec->ncec_state = ND_REACHABLE;
8371 ncec->ncec_flags = flags;
8372 nce_update(ncec, ND_UNCHANGED, lladdr);
8373 mutex_exit(&ncec->ncec_lock);
8374 err = 0;
8375 }
8376 if (nce != NULL) {
8377 nce_refrele(nce);
8378 nce = NULL;
8379 }
8380 if (IS_IPMP(ill) && err == 0) {
8381 entp = ipmp_illgrp_create_arpent(ill->ill_grp,
8382 proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length,
8383 flags);
8384 if (entp == NULL || (proxyarp && proxy_ill == NULL)) {
8385 iocp->ioc_error = (entp == NULL ? ENOMEM : 0);
8386 break;
8387 }
8388 }
8389 iocp->ioc_error = err;
8390 }
8391
8392 if (nce != NULL) {
8393 nce_refrele(nce);
8394 }
8395
8396 /*
8397 * If we created an IPMP ARP entry, mark that we've notified ARP.
8398 */
8399 if (entp != NULL)
8400 ipmp_illgrp_mark_arpent(ill->ill_grp, entp);
8401
8402 return (iocp->ioc_error);
8403 }
8404
8405 /*
8406 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify
8407 * the associated sin and refhold and return the associated ipif via `ci'.
8408 */
8409 int
ip_extract_arpreq(queue_t * q,mblk_t * mp,const ip_ioctl_cmd_t * ipip,cmd_info_t * ci)8410 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
8411 cmd_info_t *ci)
8412 {
8413 mblk_t *mp1;
8414 sin_t *sin;
8415 conn_t *connp;
8416 ipif_t *ipif;
8417 ire_t *ire = NULL;
8418 ill_t *ill = NULL;
8419 boolean_t exists;
8420 ip_stack_t *ipst;
8421 struct arpreq *ar;
8422 struct xarpreq *xar;
8423 struct sockaddr_dl *sdl;
8424
8425 /* ioctl comes down on a conn */
8426 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
8427 connp = Q_TO_CONN(q);
8428 if (connp->conn_family == AF_INET6)
8429 return (ENXIO);
8430
8431 ipst = connp->conn_netstack->netstack_ip;
8432
8433 /* Verified in ip_wput_nondata */
8434 mp1 = mp->b_cont->b_cont;
8435
8436 if (ipip->ipi_cmd_type == XARP_CMD) {
8437 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq));
8438 xar = (struct xarpreq *)mp1->b_rptr;
8439 sin = (sin_t *)&xar->xarp_pa;
8440 sdl = &xar->xarp_ha;
8441
8442 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET)
8443 return (ENXIO);
8444 if (sdl->sdl_nlen >= LIFNAMSIZ)
8445 return (EINVAL);
8446 } else {
8447 ASSERT(ipip->ipi_cmd_type == ARP_CMD);
8448 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq));
8449 ar = (struct arpreq *)mp1->b_rptr;
8450 sin = (sin_t *)&ar->arp_pa;
8451 }
8452
8453 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) {
8454 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen,
8455 B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst);
8456 if (ipif == NULL)
8457 return (ENXIO);
8458 if (ipif->ipif_id != 0) {
8459 ipif_refrele(ipif);
8460 return (ENXIO);
8461 }
8462 } else {
8463 /*
8464 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen
8465 * of 0: use the IP address to find the ipif. If the IP
8466 * address is an IPMP test address, ire_ftable_lookup() will
8467 * find the wrong ill, so we first do an ipif_lookup_addr().
8468 */
8469 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES,
8470 ipst);
8471 if (ipif == NULL) {
8472 ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr,
8473 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES,
8474 NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
8475 if (ire == NULL || ((ill = ire->ire_ill) == NULL)) {
8476 if (ire != NULL)
8477 ire_refrele(ire);
8478 return (ENXIO);
8479 }
8480 ASSERT(ire != NULL && ill != NULL);
8481 ipif = ill->ill_ipif;
8482 ipif_refhold(ipif);
8483 ire_refrele(ire);
8484 }
8485 }
8486
8487 if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) {
8488 ipif_refrele(ipif);
8489 return (ENXIO);
8490 }
8491
8492 ci->ci_sin = sin;
8493 ci->ci_ipif = ipif;
8494 return (0);
8495 }
8496
8497 /*
8498 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the
8499 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is
8500 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it
8501 * up and thus an ill can join that illgrp.
8502 *
8503 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than
8504 * open()/close() primarily because close() is not allowed to fail or block
8505 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason
8506 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure
8507 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the
8508 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts
8509 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent
8510 * state if I_UNLINK didn't occur.
8511 *
8512 * Note that for each plumb/unplumb operation, we may end up here more than
8513 * once because of the way ifconfig works. However, it's OK to link the same
8514 * illgrp more than once, or unlink an illgrp that's already unlinked.
8515 */
8516 static int
ip_sioctl_plink_ipmp(ill_t * ill,int ioccmd)8517 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd)
8518 {
8519 int err;
8520 ip_stack_t *ipst = ill->ill_ipst;
8521
8522 ASSERT(IS_IPMP(ill));
8523 ASSERT(IAM_WRITER_ILL(ill));
8524
8525 switch (ioccmd) {
8526 case I_LINK:
8527 return (ENOTSUP);
8528
8529 case I_PLINK:
8530 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
8531 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp);
8532 rw_exit(&ipst->ips_ipmp_lock);
8533 break;
8534
8535 case I_PUNLINK:
8536 /*
8537 * Require all UP ipifs be brought down prior to unlinking the
8538 * illgrp so any associated IREs (and other state) is torched.
8539 */
8540 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0)
8541 return (EBUSY);
8542
8543 /*
8544 * NOTE: We hold ipmp_lock across the unlink to prevent a race
8545 * with an SIOCSLIFGROUPNAME request from an ill trying to
8546 * join this group. Specifically: ills trying to join grab
8547 * ipmp_lock and bump a "pending join" counter checked by
8548 * ipmp_illgrp_unlink_grp(). During the unlink no new pending
8549 * joins can occur (since we have ipmp_lock). Once we drop
8550 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not
8551 * find the illgrp (since we unlinked it) and will return
8552 * EAFNOSUPPORT. This will then take them back through the
8553 * IPMP meta-interface plumbing logic in ifconfig, and thus
8554 * back through I_PLINK above.
8555 */
8556 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
8557 err = ipmp_illgrp_unlink_grp(ill->ill_grp);
8558 rw_exit(&ipst->ips_ipmp_lock);
8559 return (err);
8560 default:
8561 break;
8562 }
8563 return (0);
8564 }
8565
8566 /*
8567 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also
8568 * atomically set/clear the muxids. Also complete the ioctl by acking or
8569 * naking it. Note that the code is structured such that the link type,
8570 * whether it's persistent or not, is treated equally. ifconfig(1M) and
8571 * its clones use the persistent link, while pppd(1M) and perhaps many
8572 * other daemons may use non-persistent link. When combined with some
8573 * ill_t states, linking and unlinking lower streams may be used as
8574 * indicators of dynamic re-plumbing events [see PSARC/1999/348].
8575 */
8576 /* ARGSUSED */
8577 void
ip_sioctl_plink(ipsq_t * ipsq,queue_t * q,mblk_t * mp,void * dummy_arg)8578 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8579 {
8580 mblk_t *mp1;
8581 struct linkblk *li;
8582 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd;
8583 int err = 0;
8584
8585 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK ||
8586 ioccmd == I_LINK || ioccmd == I_UNLINK);
8587
8588 mp1 = mp->b_cont; /* This is the linkblk info */
8589 li = (struct linkblk *)mp1->b_rptr;
8590
8591 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li);
8592 if (err == EINPROGRESS)
8593 return;
8594 if (err == 0)
8595 miocack(q, mp, 0, 0);
8596 else
8597 miocnak(q, mp, 0, err);
8598
8599 /* Conn was refheld in ip_sioctl_copyin_setup */
8600 if (CONN_Q(q)) {
8601 CONN_DEC_IOCTLREF(Q_TO_CONN(q));
8602 CONN_OPER_PENDING_DONE(Q_TO_CONN(q));
8603 }
8604 }
8605
8606 /*
8607 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to
8608 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP
8609 * module stream).
8610 * Returns zero on success, EINPROGRESS if the operation is still pending, or
8611 * an error code on failure.
8612 */
8613 static int
ip_sioctl_plink_ipmod(ipsq_t * ipsq,queue_t * q,mblk_t * mp,int ioccmd,struct linkblk * li)8614 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd,
8615 struct linkblk *li)
8616 {
8617 int err = 0;
8618 ill_t *ill;
8619 queue_t *ipwq, *dwq;
8620 const char *name;
8621 struct qinit *qinfo;
8622 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK);
8623 boolean_t entered_ipsq = B_FALSE;
8624 boolean_t is_ip = B_FALSE;
8625 arl_t *arl;
8626
8627 /*
8628 * Walk the lower stream to verify it's the IP module stream.
8629 * The IP module is identified by its name, wput function,
8630 * and non-NULL q_next. STREAMS ensures that the lower stream
8631 * (li->l_qbot) will not vanish until this ioctl completes.
8632 */
8633 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) {
8634 qinfo = ipwq->q_qinfo;
8635 name = qinfo->qi_minfo->mi_idname;
8636 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 &&
8637 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) {
8638 is_ip = B_TRUE;
8639 break;
8640 }
8641 if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 &&
8642 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) {
8643 break;
8644 }
8645 }
8646
8647 /*
8648 * If this isn't an IP module stream, bail.
8649 */
8650 if (ipwq == NULL)
8651 return (0);
8652
8653 if (!is_ip) {
8654 arl = (arl_t *)ipwq->q_ptr;
8655 ill = arl_to_ill(arl);
8656 if (ill == NULL)
8657 return (0);
8658 } else {
8659 ill = ipwq->q_ptr;
8660 }
8661 ASSERT(ill != NULL);
8662
8663 if (ipsq == NULL) {
8664 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
8665 NEW_OP, B_FALSE);
8666 if (ipsq == NULL) {
8667 if (!is_ip)
8668 ill_refrele(ill);
8669 return (EINPROGRESS);
8670 }
8671 entered_ipsq = B_TRUE;
8672 }
8673 ASSERT(IAM_WRITER_ILL(ill));
8674 mutex_enter(&ill->ill_lock);
8675 if (!is_ip) {
8676 if (islink && ill->ill_muxid == 0) {
8677 /*
8678 * Plumbing has to be done with IP plumbed first, arp
8679 * second, but here we have arp being plumbed first.
8680 */
8681 mutex_exit(&ill->ill_lock);
8682 if (entered_ipsq)
8683 ipsq_exit(ipsq);
8684 ill_refrele(ill);
8685 return (EINVAL);
8686 }
8687 }
8688 mutex_exit(&ill->ill_lock);
8689 if (!is_ip) {
8690 arl->arl_muxid = islink ? li->l_index : 0;
8691 ill_refrele(ill);
8692 goto done;
8693 }
8694
8695 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0)
8696 goto done;
8697
8698 /*
8699 * As part of I_{P}LINKing, stash the number of downstream modules and
8700 * the read queue of the module immediately below IP in the ill.
8701 * These are used during the capability negotiation below.
8702 */
8703 ill->ill_lmod_rq = NULL;
8704 ill->ill_lmod_cnt = 0;
8705 if (islink && ((dwq = ipwq->q_next) != NULL)) {
8706 ill->ill_lmod_rq = RD(dwq);
8707 for (; dwq != NULL; dwq = dwq->q_next)
8708 ill->ill_lmod_cnt++;
8709 }
8710
8711 ill->ill_muxid = islink ? li->l_index : 0;
8712
8713 /*
8714 * Mark the ipsq busy until the capability operations initiated below
8715 * complete. The PLINK/UNLINK ioctl itself completes when our caller
8716 * returns, but the capability operation may complete asynchronously
8717 * much later.
8718 */
8719 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd);
8720 /*
8721 * If there's at least one up ipif on this ill, then we're bound to
8722 * the underlying driver via DLPI. In that case, renegotiate
8723 * capabilities to account for any possible change in modules
8724 * interposed between IP and the driver.
8725 */
8726 if (ill->ill_ipif_up_count > 0) {
8727 if (islink)
8728 ill_capability_probe(ill);
8729 else
8730 ill_capability_reset(ill, B_FALSE);
8731 }
8732 ipsq_current_finish(ipsq);
8733 done:
8734 if (entered_ipsq)
8735 ipsq_exit(ipsq);
8736
8737 return (err);
8738 }
8739
8740 /*
8741 * Search the ioctl command in the ioctl tables and return a pointer
8742 * to the ioctl command information. The ioctl command tables are
8743 * static and fully populated at compile time.
8744 */
8745 ip_ioctl_cmd_t *
ip_sioctl_lookup(int ioc_cmd)8746 ip_sioctl_lookup(int ioc_cmd)
8747 {
8748 int index;
8749 ip_ioctl_cmd_t *ipip;
8750 ip_ioctl_cmd_t *ipip_end;
8751
8752 if (ioc_cmd == IPI_DONTCARE)
8753 return (NULL);
8754
8755 /*
8756 * Do a 2 step search. First search the indexed table
8757 * based on the least significant byte of the ioctl cmd.
8758 * If we don't find a match, then search the misc table
8759 * serially.
8760 */
8761 index = ioc_cmd & 0xFF;
8762 if (index < ip_ndx_ioctl_count) {
8763 ipip = &ip_ndx_ioctl_table[index];
8764 if (ipip->ipi_cmd == ioc_cmd) {
8765 /* Found a match in the ndx table */
8766 return (ipip);
8767 }
8768 }
8769
8770 /* Search the misc table */
8771 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count];
8772 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) {
8773 if (ipip->ipi_cmd == ioc_cmd)
8774 /* Found a match in the misc table */
8775 return (ipip);
8776 }
8777
8778 return (NULL);
8779 }
8780
8781 /*
8782 * helper function for ip_sioctl_getsetprop(), which does some sanity checks
8783 */
8784 static boolean_t
getset_ioctl_checks(mblk_t * mp)8785 getset_ioctl_checks(mblk_t *mp)
8786 {
8787 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8788 mblk_t *mp1 = mp->b_cont;
8789 mod_ioc_prop_t *pioc;
8790 uint_t flags;
8791 uint_t pioc_size;
8792
8793 /* do sanity checks on various arguments */
8794 if (mp1 == NULL || iocp->ioc_count == 0 ||
8795 iocp->ioc_count == TRANSPARENT) {
8796 return (B_FALSE);
8797 }
8798 if (msgdsize(mp1) < iocp->ioc_count) {
8799 if (!pullupmsg(mp1, iocp->ioc_count))
8800 return (B_FALSE);
8801 }
8802
8803 pioc = (mod_ioc_prop_t *)mp1->b_rptr;
8804
8805 /* sanity checks on mpr_valsize */
8806 pioc_size = sizeof (mod_ioc_prop_t);
8807 if (pioc->mpr_valsize != 0)
8808 pioc_size += pioc->mpr_valsize - 1;
8809
8810 if (iocp->ioc_count != pioc_size)
8811 return (B_FALSE);
8812
8813 flags = pioc->mpr_flags;
8814 if (iocp->ioc_cmd == SIOCSETPROP) {
8815 /*
8816 * One can either reset the value to it's default value or
8817 * change the current value or append/remove the value from
8818 * a multi-valued properties.
8819 */
8820 if ((flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT &&
8821 flags != MOD_PROP_ACTIVE &&
8822 flags != (MOD_PROP_ACTIVE|MOD_PROP_APPEND) &&
8823 flags != (MOD_PROP_ACTIVE|MOD_PROP_REMOVE))
8824 return (B_FALSE);
8825 } else {
8826 ASSERT(iocp->ioc_cmd == SIOCGETPROP);
8827
8828 /*
8829 * One can retrieve only one kind of property information
8830 * at a time.
8831 */
8832 if ((flags & MOD_PROP_ACTIVE) != MOD_PROP_ACTIVE &&
8833 (flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT &&
8834 (flags & MOD_PROP_POSSIBLE) != MOD_PROP_POSSIBLE &&
8835 (flags & MOD_PROP_PERM) != MOD_PROP_PERM)
8836 return (B_FALSE);
8837 }
8838
8839 return (B_TRUE);
8840 }
8841
8842 /*
8843 * process the SIOC{SET|GET}PROP ioctl's
8844 */
8845 /* ARGSUSED */
8846 static void
ip_sioctl_getsetprop(queue_t * q,mblk_t * mp)8847 ip_sioctl_getsetprop(queue_t *q, mblk_t *mp)
8848 {
8849 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8850 mblk_t *mp1 = mp->b_cont;
8851 mod_ioc_prop_t *pioc;
8852 mod_prop_info_t *ptbl = NULL, *pinfo = NULL;
8853 ip_stack_t *ipst;
8854 netstack_t *stack;
8855 cred_t *cr;
8856 boolean_t set;
8857 int err;
8858
8859 ASSERT(q->q_next == NULL);
8860 ASSERT(CONN_Q(q));
8861
8862 if (!getset_ioctl_checks(mp)) {
8863 miocnak(q, mp, 0, EINVAL);
8864 return;
8865 }
8866 ipst = CONNQ_TO_IPST(q);
8867 stack = ipst->ips_netstack;
8868 pioc = (mod_ioc_prop_t *)mp1->b_rptr;
8869
8870 switch (pioc->mpr_proto) {
8871 case MOD_PROTO_IP:
8872 case MOD_PROTO_IPV4:
8873 case MOD_PROTO_IPV6:
8874 ptbl = ipst->ips_propinfo_tbl;
8875 break;
8876 case MOD_PROTO_RAWIP:
8877 ptbl = stack->netstack_icmp->is_propinfo_tbl;
8878 break;
8879 case MOD_PROTO_TCP:
8880 ptbl = stack->netstack_tcp->tcps_propinfo_tbl;
8881 break;
8882 case MOD_PROTO_UDP:
8883 ptbl = stack->netstack_udp->us_propinfo_tbl;
8884 break;
8885 case MOD_PROTO_SCTP:
8886 ptbl = stack->netstack_sctp->sctps_propinfo_tbl;
8887 break;
8888 default:
8889 miocnak(q, mp, 0, EINVAL);
8890 return;
8891 }
8892
8893 pinfo = mod_prop_lookup(ptbl, pioc->mpr_name, pioc->mpr_proto);
8894 if (pinfo == NULL) {
8895 miocnak(q, mp, 0, ENOENT);
8896 return;
8897 }
8898
8899 set = (iocp->ioc_cmd == SIOCSETPROP) ? B_TRUE : B_FALSE;
8900 if (set && pinfo->mpi_setf != NULL) {
8901 cr = msg_getcred(mp, NULL);
8902 if (cr == NULL)
8903 cr = iocp->ioc_cr;
8904 err = pinfo->mpi_setf(stack, cr, pinfo, pioc->mpr_ifname,
8905 pioc->mpr_val, pioc->mpr_flags);
8906 } else if (!set && pinfo->mpi_getf != NULL) {
8907 err = pinfo->mpi_getf(stack, pinfo, pioc->mpr_ifname,
8908 pioc->mpr_val, pioc->mpr_valsize, pioc->mpr_flags);
8909 } else {
8910 err = EPERM;
8911 }
8912
8913 if (err != 0) {
8914 miocnak(q, mp, 0, err);
8915 } else {
8916 if (set)
8917 miocack(q, mp, 0, 0);
8918 else /* For get, we need to return back the data */
8919 miocack(q, mp, iocp->ioc_count, 0);
8920 }
8921 }
8922
8923 /*
8924 * process the legacy ND_GET, ND_SET ioctl just for {ip|ip6}_forwarding
8925 * as several routing daemons have unfortunately used this 'unpublished'
8926 * but well-known ioctls.
8927 */
8928 /* ARGSUSED */
8929 static void
ip_process_legacy_nddprop(queue_t * q,mblk_t * mp)8930 ip_process_legacy_nddprop(queue_t *q, mblk_t *mp)
8931 {
8932 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8933 mblk_t *mp1 = mp->b_cont;
8934 char *pname, *pval, *buf;
8935 uint_t bufsize, proto;
8936 mod_prop_info_t *pinfo = NULL;
8937 ip_stack_t *ipst;
8938 int err = 0;
8939
8940 ASSERT(CONN_Q(q));
8941 ipst = CONNQ_TO_IPST(q);
8942
8943 if (iocp->ioc_count == 0 || mp1 == NULL) {
8944 miocnak(q, mp, 0, EINVAL);
8945 return;
8946 }
8947
8948 mp1->b_datap->db_lim[-1] = '\0'; /* Force null termination */
8949 pval = buf = pname = (char *)mp1->b_rptr;
8950 bufsize = MBLKL(mp1);
8951
8952 if (strcmp(pname, "ip_forwarding") == 0) {
8953 pname = "forwarding";
8954 proto = MOD_PROTO_IPV4;
8955 } else if (strcmp(pname, "ip6_forwarding") == 0) {
8956 pname = "forwarding";
8957 proto = MOD_PROTO_IPV6;
8958 } else {
8959 miocnak(q, mp, 0, EINVAL);
8960 return;
8961 }
8962
8963 pinfo = mod_prop_lookup(ipst->ips_propinfo_tbl, pname, proto);
8964
8965 switch (iocp->ioc_cmd) {
8966 case ND_GET:
8967 if ((err = pinfo->mpi_getf(ipst->ips_netstack, pinfo, NULL, buf,
8968 bufsize, 0)) == 0) {
8969 miocack(q, mp, iocp->ioc_count, 0);
8970 return;
8971 }
8972 break;
8973 case ND_SET:
8974 /*
8975 * buffer will have property name and value in the following
8976 * format,
8977 * <property name>'\0'<property value>'\0', extract them;
8978 */
8979 while (*pval++)
8980 noop;
8981
8982 if (!*pval || pval >= (char *)mp1->b_wptr) {
8983 err = EINVAL;
8984 } else if ((err = pinfo->mpi_setf(ipst->ips_netstack, NULL,
8985 pinfo, NULL, pval, 0)) == 0) {
8986 miocack(q, mp, 0, 0);
8987 return;
8988 }
8989 break;
8990 default:
8991 err = EINVAL;
8992 break;
8993 }
8994 miocnak(q, mp, 0, err);
8995 }
8996
8997 /*
8998 * Wrapper function for resuming deferred ioctl processing
8999 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER,
9000 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently.
9001 */
9002 /* ARGSUSED */
9003 void
ip_sioctl_copyin_resume(ipsq_t * dummy_ipsq,queue_t * q,mblk_t * mp,void * dummy_arg)9004 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp,
9005 void *dummy_arg)
9006 {
9007 ip_sioctl_copyin_setup(q, mp);
9008 }
9009
9010 /*
9011 * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message
9012 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle
9013 * in either I_STR or TRANSPARENT form, using the mi_copy facility.
9014 * We establish here the size of the block to be copied in. mi_copyin
9015 * arranges for this to happen, an processing continues in ip_wput_nondata with
9016 * an M_IOCDATA message.
9017 */
9018 void
ip_sioctl_copyin_setup(queue_t * q,mblk_t * mp)9019 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp)
9020 {
9021 int copyin_size;
9022 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9023 ip_ioctl_cmd_t *ipip;
9024 cred_t *cr;
9025 ip_stack_t *ipst;
9026
9027 if (CONN_Q(q))
9028 ipst = CONNQ_TO_IPST(q);
9029 else
9030 ipst = ILLQ_TO_IPST(q);
9031
9032 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
9033 if (ipip == NULL) {
9034 /*
9035 * The ioctl is not one we understand or own.
9036 * Pass it along to be processed down stream,
9037 * if this is a module instance of IP, else nak
9038 * the ioctl.
9039 */
9040 if (q->q_next == NULL) {
9041 goto nak;
9042 } else {
9043 putnext(q, mp);
9044 return;
9045 }
9046 }
9047
9048 /*
9049 * If this is deferred, then we will do all the checks when we
9050 * come back.
9051 */
9052 if ((iocp->ioc_cmd == SIOCGDSTINFO ||
9053 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) {
9054 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume);
9055 return;
9056 }
9057
9058 /*
9059 * Only allow a very small subset of IP ioctls on this stream if
9060 * IP is a module and not a driver. Allowing ioctls to be processed
9061 * in this case may cause assert failures or data corruption.
9062 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few
9063 * ioctls allowed on an IP module stream, after which this stream
9064 * normally becomes a multiplexor (at which time the stream head
9065 * will fail all ioctls).
9066 */
9067 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
9068 goto nak;
9069 }
9070
9071 /* Make sure we have ioctl data to process. */
9072 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT))
9073 goto nak;
9074
9075 /*
9076 * Prefer dblk credential over ioctl credential; some synthesized
9077 * ioctls have kcred set because there's no way to crhold()
9078 * a credential in some contexts. (ioc_cr is not crfree() by
9079 * the framework; the caller of ioctl needs to hold the reference
9080 * for the duration of the call).
9081 */
9082 cr = msg_getcred(mp, NULL);
9083 if (cr == NULL)
9084 cr = iocp->ioc_cr;
9085
9086 /* Make sure normal users don't send down privileged ioctls */
9087 if ((ipip->ipi_flags & IPI_PRIV) &&
9088 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) {
9089 /* We checked the privilege earlier but log it here */
9090 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE));
9091 return;
9092 }
9093
9094 /*
9095 * The ioctl command tables can only encode fixed length
9096 * ioctl data. If the length is variable, the table will
9097 * encode the length as zero. Such special cases are handled
9098 * below in the switch.
9099 */
9100 if (ipip->ipi_copyin_size != 0) {
9101 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size);
9102 return;
9103 }
9104
9105 switch (iocp->ioc_cmd) {
9106 case O_SIOCGIFCONF:
9107 case SIOCGIFCONF:
9108 /*
9109 * This IOCTL is hilarious. See comments in
9110 * ip_sioctl_get_ifconf for the story.
9111 */
9112 if (iocp->ioc_count == TRANSPARENT)
9113 copyin_size = SIZEOF_STRUCT(ifconf,
9114 iocp->ioc_flag);
9115 else
9116 copyin_size = iocp->ioc_count;
9117 mi_copyin(q, mp, NULL, copyin_size);
9118 return;
9119
9120 case O_SIOCGLIFCONF:
9121 case SIOCGLIFCONF:
9122 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag);
9123 mi_copyin(q, mp, NULL, copyin_size);
9124 return;
9125
9126 case SIOCGLIFSRCOF:
9127 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag);
9128 mi_copyin(q, mp, NULL, copyin_size);
9129 return;
9130
9131 case SIOCGIP6ADDRPOLICY:
9132 ip_sioctl_ip6addrpolicy(q, mp);
9133 ip6_asp_table_refrele(ipst);
9134 return;
9135
9136 case SIOCSIP6ADDRPOLICY:
9137 ip_sioctl_ip6addrpolicy(q, mp);
9138 return;
9139
9140 case SIOCGDSTINFO:
9141 ip_sioctl_dstinfo(q, mp);
9142 ip6_asp_table_refrele(ipst);
9143 return;
9144
9145 case ND_SET:
9146 case ND_GET:
9147 ip_process_legacy_nddprop(q, mp);
9148 return;
9149
9150 case SIOCSETPROP:
9151 case SIOCGETPROP:
9152 ip_sioctl_getsetprop(q, mp);
9153 return;
9154
9155 case I_PLINK:
9156 case I_PUNLINK:
9157 case I_LINK:
9158 case I_UNLINK:
9159 /*
9160 * We treat non-persistent link similarly as the persistent
9161 * link case, in terms of plumbing/unplumbing, as well as
9162 * dynamic re-plumbing events indicator. See comments
9163 * in ip_sioctl_plink() for more.
9164 *
9165 * Request can be enqueued in the 'ipsq' while waiting
9166 * to become exclusive. So bump up the conn ref.
9167 */
9168 if (CONN_Q(q)) {
9169 CONN_INC_REF(Q_TO_CONN(q));
9170 CONN_INC_IOCTLREF(Q_TO_CONN(q))
9171 }
9172 ip_sioctl_plink(NULL, q, mp, NULL);
9173 return;
9174
9175 case IP_IOCTL:
9176 ip_wput_ioctl(q, mp);
9177 return;
9178
9179 case SIOCILB:
9180 /* The ioctl length varies depending on the ILB command. */
9181 copyin_size = iocp->ioc_count;
9182 if (copyin_size < sizeof (ilb_cmd_t))
9183 goto nak;
9184 mi_copyin(q, mp, NULL, copyin_size);
9185 return;
9186
9187 default:
9188 cmn_err(CE_WARN, "Unknown ioctl %d/0x%x slipped through.",
9189 iocp->ioc_cmd, iocp->ioc_cmd);
9190 /* FALLTHRU */
9191 }
9192 nak:
9193 if (mp->b_cont != NULL) {
9194 freemsg(mp->b_cont);
9195 mp->b_cont = NULL;
9196 }
9197 iocp->ioc_error = EINVAL;
9198 mp->b_datap->db_type = M_IOCNAK;
9199 iocp->ioc_count = 0;
9200 qreply(q, mp);
9201 }
9202
9203 static void
ip_sioctl_garp_reply(mblk_t * mp,ill_t * ill,void * hwaddr,int flags)9204 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags)
9205 {
9206 struct arpreq *ar;
9207 struct xarpreq *xar;
9208 mblk_t *tmp;
9209 struct iocblk *iocp;
9210 int x_arp_ioctl = B_FALSE;
9211 int *flagsp;
9212 char *storage = NULL;
9213
9214 ASSERT(ill != NULL);
9215
9216 iocp = (struct iocblk *)mp->b_rptr;
9217 ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP);
9218
9219 tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */
9220 if ((iocp->ioc_cmd == SIOCGXARP) ||
9221 (iocp->ioc_cmd == SIOCSXARP)) {
9222 x_arp_ioctl = B_TRUE;
9223 xar = (struct xarpreq *)tmp->b_rptr;
9224 flagsp = &xar->xarp_flags;
9225 storage = xar->xarp_ha.sdl_data;
9226 } else {
9227 ar = (struct arpreq *)tmp->b_rptr;
9228 flagsp = &ar->arp_flags;
9229 storage = ar->arp_ha.sa_data;
9230 }
9231
9232 /*
9233 * We're done if this is not an SIOCG{X}ARP
9234 */
9235 if (x_arp_ioctl) {
9236 storage += ill_xarp_info(&xar->xarp_ha, ill);
9237 if ((ill->ill_phys_addr_length + ill->ill_name_length) >
9238 sizeof (xar->xarp_ha.sdl_data)) {
9239 iocp->ioc_error = EINVAL;
9240 return;
9241 }
9242 }
9243 *flagsp = ATF_INUSE;
9244 /*
9245 * If /sbin/arp told us we are the authority using the "permanent"
9246 * flag, or if this is one of my addresses print "permanent"
9247 * in the /sbin/arp output.
9248 */
9249 if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY))
9250 *flagsp |= ATF_AUTHORITY;
9251 if (flags & NCE_F_NONUD)
9252 *flagsp |= ATF_PERM; /* not subject to aging */
9253 if (flags & NCE_F_PUBLISH)
9254 *flagsp |= ATF_PUBL;
9255 if (hwaddr != NULL) {
9256 *flagsp |= ATF_COM;
9257 bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length);
9258 }
9259 }
9260
9261 /*
9262 * Create a new logical interface. If ipif_id is zero (i.e. not a logical
9263 * interface) create the next available logical interface for this
9264 * physical interface.
9265 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an
9266 * ipif with the specified name.
9267 *
9268 * If the address family is not AF_UNSPEC then set the address as well.
9269 *
9270 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout)
9271 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer.
9272 *
9273 * Executed as a writer on the ill.
9274 * So no lock is needed to traverse the ipif chain, or examine the
9275 * phyint flags.
9276 */
9277 /* ARGSUSED */
9278 int
ip_sioctl_addif(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * dummy_ipip,void * dummy_ifreq)9279 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9280 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9281 {
9282 mblk_t *mp1;
9283 struct lifreq *lifr;
9284 boolean_t isv6;
9285 boolean_t exists;
9286 char *name;
9287 char *endp;
9288 char *cp;
9289 int namelen;
9290 ipif_t *ipif;
9291 long id;
9292 ipsq_t *ipsq;
9293 ill_t *ill;
9294 sin_t *sin;
9295 int err = 0;
9296 boolean_t found_sep = B_FALSE;
9297 conn_t *connp;
9298 zoneid_t zoneid;
9299 ip_stack_t *ipst = CONNQ_TO_IPST(q);
9300
9301 ASSERT(q->q_next == NULL);
9302 ip1dbg(("ip_sioctl_addif\n"));
9303 /* Existence of mp1 has been checked in ip_wput_nondata */
9304 mp1 = mp->b_cont->b_cont;
9305 /*
9306 * Null terminate the string to protect against buffer
9307 * overrun. String was generated by user code and may not
9308 * be trusted.
9309 */
9310 lifr = (struct lifreq *)mp1->b_rptr;
9311 lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
9312 name = lifr->lifr_name;
9313 ASSERT(CONN_Q(q));
9314 connp = Q_TO_CONN(q);
9315 isv6 = (connp->conn_family == AF_INET6);
9316 zoneid = connp->conn_zoneid;
9317 namelen = mi_strlen(name);
9318 if (namelen == 0)
9319 return (EINVAL);
9320
9321 exists = B_FALSE;
9322 if ((namelen + 1 == sizeof (ipif_loopback_name)) &&
9323 (mi_strcmp(name, ipif_loopback_name) == 0)) {
9324 /*
9325 * Allow creating lo0 using SIOCLIFADDIF.
9326 * can't be any other writer thread. So can pass null below
9327 * for the last 4 args to ipif_lookup_name.
9328 */
9329 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE,
9330 &exists, isv6, zoneid, ipst);
9331 /* Prevent any further action */
9332 if (ipif == NULL) {
9333 return (ENOBUFS);
9334 } else if (!exists) {
9335 /* We created the ipif now and as writer */
9336 ipif_refrele(ipif);
9337 return (0);
9338 } else {
9339 ill = ipif->ipif_ill;
9340 ill_refhold(ill);
9341 ipif_refrele(ipif);
9342 }
9343 } else {
9344 /* Look for a colon in the name. */
9345 endp = &name[namelen];
9346 for (cp = endp; --cp > name; ) {
9347 if (*cp == IPIF_SEPARATOR_CHAR) {
9348 found_sep = B_TRUE;
9349 /*
9350 * Reject any non-decimal aliases for plumbing
9351 * of logical interfaces. Aliases with leading
9352 * zeroes are also rejected as they introduce
9353 * ambiguity in the naming of the interfaces.
9354 * Comparing with "0" takes care of all such
9355 * cases.
9356 */
9357 if ((strncmp("0", cp+1, 1)) == 0)
9358 return (EINVAL);
9359
9360 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 ||
9361 id <= 0 || *endp != '\0') {
9362 return (EINVAL);
9363 }
9364 *cp = '\0';
9365 break;
9366 }
9367 }
9368 ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst);
9369 if (found_sep)
9370 *cp = IPIF_SEPARATOR_CHAR;
9371 if (ill == NULL)
9372 return (ENXIO);
9373 }
9374
9375 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP,
9376 B_TRUE);
9377
9378 /*
9379 * Release the refhold due to the lookup, now that we are excl
9380 * or we are just returning
9381 */
9382 ill_refrele(ill);
9383
9384 if (ipsq == NULL)
9385 return (EINPROGRESS);
9386
9387 /* We are now exclusive on the IPSQ */
9388 ASSERT(IAM_WRITER_ILL(ill));
9389
9390 if (found_sep) {
9391 /* Now see if there is an IPIF with this unit number. */
9392 for (ipif = ill->ill_ipif; ipif != NULL;
9393 ipif = ipif->ipif_next) {
9394 if (ipif->ipif_id == id) {
9395 err = EEXIST;
9396 goto done;
9397 }
9398 }
9399 }
9400
9401 /*
9402 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use
9403 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name()
9404 * instead.
9405 */
9406 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL,
9407 B_TRUE, B_TRUE, &err)) == NULL) {
9408 goto done;
9409 }
9410
9411 /* Return created name with ioctl */
9412 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name,
9413 IPIF_SEPARATOR_CHAR, ipif->ipif_id);
9414 ip1dbg(("created %s\n", lifr->lifr_name));
9415
9416 /* Set address */
9417 sin = (sin_t *)&lifr->lifr_addr;
9418 if (sin->sin_family != AF_UNSPEC) {
9419 err = ip_sioctl_addr(ipif, sin, q, mp,
9420 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr);
9421 }
9422
9423 done:
9424 ipsq_exit(ipsq);
9425 return (err);
9426 }
9427
9428 /*
9429 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical
9430 * interface) delete it based on the IP address (on this physical interface).
9431 * Otherwise delete it based on the ipif_id.
9432 * Also, special handling to allow a removeif of lo0.
9433 */
9434 /* ARGSUSED */
9435 int
ip_sioctl_removeif(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_if_req)9436 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9437 ip_ioctl_cmd_t *ipip, void *dummy_if_req)
9438 {
9439 conn_t *connp;
9440 ill_t *ill = ipif->ipif_ill;
9441 boolean_t success;
9442 ip_stack_t *ipst;
9443
9444 ipst = CONNQ_TO_IPST(q);
9445
9446 ASSERT(q->q_next == NULL);
9447 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n",
9448 ill->ill_name, ipif->ipif_id, (void *)ipif));
9449 ASSERT(IAM_WRITER_IPIF(ipif));
9450
9451 connp = Q_TO_CONN(q);
9452 /*
9453 * Special case for unplumbing lo0 (the loopback physical interface).
9454 * If unplumbing lo0, the incoming address structure has been
9455 * initialized to all zeros. When unplumbing lo0, all its logical
9456 * interfaces must be removed too.
9457 *
9458 * Note that this interface may be called to remove a specific
9459 * loopback logical interface (eg, lo0:1). But in that case
9460 * ipif->ipif_id != 0 so that the code path for that case is the
9461 * same as any other interface (meaning it skips the code directly
9462 * below).
9463 */
9464 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) {
9465 if (sin->sin_family == AF_UNSPEC &&
9466 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) {
9467 /*
9468 * Mark it condemned. No new ref. will be made to ill.
9469 */
9470 mutex_enter(&ill->ill_lock);
9471 ill->ill_state_flags |= ILL_CONDEMNED;
9472 for (ipif = ill->ill_ipif; ipif != NULL;
9473 ipif = ipif->ipif_next) {
9474 ipif->ipif_state_flags |= IPIF_CONDEMNED;
9475 }
9476 mutex_exit(&ill->ill_lock);
9477
9478 ipif = ill->ill_ipif;
9479 /* unplumb the loopback interface */
9480 ill_delete(ill);
9481 mutex_enter(&connp->conn_lock);
9482 mutex_enter(&ill->ill_lock);
9483
9484 /* Are any references to this ill active */
9485 if (ill_is_freeable(ill)) {
9486 mutex_exit(&ill->ill_lock);
9487 mutex_exit(&connp->conn_lock);
9488 ill_delete_tail(ill);
9489 mi_free(ill);
9490 return (0);
9491 }
9492 success = ipsq_pending_mp_add(connp, ipif,
9493 CONNP_TO_WQ(connp), mp, ILL_FREE);
9494 mutex_exit(&connp->conn_lock);
9495 mutex_exit(&ill->ill_lock);
9496 if (success)
9497 return (EINPROGRESS);
9498 else
9499 return (EINTR);
9500 }
9501 }
9502
9503 if (ipif->ipif_id == 0) {
9504 ipsq_t *ipsq;
9505
9506 /* Find based on address */
9507 if (ipif->ipif_isv6) {
9508 sin6_t *sin6;
9509
9510 if (sin->sin_family != AF_INET6)
9511 return (EAFNOSUPPORT);
9512
9513 sin6 = (sin6_t *)sin;
9514 /* We are a writer, so we should be able to lookup */
9515 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill,
9516 ipst);
9517 } else {
9518 if (sin->sin_family != AF_INET)
9519 return (EAFNOSUPPORT);
9520
9521 /* We are a writer, so we should be able to lookup */
9522 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill,
9523 ipst);
9524 }
9525 if (ipif == NULL) {
9526 return (EADDRNOTAVAIL);
9527 }
9528
9529 /*
9530 * It is possible for a user to send an SIOCLIFREMOVEIF with
9531 * lifr_name of the physical interface but with an ip address
9532 * lifr_addr of a logical interface plumbed over it.
9533 * So update ipx_current_ipif now that ipif points to the
9534 * correct one.
9535 */
9536 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
9537 ipsq->ipsq_xop->ipx_current_ipif = ipif;
9538
9539 /* This is a writer */
9540 ipif_refrele(ipif);
9541 }
9542
9543 /*
9544 * Can not delete instance zero since it is tied to the ill.
9545 */
9546 if (ipif->ipif_id == 0)
9547 return (EBUSY);
9548
9549 mutex_enter(&ill->ill_lock);
9550 ipif->ipif_state_flags |= IPIF_CONDEMNED;
9551 mutex_exit(&ill->ill_lock);
9552
9553 ipif_free(ipif);
9554
9555 mutex_enter(&connp->conn_lock);
9556 mutex_enter(&ill->ill_lock);
9557
9558 /* Are any references to this ipif active */
9559 if (ipif_is_freeable(ipif)) {
9560 mutex_exit(&ill->ill_lock);
9561 mutex_exit(&connp->conn_lock);
9562 ipif_non_duplicate(ipif);
9563 (void) ipif_down_tail(ipif);
9564 ipif_free_tail(ipif); /* frees ipif */
9565 return (0);
9566 }
9567 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp,
9568 IPIF_FREE);
9569 mutex_exit(&ill->ill_lock);
9570 mutex_exit(&connp->conn_lock);
9571 if (success)
9572 return (EINPROGRESS);
9573 else
9574 return (EINTR);
9575 }
9576
9577 /*
9578 * Restart the removeif ioctl. The refcnt has gone down to 0.
9579 * The ipif is already condemned. So can't find it thru lookups.
9580 */
9581 /* ARGSUSED */
9582 int
ip_sioctl_removeif_restart(ipif_t * ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_if_req)9583 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
9584 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req)
9585 {
9586 ill_t *ill = ipif->ipif_ill;
9587
9588 ASSERT(IAM_WRITER_IPIF(ipif));
9589 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED);
9590
9591 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n",
9592 ill->ill_name, ipif->ipif_id, (void *)ipif));
9593
9594 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) {
9595 ASSERT(ill->ill_state_flags & ILL_CONDEMNED);
9596 ill_delete_tail(ill);
9597 mi_free(ill);
9598 return (0);
9599 }
9600
9601 ipif_non_duplicate(ipif);
9602 (void) ipif_down_tail(ipif);
9603 ipif_free_tail(ipif);
9604
9605 return (0);
9606 }
9607
9608 /*
9609 * Set the local interface address using the given prefix and ill_token.
9610 */
9611 /* ARGSUSED */
9612 int
ip_sioctl_prefix(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * dummy_ipip,void * dummy_ifreq)9613 ip_sioctl_prefix(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9614 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9615 {
9616 int err;
9617 in6_addr_t v6addr;
9618 sin6_t *sin6;
9619 ill_t *ill;
9620 int i;
9621
9622 ip1dbg(("ip_sioctl_prefix(%s:%u %p)\n",
9623 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9624
9625 ASSERT(IAM_WRITER_IPIF(ipif));
9626
9627 if (!ipif->ipif_isv6)
9628 return (EINVAL);
9629
9630 if (sin->sin_family != AF_INET6)
9631 return (EAFNOSUPPORT);
9632
9633 sin6 = (sin6_t *)sin;
9634 v6addr = sin6->sin6_addr;
9635 ill = ipif->ipif_ill;
9636
9637 if (IN6_IS_ADDR_UNSPECIFIED(&v6addr) ||
9638 IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token))
9639 return (EADDRNOTAVAIL);
9640
9641 for (i = 0; i < 4; i++)
9642 sin6->sin6_addr.s6_addr32[i] |= ill->ill_token.s6_addr32[i];
9643
9644 err = ip_sioctl_addr(ipif, sin, q, mp,
9645 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], dummy_ifreq);
9646 return (err);
9647 }
9648
9649 /*
9650 * Restart entry point to restart the address set operation after the
9651 * refcounts have dropped to zero.
9652 */
9653 /* ARGSUSED */
9654 int
ip_sioctl_prefix_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)9655 ip_sioctl_prefix_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9656 ip_ioctl_cmd_t *ipip, void *ifreq)
9657 {
9658 ip1dbg(("ip_sioctl_prefix_restart(%s:%u %p)\n",
9659 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9660 return (ip_sioctl_addr_restart(ipif, sin, q, mp, ipip, ifreq));
9661 }
9662
9663 /*
9664 * Set the local interface address.
9665 * Allow an address of all zero when the interface is down.
9666 */
9667 /* ARGSUSED */
9668 int
ip_sioctl_addr(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * dummy_ipip,void * dummy_ifreq)9669 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9670 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9671 {
9672 int err = 0;
9673 in6_addr_t v6addr;
9674 boolean_t need_up = B_FALSE;
9675 ill_t *ill;
9676 int i;
9677
9678 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n",
9679 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9680
9681 ASSERT(IAM_WRITER_IPIF(ipif));
9682
9683 ill = ipif->ipif_ill;
9684 if (ipif->ipif_isv6) {
9685 sin6_t *sin6;
9686 phyint_t *phyi;
9687
9688 if (sin->sin_family != AF_INET6)
9689 return (EAFNOSUPPORT);
9690
9691 sin6 = (sin6_t *)sin;
9692 v6addr = sin6->sin6_addr;
9693 phyi = ill->ill_phyint;
9694
9695 /*
9696 * Enforce that true multicast interfaces have a link-local
9697 * address for logical unit 0.
9698 *
9699 * However for those ipif's for which link-local address was
9700 * not created by default, also allow setting :: as the address.
9701 * This scenario would arise, when we delete an address on ipif
9702 * with logical unit 0, we would want to set :: as the address.
9703 */
9704 if (ipif->ipif_id == 0 &&
9705 (ill->ill_flags & ILLF_MULTICAST) &&
9706 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) &&
9707 !(phyi->phyint_flags & (PHYI_LOOPBACK)) &&
9708 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) {
9709
9710 /*
9711 * if default link-local was not created by kernel for
9712 * this ill, allow setting :: as the address on ipif:0.
9713 */
9714 if (ill->ill_flags & ILLF_NOLINKLOCAL) {
9715 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr))
9716 return (EADDRNOTAVAIL);
9717 } else {
9718 return (EADDRNOTAVAIL);
9719 }
9720 }
9721
9722 /*
9723 * up interfaces shouldn't have the unspecified address
9724 * unless they also have the IPIF_NOLOCAL flags set and
9725 * have a subnet assigned.
9726 */
9727 if ((ipif->ipif_flags & IPIF_UP) &&
9728 IN6_IS_ADDR_UNSPECIFIED(&v6addr) &&
9729 (!(ipif->ipif_flags & IPIF_NOLOCAL) ||
9730 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) {
9731 return (EADDRNOTAVAIL);
9732 }
9733
9734 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
9735 return (EADDRNOTAVAIL);
9736 } else {
9737 ipaddr_t addr;
9738
9739 if (sin->sin_family != AF_INET)
9740 return (EAFNOSUPPORT);
9741
9742 addr = sin->sin_addr.s_addr;
9743
9744 /* Allow INADDR_ANY as the local address. */
9745 if (addr != INADDR_ANY &&
9746 !ip_addr_ok_v4(addr, ipif->ipif_net_mask))
9747 return (EADDRNOTAVAIL);
9748
9749 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9750 }
9751 /*
9752 * verify that the address being configured is permitted by the
9753 * ill_allowed_ips[] for the interface.
9754 */
9755 if (ill->ill_allowed_ips_cnt > 0) {
9756 for (i = 0; i < ill->ill_allowed_ips_cnt; i++) {
9757 if (IN6_ARE_ADDR_EQUAL(&ill->ill_allowed_ips[i],
9758 &v6addr))
9759 break;
9760 }
9761 if (i == ill->ill_allowed_ips_cnt) {
9762 pr_addr_dbg("!allowed addr %s\n", AF_INET6, &v6addr);
9763 return (EPERM);
9764 }
9765 }
9766 /*
9767 * Even if there is no change we redo things just to rerun
9768 * ipif_set_default.
9769 */
9770 if (ipif->ipif_flags & IPIF_UP) {
9771 /*
9772 * Setting a new local address, make sure
9773 * we have net and subnet bcast ire's for
9774 * the old address if we need them.
9775 */
9776 /*
9777 * If the interface is already marked up,
9778 * we call ipif_down which will take care
9779 * of ditching any IREs that have been set
9780 * up based on the old interface address.
9781 */
9782 err = ipif_logical_down(ipif, q, mp);
9783 if (err == EINPROGRESS)
9784 return (err);
9785 (void) ipif_down_tail(ipif);
9786 need_up = 1;
9787 }
9788
9789 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up);
9790 return (err);
9791 }
9792
9793 int
ip_sioctl_addr_tail(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,boolean_t need_up)9794 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9795 boolean_t need_up)
9796 {
9797 in6_addr_t v6addr;
9798 in6_addr_t ov6addr;
9799 ipaddr_t addr;
9800 sin6_t *sin6;
9801 int sinlen;
9802 int err = 0;
9803 ill_t *ill = ipif->ipif_ill;
9804 boolean_t need_dl_down;
9805 boolean_t need_arp_down;
9806 struct iocblk *iocp;
9807
9808 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL;
9809
9810 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n",
9811 ill->ill_name, ipif->ipif_id, (void *)ipif));
9812 ASSERT(IAM_WRITER_IPIF(ipif));
9813
9814 /* Must cancel any pending timer before taking the ill_lock */
9815 if (ipif->ipif_recovery_id != 0)
9816 (void) untimeout(ipif->ipif_recovery_id);
9817 ipif->ipif_recovery_id = 0;
9818
9819 if (ipif->ipif_isv6) {
9820 sin6 = (sin6_t *)sin;
9821 v6addr = sin6->sin6_addr;
9822 sinlen = sizeof (struct sockaddr_in6);
9823 } else {
9824 addr = sin->sin_addr.s_addr;
9825 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9826 sinlen = sizeof (struct sockaddr_in);
9827 }
9828 mutex_enter(&ill->ill_lock);
9829 ov6addr = ipif->ipif_v6lcl_addr;
9830 ipif->ipif_v6lcl_addr = v6addr;
9831 sctp_update_ipif_addr(ipif, ov6addr);
9832 ipif->ipif_addr_ready = 0;
9833
9834 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);
9835
9836 /*
9837 * If the interface was previously marked as a duplicate, then since
9838 * we've now got a "new" address, it should no longer be considered a
9839 * duplicate -- even if the "new" address is the same as the old one.
9840 * Note that if all ipifs are down, we may have a pending ARP down
9841 * event to handle. This is because we want to recover from duplicates
9842 * and thus delay tearing down ARP until the duplicates have been
9843 * removed or disabled.
9844 */
9845 need_dl_down = need_arp_down = B_FALSE;
9846 if (ipif->ipif_flags & IPIF_DUPLICATE) {
9847 need_arp_down = !need_up;
9848 ipif->ipif_flags &= ~IPIF_DUPLICATE;
9849 if (--ill->ill_ipif_dup_count == 0 && !need_up &&
9850 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
9851 need_dl_down = B_TRUE;
9852 }
9853 }
9854
9855 ipif_set_default(ipif);
9856
9857 /*
9858 * If we've just manually set the IPv6 link-local address (0th ipif),
9859 * tag the ill so that future updates to the interface ID don't result
9860 * in this address getting automatically reconfigured from under the
9861 * administrator.
9862 */
9863 if (ipif->ipif_isv6 && ipif->ipif_id == 0) {
9864 if (iocp == NULL || (iocp->ioc_cmd == SIOCSLIFADDR &&
9865 !IN6_IS_ADDR_UNSPECIFIED(&v6addr)))
9866 ill->ill_manual_linklocal = 1;
9867 }
9868
9869 /*
9870 * When publishing an interface address change event, we only notify
9871 * the event listeners of the new address. It is assumed that if they
9872 * actively care about the addresses assigned that they will have
9873 * already discovered the previous address assigned (if there was one.)
9874 *
9875 * Don't attach nic event message for SIOCLIFADDIF ioctl.
9876 */
9877 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) {
9878 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id),
9879 NE_ADDRESS_CHANGE, sin, sinlen);
9880 }
9881
9882 mutex_exit(&ill->ill_lock);
9883
9884 if (need_up) {
9885 /*
9886 * Now bring the interface back up. If this
9887 * is the only IPIF for the ILL, ipif_up
9888 * will have to re-bind to the device, so
9889 * we may get back EINPROGRESS, in which
9890 * case, this IOCTL will get completed in
9891 * ip_rput_dlpi when we see the DL_BIND_ACK.
9892 */
9893 err = ipif_up(ipif, q, mp);
9894 } else {
9895 /* Perhaps ilgs should use this ill */
9896 update_conn_ill(NULL, ill->ill_ipst);
9897 }
9898
9899 if (need_dl_down)
9900 ill_dl_down(ill);
9901
9902 if (need_arp_down && !ill->ill_isv6)
9903 (void) ipif_arp_down(ipif);
9904
9905 /*
9906 * The default multicast interface might have changed (for
9907 * instance if the IPv6 scope of the address changed)
9908 */
9909 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6);
9910
9911 return (err);
9912 }
9913
9914 /*
9915 * Restart entry point to restart the address set operation after the
9916 * refcounts have dropped to zero.
9917 */
9918 /* ARGSUSED */
9919 int
ip_sioctl_addr_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)9920 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9921 ip_ioctl_cmd_t *ipip, void *ifreq)
9922 {
9923 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n",
9924 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9925 ASSERT(IAM_WRITER_IPIF(ipif));
9926 (void) ipif_down_tail(ipif);
9927 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE));
9928 }
9929
9930 /* ARGSUSED */
9931 int
ip_sioctl_get_addr(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)9932 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9933 ip_ioctl_cmd_t *ipip, void *if_req)
9934 {
9935 sin6_t *sin6 = (struct sockaddr_in6 *)sin;
9936 struct lifreq *lifr = (struct lifreq *)if_req;
9937
9938 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n",
9939 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9940 /*
9941 * The net mask and address can't change since we have a
9942 * reference to the ipif. So no lock is necessary.
9943 */
9944 if (ipif->ipif_isv6) {
9945 *sin6 = sin6_null;
9946 sin6->sin6_family = AF_INET6;
9947 sin6->sin6_addr = ipif->ipif_v6lcl_addr;
9948 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
9949 lifr->lifr_addrlen =
9950 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
9951 } else {
9952 *sin = sin_null;
9953 sin->sin_family = AF_INET;
9954 sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
9955 if (ipip->ipi_cmd_type == LIF_CMD) {
9956 lifr->lifr_addrlen =
9957 ip_mask_to_plen(ipif->ipif_net_mask);
9958 }
9959 }
9960 return (0);
9961 }
9962
9963 /*
9964 * Set the destination address for a pt-pt interface.
9965 */
9966 /* ARGSUSED */
9967 int
ip_sioctl_dstaddr(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)9968 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9969 ip_ioctl_cmd_t *ipip, void *if_req)
9970 {
9971 int err = 0;
9972 in6_addr_t v6addr;
9973 boolean_t need_up = B_FALSE;
9974
9975 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n",
9976 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9977 ASSERT(IAM_WRITER_IPIF(ipif));
9978
9979 if (ipif->ipif_isv6) {
9980 sin6_t *sin6;
9981
9982 if (sin->sin_family != AF_INET6)
9983 return (EAFNOSUPPORT);
9984
9985 sin6 = (sin6_t *)sin;
9986 v6addr = sin6->sin6_addr;
9987
9988 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
9989 return (EADDRNOTAVAIL);
9990 } else {
9991 ipaddr_t addr;
9992
9993 if (sin->sin_family != AF_INET)
9994 return (EAFNOSUPPORT);
9995
9996 addr = sin->sin_addr.s_addr;
9997 if (addr != INADDR_ANY &&
9998 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) {
9999 return (EADDRNOTAVAIL);
10000 }
10001
10002 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10003 }
10004
10005 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr))
10006 return (0); /* No change */
10007
10008 if (ipif->ipif_flags & IPIF_UP) {
10009 /*
10010 * If the interface is already marked up,
10011 * we call ipif_down which will take care
10012 * of ditching any IREs that have been set
10013 * up based on the old pp dst address.
10014 */
10015 err = ipif_logical_down(ipif, q, mp);
10016 if (err == EINPROGRESS)
10017 return (err);
10018 (void) ipif_down_tail(ipif);
10019 need_up = B_TRUE;
10020 }
10021 /*
10022 * could return EINPROGRESS. If so ioctl will complete in
10023 * ip_rput_dlpi_writer
10024 */
10025 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up);
10026 return (err);
10027 }
10028
10029 static int
ip_sioctl_dstaddr_tail(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,boolean_t need_up)10030 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10031 boolean_t need_up)
10032 {
10033 in6_addr_t v6addr;
10034 ill_t *ill = ipif->ipif_ill;
10035 int err = 0;
10036 boolean_t need_dl_down;
10037 boolean_t need_arp_down;
10038
10039 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name,
10040 ipif->ipif_id, (void *)ipif));
10041
10042 /* Must cancel any pending timer before taking the ill_lock */
10043 if (ipif->ipif_recovery_id != 0)
10044 (void) untimeout(ipif->ipif_recovery_id);
10045 ipif->ipif_recovery_id = 0;
10046
10047 if (ipif->ipif_isv6) {
10048 sin6_t *sin6;
10049
10050 sin6 = (sin6_t *)sin;
10051 v6addr = sin6->sin6_addr;
10052 } else {
10053 ipaddr_t addr;
10054
10055 addr = sin->sin_addr.s_addr;
10056 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10057 }
10058 mutex_enter(&ill->ill_lock);
10059 /* Set point to point destination address. */
10060 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10061 /*
10062 * Allow this as a means of creating logical
10063 * pt-pt interfaces on top of e.g. an Ethernet.
10064 * XXX Undocumented HACK for testing.
10065 * pt-pt interfaces are created with NUD disabled.
10066 */
10067 ipif->ipif_flags |= IPIF_POINTOPOINT;
10068 ipif->ipif_flags &= ~IPIF_BROADCAST;
10069 if (ipif->ipif_isv6)
10070 ill->ill_flags |= ILLF_NONUD;
10071 }
10072
10073 /*
10074 * If the interface was previously marked as a duplicate, then since
10075 * we've now got a "new" address, it should no longer be considered a
10076 * duplicate -- even if the "new" address is the same as the old one.
10077 * Note that if all ipifs are down, we may have a pending ARP down
10078 * event to handle.
10079 */
10080 need_dl_down = need_arp_down = B_FALSE;
10081 if (ipif->ipif_flags & IPIF_DUPLICATE) {
10082 need_arp_down = !need_up;
10083 ipif->ipif_flags &= ~IPIF_DUPLICATE;
10084 if (--ill->ill_ipif_dup_count == 0 && !need_up &&
10085 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
10086 need_dl_down = B_TRUE;
10087 }
10088 }
10089
10090 /*
10091 * If we've just manually set the IPv6 destination link-local address
10092 * (0th ipif), tag the ill so that future updates to the destination
10093 * interface ID (as can happen with interfaces over IP tunnels) don't
10094 * result in this address getting automatically reconfigured from
10095 * under the administrator.
10096 */
10097 if (ipif->ipif_isv6 && ipif->ipif_id == 0)
10098 ill->ill_manual_dst_linklocal = 1;
10099
10100 /* Set the new address. */
10101 ipif->ipif_v6pp_dst_addr = v6addr;
10102 /* Make sure subnet tracks pp_dst */
10103 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
10104 mutex_exit(&ill->ill_lock);
10105
10106 if (need_up) {
10107 /*
10108 * Now bring the interface back up. If this
10109 * is the only IPIF for the ILL, ipif_up
10110 * will have to re-bind to the device, so
10111 * we may get back EINPROGRESS, in which
10112 * case, this IOCTL will get completed in
10113 * ip_rput_dlpi when we see the DL_BIND_ACK.
10114 */
10115 err = ipif_up(ipif, q, mp);
10116 }
10117
10118 if (need_dl_down)
10119 ill_dl_down(ill);
10120 if (need_arp_down && !ipif->ipif_isv6)
10121 (void) ipif_arp_down(ipif);
10122
10123 return (err);
10124 }
10125
10126 /*
10127 * Restart entry point to restart the dstaddress set operation after the
10128 * refcounts have dropped to zero.
10129 */
10130 /* ARGSUSED */
10131 int
ip_sioctl_dstaddr_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)10132 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10133 ip_ioctl_cmd_t *ipip, void *ifreq)
10134 {
10135 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n",
10136 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10137 (void) ipif_down_tail(ipif);
10138 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE));
10139 }
10140
10141 /* ARGSUSED */
10142 int
ip_sioctl_get_dstaddr(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10143 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10144 ip_ioctl_cmd_t *ipip, void *if_req)
10145 {
10146 sin6_t *sin6 = (struct sockaddr_in6 *)sin;
10147
10148 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n",
10149 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10150 /*
10151 * Get point to point destination address. The addresses can't
10152 * change since we hold a reference to the ipif.
10153 */
10154 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0)
10155 return (EADDRNOTAVAIL);
10156
10157 if (ipif->ipif_isv6) {
10158 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
10159 *sin6 = sin6_null;
10160 sin6->sin6_family = AF_INET6;
10161 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr;
10162 } else {
10163 *sin = sin_null;
10164 sin->sin_family = AF_INET;
10165 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr;
10166 }
10167 return (0);
10168 }
10169
10170 /*
10171 * Check which flags will change by the given flags being set
10172 * silently ignore flags which userland is not allowed to control.
10173 * (Because these flags may change between SIOCGLIFFLAGS and
10174 * SIOCSLIFFLAGS, and that's outside of userland's control,
10175 * we need to silently ignore them rather than fail.)
10176 */
10177 static void
ip_sioctl_flags_onoff(ipif_t * ipif,uint64_t flags,uint64_t * onp,uint64_t * offp)10178 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp,
10179 uint64_t *offp)
10180 {
10181 ill_t *ill = ipif->ipif_ill;
10182 phyint_t *phyi = ill->ill_phyint;
10183 uint64_t cantchange_flags, intf_flags;
10184 uint64_t turn_on, turn_off;
10185
10186 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
10187 cantchange_flags = IFF_CANTCHANGE;
10188 if (IS_IPMP(ill))
10189 cantchange_flags |= IFF_IPMP_CANTCHANGE;
10190 turn_on = (flags ^ intf_flags) & ~cantchange_flags;
10191 turn_off = intf_flags & turn_on;
10192 turn_on ^= turn_off;
10193 *onp = turn_on;
10194 *offp = turn_off;
10195 }
10196
10197 /*
10198 * Set interface flags. Many flags require special handling (e.g.,
10199 * bringing the interface down); see below for details.
10200 *
10201 * NOTE : We really don't enforce that ipif_id zero should be used
10202 * for setting any flags other than IFF_LOGINT_FLAGS. This
10203 * is because applications generally does SICGLIFFLAGS and
10204 * ORs in the new flags (that affects the logical) and does a
10205 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other
10206 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the
10207 * flags that will be turned on is correct with respect to
10208 * ipif_id 0. For backward compatibility reasons, it is not done.
10209 */
10210 /* ARGSUSED */
10211 int
ip_sioctl_flags(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10212 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10213 ip_ioctl_cmd_t *ipip, void *if_req)
10214 {
10215 uint64_t turn_on;
10216 uint64_t turn_off;
10217 int err = 0;
10218 phyint_t *phyi;
10219 ill_t *ill;
10220 conn_t *connp;
10221 uint64_t intf_flags;
10222 boolean_t phyint_flags_modified = B_FALSE;
10223 uint64_t flags;
10224 struct ifreq *ifr;
10225 struct lifreq *lifr;
10226 boolean_t set_linklocal = B_FALSE;
10227
10228 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n",
10229 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10230
10231 ASSERT(IAM_WRITER_IPIF(ipif));
10232
10233 ill = ipif->ipif_ill;
10234 phyi = ill->ill_phyint;
10235
10236 if (ipip->ipi_cmd_type == IF_CMD) {
10237 ifr = (struct ifreq *)if_req;
10238 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff);
10239 } else {
10240 lifr = (struct lifreq *)if_req;
10241 flags = lifr->lifr_flags;
10242 }
10243
10244 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
10245
10246 /*
10247 * Have the flags been set correctly until now?
10248 */
10249 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
10250 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
10251 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
10252 /*
10253 * Compare the new flags to the old, and partition
10254 * into those coming on and those going off.
10255 * For the 16 bit command keep the bits above bit 16 unchanged.
10256 */
10257 if (ipip->ipi_cmd == SIOCSIFFLAGS)
10258 flags |= intf_flags & ~0xFFFF;
10259
10260 /*
10261 * Explicitly fail attempts to change flags that are always invalid on
10262 * an IPMP meta-interface.
10263 */
10264 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID))
10265 return (EINVAL);
10266
10267 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10268 if ((turn_on|turn_off) == 0)
10269 return (0); /* No change */
10270
10271 /*
10272 * All test addresses must be IFF_DEPRECATED (to ensure source address
10273 * selection avoids them) -- so force IFF_DEPRECATED on, and do not
10274 * allow it to be turned off.
10275 */
10276 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED &&
10277 (turn_on|intf_flags) & IFF_NOFAILOVER)
10278 return (EINVAL);
10279
10280 if ((connp = Q_TO_CONN(q)) == NULL)
10281 return (EINVAL);
10282
10283 /*
10284 * Only vrrp control socket is allowed to change IFF_UP and
10285 * IFF_NOACCEPT flags when IFF_VRRP is set.
10286 */
10287 if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) {
10288 if (!connp->conn_isvrrp)
10289 return (EINVAL);
10290 }
10291
10292 /*
10293 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by
10294 * VRRP control socket.
10295 */
10296 if ((turn_off | turn_on) & IFF_NOACCEPT) {
10297 if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP))
10298 return (EINVAL);
10299 }
10300
10301 if (turn_on & IFF_NOFAILOVER) {
10302 turn_on |= IFF_DEPRECATED;
10303 flags |= IFF_DEPRECATED;
10304 }
10305
10306 /*
10307 * On underlying interfaces, only allow applications to manage test
10308 * addresses -- otherwise, they may get confused when the address
10309 * moves as part of being brought up. Likewise, prevent an
10310 * application-managed test address from being converted to a data
10311 * address. To prevent migration of administratively up addresses in
10312 * the kernel, we don't allow them to be converted either.
10313 */
10314 if (IS_UNDER_IPMP(ill)) {
10315 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF;
10316
10317 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER))
10318 return (EINVAL);
10319
10320 if ((turn_off & IFF_NOFAILOVER) &&
10321 (flags & (appflags | IFF_UP | IFF_DUPLICATE)))
10322 return (EINVAL);
10323 }
10324
10325 /*
10326 * Only allow IFF_TEMPORARY flag to be set on
10327 * IPv6 interfaces.
10328 */
10329 if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6))
10330 return (EINVAL);
10331
10332 /*
10333 * cannot turn off IFF_NOXMIT on VNI interfaces.
10334 */
10335 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill))
10336 return (EINVAL);
10337
10338 /*
10339 * Don't allow the IFF_ROUTER flag to be turned on on loopback
10340 * interfaces. It makes no sense in that context.
10341 */
10342 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK))
10343 return (EINVAL);
10344
10345 /*
10346 * For IPv6 ipif_id 0, don't allow the interface to be up without
10347 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set.
10348 * If the link local address isn't set, and can be set, it will get
10349 * set later on in this function.
10350 */
10351 if (ipif->ipif_id == 0 && ipif->ipif_isv6 &&
10352 (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) &&
10353 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
10354 if (ipif_cant_setlinklocal(ipif))
10355 return (EINVAL);
10356 set_linklocal = B_TRUE;
10357 }
10358
10359 /*
10360 * If we modify physical interface flags, we'll potentially need to
10361 * send up two routing socket messages for the changes (one for the
10362 * IPv4 ill, and another for the IPv6 ill). Note that here.
10363 */
10364 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
10365 phyint_flags_modified = B_TRUE;
10366
10367 /*
10368 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE
10369 * (otherwise, we'd immediately use them, defeating standby). Also,
10370 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not
10371 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already
10372 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We
10373 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics
10374 * will not be honored.
10375 */
10376 if (turn_on & PHYI_STANDBY) {
10377 /*
10378 * No need to grab ill_g_usesrc_lock here; see the
10379 * synchronization notes in ip.c.
10380 */
10381 if (ill->ill_usesrc_grp_next != NULL ||
10382 intf_flags & PHYI_INACTIVE)
10383 return (EINVAL);
10384 if (!(flags & PHYI_FAILED)) {
10385 flags |= PHYI_INACTIVE;
10386 turn_on |= PHYI_INACTIVE;
10387 }
10388 }
10389
10390 if (turn_off & PHYI_STANDBY) {
10391 flags &= ~PHYI_INACTIVE;
10392 turn_off |= PHYI_INACTIVE;
10393 }
10394
10395 /*
10396 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both
10397 * would end up on.
10398 */
10399 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) ==
10400 (PHYI_FAILED | PHYI_INACTIVE))
10401 return (EINVAL);
10402
10403 /*
10404 * If ILLF_ROUTER changes, we need to change the ip forwarding
10405 * status of the interface.
10406 */
10407 if ((turn_on | turn_off) & ILLF_ROUTER) {
10408 err = ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0));
10409 if (err != 0)
10410 return (err);
10411 }
10412
10413 /*
10414 * If the interface is not UP and we are not going to
10415 * bring it UP, record the flags and return. When the
10416 * interface comes UP later, the right actions will be
10417 * taken.
10418 */
10419 if (!(ipif->ipif_flags & IPIF_UP) &&
10420 !(turn_on & IPIF_UP)) {
10421 /* Record new flags in their respective places. */
10422 mutex_enter(&ill->ill_lock);
10423 mutex_enter(&ill->ill_phyint->phyint_lock);
10424 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
10425 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
10426 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
10427 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
10428 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
10429 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
10430 mutex_exit(&ill->ill_lock);
10431 mutex_exit(&ill->ill_phyint->phyint_lock);
10432
10433 /*
10434 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the
10435 * same to the kernel: if any of them has been set by
10436 * userland, the interface cannot be used for data traffic.
10437 */
10438 if ((turn_on|turn_off) &
10439 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
10440 ASSERT(!IS_IPMP(ill));
10441 /*
10442 * It's possible the ill is part of an "anonymous"
10443 * IPMP group rather than a real group. In that case,
10444 * there are no other interfaces in the group and thus
10445 * no need to call ipmp_phyint_refresh_active().
10446 */
10447 if (IS_UNDER_IPMP(ill))
10448 ipmp_phyint_refresh_active(phyi);
10449 }
10450
10451 if (phyint_flags_modified) {
10452 if (phyi->phyint_illv4 != NULL) {
10453 ip_rts_ifmsg(phyi->phyint_illv4->
10454 ill_ipif, RTSQ_DEFAULT);
10455 }
10456 if (phyi->phyint_illv6 != NULL) {
10457 ip_rts_ifmsg(phyi->phyint_illv6->
10458 ill_ipif, RTSQ_DEFAULT);
10459 }
10460 }
10461 /* The default multicast interface might have changed */
10462 ire_increment_multicast_generation(ill->ill_ipst,
10463 ill->ill_isv6);
10464
10465 return (0);
10466 } else if (set_linklocal) {
10467 mutex_enter(&ill->ill_lock);
10468 if (set_linklocal)
10469 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL;
10470 mutex_exit(&ill->ill_lock);
10471 }
10472
10473 /*
10474 * Disallow IPv6 interfaces coming up that have the unspecified address,
10475 * or point-to-point interfaces with an unspecified destination. We do
10476 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that
10477 * have a subnet assigned, which is how in.ndpd currently manages its
10478 * onlink prefix list when no addresses are configured with those
10479 * prefixes.
10480 */
10481 if (ipif->ipif_isv6 &&
10482 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
10483 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) ||
10484 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) ||
10485 ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
10486 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) {
10487 return (EINVAL);
10488 }
10489
10490 /*
10491 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination
10492 * from being brought up.
10493 */
10494 if (!ipif->ipif_isv6 &&
10495 ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
10496 ipif->ipif_pp_dst_addr == INADDR_ANY)) {
10497 return (EINVAL);
10498 }
10499
10500 /*
10501 * If we are going to change one or more of the flags that are
10502 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP,
10503 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and
10504 * IPIF_NOFAILOVER, we will take special action. This is
10505 * done by bring the ipif down, changing the flags and bringing
10506 * it back up again. For IPIF_NOFAILOVER, the act of bringing it
10507 * back up will trigger the address to be moved.
10508 *
10509 * If we are going to change IFF_NOACCEPT, we need to bring
10510 * all the ipifs down then bring them up again. The act of
10511 * bringing all the ipifs back up will trigger the local
10512 * ires being recreated with "no_accept" set/cleared.
10513 *
10514 * Note that ILLF_NOACCEPT is always set separately from the
10515 * other flags.
10516 */
10517 if ((turn_on|turn_off) &
10518 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP|
10519 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED|
10520 IPIF_NOFAILOVER)) {
10521 /*
10522 * ipif_down() will ire_delete bcast ire's for the subnet,
10523 * while the ire_identical_ref tracks the case of IRE_BROADCAST
10524 * entries shared between multiple ipifs on the same subnet.
10525 */
10526 if (((ipif->ipif_flags | turn_on) & IPIF_UP) &&
10527 !(turn_off & IPIF_UP)) {
10528 if (ipif->ipif_flags & IPIF_UP)
10529 ill->ill_logical_down = 1;
10530 turn_on &= ~IPIF_UP;
10531 }
10532 err = ipif_down(ipif, q, mp);
10533 ip1dbg(("ipif_down returns %d err ", err));
10534 if (err == EINPROGRESS)
10535 return (err);
10536 (void) ipif_down_tail(ipif);
10537 } else if ((turn_on|turn_off) & ILLF_NOACCEPT) {
10538 /*
10539 * If we can quiesce the ill, then continue. If not, then
10540 * ip_sioctl_flags_tail() will be called from
10541 * ipif_ill_refrele_tail().
10542 */
10543 ill_down_ipifs(ill, B_TRUE);
10544
10545 mutex_enter(&connp->conn_lock);
10546 mutex_enter(&ill->ill_lock);
10547 if (!ill_is_quiescent(ill)) {
10548 boolean_t success;
10549
10550 success = ipsq_pending_mp_add(connp, ill->ill_ipif,
10551 q, mp, ILL_DOWN);
10552 mutex_exit(&ill->ill_lock);
10553 mutex_exit(&connp->conn_lock);
10554 return (success ? EINPROGRESS : EINTR);
10555 }
10556 mutex_exit(&ill->ill_lock);
10557 mutex_exit(&connp->conn_lock);
10558 }
10559 return (ip_sioctl_flags_tail(ipif, flags, q, mp));
10560 }
10561
10562 static int
ip_sioctl_flags_tail(ipif_t * ipif,uint64_t flags,queue_t * q,mblk_t * mp)10563 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp)
10564 {
10565 ill_t *ill;
10566 phyint_t *phyi;
10567 uint64_t turn_on, turn_off;
10568 boolean_t phyint_flags_modified = B_FALSE;
10569 int err = 0;
10570 boolean_t set_linklocal = B_FALSE;
10571
10572 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n",
10573 ipif->ipif_ill->ill_name, ipif->ipif_id));
10574
10575 ASSERT(IAM_WRITER_IPIF(ipif));
10576
10577 ill = ipif->ipif_ill;
10578 phyi = ill->ill_phyint;
10579
10580 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10581
10582 /*
10583 * IFF_UP is handled separately.
10584 */
10585 turn_on &= ~IFF_UP;
10586 turn_off &= ~IFF_UP;
10587
10588 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
10589 phyint_flags_modified = B_TRUE;
10590
10591 /*
10592 * Now we change the flags. Track current value of
10593 * other flags in their respective places.
10594 */
10595 mutex_enter(&ill->ill_lock);
10596 mutex_enter(&phyi->phyint_lock);
10597 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
10598 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
10599 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
10600 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
10601 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
10602 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
10603 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) {
10604 set_linklocal = B_TRUE;
10605 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL;
10606 }
10607
10608 mutex_exit(&ill->ill_lock);
10609 mutex_exit(&phyi->phyint_lock);
10610
10611 if (set_linklocal)
10612 (void) ipif_setlinklocal(ipif);
10613
10614 /*
10615 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to
10616 * the kernel: if any of them has been set by userland, the interface
10617 * cannot be used for data traffic.
10618 */
10619 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
10620 ASSERT(!IS_IPMP(ill));
10621 /*
10622 * It's possible the ill is part of an "anonymous" IPMP group
10623 * rather than a real group. In that case, there are no other
10624 * interfaces in the group and thus no need for us to call
10625 * ipmp_phyint_refresh_active().
10626 */
10627 if (IS_UNDER_IPMP(ill))
10628 ipmp_phyint_refresh_active(phyi);
10629 }
10630
10631 if ((turn_on|turn_off) & ILLF_NOACCEPT) {
10632 /*
10633 * If the ILLF_NOACCEPT flag is changed, bring up all the
10634 * ipifs that were brought down.
10635 *
10636 * The routing sockets messages are sent as the result
10637 * of ill_up_ipifs(), further, SCTP's IPIF list was updated
10638 * as well.
10639 */
10640 err = ill_up_ipifs(ill, q, mp);
10641 } else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) {
10642 /*
10643 * XXX ipif_up really does not know whether a phyint flags
10644 * was modified or not. So, it sends up information on
10645 * only one routing sockets message. As we don't bring up
10646 * the interface and also set PHYI_ flags simultaneously
10647 * it should be okay.
10648 */
10649 err = ipif_up(ipif, q, mp);
10650 } else {
10651 /*
10652 * Make sure routing socket sees all changes to the flags.
10653 * ipif_up_done* handles this when we use ipif_up.
10654 */
10655 if (phyint_flags_modified) {
10656 if (phyi->phyint_illv4 != NULL) {
10657 ip_rts_ifmsg(phyi->phyint_illv4->
10658 ill_ipif, RTSQ_DEFAULT);
10659 }
10660 if (phyi->phyint_illv6 != NULL) {
10661 ip_rts_ifmsg(phyi->phyint_illv6->
10662 ill_ipif, RTSQ_DEFAULT);
10663 }
10664 } else {
10665 ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
10666 }
10667 /*
10668 * Update the flags in SCTP's IPIF list, ipif_up() will do
10669 * this in need_up case.
10670 */
10671 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
10672 }
10673
10674 /* The default multicast interface might have changed */
10675 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6);
10676 return (err);
10677 }
10678
10679 /*
10680 * Restart the flags operation now that the refcounts have dropped to zero.
10681 */
10682 /* ARGSUSED */
10683 int
ip_sioctl_flags_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10684 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10685 ip_ioctl_cmd_t *ipip, void *if_req)
10686 {
10687 uint64_t flags;
10688 struct ifreq *ifr = if_req;
10689 struct lifreq *lifr = if_req;
10690 uint64_t turn_on, turn_off;
10691
10692 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n",
10693 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10694
10695 if (ipip->ipi_cmd_type == IF_CMD) {
10696 /* cast to uint16_t prevents unwanted sign extension */
10697 flags = (uint16_t)ifr->ifr_flags;
10698 } else {
10699 flags = lifr->lifr_flags;
10700 }
10701
10702 /*
10703 * If this function call is a result of the ILLF_NOACCEPT flag
10704 * change, do not call ipif_down_tail(). See ip_sioctl_flags().
10705 */
10706 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10707 if (!((turn_on|turn_off) & ILLF_NOACCEPT))
10708 (void) ipif_down_tail(ipif);
10709
10710 return (ip_sioctl_flags_tail(ipif, flags, q, mp));
10711 }
10712
10713 /*
10714 * Can operate on either a module or a driver queue.
10715 */
10716 /* ARGSUSED */
10717 int
ip_sioctl_get_flags(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10718 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10719 ip_ioctl_cmd_t *ipip, void *if_req)
10720 {
10721 /*
10722 * Has the flags been set correctly till now ?
10723 */
10724 ill_t *ill = ipif->ipif_ill;
10725 phyint_t *phyi = ill->ill_phyint;
10726
10727 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n",
10728 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10729 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
10730 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
10731 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
10732
10733 /*
10734 * Need a lock since some flags can be set even when there are
10735 * references to the ipif.
10736 */
10737 mutex_enter(&ill->ill_lock);
10738 if (ipip->ipi_cmd_type == IF_CMD) {
10739 struct ifreq *ifr = (struct ifreq *)if_req;
10740
10741 /* Get interface flags (low 16 only). */
10742 ifr->ifr_flags = ((ipif->ipif_flags |
10743 ill->ill_flags | phyi->phyint_flags) & 0xffff);
10744 } else {
10745 struct lifreq *lifr = (struct lifreq *)if_req;
10746
10747 /* Get interface flags. */
10748 lifr->lifr_flags = ipif->ipif_flags |
10749 ill->ill_flags | phyi->phyint_flags;
10750 }
10751 mutex_exit(&ill->ill_lock);
10752 return (0);
10753 }
10754
10755 /*
10756 * We allow the MTU to be set on an ILL, but not have it be different
10757 * for different IPIFs since we don't actually send packets on IPIFs.
10758 */
10759 /* ARGSUSED */
10760 int
ip_sioctl_mtu(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10761 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10762 ip_ioctl_cmd_t *ipip, void *if_req)
10763 {
10764 int mtu;
10765 int ip_min_mtu;
10766 struct ifreq *ifr;
10767 struct lifreq *lifr;
10768 ill_t *ill;
10769
10770 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name,
10771 ipif->ipif_id, (void *)ipif));
10772 if (ipip->ipi_cmd_type == IF_CMD) {
10773 ifr = (struct ifreq *)if_req;
10774 mtu = ifr->ifr_metric;
10775 } else {
10776 lifr = (struct lifreq *)if_req;
10777 mtu = lifr->lifr_mtu;
10778 }
10779 /* Only allow for logical unit zero i.e. not on "bge0:17" */
10780 if (ipif->ipif_id != 0)
10781 return (EINVAL);
10782
10783 ill = ipif->ipif_ill;
10784 if (ipif->ipif_isv6)
10785 ip_min_mtu = IPV6_MIN_MTU;
10786 else
10787 ip_min_mtu = IP_MIN_MTU;
10788
10789 mutex_enter(&ill->ill_lock);
10790 if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) {
10791 mutex_exit(&ill->ill_lock);
10792 return (EINVAL);
10793 }
10794 /* Avoid increasing ill_mc_mtu */
10795 if (ill->ill_mc_mtu > mtu)
10796 ill->ill_mc_mtu = mtu;
10797
10798 /*
10799 * The dce and fragmentation code can handle changes to ill_mtu
10800 * concurrent with sending/fragmenting packets.
10801 */
10802 ill->ill_mtu = mtu;
10803 ill->ill_flags |= ILLF_FIXEDMTU;
10804 mutex_exit(&ill->ill_lock);
10805
10806 /*
10807 * Make sure all dce_generation checks find out
10808 * that ill_mtu/ill_mc_mtu has changed.
10809 */
10810 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst);
10811
10812 /*
10813 * Refresh IPMP meta-interface MTU if necessary.
10814 */
10815 if (IS_UNDER_IPMP(ill))
10816 ipmp_illgrp_refresh_mtu(ill->ill_grp);
10817
10818 /* Update the MTU in SCTP's list */
10819 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
10820 return (0);
10821 }
10822
10823 /* Get interface MTU. */
10824 /* ARGSUSED */
10825 int
ip_sioctl_get_mtu(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10826 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10827 ip_ioctl_cmd_t *ipip, void *if_req)
10828 {
10829 struct ifreq *ifr;
10830 struct lifreq *lifr;
10831
10832 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n",
10833 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10834
10835 /*
10836 * We allow a get on any logical interface even though the set
10837 * can only be done on logical unit 0.
10838 */
10839 if (ipip->ipi_cmd_type == IF_CMD) {
10840 ifr = (struct ifreq *)if_req;
10841 ifr->ifr_metric = ipif->ipif_ill->ill_mtu;
10842 } else {
10843 lifr = (struct lifreq *)if_req;
10844 lifr->lifr_mtu = ipif->ipif_ill->ill_mtu;
10845 }
10846 return (0);
10847 }
10848
10849 /* Set interface broadcast address. */
10850 /* ARGSUSED2 */
10851 int
ip_sioctl_brdaddr(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10852 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10853 ip_ioctl_cmd_t *ipip, void *if_req)
10854 {
10855 ipaddr_t addr;
10856 ire_t *ire;
10857 ill_t *ill = ipif->ipif_ill;
10858 ip_stack_t *ipst = ill->ill_ipst;
10859
10860 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name,
10861 ipif->ipif_id));
10862
10863 ASSERT(IAM_WRITER_IPIF(ipif));
10864 if (!(ipif->ipif_flags & IPIF_BROADCAST))
10865 return (EADDRNOTAVAIL);
10866
10867 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */
10868
10869 if (sin->sin_family != AF_INET)
10870 return (EAFNOSUPPORT);
10871
10872 addr = sin->sin_addr.s_addr;
10873
10874 if (ipif->ipif_flags & IPIF_UP) {
10875 /*
10876 * If we are already up, make sure the new
10877 * broadcast address makes sense. If it does,
10878 * there should be an IRE for it already.
10879 */
10880 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST,
10881 ill, ipif->ipif_zoneid, NULL,
10882 (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL);
10883 if (ire == NULL) {
10884 return (EINVAL);
10885 } else {
10886 ire_refrele(ire);
10887 }
10888 }
10889 /*
10890 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST
10891 * needs to already exist we never need to change the set of
10892 * IRE_BROADCASTs when we are UP.
10893 */
10894 if (addr != ipif->ipif_brd_addr)
10895 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr);
10896
10897 return (0);
10898 }
10899
10900 /* Get interface broadcast address. */
10901 /* ARGSUSED */
10902 int
ip_sioctl_get_brdaddr(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10903 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10904 ip_ioctl_cmd_t *ipip, void *if_req)
10905 {
10906 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n",
10907 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10908 if (!(ipif->ipif_flags & IPIF_BROADCAST))
10909 return (EADDRNOTAVAIL);
10910
10911 /* IPIF_BROADCAST not possible with IPv6 */
10912 ASSERT(!ipif->ipif_isv6);
10913 *sin = sin_null;
10914 sin->sin_family = AF_INET;
10915 sin->sin_addr.s_addr = ipif->ipif_brd_addr;
10916 return (0);
10917 }
10918
10919 /*
10920 * This routine is called to handle the SIOCS*IFNETMASK IOCTL.
10921 */
10922 /* ARGSUSED */
10923 int
ip_sioctl_netmask(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10924 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10925 ip_ioctl_cmd_t *ipip, void *if_req)
10926 {
10927 int err = 0;
10928 in6_addr_t v6mask;
10929
10930 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n",
10931 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10932
10933 ASSERT(IAM_WRITER_IPIF(ipif));
10934
10935 if (ipif->ipif_isv6) {
10936 sin6_t *sin6;
10937
10938 if (sin->sin_family != AF_INET6)
10939 return (EAFNOSUPPORT);
10940
10941 sin6 = (sin6_t *)sin;
10942 v6mask = sin6->sin6_addr;
10943 } else {
10944 ipaddr_t mask;
10945
10946 if (sin->sin_family != AF_INET)
10947 return (EAFNOSUPPORT);
10948
10949 mask = sin->sin_addr.s_addr;
10950 if (!ip_contiguous_mask(ntohl(mask)))
10951 return (ENOTSUP);
10952 V4MASK_TO_V6(mask, v6mask);
10953 }
10954
10955 /*
10956 * No big deal if the interface isn't already up, or the mask
10957 * isn't really changing, or this is pt-pt.
10958 */
10959 if (!(ipif->ipif_flags & IPIF_UP) ||
10960 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) ||
10961 (ipif->ipif_flags & IPIF_POINTOPOINT)) {
10962 ipif->ipif_v6net_mask = v6mask;
10963 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10964 V6_MASK_COPY(ipif->ipif_v6lcl_addr,
10965 ipif->ipif_v6net_mask,
10966 ipif->ipif_v6subnet);
10967 }
10968 return (0);
10969 }
10970 /*
10971 * Make sure we have valid net and subnet broadcast ire's
10972 * for the old netmask, if needed by other logical interfaces.
10973 */
10974 err = ipif_logical_down(ipif, q, mp);
10975 if (err == EINPROGRESS)
10976 return (err);
10977 (void) ipif_down_tail(ipif);
10978 err = ip_sioctl_netmask_tail(ipif, sin, q, mp);
10979 return (err);
10980 }
10981
10982 static int
ip_sioctl_netmask_tail(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp)10983 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp)
10984 {
10985 in6_addr_t v6mask;
10986 int err = 0;
10987
10988 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n",
10989 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10990
10991 if (ipif->ipif_isv6) {
10992 sin6_t *sin6;
10993
10994 sin6 = (sin6_t *)sin;
10995 v6mask = sin6->sin6_addr;
10996 } else {
10997 ipaddr_t mask;
10998
10999 mask = sin->sin_addr.s_addr;
11000 V4MASK_TO_V6(mask, v6mask);
11001 }
11002
11003 ipif->ipif_v6net_mask = v6mask;
11004 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11005 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
11006 ipif->ipif_v6subnet);
11007 }
11008 err = ipif_up(ipif, q, mp);
11009
11010 if (err == 0 || err == EINPROGRESS) {
11011 /*
11012 * The interface must be DL_BOUND if this packet has to
11013 * go out on the wire. Since we only go through a logical
11014 * down and are bound with the driver during an internal
11015 * down/up that is satisfied.
11016 */
11017 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) {
11018 /* Potentially broadcast an address mask reply. */
11019 ipif_mask_reply(ipif);
11020 }
11021 }
11022 return (err);
11023 }
11024
11025 /* ARGSUSED */
11026 int
ip_sioctl_netmask_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11027 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11028 ip_ioctl_cmd_t *ipip, void *if_req)
11029 {
11030 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n",
11031 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11032 (void) ipif_down_tail(ipif);
11033 return (ip_sioctl_netmask_tail(ipif, sin, q, mp));
11034 }
11035
11036 /* Get interface net mask. */
11037 /* ARGSUSED */
11038 int
ip_sioctl_get_netmask(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11039 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11040 ip_ioctl_cmd_t *ipip, void *if_req)
11041 {
11042 struct lifreq *lifr = (struct lifreq *)if_req;
11043 struct sockaddr_in6 *sin6 = (sin6_t *)sin;
11044
11045 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n",
11046 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11047
11048 /*
11049 * net mask can't change since we have a reference to the ipif.
11050 */
11051 if (ipif->ipif_isv6) {
11052 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11053 *sin6 = sin6_null;
11054 sin6->sin6_family = AF_INET6;
11055 sin6->sin6_addr = ipif->ipif_v6net_mask;
11056 lifr->lifr_addrlen =
11057 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11058 } else {
11059 *sin = sin_null;
11060 sin->sin_family = AF_INET;
11061 sin->sin_addr.s_addr = ipif->ipif_net_mask;
11062 if (ipip->ipi_cmd_type == LIF_CMD) {
11063 lifr->lifr_addrlen =
11064 ip_mask_to_plen(ipif->ipif_net_mask);
11065 }
11066 }
11067 return (0);
11068 }
11069
11070 /* ARGSUSED */
11071 int
ip_sioctl_metric(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11072 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11073 ip_ioctl_cmd_t *ipip, void *if_req)
11074 {
11075 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n",
11076 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11077
11078 /*
11079 * Since no applications should ever be setting metrics on underlying
11080 * interfaces, we explicitly fail to smoke 'em out.
11081 */
11082 if (IS_UNDER_IPMP(ipif->ipif_ill))
11083 return (EINVAL);
11084
11085 /*
11086 * Set interface metric. We don't use this for
11087 * anything but we keep track of it in case it is
11088 * important to routing applications or such.
11089 */
11090 if (ipip->ipi_cmd_type == IF_CMD) {
11091 struct ifreq *ifr;
11092
11093 ifr = (struct ifreq *)if_req;
11094 ipif->ipif_ill->ill_metric = ifr->ifr_metric;
11095 } else {
11096 struct lifreq *lifr;
11097
11098 lifr = (struct lifreq *)if_req;
11099 ipif->ipif_ill->ill_metric = lifr->lifr_metric;
11100 }
11101 return (0);
11102 }
11103
11104 /* ARGSUSED */
11105 int
ip_sioctl_get_metric(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11106 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11107 ip_ioctl_cmd_t *ipip, void *if_req)
11108 {
11109 /* Get interface metric. */
11110 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n",
11111 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11112
11113 if (ipip->ipi_cmd_type == IF_CMD) {
11114 struct ifreq *ifr;
11115
11116 ifr = (struct ifreq *)if_req;
11117 ifr->ifr_metric = ipif->ipif_ill->ill_metric;
11118 } else {
11119 struct lifreq *lifr;
11120
11121 lifr = (struct lifreq *)if_req;
11122 lifr->lifr_metric = ipif->ipif_ill->ill_metric;
11123 }
11124
11125 return (0);
11126 }
11127
11128 /* ARGSUSED */
11129 int
ip_sioctl_muxid(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11130 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11131 ip_ioctl_cmd_t *ipip, void *if_req)
11132 {
11133 int arp_muxid;
11134
11135 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n",
11136 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11137 /*
11138 * Set the muxid returned from I_PLINK.
11139 */
11140 if (ipip->ipi_cmd_type == IF_CMD) {
11141 struct ifreq *ifr = (struct ifreq *)if_req;
11142
11143 ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid;
11144 arp_muxid = ifr->ifr_arp_muxid;
11145 } else {
11146 struct lifreq *lifr = (struct lifreq *)if_req;
11147
11148 ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid;
11149 arp_muxid = lifr->lifr_arp_muxid;
11150 }
11151 arl_set_muxid(ipif->ipif_ill, arp_muxid);
11152 return (0);
11153 }
11154
11155 /* ARGSUSED */
11156 int
ip_sioctl_get_muxid(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11157 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11158 ip_ioctl_cmd_t *ipip, void *if_req)
11159 {
11160 int arp_muxid = 0;
11161
11162 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n",
11163 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11164 /*
11165 * Get the muxid saved in ill for I_PUNLINK.
11166 */
11167 arp_muxid = arl_get_muxid(ipif->ipif_ill);
11168 if (ipip->ipi_cmd_type == IF_CMD) {
11169 struct ifreq *ifr = (struct ifreq *)if_req;
11170
11171 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid;
11172 ifr->ifr_arp_muxid = arp_muxid;
11173 } else {
11174 struct lifreq *lifr = (struct lifreq *)if_req;
11175
11176 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid;
11177 lifr->lifr_arp_muxid = arp_muxid;
11178 }
11179 return (0);
11180 }
11181
11182 /*
11183 * Set the subnet prefix. Does not modify the broadcast address.
11184 */
11185 /* ARGSUSED */
11186 int
ip_sioctl_subnet(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11187 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11188 ip_ioctl_cmd_t *ipip, void *if_req)
11189 {
11190 int err = 0;
11191 in6_addr_t v6addr;
11192 in6_addr_t v6mask;
11193 boolean_t need_up = B_FALSE;
11194 int addrlen;
11195
11196 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n",
11197 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11198
11199 ASSERT(IAM_WRITER_IPIF(ipif));
11200 addrlen = ((struct lifreq *)if_req)->lifr_addrlen;
11201
11202 if (ipif->ipif_isv6) {
11203 sin6_t *sin6;
11204
11205 if (sin->sin_family != AF_INET6)
11206 return (EAFNOSUPPORT);
11207
11208 sin6 = (sin6_t *)sin;
11209 v6addr = sin6->sin6_addr;
11210 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones))
11211 return (EADDRNOTAVAIL);
11212 } else {
11213 ipaddr_t addr;
11214
11215 if (sin->sin_family != AF_INET)
11216 return (EAFNOSUPPORT);
11217
11218 addr = sin->sin_addr.s_addr;
11219 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF))
11220 return (EADDRNOTAVAIL);
11221 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11222 /* Add 96 bits */
11223 addrlen += IPV6_ABITS - IP_ABITS;
11224 }
11225
11226 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL)
11227 return (EINVAL);
11228
11229 /* Check if bits in the address is set past the mask */
11230 if (!V6_MASK_EQ(v6addr, v6mask, v6addr))
11231 return (EINVAL);
11232
11233 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) &&
11234 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask))
11235 return (0); /* No change */
11236
11237 if (ipif->ipif_flags & IPIF_UP) {
11238 /*
11239 * If the interface is already marked up,
11240 * we call ipif_down which will take care
11241 * of ditching any IREs that have been set
11242 * up based on the old interface address.
11243 */
11244 err = ipif_logical_down(ipif, q, mp);
11245 if (err == EINPROGRESS)
11246 return (err);
11247 (void) ipif_down_tail(ipif);
11248 need_up = B_TRUE;
11249 }
11250
11251 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up);
11252 return (err);
11253 }
11254
11255 static int
ip_sioctl_subnet_tail(ipif_t * ipif,in6_addr_t v6addr,in6_addr_t v6mask,queue_t * q,mblk_t * mp,boolean_t need_up)11256 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask,
11257 queue_t *q, mblk_t *mp, boolean_t need_up)
11258 {
11259 ill_t *ill = ipif->ipif_ill;
11260 int err = 0;
11261
11262 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n",
11263 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11264
11265 /* Set the new address. */
11266 mutex_enter(&ill->ill_lock);
11267 ipif->ipif_v6net_mask = v6mask;
11268 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11269 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask,
11270 ipif->ipif_v6subnet);
11271 }
11272 mutex_exit(&ill->ill_lock);
11273
11274 if (need_up) {
11275 /*
11276 * Now bring the interface back up. If this
11277 * is the only IPIF for the ILL, ipif_up
11278 * will have to re-bind to the device, so
11279 * we may get back EINPROGRESS, in which
11280 * case, this IOCTL will get completed in
11281 * ip_rput_dlpi when we see the DL_BIND_ACK.
11282 */
11283 err = ipif_up(ipif, q, mp);
11284 if (err == EINPROGRESS)
11285 return (err);
11286 }
11287 return (err);
11288 }
11289
11290 /* ARGSUSED */
11291 int
ip_sioctl_subnet_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11292 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11293 ip_ioctl_cmd_t *ipip, void *if_req)
11294 {
11295 int addrlen;
11296 in6_addr_t v6addr;
11297 in6_addr_t v6mask;
11298 struct lifreq *lifr = (struct lifreq *)if_req;
11299
11300 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n",
11301 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11302 (void) ipif_down_tail(ipif);
11303
11304 addrlen = lifr->lifr_addrlen;
11305 if (ipif->ipif_isv6) {
11306 sin6_t *sin6;
11307
11308 sin6 = (sin6_t *)sin;
11309 v6addr = sin6->sin6_addr;
11310 } else {
11311 ipaddr_t addr;
11312
11313 addr = sin->sin_addr.s_addr;
11314 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11315 addrlen += IPV6_ABITS - IP_ABITS;
11316 }
11317 (void) ip_plen_to_mask_v6(addrlen, &v6mask);
11318
11319 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE));
11320 }
11321
11322 /* ARGSUSED */
11323 int
ip_sioctl_get_subnet(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11324 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11325 ip_ioctl_cmd_t *ipip, void *if_req)
11326 {
11327 struct lifreq *lifr = (struct lifreq *)if_req;
11328 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin;
11329
11330 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n",
11331 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11332 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11333
11334 if (ipif->ipif_isv6) {
11335 *sin6 = sin6_null;
11336 sin6->sin6_family = AF_INET6;
11337 sin6->sin6_addr = ipif->ipif_v6subnet;
11338 lifr->lifr_addrlen =
11339 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11340 } else {
11341 *sin = sin_null;
11342 sin->sin_family = AF_INET;
11343 sin->sin_addr.s_addr = ipif->ipif_subnet;
11344 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask);
11345 }
11346 return (0);
11347 }
11348
11349 /*
11350 * Set the IPv6 address token.
11351 */
11352 /* ARGSUSED */
11353 int
ip_sioctl_token(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipi,void * if_req)11354 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11355 ip_ioctl_cmd_t *ipi, void *if_req)
11356 {
11357 ill_t *ill = ipif->ipif_ill;
11358 int err;
11359 in6_addr_t v6addr;
11360 in6_addr_t v6mask;
11361 boolean_t need_up = B_FALSE;
11362 int i;
11363 sin6_t *sin6 = (sin6_t *)sin;
11364 struct lifreq *lifr = (struct lifreq *)if_req;
11365 int addrlen;
11366
11367 ip1dbg(("ip_sioctl_token(%s:%u %p)\n",
11368 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11369 ASSERT(IAM_WRITER_IPIF(ipif));
11370
11371 addrlen = lifr->lifr_addrlen;
11372 /* Only allow for logical unit zero i.e. not on "le0:17" */
11373 if (ipif->ipif_id != 0)
11374 return (EINVAL);
11375
11376 if (!ipif->ipif_isv6)
11377 return (EINVAL);
11378
11379 if (addrlen > IPV6_ABITS)
11380 return (EINVAL);
11381
11382 v6addr = sin6->sin6_addr;
11383
11384 /*
11385 * The length of the token is the length from the end. To get
11386 * the proper mask for this, compute the mask of the bits not
11387 * in the token; ie. the prefix, and then xor to get the mask.
11388 */
11389 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL)
11390 return (EINVAL);
11391 for (i = 0; i < 4; i++) {
11392 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
11393 }
11394
11395 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) &&
11396 ill->ill_token_length == addrlen)
11397 return (0); /* No change */
11398
11399 if (ipif->ipif_flags & IPIF_UP) {
11400 err = ipif_logical_down(ipif, q, mp);
11401 if (err == EINPROGRESS)
11402 return (err);
11403 (void) ipif_down_tail(ipif);
11404 need_up = B_TRUE;
11405 }
11406 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up);
11407 return (err);
11408 }
11409
11410 static int
ip_sioctl_token_tail(ipif_t * ipif,sin6_t * sin6,int addrlen,queue_t * q,mblk_t * mp,boolean_t need_up)11411 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q,
11412 mblk_t *mp, boolean_t need_up)
11413 {
11414 in6_addr_t v6addr;
11415 in6_addr_t v6mask;
11416 ill_t *ill = ipif->ipif_ill;
11417 int i;
11418 int err = 0;
11419
11420 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n",
11421 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11422 v6addr = sin6->sin6_addr;
11423 /*
11424 * The length of the token is the length from the end. To get
11425 * the proper mask for this, compute the mask of the bits not
11426 * in the token; ie. the prefix, and then xor to get the mask.
11427 */
11428 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask);
11429 for (i = 0; i < 4; i++)
11430 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
11431
11432 mutex_enter(&ill->ill_lock);
11433 V6_MASK_COPY(v6addr, v6mask, ill->ill_token);
11434 ill->ill_token_length = addrlen;
11435 ill->ill_manual_token = 1;
11436
11437 /* Reconfigure the link-local address based on this new token */
11438 ipif_setlinklocal(ill->ill_ipif);
11439
11440 mutex_exit(&ill->ill_lock);
11441
11442 if (need_up) {
11443 /*
11444 * Now bring the interface back up. If this
11445 * is the only IPIF for the ILL, ipif_up
11446 * will have to re-bind to the device, so
11447 * we may get back EINPROGRESS, in which
11448 * case, this IOCTL will get completed in
11449 * ip_rput_dlpi when we see the DL_BIND_ACK.
11450 */
11451 err = ipif_up(ipif, q, mp);
11452 if (err == EINPROGRESS)
11453 return (err);
11454 }
11455 return (err);
11456 }
11457
11458 /* ARGSUSED */
11459 int
ip_sioctl_get_token(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipi,void * if_req)11460 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11461 ip_ioctl_cmd_t *ipi, void *if_req)
11462 {
11463 ill_t *ill;
11464 sin6_t *sin6 = (sin6_t *)sin;
11465 struct lifreq *lifr = (struct lifreq *)if_req;
11466
11467 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n",
11468 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11469 if (ipif->ipif_id != 0)
11470 return (EINVAL);
11471
11472 ill = ipif->ipif_ill;
11473 if (!ill->ill_isv6)
11474 return (ENXIO);
11475
11476 *sin6 = sin6_null;
11477 sin6->sin6_family = AF_INET6;
11478 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token));
11479 sin6->sin6_addr = ill->ill_token;
11480 lifr->lifr_addrlen = ill->ill_token_length;
11481 return (0);
11482 }
11483
11484 /*
11485 * Set (hardware) link specific information that might override
11486 * what was acquired through the DL_INFO_ACK.
11487 */
11488 /* ARGSUSED */
11489 int
ip_sioctl_lnkinfo(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipi,void * if_req)11490 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11491 ip_ioctl_cmd_t *ipi, void *if_req)
11492 {
11493 ill_t *ill = ipif->ipif_ill;
11494 int ip_min_mtu;
11495 struct lifreq *lifr = (struct lifreq *)if_req;
11496 lif_ifinfo_req_t *lir;
11497
11498 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n",
11499 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11500 lir = &lifr->lifr_ifinfo;
11501 ASSERT(IAM_WRITER_IPIF(ipif));
11502
11503 /* Only allow for logical unit zero i.e. not on "bge0:17" */
11504 if (ipif->ipif_id != 0)
11505 return (EINVAL);
11506
11507 /* Set interface MTU. */
11508 if (ipif->ipif_isv6)
11509 ip_min_mtu = IPV6_MIN_MTU;
11510 else
11511 ip_min_mtu = IP_MIN_MTU;
11512
11513 /*
11514 * Verify values before we set anything. Allow zero to
11515 * mean unspecified.
11516 *
11517 * XXX We should be able to set the user-defined lir_mtu to some value
11518 * that is greater than ill_current_frag but less than ill_max_frag- the
11519 * ill_max_frag value tells us the max MTU that can be handled by the
11520 * datalink, whereas the ill_current_frag is dynamically computed for
11521 * some link-types like tunnels, based on the tunnel PMTU. However,
11522 * since there is currently no way of distinguishing between
11523 * administratively fixed link mtu values (e.g., those set via
11524 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered
11525 * for tunnels) we conservatively choose the ill_current_frag as the
11526 * upper-bound.
11527 */
11528 if (lir->lir_maxmtu != 0 &&
11529 (lir->lir_maxmtu > ill->ill_current_frag ||
11530 lir->lir_maxmtu < ip_min_mtu))
11531 return (EINVAL);
11532 if (lir->lir_reachtime != 0 &&
11533 lir->lir_reachtime > ND_MAX_REACHTIME)
11534 return (EINVAL);
11535 if (lir->lir_reachretrans != 0 &&
11536 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME)
11537 return (EINVAL);
11538
11539 mutex_enter(&ill->ill_lock);
11540 /*
11541 * The dce and fragmentation code can handle changes to ill_mtu
11542 * concurrent with sending/fragmenting packets.
11543 */
11544 if (lir->lir_maxmtu != 0)
11545 ill->ill_user_mtu = lir->lir_maxmtu;
11546
11547 if (lir->lir_reachtime != 0)
11548 ill->ill_reachable_time = lir->lir_reachtime;
11549
11550 if (lir->lir_reachretrans != 0)
11551 ill->ill_reachable_retrans_time = lir->lir_reachretrans;
11552
11553 ill->ill_max_hops = lir->lir_maxhops;
11554 ill->ill_max_buf = ND_MAX_Q;
11555 if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) {
11556 /*
11557 * ill_mtu is the actual interface MTU, obtained as the min
11558 * of user-configured mtu and the value announced by the
11559 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since
11560 * we have already made the choice of requiring
11561 * ill_user_mtu < ill_current_frag by the time we get here,
11562 * the ill_mtu effectively gets assigned to the ill_user_mtu
11563 * here.
11564 */
11565 ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu);
11566 ill->ill_mc_mtu = MIN(ill->ill_mc_mtu, ill->ill_user_mtu);
11567 }
11568 mutex_exit(&ill->ill_lock);
11569
11570 /*
11571 * Make sure all dce_generation checks find out
11572 * that ill_mtu/ill_mc_mtu has changed.
11573 */
11574 if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0))
11575 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst);
11576
11577 /*
11578 * Refresh IPMP meta-interface MTU if necessary.
11579 */
11580 if (IS_UNDER_IPMP(ill))
11581 ipmp_illgrp_refresh_mtu(ill->ill_grp);
11582
11583 return (0);
11584 }
11585
11586 /* ARGSUSED */
11587 int
ip_sioctl_get_lnkinfo(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipi,void * if_req)11588 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11589 ip_ioctl_cmd_t *ipi, void *if_req)
11590 {
11591 struct lif_ifinfo_req *lir;
11592 ill_t *ill = ipif->ipif_ill;
11593
11594 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n",
11595 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11596 if (ipif->ipif_id != 0)
11597 return (EINVAL);
11598
11599 lir = &((struct lifreq *)if_req)->lifr_ifinfo;
11600 lir->lir_maxhops = ill->ill_max_hops;
11601 lir->lir_reachtime = ill->ill_reachable_time;
11602 lir->lir_reachretrans = ill->ill_reachable_retrans_time;
11603 lir->lir_maxmtu = ill->ill_mtu;
11604
11605 return (0);
11606 }
11607
11608 /*
11609 * Return best guess as to the subnet mask for the specified address.
11610 * Based on the subnet masks for all the configured interfaces.
11611 *
11612 * We end up returning a zero mask in the case of default, multicast or
11613 * experimental.
11614 */
11615 static ipaddr_t
ip_subnet_mask(ipaddr_t addr,ipif_t ** ipifp,ip_stack_t * ipst)11616 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst)
11617 {
11618 ipaddr_t net_mask;
11619 ill_t *ill;
11620 ipif_t *ipif;
11621 ill_walk_context_t ctx;
11622 ipif_t *fallback_ipif = NULL;
11623
11624 net_mask = ip_net_mask(addr);
11625 if (net_mask == 0) {
11626 *ipifp = NULL;
11627 return (0);
11628 }
11629
11630 /* Let's check to see if this is maybe a local subnet route. */
11631 /* this function only applies to IPv4 interfaces */
11632 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
11633 ill = ILL_START_WALK_V4(&ctx, ipst);
11634 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
11635 mutex_enter(&ill->ill_lock);
11636 for (ipif = ill->ill_ipif; ipif != NULL;
11637 ipif = ipif->ipif_next) {
11638 if (IPIF_IS_CONDEMNED(ipif))
11639 continue;
11640 if (!(ipif->ipif_flags & IPIF_UP))
11641 continue;
11642 if ((ipif->ipif_subnet & net_mask) ==
11643 (addr & net_mask)) {
11644 /*
11645 * Don't trust pt-pt interfaces if there are
11646 * other interfaces.
11647 */
11648 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
11649 if (fallback_ipif == NULL) {
11650 ipif_refhold_locked(ipif);
11651 fallback_ipif = ipif;
11652 }
11653 continue;
11654 }
11655
11656 /*
11657 * Fine. Just assume the same net mask as the
11658 * directly attached subnet interface is using.
11659 */
11660 ipif_refhold_locked(ipif);
11661 mutex_exit(&ill->ill_lock);
11662 rw_exit(&ipst->ips_ill_g_lock);
11663 if (fallback_ipif != NULL)
11664 ipif_refrele(fallback_ipif);
11665 *ipifp = ipif;
11666 return (ipif->ipif_net_mask);
11667 }
11668 }
11669 mutex_exit(&ill->ill_lock);
11670 }
11671 rw_exit(&ipst->ips_ill_g_lock);
11672
11673 *ipifp = fallback_ipif;
11674 return ((fallback_ipif != NULL) ?
11675 fallback_ipif->ipif_net_mask : net_mask);
11676 }
11677
11678 /*
11679 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl.
11680 */
11681 static void
ip_wput_ioctl(queue_t * q,mblk_t * mp)11682 ip_wput_ioctl(queue_t *q, mblk_t *mp)
11683 {
11684 IOCP iocp;
11685 ipft_t *ipft;
11686 ipllc_t *ipllc;
11687 mblk_t *mp1;
11688 cred_t *cr;
11689 int error = 0;
11690 conn_t *connp;
11691
11692 ip1dbg(("ip_wput_ioctl"));
11693 iocp = (IOCP)mp->b_rptr;
11694 mp1 = mp->b_cont;
11695 if (mp1 == NULL) {
11696 iocp->ioc_error = EINVAL;
11697 mp->b_datap->db_type = M_IOCNAK;
11698 iocp->ioc_count = 0;
11699 qreply(q, mp);
11700 return;
11701 }
11702
11703 /*
11704 * These IOCTLs provide various control capabilities to
11705 * upstream agents such as ULPs and processes. There
11706 * are currently two such IOCTLs implemented. They
11707 * are used by TCP to provide update information for
11708 * existing IREs and to forcibly delete an IRE for a
11709 * host that is not responding, thereby forcing an
11710 * attempt at a new route.
11711 */
11712 iocp->ioc_error = EINVAL;
11713 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd)))
11714 goto done;
11715
11716 ipllc = (ipllc_t *)mp1->b_rptr;
11717 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) {
11718 if (ipllc->ipllc_cmd == ipft->ipft_cmd)
11719 break;
11720 }
11721 /*
11722 * prefer credential from mblk over ioctl;
11723 * see ip_sioctl_copyin_setup
11724 */
11725 cr = msg_getcred(mp, NULL);
11726 if (cr == NULL)
11727 cr = iocp->ioc_cr;
11728
11729 /*
11730 * Refhold the conn in case the request gets queued up in some lookup
11731 */
11732 ASSERT(CONN_Q(q));
11733 connp = Q_TO_CONN(q);
11734 CONN_INC_REF(connp);
11735 CONN_INC_IOCTLREF(connp);
11736 if (ipft->ipft_pfi &&
11737 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size ||
11738 pullupmsg(mp1, ipft->ipft_min_size))) {
11739 error = (*ipft->ipft_pfi)(q,
11740 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr);
11741 }
11742 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) {
11743 /*
11744 * CONN_OPER_PENDING_DONE happens in the function called
11745 * through ipft_pfi above.
11746 */
11747 return;
11748 }
11749
11750 CONN_DEC_IOCTLREF(connp);
11751 CONN_OPER_PENDING_DONE(connp);
11752 if (ipft->ipft_flags & IPFT_F_NO_REPLY) {
11753 freemsg(mp);
11754 return;
11755 }
11756 iocp->ioc_error = error;
11757
11758 done:
11759 mp->b_datap->db_type = M_IOCACK;
11760 if (iocp->ioc_error)
11761 iocp->ioc_count = 0;
11762 qreply(q, mp);
11763 }
11764
11765 /*
11766 * Assign a unique id for the ipif. This is used by sctp_addr.c
11767 * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures.
11768 */
11769 static void
ipif_assign_seqid(ipif_t * ipif)11770 ipif_assign_seqid(ipif_t *ipif)
11771 {
11772 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
11773
11774 ipif->ipif_seqid = atomic_inc_64_nv(&ipst->ips_ipif_g_seqid);
11775 }
11776
11777 /*
11778 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are
11779 * administratively down (i.e., no DAD), of the same type, and locked. Note
11780 * that the clone is complete -- including the seqid -- and the expectation is
11781 * that the caller will either free or overwrite `sipif' before it's unlocked.
11782 */
11783 static void
ipif_clone(const ipif_t * sipif,ipif_t * dipif)11784 ipif_clone(const ipif_t *sipif, ipif_t *dipif)
11785 {
11786 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock));
11787 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock));
11788 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
11789 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
11790 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type);
11791
11792 dipif->ipif_flags = sipif->ipif_flags;
11793 dipif->ipif_zoneid = sipif->ipif_zoneid;
11794 dipif->ipif_v6subnet = sipif->ipif_v6subnet;
11795 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr;
11796 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask;
11797 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr;
11798 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr;
11799
11800 /*
11801 * As per the comment atop the function, we assume that these sipif
11802 * fields will be changed before sipif is unlocked.
11803 */
11804 dipif->ipif_seqid = sipif->ipif_seqid;
11805 dipif->ipif_state_flags = sipif->ipif_state_flags;
11806 }
11807
11808 /*
11809 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif'
11810 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin
11811 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then
11812 * transfer the xop to `dipif'. Requires that all ipifs are administratively
11813 * down (i.e., no DAD), of the same type, and unlocked.
11814 */
11815 static void
ipif_transfer(ipif_t * sipif,ipif_t * dipif,ipif_t * virgipif)11816 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif)
11817 {
11818 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq;
11819 ipxop_t *ipx = ipsq->ipsq_xop;
11820
11821 ASSERT(sipif != dipif);
11822 ASSERT(sipif != virgipif);
11823
11824 /*
11825 * Grab all of the locks that protect the ipif in a defined order.
11826 */
11827 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
11828
11829 ipif_clone(sipif, dipif);
11830 if (virgipif != NULL) {
11831 ipif_clone(virgipif, sipif);
11832 mi_free(virgipif);
11833 }
11834
11835 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
11836
11837 /*
11838 * Transfer ownership of the current xop, if necessary.
11839 */
11840 if (ipx->ipx_current_ipif == sipif) {
11841 ASSERT(ipx->ipx_pending_ipif == NULL);
11842 mutex_enter(&ipx->ipx_lock);
11843 ipx->ipx_current_ipif = dipif;
11844 mutex_exit(&ipx->ipx_lock);
11845 }
11846
11847 if (virgipif == NULL)
11848 mi_free(sipif);
11849 }
11850
11851 /*
11852 * checks if:
11853 * - <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and
11854 * - logical interface is within the allowed range
11855 */
11856 static int
is_lifname_valid(ill_t * ill,unsigned int ipif_id)11857 is_lifname_valid(ill_t *ill, unsigned int ipif_id)
11858 {
11859 if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ)
11860 return (ENAMETOOLONG);
11861
11862 if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if)
11863 return (ERANGE);
11864 return (0);
11865 }
11866
11867 /*
11868 * Insert the ipif, so that the list of ipifs on the ill will be sorted
11869 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will
11870 * be inserted into the first space available in the list. The value of
11871 * ipif_id will then be set to the appropriate value for its position.
11872 */
11873 static int
ipif_insert(ipif_t * ipif,boolean_t acquire_g_lock)11874 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock)
11875 {
11876 ill_t *ill;
11877 ipif_t *tipif;
11878 ipif_t **tipifp;
11879 int id, err;
11880 ip_stack_t *ipst;
11881
11882 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK ||
11883 IAM_WRITER_IPIF(ipif));
11884
11885 ill = ipif->ipif_ill;
11886 ASSERT(ill != NULL);
11887 ipst = ill->ill_ipst;
11888
11889 /*
11890 * In the case of lo0:0 we already hold the ill_g_lock.
11891 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate ->
11892 * ipif_insert.
11893 */
11894 if (acquire_g_lock)
11895 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
11896 mutex_enter(&ill->ill_lock);
11897 id = ipif->ipif_id;
11898 tipifp = &(ill->ill_ipif);
11899 if (id == -1) { /* need to find a real id */
11900 id = 0;
11901 while ((tipif = *tipifp) != NULL) {
11902 ASSERT(tipif->ipif_id >= id);
11903 if (tipif->ipif_id != id)
11904 break; /* non-consecutive id */
11905 id++;
11906 tipifp = &(tipif->ipif_next);
11907 }
11908 if ((err = is_lifname_valid(ill, id)) != 0) {
11909 mutex_exit(&ill->ill_lock);
11910 if (acquire_g_lock)
11911 rw_exit(&ipst->ips_ill_g_lock);
11912 return (err);
11913 }
11914 ipif->ipif_id = id; /* assign new id */
11915 } else if ((err = is_lifname_valid(ill, id)) == 0) {
11916 /* we have a real id; insert ipif in the right place */
11917 while ((tipif = *tipifp) != NULL) {
11918 ASSERT(tipif->ipif_id != id);
11919 if (tipif->ipif_id > id)
11920 break; /* found correct location */
11921 tipifp = &(tipif->ipif_next);
11922 }
11923 } else {
11924 mutex_exit(&ill->ill_lock);
11925 if (acquire_g_lock)
11926 rw_exit(&ipst->ips_ill_g_lock);
11927 return (err);
11928 }
11929
11930 ASSERT(tipifp != &(ill->ill_ipif) || id == 0);
11931
11932 ipif->ipif_next = tipif;
11933 *tipifp = ipif;
11934 mutex_exit(&ill->ill_lock);
11935 if (acquire_g_lock)
11936 rw_exit(&ipst->ips_ill_g_lock);
11937
11938 return (0);
11939 }
11940
11941 static void
ipif_remove(ipif_t * ipif)11942 ipif_remove(ipif_t *ipif)
11943 {
11944 ipif_t **ipifp;
11945 ill_t *ill = ipif->ipif_ill;
11946
11947 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock));
11948
11949 mutex_enter(&ill->ill_lock);
11950 ipifp = &ill->ill_ipif;
11951 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
11952 if (*ipifp == ipif) {
11953 *ipifp = ipif->ipif_next;
11954 break;
11955 }
11956 }
11957 mutex_exit(&ill->ill_lock);
11958 }
11959
11960 /*
11961 * Allocate and initialize a new interface control structure. (Always
11962 * called as writer.)
11963 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill
11964 * is not part of the global linked list of ills. ipif_seqid is unique
11965 * in the system and to preserve the uniqueness, it is assigned only
11966 * when ill becomes part of the global list. At that point ill will
11967 * have a name. If it doesn't get assigned here, it will get assigned
11968 * in ipif_set_values() as part of SIOCSLIFNAME processing.
11969 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set
11970 * the interface flags or any other information from the DL_INFO_ACK for
11971 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at
11972 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the
11973 * second DL_INFO_ACK comes in from the driver.
11974 */
11975 static ipif_t *
ipif_allocate(ill_t * ill,int id,uint_t ire_type,boolean_t initialize,boolean_t insert,int * errorp)11976 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize,
11977 boolean_t insert, int *errorp)
11978 {
11979 int err;
11980 ipif_t *ipif;
11981 ip_stack_t *ipst = ill->ill_ipst;
11982
11983 ip1dbg(("ipif_allocate(%s:%d ill %p)\n",
11984 ill->ill_name, id, (void *)ill));
11985 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill));
11986
11987 if (errorp != NULL)
11988 *errorp = 0;
11989
11990 if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) {
11991 if (errorp != NULL)
11992 *errorp = ENOMEM;
11993 return (NULL);
11994 }
11995 *ipif = ipif_zero; /* start clean */
11996
11997 ipif->ipif_ill = ill;
11998 ipif->ipif_id = id; /* could be -1 */
11999 /*
12000 * Inherit the zoneid from the ill; for the shared stack instance
12001 * this is always the global zone
12002 */
12003 ipif->ipif_zoneid = ill->ill_zoneid;
12004
12005 ipif->ipif_refcnt = 0;
12006
12007 if (insert) {
12008 if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) {
12009 mi_free(ipif);
12010 if (errorp != NULL)
12011 *errorp = err;
12012 return (NULL);
12013 }
12014 /* -1 id should have been replaced by real id */
12015 id = ipif->ipif_id;
12016 ASSERT(id >= 0);
12017 }
12018
12019 if (ill->ill_name[0] != '\0')
12020 ipif_assign_seqid(ipif);
12021
12022 /*
12023 * If this is the zeroth ipif on the IPMP ill, create the illgrp
12024 * (which must not exist yet because the zeroth ipif is created once
12025 * per ill). However, do not not link it to the ipmp_grp_t until
12026 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details.
12027 */
12028 if (id == 0 && IS_IPMP(ill)) {
12029 if (ipmp_illgrp_create(ill) == NULL) {
12030 if (insert) {
12031 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
12032 ipif_remove(ipif);
12033 rw_exit(&ipst->ips_ill_g_lock);
12034 }
12035 mi_free(ipif);
12036 if (errorp != NULL)
12037 *errorp = ENOMEM;
12038 return (NULL);
12039 }
12040 }
12041
12042 /*
12043 * We grab ill_lock to protect the flag changes. The ipif is still
12044 * not up and can't be looked up until the ioctl completes and the
12045 * IPIF_CHANGING flag is cleared.
12046 */
12047 mutex_enter(&ill->ill_lock);
12048
12049 ipif->ipif_ire_type = ire_type;
12050
12051 if (ipif->ipif_isv6) {
12052 ill->ill_flags |= ILLF_IPV6;
12053 } else {
12054 ipaddr_t inaddr_any = INADDR_ANY;
12055
12056 ill->ill_flags |= ILLF_IPV4;
12057
12058 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */
12059 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12060 &ipif->ipif_v6lcl_addr);
12061 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12062 &ipif->ipif_v6subnet);
12063 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12064 &ipif->ipif_v6net_mask);
12065 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12066 &ipif->ipif_v6brd_addr);
12067 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12068 &ipif->ipif_v6pp_dst_addr);
12069 }
12070
12071 /*
12072 * Don't set the interface flags etc. now, will do it in
12073 * ip_ll_subnet_defaults.
12074 */
12075 if (!initialize)
12076 goto out;
12077
12078 /*
12079 * NOTE: The IPMP meta-interface is special-cased because it starts
12080 * with no underlying interfaces (and thus an unknown broadcast
12081 * address length), but all interfaces that can be placed into an IPMP
12082 * group are required to be broadcast-capable.
12083 */
12084 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) {
12085 /*
12086 * Later detect lack of DLPI driver multicast capability by
12087 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi().
12088 */
12089 ill->ill_flags |= ILLF_MULTICAST;
12090 if (!ipif->ipif_isv6)
12091 ipif->ipif_flags |= IPIF_BROADCAST;
12092 } else {
12093 if (ill->ill_net_type != IRE_LOOPBACK) {
12094 if (ipif->ipif_isv6)
12095 /*
12096 * Note: xresolv interfaces will eventually need
12097 * NOARP set here as well, but that will require
12098 * those external resolvers to have some
12099 * knowledge of that flag and act appropriately.
12100 * Not to be changed at present.
12101 */
12102 ill->ill_flags |= ILLF_NONUD;
12103 else
12104 ill->ill_flags |= ILLF_NOARP;
12105 }
12106 if (ill->ill_phys_addr_length == 0) {
12107 if (IS_VNI(ill)) {
12108 ipif->ipif_flags |= IPIF_NOXMIT;
12109 } else {
12110 /* pt-pt supports multicast. */
12111 ill->ill_flags |= ILLF_MULTICAST;
12112 if (ill->ill_net_type != IRE_LOOPBACK)
12113 ipif->ipif_flags |= IPIF_POINTOPOINT;
12114 }
12115 }
12116 }
12117 out:
12118 mutex_exit(&ill->ill_lock);
12119 return (ipif);
12120 }
12121
12122 /*
12123 * Remove the neighbor cache entries associated with this logical
12124 * interface.
12125 */
12126 int
ipif_arp_down(ipif_t * ipif)12127 ipif_arp_down(ipif_t *ipif)
12128 {
12129 ill_t *ill = ipif->ipif_ill;
12130 int err = 0;
12131
12132 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
12133 ASSERT(IAM_WRITER_IPIF(ipif));
12134
12135 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down",
12136 ill_t *, ill, ipif_t *, ipif);
12137 ipif_nce_down(ipif);
12138
12139 /*
12140 * If this is the last ipif that is going down and there are no
12141 * duplicate addresses we may yet attempt to re-probe, then we need to
12142 * clean up ARP completely.
12143 */
12144 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
12145 !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) {
12146 /*
12147 * If this was the last ipif on an IPMP interface, purge any
12148 * static ARP entries associated with it.
12149 */
12150 if (IS_IPMP(ill))
12151 ipmp_illgrp_refresh_arpent(ill->ill_grp);
12152
12153 /* UNBIND, DETACH */
12154 err = arp_ll_down(ill);
12155 }
12156
12157 return (err);
12158 }
12159
12160 /*
12161 * Get the resolver set up for a new IP address. (Always called as writer.)
12162 * Called both for IPv4 and IPv6 interfaces, though it only does some
12163 * basic DAD related initialization for IPv6. Honors ILLF_NOARP.
12164 *
12165 * The enumerated value res_act tunes the behavior:
12166 * * Res_act_initial: set up all the resolver structures for a new
12167 * IP address.
12168 * * Res_act_defend: tell ARP that it needs to send a single gratuitous
12169 * ARP message in defense of the address.
12170 * * Res_act_rebind: tell ARP to change the hardware address for an IP
12171 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif().
12172 *
12173 * Returns zero on success, or an errno upon failure.
12174 */
12175 int
ipif_resolver_up(ipif_t * ipif,enum ip_resolver_action res_act)12176 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act)
12177 {
12178 ill_t *ill = ipif->ipif_ill;
12179 int err;
12180 boolean_t was_dup;
12181
12182 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n",
12183 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags));
12184 ASSERT(IAM_WRITER_IPIF(ipif));
12185
12186 was_dup = B_FALSE;
12187 if (res_act == Res_act_initial) {
12188 ipif->ipif_addr_ready = 0;
12189 /*
12190 * We're bringing an interface up here. There's no way that we
12191 * should need to shut down ARP now.
12192 */
12193 mutex_enter(&ill->ill_lock);
12194 if (ipif->ipif_flags & IPIF_DUPLICATE) {
12195 ipif->ipif_flags &= ~IPIF_DUPLICATE;
12196 ill->ill_ipif_dup_count--;
12197 was_dup = B_TRUE;
12198 }
12199 mutex_exit(&ill->ill_lock);
12200 }
12201 if (ipif->ipif_recovery_id != 0)
12202 (void) untimeout(ipif->ipif_recovery_id);
12203 ipif->ipif_recovery_id = 0;
12204 if (ill->ill_net_type != IRE_IF_RESOLVER) {
12205 ipif->ipif_addr_ready = 1;
12206 return (0);
12207 }
12208 /* NDP will set the ipif_addr_ready flag when it's ready */
12209 if (ill->ill_isv6)
12210 return (0);
12211
12212 err = ipif_arp_up(ipif, res_act, was_dup);
12213 return (err);
12214 }
12215
12216 /*
12217 * This routine restarts IPv4/IPv6 duplicate address detection (DAD)
12218 * when a link has just gone back up.
12219 */
12220 static void
ipif_nce_start_dad(ipif_t * ipif)12221 ipif_nce_start_dad(ipif_t *ipif)
12222 {
12223 ncec_t *ncec;
12224 ill_t *ill = ipif->ipif_ill;
12225 boolean_t isv6 = ill->ill_isv6;
12226
12227 if (isv6) {
12228 ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill,
12229 &ipif->ipif_v6lcl_addr);
12230 } else {
12231 ipaddr_t v4addr;
12232
12233 if (ill->ill_net_type != IRE_IF_RESOLVER ||
12234 (ipif->ipif_flags & IPIF_UNNUMBERED) ||
12235 ipif->ipif_lcl_addr == INADDR_ANY) {
12236 /*
12237 * If we can't contact ARP for some reason,
12238 * that's not really a problem. Just send
12239 * out the routing socket notification that
12240 * DAD completion would have done, and continue.
12241 */
12242 ipif_mask_reply(ipif);
12243 ipif_up_notify(ipif);
12244 ipif->ipif_addr_ready = 1;
12245 return;
12246 }
12247
12248 IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr);
12249 ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr);
12250 }
12251
12252 if (ncec == NULL) {
12253 ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n",
12254 (void *)ipif));
12255 return;
12256 }
12257 if (!nce_restart_dad(ncec)) {
12258 /*
12259 * If we can't restart DAD for some reason, that's not really a
12260 * problem. Just send out the routing socket notification that
12261 * DAD completion would have done, and continue.
12262 */
12263 ipif_up_notify(ipif);
12264 ipif->ipif_addr_ready = 1;
12265 }
12266 ncec_refrele(ncec);
12267 }
12268
12269 /*
12270 * Restart duplicate address detection on all interfaces on the given ill.
12271 *
12272 * This is called when an interface transitions from down to up
12273 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN).
12274 *
12275 * Note that since the underlying physical link has transitioned, we must cause
12276 * at least one routing socket message to be sent here, either via DAD
12277 * completion or just by default on the first ipif. (If we don't do this, then
12278 * in.mpathd will see long delays when doing link-based failure recovery.)
12279 */
12280 void
ill_restart_dad(ill_t * ill,boolean_t went_up)12281 ill_restart_dad(ill_t *ill, boolean_t went_up)
12282 {
12283 ipif_t *ipif;
12284
12285 if (ill == NULL)
12286 return;
12287
12288 /*
12289 * If layer two doesn't support duplicate address detection, then just
12290 * send the routing socket message now and be done with it.
12291 */
12292 if (!ill->ill_isv6 && arp_no_defense) {
12293 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
12294 return;
12295 }
12296
12297 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12298 if (went_up) {
12299
12300 if (ipif->ipif_flags & IPIF_UP) {
12301 ipif_nce_start_dad(ipif);
12302 } else if (ipif->ipif_flags & IPIF_DUPLICATE) {
12303 /*
12304 * kick off the bring-up process now.
12305 */
12306 ipif_do_recovery(ipif);
12307 } else {
12308 /*
12309 * Unfortunately, the first ipif is "special"
12310 * and represents the underlying ill in the
12311 * routing socket messages. Thus, when this
12312 * one ipif is down, we must still notify so
12313 * that the user knows the IFF_RUNNING status
12314 * change. (If the first ipif is up, then
12315 * we'll handle eventual routing socket
12316 * notification via DAD completion.)
12317 */
12318 if (ipif == ill->ill_ipif) {
12319 ip_rts_ifmsg(ill->ill_ipif,
12320 RTSQ_DEFAULT);
12321 }
12322 }
12323 } else {
12324 /*
12325 * After link down, we'll need to send a new routing
12326 * message when the link comes back, so clear
12327 * ipif_addr_ready.
12328 */
12329 ipif->ipif_addr_ready = 0;
12330 }
12331 }
12332
12333 /*
12334 * If we've torn down links, then notify the user right away.
12335 */
12336 if (!went_up)
12337 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
12338 }
12339
12340 static void
ipsq_delete(ipsq_t * ipsq)12341 ipsq_delete(ipsq_t *ipsq)
12342 {
12343 ipxop_t *ipx = ipsq->ipsq_xop;
12344
12345 ipsq->ipsq_ipst = NULL;
12346 ASSERT(ipsq->ipsq_phyint == NULL);
12347 ASSERT(ipsq->ipsq_xop != NULL);
12348 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL);
12349 ASSERT(ipx->ipx_pending_mp == NULL);
12350 kmem_free(ipsq, sizeof (ipsq_t));
12351 }
12352
12353 static int
ill_up_ipifs_on_ill(ill_t * ill,queue_t * q,mblk_t * mp)12354 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp)
12355 {
12356 int err = 0;
12357 ipif_t *ipif;
12358
12359 if (ill == NULL)
12360 return (0);
12361
12362 ASSERT(IAM_WRITER_ILL(ill));
12363 ill->ill_up_ipifs = B_TRUE;
12364 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12365 if (ipif->ipif_was_up) {
12366 if (!(ipif->ipif_flags & IPIF_UP))
12367 err = ipif_up(ipif, q, mp);
12368 ipif->ipif_was_up = B_FALSE;
12369 if (err != 0) {
12370 ASSERT(err == EINPROGRESS);
12371 return (err);
12372 }
12373 }
12374 }
12375 ill->ill_up_ipifs = B_FALSE;
12376 return (0);
12377 }
12378
12379 /*
12380 * This function is called to bring up all the ipifs that were up before
12381 * bringing the ill down via ill_down_ipifs().
12382 */
12383 int
ill_up_ipifs(ill_t * ill,queue_t * q,mblk_t * mp)12384 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp)
12385 {
12386 int err;
12387
12388 ASSERT(IAM_WRITER_ILL(ill));
12389
12390 if (ill->ill_replumbing) {
12391 ill->ill_replumbing = 0;
12392 /*
12393 * Send down REPLUMB_DONE notification followed by the
12394 * BIND_REQ on the arp stream.
12395 */
12396 if (!ill->ill_isv6)
12397 arp_send_replumb_conf(ill);
12398 }
12399 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp);
12400 if (err != 0)
12401 return (err);
12402
12403 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp));
12404 }
12405
12406 /*
12407 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring
12408 * down the ipifs without sending DL_UNBIND_REQ to the driver.
12409 */
12410 static void
ill_down_ipifs(ill_t * ill,boolean_t logical)12411 ill_down_ipifs(ill_t *ill, boolean_t logical)
12412 {
12413 ipif_t *ipif;
12414
12415 ASSERT(IAM_WRITER_ILL(ill));
12416
12417 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12418 /*
12419 * We go through the ipif_down logic even if the ipif
12420 * is already down, since routes can be added based
12421 * on down ipifs. Going through ipif_down once again
12422 * will delete any IREs created based on these routes.
12423 */
12424 if (ipif->ipif_flags & IPIF_UP)
12425 ipif->ipif_was_up = B_TRUE;
12426
12427 if (logical) {
12428 (void) ipif_logical_down(ipif, NULL, NULL);
12429 ipif_non_duplicate(ipif);
12430 (void) ipif_down_tail(ipif);
12431 } else {
12432 (void) ipif_down(ipif, NULL, NULL);
12433 }
12434 }
12435 }
12436
12437 /*
12438 * Redo source address selection. This makes IXAF_VERIFY_SOURCE take
12439 * a look again at valid source addresses.
12440 * This should be called each time after the set of source addresses has been
12441 * changed.
12442 */
12443 void
ip_update_source_selection(ip_stack_t * ipst)12444 ip_update_source_selection(ip_stack_t *ipst)
12445 {
12446 /* We skip past SRC_GENERATION_VERIFY */
12447 if (atomic_inc_32_nv(&ipst->ips_src_generation) ==
12448 SRC_GENERATION_VERIFY)
12449 atomic_inc_32(&ipst->ips_src_generation);
12450 }
12451
12452 /*
12453 * Finish the group join started in ip_sioctl_groupname().
12454 */
12455 /* ARGSUSED */
12456 static void
ip_join_illgrps(ipsq_t * ipsq,queue_t * q,mblk_t * mp,void * dummy)12457 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
12458 {
12459 ill_t *ill = q->q_ptr;
12460 phyint_t *phyi = ill->ill_phyint;
12461 ipmp_grp_t *grp = phyi->phyint_grp;
12462 ip_stack_t *ipst = ill->ill_ipst;
12463
12464 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */
12465 ASSERT(!IS_IPMP(ill) && grp != NULL);
12466 ASSERT(IAM_WRITER_IPSQ(ipsq));
12467
12468 if (phyi->phyint_illv4 != NULL) {
12469 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12470 VERIFY(grp->gr_pendv4-- > 0);
12471 rw_exit(&ipst->ips_ipmp_lock);
12472 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4);
12473 }
12474 if (phyi->phyint_illv6 != NULL) {
12475 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12476 VERIFY(grp->gr_pendv6-- > 0);
12477 rw_exit(&ipst->ips_ipmp_lock);
12478 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6);
12479 }
12480 freemsg(mp);
12481 }
12482
12483 /*
12484 * Process an SIOCSLIFGROUPNAME request.
12485 */
12486 /* ARGSUSED */
12487 int
ip_sioctl_groupname(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)12488 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12489 ip_ioctl_cmd_t *ipip, void *ifreq)
12490 {
12491 struct lifreq *lifr = ifreq;
12492 ill_t *ill = ipif->ipif_ill;
12493 ip_stack_t *ipst = ill->ill_ipst;
12494 phyint_t *phyi = ill->ill_phyint;
12495 ipmp_grp_t *grp = phyi->phyint_grp;
12496 mblk_t *ipsq_mp;
12497 int err = 0;
12498
12499 /*
12500 * Note that phyint_grp can only change here, where we're exclusive.
12501 */
12502 ASSERT(IAM_WRITER_ILL(ill));
12503
12504 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL ||
12505 (phyi->phyint_flags & PHYI_VIRTUAL))
12506 return (EINVAL);
12507
12508 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0';
12509
12510 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12511
12512 /*
12513 * If the name hasn't changed, there's nothing to do.
12514 */
12515 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0)
12516 goto unlock;
12517
12518 /*
12519 * Handle requests to rename an IPMP meta-interface.
12520 *
12521 * Note that creation of the IPMP meta-interface is handled in
12522 * userland through the standard plumbing sequence. As part of the
12523 * plumbing the IPMP meta-interface, its initial groupname is set to
12524 * the name of the interface (see ipif_set_values_tail()).
12525 */
12526 if (IS_IPMP(ill)) {
12527 err = ipmp_grp_rename(grp, lifr->lifr_groupname);
12528 goto unlock;
12529 }
12530
12531 /*
12532 * Handle requests to add or remove an IP interface from a group.
12533 */
12534 if (lifr->lifr_groupname[0] != '\0') { /* add */
12535 /*
12536 * Moves are handled by first removing the interface from
12537 * its existing group, and then adding it to another group.
12538 * So, fail if it's already in a group.
12539 */
12540 if (IS_UNDER_IPMP(ill)) {
12541 err = EALREADY;
12542 goto unlock;
12543 }
12544
12545 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst);
12546 if (grp == NULL) {
12547 err = ENOENT;
12548 goto unlock;
12549 }
12550
12551 /*
12552 * Check if the phyint and its ills are suitable for
12553 * inclusion into the group.
12554 */
12555 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0)
12556 goto unlock;
12557
12558 /*
12559 * Checks pass; join the group, and enqueue the remaining
12560 * illgrp joins for when we've become part of the group xop
12561 * and are exclusive across its IPSQs. Since qwriter_ip()
12562 * requires an mblk_t to scribble on, and since `mp' will be
12563 * freed as part of completing the ioctl, allocate another.
12564 */
12565 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) {
12566 err = ENOMEM;
12567 goto unlock;
12568 }
12569
12570 /*
12571 * Before we drop ipmp_lock, bump gr_pend* to ensure that the
12572 * IPMP meta-interface ills needed by `phyi' cannot go away
12573 * before ip_join_illgrps() is called back. See the comments
12574 * in ip_sioctl_plink_ipmp() for more.
12575 */
12576 if (phyi->phyint_illv4 != NULL)
12577 grp->gr_pendv4++;
12578 if (phyi->phyint_illv6 != NULL)
12579 grp->gr_pendv6++;
12580
12581 rw_exit(&ipst->ips_ipmp_lock);
12582
12583 ipmp_phyint_join_grp(phyi, grp);
12584 ill_refhold(ill);
12585 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps,
12586 SWITCH_OP, B_FALSE);
12587 return (0);
12588 } else {
12589 /*
12590 * Request to remove the interface from a group. If the
12591 * interface is not in a group, this trivially succeeds.
12592 */
12593 rw_exit(&ipst->ips_ipmp_lock);
12594 if (IS_UNDER_IPMP(ill))
12595 ipmp_phyint_leave_grp(phyi);
12596 return (0);
12597 }
12598 unlock:
12599 rw_exit(&ipst->ips_ipmp_lock);
12600 return (err);
12601 }
12602
12603 /*
12604 * Process an SIOCGLIFBINDING request.
12605 */
12606 /* ARGSUSED */
12607 int
ip_sioctl_get_binding(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)12608 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12609 ip_ioctl_cmd_t *ipip, void *ifreq)
12610 {
12611 ill_t *ill;
12612 struct lifreq *lifr = ifreq;
12613 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
12614
12615 if (!IS_IPMP(ipif->ipif_ill))
12616 return (EINVAL);
12617
12618 rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12619 if ((ill = ipif->ipif_bound_ill) == NULL)
12620 lifr->lifr_binding[0] = '\0';
12621 else
12622 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ);
12623 rw_exit(&ipst->ips_ipmp_lock);
12624 return (0);
12625 }
12626
12627 /*
12628 * Process an SIOCGLIFGROUPNAME request.
12629 */
12630 /* ARGSUSED */
12631 int
ip_sioctl_get_groupname(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)12632 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12633 ip_ioctl_cmd_t *ipip, void *ifreq)
12634 {
12635 ipmp_grp_t *grp;
12636 struct lifreq *lifr = ifreq;
12637 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
12638
12639 rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12640 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL)
12641 lifr->lifr_groupname[0] = '\0';
12642 else
12643 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ);
12644 rw_exit(&ipst->ips_ipmp_lock);
12645 return (0);
12646 }
12647
12648 /*
12649 * Process an SIOCGLIFGROUPINFO request.
12650 */
12651 /* ARGSUSED */
12652 int
ip_sioctl_groupinfo(ipif_t * dummy_ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy)12653 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12654 ip_ioctl_cmd_t *ipip, void *dummy)
12655 {
12656 ipmp_grp_t *grp;
12657 lifgroupinfo_t *lifgr;
12658 ip_stack_t *ipst = CONNQ_TO_IPST(q);
12659
12660 /* ip_wput_nondata() verified mp->b_cont->b_cont */
12661 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr;
12662 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0';
12663
12664 rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12665 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) {
12666 rw_exit(&ipst->ips_ipmp_lock);
12667 return (ENOENT);
12668 }
12669 ipmp_grp_info(grp, lifgr);
12670 rw_exit(&ipst->ips_ipmp_lock);
12671 return (0);
12672 }
12673
12674 static void
ill_dl_down(ill_t * ill)12675 ill_dl_down(ill_t *ill)
12676 {
12677 DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill);
12678
12679 /*
12680 * The ill is down; unbind but stay attached since we're still
12681 * associated with a PPA. If we have negotiated DLPI capabilites
12682 * with the data link service provider (IDS_OK) then reset them.
12683 * The interval between unbinding and rebinding is potentially
12684 * unbounded hence we cannot assume things will be the same.
12685 * The DLPI capabilities will be probed again when the data link
12686 * is brought up.
12687 */
12688 mblk_t *mp = ill->ill_unbind_mp;
12689
12690 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name));
12691
12692 if (!ill->ill_replumbing) {
12693 /* Free all ilms for this ill */
12694 update_conn_ill(ill, ill->ill_ipst);
12695 } else {
12696 ill_leave_multicast(ill);
12697 }
12698
12699 ill->ill_unbind_mp = NULL;
12700 if (mp != NULL) {
12701 ip1dbg(("ill_dl_down: %s (%u) for %s\n",
12702 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr,
12703 ill->ill_name));
12704 mutex_enter(&ill->ill_lock);
12705 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS;
12706 mutex_exit(&ill->ill_lock);
12707 /*
12708 * ip_rput does not pass up normal (M_PROTO) DLPI messages
12709 * after ILL_CONDEMNED is set. So in the unplumb case, we call
12710 * ill_capability_dld_disable disable rightaway. If this is not
12711 * an unplumb operation then the disable happens on receipt of
12712 * the capab ack via ip_rput_dlpi_writer ->
12713 * ill_capability_ack_thr. In both cases the order of
12714 * the operations seen by DLD is capability disable followed
12715 * by DL_UNBIND. Also the DLD capability disable needs a
12716 * cv_wait'able context.
12717 */
12718 if (ill->ill_state_flags & ILL_CONDEMNED)
12719 ill_capability_dld_disable(ill);
12720 ill_capability_reset(ill, B_FALSE);
12721 ill_dlpi_send(ill, mp);
12722 }
12723 mutex_enter(&ill->ill_lock);
12724 ill->ill_dl_up = 0;
12725 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0);
12726 mutex_exit(&ill->ill_lock);
12727 }
12728
12729 void
ill_dlpi_dispatch(ill_t * ill,mblk_t * mp)12730 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp)
12731 {
12732 union DL_primitives *dlp;
12733 t_uscalar_t prim;
12734 boolean_t waitack = B_FALSE;
12735
12736 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12737
12738 dlp = (union DL_primitives *)mp->b_rptr;
12739 prim = dlp->dl_primitive;
12740
12741 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n",
12742 dl_primstr(prim), prim, ill->ill_name));
12743
12744 switch (prim) {
12745 case DL_PHYS_ADDR_REQ:
12746 {
12747 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr;
12748 ill->ill_phys_addr_pend = dlpap->dl_addr_type;
12749 break;
12750 }
12751 case DL_BIND_REQ:
12752 mutex_enter(&ill->ill_lock);
12753 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
12754 mutex_exit(&ill->ill_lock);
12755 break;
12756 }
12757
12758 /*
12759 * Except for the ACKs for the M_PCPROTO messages, all other ACKs
12760 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore
12761 * we only wait for the ACK of the DL_UNBIND_REQ.
12762 */
12763 mutex_enter(&ill->ill_lock);
12764 if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
12765 (prim == DL_UNBIND_REQ)) {
12766 ill->ill_dlpi_pending = prim;
12767 waitack = B_TRUE;
12768 }
12769
12770 mutex_exit(&ill->ill_lock);
12771 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch",
12772 char *, dl_primstr(prim), ill_t *, ill);
12773 putnext(ill->ill_wq, mp);
12774
12775 /*
12776 * There is no ack for DL_NOTIFY_CONF messages
12777 */
12778 if (waitack && prim == DL_NOTIFY_CONF)
12779 ill_dlpi_done(ill, prim);
12780 }
12781
12782 /*
12783 * Helper function for ill_dlpi_send().
12784 */
12785 /* ARGSUSED */
12786 static void
ill_dlpi_send_writer(ipsq_t * ipsq,queue_t * q,mblk_t * mp,void * arg)12787 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12788 {
12789 ill_dlpi_send(q->q_ptr, mp);
12790 }
12791
12792 /*
12793 * Send a DLPI control message to the driver but make sure there
12794 * is only one outstanding message. Uses ill_dlpi_pending to tell
12795 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done()
12796 * when an ACK or a NAK is received to process the next queued message.
12797 */
12798 void
ill_dlpi_send(ill_t * ill,mblk_t * mp)12799 ill_dlpi_send(ill_t *ill, mblk_t *mp)
12800 {
12801 mblk_t **mpp;
12802
12803 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12804
12805 /*
12806 * To ensure that any DLPI requests for current exclusive operation
12807 * are always completely sent before any DLPI messages for other
12808 * operations, require writer access before enqueuing.
12809 */
12810 if (!IAM_WRITER_ILL(ill)) {
12811 ill_refhold(ill);
12812 /* qwriter_ip() does the ill_refrele() */
12813 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer,
12814 NEW_OP, B_TRUE);
12815 return;
12816 }
12817
12818 mutex_enter(&ill->ill_lock);
12819 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
12820 /* Must queue message. Tail insertion */
12821 mpp = &ill->ill_dlpi_deferred;
12822 while (*mpp != NULL)
12823 mpp = &((*mpp)->b_next);
12824
12825 ip1dbg(("ill_dlpi_send: deferring request for %s "
12826 "while %s pending\n", ill->ill_name,
12827 dl_primstr(ill->ill_dlpi_pending)));
12828
12829 *mpp = mp;
12830 mutex_exit(&ill->ill_lock);
12831 return;
12832 }
12833 mutex_exit(&ill->ill_lock);
12834 ill_dlpi_dispatch(ill, mp);
12835 }
12836
12837 void
ill_capability_send(ill_t * ill,mblk_t * mp)12838 ill_capability_send(ill_t *ill, mblk_t *mp)
12839 {
12840 ill->ill_capab_pending_cnt++;
12841 ill_dlpi_send(ill, mp);
12842 }
12843
12844 void
ill_capability_done(ill_t * ill)12845 ill_capability_done(ill_t *ill)
12846 {
12847 ASSERT(ill->ill_capab_pending_cnt != 0);
12848
12849 ill_dlpi_done(ill, DL_CAPABILITY_REQ);
12850
12851 ill->ill_capab_pending_cnt--;
12852 if (ill->ill_capab_pending_cnt == 0 &&
12853 ill->ill_dlpi_capab_state == IDCS_OK)
12854 ill_capability_reset_alloc(ill);
12855 }
12856
12857 /*
12858 * Send all deferred DLPI messages without waiting for their ACKs.
12859 */
12860 void
ill_dlpi_send_deferred(ill_t * ill)12861 ill_dlpi_send_deferred(ill_t *ill)
12862 {
12863 mblk_t *mp, *nextmp;
12864
12865 /*
12866 * Clear ill_dlpi_pending so that the message is not queued in
12867 * ill_dlpi_send().
12868 */
12869 mutex_enter(&ill->ill_lock);
12870 ill->ill_dlpi_pending = DL_PRIM_INVAL;
12871 mp = ill->ill_dlpi_deferred;
12872 ill->ill_dlpi_deferred = NULL;
12873 mutex_exit(&ill->ill_lock);
12874
12875 for (; mp != NULL; mp = nextmp) {
12876 nextmp = mp->b_next;
12877 mp->b_next = NULL;
12878 ill_dlpi_send(ill, mp);
12879 }
12880 }
12881
12882 /*
12883 * Clear all the deferred DLPI messages. Called on receiving an M_ERROR
12884 * or M_HANGUP
12885 */
12886 static void
ill_dlpi_clear_deferred(ill_t * ill)12887 ill_dlpi_clear_deferred(ill_t *ill)
12888 {
12889 mblk_t *mp, *nextmp;
12890
12891 mutex_enter(&ill->ill_lock);
12892 ill->ill_dlpi_pending = DL_PRIM_INVAL;
12893 mp = ill->ill_dlpi_deferred;
12894 ill->ill_dlpi_deferred = NULL;
12895 mutex_exit(&ill->ill_lock);
12896
12897 for (; mp != NULL; mp = nextmp) {
12898 nextmp = mp->b_next;
12899 inet_freemsg(mp);
12900 }
12901 }
12902
12903 /*
12904 * Check if the DLPI primitive `prim' is pending; print a warning if not.
12905 */
12906 boolean_t
ill_dlpi_pending(ill_t * ill,t_uscalar_t prim)12907 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim)
12908 {
12909 t_uscalar_t pending;
12910
12911 mutex_enter(&ill->ill_lock);
12912 if (ill->ill_dlpi_pending == prim) {
12913 mutex_exit(&ill->ill_lock);
12914 return (B_TRUE);
12915 }
12916
12917 /*
12918 * During teardown, ill_dlpi_dispatch() will send DLPI requests
12919 * without waiting, so don't print any warnings in that case.
12920 */
12921 if (ill->ill_state_flags & ILL_CONDEMNED) {
12922 mutex_exit(&ill->ill_lock);
12923 return (B_FALSE);
12924 }
12925 pending = ill->ill_dlpi_pending;
12926 mutex_exit(&ill->ill_lock);
12927
12928 if (pending == DL_PRIM_INVAL) {
12929 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
12930 "received unsolicited ack for %s on %s\n",
12931 dl_primstr(prim), ill->ill_name);
12932 } else {
12933 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
12934 "received unexpected ack for %s on %s (expecting %s)\n",
12935 dl_primstr(prim), ill->ill_name, dl_primstr(pending));
12936 }
12937 return (B_FALSE);
12938 }
12939
12940 /*
12941 * Complete the current DLPI operation associated with `prim' on `ill' and
12942 * start the next queued DLPI operation (if any). If there are no queued DLPI
12943 * operations and the ill's current exclusive IPSQ operation has finished
12944 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to
12945 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See
12946 * the comments above ipsq_current_finish() for details.
12947 */
12948 void
ill_dlpi_done(ill_t * ill,t_uscalar_t prim)12949 ill_dlpi_done(ill_t *ill, t_uscalar_t prim)
12950 {
12951 mblk_t *mp;
12952 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
12953 ipxop_t *ipx = ipsq->ipsq_xop;
12954
12955 ASSERT(IAM_WRITER_IPSQ(ipsq));
12956 mutex_enter(&ill->ill_lock);
12957
12958 ASSERT(prim != DL_PRIM_INVAL);
12959 ASSERT(ill->ill_dlpi_pending == prim);
12960
12961 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name,
12962 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending));
12963
12964 if ((mp = ill->ill_dlpi_deferred) == NULL) {
12965 ill->ill_dlpi_pending = DL_PRIM_INVAL;
12966 if (ipx->ipx_current_done) {
12967 mutex_enter(&ipx->ipx_lock);
12968 ipx->ipx_current_ipif = NULL;
12969 mutex_exit(&ipx->ipx_lock);
12970 }
12971 cv_signal(&ill->ill_cv);
12972 mutex_exit(&ill->ill_lock);
12973 return;
12974 }
12975
12976 ill->ill_dlpi_deferred = mp->b_next;
12977 mp->b_next = NULL;
12978 mutex_exit(&ill->ill_lock);
12979
12980 ill_dlpi_dispatch(ill, mp);
12981 }
12982
12983 /*
12984 * Queue a (multicast) DLPI control message to be sent to the driver by
12985 * later calling ill_dlpi_send_queued.
12986 * We queue them while holding a lock (ill_mcast_lock) to ensure that they
12987 * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ
12988 * for the same group to race.
12989 * We send DLPI control messages in order using ill_lock.
12990 * For IPMP we should be called on the cast_ill.
12991 */
12992 void
ill_dlpi_queue(ill_t * ill,mblk_t * mp)12993 ill_dlpi_queue(ill_t *ill, mblk_t *mp)
12994 {
12995 mblk_t **mpp;
12996
12997 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12998
12999 mutex_enter(&ill->ill_lock);
13000 /* Must queue message. Tail insertion */
13001 mpp = &ill->ill_dlpi_deferred;
13002 while (*mpp != NULL)
13003 mpp = &((*mpp)->b_next);
13004
13005 *mpp = mp;
13006 mutex_exit(&ill->ill_lock);
13007 }
13008
13009 /*
13010 * Send the messages that were queued. Make sure there is only
13011 * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done()
13012 * when an ACK or a NAK is received to process the next queued message.
13013 * For IPMP we are called on the upper ill, but when send what is queued
13014 * on the cast_ill.
13015 */
13016 void
ill_dlpi_send_queued(ill_t * ill)13017 ill_dlpi_send_queued(ill_t *ill)
13018 {
13019 mblk_t *mp;
13020 union DL_primitives *dlp;
13021 t_uscalar_t prim;
13022 ill_t *release_ill = NULL;
13023
13024 if (IS_IPMP(ill)) {
13025 /* On the upper IPMP ill. */
13026 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13027 if (release_ill == NULL) {
13028 /* Avoid ever sending anything down to the ipmpstub */
13029 return;
13030 }
13031 ill = release_ill;
13032 }
13033 mutex_enter(&ill->ill_lock);
13034 while ((mp = ill->ill_dlpi_deferred) != NULL) {
13035 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
13036 /* Can't send. Somebody else will send it */
13037 mutex_exit(&ill->ill_lock);
13038 goto done;
13039 }
13040 ill->ill_dlpi_deferred = mp->b_next;
13041 mp->b_next = NULL;
13042 if (!ill->ill_dl_up) {
13043 /*
13044 * Nobody there. All multicast addresses will be
13045 * re-joined when we get the DL_BIND_ACK bringing the
13046 * interface up.
13047 */
13048 freemsg(mp);
13049 continue;
13050 }
13051 dlp = (union DL_primitives *)mp->b_rptr;
13052 prim = dlp->dl_primitive;
13053
13054 if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
13055 (prim == DL_UNBIND_REQ)) {
13056 ill->ill_dlpi_pending = prim;
13057 }
13058 mutex_exit(&ill->ill_lock);
13059
13060 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued",
13061 char *, dl_primstr(prim), ill_t *, ill);
13062 putnext(ill->ill_wq, mp);
13063 mutex_enter(&ill->ill_lock);
13064 }
13065 mutex_exit(&ill->ill_lock);
13066 done:
13067 if (release_ill != NULL)
13068 ill_refrele(release_ill);
13069 }
13070
13071 /*
13072 * Queue an IP (IGMP/MLD) message to be sent by IP from
13073 * ill_mcast_send_queued
13074 * We queue them while holding a lock (ill_mcast_lock) to ensure that they
13075 * are sent in order i.e., prevent a IGMP leave and IGMP join for the same
13076 * group to race.
13077 * We send them in order using ill_lock.
13078 * For IPMP we are called on the upper ill, but we queue on the cast_ill.
13079 */
13080 void
ill_mcast_queue(ill_t * ill,mblk_t * mp)13081 ill_mcast_queue(ill_t *ill, mblk_t *mp)
13082 {
13083 mblk_t **mpp;
13084 ill_t *release_ill = NULL;
13085
13086 ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock));
13087
13088 if (IS_IPMP(ill)) {
13089 /* On the upper IPMP ill. */
13090 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13091 if (release_ill == NULL) {
13092 /* Discard instead of queuing for the ipmp interface */
13093 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
13094 ip_drop_output("ipIfStatsOutDiscards - no cast_ill",
13095 mp, ill);
13096 freemsg(mp);
13097 return;
13098 }
13099 ill = release_ill;
13100 }
13101
13102 mutex_enter(&ill->ill_lock);
13103 /* Must queue message. Tail insertion */
13104 mpp = &ill->ill_mcast_deferred;
13105 while (*mpp != NULL)
13106 mpp = &((*mpp)->b_next);
13107
13108 *mpp = mp;
13109 mutex_exit(&ill->ill_lock);
13110 if (release_ill != NULL)
13111 ill_refrele(release_ill);
13112 }
13113
13114 /*
13115 * Send the IP packets that were queued by ill_mcast_queue.
13116 * These are IGMP/MLD packets.
13117 *
13118 * For IPMP we are called on the upper ill, but when send what is queued
13119 * on the cast_ill.
13120 *
13121 * Request loopback of the report if we are acting as a multicast
13122 * router, so that the process-level routing demon can hear it.
13123 * This will run multiple times for the same group if there are members
13124 * on the same group for multiple ipif's on the same ill. The
13125 * igmp_input/mld_input code will suppress this due to the loopback thus we
13126 * always loopback membership report.
13127 *
13128 * We also need to make sure that this does not get load balanced
13129 * by IPMP. We do this by passing an ill to ip_output_simple.
13130 */
13131 void
ill_mcast_send_queued(ill_t * ill)13132 ill_mcast_send_queued(ill_t *ill)
13133 {
13134 mblk_t *mp;
13135 ip_xmit_attr_t ixas;
13136 ill_t *release_ill = NULL;
13137
13138 if (IS_IPMP(ill)) {
13139 /* On the upper IPMP ill. */
13140 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13141 if (release_ill == NULL) {
13142 /*
13143 * We should have no messages on the ipmp interface
13144 * but no point in trying to send them.
13145 */
13146 return;
13147 }
13148 ill = release_ill;
13149 }
13150 bzero(&ixas, sizeof (ixas));
13151 ixas.ixa_zoneid = ALL_ZONES;
13152 ixas.ixa_cred = kcred;
13153 ixas.ixa_cpid = NOPID;
13154 ixas.ixa_tsl = NULL;
13155 /*
13156 * Here we set ixa_ifindex. If IPMP it will be the lower ill which
13157 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill.
13158 * That is necessary to handle IGMP/MLD snooping switches.
13159 */
13160 ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex;
13161 ixas.ixa_ipst = ill->ill_ipst;
13162
13163 mutex_enter(&ill->ill_lock);
13164 while ((mp = ill->ill_mcast_deferred) != NULL) {
13165 ill->ill_mcast_deferred = mp->b_next;
13166 mp->b_next = NULL;
13167 if (!ill->ill_dl_up) {
13168 /*
13169 * Nobody there. Just drop the ip packets.
13170 * IGMP/MLD will resend later, if this is a replumb.
13171 */
13172 freemsg(mp);
13173 continue;
13174 }
13175 mutex_enter(&ill->ill_phyint->phyint_lock);
13176 if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) {
13177 /*
13178 * When the ill is getting deactivated, we only want to
13179 * send the DLPI messages, so drop IGMP/MLD packets.
13180 * DLPI messages are handled by ill_dlpi_send_queued()
13181 */
13182 mutex_exit(&ill->ill_phyint->phyint_lock);
13183 freemsg(mp);
13184 continue;
13185 }
13186 mutex_exit(&ill->ill_phyint->phyint_lock);
13187 mutex_exit(&ill->ill_lock);
13188
13189 /* Check whether we are sending IPv4 or IPv6. */
13190 if (ill->ill_isv6) {
13191 ip6_t *ip6h = (ip6_t *)mp->b_rptr;
13192
13193 ixas.ixa_multicast_ttl = ip6h->ip6_hops;
13194 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6;
13195 } else {
13196 ipha_t *ipha = (ipha_t *)mp->b_rptr;
13197
13198 ixas.ixa_multicast_ttl = ipha->ipha_ttl;
13199 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
13200 ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM;
13201 }
13202 ixas.ixa_flags &= ~IXAF_VERIFY_SOURCE;
13203 ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE;
13204 (void) ip_output_simple(mp, &ixas);
13205 ixa_cleanup(&ixas);
13206
13207 mutex_enter(&ill->ill_lock);
13208 }
13209 mutex_exit(&ill->ill_lock);
13210
13211 done:
13212 if (release_ill != NULL)
13213 ill_refrele(release_ill);
13214 }
13215
13216 /*
13217 * Take down a specific interface, but don't lose any information about it.
13218 * (Always called as writer.)
13219 * This function goes through the down sequence even if the interface is
13220 * already down. There are 2 reasons.
13221 * a. Currently we permit interface routes that depend on down interfaces
13222 * to be added. This behaviour itself is questionable. However it appears
13223 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long
13224 * time. We go thru the cleanup in order to remove these routes.
13225 * b. The bringup of the interface could fail in ill_dl_up i.e. we get
13226 * DL_ERROR_ACK in response to the DL_BIND request. The interface is
13227 * down, but we need to cleanup i.e. do ill_dl_down and
13228 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down.
13229 *
13230 * IP-MT notes:
13231 *
13232 * Model of reference to interfaces.
13233 *
13234 * The following members in ipif_t track references to the ipif.
13235 * int ipif_refcnt; Active reference count
13236 *
13237 * The following members in ill_t track references to the ill.
13238 * int ill_refcnt; active refcnt
13239 * uint_t ill_ire_cnt; Number of ires referencing ill
13240 * uint_t ill_ncec_cnt; Number of ncecs referencing ill
13241 * uint_t ill_nce_cnt; Number of nces referencing ill
13242 * uint_t ill_ilm_cnt; Number of ilms referencing ill
13243 *
13244 * Reference to an ipif or ill can be obtained in any of the following ways.
13245 *
13246 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions
13247 * Pointers to ipif / ill from other data structures viz ire and conn.
13248 * Implicit reference to the ipif / ill by holding a reference to the ire.
13249 *
13250 * The ipif/ill lookup functions return a reference held ipif / ill.
13251 * ipif_refcnt and ill_refcnt track the reference counts respectively.
13252 * This is a purely dynamic reference count associated with threads holding
13253 * references to the ipif / ill. Pointers from other structures do not
13254 * count towards this reference count.
13255 *
13256 * ill_ire_cnt is the number of ire's associated with the
13257 * ill. This is incremented whenever a new ire is created referencing the
13258 * ill. This is done atomically inside ire_add_v[46] where the ire is
13259 * actually added to the ire hash table. The count is decremented in
13260 * ire_inactive where the ire is destroyed.
13261 *
13262 * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill.
13263 * This is incremented atomically in
13264 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the
13265 * table. Similarly it is decremented in ncec_inactive() where the ncec
13266 * is destroyed.
13267 *
13268 * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is
13269 * incremented atomically in nce_add() where the nce is actually added to the
13270 * ill_nce. Similarly it is decremented in nce_inactive() where the nce
13271 * is destroyed.
13272 *
13273 * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in
13274 * ilm_add() and decremented before the ilm is freed in ilm_delete().
13275 *
13276 * Flow of ioctls involving interface down/up
13277 *
13278 * The following is the sequence of an attempt to set some critical flags on an
13279 * up interface.
13280 * ip_sioctl_flags
13281 * ipif_down
13282 * wait for ipif to be quiescent
13283 * ipif_down_tail
13284 * ip_sioctl_flags_tail
13285 *
13286 * All set ioctls that involve down/up sequence would have a skeleton similar
13287 * to the above. All the *tail functions are called after the refcounts have
13288 * dropped to the appropriate values.
13289 *
13290 * SIOC ioctls during the IPIF_CHANGING interval.
13291 *
13292 * Threads handling SIOC set ioctls serialize on the squeue, but this
13293 * is not done for SIOC get ioctls. Since a set ioctl can cause several
13294 * steps of internal changes to the state, some of which are visible in
13295 * ipif_flags (such as IFF_UP being cleared and later set), and we want
13296 * the set ioctl to be atomic related to the get ioctls, the SIOC get code
13297 * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then
13298 * enqueued in the ipsq and the operation is restarted by ipsq_exit() when
13299 * the current exclusive operation completes. The IPIF_CHANGING check
13300 * and enqueue is atomic using the ill_lock and ipsq_lock. The
13301 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't
13302 * change while the ill_lock is held. Before dropping the ill_lock we acquire
13303 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish
13304 * until we release the ipsq_lock, even though the ill/ipif state flags
13305 * can change after we drop the ill_lock.
13306 */
13307 int
ipif_down(ipif_t * ipif,queue_t * q,mblk_t * mp)13308 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
13309 {
13310 ill_t *ill = ipif->ipif_ill;
13311 conn_t *connp;
13312 boolean_t success;
13313 boolean_t ipif_was_up = B_FALSE;
13314 ip_stack_t *ipst = ill->ill_ipst;
13315
13316 ASSERT(IAM_WRITER_IPIF(ipif));
13317
13318 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
13319
13320 DTRACE_PROBE3(ipif__downup, char *, "ipif_down",
13321 ill_t *, ill, ipif_t *, ipif);
13322
13323 if (ipif->ipif_flags & IPIF_UP) {
13324 mutex_enter(&ill->ill_lock);
13325 ipif->ipif_flags &= ~IPIF_UP;
13326 ASSERT(ill->ill_ipif_up_count > 0);
13327 --ill->ill_ipif_up_count;
13328 mutex_exit(&ill->ill_lock);
13329 ipif_was_up = B_TRUE;
13330 /* Update status in SCTP's list */
13331 sctp_update_ipif(ipif, SCTP_IPIF_DOWN);
13332 ill_nic_event_dispatch(ipif->ipif_ill,
13333 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0);
13334 }
13335
13336 /*
13337 * Removal of the last ipif from an ill may result in a DL_UNBIND
13338 * being sent to the driver, and we must not send any data packets to
13339 * the driver after the DL_UNBIND_REQ. To ensure this, all the
13340 * ire and nce entries used in the data path will be cleaned
13341 * up, and we also set the ILL_DOWN_IN_PROGRESS bit to make
13342 * sure on new entries will be added until the ill is bound
13343 * again. The ILL_DOWN_IN_PROGRESS bit is turned off upon
13344 * receipt of a DL_BIND_ACK.
13345 */
13346 if (ill->ill_wq != NULL && !ill->ill_logical_down &&
13347 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
13348 ill->ill_dl_up) {
13349 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
13350 }
13351
13352 /*
13353 * Blow away memberships we established in ipif_multicast_up().
13354 */
13355 ipif_multicast_down(ipif);
13356
13357 /*
13358 * Remove from the mapping for __sin6_src_id. We insert only
13359 * when the address is not INADDR_ANY. As IPv4 addresses are
13360 * stored as mapped addresses, we need to check for mapped
13361 * INADDR_ANY also.
13362 */
13363 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
13364 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) &&
13365 !(ipif->ipif_flags & IPIF_NOLOCAL)) {
13366 int err;
13367
13368 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr,
13369 ipif->ipif_zoneid, ipst);
13370 if (err != 0) {
13371 ip0dbg(("ipif_down: srcid_remove %d\n", err));
13372 }
13373 }
13374
13375 if (ipif_was_up) {
13376 /* only delete if we'd added ire's before */
13377 if (ipif->ipif_isv6)
13378 ipif_delete_ires_v6(ipif);
13379 else
13380 ipif_delete_ires_v4(ipif);
13381 }
13382
13383 if (ipif_was_up && ill->ill_ipif_up_count == 0) {
13384 /*
13385 * Since the interface is now down, it may have just become
13386 * inactive. Note that this needs to be done even for a
13387 * lll_logical_down(), or ARP entries will not get correctly
13388 * restored when the interface comes back up.
13389 */
13390 if (IS_UNDER_IPMP(ill))
13391 ipmp_ill_refresh_active(ill);
13392 }
13393
13394 /*
13395 * neighbor-discovery or arp entries for this interface. The ipif
13396 * has to be quiesced, so we walk all the nce's and delete those
13397 * that point at the ipif->ipif_ill. At the same time, we also
13398 * update IPMP so that ipifs for data addresses are unbound. We dont
13399 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer
13400 * that for ipif_down_tail()
13401 */
13402 ipif_nce_down(ipif);
13403
13404 /*
13405 * If this is the last ipif on the ill, we also need to remove
13406 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will
13407 * never succeed.
13408 */
13409 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0)
13410 ire_walk_ill(0, 0, ill_downi, ill, ill);
13411
13412 /*
13413 * Walk all CONNs that can have a reference on an ire for this
13414 * ipif (we actually walk all that now have stale references).
13415 */
13416 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst);
13417
13418 /*
13419 * If mp is NULL the caller will wait for the appropriate refcnt.
13420 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down
13421 * and ill_delete -> ipif_free -> ipif_down
13422 */
13423 if (mp == NULL) {
13424 ASSERT(q == NULL);
13425 return (0);
13426 }
13427
13428 if (CONN_Q(q)) {
13429 connp = Q_TO_CONN(q);
13430 mutex_enter(&connp->conn_lock);
13431 } else {
13432 connp = NULL;
13433 }
13434 mutex_enter(&ill->ill_lock);
13435 /*
13436 * Are there any ire's pointing to this ipif that are still active ?
13437 * If this is the last ipif going down, are there any ire's pointing
13438 * to this ill that are still active ?
13439 */
13440 if (ipif_is_quiescent(ipif)) {
13441 mutex_exit(&ill->ill_lock);
13442 if (connp != NULL)
13443 mutex_exit(&connp->conn_lock);
13444 return (0);
13445 }
13446
13447 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p",
13448 ill->ill_name, (void *)ill));
13449 /*
13450 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount
13451 * drops down, the operation will be restarted by ipif_ill_refrele_tail
13452 * which in turn is called by the last refrele on the ipif/ill/ire.
13453 */
13454 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN);
13455 if (!success) {
13456 /* The conn is closing. So just return */
13457 ASSERT(connp != NULL);
13458 mutex_exit(&ill->ill_lock);
13459 mutex_exit(&connp->conn_lock);
13460 return (EINTR);
13461 }
13462
13463 mutex_exit(&ill->ill_lock);
13464 if (connp != NULL)
13465 mutex_exit(&connp->conn_lock);
13466 return (EINPROGRESS);
13467 }
13468
13469 int
ipif_down_tail(ipif_t * ipif)13470 ipif_down_tail(ipif_t *ipif)
13471 {
13472 ill_t *ill = ipif->ipif_ill;
13473 int err = 0;
13474
13475 DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail",
13476 ill_t *, ill, ipif_t *, ipif);
13477
13478 /*
13479 * Skip any loopback interface (null wq).
13480 * If this is the last logical interface on the ill
13481 * have ill_dl_down tell the driver we are gone (unbind)
13482 * Note that lun 0 can ipif_down even though
13483 * there are other logical units that are up.
13484 * This occurs e.g. when we change a "significant" IFF_ flag.
13485 */
13486 if (ill->ill_wq != NULL && !ill->ill_logical_down &&
13487 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
13488 ill->ill_dl_up) {
13489 ill_dl_down(ill);
13490 }
13491 if (!ipif->ipif_isv6)
13492 err = ipif_arp_down(ipif);
13493
13494 ill->ill_logical_down = 0;
13495
13496 ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
13497 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT);
13498 return (err);
13499 }
13500
13501 /*
13502 * Bring interface logically down without bringing the physical interface
13503 * down e.g. when the netmask is changed. This avoids long lasting link
13504 * negotiations between an ethernet interface and a certain switches.
13505 */
13506 static int
ipif_logical_down(ipif_t * ipif,queue_t * q,mblk_t * mp)13507 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
13508 {
13509 DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down",
13510 ill_t *, ipif->ipif_ill, ipif_t *, ipif);
13511
13512 /*
13513 * The ill_logical_down flag is a transient flag. It is set here
13514 * and is cleared once the down has completed in ipif_down_tail.
13515 * This flag does not indicate whether the ill stream is in the
13516 * DL_BOUND state with the driver. Instead this flag is used by
13517 * ipif_down_tail to determine whether to DL_UNBIND the stream with
13518 * the driver. The state of the ill stream i.e. whether it is
13519 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag.
13520 */
13521 ipif->ipif_ill->ill_logical_down = 1;
13522 return (ipif_down(ipif, q, mp));
13523 }
13524
13525 /*
13526 * Initiate deallocate of an IPIF. Always called as writer. Called by
13527 * ill_delete or ip_sioctl_removeif.
13528 */
13529 static void
ipif_free(ipif_t * ipif)13530 ipif_free(ipif_t *ipif)
13531 {
13532 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
13533
13534 ASSERT(IAM_WRITER_IPIF(ipif));
13535
13536 if (ipif->ipif_recovery_id != 0)
13537 (void) untimeout(ipif->ipif_recovery_id);
13538 ipif->ipif_recovery_id = 0;
13539
13540 /*
13541 * Take down the interface. We can be called either from ill_delete
13542 * or from ip_sioctl_removeif.
13543 */
13544 (void) ipif_down(ipif, NULL, NULL);
13545
13546 /*
13547 * Now that the interface is down, there's no chance it can still
13548 * become a duplicate. Cancel any timer that may have been set while
13549 * tearing down.
13550 */
13551 if (ipif->ipif_recovery_id != 0)
13552 (void) untimeout(ipif->ipif_recovery_id);
13553 ipif->ipif_recovery_id = 0;
13554
13555 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13556 /* Remove pointers to this ill in the multicast routing tables */
13557 reset_mrt_vif_ipif(ipif);
13558 /* If necessary, clear the cached source ipif rotor. */
13559 if (ipif->ipif_ill->ill_src_ipif == ipif)
13560 ipif->ipif_ill->ill_src_ipif = NULL;
13561 rw_exit(&ipst->ips_ill_g_lock);
13562 }
13563
13564 static void
ipif_free_tail(ipif_t * ipif)13565 ipif_free_tail(ipif_t *ipif)
13566 {
13567 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
13568
13569 /*
13570 * Need to hold both ill_g_lock and ill_lock while
13571 * inserting or removing an ipif from the linked list
13572 * of ipifs hanging off the ill.
13573 */
13574 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13575
13576 #ifdef DEBUG
13577 ipif_trace_cleanup(ipif);
13578 #endif
13579
13580 /* Ask SCTP to take it out of it list */
13581 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE);
13582 ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT);
13583
13584 /* Get it out of the ILL interface list. */
13585 ipif_remove(ipif);
13586 rw_exit(&ipst->ips_ill_g_lock);
13587
13588 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE)));
13589 ASSERT(ipif->ipif_recovery_id == 0);
13590 ASSERT(ipif->ipif_ire_local == NULL);
13591 ASSERT(ipif->ipif_ire_if == NULL);
13592
13593 /* Free the memory. */
13594 mi_free(ipif);
13595 }
13596
13597 /*
13598 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id"
13599 * is zero.
13600 */
13601 void
ipif_get_name(const ipif_t * ipif,char * buf,int len)13602 ipif_get_name(const ipif_t *ipif, char *buf, int len)
13603 {
13604 char lbuf[LIFNAMSIZ];
13605 char *name;
13606 size_t name_len;
13607
13608 buf[0] = '\0';
13609 name = ipif->ipif_ill->ill_name;
13610 name_len = ipif->ipif_ill->ill_name_length;
13611 if (ipif->ipif_id != 0) {
13612 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR,
13613 ipif->ipif_id);
13614 name = lbuf;
13615 name_len = mi_strlen(name) + 1;
13616 }
13617 len -= 1;
13618 buf[len] = '\0';
13619 len = MIN(len, name_len);
13620 bcopy(name, buf, len);
13621 }
13622
13623 /*
13624 * Sets `buf' to an ill name.
13625 */
13626 void
ill_get_name(const ill_t * ill,char * buf,int len)13627 ill_get_name(const ill_t *ill, char *buf, int len)
13628 {
13629 char *name;
13630 size_t name_len;
13631
13632 name = ill->ill_name;
13633 name_len = ill->ill_name_length;
13634 len -= 1;
13635 buf[len] = '\0';
13636 len = MIN(len, name_len);
13637 bcopy(name, buf, len);
13638 }
13639
13640 /*
13641 * Find an IPIF based on the name passed in. Names can be of the form <phys>
13642 * (e.g., le0) or <phys>:<#> (e.g., le0:1). When there is no colon, the
13643 * implied unit id is zero. <phys> must correspond to the name of an ILL.
13644 * (May be called as writer.)
13645 */
13646 static ipif_t *
ipif_lookup_on_name(char * name,size_t namelen,boolean_t do_alloc,boolean_t * exists,boolean_t isv6,zoneid_t zoneid,ip_stack_t * ipst)13647 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc,
13648 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst)
13649 {
13650 char *cp;
13651 char *endp;
13652 long id;
13653 ill_t *ill;
13654 ipif_t *ipif;
13655 uint_t ire_type;
13656 boolean_t did_alloc = B_FALSE;
13657 char last;
13658
13659 /*
13660 * If the caller wants to us to create the ipif, make sure we have a
13661 * valid zoneid
13662 */
13663 ASSERT(!do_alloc || zoneid != ALL_ZONES);
13664
13665 if (namelen == 0) {
13666 return (NULL);
13667 }
13668
13669 *exists = B_FALSE;
13670 /* Look for a colon in the name. */
13671 endp = &name[namelen];
13672 for (cp = endp; --cp > name; ) {
13673 if (*cp == IPIF_SEPARATOR_CHAR)
13674 break;
13675 }
13676
13677 if (*cp == IPIF_SEPARATOR_CHAR) {
13678 /*
13679 * Reject any non-decimal aliases for logical
13680 * interfaces. Aliases with leading zeroes
13681 * are also rejected as they introduce ambiguity
13682 * in the naming of the interfaces.
13683 * In order to confirm with existing semantics,
13684 * and to not break any programs/script relying
13685 * on that behaviour, if<0>:0 is considered to be
13686 * a valid interface.
13687 *
13688 * If alias has two or more digits and the first
13689 * is zero, fail.
13690 */
13691 if (&cp[2] < endp && cp[1] == '0') {
13692 return (NULL);
13693 }
13694 }
13695
13696 if (cp <= name) {
13697 cp = endp;
13698 }
13699 last = *cp;
13700 *cp = '\0';
13701
13702 /*
13703 * Look up the ILL, based on the portion of the name
13704 * before the slash. ill_lookup_on_name returns a held ill.
13705 * Temporary to check whether ill exists already. If so
13706 * ill_lookup_on_name will clear it.
13707 */
13708 ill = ill_lookup_on_name(name, do_alloc, isv6,
13709 &did_alloc, ipst);
13710 *cp = last;
13711 if (ill == NULL)
13712 return (NULL);
13713
13714 /* Establish the unit number in the name. */
13715 id = 0;
13716 if (cp < endp && *endp == '\0') {
13717 /* If there was a colon, the unit number follows. */
13718 cp++;
13719 if (ddi_strtol(cp, NULL, 0, &id) != 0) {
13720 ill_refrele(ill);
13721 return (NULL);
13722 }
13723 }
13724
13725 mutex_enter(&ill->ill_lock);
13726 /* Now see if there is an IPIF with this unit number. */
13727 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13728 if (ipif->ipif_id == id) {
13729 if (zoneid != ALL_ZONES &&
13730 zoneid != ipif->ipif_zoneid &&
13731 ipif->ipif_zoneid != ALL_ZONES) {
13732 mutex_exit(&ill->ill_lock);
13733 ill_refrele(ill);
13734 return (NULL);
13735 }
13736 if (IPIF_CAN_LOOKUP(ipif)) {
13737 ipif_refhold_locked(ipif);
13738 mutex_exit(&ill->ill_lock);
13739 if (!did_alloc)
13740 *exists = B_TRUE;
13741 /*
13742 * Drop locks before calling ill_refrele
13743 * since it can potentially call into
13744 * ipif_ill_refrele_tail which can end up
13745 * in trying to acquire any lock.
13746 */
13747 ill_refrele(ill);
13748 return (ipif);
13749 }
13750 }
13751 }
13752
13753 if (!do_alloc) {
13754 mutex_exit(&ill->ill_lock);
13755 ill_refrele(ill);
13756 return (NULL);
13757 }
13758
13759 /*
13760 * If none found, atomically allocate and return a new one.
13761 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL
13762 * to support "receive only" use of lo0:1 etc. as is still done
13763 * below as an initial guess.
13764 * However, this is now likely to be overriden later in ipif_up_done()
13765 * when we know for sure what address has been configured on the
13766 * interface, since we might have more than one loopback interface
13767 * with a loopback address, e.g. in the case of zones, and all the
13768 * interfaces with loopback addresses need to be marked IRE_LOOPBACK.
13769 */
13770 if (ill->ill_net_type == IRE_LOOPBACK && id == 0)
13771 ire_type = IRE_LOOPBACK;
13772 else
13773 ire_type = IRE_LOCAL;
13774 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL);
13775 if (ipif != NULL)
13776 ipif_refhold_locked(ipif);
13777 mutex_exit(&ill->ill_lock);
13778 ill_refrele(ill);
13779 return (ipif);
13780 }
13781
13782 /*
13783 * Variant of the above that queues the request on the ipsq when
13784 * IPIF_CHANGING is set.
13785 */
13786 static ipif_t *
ipif_lookup_on_name_async(char * name,size_t namelen,boolean_t isv6,zoneid_t zoneid,queue_t * q,mblk_t * mp,ipsq_func_t func,int * error,ip_stack_t * ipst)13787 ipif_lookup_on_name_async(char *name, size_t namelen, boolean_t isv6,
13788 zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error,
13789 ip_stack_t *ipst)
13790 {
13791 char *cp;
13792 char *endp;
13793 long id;
13794 ill_t *ill;
13795 ipif_t *ipif;
13796 boolean_t did_alloc = B_FALSE;
13797 ipsq_t *ipsq;
13798
13799 if (error != NULL)
13800 *error = 0;
13801
13802 if (namelen == 0) {
13803 if (error != NULL)
13804 *error = ENXIO;
13805 return (NULL);
13806 }
13807
13808 /* Look for a colon in the name. */
13809 endp = &name[namelen];
13810 for (cp = endp; --cp > name; ) {
13811 if (*cp == IPIF_SEPARATOR_CHAR)
13812 break;
13813 }
13814
13815 if (*cp == IPIF_SEPARATOR_CHAR) {
13816 /*
13817 * Reject any non-decimal aliases for logical
13818 * interfaces. Aliases with leading zeroes
13819 * are also rejected as they introduce ambiguity
13820 * in the naming of the interfaces.
13821 * In order to confirm with existing semantics,
13822 * and to not break any programs/script relying
13823 * on that behaviour, if<0>:0 is considered to be
13824 * a valid interface.
13825 *
13826 * If alias has two or more digits and the first
13827 * is zero, fail.
13828 */
13829 if (&cp[2] < endp && cp[1] == '0') {
13830 if (error != NULL)
13831 *error = EINVAL;
13832 return (NULL);
13833 }
13834 }
13835
13836 if (cp <= name) {
13837 cp = endp;
13838 } else {
13839 *cp = '\0';
13840 }
13841
13842 /*
13843 * Look up the ILL, based on the portion of the name
13844 * before the slash. ill_lookup_on_name returns a held ill.
13845 * Temporary to check whether ill exists already. If so
13846 * ill_lookup_on_name will clear it.
13847 */
13848 ill = ill_lookup_on_name(name, B_FALSE, isv6, &did_alloc, ipst);
13849 if (cp != endp)
13850 *cp = IPIF_SEPARATOR_CHAR;
13851 if (ill == NULL)
13852 return (NULL);
13853
13854 /* Establish the unit number in the name. */
13855 id = 0;
13856 if (cp < endp && *endp == '\0') {
13857 /* If there was a colon, the unit number follows. */
13858 cp++;
13859 if (ddi_strtol(cp, NULL, 0, &id) != 0) {
13860 ill_refrele(ill);
13861 if (error != NULL)
13862 *error = ENXIO;
13863 return (NULL);
13864 }
13865 }
13866
13867 GRAB_CONN_LOCK(q);
13868 mutex_enter(&ill->ill_lock);
13869 /* Now see if there is an IPIF with this unit number. */
13870 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13871 if (ipif->ipif_id == id) {
13872 if (zoneid != ALL_ZONES &&
13873 zoneid != ipif->ipif_zoneid &&
13874 ipif->ipif_zoneid != ALL_ZONES) {
13875 mutex_exit(&ill->ill_lock);
13876 RELEASE_CONN_LOCK(q);
13877 ill_refrele(ill);
13878 if (error != NULL)
13879 *error = ENXIO;
13880 return (NULL);
13881 }
13882
13883 if (!(IPIF_IS_CHANGING(ipif) ||
13884 IPIF_IS_CONDEMNED(ipif)) ||
13885 IAM_WRITER_IPIF(ipif)) {
13886 ipif_refhold_locked(ipif);
13887 mutex_exit(&ill->ill_lock);
13888 /*
13889 * Drop locks before calling ill_refrele
13890 * since it can potentially call into
13891 * ipif_ill_refrele_tail which can end up
13892 * in trying to acquire any lock.
13893 */
13894 RELEASE_CONN_LOCK(q);
13895 ill_refrele(ill);
13896 return (ipif);
13897 } else if (q != NULL && !IPIF_IS_CONDEMNED(ipif)) {
13898 ipsq = ill->ill_phyint->phyint_ipsq;
13899 mutex_enter(&ipsq->ipsq_lock);
13900 mutex_enter(&ipsq->ipsq_xop->ipx_lock);
13901 mutex_exit(&ill->ill_lock);
13902 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
13903 mutex_exit(&ipsq->ipsq_xop->ipx_lock);
13904 mutex_exit(&ipsq->ipsq_lock);
13905 RELEASE_CONN_LOCK(q);
13906 ill_refrele(ill);
13907 if (error != NULL)
13908 *error = EINPROGRESS;
13909 return (NULL);
13910 }
13911 }
13912 }
13913 RELEASE_CONN_LOCK(q);
13914 mutex_exit(&ill->ill_lock);
13915 ill_refrele(ill);
13916 if (error != NULL)
13917 *error = ENXIO;
13918 return (NULL);
13919 }
13920
13921 /*
13922 * This routine is called whenever a new address comes up on an ipif. If
13923 * we are configured to respond to address mask requests, then we are supposed
13924 * to broadcast an address mask reply at this time. This routine is also
13925 * called if we are already up, but a netmask change is made. This is legal
13926 * but might not make the system manager very popular. (May be called
13927 * as writer.)
13928 */
13929 void
ipif_mask_reply(ipif_t * ipif)13930 ipif_mask_reply(ipif_t *ipif)
13931 {
13932 icmph_t *icmph;
13933 ipha_t *ipha;
13934 mblk_t *mp;
13935 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
13936 ip_xmit_attr_t ixas;
13937
13938 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN)
13939
13940 if (!ipst->ips_ip_respond_to_address_mask_broadcast)
13941 return;
13942
13943 /* ICMP mask reply is IPv4 only */
13944 ASSERT(!ipif->ipif_isv6);
13945 /* ICMP mask reply is not for a loopback interface */
13946 ASSERT(ipif->ipif_ill->ill_wq != NULL);
13947
13948 if (ipif->ipif_lcl_addr == INADDR_ANY)
13949 return;
13950
13951 mp = allocb(REPLY_LEN, BPRI_HI);
13952 if (mp == NULL)
13953 return;
13954 mp->b_wptr = mp->b_rptr + REPLY_LEN;
13955
13956 ipha = (ipha_t *)mp->b_rptr;
13957 bzero(ipha, REPLY_LEN);
13958 *ipha = icmp_ipha;
13959 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl;
13960 ipha->ipha_src = ipif->ipif_lcl_addr;
13961 ipha->ipha_dst = ipif->ipif_brd_addr;
13962 ipha->ipha_length = htons(REPLY_LEN);
13963 ipha->ipha_ident = 0;
13964
13965 icmph = (icmph_t *)&ipha[1];
13966 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
13967 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
13968 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0);
13969
13970 bzero(&ixas, sizeof (ixas));
13971 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
13972 ixas.ixa_zoneid = ALL_ZONES;
13973 ixas.ixa_ifindex = 0;
13974 ixas.ixa_ipst = ipst;
13975 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
13976 (void) ip_output_simple(mp, &ixas);
13977 ixa_cleanup(&ixas);
13978 #undef REPLY_LEN
13979 }
13980
13981 /*
13982 * Join the ipif specific multicast groups.
13983 * Must be called after a mapping has been set up in the resolver. (Always
13984 * called as writer.)
13985 */
13986 void
ipif_multicast_up(ipif_t * ipif)13987 ipif_multicast_up(ipif_t *ipif)
13988 {
13989 int err;
13990 ill_t *ill;
13991 ilm_t *ilm;
13992
13993 ASSERT(IAM_WRITER_IPIF(ipif));
13994
13995 ill = ipif->ipif_ill;
13996
13997 ip1dbg(("ipif_multicast_up\n"));
13998 if (!(ill->ill_flags & ILLF_MULTICAST) ||
13999 ipif->ipif_allhosts_ilm != NULL)
14000 return;
14001
14002 if (ipif->ipif_isv6) {
14003 in6_addr_t v6allmc = ipv6_all_hosts_mcast;
14004 in6_addr_t v6solmc = ipv6_solicited_node_mcast;
14005
14006 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3];
14007
14008 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
14009 return;
14010
14011 ip1dbg(("ipif_multicast_up - addmulti\n"));
14012
14013 /*
14014 * Join the all hosts multicast address. We skip this for
14015 * underlying IPMP interfaces since they should be invisible.
14016 */
14017 if (!IS_UNDER_IPMP(ill)) {
14018 ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid,
14019 &err);
14020 if (ilm == NULL) {
14021 ASSERT(err != 0);
14022 ip0dbg(("ipif_multicast_up: "
14023 "all_hosts_mcast failed %d\n", err));
14024 return;
14025 }
14026 ipif->ipif_allhosts_ilm = ilm;
14027 }
14028
14029 /*
14030 * Enable multicast for the solicited node multicast address.
14031 * If IPMP we need to put the membership on the upper ill.
14032 */
14033 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
14034 ill_t *mcast_ill = NULL;
14035 boolean_t need_refrele;
14036
14037 if (IS_UNDER_IPMP(ill) &&
14038 (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) {
14039 need_refrele = B_TRUE;
14040 } else {
14041 mcast_ill = ill;
14042 need_refrele = B_FALSE;
14043 }
14044
14045 ilm = ip_addmulti(&v6solmc, mcast_ill,
14046 ipif->ipif_zoneid, &err);
14047 if (need_refrele)
14048 ill_refrele(mcast_ill);
14049
14050 if (ilm == NULL) {
14051 ASSERT(err != 0);
14052 ip0dbg(("ipif_multicast_up: solicited MC"
14053 " failed %d\n", err));
14054 if ((ilm = ipif->ipif_allhosts_ilm) != NULL) {
14055 ipif->ipif_allhosts_ilm = NULL;
14056 (void) ip_delmulti(ilm);
14057 }
14058 return;
14059 }
14060 ipif->ipif_solmulti_ilm = ilm;
14061 }
14062 } else {
14063 in6_addr_t v6group;
14064
14065 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill))
14066 return;
14067
14068 /* Join the all hosts multicast address */
14069 ip1dbg(("ipif_multicast_up - addmulti\n"));
14070 IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group);
14071
14072 ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err);
14073 if (ilm == NULL) {
14074 ASSERT(err != 0);
14075 ip0dbg(("ipif_multicast_up: failed %d\n", err));
14076 return;
14077 }
14078 ipif->ipif_allhosts_ilm = ilm;
14079 }
14080 }
14081
14082 /*
14083 * Blow away any multicast groups that we joined in ipif_multicast_up().
14084 * (ilms from explicit memberships are handled in conn_update_ill.)
14085 */
14086 void
ipif_multicast_down(ipif_t * ipif)14087 ipif_multicast_down(ipif_t *ipif)
14088 {
14089 ASSERT(IAM_WRITER_IPIF(ipif));
14090
14091 ip1dbg(("ipif_multicast_down\n"));
14092
14093 if (ipif->ipif_allhosts_ilm != NULL) {
14094 (void) ip_delmulti(ipif->ipif_allhosts_ilm);
14095 ipif->ipif_allhosts_ilm = NULL;
14096 }
14097 if (ipif->ipif_solmulti_ilm != NULL) {
14098 (void) ip_delmulti(ipif->ipif_solmulti_ilm);
14099 ipif->ipif_solmulti_ilm = NULL;
14100 }
14101 }
14102
14103 /*
14104 * Used when an interface comes up to recreate any extra routes on this
14105 * interface.
14106 */
14107 int
ill_recover_saved_ire(ill_t * ill)14108 ill_recover_saved_ire(ill_t *ill)
14109 {
14110 mblk_t *mp;
14111 ip_stack_t *ipst = ill->ill_ipst;
14112
14113 ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name));
14114
14115 mutex_enter(&ill->ill_saved_ire_lock);
14116 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) {
14117 ire_t *ire, *nire;
14118 ifrt_t *ifrt;
14119
14120 ifrt = (ifrt_t *)mp->b_rptr;
14121 /*
14122 * Create a copy of the IRE with the saved address and netmask.
14123 */
14124 if (ill->ill_isv6) {
14125 ire = ire_create_v6(
14126 &ifrt->ifrt_v6addr,
14127 &ifrt->ifrt_v6mask,
14128 &ifrt->ifrt_v6gateway_addr,
14129 ifrt->ifrt_type,
14130 ill,
14131 ifrt->ifrt_zoneid,
14132 ifrt->ifrt_flags,
14133 NULL,
14134 ipst);
14135 } else {
14136 ire = ire_create(
14137 (uint8_t *)&ifrt->ifrt_addr,
14138 (uint8_t *)&ifrt->ifrt_mask,
14139 (uint8_t *)&ifrt->ifrt_gateway_addr,
14140 ifrt->ifrt_type,
14141 ill,
14142 ifrt->ifrt_zoneid,
14143 ifrt->ifrt_flags,
14144 NULL,
14145 ipst);
14146 }
14147 if (ire == NULL) {
14148 mutex_exit(&ill->ill_saved_ire_lock);
14149 return (ENOMEM);
14150 }
14151
14152 if (ifrt->ifrt_flags & RTF_SETSRC) {
14153 if (ill->ill_isv6) {
14154 ire->ire_setsrc_addr_v6 =
14155 ifrt->ifrt_v6setsrc_addr;
14156 } else {
14157 ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr;
14158 }
14159 }
14160
14161 /*
14162 * Some software (for example, GateD and Sun Cluster) attempts
14163 * to create (what amount to) IRE_PREFIX routes with the
14164 * loopback address as the gateway. This is primarily done to
14165 * set up prefixes with the RTF_REJECT flag set (for example,
14166 * when generating aggregate routes.)
14167 *
14168 * If the IRE type (as defined by ill->ill_net_type) is
14169 * IRE_LOOPBACK, then we map the request into a
14170 * IRE_IF_NORESOLVER.
14171 */
14172 if (ill->ill_net_type == IRE_LOOPBACK)
14173 ire->ire_type = IRE_IF_NORESOLVER;
14174
14175 /*
14176 * ire held by ire_add, will be refreled' towards the
14177 * the end of ipif_up_done
14178 */
14179 nire = ire_add(ire);
14180 /*
14181 * Check if it was a duplicate entry. This handles
14182 * the case of two racing route adds for the same route
14183 */
14184 if (nire == NULL) {
14185 ip1dbg(("ill_recover_saved_ire: FAILED\n"));
14186 } else if (nire != ire) {
14187 ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n",
14188 (void *)nire));
14189 ire_delete(nire);
14190 } else {
14191 ip1dbg(("ill_recover_saved_ire: added ire %p\n",
14192 (void *)nire));
14193 }
14194 if (nire != NULL)
14195 ire_refrele(nire);
14196 }
14197 mutex_exit(&ill->ill_saved_ire_lock);
14198 return (0);
14199 }
14200
14201 /*
14202 * Used to set the netmask and broadcast address to default values when the
14203 * interface is brought up. (Always called as writer.)
14204 */
14205 static void
ipif_set_default(ipif_t * ipif)14206 ipif_set_default(ipif_t *ipif)
14207 {
14208 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
14209
14210 if (!ipif->ipif_isv6) {
14211 /*
14212 * Interface holds an IPv4 address. Default
14213 * mask is the natural netmask.
14214 */
14215 if (!ipif->ipif_net_mask) {
14216 ipaddr_t v4mask;
14217
14218 v4mask = ip_net_mask(ipif->ipif_lcl_addr);
14219 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask);
14220 }
14221 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14222 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14223 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
14224 } else {
14225 V6_MASK_COPY(ipif->ipif_v6lcl_addr,
14226 ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
14227 }
14228 /*
14229 * NOTE: SunOS 4.X does this even if the broadcast address
14230 * has been already set thus we do the same here.
14231 */
14232 if (ipif->ipif_flags & IPIF_BROADCAST) {
14233 ipaddr_t v4addr;
14234
14235 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask;
14236 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr);
14237 }
14238 } else {
14239 /*
14240 * Interface holds an IPv6-only address. Default
14241 * mask is all-ones.
14242 */
14243 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))
14244 ipif->ipif_v6net_mask = ipv6_all_ones;
14245 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14246 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14247 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
14248 } else {
14249 V6_MASK_COPY(ipif->ipif_v6lcl_addr,
14250 ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
14251 }
14252 }
14253 }
14254
14255 /*
14256 * Return 0 if this address can be used as local address without causing
14257 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address
14258 * is already up on a different ill, and EADDRINUSE if it's up on the same ill.
14259 * Note that the same IPv6 link-local address is allowed as long as the ills
14260 * are not on the same link.
14261 */
14262 int
ip_addr_availability_check(ipif_t * new_ipif)14263 ip_addr_availability_check(ipif_t *new_ipif)
14264 {
14265 in6_addr_t our_v6addr;
14266 ill_t *ill;
14267 ipif_t *ipif;
14268 ill_walk_context_t ctx;
14269 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst;
14270
14271 ASSERT(IAM_WRITER_IPIF(new_ipif));
14272 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock));
14273 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock));
14274
14275 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED;
14276 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) ||
14277 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr))
14278 return (0);
14279
14280 our_v6addr = new_ipif->ipif_v6lcl_addr;
14281
14282 if (new_ipif->ipif_isv6)
14283 ill = ILL_START_WALK_V6(&ctx, ipst);
14284 else
14285 ill = ILL_START_WALK_V4(&ctx, ipst);
14286
14287 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
14288 for (ipif = ill->ill_ipif; ipif != NULL;
14289 ipif = ipif->ipif_next) {
14290 if ((ipif == new_ipif) ||
14291 !(ipif->ipif_flags & IPIF_UP) ||
14292 (ipif->ipif_flags & IPIF_UNNUMBERED) ||
14293 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
14294 &our_v6addr))
14295 continue;
14296
14297 if (new_ipif->ipif_flags & IPIF_POINTOPOINT)
14298 new_ipif->ipif_flags |= IPIF_UNNUMBERED;
14299 else if (ipif->ipif_flags & IPIF_POINTOPOINT)
14300 ipif->ipif_flags |= IPIF_UNNUMBERED;
14301 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) ||
14302 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) &&
14303 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill))
14304 continue;
14305 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid &&
14306 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill))
14307 continue;
14308 else if (new_ipif->ipif_ill == ill)
14309 return (EADDRINUSE);
14310 else
14311 return (EADDRNOTAVAIL);
14312 }
14313 }
14314
14315 return (0);
14316 }
14317
14318 /*
14319 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add
14320 * IREs for the ipif.
14321 * When the routine returns EINPROGRESS then mp has been consumed and
14322 * the ioctl will be acked from ip_rput_dlpi.
14323 */
14324 int
ipif_up(ipif_t * ipif,queue_t * q,mblk_t * mp)14325 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp)
14326 {
14327 ill_t *ill = ipif->ipif_ill;
14328 boolean_t isv6 = ipif->ipif_isv6;
14329 int err = 0;
14330 boolean_t success;
14331 uint_t ipif_orig_id;
14332 ip_stack_t *ipst = ill->ill_ipst;
14333
14334 ASSERT(IAM_WRITER_IPIF(ipif));
14335
14336 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id));
14337 DTRACE_PROBE3(ipif__downup, char *, "ipif_up",
14338 ill_t *, ill, ipif_t *, ipif);
14339
14340 /* Shouldn't get here if it is already up. */
14341 if (ipif->ipif_flags & IPIF_UP)
14342 return (EALREADY);
14343
14344 /*
14345 * If this is a request to bring up a data address on an interface
14346 * under IPMP, then move the address to its IPMP meta-interface and
14347 * try to bring it up. One complication is that the zeroth ipif for
14348 * an ill is special, in that every ill always has one, and that code
14349 * throughout IP deferences ill->ill_ipif without holding any locks.
14350 */
14351 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) &&
14352 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) {
14353 ipif_t *stubipif = NULL, *moveipif = NULL;
14354 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp);
14355
14356 /*
14357 * The ipif being brought up should be quiesced. If it's not,
14358 * something has gone amiss and we need to bail out. (If it's
14359 * quiesced, we know it will remain so via IPIF_CONDEMNED.)
14360 */
14361 mutex_enter(&ill->ill_lock);
14362 if (!ipif_is_quiescent(ipif)) {
14363 mutex_exit(&ill->ill_lock);
14364 return (EINVAL);
14365 }
14366 mutex_exit(&ill->ill_lock);
14367
14368 /*
14369 * If we're going to need to allocate ipifs, do it prior
14370 * to starting the move (and grabbing locks).
14371 */
14372 if (ipif->ipif_id == 0) {
14373 if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
14374 B_FALSE, &err)) == NULL) {
14375 return (err);
14376 }
14377 if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
14378 B_FALSE, &err)) == NULL) {
14379 mi_free(moveipif);
14380 return (err);
14381 }
14382 }
14383
14384 /*
14385 * Grab or transfer the ipif to move. During the move, keep
14386 * ill_g_lock held to prevent any ill walker threads from
14387 * seeing things in an inconsistent state.
14388 */
14389 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14390 if (ipif->ipif_id != 0) {
14391 ipif_remove(ipif);
14392 } else {
14393 ipif_transfer(ipif, moveipif, stubipif);
14394 ipif = moveipif;
14395 }
14396
14397 /*
14398 * Place the ipif on the IPMP ill. If the zeroth ipif on
14399 * the IPMP ill is a stub (0.0.0.0 down address) then we
14400 * replace that one. Otherwise, pick the next available slot.
14401 */
14402 ipif->ipif_ill = ipmp_ill;
14403 ipif_orig_id = ipif->ipif_id;
14404
14405 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) {
14406 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL);
14407 ipif = ipmp_ill->ill_ipif;
14408 } else {
14409 ipif->ipif_id = -1;
14410 if ((err = ipif_insert(ipif, B_FALSE)) != 0) {
14411 /*
14412 * No more available ipif_id's -- put it back
14413 * on the original ill and fail the operation.
14414 * Since we're writer on the ill, we can be
14415 * sure our old slot is still available.
14416 */
14417 ipif->ipif_id = ipif_orig_id;
14418 ipif->ipif_ill = ill;
14419 if (ipif_orig_id == 0) {
14420 ipif_transfer(ipif, ill->ill_ipif,
14421 NULL);
14422 } else {
14423 VERIFY(ipif_insert(ipif, B_FALSE) == 0);
14424 }
14425 rw_exit(&ipst->ips_ill_g_lock);
14426 return (err);
14427 }
14428 }
14429 rw_exit(&ipst->ips_ill_g_lock);
14430
14431 /*
14432 * Tell SCTP that the ipif has moved. Note that even if we
14433 * had to allocate a new ipif, the original sequence id was
14434 * preserved and therefore SCTP won't know.
14435 */
14436 sctp_move_ipif(ipif, ill, ipmp_ill);
14437
14438 /*
14439 * If the ipif being brought up was on slot zero, then we
14440 * first need to bring up the placeholder we stuck there. In
14441 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive
14442 * call to ipif_up() itself, if we successfully bring up the
14443 * placeholder, we'll check ill_move_ipif and bring it up too.
14444 */
14445 if (ipif_orig_id == 0) {
14446 ASSERT(ill->ill_move_ipif == NULL);
14447 ill->ill_move_ipif = ipif;
14448 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0)
14449 ASSERT(ill->ill_move_ipif == NULL);
14450 if (err != EINPROGRESS)
14451 ill->ill_move_ipif = NULL;
14452 return (err);
14453 }
14454
14455 /*
14456 * Bring it up on the IPMP ill.
14457 */
14458 return (ipif_up(ipif, q, mp));
14459 }
14460
14461 /* Skip arp/ndp for any loopback interface. */
14462 if (ill->ill_wq != NULL) {
14463 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
14464 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
14465
14466 if (!ill->ill_dl_up) {
14467 /*
14468 * ill_dl_up is not yet set. i.e. we are yet to
14469 * DL_BIND with the driver and this is the first
14470 * logical interface on the ill to become "up".
14471 * Tell the driver to get going (via DL_BIND_REQ).
14472 * Note that changing "significant" IFF_ flags
14473 * address/netmask etc cause a down/up dance, but
14474 * does not cause an unbind (DL_UNBIND) with the driver
14475 */
14476 return (ill_dl_up(ill, ipif, mp, q));
14477 }
14478
14479 /*
14480 * ipif_resolver_up may end up needeing to bind/attach
14481 * the ARP stream, which in turn necessitates a
14482 * DLPI message exchange with the driver. ioctls are
14483 * serialized and so we cannot send more than one
14484 * interface up message at a time. If ipif_resolver_up
14485 * does need to wait for the DLPI handshake for the ARP stream,
14486 * we get EINPROGRESS and we will complete in arp_bringup_done.
14487 */
14488
14489 ASSERT(connp != NULL || !CONN_Q(q));
14490 if (connp != NULL)
14491 mutex_enter(&connp->conn_lock);
14492 mutex_enter(&ill->ill_lock);
14493 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
14494 mutex_exit(&ill->ill_lock);
14495 if (connp != NULL)
14496 mutex_exit(&connp->conn_lock);
14497 if (!success)
14498 return (EINTR);
14499
14500 /*
14501 * Crank up IPv6 neighbor discovery. Unlike ARP, this should
14502 * complete when ipif_ndp_up returns.
14503 */
14504 err = ipif_resolver_up(ipif, Res_act_initial);
14505 if (err == EINPROGRESS) {
14506 /* We will complete it in arp_bringup_done() */
14507 return (err);
14508 }
14509
14510 if (isv6 && err == 0)
14511 err = ipif_ndp_up(ipif, B_TRUE);
14512
14513 ASSERT(err != EINPROGRESS);
14514 mp = ipsq_pending_mp_get(ipsq, &connp);
14515 ASSERT(mp != NULL);
14516 if (err != 0)
14517 return (err);
14518 } else {
14519 /*
14520 * Interfaces without underlying hardware don't do duplicate
14521 * address detection.
14522 */
14523 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
14524 ipif->ipif_addr_ready = 1;
14525 err = ill_add_ires(ill);
14526 /* allocation failure? */
14527 if (err != 0)
14528 return (err);
14529 }
14530
14531 err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif));
14532 if (err == 0 && ill->ill_move_ipif != NULL) {
14533 ipif = ill->ill_move_ipif;
14534 ill->ill_move_ipif = NULL;
14535 return (ipif_up(ipif, q, mp));
14536 }
14537 return (err);
14538 }
14539
14540 /*
14541 * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST.
14542 * The identical set of IREs need to be removed in ill_delete_ires().
14543 */
14544 int
ill_add_ires(ill_t * ill)14545 ill_add_ires(ill_t *ill)
14546 {
14547 ire_t *ire;
14548 in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1};
14549 in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP);
14550
14551 if (ill->ill_ire_multicast != NULL)
14552 return (0);
14553
14554 /*
14555 * provide some dummy ire_addr for creating the ire.
14556 */
14557 if (ill->ill_isv6) {
14558 ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill,
14559 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst);
14560 } else {
14561 ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill,
14562 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst);
14563 }
14564 if (ire == NULL)
14565 return (ENOMEM);
14566
14567 ill->ill_ire_multicast = ire;
14568 return (0);
14569 }
14570
14571 void
ill_delete_ires(ill_t * ill)14572 ill_delete_ires(ill_t *ill)
14573 {
14574 if (ill->ill_ire_multicast != NULL) {
14575 /*
14576 * BIND/ATTACH completed; Release the ref for ill_ire_multicast
14577 * which was taken without any th_tracing enabled.
14578 * We also mark it as condemned (note that it was never added)
14579 * so that caching conn's can move off of it.
14580 */
14581 ire_make_condemned(ill->ill_ire_multicast);
14582 ire_refrele_notr(ill->ill_ire_multicast);
14583 ill->ill_ire_multicast = NULL;
14584 }
14585 }
14586
14587 /*
14588 * Perform a bind for the physical device.
14589 * When the routine returns EINPROGRESS then mp has been consumed and
14590 * the ioctl will be acked from ip_rput_dlpi.
14591 * Allocate an unbind message and save it until ipif_down.
14592 */
14593 static int
ill_dl_up(ill_t * ill,ipif_t * ipif,mblk_t * mp,queue_t * q)14594 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
14595 {
14596 mblk_t *bind_mp = NULL;
14597 mblk_t *unbind_mp = NULL;
14598 conn_t *connp;
14599 boolean_t success;
14600 int err;
14601
14602 DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill);
14603
14604 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name));
14605 ASSERT(IAM_WRITER_ILL(ill));
14606 ASSERT(mp != NULL);
14607
14608 /*
14609 * Make sure we have an IRE_MULTICAST in case we immediately
14610 * start receiving packets.
14611 */
14612 err = ill_add_ires(ill);
14613 if (err != 0)
14614 goto bad;
14615
14616 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
14617 DL_BIND_REQ);
14618 if (bind_mp == NULL)
14619 goto bad;
14620 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
14621 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;
14622
14623 /*
14624 * ill_unbind_mp would be non-null if the following sequence had
14625 * happened:
14626 * - send DL_BIND_REQ to driver, wait for response
14627 * - multiple ioctls that need to bring the ipif up are encountered,
14628 * but they cannot enter the ipsq due to the outstanding DL_BIND_REQ.
14629 * These ioctls will then be enqueued on the ipsq
14630 * - a DL_ERROR_ACK is returned for the DL_BIND_REQ
14631 * At this point, the pending ioctls in the ipsq will be drained, and
14632 * since ill->ill_dl_up was not set, ill_dl_up would be invoked with
14633 * a non-null ill->ill_unbind_mp
14634 */
14635 if (ill->ill_unbind_mp == NULL) {
14636 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t),
14637 DL_UNBIND_REQ);
14638 if (unbind_mp == NULL)
14639 goto bad;
14640 }
14641 /*
14642 * Record state needed to complete this operation when the
14643 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks.
14644 */
14645 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
14646 ASSERT(connp != NULL || !CONN_Q(q));
14647 GRAB_CONN_LOCK(q);
14648 mutex_enter(&ipif->ipif_ill->ill_lock);
14649 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
14650 mutex_exit(&ipif->ipif_ill->ill_lock);
14651 RELEASE_CONN_LOCK(q);
14652 if (!success)
14653 goto bad;
14654
14655 /*
14656 * Save the unbind message for ill_dl_down(); it will be consumed when
14657 * the interface goes down.
14658 */
14659 if (ill->ill_unbind_mp == NULL)
14660 ill->ill_unbind_mp = unbind_mp;
14661
14662 ill_dlpi_send(ill, bind_mp);
14663 /* Send down link-layer capabilities probe if not already done. */
14664 ill_capability_probe(ill);
14665
14666 /*
14667 * Sysid used to rely on the fact that netboots set domainname
14668 * and the like. Now that miniroot boots aren't strictly netboots
14669 * and miniroot network configuration is driven from userland
14670 * these things still need to be set. This situation can be detected
14671 * by comparing the interface being configured here to the one
14672 * dhcifname was set to reference by the boot loader. Once sysid is
14673 * converted to use dhcp_ipc_getinfo() this call can go away.
14674 */
14675 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) &&
14676 (strcmp(ill->ill_name, dhcifname) == 0) &&
14677 (strlen(srpc_domain) == 0)) {
14678 if (dhcpinit() != 0)
14679 cmn_err(CE_WARN, "no cached dhcp response");
14680 }
14681
14682 /*
14683 * This operation will complete in ip_rput_dlpi with either
14684 * a DL_BIND_ACK or DL_ERROR_ACK.
14685 */
14686 return (EINPROGRESS);
14687 bad:
14688 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name));
14689
14690 freemsg(bind_mp);
14691 freemsg(unbind_mp);
14692 return (ENOMEM);
14693 }
14694
14695 /* Add room for tcp+ip headers */
14696 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20;
14697
14698 /*
14699 * DLPI and ARP is up.
14700 * Create all the IREs associated with an interface. Bring up multicast.
14701 * Set the interface flag and finish other initialization
14702 * that potentially had to be deferred to after DL_BIND_ACK.
14703 */
14704 int
ipif_up_done(ipif_t * ipif)14705 ipif_up_done(ipif_t *ipif)
14706 {
14707 ill_t *ill = ipif->ipif_ill;
14708 int err = 0;
14709 boolean_t loopback = B_FALSE;
14710 boolean_t update_src_selection = B_TRUE;
14711 ipif_t *tmp_ipif;
14712
14713 ip1dbg(("ipif_up_done(%s:%u)\n",
14714 ipif->ipif_ill->ill_name, ipif->ipif_id));
14715 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done",
14716 ill_t *, ill, ipif_t *, ipif);
14717
14718 /* Check if this is a loopback interface */
14719 if (ipif->ipif_ill->ill_wq == NULL)
14720 loopback = B_TRUE;
14721
14722 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
14723
14724 /*
14725 * If all other interfaces for this ill are down or DEPRECATED,
14726 * or otherwise unsuitable for source address selection,
14727 * reset the src generation numbers to make sure source
14728 * address selection gets to take this new ipif into account.
14729 * No need to hold ill_lock while traversing the ipif list since
14730 * we are writer
14731 */
14732 for (tmp_ipif = ill->ill_ipif; tmp_ipif;
14733 tmp_ipif = tmp_ipif->ipif_next) {
14734 if (((tmp_ipif->ipif_flags &
14735 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) ||
14736 !(tmp_ipif->ipif_flags & IPIF_UP)) ||
14737 (tmp_ipif == ipif))
14738 continue;
14739 /* first useable pre-existing interface */
14740 update_src_selection = B_FALSE;
14741 break;
14742 }
14743 if (update_src_selection)
14744 ip_update_source_selection(ill->ill_ipst);
14745
14746 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) {
14747 nce_t *loop_nce = NULL;
14748 uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD);
14749
14750 /*
14751 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
14752 * ipif_lookup_on_name(), but in the case of zones we can have
14753 * several loopback addresses on lo0. So all the interfaces with
14754 * loopback addresses need to be marked IRE_LOOPBACK.
14755 */
14756 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) ==
14757 htonl(INADDR_LOOPBACK))
14758 ipif->ipif_ire_type = IRE_LOOPBACK;
14759 else
14760 ipif->ipif_ire_type = IRE_LOCAL;
14761 if (ill->ill_net_type != IRE_LOOPBACK)
14762 flags |= NCE_F_PUBLISH;
14763
14764 /* add unicast nce for the local addr */
14765 err = nce_lookup_then_add_v4(ill, NULL,
14766 ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags,
14767 ND_REACHABLE, &loop_nce);
14768 /* A shared-IP zone sees EEXIST for lo0:N */
14769 if (err == 0 || err == EEXIST) {
14770 ipif->ipif_added_nce = 1;
14771 loop_nce->nce_ipif_cnt++;
14772 nce_refrele(loop_nce);
14773 err = 0;
14774 } else {
14775 ASSERT(loop_nce == NULL);
14776 return (err);
14777 }
14778 }
14779
14780 /* Create all the IREs associated with this interface */
14781 err = ipif_add_ires_v4(ipif, loopback);
14782 if (err != 0) {
14783 /*
14784 * see comments about return value from
14785 * ip_addr_availability_check() in ipif_add_ires_v4().
14786 */
14787 if (err != EADDRINUSE) {
14788 (void) ipif_arp_down(ipif);
14789 } else {
14790 /*
14791 * Make IPMP aware of the deleted ipif so that
14792 * the needed ipmp cleanup (e.g., of ipif_bound_ill)
14793 * can be completed. Note that we do not want to
14794 * destroy the nce that was created on the ipmp_ill
14795 * for the active copy of the duplicate address in
14796 * use.
14797 */
14798 if (IS_IPMP(ill))
14799 ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
14800 err = EADDRNOTAVAIL;
14801 }
14802 return (err);
14803 }
14804
14805 if (ill->ill_ipif_up_count == 1 && !loopback) {
14806 /* Recover any additional IREs entries for this ill */
14807 (void) ill_recover_saved_ire(ill);
14808 }
14809
14810 if (ill->ill_need_recover_multicast) {
14811 /*
14812 * Need to recover all multicast memberships in the driver.
14813 * This had to be deferred until we had attached. The same
14814 * code exists in ipif_up_done_v6() to recover IPv6
14815 * memberships.
14816 *
14817 * Note that it would be preferable to unconditionally do the
14818 * ill_recover_multicast() in ill_dl_up(), but we cannot do
14819 * that since ill_join_allmulti() depends on ill_dl_up being
14820 * set, and it is not set until we receive a DL_BIND_ACK after
14821 * having called ill_dl_up().
14822 */
14823 ill_recover_multicast(ill);
14824 }
14825
14826 if (ill->ill_ipif_up_count == 1) {
14827 /*
14828 * Since the interface is now up, it may now be active.
14829 */
14830 if (IS_UNDER_IPMP(ill))
14831 ipmp_ill_refresh_active(ill);
14832
14833 /*
14834 * If this is an IPMP interface, we may now be able to
14835 * establish ARP entries.
14836 */
14837 if (IS_IPMP(ill))
14838 ipmp_illgrp_refresh_arpent(ill->ill_grp);
14839 }
14840
14841 /* Join the allhosts multicast address */
14842 ipif_multicast_up(ipif);
14843
14844 if (!loopback && !update_src_selection &&
14845 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)))
14846 ip_update_source_selection(ill->ill_ipst);
14847
14848 if (!loopback && ipif->ipif_addr_ready) {
14849 /* Broadcast an address mask reply. */
14850 ipif_mask_reply(ipif);
14851 }
14852 /* Perhaps ilgs should use this ill */
14853 update_conn_ill(NULL, ill->ill_ipst);
14854
14855 /*
14856 * This had to be deferred until we had bound. Tell routing sockets and
14857 * others that this interface is up if it looks like the address has
14858 * been validated. Otherwise, if it isn't ready yet, wait for
14859 * duplicate address detection to do its thing.
14860 */
14861 if (ipif->ipif_addr_ready)
14862 ipif_up_notify(ipif);
14863 return (0);
14864 }
14865
14866 /*
14867 * Add the IREs associated with the ipif.
14868 * Those MUST be explicitly removed in ipif_delete_ires_v4.
14869 */
14870 static int
ipif_add_ires_v4(ipif_t * ipif,boolean_t loopback)14871 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback)
14872 {
14873 ill_t *ill = ipif->ipif_ill;
14874 ip_stack_t *ipst = ill->ill_ipst;
14875 ire_t *ire_array[20];
14876 ire_t **irep = ire_array;
14877 ire_t **irep1;
14878 ipaddr_t net_mask = 0;
14879 ipaddr_t subnet_mask, route_mask;
14880 int err;
14881 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */
14882 ire_t *ire_if = NULL;
14883 uchar_t *gw;
14884
14885 if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
14886 !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14887 /*
14888 * If we're on a labeled system then make sure that zone-
14889 * private addresses have proper remote host database entries.
14890 */
14891 if (is_system_labeled() &&
14892 ipif->ipif_ire_type != IRE_LOOPBACK &&
14893 !tsol_check_interface_address(ipif))
14894 return (EINVAL);
14895
14896 /* Register the source address for __sin6_src_id */
14897 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
14898 ipif->ipif_zoneid, ipst);
14899 if (err != 0) {
14900 ip0dbg(("ipif_add_ires: srcid_insert %d\n", err));
14901 return (err);
14902 }
14903
14904 if (loopback)
14905 gw = (uchar_t *)&ipif->ipif_lcl_addr;
14906 else
14907 gw = NULL;
14908
14909 /* If the interface address is set, create the local IRE. */
14910 ire_local = ire_create(
14911 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */
14912 (uchar_t *)&ip_g_all_ones, /* mask */
14913 gw, /* gateway */
14914 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */
14915 ipif->ipif_ill,
14916 ipif->ipif_zoneid,
14917 ((ipif->ipif_flags & IPIF_PRIVATE) ?
14918 RTF_PRIVATE : 0) | RTF_KERNEL,
14919 NULL,
14920 ipst);
14921 ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x"
14922 " for 0x%x\n", (void *)ipif, (void *)ire_local,
14923 ipif->ipif_ire_type,
14924 ntohl(ipif->ipif_lcl_addr)));
14925 if (ire_local == NULL) {
14926 ip1dbg(("ipif_up_done: NULL ire_local\n"));
14927 err = ENOMEM;
14928 goto bad;
14929 }
14930 } else {
14931 ip1dbg((
14932 "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n",
14933 ipif->ipif_ire_type,
14934 ntohl(ipif->ipif_lcl_addr),
14935 (uint_t)ipif->ipif_flags));
14936 }
14937 if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
14938 !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14939 net_mask = ip_net_mask(ipif->ipif_lcl_addr);
14940 } else {
14941 net_mask = htonl(IN_CLASSA_NET); /* fallback */
14942 }
14943
14944 subnet_mask = ipif->ipif_net_mask;
14945
14946 /*
14947 * If mask was not specified, use natural netmask of
14948 * interface address. Also, store this mask back into the
14949 * ipif struct.
14950 */
14951 if (subnet_mask == 0) {
14952 subnet_mask = net_mask;
14953 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask);
14954 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
14955 ipif->ipif_v6subnet);
14956 }
14957
14958 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */
14959 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) &&
14960 ipif->ipif_subnet != INADDR_ANY) {
14961 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14962
14963 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14964 route_mask = IP_HOST_MASK;
14965 } else {
14966 route_mask = subnet_mask;
14967 }
14968
14969 ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p "
14970 "creating if IRE ill_net_type 0x%x for 0x%x\n",
14971 (void *)ipif, (void *)ill, ill->ill_net_type,
14972 ntohl(ipif->ipif_subnet)));
14973 ire_if = ire_create(
14974 (uchar_t *)&ipif->ipif_subnet,
14975 (uchar_t *)&route_mask,
14976 (uchar_t *)&ipif->ipif_lcl_addr,
14977 ill->ill_net_type,
14978 ill,
14979 ipif->ipif_zoneid,
14980 ((ipif->ipif_flags & IPIF_PRIVATE) ?
14981 RTF_PRIVATE: 0) | RTF_KERNEL,
14982 NULL,
14983 ipst);
14984 if (ire_if == NULL) {
14985 ip1dbg(("ipif_up_done: NULL ire_if\n"));
14986 err = ENOMEM;
14987 goto bad;
14988 }
14989 }
14990
14991 /*
14992 * Create any necessary broadcast IREs.
14993 */
14994 if ((ipif->ipif_flags & IPIF_BROADCAST) &&
14995 !(ipif->ipif_flags & IPIF_NOXMIT))
14996 irep = ipif_create_bcast_ires(ipif, irep);
14997
14998 /* If an earlier ire_create failed, get out now */
14999 for (irep1 = irep; irep1 > ire_array; ) {
15000 irep1--;
15001 if (*irep1 == NULL) {
15002 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n"));
15003 err = ENOMEM;
15004 goto bad;
15005 }
15006 }
15007
15008 /*
15009 * Need to atomically check for IP address availability under
15010 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new
15011 * ills or new ipifs can be added while we are checking availability.
15012 */
15013 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
15014 mutex_enter(&ipst->ips_ip_addr_avail_lock);
15015 /* Mark it up, and increment counters. */
15016 ipif->ipif_flags |= IPIF_UP;
15017 ill->ill_ipif_up_count++;
15018 err = ip_addr_availability_check(ipif);
15019 mutex_exit(&ipst->ips_ip_addr_avail_lock);
15020 rw_exit(&ipst->ips_ill_g_lock);
15021
15022 if (err != 0) {
15023 /*
15024 * Our address may already be up on the same ill. In this case,
15025 * the ARP entry for our ipif replaced the one for the other
15026 * ipif. So we don't want to delete it (otherwise the other ipif
15027 * would be unable to send packets).
15028 * ip_addr_availability_check() identifies this case for us and
15029 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL
15030 * which is the expected error code.
15031 */
15032 ill->ill_ipif_up_count--;
15033 ipif->ipif_flags &= ~IPIF_UP;
15034 goto bad;
15035 }
15036
15037 /*
15038 * Add in all newly created IREs. ire_create_bcast() has
15039 * already checked for duplicates of the IRE_BROADCAST type.
15040 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure
15041 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is
15042 * a /32 route.
15043 */
15044 if (ire_if != NULL) {
15045 ire_if = ire_add(ire_if);
15046 if (ire_if == NULL) {
15047 err = ENOMEM;
15048 goto bad2;
15049 }
15050 #ifdef DEBUG
15051 ire_refhold_notr(ire_if);
15052 ire_refrele(ire_if);
15053 #endif
15054 }
15055 if (ire_local != NULL) {
15056 ire_local = ire_add(ire_local);
15057 if (ire_local == NULL) {
15058 err = ENOMEM;
15059 goto bad2;
15060 }
15061 #ifdef DEBUG
15062 ire_refhold_notr(ire_local);
15063 ire_refrele(ire_local);
15064 #endif
15065 }
15066 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15067 if (ire_local != NULL)
15068 ipif->ipif_ire_local = ire_local;
15069 if (ire_if != NULL)
15070 ipif->ipif_ire_if = ire_if;
15071 rw_exit(&ipst->ips_ill_g_lock);
15072 ire_local = NULL;
15073 ire_if = NULL;
15074
15075 /*
15076 * We first add all of them, and if that succeeds we refrele the
15077 * bunch. That enables us to delete all of them should any of the
15078 * ire_adds fail.
15079 */
15080 for (irep1 = irep; irep1 > ire_array; ) {
15081 irep1--;
15082 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock)));
15083 *irep1 = ire_add(*irep1);
15084 if (*irep1 == NULL) {
15085 err = ENOMEM;
15086 goto bad2;
15087 }
15088 }
15089
15090 for (irep1 = irep; irep1 > ire_array; ) {
15091 irep1--;
15092 /* refheld by ire_add. */
15093 if (*irep1 != NULL) {
15094 ire_refrele(*irep1);
15095 *irep1 = NULL;
15096 }
15097 }
15098
15099 if (!loopback) {
15100 /*
15101 * If the broadcast address has been set, make sure it makes
15102 * sense based on the interface address.
15103 * Only match on ill since we are sharing broadcast addresses.
15104 */
15105 if ((ipif->ipif_brd_addr != INADDR_ANY) &&
15106 (ipif->ipif_flags & IPIF_BROADCAST)) {
15107 ire_t *ire;
15108
15109 ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0,
15110 IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL,
15111 (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL);
15112
15113 if (ire == NULL) {
15114 /*
15115 * If there isn't a matching broadcast IRE,
15116 * revert to the default for this netmask.
15117 */
15118 ipif->ipif_v6brd_addr = ipv6_all_zeros;
15119 mutex_enter(&ipif->ipif_ill->ill_lock);
15120 ipif_set_default(ipif);
15121 mutex_exit(&ipif->ipif_ill->ill_lock);
15122 } else {
15123 ire_refrele(ire);
15124 }
15125 }
15126
15127 }
15128 return (0);
15129
15130 bad2:
15131 ill->ill_ipif_up_count--;
15132 ipif->ipif_flags &= ~IPIF_UP;
15133
15134 bad:
15135 ip1dbg(("ipif_add_ires: FAILED \n"));
15136 if (ire_local != NULL)
15137 ire_delete(ire_local);
15138 if (ire_if != NULL)
15139 ire_delete(ire_if);
15140
15141 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15142 ire_local = ipif->ipif_ire_local;
15143 ipif->ipif_ire_local = NULL;
15144 ire_if = ipif->ipif_ire_if;
15145 ipif->ipif_ire_if = NULL;
15146 rw_exit(&ipst->ips_ill_g_lock);
15147 if (ire_local != NULL) {
15148 ire_delete(ire_local);
15149 ire_refrele_notr(ire_local);
15150 }
15151 if (ire_if != NULL) {
15152 ire_delete(ire_if);
15153 ire_refrele_notr(ire_if);
15154 }
15155
15156 while (irep > ire_array) {
15157 irep--;
15158 if (*irep != NULL) {
15159 ire_delete(*irep);
15160 }
15161 }
15162 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst);
15163
15164 return (err);
15165 }
15166
15167 /* Remove all the IREs created by ipif_add_ires_v4 */
15168 void
ipif_delete_ires_v4(ipif_t * ipif)15169 ipif_delete_ires_v4(ipif_t *ipif)
15170 {
15171 ill_t *ill = ipif->ipif_ill;
15172 ip_stack_t *ipst = ill->ill_ipst;
15173 ire_t *ire;
15174
15175 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15176 ire = ipif->ipif_ire_local;
15177 ipif->ipif_ire_local = NULL;
15178 rw_exit(&ipst->ips_ill_g_lock);
15179 if (ire != NULL) {
15180 /*
15181 * Move count to ipif so we don't loose the count due to
15182 * a down/up dance.
15183 */
15184 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count);
15185
15186 ire_delete(ire);
15187 ire_refrele_notr(ire);
15188 }
15189 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15190 ire = ipif->ipif_ire_if;
15191 ipif->ipif_ire_if = NULL;
15192 rw_exit(&ipst->ips_ill_g_lock);
15193 if (ire != NULL) {
15194 ire_delete(ire);
15195 ire_refrele_notr(ire);
15196 }
15197
15198 /*
15199 * Delete the broadcast IREs.
15200 */
15201 if ((ipif->ipif_flags & IPIF_BROADCAST) &&
15202 !(ipif->ipif_flags & IPIF_NOXMIT))
15203 ipif_delete_bcast_ires(ipif);
15204 }
15205
15206 /*
15207 * Checks for availbility of a usable source address (if there is one) when the
15208 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note
15209 * this selection is done regardless of the destination.
15210 */
15211 boolean_t
ipif_zone_avail(uint_t ifindex,boolean_t isv6,zoneid_t zoneid,ip_stack_t * ipst)15212 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid,
15213 ip_stack_t *ipst)
15214 {
15215 ipif_t *ipif = NULL;
15216 ill_t *uill;
15217
15218 ASSERT(ifindex != 0);
15219
15220 uill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
15221 if (uill == NULL)
15222 return (B_FALSE);
15223
15224 mutex_enter(&uill->ill_lock);
15225 for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15226 if (IPIF_IS_CONDEMNED(ipif))
15227 continue;
15228 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15229 continue;
15230 if (!(ipif->ipif_flags & IPIF_UP))
15231 continue;
15232 if (ipif->ipif_zoneid != zoneid)
15233 continue;
15234 if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) :
15235 ipif->ipif_lcl_addr == INADDR_ANY)
15236 continue;
15237 mutex_exit(&uill->ill_lock);
15238 ill_refrele(uill);
15239 return (B_TRUE);
15240 }
15241 mutex_exit(&uill->ill_lock);
15242 ill_refrele(uill);
15243 return (B_FALSE);
15244 }
15245
15246 /*
15247 * Find an ipif with a good local address on the ill+zoneid.
15248 */
15249 ipif_t *
ipif_good_addr(ill_t * ill,zoneid_t zoneid)15250 ipif_good_addr(ill_t *ill, zoneid_t zoneid)
15251 {
15252 ipif_t *ipif;
15253
15254 mutex_enter(&ill->ill_lock);
15255 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15256 if (IPIF_IS_CONDEMNED(ipif))
15257 continue;
15258 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15259 continue;
15260 if (!(ipif->ipif_flags & IPIF_UP))
15261 continue;
15262 if (ipif->ipif_zoneid != zoneid &&
15263 ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES)
15264 continue;
15265 if (ill->ill_isv6 ?
15266 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) :
15267 ipif->ipif_lcl_addr == INADDR_ANY)
15268 continue;
15269 ipif_refhold_locked(ipif);
15270 mutex_exit(&ill->ill_lock);
15271 return (ipif);
15272 }
15273 mutex_exit(&ill->ill_lock);
15274 return (NULL);
15275 }
15276
15277 /*
15278 * IP source address type, sorted from worst to best. For a given type,
15279 * always prefer IP addresses on the same subnet. All-zones addresses are
15280 * suboptimal because they pose problems with unlabeled destinations.
15281 */
15282 typedef enum {
15283 IPIF_NONE,
15284 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */
15285 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */
15286 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */
15287 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */
15288 IPIF_DIFFNET, /* normal and different subnet */
15289 IPIF_SAMENET, /* normal and same subnet */
15290 IPIF_LOCALADDR /* local loopback */
15291 } ipif_type_t;
15292
15293 /*
15294 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone
15295 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t
15296 * enumeration, and return the highest-rated ipif. If there's a tie, we pick
15297 * the first one, unless IPMP is used in which case we round-robin among them;
15298 * see below for more.
15299 *
15300 * Returns NULL if there is no suitable source address for the ill.
15301 * This only occurs when there is no valid source address for the ill.
15302 */
15303 ipif_t *
ipif_select_source_v4(ill_t * ill,ipaddr_t dst,zoneid_t zoneid,boolean_t allow_usesrc,boolean_t * notreadyp)15304 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid,
15305 boolean_t allow_usesrc, boolean_t *notreadyp)
15306 {
15307 ill_t *usill = NULL;
15308 ill_t *ipmp_ill = NULL;
15309 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif;
15310 ipif_type_t type, best_type;
15311 tsol_tpc_t *src_rhtp, *dst_rhtp;
15312 ip_stack_t *ipst = ill->ill_ipst;
15313 boolean_t samenet;
15314
15315 if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) {
15316 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex,
15317 B_FALSE, ipst);
15318 if (usill != NULL)
15319 ill = usill; /* Select source from usesrc ILL */
15320 else
15321 return (NULL);
15322 }
15323
15324 /*
15325 * Test addresses should never be used for source address selection,
15326 * so if we were passed one, switch to the IPMP meta-interface.
15327 */
15328 if (IS_UNDER_IPMP(ill)) {
15329 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL)
15330 ill = ipmp_ill; /* Select source from IPMP ill */
15331 else
15332 return (NULL);
15333 }
15334
15335 /*
15336 * If we're dealing with an unlabeled destination on a labeled system,
15337 * make sure that we ignore source addresses that are incompatible with
15338 * the destination's default label. That destination's default label
15339 * must dominate the minimum label on the source address.
15340 */
15341 dst_rhtp = NULL;
15342 if (is_system_labeled()) {
15343 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE);
15344 if (dst_rhtp == NULL)
15345 return (NULL);
15346 if (dst_rhtp->tpc_tp.host_type != UNLABELED) {
15347 TPC_RELE(dst_rhtp);
15348 dst_rhtp = NULL;
15349 }
15350 }
15351
15352 /*
15353 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill
15354 * can be deleted. But an ipif/ill can get CONDEMNED any time.
15355 * After selecting the right ipif, under ill_lock make sure ipif is
15356 * not condemned, and increment refcnt. If ipif is CONDEMNED,
15357 * we retry. Inside the loop we still need to check for CONDEMNED,
15358 * but not under a lock.
15359 */
15360 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
15361 retry:
15362 /*
15363 * For source address selection, we treat the ipif list as circular
15364 * and continue until we get back to where we started. This allows
15365 * IPMP to vary source address selection (which improves inbound load
15366 * spreading) by caching its last ending point and starting from
15367 * there. NOTE: we don't have to worry about ill_src_ipif changing
15368 * ills since that can't happen on the IPMP ill.
15369 */
15370 start_ipif = ill->ill_ipif;
15371 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL)
15372 start_ipif = ill->ill_src_ipif;
15373
15374 ipif = start_ipif;
15375 best_ipif = NULL;
15376 best_type = IPIF_NONE;
15377 do {
15378 if ((next_ipif = ipif->ipif_next) == NULL)
15379 next_ipif = ill->ill_ipif;
15380
15381 if (IPIF_IS_CONDEMNED(ipif))
15382 continue;
15383 /* Always skip NOLOCAL and ANYCAST interfaces */
15384 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15385 continue;
15386 /* Always skip NOACCEPT interfaces */
15387 if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT)
15388 continue;
15389 if (!(ipif->ipif_flags & IPIF_UP))
15390 continue;
15391
15392 if (!ipif->ipif_addr_ready) {
15393 if (notreadyp != NULL)
15394 *notreadyp = B_TRUE;
15395 continue;
15396 }
15397
15398 if (zoneid != ALL_ZONES &&
15399 ipif->ipif_zoneid != zoneid &&
15400 ipif->ipif_zoneid != ALL_ZONES)
15401 continue;
15402
15403 /*
15404 * Interfaces with 0.0.0.0 address are allowed to be UP, but
15405 * are not valid as source addresses.
15406 */
15407 if (ipif->ipif_lcl_addr == INADDR_ANY)
15408 continue;
15409
15410 /*
15411 * Check compatibility of local address for destination's
15412 * default label if we're on a labeled system. Incompatible
15413 * addresses can't be used at all.
15414 */
15415 if (dst_rhtp != NULL) {
15416 boolean_t incompat;
15417
15418 src_rhtp = find_tpc(&ipif->ipif_lcl_addr,
15419 IPV4_VERSION, B_FALSE);
15420 if (src_rhtp == NULL)
15421 continue;
15422 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO ||
15423 src_rhtp->tpc_tp.tp_doi !=
15424 dst_rhtp->tpc_tp.tp_doi ||
15425 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label,
15426 &src_rhtp->tpc_tp.tp_sl_range_cipso) &&
15427 !blinlset(&dst_rhtp->tpc_tp.tp_def_label,
15428 src_rhtp->tpc_tp.tp_sl_set_cipso));
15429 TPC_RELE(src_rhtp);
15430 if (incompat)
15431 continue;
15432 }
15433
15434 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet);
15435
15436 if (ipif->ipif_lcl_addr == dst) {
15437 type = IPIF_LOCALADDR;
15438 } else if (ipif->ipif_flags & IPIF_DEPRECATED) {
15439 type = samenet ? IPIF_SAMENET_DEPRECATED :
15440 IPIF_DIFFNET_DEPRECATED;
15441 } else if (ipif->ipif_zoneid == ALL_ZONES) {
15442 type = samenet ? IPIF_SAMENET_ALLZONES :
15443 IPIF_DIFFNET_ALLZONES;
15444 } else {
15445 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET;
15446 }
15447
15448 if (type > best_type) {
15449 best_type = type;
15450 best_ipif = ipif;
15451 if (best_type == IPIF_LOCALADDR)
15452 break; /* can't get better */
15453 }
15454 } while ((ipif = next_ipif) != start_ipif);
15455
15456 if ((ipif = best_ipif) != NULL) {
15457 mutex_enter(&ipif->ipif_ill->ill_lock);
15458 if (IPIF_IS_CONDEMNED(ipif)) {
15459 mutex_exit(&ipif->ipif_ill->ill_lock);
15460 goto retry;
15461 }
15462 ipif_refhold_locked(ipif);
15463
15464 /*
15465 * For IPMP, update the source ipif rotor to the next ipif,
15466 * provided we can look it up. (We must not use it if it's
15467 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after
15468 * ipif_free() checked ill_src_ipif.)
15469 */
15470 if (IS_IPMP(ill) && ipif != NULL) {
15471 next_ipif = ipif->ipif_next;
15472 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif))
15473 ill->ill_src_ipif = next_ipif;
15474 else
15475 ill->ill_src_ipif = NULL;
15476 }
15477 mutex_exit(&ipif->ipif_ill->ill_lock);
15478 }
15479
15480 rw_exit(&ipst->ips_ill_g_lock);
15481 if (usill != NULL)
15482 ill_refrele(usill);
15483 if (ipmp_ill != NULL)
15484 ill_refrele(ipmp_ill);
15485 if (dst_rhtp != NULL)
15486 TPC_RELE(dst_rhtp);
15487
15488 #ifdef DEBUG
15489 if (ipif == NULL) {
15490 char buf1[INET6_ADDRSTRLEN];
15491
15492 ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n",
15493 ill->ill_name,
15494 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1))));
15495 } else {
15496 char buf1[INET6_ADDRSTRLEN];
15497 char buf2[INET6_ADDRSTRLEN];
15498
15499 ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n",
15500 ipif->ipif_ill->ill_name,
15501 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)),
15502 inet_ntop(AF_INET, &ipif->ipif_lcl_addr,
15503 buf2, sizeof (buf2))));
15504 }
15505 #endif /* DEBUG */
15506 return (ipif);
15507 }
15508
15509 /*
15510 * Pick a source address based on the destination ill and an optional setsrc
15511 * address.
15512 * The result is stored in srcp. If generation is set, then put the source
15513 * generation number there before we look for the source address (to avoid
15514 * missing changes in the set of source addresses.
15515 * If flagsp is set, then us it to pass back ipif_flags.
15516 *
15517 * If the caller wants to cache the returned source address and detect when
15518 * that might be stale, the caller should pass in a generation argument,
15519 * which the caller can later compare against ips_src_generation
15520 *
15521 * The precedence order for selecting an IPv4 source address is:
15522 * - RTF_SETSRC on the offlink ire always wins.
15523 * - If usrsrc is set, swap the ill to be the usesrc one.
15524 * - If IPMP is used on the ill, select a random address from the most
15525 * preferred ones below:
15526 * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES
15527 * 2. Not deprecated, not ALL_ZONES
15528 * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES
15529 * 4. Not deprecated, ALL_ZONES
15530 * 5. If onlink destination, same subnet and deprecated
15531 * 6. Deprecated.
15532 *
15533 * We have lower preference for ALL_ZONES IP addresses,
15534 * as they pose problems with unlabeled destinations.
15535 *
15536 * Note that when multiple IP addresses match e.g., #1 we pick
15537 * the first one if IPMP is not in use. With IPMP we randomize.
15538 */
15539 int
ip_select_source_v4(ill_t * ill,ipaddr_t setsrc,ipaddr_t dst,ipaddr_t multicast_ifaddr,zoneid_t zoneid,ip_stack_t * ipst,ipaddr_t * srcp,uint32_t * generation,uint64_t * flagsp)15540 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst,
15541 ipaddr_t multicast_ifaddr,
15542 zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp,
15543 uint32_t *generation, uint64_t *flagsp)
15544 {
15545 ipif_t *ipif;
15546 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */
15547
15548 if (flagsp != NULL)
15549 *flagsp = 0;
15550
15551 /*
15552 * Need to grab the generation number before we check to
15553 * avoid a race with a change to the set of local addresses.
15554 * No lock needed since the thread which updates the set of local
15555 * addresses use ipif/ill locks and exit those (hence a store memory
15556 * barrier) before doing the atomic increase of ips_src_generation.
15557 */
15558 if (generation != NULL) {
15559 *generation = ipst->ips_src_generation;
15560 }
15561
15562 if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) {
15563 *srcp = multicast_ifaddr;
15564 return (0);
15565 }
15566
15567 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */
15568 if (setsrc != INADDR_ANY) {
15569 *srcp = setsrc;
15570 return (0);
15571 }
15572 ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready);
15573 if (ipif == NULL) {
15574 if (notready)
15575 return (ENETDOWN);
15576 else
15577 return (EADDRNOTAVAIL);
15578 }
15579 *srcp = ipif->ipif_lcl_addr;
15580 if (flagsp != NULL)
15581 *flagsp = ipif->ipif_flags;
15582 ipif_refrele(ipif);
15583 return (0);
15584 }
15585
15586 /* ARGSUSED */
15587 int
if_unitsel_restart(ipif_t * ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_ifreq)15588 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15589 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15590 {
15591 /*
15592 * ill_phyint_reinit merged the v4 and v6 into a single
15593 * ipsq. We might not have been able to complete the
15594 * operation in ipif_set_values, if we could not become
15595 * exclusive. If so restart it here.
15596 */
15597 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
15598 }
15599
15600 /*
15601 * Can operate on either a module or a driver queue.
15602 * Returns an error if not a module queue.
15603 */
15604 /* ARGSUSED */
15605 int
if_unitsel(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_ifreq)15606 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15607 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15608 {
15609 queue_t *q1 = q;
15610 char *cp;
15611 char interf_name[LIFNAMSIZ];
15612 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr;
15613
15614 if (q->q_next == NULL) {
15615 ip1dbg((
15616 "if_unitsel: IF_UNITSEL: no q_next\n"));
15617 return (EINVAL);
15618 }
15619
15620 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0')
15621 return (EALREADY);
15622
15623 do {
15624 q1 = q1->q_next;
15625 } while (q1->q_next);
15626 cp = q1->q_qinfo->qi_minfo->mi_idname;
15627 (void) sprintf(interf_name, "%s%d", cp, ppa);
15628
15629 /*
15630 * Here we are not going to delay the ioack until after
15631 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the
15632 * original ioctl message before sending the requests.
15633 */
15634 return (ipif_set_values(q, mp, interf_name, &ppa));
15635 }
15636
15637 /* ARGSUSED */
15638 int
ip_sioctl_sifname(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_ifreq)15639 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15640 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15641 {
15642 return (ENXIO);
15643 }
15644
15645 /*
15646 * Create any IRE_BROADCAST entries for `ipif', and store those entries in
15647 * `irep'. Returns a pointer to the next free `irep' entry
15648 * A mirror exists in ipif_delete_bcast_ires().
15649 *
15650 * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is
15651 * done in ire_add.
15652 */
15653 static ire_t **
ipif_create_bcast_ires(ipif_t * ipif,ire_t ** irep)15654 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep)
15655 {
15656 ipaddr_t addr;
15657 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr);
15658 ipaddr_t subnetmask = ipif->ipif_net_mask;
15659 ill_t *ill = ipif->ipif_ill;
15660 zoneid_t zoneid = ipif->ipif_zoneid;
15661
15662 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n"));
15663
15664 ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
15665 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT));
15666
15667 if (ipif->ipif_lcl_addr == INADDR_ANY ||
15668 (ipif->ipif_flags & IPIF_NOLOCAL))
15669 netmask = htonl(IN_CLASSA_NET); /* fallback */
15670
15671 irep = ire_create_bcast(ill, 0, zoneid, irep);
15672 irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep);
15673
15674 /*
15675 * For backward compatibility, we create net broadcast IREs based on
15676 * the old "IP address class system", since some old machines only
15677 * respond to these class derived net broadcast. However, we must not
15678 * create these net broadcast IREs if the subnetmask is shorter than
15679 * the IP address class based derived netmask. Otherwise, we may
15680 * create a net broadcast address which is the same as an IP address
15681 * on the subnet -- and then TCP will refuse to talk to that address.
15682 */
15683 if (netmask < subnetmask) {
15684 addr = netmask & ipif->ipif_subnet;
15685 irep = ire_create_bcast(ill, addr, zoneid, irep);
15686 irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep);
15687 }
15688
15689 /*
15690 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
15691 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
15692 * created. Creating these broadcast IREs will only create confusion
15693 * as `addr' will be the same as the IP address.
15694 */
15695 if (subnetmask != 0xFFFFFFFF) {
15696 addr = ipif->ipif_subnet;
15697 irep = ire_create_bcast(ill, addr, zoneid, irep);
15698 irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep);
15699 }
15700
15701 return (irep);
15702 }
15703
15704 /*
15705 * Mirror of ipif_create_bcast_ires()
15706 */
15707 static void
ipif_delete_bcast_ires(ipif_t * ipif)15708 ipif_delete_bcast_ires(ipif_t *ipif)
15709 {
15710 ipaddr_t addr;
15711 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr);
15712 ipaddr_t subnetmask = ipif->ipif_net_mask;
15713 ill_t *ill = ipif->ipif_ill;
15714 zoneid_t zoneid = ipif->ipif_zoneid;
15715 ire_t *ire;
15716
15717 ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
15718 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT));
15719
15720 if (ipif->ipif_lcl_addr == INADDR_ANY ||
15721 (ipif->ipif_flags & IPIF_NOLOCAL))
15722 netmask = htonl(IN_CLASSA_NET); /* fallback */
15723
15724 ire = ire_lookup_bcast(ill, 0, zoneid);
15725 ASSERT(ire != NULL);
15726 ire_delete(ire); ire_refrele(ire);
15727 ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid);
15728 ASSERT(ire != NULL);
15729 ire_delete(ire); ire_refrele(ire);
15730
15731 /*
15732 * For backward compatibility, we create net broadcast IREs based on
15733 * the old "IP address class system", since some old machines only
15734 * respond to these class derived net broadcast. However, we must not
15735 * create these net broadcast IREs if the subnetmask is shorter than
15736 * the IP address class based derived netmask. Otherwise, we may
15737 * create a net broadcast address which is the same as an IP address
15738 * on the subnet -- and then TCP will refuse to talk to that address.
15739 */
15740 if (netmask < subnetmask) {
15741 addr = netmask & ipif->ipif_subnet;
15742 ire = ire_lookup_bcast(ill, addr, zoneid);
15743 ASSERT(ire != NULL);
15744 ire_delete(ire); ire_refrele(ire);
15745 ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid);
15746 ASSERT(ire != NULL);
15747 ire_delete(ire); ire_refrele(ire);
15748 }
15749
15750 /*
15751 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
15752 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
15753 * created. Creating these broadcast IREs will only create confusion
15754 * as `addr' will be the same as the IP address.
15755 */
15756 if (subnetmask != 0xFFFFFFFF) {
15757 addr = ipif->ipif_subnet;
15758 ire = ire_lookup_bcast(ill, addr, zoneid);
15759 ASSERT(ire != NULL);
15760 ire_delete(ire); ire_refrele(ire);
15761 ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid);
15762 ASSERT(ire != NULL);
15763 ire_delete(ire); ire_refrele(ire);
15764 }
15765 }
15766
15767 /*
15768 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV*
15769 * from lifr_flags and the name from lifr_name.
15770 * Set IFF_IPV* and ill_isv6 prior to doing the lookup
15771 * since ipif_lookup_on_name uses the _isv6 flags when matching.
15772 * Returns EINPROGRESS when mp has been consumed by queueing it on
15773 * ipx_pending_mp and the ioctl will complete in ip_rput.
15774 *
15775 * Can operate on either a module or a driver queue.
15776 * Returns an error if not a module queue.
15777 */
15778 /* ARGSUSED */
15779 int
ip_sioctl_slifname(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)15780 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15781 ip_ioctl_cmd_t *ipip, void *if_req)
15782 {
15783 ill_t *ill = q->q_ptr;
15784 phyint_t *phyi;
15785 ip_stack_t *ipst;
15786 struct lifreq *lifr = if_req;
15787 uint64_t new_flags;
15788
15789 ASSERT(ipif != NULL);
15790 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name));
15791
15792 if (q->q_next == NULL) {
15793 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n"));
15794 return (EINVAL);
15795 }
15796
15797 /*
15798 * If we are not writer on 'q' then this interface exists already
15799 * and previous lookups (ip_extract_lifreq()) found this ipif --
15800 * so return EALREADY.
15801 */
15802 if (ill != ipif->ipif_ill)
15803 return (EALREADY);
15804
15805 if (ill->ill_name[0] != '\0')
15806 return (EALREADY);
15807
15808 /*
15809 * If there's another ill already with the requested name, ensure
15810 * that it's of the same type. Otherwise, ill_phyint_reinit() will
15811 * fuse together two unrelated ills, which will cause chaos.
15812 */
15813 ipst = ill->ill_ipst;
15814 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
15815 lifr->lifr_name, NULL);
15816 if (phyi != NULL) {
15817 ill_t *ill_mate = phyi->phyint_illv4;
15818
15819 if (ill_mate == NULL)
15820 ill_mate = phyi->phyint_illv6;
15821 ASSERT(ill_mate != NULL);
15822
15823 if (ill_mate->ill_media->ip_m_mac_type !=
15824 ill->ill_media->ip_m_mac_type) {
15825 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to "
15826 "use the same ill name on differing media\n"));
15827 return (EINVAL);
15828 }
15829 }
15830
15831 /*
15832 * We start off as IFF_IPV4 in ipif_allocate and become
15833 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value.
15834 * The only flags that we read from user space are IFF_IPV4,
15835 * IFF_IPV6, and IFF_BROADCAST.
15836 *
15837 * This ill has not been inserted into the global list.
15838 * So we are still single threaded and don't need any lock
15839 *
15840 * Saniy check the flags.
15841 */
15842
15843 if ((lifr->lifr_flags & IFF_BROADCAST) &&
15844 ((lifr->lifr_flags & IFF_IPV6) ||
15845 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) {
15846 ip1dbg(("ip_sioctl_slifname: link not broadcast capable "
15847 "or IPv6 i.e., no broadcast \n"));
15848 return (EINVAL);
15849 }
15850
15851 new_flags =
15852 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST);
15853
15854 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) {
15855 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of "
15856 "IFF_IPV4 or IFF_IPV6\n"));
15857 return (EINVAL);
15858 }
15859
15860 /*
15861 * We always start off as IPv4, so only need to check for IPv6.
15862 */
15863 if ((new_flags & IFF_IPV6) != 0) {
15864 ill->ill_flags |= ILLF_IPV6;
15865 ill->ill_flags &= ~ILLF_IPV4;
15866
15867 if (lifr->lifr_flags & IFF_NOLINKLOCAL)
15868 ill->ill_flags |= ILLF_NOLINKLOCAL;
15869 }
15870
15871 if ((new_flags & IFF_BROADCAST) != 0)
15872 ipif->ipif_flags |= IPIF_BROADCAST;
15873 else
15874 ipif->ipif_flags &= ~IPIF_BROADCAST;
15875
15876 /* We started off as V4. */
15877 if (ill->ill_flags & ILLF_IPV6) {
15878 ill->ill_phyint->phyint_illv6 = ill;
15879 ill->ill_phyint->phyint_illv4 = NULL;
15880 }
15881
15882 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa));
15883 }
15884
15885 /* ARGSUSED */
15886 int
ip_sioctl_slifname_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)15887 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15888 ip_ioctl_cmd_t *ipip, void *if_req)
15889 {
15890 /*
15891 * ill_phyint_reinit merged the v4 and v6 into a single
15892 * ipsq. We might not have been able to complete the
15893 * slifname in ipif_set_values, if we could not become
15894 * exclusive. If so restart it here
15895 */
15896 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
15897 }
15898
15899 /*
15900 * Return a pointer to the ipif which matches the index, IP version type and
15901 * zoneid.
15902 */
15903 ipif_t *
ipif_lookup_on_ifindex(uint_t index,boolean_t isv6,zoneid_t zoneid,ip_stack_t * ipst)15904 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid,
15905 ip_stack_t *ipst)
15906 {
15907 ill_t *ill;
15908 ipif_t *ipif = NULL;
15909
15910 ill = ill_lookup_on_ifindex(index, isv6, ipst);
15911 if (ill != NULL) {
15912 mutex_enter(&ill->ill_lock);
15913 for (ipif = ill->ill_ipif; ipif != NULL;
15914 ipif = ipif->ipif_next) {
15915 if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES ||
15916 zoneid == ipif->ipif_zoneid ||
15917 ipif->ipif_zoneid == ALL_ZONES)) {
15918 ipif_refhold_locked(ipif);
15919 break;
15920 }
15921 }
15922 mutex_exit(&ill->ill_lock);
15923 ill_refrele(ill);
15924 }
15925 return (ipif);
15926 }
15927
15928 /*
15929 * Change an existing physical interface's index. If the new index
15930 * is acceptable we update the index and the phyint_list_avl_by_index tree.
15931 * Finally, we update other systems which may have a dependence on the
15932 * index value.
15933 */
15934 /* ARGSUSED */
15935 int
ip_sioctl_slifindex(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)15936 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15937 ip_ioctl_cmd_t *ipip, void *ifreq)
15938 {
15939 ill_t *ill;
15940 phyint_t *phyi;
15941 struct ifreq *ifr = (struct ifreq *)ifreq;
15942 struct lifreq *lifr = (struct lifreq *)ifreq;
15943 uint_t old_index, index;
15944 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
15945 avl_index_t where;
15946
15947 if (ipip->ipi_cmd_type == IF_CMD)
15948 index = ifr->ifr_index;
15949 else
15950 index = lifr->lifr_index;
15951
15952 /*
15953 * Only allow on physical interface. Also, index zero is illegal.
15954 */
15955 ill = ipif->ipif_ill;
15956 phyi = ill->ill_phyint;
15957 if (ipif->ipif_id != 0 || index == 0 || index > IF_INDEX_MAX) {
15958 return (EINVAL);
15959 }
15960
15961 /* If the index is not changing, no work to do */
15962 if (phyi->phyint_ifindex == index)
15963 return (0);
15964
15965 /*
15966 * Use phyint_exists() to determine if the new interface index
15967 * is already in use. If the index is unused then we need to
15968 * change the phyint's position in the phyint_list_avl_by_index
15969 * tree. If we do not do this, subsequent lookups (using the new
15970 * index value) will not find the phyint.
15971 */
15972 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15973 if (phyint_exists(index, ipst)) {
15974 rw_exit(&ipst->ips_ill_g_lock);
15975 return (EEXIST);
15976 }
15977
15978 /*
15979 * The new index is unused. Set it in the phyint. However we must not
15980 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex
15981 * changes. The event must be bound to old ifindex value.
15982 */
15983 ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE,
15984 &index, sizeof (index));
15985
15986 old_index = phyi->phyint_ifindex;
15987 phyi->phyint_ifindex = index;
15988
15989 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi);
15990 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
15991 &index, &where);
15992 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
15993 phyi, where);
15994 rw_exit(&ipst->ips_ill_g_lock);
15995
15996 /* Update SCTP's ILL list */
15997 sctp_ill_reindex(ill, old_index);
15998
15999 /* Send the routing sockets message */
16000 ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
16001 if (ILL_OTHER(ill))
16002 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT);
16003
16004 /* Perhaps ilgs should use this ill */
16005 update_conn_ill(NULL, ill->ill_ipst);
16006 return (0);
16007 }
16008
16009 /* ARGSUSED */
16010 int
ip_sioctl_get_lifindex(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)16011 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16012 ip_ioctl_cmd_t *ipip, void *ifreq)
16013 {
16014 struct ifreq *ifr = (struct ifreq *)ifreq;
16015 struct lifreq *lifr = (struct lifreq *)ifreq;
16016
16017 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n",
16018 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16019 /* Get the interface index */
16020 if (ipip->ipi_cmd_type == IF_CMD) {
16021 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
16022 } else {
16023 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
16024 }
16025 return (0);
16026 }
16027
16028 /* ARGSUSED */
16029 int
ip_sioctl_get_lifzone(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)16030 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16031 ip_ioctl_cmd_t *ipip, void *ifreq)
16032 {
16033 struct lifreq *lifr = (struct lifreq *)ifreq;
16034
16035 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n",
16036 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16037 /* Get the interface zone */
16038 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16039 lifr->lifr_zoneid = ipif->ipif_zoneid;
16040 return (0);
16041 }
16042
16043 /*
16044 * Set the zoneid of an interface.
16045 */
16046 /* ARGSUSED */
16047 int
ip_sioctl_slifzone(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)16048 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16049 ip_ioctl_cmd_t *ipip, void *ifreq)
16050 {
16051 struct lifreq *lifr = (struct lifreq *)ifreq;
16052 int err = 0;
16053 boolean_t need_up = B_FALSE;
16054 zone_t *zptr;
16055 zone_status_t status;
16056 zoneid_t zoneid;
16057
16058 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16059 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) {
16060 if (!is_system_labeled())
16061 return (ENOTSUP);
16062 zoneid = GLOBAL_ZONEID;
16063 }
16064
16065 /* cannot assign instance zero to a non-global zone */
16066 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID)
16067 return (ENOTSUP);
16068
16069 /*
16070 * Cannot assign to a zone that doesn't exist or is shutting down. In
16071 * the event of a race with the zone shutdown processing, since IP
16072 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the
16073 * interface will be cleaned up even if the zone is shut down
16074 * immediately after the status check. If the interface can't be brought
16075 * down right away, and the zone is shut down before the restart
16076 * function is called, we resolve the possible races by rechecking the
16077 * zone status in the restart function.
16078 */
16079 if ((zptr = zone_find_by_id(zoneid)) == NULL)
16080 return (EINVAL);
16081 status = zone_status_get(zptr);
16082 zone_rele(zptr);
16083
16084 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING)
16085 return (EINVAL);
16086
16087 if (ipif->ipif_flags & IPIF_UP) {
16088 /*
16089 * If the interface is already marked up,
16090 * we call ipif_down which will take care
16091 * of ditching any IREs that have been set
16092 * up based on the old interface address.
16093 */
16094 err = ipif_logical_down(ipif, q, mp);
16095 if (err == EINPROGRESS)
16096 return (err);
16097 (void) ipif_down_tail(ipif);
16098 need_up = B_TRUE;
16099 }
16100
16101 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up);
16102 return (err);
16103 }
16104
16105 static int
ip_sioctl_slifzone_tail(ipif_t * ipif,zoneid_t zoneid,queue_t * q,mblk_t * mp,boolean_t need_up)16106 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
16107 queue_t *q, mblk_t *mp, boolean_t need_up)
16108 {
16109 int err = 0;
16110 ip_stack_t *ipst;
16111
16112 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n",
16113 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16114
16115 if (CONN_Q(q))
16116 ipst = CONNQ_TO_IPST(q);
16117 else
16118 ipst = ILLQ_TO_IPST(q);
16119
16120 /*
16121 * For exclusive stacks we don't allow a different zoneid than
16122 * global.
16123 */
16124 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID &&
16125 zoneid != GLOBAL_ZONEID)
16126 return (EINVAL);
16127
16128 /* Set the new zone id. */
16129 ipif->ipif_zoneid = zoneid;
16130
16131 /* Update sctp list */
16132 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
16133
16134 /* The default multicast interface might have changed */
16135 ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6);
16136
16137 if (need_up) {
16138 /*
16139 * Now bring the interface back up. If this
16140 * is the only IPIF for the ILL, ipif_up
16141 * will have to re-bind to the device, so
16142 * we may get back EINPROGRESS, in which
16143 * case, this IOCTL will get completed in
16144 * ip_rput_dlpi when we see the DL_BIND_ACK.
16145 */
16146 err = ipif_up(ipif, q, mp);
16147 }
16148 return (err);
16149 }
16150
16151 /* ARGSUSED */
16152 int
ip_sioctl_slifzone_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)16153 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16154 ip_ioctl_cmd_t *ipip, void *if_req)
16155 {
16156 struct lifreq *lifr = (struct lifreq *)if_req;
16157 zoneid_t zoneid;
16158 zone_t *zptr;
16159 zone_status_t status;
16160
16161 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16162 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES)
16163 zoneid = GLOBAL_ZONEID;
16164
16165 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n",
16166 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16167
16168 /*
16169 * We recheck the zone status to resolve the following race condition:
16170 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone";
16171 * 2) hme0:1 is up and can't be brought down right away;
16172 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued;
16173 * 3) zone "myzone" is halted; the zone status switches to
16174 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list
16175 * the interfaces to remove - hme0:1 is not returned because it's not
16176 * yet in "myzone", so it won't be removed;
16177 * 4) the restart function for SIOCSLIFZONE is called; without the
16178 * status check here, we would have hme0:1 in "myzone" after it's been
16179 * destroyed.
16180 * Note that if the status check fails, we need to bring the interface
16181 * back to its state prior to ip_sioctl_slifzone(), hence the call to
16182 * ipif_up_done[_v6]().
16183 */
16184 status = ZONE_IS_UNINITIALIZED;
16185 if ((zptr = zone_find_by_id(zoneid)) != NULL) {
16186 status = zone_status_get(zptr);
16187 zone_rele(zptr);
16188 }
16189 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) {
16190 if (ipif->ipif_isv6) {
16191 (void) ipif_up_done_v6(ipif);
16192 } else {
16193 (void) ipif_up_done(ipif);
16194 }
16195 return (EINVAL);
16196 }
16197
16198 (void) ipif_down_tail(ipif);
16199
16200 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp,
16201 B_TRUE));
16202 }
16203
16204 /*
16205 * Return the number of addresses on `ill' with one or more of the values
16206 * in `set' set and all of the values in `clear' clear.
16207 */
16208 static uint_t
ill_flagaddr_cnt(const ill_t * ill,uint64_t set,uint64_t clear)16209 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear)
16210 {
16211 ipif_t *ipif;
16212 uint_t cnt = 0;
16213
16214 ASSERT(IAM_WRITER_ILL(ill));
16215
16216 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
16217 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear))
16218 cnt++;
16219
16220 return (cnt);
16221 }
16222
16223 /*
16224 * Return the number of migratable addresses on `ill' that are under
16225 * application control.
16226 */
16227 uint_t
ill_appaddr_cnt(const ill_t * ill)16228 ill_appaddr_cnt(const ill_t *ill)
16229 {
16230 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF,
16231 IPIF_NOFAILOVER));
16232 }
16233
16234 /*
16235 * Return the number of point-to-point addresses on `ill'.
16236 */
16237 uint_t
ill_ptpaddr_cnt(const ill_t * ill)16238 ill_ptpaddr_cnt(const ill_t *ill)
16239 {
16240 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0));
16241 }
16242
16243 /* ARGSUSED */
16244 int
ip_sioctl_get_lifusesrc(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)16245 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16246 ip_ioctl_cmd_t *ipip, void *ifreq)
16247 {
16248 struct lifreq *lifr = ifreq;
16249
16250 ASSERT(q->q_next == NULL);
16251 ASSERT(CONN_Q(q));
16252
16253 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n",
16254 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16255 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex;
16256 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index));
16257
16258 return (0);
16259 }
16260
16261 /* Find the previous ILL in this usesrc group */
16262 static ill_t *
ill_prev_usesrc(ill_t * uill)16263 ill_prev_usesrc(ill_t *uill)
16264 {
16265 ill_t *ill;
16266
16267 for (ill = uill->ill_usesrc_grp_next;
16268 ASSERT(ill), ill->ill_usesrc_grp_next != uill;
16269 ill = ill->ill_usesrc_grp_next)
16270 /* do nothing */;
16271 return (ill);
16272 }
16273
16274 /*
16275 * Release all members of the usesrc group. This routine is called
16276 * from ill_delete when the interface being unplumbed is the
16277 * group head.
16278 *
16279 * This silently clears the usesrc that ifconfig setup.
16280 * An alternative would be to keep that ifindex, and drop packets on the floor
16281 * since no source address can be selected.
16282 * Even if we keep the current semantics, don't need a lock and a linked list.
16283 * Can walk all the ills checking if they have a ill_usesrc_ifindex matching
16284 * the one that is being removed. Issue is how we return the usesrc users
16285 * (SIOCGLIFSRCOF). We want to be able to find the ills which have an
16286 * ill_usesrc_ifindex matching a target ill. We could also do that with an
16287 * ill walk, but the walker would need to insert in the ioctl response.
16288 */
16289 static void
ill_disband_usesrc_group(ill_t * uill)16290 ill_disband_usesrc_group(ill_t *uill)
16291 {
16292 ill_t *next_ill, *tmp_ill;
16293 ip_stack_t *ipst = uill->ill_ipst;
16294
16295 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
16296 next_ill = uill->ill_usesrc_grp_next;
16297
16298 do {
16299 ASSERT(next_ill != NULL);
16300 tmp_ill = next_ill->ill_usesrc_grp_next;
16301 ASSERT(tmp_ill != NULL);
16302 next_ill->ill_usesrc_grp_next = NULL;
16303 next_ill->ill_usesrc_ifindex = 0;
16304 next_ill = tmp_ill;
16305 } while (next_ill->ill_usesrc_ifindex != 0);
16306 uill->ill_usesrc_grp_next = NULL;
16307 }
16308
16309 /*
16310 * Remove the client usesrc ILL from the list and relink to a new list
16311 */
16312 int
ill_relink_usesrc_ills(ill_t * ucill,ill_t * uill,uint_t ifindex)16313 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex)
16314 {
16315 ill_t *ill, *tmp_ill;
16316 ip_stack_t *ipst = ucill->ill_ipst;
16317
16318 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) &&
16319 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
16320
16321 /*
16322 * Check if the usesrc client ILL passed in is not already
16323 * in use as a usesrc ILL i.e one whose source address is
16324 * in use OR a usesrc ILL is not already in use as a usesrc
16325 * client ILL
16326 */
16327 if ((ucill->ill_usesrc_ifindex == 0) ||
16328 (uill->ill_usesrc_ifindex != 0)) {
16329 return (-1);
16330 }
16331
16332 ill = ill_prev_usesrc(ucill);
16333 ASSERT(ill->ill_usesrc_grp_next != NULL);
16334
16335 /* Remove from the current list */
16336 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) {
16337 /* Only two elements in the list */
16338 ASSERT(ill->ill_usesrc_ifindex == 0);
16339 ill->ill_usesrc_grp_next = NULL;
16340 } else {
16341 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next;
16342 }
16343
16344 if (ifindex == 0) {
16345 ucill->ill_usesrc_ifindex = 0;
16346 ucill->ill_usesrc_grp_next = NULL;
16347 return (0);
16348 }
16349
16350 ucill->ill_usesrc_ifindex = ifindex;
16351 tmp_ill = uill->ill_usesrc_grp_next;
16352 uill->ill_usesrc_grp_next = ucill;
16353 ucill->ill_usesrc_grp_next =
16354 (tmp_ill != NULL) ? tmp_ill : uill;
16355 return (0);
16356 }
16357
16358 /*
16359 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in
16360 * ip.c for locking details.
16361 */
16362 /* ARGSUSED */
16363 int
ip_sioctl_slifusesrc(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)16364 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16365 ip_ioctl_cmd_t *ipip, void *ifreq)
16366 {
16367 struct lifreq *lifr = (struct lifreq *)ifreq;
16368 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE;
16369 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill;
16370 int err = 0, ret;
16371 uint_t ifindex;
16372 ipsq_t *ipsq = NULL;
16373 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
16374
16375 ASSERT(IAM_WRITER_IPIF(ipif));
16376 ASSERT(q->q_next == NULL);
16377 ASSERT(CONN_Q(q));
16378
16379 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6;
16380
16381 ifindex = lifr->lifr_index;
16382 if (ifindex == 0) {
16383 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) {
16384 /* non usesrc group interface, nothing to reset */
16385 return (0);
16386 }
16387 ifindex = usesrc_cli_ill->ill_usesrc_ifindex;
16388 /* valid reset request */
16389 reset_flg = B_TRUE;
16390 }
16391
16392 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
16393 if (usesrc_ill == NULL)
16394 return (ENXIO);
16395 if (usesrc_ill == ipif->ipif_ill) {
16396 ill_refrele(usesrc_ill);
16397 return (EINVAL);
16398 }
16399
16400 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl,
16401 NEW_OP, B_TRUE);
16402 if (ipsq == NULL) {
16403 err = EINPROGRESS;
16404 /* Operation enqueued on the ipsq of the usesrc ILL */
16405 goto done;
16406 }
16407
16408 /* USESRC isn't currently supported with IPMP */
16409 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) {
16410 err = ENOTSUP;
16411 goto done;
16412 }
16413
16414 /*
16415 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only
16416 * used by IPMP underlying interfaces, but someone might think it's
16417 * more general and try to use it independently with VNI.)
16418 */
16419 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) {
16420 err = ENOTSUP;
16421 goto done;
16422 }
16423
16424 /*
16425 * If the client is already in use as a usesrc_ill or a usesrc_ill is
16426 * already a client then return EINVAL
16427 */
16428 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) {
16429 err = EINVAL;
16430 goto done;
16431 }
16432
16433 /*
16434 * If the ill_usesrc_ifindex field is already set to what it needs to
16435 * be then this is a duplicate operation.
16436 */
16437 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) {
16438 err = 0;
16439 goto done;
16440 }
16441
16442 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s,"
16443 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name,
16444 usesrc_ill->ill_isv6));
16445
16446 /*
16447 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next
16448 * and the ill_usesrc_ifindex fields
16449 */
16450 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
16451
16452 if (reset_flg) {
16453 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0);
16454 if (ret != 0) {
16455 err = EINVAL;
16456 }
16457 rw_exit(&ipst->ips_ill_g_usesrc_lock);
16458 goto done;
16459 }
16460
16461 /*
16462 * Four possibilities to consider:
16463 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp
16464 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't
16465 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't
16466 * 4. Both are part of their respective usesrc groups
16467 */
16468 if ((usesrc_ill->ill_usesrc_grp_next == NULL) &&
16469 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
16470 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0);
16471 usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
16472 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
16473 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill;
16474 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) &&
16475 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
16476 usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
16477 /* Insert at head of list */
16478 usesrc_cli_ill->ill_usesrc_grp_next =
16479 usesrc_ill->ill_usesrc_grp_next;
16480 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
16481 } else {
16482 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill,
16483 ifindex);
16484 if (ret != 0)
16485 err = EINVAL;
16486 }
16487 rw_exit(&ipst->ips_ill_g_usesrc_lock);
16488
16489 done:
16490 if (ipsq != NULL)
16491 ipsq_exit(ipsq);
16492 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */
16493 ill_refrele(usesrc_ill);
16494
16495 /* Let conn_ixa caching know that source address selection changed */
16496 ip_update_source_selection(ipst);
16497
16498 return (err);
16499 }
16500
16501 /* ARGSUSED */
16502 int
ip_sioctl_get_dadstate(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)16503 ip_sioctl_get_dadstate(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16504 ip_ioctl_cmd_t *ipip, void *if_req)
16505 {
16506 struct lifreq *lifr = (struct lifreq *)if_req;
16507 ill_t *ill = ipif->ipif_ill;
16508
16509 /*
16510 * Need a lock since IFF_UP can be set even when there are
16511 * references to the ipif.
16512 */
16513 mutex_enter(&ill->ill_lock);
16514 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_addr_ready == 0)
16515 lifr->lifr_dadstate = DAD_IN_PROGRESS;
16516 else
16517 lifr->lifr_dadstate = DAD_DONE;
16518 mutex_exit(&ill->ill_lock);
16519 return (0);
16520 }
16521
16522 /*
16523 * comparison function used by avl.
16524 */
16525 static int
ill_phyint_compare_index(const void * index_ptr,const void * phyip)16526 ill_phyint_compare_index(const void *index_ptr, const void *phyip)
16527 {
16528
16529 uint_t index;
16530
16531 ASSERT(phyip != NULL && index_ptr != NULL);
16532
16533 index = *((uint_t *)index_ptr);
16534 /*
16535 * let the phyint with the lowest index be on top.
16536 */
16537 if (((phyint_t *)phyip)->phyint_ifindex < index)
16538 return (1);
16539 if (((phyint_t *)phyip)->phyint_ifindex > index)
16540 return (-1);
16541 return (0);
16542 }
16543
16544 /*
16545 * comparison function used by avl.
16546 */
16547 static int
ill_phyint_compare_name(const void * name_ptr,const void * phyip)16548 ill_phyint_compare_name(const void *name_ptr, const void *phyip)
16549 {
16550 ill_t *ill;
16551 int res = 0;
16552
16553 ASSERT(phyip != NULL && name_ptr != NULL);
16554
16555 if (((phyint_t *)phyip)->phyint_illv4)
16556 ill = ((phyint_t *)phyip)->phyint_illv4;
16557 else
16558 ill = ((phyint_t *)phyip)->phyint_illv6;
16559 ASSERT(ill != NULL);
16560
16561 res = strcmp(ill->ill_name, (char *)name_ptr);
16562 if (res > 0)
16563 return (1);
16564 else if (res < 0)
16565 return (-1);
16566 return (0);
16567 }
16568
16569 /*
16570 * This function is called on the unplumb path via ill_glist_delete() when
16571 * there are no ills left on the phyint and thus the phyint can be freed.
16572 */
16573 static void
phyint_free(phyint_t * phyi)16574 phyint_free(phyint_t *phyi)
16575 {
16576 ip_stack_t *ipst = PHYINT_TO_IPST(phyi);
16577
16578 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL);
16579
16580 /*
16581 * If this phyint was an IPMP meta-interface, blow away the group.
16582 * This is safe to do because all of the illgrps have already been
16583 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us.
16584 * If we're cleaning up as a result of failed initialization,
16585 * phyint_grp may be NULL.
16586 */
16587 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) {
16588 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
16589 ipmp_grp_destroy(phyi->phyint_grp);
16590 phyi->phyint_grp = NULL;
16591 rw_exit(&ipst->ips_ipmp_lock);
16592 }
16593
16594 /*
16595 * If this interface was under IPMP, take it out of the group.
16596 */
16597 if (phyi->phyint_grp != NULL)
16598 ipmp_phyint_leave_grp(phyi);
16599
16600 /*
16601 * Delete the phyint and disassociate its ipsq. The ipsq itself
16602 * will be freed in ipsq_exit().
16603 */
16604 phyi->phyint_ipsq->ipsq_phyint = NULL;
16605 phyi->phyint_name[0] = '\0';
16606
16607 mi_free(phyi);
16608 }
16609
16610 /*
16611 * Attach the ill to the phyint structure which can be shared by both
16612 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This
16613 * function is called from ipif_set_values and ill_lookup_on_name (for
16614 * loopback) where we know the name of the ill. We lookup the ill and if
16615 * there is one present already with the name use that phyint. Otherwise
16616 * reuse the one allocated by ill_init.
16617 */
16618 static void
ill_phyint_reinit(ill_t * ill)16619 ill_phyint_reinit(ill_t *ill)
16620 {
16621 boolean_t isv6 = ill->ill_isv6;
16622 phyint_t *phyi_old;
16623 phyint_t *phyi;
16624 avl_index_t where = 0;
16625 ill_t *ill_other = NULL;
16626 ip_stack_t *ipst = ill->ill_ipst;
16627
16628 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
16629
16630 phyi_old = ill->ill_phyint;
16631 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill &&
16632 phyi_old->phyint_illv6 == NULL));
16633 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill &&
16634 phyi_old->phyint_illv4 == NULL));
16635 ASSERT(phyi_old->phyint_ifindex == 0);
16636
16637 /*
16638 * Now that our ill has a name, set it in the phyint.
16639 */
16640 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ);
16641
16642 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16643 ill->ill_name, &where);
16644
16645 /*
16646 * 1. We grabbed the ill_g_lock before inserting this ill into
16647 * the global list of ills. So no other thread could have located
16648 * this ill and hence the ipsq of this ill is guaranteed to be empty.
16649 * 2. Now locate the other protocol instance of this ill.
16650 * 3. Now grab both ill locks in the right order, and the phyint lock of
16651 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq
16652 * of neither ill can change.
16653 * 4. Merge the phyint and thus the ipsq as well of this ill onto the
16654 * other ill.
16655 * 5. Release all locks.
16656 */
16657
16658 /*
16659 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if
16660 * we are initializing IPv4.
16661 */
16662 if (phyi != NULL) {
16663 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6;
16664 ASSERT(ill_other->ill_phyint != NULL);
16665 ASSERT((isv6 && !ill_other->ill_isv6) ||
16666 (!isv6 && ill_other->ill_isv6));
16667 GRAB_ILL_LOCKS(ill, ill_other);
16668 /*
16669 * We are potentially throwing away phyint_flags which
16670 * could be different from the one that we obtain from
16671 * ill_other->ill_phyint. But it is okay as we are assuming
16672 * that the state maintained within IP is correct.
16673 */
16674 mutex_enter(&phyi->phyint_lock);
16675 if (isv6) {
16676 ASSERT(phyi->phyint_illv6 == NULL);
16677 phyi->phyint_illv6 = ill;
16678 } else {
16679 ASSERT(phyi->phyint_illv4 == NULL);
16680 phyi->phyint_illv4 = ill;
16681 }
16682
16683 /*
16684 * Delete the old phyint and make its ipsq eligible
16685 * to be freed in ipsq_exit().
16686 */
16687 phyi_old->phyint_illv4 = NULL;
16688 phyi_old->phyint_illv6 = NULL;
16689 phyi_old->phyint_ipsq->ipsq_phyint = NULL;
16690 phyi_old->phyint_name[0] = '\0';
16691 mi_free(phyi_old);
16692 } else {
16693 mutex_enter(&ill->ill_lock);
16694 /*
16695 * We don't need to acquire any lock, since
16696 * the ill is not yet visible globally and we
16697 * have not yet released the ill_g_lock.
16698 */
16699 phyi = phyi_old;
16700 mutex_enter(&phyi->phyint_lock);
16701 /* XXX We need a recovery strategy here. */
16702 if (!phyint_assign_ifindex(phyi, ipst))
16703 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed");
16704
16705 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16706 (void *)phyi, where);
16707
16708 (void) avl_find(&ipst->ips_phyint_g_list->
16709 phyint_list_avl_by_index,
16710 &phyi->phyint_ifindex, &where);
16711 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16712 (void *)phyi, where);
16713 }
16714
16715 /*
16716 * Reassigning ill_phyint automatically reassigns the ipsq also.
16717 * pending mp is not affected because that is per ill basis.
16718 */
16719 ill->ill_phyint = phyi;
16720
16721 /*
16722 * Now that the phyint's ifindex has been assigned, complete the
16723 * remaining
16724 */
16725 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex;
16726 if (ill->ill_isv6) {
16727 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
16728 ill->ill_phyint->phyint_ifindex;
16729 ill->ill_mcast_type = ipst->ips_mld_max_version;
16730 } else {
16731 ill->ill_mcast_type = ipst->ips_igmp_max_version;
16732 }
16733
16734 /*
16735 * Generate an event within the hooks framework to indicate that
16736 * a new interface has just been added to IP. For this event to
16737 * be generated, the network interface must, at least, have an
16738 * ifindex assigned to it. (We don't generate the event for
16739 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.)
16740 *
16741 * This needs to be run inside the ill_g_lock perimeter to ensure
16742 * that the ordering of delivered events to listeners matches the
16743 * order of them in the kernel.
16744 */
16745 if (!IS_LOOPBACK(ill)) {
16746 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name,
16747 ill->ill_name_length);
16748 }
16749 RELEASE_ILL_LOCKS(ill, ill_other);
16750 mutex_exit(&phyi->phyint_lock);
16751 }
16752
16753 /*
16754 * Notify any downstream modules of the name of this interface.
16755 * An M_IOCTL is used even though we don't expect a successful reply.
16756 * Any reply message from the driver (presumably an M_IOCNAK) will
16757 * eventually get discarded somewhere upstream. The message format is
16758 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig
16759 * to IP.
16760 */
16761 static void
ip_ifname_notify(ill_t * ill,queue_t * q)16762 ip_ifname_notify(ill_t *ill, queue_t *q)
16763 {
16764 mblk_t *mp1, *mp2;
16765 struct iocblk *iocp;
16766 struct lifreq *lifr;
16767
16768 mp1 = mkiocb(SIOCSLIFNAME);
16769 if (mp1 == NULL)
16770 return;
16771 mp2 = allocb(sizeof (struct lifreq), BPRI_HI);
16772 if (mp2 == NULL) {
16773 freeb(mp1);
16774 return;
16775 }
16776
16777 mp1->b_cont = mp2;
16778 iocp = (struct iocblk *)mp1->b_rptr;
16779 iocp->ioc_count = sizeof (struct lifreq);
16780
16781 lifr = (struct lifreq *)mp2->b_rptr;
16782 mp2->b_wptr += sizeof (struct lifreq);
16783 bzero(lifr, sizeof (struct lifreq));
16784
16785 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ);
16786 lifr->lifr_ppa = ill->ill_ppa;
16787 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6));
16788
16789 DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify",
16790 char *, "SIOCSLIFNAME", ill_t *, ill);
16791 putnext(q, mp1);
16792 }
16793
16794 static int
ipif_set_values_tail(ill_t * ill,ipif_t * ipif,mblk_t * mp,queue_t * q)16795 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
16796 {
16797 int err;
16798 ip_stack_t *ipst = ill->ill_ipst;
16799 phyint_t *phyi = ill->ill_phyint;
16800
16801 /*
16802 * Now that ill_name is set, the configuration for the IPMP
16803 * meta-interface can be performed.
16804 */
16805 if (IS_IPMP(ill)) {
16806 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
16807 /*
16808 * If phyi->phyint_grp is NULL, then this is the first IPMP
16809 * meta-interface and we need to create the IPMP group.
16810 */
16811 if (phyi->phyint_grp == NULL) {
16812 /*
16813 * If someone has renamed another IPMP group to have
16814 * the same name as our interface, bail.
16815 */
16816 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) {
16817 rw_exit(&ipst->ips_ipmp_lock);
16818 return (EEXIST);
16819 }
16820 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi);
16821 if (phyi->phyint_grp == NULL) {
16822 rw_exit(&ipst->ips_ipmp_lock);
16823 return (ENOMEM);
16824 }
16825 }
16826 rw_exit(&ipst->ips_ipmp_lock);
16827 }
16828
16829 /* Tell downstream modules where they are. */
16830 ip_ifname_notify(ill, q);
16831
16832 /*
16833 * ill_dl_phys returns EINPROGRESS in the usual case.
16834 * Error cases are ENOMEM ...
16835 */
16836 err = ill_dl_phys(ill, ipif, mp, q);
16837
16838 if (ill->ill_isv6) {
16839 mutex_enter(&ipst->ips_mld_slowtimeout_lock);
16840 if (ipst->ips_mld_slowtimeout_id == 0) {
16841 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo,
16842 (void *)ipst,
16843 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
16844 }
16845 mutex_exit(&ipst->ips_mld_slowtimeout_lock);
16846 } else {
16847 mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
16848 if (ipst->ips_igmp_slowtimeout_id == 0) {
16849 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo,
16850 (void *)ipst,
16851 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
16852 }
16853 mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
16854 }
16855
16856 return (err);
16857 }
16858
16859 /*
16860 * Common routine for ppa and ifname setting. Should be called exclusive.
16861 *
16862 * Returns EINPROGRESS when mp has been consumed by queueing it on
16863 * ipx_pending_mp and the ioctl will complete in ip_rput.
16864 *
16865 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return
16866 * the new name and new ppa in lifr_name and lifr_ppa respectively.
16867 * For SLIFNAME, we pass these values back to the userland.
16868 */
16869 static int
ipif_set_values(queue_t * q,mblk_t * mp,char * interf_name,uint_t * new_ppa_ptr)16870 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr)
16871 {
16872 ill_t *ill;
16873 ipif_t *ipif;
16874 ipsq_t *ipsq;
16875 char *ppa_ptr;
16876 char *old_ptr;
16877 char old_char;
16878 int error;
16879 ip_stack_t *ipst;
16880
16881 ip1dbg(("ipif_set_values: interface %s\n", interf_name));
16882 ASSERT(q->q_next != NULL);
16883 ASSERT(interf_name != NULL);
16884
16885 ill = (ill_t *)q->q_ptr;
16886 ipst = ill->ill_ipst;
16887
16888 ASSERT(ill->ill_ipst != NULL);
16889 ASSERT(ill->ill_name[0] == '\0');
16890 ASSERT(IAM_WRITER_ILL(ill));
16891 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ);
16892 ASSERT(ill->ill_ppa == UINT_MAX);
16893
16894 ill->ill_defend_start = ill->ill_defend_count = 0;
16895 /* The ppa is sent down by ifconfig or is chosen */
16896 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) {
16897 return (EINVAL);
16898 }
16899
16900 /*
16901 * make sure ppa passed in is same as ppa in the name.
16902 * This check is not made when ppa == UINT_MAX in that case ppa
16903 * in the name could be anything. System will choose a ppa and
16904 * update new_ppa_ptr and inter_name to contain the choosen ppa.
16905 */
16906 if (*new_ppa_ptr != UINT_MAX) {
16907 /* stoi changes the pointer */
16908 old_ptr = ppa_ptr;
16909 /*
16910 * ifconfig passed in 0 for the ppa for DLPI 1 style devices
16911 * (they don't have an externally visible ppa). We assign one
16912 * here so that we can manage the interface. Note that in
16913 * the past this value was always 0 for DLPI 1 drivers.
16914 */
16915 if (*new_ppa_ptr == 0)
16916 *new_ppa_ptr = stoi(&old_ptr);
16917 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr))
16918 return (EINVAL);
16919 }
16920 /*
16921 * terminate string before ppa
16922 * save char at that location.
16923 */
16924 old_char = ppa_ptr[0];
16925 ppa_ptr[0] = '\0';
16926
16927 ill->ill_ppa = *new_ppa_ptr;
16928 /*
16929 * Finish as much work now as possible before calling ill_glist_insert
16930 * which makes the ill globally visible and also merges it with the
16931 * other protocol instance of this phyint. The remaining work is
16932 * done after entering the ipsq which may happen sometime later.
16933 */
16934 ipif = ill->ill_ipif;
16935
16936 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */
16937 ipif_assign_seqid(ipif);
16938
16939 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)))
16940 ill->ill_flags |= ILLF_IPV4;
16941
16942 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */
16943 ASSERT((ipif->ipif_flags & IPIF_UP) == 0);
16944
16945 if (ill->ill_flags & ILLF_IPV6) {
16946
16947 ill->ill_isv6 = B_TRUE;
16948 ill_set_inputfn(ill);
16949 if (ill->ill_rq != NULL) {
16950 ill->ill_rq->q_qinfo = &iprinitv6;
16951 }
16952
16953 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */
16954 ipif->ipif_v6lcl_addr = ipv6_all_zeros;
16955 ipif->ipif_v6subnet = ipv6_all_zeros;
16956 ipif->ipif_v6net_mask = ipv6_all_zeros;
16957 ipif->ipif_v6brd_addr = ipv6_all_zeros;
16958 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros;
16959 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER;
16960 /*
16961 * point-to-point or Non-mulicast capable
16962 * interfaces won't do NUD unless explicitly
16963 * configured to do so.
16964 */
16965 if (ipif->ipif_flags & IPIF_POINTOPOINT ||
16966 !(ill->ill_flags & ILLF_MULTICAST)) {
16967 ill->ill_flags |= ILLF_NONUD;
16968 }
16969 /* Make sure IPv4 specific flag is not set on IPv6 if */
16970 if (ill->ill_flags & ILLF_NOARP) {
16971 /*
16972 * Note: xresolv interfaces will eventually need
16973 * NOARP set here as well, but that will require
16974 * those external resolvers to have some
16975 * knowledge of that flag and act appropriately.
16976 * Not to be changed at present.
16977 */
16978 ill->ill_flags &= ~ILLF_NOARP;
16979 }
16980 /*
16981 * Set the ILLF_ROUTER flag according to the global
16982 * IPv6 forwarding policy.
16983 */
16984 if (ipst->ips_ipv6_forwarding != 0)
16985 ill->ill_flags |= ILLF_ROUTER;
16986 } else if (ill->ill_flags & ILLF_IPV4) {
16987 ill->ill_isv6 = B_FALSE;
16988 ill_set_inputfn(ill);
16989 ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER;
16990 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr);
16991 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet);
16992 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask);
16993 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr);
16994 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr);
16995 /*
16996 * Set the ILLF_ROUTER flag according to the global
16997 * IPv4 forwarding policy.
16998 */
16999 if (ipst->ips_ip_forwarding != 0)
17000 ill->ill_flags |= ILLF_ROUTER;
17001 }
17002
17003 ASSERT(ill->ill_phyint != NULL);
17004
17005 /*
17006 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will
17007 * be completed in ill_glist_insert -> ill_phyint_reinit
17008 */
17009 if (!ill_allocate_mibs(ill))
17010 return (ENOMEM);
17011
17012 /*
17013 * Pick a default sap until we get the DL_INFO_ACK back from
17014 * the driver.
17015 */
17016 ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap :
17017 ill->ill_media->ip_m_ipv4sap;
17018
17019 ill->ill_ifname_pending = 1;
17020 ill->ill_ifname_pending_err = 0;
17021
17022 /*
17023 * When the first ipif comes up in ipif_up_done(), multicast groups
17024 * that were joined while this ill was not bound to the DLPI link need
17025 * to be recovered by ill_recover_multicast().
17026 */
17027 ill->ill_need_recover_multicast = 1;
17028
17029 ill_refhold(ill);
17030 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
17031 if ((error = ill_glist_insert(ill, interf_name,
17032 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) {
17033 ill->ill_ppa = UINT_MAX;
17034 ill->ill_name[0] = '\0';
17035 /*
17036 * undo null termination done above.
17037 */
17038 ppa_ptr[0] = old_char;
17039 rw_exit(&ipst->ips_ill_g_lock);
17040 ill_refrele(ill);
17041 return (error);
17042 }
17043
17044 ASSERT(ill->ill_name_length <= LIFNAMSIZ);
17045
17046 /*
17047 * When we return the buffer pointed to by interf_name should contain
17048 * the same name as in ill_name.
17049 * If a ppa was choosen by the system (ppa passed in was UINT_MAX)
17050 * the buffer pointed to by new_ppa_ptr would not contain the right ppa
17051 * so copy full name and update the ppa ptr.
17052 * When ppa passed in != UINT_MAX all values are correct just undo
17053 * null termination, this saves a bcopy.
17054 */
17055 if (*new_ppa_ptr == UINT_MAX) {
17056 bcopy(ill->ill_name, interf_name, ill->ill_name_length);
17057 *new_ppa_ptr = ill->ill_ppa;
17058 } else {
17059 /*
17060 * undo null termination done above.
17061 */
17062 ppa_ptr[0] = old_char;
17063 }
17064
17065 /* Let SCTP know about this ILL */
17066 sctp_update_ill(ill, SCTP_ILL_INSERT);
17067
17068 /*
17069 * ill_glist_insert has made the ill visible globally, and
17070 * ill_phyint_reinit could have changed the ipsq. At this point,
17071 * we need to hold the ips_ill_g_lock across the call to enter the
17072 * ipsq to enforce atomicity and prevent reordering. In the event
17073 * the ipsq has changed, and if the new ipsq is currently busy,
17074 * we need to make sure that this half-completed ioctl is ahead of
17075 * any subsequent ioctl. We achieve this by not dropping the
17076 * ips_ill_g_lock which prevents any ill lookup itself thereby
17077 * ensuring that new ioctls can't start.
17078 */
17079 ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP,
17080 B_TRUE);
17081
17082 rw_exit(&ipst->ips_ill_g_lock);
17083 ill_refrele(ill);
17084 if (ipsq == NULL)
17085 return (EINPROGRESS);
17086
17087 /*
17088 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq.
17089 */
17090 if (ipsq->ipsq_xop->ipx_current_ipif == NULL)
17091 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME);
17092 else
17093 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif);
17094
17095 error = ipif_set_values_tail(ill, ipif, mp, q);
17096 ipsq_exit(ipsq);
17097 if (error != 0 && error != EINPROGRESS) {
17098 /*
17099 * restore previous values
17100 */
17101 ill->ill_isv6 = B_FALSE;
17102 ill_set_inputfn(ill);
17103 }
17104 return (error);
17105 }
17106
17107 void
ipif_init(ip_stack_t * ipst)17108 ipif_init(ip_stack_t *ipst)
17109 {
17110 int i;
17111
17112 for (i = 0; i < MAX_G_HEADS; i++) {
17113 ipst->ips_ill_g_heads[i].ill_g_list_head =
17114 (ill_if_t *)&ipst->ips_ill_g_heads[i];
17115 ipst->ips_ill_g_heads[i].ill_g_list_tail =
17116 (ill_if_t *)&ipst->ips_ill_g_heads[i];
17117 }
17118
17119 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
17120 ill_phyint_compare_index,
17121 sizeof (phyint_t),
17122 offsetof(struct phyint, phyint_avl_by_index));
17123 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
17124 ill_phyint_compare_name,
17125 sizeof (phyint_t),
17126 offsetof(struct phyint, phyint_avl_by_name));
17127 }
17128
17129 /*
17130 * Save enough information so that we can recreate the IRE if
17131 * the interface goes down and then up.
17132 */
17133 void
ill_save_ire(ill_t * ill,ire_t * ire)17134 ill_save_ire(ill_t *ill, ire_t *ire)
17135 {
17136 mblk_t *save_mp;
17137
17138 save_mp = allocb(sizeof (ifrt_t), BPRI_MED);
17139 if (save_mp != NULL) {
17140 ifrt_t *ifrt;
17141
17142 save_mp->b_wptr += sizeof (ifrt_t);
17143 ifrt = (ifrt_t *)save_mp->b_rptr;
17144 bzero(ifrt, sizeof (ifrt_t));
17145 ifrt->ifrt_type = ire->ire_type;
17146 if (ire->ire_ipversion == IPV4_VERSION) {
17147 ASSERT(!ill->ill_isv6);
17148 ifrt->ifrt_addr = ire->ire_addr;
17149 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr;
17150 ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr;
17151 ifrt->ifrt_mask = ire->ire_mask;
17152 } else {
17153 ASSERT(ill->ill_isv6);
17154 ifrt->ifrt_v6addr = ire->ire_addr_v6;
17155 /* ire_gateway_addr_v6 can change due to RTM_CHANGE */
17156 mutex_enter(&ire->ire_lock);
17157 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6;
17158 mutex_exit(&ire->ire_lock);
17159 ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6;
17160 ifrt->ifrt_v6mask = ire->ire_mask_v6;
17161 }
17162 ifrt->ifrt_flags = ire->ire_flags;
17163 ifrt->ifrt_zoneid = ire->ire_zoneid;
17164 mutex_enter(&ill->ill_saved_ire_lock);
17165 save_mp->b_cont = ill->ill_saved_ire_mp;
17166 ill->ill_saved_ire_mp = save_mp;
17167 ill->ill_saved_ire_cnt++;
17168 mutex_exit(&ill->ill_saved_ire_lock);
17169 }
17170 }
17171
17172 /*
17173 * Remove one entry from ill_saved_ire_mp.
17174 */
17175 void
ill_remove_saved_ire(ill_t * ill,ire_t * ire)17176 ill_remove_saved_ire(ill_t *ill, ire_t *ire)
17177 {
17178 mblk_t **mpp;
17179 mblk_t *mp;
17180 ifrt_t *ifrt;
17181
17182 /* Remove from ill_saved_ire_mp list if it is there */
17183 mutex_enter(&ill->ill_saved_ire_lock);
17184 for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL;
17185 mpp = &(*mpp)->b_cont) {
17186 in6_addr_t gw_addr_v6;
17187
17188 /*
17189 * On a given ill, the tuple of address, gateway, mask,
17190 * ire_type, and zoneid is unique for each saved IRE.
17191 */
17192 mp = *mpp;
17193 ifrt = (ifrt_t *)mp->b_rptr;
17194 /* ire_gateway_addr_v6 can change - need lock */
17195 mutex_enter(&ire->ire_lock);
17196 gw_addr_v6 = ire->ire_gateway_addr_v6;
17197 mutex_exit(&ire->ire_lock);
17198
17199 if (ifrt->ifrt_zoneid != ire->ire_zoneid ||
17200 ifrt->ifrt_type != ire->ire_type)
17201 continue;
17202
17203 if (ill->ill_isv6 ?
17204 (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr,
17205 &ire->ire_addr_v6) &&
17206 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr,
17207 &gw_addr_v6) &&
17208 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask,
17209 &ire->ire_mask_v6)) :
17210 (ifrt->ifrt_addr == ire->ire_addr &&
17211 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr &&
17212 ifrt->ifrt_mask == ire->ire_mask)) {
17213 *mpp = mp->b_cont;
17214 ill->ill_saved_ire_cnt--;
17215 freeb(mp);
17216 break;
17217 }
17218 }
17219 mutex_exit(&ill->ill_saved_ire_lock);
17220 }
17221
17222 /*
17223 * IP multirouting broadcast routes handling
17224 * Append CGTP broadcast IREs to regular ones created
17225 * at ifconfig time.
17226 * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both
17227 * the destination and the gateway are broadcast addresses.
17228 * The caller has verified that the destination is an IRE_BROADCAST and that
17229 * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then
17230 * we create a MULTIRT IRE_BROADCAST.
17231 * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything
17232 * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion.
17233 */
17234 static void
ip_cgtp_bcast_add(ire_t * ire,ip_stack_t * ipst)17235 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst)
17236 {
17237 ire_t *ire_prim;
17238
17239 ASSERT(ire != NULL);
17240
17241 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
17242 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
17243 NULL);
17244 if (ire_prim != NULL) {
17245 /*
17246 * We are in the special case of broadcasts for
17247 * CGTP. We add an IRE_BROADCAST that holds
17248 * the RTF_MULTIRT flag, the destination
17249 * address and the low level
17250 * info of ire_prim. In other words, CGTP
17251 * broadcast is added to the redundant ipif.
17252 */
17253 ill_t *ill_prim;
17254 ire_t *bcast_ire;
17255
17256 ill_prim = ire_prim->ire_ill;
17257
17258 ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n",
17259 (void *)ire_prim, (void *)ill_prim));
17260
17261 bcast_ire = ire_create(
17262 (uchar_t *)&ire->ire_addr,
17263 (uchar_t *)&ip_g_all_ones,
17264 (uchar_t *)&ire->ire_gateway_addr,
17265 IRE_BROADCAST,
17266 ill_prim,
17267 GLOBAL_ZONEID, /* CGTP is only for the global zone */
17268 ire->ire_flags | RTF_KERNEL,
17269 NULL,
17270 ipst);
17271
17272 /*
17273 * Here we assume that ire_add does head insertion so that
17274 * the added IRE_BROADCAST comes before the existing IRE_HOST.
17275 */
17276 if (bcast_ire != NULL) {
17277 if (ire->ire_flags & RTF_SETSRC) {
17278 bcast_ire->ire_setsrc_addr =
17279 ire->ire_setsrc_addr;
17280 }
17281 bcast_ire = ire_add(bcast_ire);
17282 if (bcast_ire != NULL) {
17283 ip2dbg(("ip_cgtp_filter_bcast_add: "
17284 "added bcast_ire %p\n",
17285 (void *)bcast_ire));
17286
17287 ill_save_ire(ill_prim, bcast_ire);
17288 ire_refrele(bcast_ire);
17289 }
17290 }
17291 ire_refrele(ire_prim);
17292 }
17293 }
17294
17295 /*
17296 * IP multirouting broadcast routes handling
17297 * Remove the broadcast ire.
17298 * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both
17299 * the destination and the gateway are broadcast addresses.
17300 * The caller has only verified that RTF_MULTIRT was set. We check
17301 * that the destination is broadcast and that the gateway is a broadcast
17302 * address, and if so delete the IRE added by ip_cgtp_bcast_add().
17303 */
17304 static void
ip_cgtp_bcast_delete(ire_t * ire,ip_stack_t * ipst)17305 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst)
17306 {
17307 ASSERT(ire != NULL);
17308
17309 if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) {
17310 ire_t *ire_prim;
17311
17312 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
17313 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0,
17314 ipst, NULL);
17315 if (ire_prim != NULL) {
17316 ill_t *ill_prim;
17317 ire_t *bcast_ire;
17318
17319 ill_prim = ire_prim->ire_ill;
17320
17321 ip2dbg(("ip_cgtp_filter_bcast_delete: "
17322 "ire_prim %p, ill_prim %p\n",
17323 (void *)ire_prim, (void *)ill_prim));
17324
17325 bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0,
17326 ire->ire_gateway_addr, IRE_BROADCAST,
17327 ill_prim, ALL_ZONES, NULL,
17328 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL |
17329 MATCH_IRE_MASK, 0, ipst, NULL);
17330
17331 if (bcast_ire != NULL) {
17332 ip2dbg(("ip_cgtp_filter_bcast_delete: "
17333 "looked up bcast_ire %p\n",
17334 (void *)bcast_ire));
17335 ill_remove_saved_ire(bcast_ire->ire_ill,
17336 bcast_ire);
17337 ire_delete(bcast_ire);
17338 ire_refrele(bcast_ire);
17339 }
17340 ire_refrele(ire_prim);
17341 }
17342 }
17343 }
17344
17345 /*
17346 * Derive an interface id from the link layer address.
17347 * Knows about IEEE 802 and IEEE EUI-64 mappings.
17348 */
17349 static void
ip_ether_v6intfid(ill_t * ill,in6_addr_t * v6addr)17350 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17351 {
17352 char *addr;
17353
17354 /*
17355 * Note that some IPv6 interfaces get plumbed over links that claim to
17356 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g.
17357 * PPP links). The ETHERADDRL check here ensures that we only set the
17358 * interface ID on IPv6 interfaces above links that actually have real
17359 * Ethernet addresses.
17360 */
17361 if (ill->ill_phys_addr_length == ETHERADDRL) {
17362 /* Form EUI-64 like address */
17363 addr = (char *)&v6addr->s6_addr32[2];
17364 bcopy(ill->ill_phys_addr, addr, 3);
17365 addr[0] ^= 0x2; /* Toggle Universal/Local bit */
17366 addr[3] = (char)0xff;
17367 addr[4] = (char)0xfe;
17368 bcopy(ill->ill_phys_addr + 3, addr + 5, 3);
17369 }
17370 }
17371
17372 /* ARGSUSED */
17373 static void
ip_nodef_v6intfid(ill_t * ill,in6_addr_t * v6addr)17374 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17375 {
17376 }
17377
17378 typedef struct ipmp_ifcookie {
17379 uint32_t ic_hostid;
17380 char ic_ifname[LIFNAMSIZ];
17381 char ic_zonename[ZONENAME_MAX];
17382 } ipmp_ifcookie_t;
17383
17384 /*
17385 * Construct a pseudo-random interface ID for the IPMP interface that's both
17386 * predictable and (almost) guaranteed to be unique.
17387 */
17388 static void
ip_ipmp_v6intfid(ill_t * ill,in6_addr_t * v6addr)17389 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17390 {
17391 zone_t *zp;
17392 uint8_t *addr;
17393 uchar_t hash[16];
17394 ulong_t hostid;
17395 MD5_CTX ctx;
17396 ipmp_ifcookie_t ic = { 0 };
17397
17398 ASSERT(IS_IPMP(ill));
17399
17400 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid);
17401 ic.ic_hostid = htonl((uint32_t)hostid);
17402
17403 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ);
17404
17405 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) {
17406 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX);
17407 zone_rele(zp);
17408 }
17409
17410 MD5Init(&ctx);
17411 MD5Update(&ctx, &ic, sizeof (ic));
17412 MD5Final(hash, &ctx);
17413
17414 /*
17415 * Map the hash to an interface ID per the basic approach in RFC3041.
17416 */
17417 addr = &v6addr->s6_addr8[8];
17418 bcopy(hash + 8, addr, sizeof (uint64_t));
17419 addr[0] &= ~0x2; /* set local bit */
17420 }
17421
17422 /*
17423 * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet.
17424 */
17425 static void
ip_ether_v6_mapping(ill_t * ill,uchar_t * m_ip6addr,uchar_t * m_physaddr)17426 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr)
17427 {
17428 phyint_t *phyi = ill->ill_phyint;
17429
17430 /*
17431 * Check PHYI_MULTI_BCAST and length of physical
17432 * address to determine if we use the mapping or the
17433 * broadcast address.
17434 */
17435 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 ||
17436 ill->ill_phys_addr_length != ETHERADDRL) {
17437 ip_mbcast_mapping(ill, m_ip6addr, m_physaddr);
17438 return;
17439 }
17440 m_physaddr[0] = 0x33;
17441 m_physaddr[1] = 0x33;
17442 m_physaddr[2] = m_ip6addr[12];
17443 m_physaddr[3] = m_ip6addr[13];
17444 m_physaddr[4] = m_ip6addr[14];
17445 m_physaddr[5] = m_ip6addr[15];
17446 }
17447
17448 /*
17449 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet.
17450 */
17451 static void
ip_ether_v4_mapping(ill_t * ill,uchar_t * m_ipaddr,uchar_t * m_physaddr)17452 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17453 {
17454 phyint_t *phyi = ill->ill_phyint;
17455
17456 /*
17457 * Check PHYI_MULTI_BCAST and length of physical
17458 * address to determine if we use the mapping or the
17459 * broadcast address.
17460 */
17461 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 ||
17462 ill->ill_phys_addr_length != ETHERADDRL) {
17463 ip_mbcast_mapping(ill, m_ipaddr, m_physaddr);
17464 return;
17465 }
17466 m_physaddr[0] = 0x01;
17467 m_physaddr[1] = 0x00;
17468 m_physaddr[2] = 0x5e;
17469 m_physaddr[3] = m_ipaddr[1] & 0x7f;
17470 m_physaddr[4] = m_ipaddr[2];
17471 m_physaddr[5] = m_ipaddr[3];
17472 }
17473
17474 /* ARGSUSED */
17475 static void
ip_mbcast_mapping(ill_t * ill,uchar_t * m_ipaddr,uchar_t * m_physaddr)17476 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17477 {
17478 /*
17479 * for the MULTI_BCAST case and other cases when we want to
17480 * use the link-layer broadcast address for multicast.
17481 */
17482 uint8_t *bphys_addr;
17483 dl_unitdata_req_t *dlur;
17484
17485 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17486 if (ill->ill_sap_length < 0) {
17487 bphys_addr = (uchar_t *)dlur +
17488 dlur->dl_dest_addr_offset;
17489 } else {
17490 bphys_addr = (uchar_t *)dlur +
17491 dlur->dl_dest_addr_offset + ill->ill_sap_length;
17492 }
17493
17494 bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length);
17495 }
17496
17497 /*
17498 * Derive IPoIB interface id from the link layer address.
17499 */
17500 static void
ip_ib_v6intfid(ill_t * ill,in6_addr_t * v6addr)17501 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17502 {
17503 char *addr;
17504
17505 ASSERT(ill->ill_phys_addr_length == 20);
17506 addr = (char *)&v6addr->s6_addr32[2];
17507 bcopy(ill->ill_phys_addr + 12, addr, 8);
17508 /*
17509 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit
17510 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE
17511 * rules. In these cases, the IBA considers these GUIDs to be in
17512 * "Modified EUI-64" format, and thus toggling the u/l bit is not
17513 * required; vendors are required not to assign global EUI-64's
17514 * that differ only in u/l bit values, thus guaranteeing uniqueness
17515 * of the interface identifier. Whether the GUID is in modified
17516 * or proper EUI-64 format, the ipv6 identifier must have the u/l
17517 * bit set to 1.
17518 */
17519 addr[0] |= 2; /* Set Universal/Local bit to 1 */
17520 }
17521
17522 /*
17523 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand.
17524 * Note on mapping from multicast IP addresses to IPoIB multicast link
17525 * addresses. IPoIB multicast link addresses are based on IBA link addresses.
17526 * The format of an IPoIB multicast address is:
17527 *
17528 * 4 byte QPN Scope Sign. Pkey
17529 * +--------------------------------------------+
17530 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID |
17531 * +--------------------------------------------+
17532 *
17533 * The Scope and Pkey components are properties of the IBA port and
17534 * network interface. They can be ascertained from the broadcast address.
17535 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6.
17536 */
17537 static void
ip_ib_v4_mapping(ill_t * ill,uchar_t * m_ipaddr,uchar_t * m_physaddr)17538 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17539 {
17540 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
17541 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00,
17542 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
17543 uint8_t *bphys_addr;
17544 dl_unitdata_req_t *dlur;
17545
17546 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length);
17547
17548 /*
17549 * RFC 4391: IPv4 MGID is 28-bit long.
17550 */
17551 m_physaddr[16] = m_ipaddr[0] & 0x0f;
17552 m_physaddr[17] = m_ipaddr[1];
17553 m_physaddr[18] = m_ipaddr[2];
17554 m_physaddr[19] = m_ipaddr[3];
17555
17556
17557 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17558 if (ill->ill_sap_length < 0) {
17559 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
17560 } else {
17561 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
17562 ill->ill_sap_length;
17563 }
17564 /*
17565 * Now fill in the IBA scope/Pkey values from the broadcast address.
17566 */
17567 m_physaddr[5] = bphys_addr[5];
17568 m_physaddr[8] = bphys_addr[8];
17569 m_physaddr[9] = bphys_addr[9];
17570 }
17571
17572 static void
ip_ib_v6_mapping(ill_t * ill,uchar_t * m_ipaddr,uchar_t * m_physaddr)17573 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17574 {
17575 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
17576 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00,
17577 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
17578 uint8_t *bphys_addr;
17579 dl_unitdata_req_t *dlur;
17580
17581 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length);
17582
17583 /*
17584 * RFC 4391: IPv4 MGID is 80-bit long.
17585 */
17586 bcopy(&m_ipaddr[6], &m_physaddr[10], 10);
17587
17588 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17589 if (ill->ill_sap_length < 0) {
17590 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
17591 } else {
17592 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
17593 ill->ill_sap_length;
17594 }
17595 /*
17596 * Now fill in the IBA scope/Pkey values from the broadcast address.
17597 */
17598 m_physaddr[5] = bphys_addr[5];
17599 m_physaddr[8] = bphys_addr[8];
17600 m_physaddr[9] = bphys_addr[9];
17601 }
17602
17603 /*
17604 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4
17605 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the
17606 * IPv6 interface id. This is a suggested mechanism described in section 3.7
17607 * of RFC4213.
17608 */
17609 static void
ip_ipv4_genv6intfid(ill_t * ill,uint8_t * physaddr,in6_addr_t * v6addr)17610 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
17611 {
17612 ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t));
17613 v6addr->s6_addr32[2] = 0;
17614 bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t));
17615 }
17616
17617 /*
17618 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6
17619 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface
17620 * id.
17621 */
17622 static void
ip_ipv6_genv6intfid(ill_t * ill,uint8_t * physaddr,in6_addr_t * v6addr)17623 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
17624 {
17625 in6_addr_t *v6lladdr = (in6_addr_t *)physaddr;
17626
17627 ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t));
17628 bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8);
17629 }
17630
17631 static void
ip_ipv6_v6intfid(ill_t * ill,in6_addr_t * v6addr)17632 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17633 {
17634 ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr);
17635 }
17636
17637 static void
ip_ipv6_v6destintfid(ill_t * ill,in6_addr_t * v6addr)17638 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
17639 {
17640 ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr);
17641 }
17642
17643 static void
ip_ipv4_v6intfid(ill_t * ill,in6_addr_t * v6addr)17644 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17645 {
17646 ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr);
17647 }
17648
17649 static void
ip_ipv4_v6destintfid(ill_t * ill,in6_addr_t * v6addr)17650 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
17651 {
17652 ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr);
17653 }
17654
17655 /*
17656 * Lookup an ill and verify that the zoneid has an ipif on that ill.
17657 * Returns an held ill, or NULL.
17658 */
17659 ill_t *
ill_lookup_on_ifindex_zoneid(uint_t index,zoneid_t zoneid,boolean_t isv6,ip_stack_t * ipst)17660 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6,
17661 ip_stack_t *ipst)
17662 {
17663 ill_t *ill;
17664 ipif_t *ipif;
17665
17666 ill = ill_lookup_on_ifindex(index, isv6, ipst);
17667 if (ill == NULL)
17668 return (NULL);
17669
17670 mutex_enter(&ill->ill_lock);
17671 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17672 if (IPIF_IS_CONDEMNED(ipif))
17673 continue;
17674 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid &&
17675 ipif->ipif_zoneid != ALL_ZONES)
17676 continue;
17677
17678 mutex_exit(&ill->ill_lock);
17679 return (ill);
17680 }
17681 mutex_exit(&ill->ill_lock);
17682 ill_refrele(ill);
17683 return (NULL);
17684 }
17685
17686 /*
17687 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id)
17688 * If a pointer to an ipif_t is returned then the caller will need to do
17689 * an ill_refrele().
17690 */
17691 ipif_t *
ipif_getby_indexes(uint_t ifindex,uint_t lifidx,boolean_t isv6,ip_stack_t * ipst)17692 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6,
17693 ip_stack_t *ipst)
17694 {
17695 ipif_t *ipif;
17696 ill_t *ill;
17697
17698 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
17699 if (ill == NULL)
17700 return (NULL);
17701
17702 mutex_enter(&ill->ill_lock);
17703 if (ill->ill_state_flags & ILL_CONDEMNED) {
17704 mutex_exit(&ill->ill_lock);
17705 ill_refrele(ill);
17706 return (NULL);
17707 }
17708
17709 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17710 if (!IPIF_CAN_LOOKUP(ipif))
17711 continue;
17712 if (lifidx == ipif->ipif_id) {
17713 ipif_refhold_locked(ipif);
17714 break;
17715 }
17716 }
17717
17718 mutex_exit(&ill->ill_lock);
17719 ill_refrele(ill);
17720 return (ipif);
17721 }
17722
17723 /*
17724 * Set ill_inputfn based on the current know state.
17725 * This needs to be called when any of the factors taken into
17726 * account changes.
17727 */
17728 void
ill_set_inputfn(ill_t * ill)17729 ill_set_inputfn(ill_t *ill)
17730 {
17731 ip_stack_t *ipst = ill->ill_ipst;
17732
17733 if (ill->ill_isv6) {
17734 if (is_system_labeled())
17735 ill->ill_inputfn = ill_input_full_v6;
17736 else
17737 ill->ill_inputfn = ill_input_short_v6;
17738 } else {
17739 if (is_system_labeled())
17740 ill->ill_inputfn = ill_input_full_v4;
17741 else if (ill->ill_dhcpinit != 0)
17742 ill->ill_inputfn = ill_input_full_v4;
17743 else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head
17744 != NULL)
17745 ill->ill_inputfn = ill_input_full_v4;
17746 else if (ipst->ips_ip_cgtp_filter &&
17747 ipst->ips_ip_cgtp_filter_ops != NULL)
17748 ill->ill_inputfn = ill_input_full_v4;
17749 else
17750 ill->ill_inputfn = ill_input_short_v4;
17751 }
17752 }
17753
17754 /*
17755 * Re-evaluate ill_inputfn for all the IPv4 ills.
17756 * Used when RSVP and CGTP comes and goes.
17757 */
17758 void
ill_set_inputfn_all(ip_stack_t * ipst)17759 ill_set_inputfn_all(ip_stack_t *ipst)
17760 {
17761 ill_walk_context_t ctx;
17762 ill_t *ill;
17763
17764 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
17765 ill = ILL_START_WALK_V4(&ctx, ipst);
17766 for (; ill != NULL; ill = ill_next(&ctx, ill))
17767 ill_set_inputfn(ill);
17768
17769 rw_exit(&ipst->ips_ill_g_lock);
17770 }
17771
17772 /*
17773 * Set the physical address information for `ill' to the contents of the
17774 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be
17775 * asynchronous if `ill' cannot immediately be quiesced -- in which case
17776 * EINPROGRESS will be returned.
17777 */
17778 int
ill_set_phys_addr(ill_t * ill,mblk_t * mp)17779 ill_set_phys_addr(ill_t *ill, mblk_t *mp)
17780 {
17781 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17782 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr;
17783
17784 ASSERT(IAM_WRITER_IPSQ(ipsq));
17785
17786 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR &&
17787 dlindp->dl_data != DL_CURR_DEST_ADDR &&
17788 dlindp->dl_data != DL_CURR_PHYS_ADDR) {
17789 /* Changing DL_IPV6_TOKEN is not yet supported */
17790 return (0);
17791 }
17792
17793 /*
17794 * We need to store up to two copies of `mp' in `ill'. Due to the
17795 * design of ipsq_pending_mp_add(), we can't pass them as separate
17796 * arguments to ill_set_phys_addr_tail(). Instead, chain them
17797 * together here, then pull 'em apart in ill_set_phys_addr_tail().
17798 */
17799 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) {
17800 freemsg(mp);
17801 return (ENOMEM);
17802 }
17803
17804 ipsq_current_start(ipsq, ill->ill_ipif, 0);
17805
17806 /*
17807 * Since we'll only do a logical down, we can't rely on ipif_down
17808 * to turn on ILL_DOWN_IN_PROGRESS, or for the DL_BIND_ACK to reset
17809 * ILL_DOWN_IN_PROGRESS. We instead manage this separately for this
17810 * case, to quiesce ire's and nce's for ill_is_quiescent.
17811 */
17812 mutex_enter(&ill->ill_lock);
17813 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
17814 /* no more ire/nce addition allowed */
17815 mutex_exit(&ill->ill_lock);
17816
17817 /*
17818 * If we can quiesce the ill, then set the address. If not, then
17819 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail().
17820 */
17821 ill_down_ipifs(ill, B_TRUE);
17822 mutex_enter(&ill->ill_lock);
17823 if (!ill_is_quiescent(ill)) {
17824 /* call cannot fail since `conn_t *' argument is NULL */
17825 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
17826 mp, ILL_DOWN);
17827 mutex_exit(&ill->ill_lock);
17828 return (EINPROGRESS);
17829 }
17830 mutex_exit(&ill->ill_lock);
17831
17832 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL);
17833 return (0);
17834 }
17835
17836 /*
17837 * When the allowed-ips link property is set on the datalink, IP receives a
17838 * DL_NOTE_ALLOWED_IPS notification that is processed in ill_set_allowed_ips()
17839 * to initialize the ill_allowed_ips[] array in the ill_t. This array is then
17840 * used to vet addresses passed to ip_sioctl_addr() and to ensure that the
17841 * only IP addresses configured on the ill_t are those in the ill_allowed_ips[]
17842 * array.
17843 */
17844 void
ill_set_allowed_ips(ill_t * ill,mblk_t * mp)17845 ill_set_allowed_ips(ill_t *ill, mblk_t *mp)
17846 {
17847 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17848 dl_notify_ind_t *dlip = (dl_notify_ind_t *)mp->b_rptr;
17849 mac_protect_t *mrp;
17850 int i;
17851
17852 ASSERT(IAM_WRITER_IPSQ(ipsq));
17853 mrp = (mac_protect_t *)&dlip[1];
17854
17855 if (mrp->mp_ipaddrcnt == 0) { /* reset allowed-ips */
17856 kmem_free(ill->ill_allowed_ips,
17857 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
17858 ill->ill_allowed_ips_cnt = 0;
17859 ill->ill_allowed_ips = NULL;
17860 mutex_enter(&ill->ill_phyint->phyint_lock);
17861 ill->ill_phyint->phyint_flags &= ~PHYI_L3PROTECT;
17862 mutex_exit(&ill->ill_phyint->phyint_lock);
17863 return;
17864 }
17865
17866 if (ill->ill_allowed_ips != NULL) {
17867 kmem_free(ill->ill_allowed_ips,
17868 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
17869 }
17870 ill->ill_allowed_ips_cnt = mrp->mp_ipaddrcnt;
17871 ill->ill_allowed_ips = kmem_alloc(
17872 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t), KM_SLEEP);
17873 for (i = 0; i < mrp->mp_ipaddrcnt; i++)
17874 ill->ill_allowed_ips[i] = mrp->mp_ipaddrs[i].ip_addr;
17875
17876 mutex_enter(&ill->ill_phyint->phyint_lock);
17877 ill->ill_phyint->phyint_flags |= PHYI_L3PROTECT;
17878 mutex_exit(&ill->ill_phyint->phyint_lock);
17879 }
17880
17881 /*
17882 * Once the ill associated with `q' has quiesced, set its physical address
17883 * information to the values in `addrmp'. Note that two copies of `addrmp'
17884 * are passed (linked by b_cont), since we sometimes need to save two distinct
17885 * copies in the ill_t, and our context doesn't permit sleeping or allocation
17886 * failure (we'll free the other copy if it's not needed). Since the ill_t
17887 * is quiesced, we know any stale nce's with the old address information have
17888 * already been removed, so we don't need to call nce_flush().
17889 */
17890 /* ARGSUSED */
17891 static void
ill_set_phys_addr_tail(ipsq_t * ipsq,queue_t * q,mblk_t * addrmp,void * dummy)17892 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy)
17893 {
17894 ill_t *ill = q->q_ptr;
17895 mblk_t *addrmp2 = unlinkb(addrmp);
17896 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr;
17897 uint_t addrlen, addroff;
17898 int status;
17899
17900 ASSERT(IAM_WRITER_IPSQ(ipsq));
17901
17902 addroff = dlindp->dl_addr_offset;
17903 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length);
17904
17905 switch (dlindp->dl_data) {
17906 case DL_IPV6_LINK_LAYER_ADDR:
17907 ill_set_ndmp(ill, addrmp, addroff, addrlen);
17908 freemsg(addrmp2);
17909 break;
17910
17911 case DL_CURR_DEST_ADDR:
17912 freemsg(ill->ill_dest_addr_mp);
17913 ill->ill_dest_addr = addrmp->b_rptr + addroff;
17914 ill->ill_dest_addr_mp = addrmp;
17915 if (ill->ill_isv6) {
17916 ill_setdesttoken(ill);
17917 ipif_setdestlinklocal(ill->ill_ipif);
17918 }
17919 freemsg(addrmp2);
17920 break;
17921
17922 case DL_CURR_PHYS_ADDR:
17923 freemsg(ill->ill_phys_addr_mp);
17924 ill->ill_phys_addr = addrmp->b_rptr + addroff;
17925 ill->ill_phys_addr_mp = addrmp;
17926 ill->ill_phys_addr_length = addrlen;
17927 if (ill->ill_isv6)
17928 ill_set_ndmp(ill, addrmp2, addroff, addrlen);
17929 else
17930 freemsg(addrmp2);
17931 if (ill->ill_isv6) {
17932 ill_setdefaulttoken(ill);
17933 ipif_setlinklocal(ill->ill_ipif);
17934 }
17935 break;
17936 default:
17937 ASSERT(0);
17938 }
17939
17940 /*
17941 * reset ILL_DOWN_IN_PROGRESS so that we can successfully add ires
17942 * as we bring the ipifs up again.
17943 */
17944 mutex_enter(&ill->ill_lock);
17945 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
17946 mutex_exit(&ill->ill_lock);
17947 /*
17948 * If there are ipifs to bring up, ill_up_ipifs() will return
17949 * EINPROGRESS, and ipsq_current_finish() will be called by
17950 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is
17951 * brought up.
17952 */
17953 status = ill_up_ipifs(ill, q, addrmp);
17954 if (status != EINPROGRESS)
17955 ipsq_current_finish(ipsq);
17956 }
17957
17958 /*
17959 * Helper routine for setting the ill_nd_lla fields.
17960 */
17961 void
ill_set_ndmp(ill_t * ill,mblk_t * ndmp,uint_t addroff,uint_t addrlen)17962 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen)
17963 {
17964 freemsg(ill->ill_nd_lla_mp);
17965 ill->ill_nd_lla = ndmp->b_rptr + addroff;
17966 ill->ill_nd_lla_mp = ndmp;
17967 ill->ill_nd_lla_len = addrlen;
17968 }
17969
17970 /*
17971 * Replumb the ill.
17972 */
17973 int
ill_replumb(ill_t * ill,mblk_t * mp)17974 ill_replumb(ill_t *ill, mblk_t *mp)
17975 {
17976 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17977
17978 ASSERT(IAM_WRITER_IPSQ(ipsq));
17979
17980 ipsq_current_start(ipsq, ill->ill_ipif, 0);
17981
17982 /*
17983 * If we can quiesce the ill, then continue. If not, then
17984 * ill_replumb_tail() will be called from ipif_ill_refrele_tail().
17985 */
17986 ill_down_ipifs(ill, B_FALSE);
17987
17988 mutex_enter(&ill->ill_lock);
17989 if (!ill_is_quiescent(ill)) {
17990 /* call cannot fail since `conn_t *' argument is NULL */
17991 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
17992 mp, ILL_DOWN);
17993 mutex_exit(&ill->ill_lock);
17994 return (EINPROGRESS);
17995 }
17996 mutex_exit(&ill->ill_lock);
17997
17998 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL);
17999 return (0);
18000 }
18001
18002 /* ARGSUSED */
18003 static void
ill_replumb_tail(ipsq_t * ipsq,queue_t * q,mblk_t * mp,void * dummy)18004 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
18005 {
18006 ill_t *ill = q->q_ptr;
18007 int err;
18008 conn_t *connp = NULL;
18009
18010 ASSERT(IAM_WRITER_IPSQ(ipsq));
18011 freemsg(ill->ill_replumb_mp);
18012 ill->ill_replumb_mp = copyb(mp);
18013
18014 if (ill->ill_replumb_mp == NULL) {
18015 /* out of memory */
18016 ipsq_current_finish(ipsq);
18017 return;
18018 }
18019
18020 mutex_enter(&ill->ill_lock);
18021 ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif,
18022 ill->ill_rq, ill->ill_replumb_mp, 0);
18023 mutex_exit(&ill->ill_lock);
18024
18025 if (!ill->ill_up_ipifs) {
18026 /* already closing */
18027 ipsq_current_finish(ipsq);
18028 return;
18029 }
18030 ill->ill_replumbing = 1;
18031 err = ill_down_ipifs_tail(ill);
18032
18033 /*
18034 * Successfully quiesced and brought down the interface, now we send
18035 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the
18036 * DL_NOTE_REPLUMB message.
18037 */
18038 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO,
18039 DL_NOTIFY_CONF);
18040 ASSERT(mp != NULL);
18041 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification =
18042 DL_NOTE_REPLUMB_DONE;
18043 ill_dlpi_send(ill, mp);
18044
18045 /*
18046 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP
18047 * streams have to be unbound. When all the DLPI exchanges are done,
18048 * ipsq_current_finish() will be called by arp_bringup_done(). The
18049 * remainder of ipif bringup via ill_up_ipifs() will also be done in
18050 * arp_bringup_done().
18051 */
18052 ASSERT(ill->ill_replumb_mp != NULL);
18053 if (err == EINPROGRESS)
18054 return;
18055 else
18056 ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp);
18057 ASSERT(connp == NULL);
18058 if (err == 0 && ill->ill_replumb_mp != NULL &&
18059 ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) {
18060 return;
18061 }
18062 ipsq_current_finish(ipsq);
18063 }
18064
18065 /*
18066 * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf'
18067 * which is `bufsize' bytes. On success, zero is returned and `buf' updated
18068 * as per the ioctl. On failure, an errno is returned.
18069 */
18070 static int
ip_ioctl(ldi_handle_t lh,int cmd,void * buf,uint_t bufsize,cred_t * cr)18071 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr)
18072 {
18073 int rval;
18074 struct strioctl iocb;
18075
18076 iocb.ic_cmd = cmd;
18077 iocb.ic_timout = 15;
18078 iocb.ic_len = bufsize;
18079 iocb.ic_dp = buf;
18080
18081 return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval));
18082 }
18083
18084 /*
18085 * Issue an SIOCGLIFCONF for address family `af' and store the result into a
18086 * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success.
18087 */
18088 static int
ip_lifconf_ioctl(ldi_handle_t lh,int af,struct lifconf * lifcp,uint_t * bufsizep,cred_t * cr)18089 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp,
18090 uint_t *bufsizep, cred_t *cr)
18091 {
18092 int err;
18093 struct lifnum lifn;
18094
18095 bzero(&lifn, sizeof (lifn));
18096 lifn.lifn_family = af;
18097 lifn.lifn_flags = LIFC_UNDER_IPMP;
18098
18099 if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0)
18100 return (err);
18101
18102 /*
18103 * Pad the interface count to account for additional interfaces that
18104 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF.
18105 */
18106 lifn.lifn_count += 4;
18107 bzero(lifcp, sizeof (*lifcp));
18108 lifcp->lifc_flags = LIFC_UNDER_IPMP;
18109 lifcp->lifc_family = af;
18110 lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq);
18111 lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP);
18112
18113 err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr);
18114 if (err != 0) {
18115 kmem_free(lifcp->lifc_buf, *bufsizep);
18116 return (err);
18117 }
18118
18119 return (0);
18120 }
18121
18122 /*
18123 * Helper for ip_interface_cleanup() that removes the loopback interface.
18124 */
18125 static void
ip_loopback_removeif(ldi_handle_t lh,boolean_t isv6,cred_t * cr)18126 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
18127 {
18128 int err;
18129 struct lifreq lifr;
18130
18131 bzero(&lifr, sizeof (lifr));
18132 (void) strcpy(lifr.lifr_name, ipif_loopback_name);
18133
18134 /*
18135 * Attempt to remove the interface. It may legitimately not exist
18136 * (e.g. the zone administrator unplumbed it), so ignore ENXIO.
18137 */
18138 err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr);
18139 if (err != 0 && err != ENXIO) {
18140 ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: "
18141 "error %d\n", isv6 ? "v6" : "v4", err));
18142 }
18143 }
18144
18145 /*
18146 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP
18147 * groups and that IPMP data addresses are down. These conditions must be met
18148 * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp().
18149 */
18150 static void
ip_ipmp_cleanup(ldi_handle_t lh,boolean_t isv6,cred_t * cr)18151 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
18152 {
18153 int af = isv6 ? AF_INET6 : AF_INET;
18154 int i, nifs;
18155 int err;
18156 uint_t bufsize;
18157 uint_t lifrsize = sizeof (struct lifreq);
18158 struct lifconf lifc;
18159 struct lifreq *lifrp;
18160
18161 if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) {
18162 cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list "
18163 "(error %d); any IPMP interfaces cannot be shutdown", err);
18164 return;
18165 }
18166
18167 nifs = lifc.lifc_len / lifrsize;
18168 for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) {
18169 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
18170 if (err != 0) {
18171 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get "
18172 "flags: error %d", lifrp->lifr_name, err);
18173 continue;
18174 }
18175
18176 if (lifrp->lifr_flags & IFF_IPMP) {
18177 if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0)
18178 continue;
18179
18180 lifrp->lifr_flags &= ~IFF_UP;
18181 err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr);
18182 if (err != 0) {
18183 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18184 "bring down (error %d); IPMP interface may "
18185 "not be shutdown", lifrp->lifr_name, err);
18186 }
18187
18188 /*
18189 * Check if IFF_DUPLICATE is still set -- and if so,
18190 * reset the address to clear it.
18191 */
18192 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
18193 if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE))
18194 continue;
18195
18196 err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr);
18197 if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR,
18198 lifrp, lifrsize, cr)) != 0) {
18199 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18200 "reset DAD (error %d); IPMP interface may "
18201 "not be shutdown", lifrp->lifr_name, err);
18202 }
18203 continue;
18204 }
18205
18206 if (strchr(lifrp->lifr_name, IPIF_SEPARATOR_CHAR) == 0) {
18207 lifrp->lifr_groupname[0] = '\0';
18208 if ((err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp,
18209 lifrsize, cr)) != 0) {
18210 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18211 "leave IPMP group (error %d); associated "
18212 "IPMP interface may not be shutdown",
18213 lifrp->lifr_name, err);
18214 continue;
18215 }
18216 }
18217 }
18218
18219 kmem_free(lifc.lifc_buf, bufsize);
18220 }
18221
18222 #define UDPDEV "/devices/pseudo/udp@0:udp"
18223 #define UDP6DEV "/devices/pseudo/udp6@0:udp6"
18224
18225 /*
18226 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down.
18227 * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away
18228 * when the user-level processes in the zone are killed and the latter are
18229 * cleaned up by str_stack_shutdown().
18230 */
18231 void
ip_interface_cleanup(ip_stack_t * ipst)18232 ip_interface_cleanup(ip_stack_t *ipst)
18233 {
18234 ldi_handle_t lh;
18235 ldi_ident_t li;
18236 cred_t *cr;
18237 int err;
18238 int i;
18239 char *devs[] = { UDP6DEV, UDPDEV };
18240 netstackid_t stackid = ipst->ips_netstack->netstack_stackid;
18241
18242 if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) {
18243 cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:"
18244 " error %d", err);
18245 return;
18246 }
18247
18248 cr = zone_get_kcred(netstackid_to_zoneid(stackid));
18249 ASSERT(cr != NULL);
18250
18251 /*
18252 * NOTE: loop executes exactly twice and is hardcoded to know that the
18253 * first iteration is IPv6. (Unrolling yields repetitious code, hence
18254 * the loop.)
18255 */
18256 for (i = 0; i < 2; i++) {
18257 err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li);
18258 if (err != 0) {
18259 cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:"
18260 " error %d", devs[i], err);
18261 continue;
18262 }
18263
18264 ip_loopback_removeif(lh, i == 0, cr);
18265 ip_ipmp_cleanup(lh, i == 0, cr);
18266
18267 (void) ldi_close(lh, FREAD|FWRITE, cr);
18268 }
18269
18270 ldi_ident_release(li);
18271 crfree(cr);
18272 }
18273
18274 /*
18275 * This needs to be in-sync with nic_event_t definition
18276 */
18277 static const char *
ill_hook_event2str(nic_event_t event)18278 ill_hook_event2str(nic_event_t event)
18279 {
18280 switch (event) {
18281 case NE_PLUMB:
18282 return ("PLUMB");
18283 case NE_UNPLUMB:
18284 return ("UNPLUMB");
18285 case NE_UP:
18286 return ("UP");
18287 case NE_DOWN:
18288 return ("DOWN");
18289 case NE_ADDRESS_CHANGE:
18290 return ("ADDRESS_CHANGE");
18291 case NE_LIF_UP:
18292 return ("LIF_UP");
18293 case NE_LIF_DOWN:
18294 return ("LIF_DOWN");
18295 case NE_IFINDEX_CHANGE:
18296 return ("IFINDEX_CHANGE");
18297 default:
18298 return ("UNKNOWN");
18299 }
18300 }
18301
18302 void
ill_nic_event_dispatch(ill_t * ill,lif_if_t lif,nic_event_t event,nic_event_data_t data,size_t datalen)18303 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event,
18304 nic_event_data_t data, size_t datalen)
18305 {
18306 ip_stack_t *ipst = ill->ill_ipst;
18307 hook_nic_event_int_t *info;
18308 const char *str = NULL;
18309
18310 /* create a new nic event info */
18311 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL)
18312 goto fail;
18313
18314 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex;
18315 info->hnei_event.hne_lif = lif;
18316 info->hnei_event.hne_event = event;
18317 info->hnei_event.hne_protocol = ill->ill_isv6 ?
18318 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
18319 info->hnei_event.hne_data = NULL;
18320 info->hnei_event.hne_datalen = 0;
18321 info->hnei_stackid = ipst->ips_netstack->netstack_stackid;
18322
18323 if (data != NULL && datalen != 0) {
18324 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP);
18325 if (info->hnei_event.hne_data == NULL)
18326 goto fail;
18327 bcopy(data, info->hnei_event.hne_data, datalen);
18328 info->hnei_event.hne_datalen = datalen;
18329 }
18330
18331 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info,
18332 DDI_NOSLEEP) == DDI_SUCCESS)
18333 return;
18334
18335 fail:
18336 if (info != NULL) {
18337 if (info->hnei_event.hne_data != NULL) {
18338 kmem_free(info->hnei_event.hne_data,
18339 info->hnei_event.hne_datalen);
18340 }
18341 kmem_free(info, sizeof (hook_nic_event_t));
18342 }
18343 str = ill_hook_event2str(event);
18344 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event "
18345 "information for %s (ENOMEM)\n", str, ill->ill_name));
18346 }
18347
18348 static int
ipif_arp_up_done_tail(ipif_t * ipif,enum ip_resolver_action res_act)18349 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act)
18350 {
18351 int err = 0;
18352 const in_addr_t *addr = NULL;
18353 nce_t *nce = NULL;
18354 ill_t *ill = ipif->ipif_ill;
18355 ill_t *bound_ill;
18356 boolean_t added_ipif = B_FALSE;
18357 uint16_t state;
18358 uint16_t flags;
18359
18360 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail",
18361 ill_t *, ill, ipif_t *, ipif);
18362 if (ipif->ipif_lcl_addr != INADDR_ANY) {
18363 addr = &ipif->ipif_lcl_addr;
18364 }
18365
18366 if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) {
18367 if (res_act != Res_act_initial)
18368 return (EINVAL);
18369 }
18370
18371 if (addr != NULL) {
18372 ipmp_illgrp_t *illg = ill->ill_grp;
18373
18374 /* add unicast nce for the local addr */
18375
18376 if (IS_IPMP(ill)) {
18377 /*
18378 * If we're here via ipif_up(), then the ipif
18379 * won't be bound yet -- add it to the group,
18380 * which will bind it if possible. (We would
18381 * add it in ipif_up(), but deleting on failure
18382 * there is gruesome.) If we're here via
18383 * ipmp_ill_bind_ipif(), then the ipif has
18384 * already been added to the group and we
18385 * just need to use the binding.
18386 */
18387 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) {
18388 bound_ill = ipmp_illgrp_add_ipif(illg, ipif);
18389 if (bound_ill == NULL) {
18390 /*
18391 * We couldn't bind the ipif to an ill
18392 * yet, so we have nothing to publish.
18393 * Mark the address as ready and return.
18394 */
18395 ipif->ipif_addr_ready = 1;
18396 return (0);
18397 }
18398 added_ipif = B_TRUE;
18399 }
18400 } else {
18401 bound_ill = ill;
18402 }
18403
18404 flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY |
18405 NCE_F_NONUD);
18406 /*
18407 * If this is an initial bring-up (or the ipif was never
18408 * completely brought up), do DAD. Otherwise, we're here
18409 * because IPMP has rebound an address to this ill: send
18410 * unsolicited advertisements (ARP announcements) to
18411 * inform others.
18412 */
18413 if (res_act == Res_act_initial || !ipif->ipif_addr_ready) {
18414 state = ND_UNCHANGED; /* compute in nce_add_common() */
18415 } else {
18416 state = ND_REACHABLE;
18417 flags |= NCE_F_UNSOL_ADV;
18418 }
18419
18420 retry:
18421 err = nce_lookup_then_add_v4(ill,
18422 bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length,
18423 addr, flags, state, &nce);
18424
18425 /*
18426 * note that we may encounter EEXIST if we are moving
18427 * the nce as a result of a rebind operation.
18428 */
18429 switch (err) {
18430 case 0:
18431 ipif->ipif_added_nce = 1;
18432 nce->nce_ipif_cnt++;
18433 break;
18434 case EEXIST:
18435 ip1dbg(("ipif_arp_up: NCE already exists for %s\n",
18436 ill->ill_name));
18437 if (!NCE_MYADDR(nce->nce_common)) {
18438 /*
18439 * A leftover nce from before this address
18440 * existed
18441 */
18442 ncec_delete(nce->nce_common);
18443 nce_refrele(nce);
18444 nce = NULL;
18445 goto retry;
18446 }
18447 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
18448 nce_refrele(nce);
18449 nce = NULL;
18450 ip1dbg(("ipif_arp_up: NCE already exists "
18451 "for %s:%u\n", ill->ill_name,
18452 ipif->ipif_id));
18453 goto arp_up_done;
18454 }
18455 /*
18456 * Duplicate local addresses are permissible for
18457 * IPIF_POINTOPOINT interfaces which will get marked
18458 * IPIF_UNNUMBERED later in
18459 * ip_addr_availability_check().
18460 *
18461 * The nce_ipif_cnt field tracks the number of
18462 * ipifs that have nce_addr as their local address.
18463 */
18464 ipif->ipif_addr_ready = 1;
18465 ipif->ipif_added_nce = 1;
18466 nce->nce_ipif_cnt++;
18467 err = 0;
18468 break;
18469 default:
18470 ASSERT(nce == NULL);
18471 goto arp_up_done;
18472 }
18473 if (arp_no_defense) {
18474 if ((ipif->ipif_flags & IPIF_UP) &&
18475 !ipif->ipif_addr_ready)
18476 ipif_up_notify(ipif);
18477 ipif->ipif_addr_ready = 1;
18478 }
18479 } else {
18480 /* zero address. nothing to publish */
18481 ipif->ipif_addr_ready = 1;
18482 }
18483 if (nce != NULL)
18484 nce_refrele(nce);
18485 arp_up_done:
18486 if (added_ipif && err != 0)
18487 ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
18488 return (err);
18489 }
18490
18491 int
ipif_arp_up(ipif_t * ipif,enum ip_resolver_action res_act,boolean_t was_dup)18492 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup)
18493 {
18494 int err = 0;
18495 ill_t *ill = ipif->ipif_ill;
18496 boolean_t first_interface, wait_for_dlpi = B_FALSE;
18497
18498 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up",
18499 ill_t *, ill, ipif_t *, ipif);
18500
18501 /*
18502 * need to bring up ARP or setup mcast mapping only
18503 * when the first interface is coming UP.
18504 */
18505 first_interface = (ill->ill_ipif_up_count == 0 &&
18506 ill->ill_ipif_dup_count == 0 && !was_dup);
18507
18508 if (res_act == Res_act_initial && first_interface) {
18509 /*
18510 * Send ATTACH + BIND
18511 */
18512 err = arp_ll_up(ill);
18513 if (err != EINPROGRESS && err != 0)
18514 return (err);
18515
18516 /*
18517 * Add NCE for local address. Start DAD.
18518 * we'll wait to hear that DAD has finished
18519 * before using the interface.
18520 */
18521 if (err == EINPROGRESS)
18522 wait_for_dlpi = B_TRUE;
18523 }
18524
18525 if (!wait_for_dlpi)
18526 (void) ipif_arp_up_done_tail(ipif, res_act);
18527
18528 return (!wait_for_dlpi ? 0 : EINPROGRESS);
18529 }
18530
18531 /*
18532 * Finish processing of "arp_up" after all the DLPI message
18533 * exchanges have completed between arp and the driver.
18534 */
18535 void
arp_bringup_done(ill_t * ill,int err)18536 arp_bringup_done(ill_t *ill, int err)
18537 {
18538 mblk_t *mp1;
18539 ipif_t *ipif;
18540 conn_t *connp = NULL;
18541 ipsq_t *ipsq;
18542 queue_t *q;
18543
18544 ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name));
18545
18546 ASSERT(IAM_WRITER_ILL(ill));
18547
18548 ipsq = ill->ill_phyint->phyint_ipsq;
18549 ipif = ipsq->ipsq_xop->ipx_pending_ipif;
18550 mp1 = ipsq_pending_mp_get(ipsq, &connp);
18551 ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
18552 if (mp1 == NULL) /* bringup was aborted by the user */
18553 return;
18554
18555 /*
18556 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
18557 * must have an associated conn_t. Otherwise, we're bringing this
18558 * interface back up as part of handling an asynchronous event (e.g.,
18559 * physical address change).
18560 */
18561 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18562 ASSERT(connp != NULL);
18563 q = CONNP_TO_WQ(connp);
18564 } else {
18565 ASSERT(connp == NULL);
18566 q = ill->ill_rq;
18567 }
18568 if (err == 0) {
18569 if (ipif->ipif_isv6) {
18570 if ((err = ipif_up_done_v6(ipif)) != 0)
18571 ip0dbg(("arp_bringup_done: init failed\n"));
18572 } else {
18573 err = ipif_arp_up_done_tail(ipif, Res_act_initial);
18574 if (err != 0 ||
18575 (err = ipif_up_done(ipif)) != 0) {
18576 ip0dbg(("arp_bringup_done: "
18577 "init failed err %x\n", err));
18578 (void) ipif_arp_down(ipif);
18579 }
18580
18581 }
18582 } else {
18583 ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n"));
18584 }
18585
18586 if ((err == 0) && (ill->ill_up_ipifs)) {
18587 err = ill_up_ipifs(ill, q, mp1);
18588 if (err == EINPROGRESS)
18589 return;
18590 }
18591
18592 /*
18593 * If we have a moved ipif to bring up, and everything has succeeded
18594 * to this point, bring it up on the IPMP ill. Otherwise, leave it
18595 * down -- the admin can try to bring it up by hand if need be.
18596 */
18597 if (ill->ill_move_ipif != NULL) {
18598 ipif = ill->ill_move_ipif;
18599 ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif,
18600 ipif->ipif_ill->ill_name));
18601 ill->ill_move_ipif = NULL;
18602 if (err == 0) {
18603 err = ipif_up(ipif, q, mp1);
18604 if (err == EINPROGRESS)
18605 return;
18606 }
18607 }
18608
18609 /*
18610 * The operation must complete without EINPROGRESS since
18611 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
18612 * Otherwise, the operation will be stuck forever in the ipsq.
18613 */
18614 ASSERT(err != EINPROGRESS);
18615 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18616 DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish",
18617 int, ipsq->ipsq_xop->ipx_current_ioctl,
18618 ill_t *, ill, ipif_t *, ipif);
18619 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
18620 } else {
18621 ipsq_current_finish(ipsq);
18622 }
18623 }
18624
18625 /*
18626 * Finish processing of arp replumb after all the DLPI message
18627 * exchanges have completed between arp and the driver.
18628 */
18629 void
arp_replumb_done(ill_t * ill,int err)18630 arp_replumb_done(ill_t *ill, int err)
18631 {
18632 mblk_t *mp1;
18633 ipif_t *ipif;
18634 conn_t *connp = NULL;
18635 ipsq_t *ipsq;
18636 queue_t *q;
18637
18638 ASSERT(IAM_WRITER_ILL(ill));
18639
18640 ipsq = ill->ill_phyint->phyint_ipsq;
18641 ipif = ipsq->ipsq_xop->ipx_pending_ipif;
18642 mp1 = ipsq_pending_mp_get(ipsq, &connp);
18643 ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
18644 if (mp1 == NULL) {
18645 ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n",
18646 ipsq->ipsq_xop->ipx_current_ioctl));
18647 /* bringup was aborted by the user */
18648 return;
18649 }
18650 /*
18651 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
18652 * must have an associated conn_t. Otherwise, we're bringing this
18653 * interface back up as part of handling an asynchronous event (e.g.,
18654 * physical address change).
18655 */
18656 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18657 ASSERT(connp != NULL);
18658 q = CONNP_TO_WQ(connp);
18659 } else {
18660 ASSERT(connp == NULL);
18661 q = ill->ill_rq;
18662 }
18663 if ((err == 0) && (ill->ill_up_ipifs)) {
18664 err = ill_up_ipifs(ill, q, mp1);
18665 if (err == EINPROGRESS)
18666 return;
18667 }
18668 /*
18669 * The operation must complete without EINPROGRESS since
18670 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
18671 * Otherwise, the operation will be stuck forever in the ipsq.
18672 */
18673 ASSERT(err != EINPROGRESS);
18674 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18675 DTRACE_PROBE4(ipif__ioctl, char *,
18676 "arp_replumb_done finish",
18677 int, ipsq->ipsq_xop->ipx_current_ioctl,
18678 ill_t *, ill, ipif_t *, ipif);
18679 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
18680 } else {
18681 ipsq_current_finish(ipsq);
18682 }
18683 }
18684
18685 void
ipif_up_notify(ipif_t * ipif)18686 ipif_up_notify(ipif_t *ipif)
18687 {
18688 ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
18689 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT);
18690 sctp_update_ipif(ipif, SCTP_IPIF_UP);
18691 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id),
18692 NE_LIF_UP, NULL, 0);
18693 }
18694
18695 /*
18696 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and
18697 * this assumes the context is cv_wait'able. Hence it shouldnt' be used on
18698 * TPI end points with STREAMS modules pushed above. This is assured by not
18699 * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl
18700 * never ends up on an ipsq, otherwise we may end up processing the ioctl
18701 * while unwinding from the ispq and that could be a thread from the bottom.
18702 */
18703 /* ARGSUSED */
18704 int
ip_sioctl_ilb_cmd(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * arg)18705 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
18706 ip_ioctl_cmd_t *ipip, void *arg)
18707 {
18708 mblk_t *cmd_mp = mp->b_cont->b_cont;
18709 ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr);
18710 int ret = 0;
18711 int i;
18712 size_t size;
18713 ip_stack_t *ipst;
18714 zoneid_t zoneid;
18715 ilb_stack_t *ilbs;
18716
18717 ipst = CONNQ_TO_IPST(q);
18718 ilbs = ipst->ips_netstack->netstack_ilb;
18719 zoneid = Q_TO_CONN(q)->conn_zoneid;
18720
18721 switch (command) {
18722 case ILB_CREATE_RULE: {
18723 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;
18724
18725 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
18726 ret = EINVAL;
18727 break;
18728 }
18729
18730 ret = ilb_rule_add(ilbs, zoneid, cmd);
18731 break;
18732 }
18733 case ILB_DESTROY_RULE:
18734 case ILB_ENABLE_RULE:
18735 case ILB_DISABLE_RULE: {
18736 ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr;
18737
18738 if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) {
18739 ret = EINVAL;
18740 break;
18741 }
18742
18743 if (cmd->flags & ILB_RULE_ALLRULES) {
18744 if (command == ILB_DESTROY_RULE) {
18745 ilb_rule_del_all(ilbs, zoneid);
18746 break;
18747 } else if (command == ILB_ENABLE_RULE) {
18748 ilb_rule_enable_all(ilbs, zoneid);
18749 break;
18750 } else if (command == ILB_DISABLE_RULE) {
18751 ilb_rule_disable_all(ilbs, zoneid);
18752 break;
18753 }
18754 } else {
18755 if (command == ILB_DESTROY_RULE) {
18756 ret = ilb_rule_del(ilbs, zoneid, cmd->name);
18757 } else if (command == ILB_ENABLE_RULE) {
18758 ret = ilb_rule_enable(ilbs, zoneid, cmd->name,
18759 NULL);
18760 } else if (command == ILB_DISABLE_RULE) {
18761 ret = ilb_rule_disable(ilbs, zoneid, cmd->name,
18762 NULL);
18763 }
18764 }
18765 break;
18766 }
18767 case ILB_NUM_RULES: {
18768 ilb_num_rules_cmd_t *cmd;
18769
18770 if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) {
18771 ret = EINVAL;
18772 break;
18773 }
18774 cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr;
18775 ilb_get_num_rules(ilbs, zoneid, &(cmd->num));
18776 break;
18777 }
18778 case ILB_RULE_NAMES: {
18779 ilb_rule_names_cmd_t *cmd;
18780
18781 cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr;
18782 if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) ||
18783 cmd->num_names == 0) {
18784 ret = EINVAL;
18785 break;
18786 }
18787 size = cmd->num_names * ILB_RULE_NAMESZ;
18788 if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) +
18789 size != cmd_mp->b_wptr) {
18790 ret = EINVAL;
18791 break;
18792 }
18793 ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf);
18794 break;
18795 }
18796 case ILB_NUM_SERVERS: {
18797 ilb_num_servers_cmd_t *cmd;
18798
18799 if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) {
18800 ret = EINVAL;
18801 break;
18802 }
18803 cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr;
18804 ret = ilb_get_num_servers(ilbs, zoneid, cmd->name,
18805 &(cmd->num));
18806 break;
18807 }
18808 case ILB_LIST_RULE: {
18809 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;
18810
18811 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
18812 ret = EINVAL;
18813 break;
18814 }
18815 ret = ilb_rule_list(ilbs, zoneid, cmd);
18816 break;
18817 }
18818 case ILB_LIST_SERVERS: {
18819 ilb_servers_info_cmd_t *cmd;
18820
18821 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
18822 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) ||
18823 cmd->num_servers == 0) {
18824 ret = EINVAL;
18825 break;
18826 }
18827 size = cmd->num_servers * sizeof (ilb_server_info_t);
18828 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
18829 size != cmd_mp->b_wptr) {
18830 ret = EINVAL;
18831 break;
18832 }
18833
18834 ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers,
18835 &cmd->num_servers);
18836 break;
18837 }
18838 case ILB_ADD_SERVERS: {
18839 ilb_servers_info_cmd_t *cmd;
18840 ilb_rule_t *rule;
18841
18842 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
18843 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) {
18844 ret = EINVAL;
18845 break;
18846 }
18847 size = cmd->num_servers * sizeof (ilb_server_info_t);
18848 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
18849 size != cmd_mp->b_wptr) {
18850 ret = EINVAL;
18851 break;
18852 }
18853 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
18854 if (rule == NULL) {
18855 ASSERT(ret != 0);
18856 break;
18857 }
18858 for (i = 0; i < cmd->num_servers; i++) {
18859 ilb_server_info_t *s;
18860
18861 s = &cmd->servers[i];
18862 s->err = ilb_server_add(ilbs, rule, s);
18863 }
18864 ILB_RULE_REFRELE(rule);
18865 break;
18866 }
18867 case ILB_DEL_SERVERS:
18868 case ILB_ENABLE_SERVERS:
18869 case ILB_DISABLE_SERVERS: {
18870 ilb_servers_cmd_t *cmd;
18871 ilb_rule_t *rule;
18872 int (*f)();
18873
18874 cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr;
18875 if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) {
18876 ret = EINVAL;
18877 break;
18878 }
18879 size = cmd->num_servers * sizeof (ilb_server_arg_t);
18880 if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) +
18881 size != cmd_mp->b_wptr) {
18882 ret = EINVAL;
18883 break;
18884 }
18885
18886 if (command == ILB_DEL_SERVERS)
18887 f = ilb_server_del;
18888 else if (command == ILB_ENABLE_SERVERS)
18889 f = ilb_server_enable;
18890 else if (command == ILB_DISABLE_SERVERS)
18891 f = ilb_server_disable;
18892
18893 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
18894 if (rule == NULL) {
18895 ASSERT(ret != 0);
18896 break;
18897 }
18898
18899 for (i = 0; i < cmd->num_servers; i++) {
18900 ilb_server_arg_t *s;
18901
18902 s = &cmd->servers[i];
18903 s->err = f(ilbs, zoneid, NULL, rule, &s->addr);
18904 }
18905 ILB_RULE_REFRELE(rule);
18906 break;
18907 }
18908 case ILB_LIST_NAT_TABLE: {
18909 ilb_list_nat_cmd_t *cmd;
18910
18911 cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr;
18912 if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) {
18913 ret = EINVAL;
18914 break;
18915 }
18916 size = cmd->num_nat * sizeof (ilb_nat_entry_t);
18917 if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) +
18918 size != cmd_mp->b_wptr) {
18919 ret = EINVAL;
18920 break;
18921 }
18922
18923 ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat,
18924 &cmd->flags);
18925 break;
18926 }
18927 case ILB_LIST_STICKY_TABLE: {
18928 ilb_list_sticky_cmd_t *cmd;
18929
18930 cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr;
18931 if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) {
18932 ret = EINVAL;
18933 break;
18934 }
18935 size = cmd->num_sticky * sizeof (ilb_sticky_entry_t);
18936 if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) +
18937 size != cmd_mp->b_wptr) {
18938 ret = EINVAL;
18939 break;
18940 }
18941
18942 ret = ilb_list_sticky(ilbs, zoneid, cmd->entries,
18943 &cmd->num_sticky, &cmd->flags);
18944 break;
18945 }
18946 default:
18947 ret = EINVAL;
18948 break;
18949 }
18950 done:
18951 return (ret);
18952 }
18953
18954 /* Remove all cache entries for this logical interface */
18955 void
ipif_nce_down(ipif_t * ipif)18956 ipif_nce_down(ipif_t *ipif)
18957 {
18958 ill_t *ill = ipif->ipif_ill;
18959 nce_t *nce;
18960
18961 DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down",
18962 ill_t *, ill, ipif_t *, ipif);
18963 if (ipif->ipif_added_nce) {
18964 if (ipif->ipif_isv6)
18965 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr);
18966 else
18967 nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr);
18968 if (nce != NULL) {
18969 if (--nce->nce_ipif_cnt == 0)
18970 ncec_delete(nce->nce_common);
18971 ipif->ipif_added_nce = 0;
18972 nce_refrele(nce);
18973 } else {
18974 /*
18975 * nce may already be NULL because it was already
18976 * flushed, e.g., due to a call to nce_flush
18977 */
18978 ipif->ipif_added_nce = 0;
18979 }
18980 }
18981 /*
18982 * Make IPMP aware of the deleted data address.
18983 */
18984 if (IS_IPMP(ill))
18985 ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
18986
18987 /*
18988 * Remove all other nces dependent on this ill when the last ipif
18989 * is going away.
18990 */
18991 if (ill->ill_ipif_up_count == 0) {
18992 ncec_walk(ill, (pfi_t)ncec_delete_per_ill,
18993 (uchar_t *)ill, ill->ill_ipst);
18994 if (IS_UNDER_IPMP(ill))
18995 nce_flush(ill, B_TRUE);
18996 }
18997 }
18998
18999 /*
19000 * find the first interface that uses usill for its source address.
19001 */
19002 ill_t *
ill_lookup_usesrc(ill_t * usill)19003 ill_lookup_usesrc(ill_t *usill)
19004 {
19005 ip_stack_t *ipst = usill->ill_ipst;
19006 ill_t *ill;
19007
19008 ASSERT(usill != NULL);
19009
19010 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */
19011 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
19012 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
19013 for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill;
19014 ill = ill->ill_usesrc_grp_next) {
19015 if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) &&
19016 !ILL_IS_CONDEMNED(ill)) {
19017 ill_refhold(ill);
19018 break;
19019 }
19020 }
19021 rw_exit(&ipst->ips_ill_g_lock);
19022 rw_exit(&ipst->ips_ill_g_usesrc_lock);
19023 return (ill);
19024 }
19025
19026 /*
19027 * This comment applies to both ip_sioctl_get_ifhwaddr and
19028 * ip_sioctl_get_lifhwaddr as the basic function of these two functions
19029 * is the same.
19030 *
19031 * The goal here is to find an IP interface that corresponds to the name
19032 * provided by the caller in the ifreq/lifreq structure held in the mblk_t
19033 * chain and to fill out a sockaddr/sockaddr_storage structure with the
19034 * mac address.
19035 *
19036 * The SIOCGIFHWADDR/SIOCGLIFHWADDR ioctl may return an error for a number
19037 * of different reasons:
19038 * ENXIO - the device name is not known to IP.
19039 * EADDRNOTAVAIL - the device has no hardware address. This is indicated
19040 * by ill_phys_addr not pointing to an actual address.
19041 * EPFNOSUPPORT - this will indicate that a request is being made for a
19042 * mac address that will not fit in the data structure supplier (struct
19043 * sockaddr).
19044 *
19045 */
19046 /* ARGSUSED */
19047 int
ip_sioctl_get_ifhwaddr(ipif_t * ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)19048 ip_sioctl_get_ifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
19049 ip_ioctl_cmd_t *ipip, void *if_req)
19050 {
19051 struct sockaddr *sock;
19052 struct ifreq *ifr;
19053 mblk_t *mp1;
19054 ill_t *ill;
19055
19056 ASSERT(ipif != NULL);
19057 ill = ipif->ipif_ill;
19058
19059 if (ill->ill_phys_addr == NULL) {
19060 return (EADDRNOTAVAIL);
19061 }
19062 if (ill->ill_phys_addr_length > sizeof (sock->sa_data)) {
19063 return (EPFNOSUPPORT);
19064 }
19065
19066 ip1dbg(("ip_sioctl_get_hwaddr(%s)\n", ill->ill_name));
19067
19068 /* Existence of mp1 has been checked in ip_wput_nondata */
19069 mp1 = mp->b_cont->b_cont;
19070 ifr = (struct ifreq *)mp1->b_rptr;
19071
19072 sock = &ifr->ifr_addr;
19073 /*
19074 * The "family" field in the returned structure is set to a value
19075 * that represents the type of device to which the address belongs.
19076 * The value returned may differ to that on Linux but it will still
19077 * represent the correct symbol on Solaris.
19078 */
19079 sock->sa_family = arp_hw_type(ill->ill_mactype);
19080 bcopy(ill->ill_phys_addr, &sock->sa_data, ill->ill_phys_addr_length);
19081
19082 return (0);
19083 }
19084
19085 /*
19086 * The expection of applications using SIOCGIFHWADDR is that data will
19087 * be returned in the sa_data field of the sockaddr structure. With
19088 * SIOCGLIFHWADDR, we're breaking new ground as there is no Linux
19089 * equivalent. In light of this, struct sockaddr_dl is used as it
19090 * offers more space for address storage in sll_data.
19091 */
19092 /* ARGSUSED */
19093 int
ip_sioctl_get_lifhwaddr(ipif_t * ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)19094 ip_sioctl_get_lifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
19095 ip_ioctl_cmd_t *ipip, void *if_req)
19096 {
19097 struct sockaddr_dl *sock;
19098 struct lifreq *lifr;
19099 mblk_t *mp1;
19100 ill_t *ill;
19101
19102 ASSERT(ipif != NULL);
19103 ill = ipif->ipif_ill;
19104
19105 if (ill->ill_phys_addr == NULL) {
19106 return (EADDRNOTAVAIL);
19107 }
19108 if (ill->ill_phys_addr_length > sizeof (sock->sdl_data)) {
19109 return (EPFNOSUPPORT);
19110 }
19111
19112 ip1dbg(("ip_sioctl_get_lifhwaddr(%s)\n", ill->ill_name));
19113
19114 /* Existence of mp1 has been checked in ip_wput_nondata */
19115 mp1 = mp->b_cont->b_cont;
19116 lifr = (struct lifreq *)mp1->b_rptr;
19117
19118 /*
19119 * sockaddr_ll is used here because it is also the structure used in
19120 * responding to the same ioctl in sockpfp. The only other choice is
19121 * sockaddr_dl which contains fields that are not required here
19122 * because its purpose is different.
19123 */
19124 lifr->lifr_type = ill->ill_type;
19125 sock = (struct sockaddr_dl *)&lifr->lifr_addr;
19126 sock->sdl_family = AF_LINK;
19127 sock->sdl_index = ill->ill_phyint->phyint_ifindex;
19128 sock->sdl_type = ill->ill_mactype;
19129 sock->sdl_nlen = 0;
19130 sock->sdl_slen = 0;
19131 sock->sdl_alen = ill->ill_phys_addr_length;
19132 bcopy(ill->ill_phys_addr, sock->sdl_data, ill->ill_phys_addr_length);
19133
19134 return (0);
19135 }
19136