1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $
32 */
33
34 /*-
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 */
62
63 #include <sys/cdefs.h>
64 #include "opt_inet.h"
65 #include "opt_inet6.h"
66 #include "opt_ipsec.h"
67 #include "opt_kern_tls.h"
68 #include "opt_ratelimit.h"
69 #include "opt_route.h"
70 #include "opt_rss.h"
71 #include "opt_sctp.h"
72
73 #include <sys/param.h>
74 #include <sys/kernel.h>
75 #include <sys/ktls.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/errno.h>
79 #include <sys/priv.h>
80 #include <sys/proc.h>
81 #include <sys/protosw.h>
82 #include <sys/socket.h>
83 #include <sys/socketvar.h>
84 #include <sys/syslog.h>
85 #include <sys/ucred.h>
86
87 #include <machine/in_cksum.h>
88
89 #include <net/if.h>
90 #include <net/if_var.h>
91 #include <net/if_private.h>
92 #include <net/if_vlan_var.h>
93 #include <net/if_llatbl.h>
94 #include <net/ethernet.h>
95 #include <net/netisr.h>
96 #include <net/route.h>
97 #include <net/route/nhop.h>
98 #include <net/pfil.h>
99 #include <net/rss_config.h>
100 #include <net/vnet.h>
101
102 #include <netinet/in.h>
103 #include <netinet/in_var.h>
104 #include <netinet/ip_var.h>
105 #include <netinet6/in6_fib.h>
106 #include <netinet6/in6_var.h>
107 #include <netinet/ip6.h>
108 #include <netinet/icmp6.h>
109 #include <netinet6/ip6_var.h>
110 #include <netinet/in_pcb.h>
111 #include <netinet/tcp_var.h>
112 #include <netinet6/nd6.h>
113 #include <netinet6/in6_rss.h>
114
115 #include <netipsec/ipsec_support.h>
116 #if defined(SCTP) || defined(SCTP_SUPPORT)
117 #include <netinet/sctp.h>
118 #include <netinet/sctp_crc32.h>
119 #endif
120
121 #include <netinet6/scope6_var.h>
122
123 extern int in6_mcast_loop;
124
125 struct ip6_exthdrs {
126 struct mbuf *ip6e_ip6;
127 struct mbuf *ip6e_hbh;
128 struct mbuf *ip6e_dest1;
129 struct mbuf *ip6e_rthdr;
130 struct mbuf *ip6e_dest2;
131 };
132
133 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
134
135 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
136 struct ucred *, int);
137 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *,
138 struct socket *, struct sockopt *);
139 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *);
140 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *,
141 struct ucred *, int, int, int);
142
143 static int ip6_copyexthdr(struct mbuf **, caddr_t, int);
144 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
145 struct ip6_frag **);
146 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
147 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
148 static void ip6_getpmtu(struct route_in6 *, int,
149 struct ifnet *, const struct in6_addr *, u_long *, u_int, u_int);
150 static void ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long,
151 u_long *, u_int);
152 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *);
153 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
154
155 /*
156 * Make an extension header from option data. hp is the source,
157 * mp is the destination, and _ol is the optlen.
158 */
159 #define MAKE_EXTHDR(hp, mp, _ol) \
160 do { \
161 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
162 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
163 ((eh)->ip6e_len + 1) << 3); \
164 if (error) \
165 goto freehdrs; \
166 (_ol) += (*(mp))->m_len; \
167 } while (/*CONSTCOND*/ 0)
168
169 /*
170 * Form a chain of extension headers.
171 * m is the extension header mbuf
172 * mp is the previous mbuf in the chain
173 * p is the next header
174 * i is the type of option.
175 */
176 #define MAKE_CHAIN(m, mp, p, i)\
177 do {\
178 if (m) {\
179 if (!hdrsplit) \
180 panic("%s:%d: assumption failed: "\
181 "hdr not split: hdrsplit %d exthdrs %p",\
182 __func__, __LINE__, hdrsplit, &exthdrs);\
183 *mtod((m), u_char *) = *(p);\
184 *(p) = (i);\
185 p = mtod((m), u_char *);\
186 (m)->m_next = (mp)->m_next;\
187 (mp)->m_next = (m);\
188 (mp) = (m);\
189 }\
190 } while (/*CONSTCOND*/ 0)
191
192 void
in6_delayed_cksum(struct mbuf * m,uint32_t plen,u_short offset)193 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset)
194 {
195 u_short csum;
196
197 csum = in_cksum_skip(m, offset + plen, offset);
198 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0)
199 csum = 0xffff;
200 offset += m->m_pkthdr.csum_data; /* checksum offset */
201
202 if (offset + sizeof(csum) > m->m_len)
203 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum);
204 else
205 *(u_short *)mtodo(m, offset) = csum;
206 }
207
208 static void
ip6_output_delayed_csum(struct mbuf * m,struct ifnet * ifp,int csum_flags,int plen,int optlen)209 ip6_output_delayed_csum(struct mbuf *m, struct ifnet *ifp, int csum_flags,
210 int plen, int optlen)
211 {
212
213 KASSERT((plen >= optlen), ("%s:%d: plen %d < optlen %d, m %p, ifp %p "
214 "csum_flags %#x",
215 __func__, __LINE__, plen, optlen, m, ifp, csum_flags));
216
217 if (csum_flags & CSUM_DELAY_DATA_IPV6) {
218 in6_delayed_cksum(m, plen - optlen,
219 sizeof(struct ip6_hdr) + optlen);
220 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
221 }
222 #if defined(SCTP) || defined(SCTP_SUPPORT)
223 if (csum_flags & CSUM_SCTP_IPV6) {
224 sctp_delayed_cksum(m, sizeof(struct ip6_hdr) + optlen);
225 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6;
226 }
227 #endif
228 }
229
230 int
ip6_fragment(struct ifnet * ifp,struct mbuf * m0,int hlen,u_char nextproto,int fraglen,uint32_t id)231 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto,
232 int fraglen , uint32_t id)
233 {
234 struct mbuf *m, **mnext, *m_frgpart;
235 struct ip6_hdr *ip6, *mhip6;
236 struct ip6_frag *ip6f;
237 int off;
238 int error;
239 int tlen = m0->m_pkthdr.len;
240
241 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8"));
242
243 m = m0;
244 ip6 = mtod(m, struct ip6_hdr *);
245 mnext = &m->m_nextpkt;
246
247 for (off = hlen; off < tlen; off += fraglen) {
248 m = m_gethdr(M_NOWAIT, MT_DATA);
249 if (!m) {
250 IP6STAT_INC(ip6s_odropped);
251 return (ENOBUFS);
252 }
253
254 /*
255 * Make sure the complete packet header gets copied
256 * from the originating mbuf to the newly created
257 * mbuf. This also ensures that existing firewall
258 * classification(s), VLAN tags and so on get copied
259 * to the resulting fragmented packet(s):
260 */
261 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) {
262 m_free(m);
263 IP6STAT_INC(ip6s_odropped);
264 return (ENOBUFS);
265 }
266
267 *mnext = m;
268 mnext = &m->m_nextpkt;
269 m->m_data += max_linkhdr;
270 mhip6 = mtod(m, struct ip6_hdr *);
271 *mhip6 = *ip6;
272 m->m_len = sizeof(*mhip6);
273 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
274 if (error) {
275 IP6STAT_INC(ip6s_odropped);
276 return (error);
277 }
278 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
279 if (off + fraglen >= tlen)
280 fraglen = tlen - off;
281 else
282 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
283 mhip6->ip6_plen = htons((u_short)(fraglen + hlen +
284 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
285 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) {
286 IP6STAT_INC(ip6s_odropped);
287 return (ENOBUFS);
288 }
289 m_cat(m, m_frgpart);
290 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f);
291 ip6f->ip6f_reserved = 0;
292 ip6f->ip6f_ident = id;
293 ip6f->ip6f_nxt = nextproto;
294 IP6STAT_INC(ip6s_ofragments);
295 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
296 }
297
298 return (0);
299 }
300
301 static int
ip6_output_send(struct inpcb * inp,struct ifnet * ifp,struct ifnet * origifp,struct mbuf * m,struct sockaddr_in6 * dst,struct route_in6 * ro,bool stamp_tag)302 ip6_output_send(struct inpcb *inp, struct ifnet *ifp, struct ifnet *origifp,
303 struct mbuf *m, struct sockaddr_in6 *dst, struct route_in6 *ro,
304 bool stamp_tag)
305 {
306 #ifdef KERN_TLS
307 struct ktls_session *tls = NULL;
308 #endif
309 struct m_snd_tag *mst;
310 int error;
311
312 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
313 mst = NULL;
314
315 #ifdef KERN_TLS
316 /*
317 * If this is an unencrypted TLS record, save a reference to
318 * the record. This local reference is used to call
319 * ktls_output_eagain after the mbuf has been freed (thus
320 * dropping the mbuf's reference) in if_output.
321 */
322 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) {
323 tls = ktls_hold(m->m_next->m_epg_tls);
324 mst = tls->snd_tag;
325
326 /*
327 * If a TLS session doesn't have a valid tag, it must
328 * have had an earlier ifp mismatch, so drop this
329 * packet.
330 */
331 if (mst == NULL) {
332 m_freem(m);
333 error = EAGAIN;
334 goto done;
335 }
336 /*
337 * Always stamp tags that include NIC ktls.
338 */
339 stamp_tag = true;
340 }
341 #endif
342 #ifdef RATELIMIT
343 if (inp != NULL && mst == NULL) {
344 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 ||
345 (inp->inp_snd_tag != NULL &&
346 inp->inp_snd_tag->ifp != ifp))
347 in_pcboutput_txrtlmt(inp, ifp, m);
348
349 if (inp->inp_snd_tag != NULL)
350 mst = inp->inp_snd_tag;
351 }
352 #endif
353 if (stamp_tag && mst != NULL) {
354 KASSERT(m->m_pkthdr.rcvif == NULL,
355 ("trying to add a send tag to a forwarded packet"));
356 if (mst->ifp != ifp) {
357 m_freem(m);
358 error = EAGAIN;
359 goto done;
360 }
361
362 /* stamp send tag on mbuf */
363 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst);
364 m->m_pkthdr.csum_flags |= CSUM_SND_TAG;
365 }
366
367 error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro);
368
369 done:
370 /* Check for route change invalidating send tags. */
371 #ifdef KERN_TLS
372 if (tls != NULL) {
373 if (error == EAGAIN)
374 error = ktls_output_eagain(inp, tls);
375 ktls_free(tls);
376 }
377 #endif
378 #ifdef RATELIMIT
379 if (error == EAGAIN)
380 in_pcboutput_eagain(inp);
381 #endif
382 return (error);
383 }
384
385 /*
386 * IP6 output.
387 * The packet in mbuf chain m contains a skeletal IP6 header (with pri, len,
388 * nxt, hlim, src, dst).
389 * This function may modify ver and hlim only.
390 * The mbuf chain containing the packet will be freed.
391 * The mbuf opt, if present, will not be freed.
392 * If route_in6 ro is present and has ro_nh initialized, route lookup would be
393 * skipped and ro->ro_nh would be used. If ro is present but ro->ro_nh is NULL,
394 * then result of route lookup is stored in ro->ro_nh.
395 *
396 * Type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and nd_ifinfo.linkmtu
397 * is uint32_t. So we use u_long to hold largest one, which is rt_mtu.
398 *
399 * ifpp - XXX: just for statistics
400 */
401 int
ip6_output(struct mbuf * m0,struct ip6_pktopts * opt,struct route_in6 * ro,int flags,struct ip6_moptions * im6o,struct ifnet ** ifpp,struct inpcb * inp)402 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt,
403 struct route_in6 *ro, int flags, struct ip6_moptions *im6o,
404 struct ifnet **ifpp, struct inpcb *inp)
405 {
406 struct ip6_hdr *ip6;
407 struct ifnet *ifp, *origifp;
408 struct mbuf *m = m0;
409 struct mbuf *mprev;
410 struct route_in6 *ro_pmtu;
411 struct nhop_object *nh;
412 struct sockaddr_in6 *dst, sin6, src_sa, dst_sa;
413 struct in6_addr odst;
414 u_char *nexthdrp;
415 int tlen, len;
416 int error = 0;
417 int vlan_pcp = -1;
418 struct in6_ifaddr *ia = NULL;
419 u_long mtu;
420 int dontfrag;
421 u_int32_t optlen, plen = 0, unfragpartlen;
422 struct ip6_exthdrs exthdrs;
423 struct in6_addr src0, dst0;
424 u_int32_t zone;
425 bool hdrsplit;
426 int sw_csum, tso;
427 int needfiblookup;
428 uint32_t fibnum;
429 struct m_tag *fwd_tag = NULL;
430 uint32_t id;
431 uint32_t optvalid;
432
433 NET_EPOCH_ASSERT();
434
435 if (inp != NULL) {
436 INP_LOCK_ASSERT(inp);
437 M_SETFIB(m, inp->inp_inc.inc_fibnum);
438 if ((flags & IP_NODEFAULTFLOWID) == 0) {
439 /* Unconditionally set flowid. */
440 m->m_pkthdr.flowid = inp->inp_flowid;
441 M_HASHTYPE_SET(m, inp->inp_flowtype);
442 }
443 if ((inp->inp_flags2 & INP_2PCP_SET) != 0)
444 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >>
445 INP_2PCP_SHIFT;
446 #ifdef NUMA
447 m->m_pkthdr.numa_domain = inp->inp_numa_domain;
448 #endif
449 }
450
451 /* Source address validation. */
452 ip6 = mtod(m, struct ip6_hdr *);
453 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
454 (flags & IPV6_UNSPECSRC) == 0) {
455 error = EOPNOTSUPP;
456 IP6STAT_INC(ip6s_badscope);
457 goto bad;
458 }
459 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
460 error = EOPNOTSUPP;
461 IP6STAT_INC(ip6s_badscope);
462 goto bad;
463 }
464
465 /*
466 * If we are given packet options to add extension headers prepare them.
467 * Calculate the total length of the extension header chain.
468 * Keep the length of the unfragmentable part for fragmentation.
469 */
470 bzero(&exthdrs, sizeof(exthdrs));
471 optlen = optvalid = 0;
472 unfragpartlen = sizeof(struct ip6_hdr);
473 if (opt) {
474 optvalid = opt->ip6po_valid;
475
476 /* Hop-by-Hop options header. */
477 if ((optvalid & IP6PO_VALID_HBH) != 0)
478 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh, optlen);
479
480 /* Destination options header (1st part). */
481 if ((optvalid & IP6PO_VALID_RHINFO) != 0) {
482 #ifndef RTHDR_SUPPORT_IMPLEMENTED
483 /*
484 * If there is a routing header, discard the packet
485 * right away here. RH0/1 are obsolete and we do not
486 * currently support RH2/3/4.
487 * People trying to use RH253/254 may want to disable
488 * this check.
489 * The moment we do support any routing header (again)
490 * this block should check the routing type more
491 * selectively.
492 */
493 error = EINVAL;
494 goto bad;
495 #endif
496
497 /*
498 * Destination options header (1st part).
499 * This only makes sense with a routing header.
500 * See Section 9.2 of RFC 3542.
501 * Disabling this part just for MIP6 convenience is
502 * a bad idea. We need to think carefully about a
503 * way to make the advanced API coexist with MIP6
504 * options, which might automatically be inserted in
505 * the kernel.
506 */
507 if ((optvalid & IP6PO_VALID_DEST1) != 0)
508 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1,
509 optlen);
510 }
511 /* Routing header. */
512 if ((optvalid & IP6PO_VALID_RHINFO) != 0)
513 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr, optlen);
514
515 unfragpartlen += optlen;
516
517 /*
518 * NOTE: we don't add AH/ESP length here (done in
519 * ip6_ipsec_output()).
520 */
521
522 /* Destination options header (2nd part). */
523 if ((optvalid & IP6PO_VALID_DEST2) != 0)
524 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2, optlen);
525 }
526
527 /*
528 * If there is at least one extension header,
529 * separate IP6 header from the payload.
530 */
531 hdrsplit = false;
532 if (optlen) {
533 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
534 m = NULL;
535 goto freehdrs;
536 }
537 m = exthdrs.ip6e_ip6;
538 ip6 = mtod(m, struct ip6_hdr *);
539 hdrsplit = true;
540 }
541
542 /* Adjust mbuf packet header length. */
543 m->m_pkthdr.len += optlen;
544 plen = m->m_pkthdr.len - sizeof(*ip6);
545
546 /* If this is a jumbo payload, insert a jumbo payload option. */
547 if (plen > IPV6_MAXPACKET) {
548 if (!hdrsplit) {
549 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
550 m = NULL;
551 goto freehdrs;
552 }
553 m = exthdrs.ip6e_ip6;
554 ip6 = mtod(m, struct ip6_hdr *);
555 hdrsplit = true;
556 }
557 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
558 goto freehdrs;
559 ip6->ip6_plen = 0;
560 } else
561 ip6->ip6_plen = htons(plen);
562 nexthdrp = &ip6->ip6_nxt;
563
564 if (optlen) {
565 /*
566 * Concatenate headers and fill in next header fields.
567 * Here we have, on "m"
568 * IPv6 payload
569 * and we insert headers accordingly.
570 * Finally, we should be getting:
571 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload].
572 *
573 * During the header composing process "m" points to IPv6
574 * header. "mprev" points to an extension header prior to esp.
575 */
576 mprev = m;
577
578 /*
579 * We treat dest2 specially. This makes IPsec processing
580 * much easier. The goal here is to make mprev point the
581 * mbuf prior to dest2.
582 *
583 * Result: IPv6 dest2 payload.
584 * m and mprev will point to IPv6 header.
585 */
586 if (exthdrs.ip6e_dest2) {
587 if (!hdrsplit)
588 panic("%s:%d: assumption failed: "
589 "hdr not split: hdrsplit %d exthdrs %p",
590 __func__, __LINE__, hdrsplit, &exthdrs);
591 exthdrs.ip6e_dest2->m_next = m->m_next;
592 m->m_next = exthdrs.ip6e_dest2;
593 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
594 ip6->ip6_nxt = IPPROTO_DSTOPTS;
595 }
596
597 /*
598 * Result: IPv6 hbh dest1 rthdr dest2 payload.
599 * m will point to IPv6 header. mprev will point to the
600 * extension header prior to dest2 (rthdr in the above case).
601 */
602 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
603 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
604 IPPROTO_DSTOPTS);
605 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
606 IPPROTO_ROUTING);
607 }
608
609 IP6STAT_INC(ip6s_localout);
610
611 /* Route packet. */
612 ro_pmtu = ro;
613 if ((optvalid & IP6PO_VALID_RHINFO) != 0)
614 ro = &opt->ip6po_route;
615 if (ro != NULL)
616 dst = (struct sockaddr_in6 *)&ro->ro_dst;
617 else
618 dst = &sin6;
619 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m);
620
621 again:
622 /*
623 * If specified, try to fill in the traffic class field.
624 * Do not override if a non-zero value is already set.
625 * We check the diffserv field and the ECN field separately.
626 */
627 if ((optvalid & IP6PO_VALID_TC) != 0){
628 int mask = 0;
629
630 if (IPV6_DSCP(ip6) == 0)
631 mask |= 0xfc;
632 if (IPV6_ECN(ip6) == 0)
633 mask |= 0x03;
634 if (mask != 0)
635 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
636 }
637
638 /* Fill in or override the hop limit field, if necessary. */
639 if ((optvalid & IP6PO_VALID_HLIM) != 0)
640 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
641 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
642 if (im6o != NULL)
643 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
644 else
645 ip6->ip6_hlim = V_ip6_defmcasthlim;
646 }
647
648 if (ro == NULL || ro->ro_nh == NULL) {
649 bzero(dst, sizeof(*dst));
650 dst->sin6_family = AF_INET6;
651 dst->sin6_len = sizeof(*dst);
652 dst->sin6_addr = ip6->ip6_dst;
653 }
654 /*
655 * Validate route against routing table changes.
656 * Make sure that the address family is set in route.
657 */
658 nh = NULL;
659 ifp = NULL;
660 mtu = 0;
661 if (ro != NULL) {
662 if (ro->ro_nh != NULL && inp != NULL) {
663 ro->ro_dst.sin6_family = AF_INET6; /* XXX KASSERT? */
664 NH_VALIDATE((struct route *)ro, &inp->inp_rt_cookie,
665 fibnum);
666 }
667 if (ro->ro_nh != NULL && fwd_tag == NULL &&
668 (!NH_IS_VALID(ro->ro_nh) ||
669 ro->ro_dst.sin6_family != AF_INET6 ||
670 !IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)))
671 RO_INVALIDATE_CACHE(ro);
672
673 if (ro->ro_nh != NULL && fwd_tag == NULL &&
674 ro->ro_dst.sin6_family == AF_INET6 &&
675 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) {
676 /* Nexthop is valid and contains valid ifp */
677 nh = ro->ro_nh;
678 } else {
679 if (ro->ro_lle)
680 LLE_FREE(ro->ro_lle); /* zeros ro_lle */
681 ro->ro_lle = NULL;
682 if (fwd_tag == NULL) {
683 bzero(&dst_sa, sizeof(dst_sa));
684 dst_sa.sin6_family = AF_INET6;
685 dst_sa.sin6_len = sizeof(dst_sa);
686 dst_sa.sin6_addr = ip6->ip6_dst;
687 }
688 error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp,
689 &nh, fibnum, m->m_pkthdr.flowid);
690 if (error != 0) {
691 IP6STAT_INC(ip6s_noroute);
692 if (ifp != NULL)
693 in6_ifstat_inc(ifp, ifs6_out_discard);
694 goto bad;
695 }
696 /*
697 * At this point at least @ifp is not NULL
698 * Can be the case when dst is multicast, link-local or
699 * interface is explicitly specificed by the caller.
700 */
701 }
702 if (nh == NULL) {
703 /*
704 * If in6_selectroute() does not return a nexthop
705 * dst may not have been updated.
706 */
707 *dst = dst_sa; /* XXX */
708 origifp = ifp;
709 mtu = ifp->if_mtu;
710 } else {
711 ifp = nh->nh_ifp;
712 origifp = nh->nh_aifp;
713 ia = (struct in6_ifaddr *)(nh->nh_ifa);
714 counter_u64_add(nh->nh_pksent, 1);
715 }
716 } else {
717 struct nhop_object *nh;
718 struct in6_addr kdst;
719 uint32_t scopeid;
720
721 if (fwd_tag == NULL) {
722 bzero(&dst_sa, sizeof(dst_sa));
723 dst_sa.sin6_family = AF_INET6;
724 dst_sa.sin6_len = sizeof(dst_sa);
725 dst_sa.sin6_addr = ip6->ip6_dst;
726 }
727
728 if (IN6_IS_ADDR_MULTICAST(&dst_sa.sin6_addr) &&
729 im6o != NULL &&
730 (ifp = im6o->im6o_multicast_ifp) != NULL) {
731 /* We do not need a route lookup. */
732 *dst = dst_sa; /* XXX */
733 origifp = ifp;
734 goto nonh6lookup;
735 }
736
737 in6_splitscope(&dst_sa.sin6_addr, &kdst, &scopeid);
738
739 if (IN6_IS_ADDR_MC_LINKLOCAL(&dst_sa.sin6_addr) ||
740 IN6_IS_ADDR_MC_NODELOCAL(&dst_sa.sin6_addr)) {
741 if (scopeid > 0) {
742 ifp = in6_getlinkifnet(scopeid);
743 if (ifp == NULL) {
744 error = EHOSTUNREACH;
745 goto bad;
746 }
747 *dst = dst_sa; /* XXX */
748 origifp = ifp;
749 goto nonh6lookup;
750 }
751 }
752
753 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE,
754 m->m_pkthdr.flowid);
755 if (nh == NULL) {
756 IP6STAT_INC(ip6s_noroute);
757 /* No ifp in6_ifstat_inc(ifp, ifs6_out_discard); */
758 error = EHOSTUNREACH;
759 goto bad;
760 }
761
762 ifp = nh->nh_ifp;
763 origifp = nh->nh_aifp;
764 ia = ifatoia6(nh->nh_ifa);
765 if (nh->nh_flags & NHF_GATEWAY)
766 dst->sin6_addr = nh->gw6_sa.sin6_addr;
767 else if (fwd_tag != NULL)
768 dst->sin6_addr = dst_sa.sin6_addr;
769 nonh6lookup:
770 ;
771 }
772 /*
773 * At this point ifp MUST be pointing to the valid transmit ifp.
774 * origifp MUST be valid and pointing to either the same ifp or,
775 * in case of loopback output, to the interface which ip6_src
776 * belongs to.
777 * Examples:
778 * fe80::1%em0 -> fe80::2%em0 -> ifp=em0, origifp=em0
779 * fe80::1%em0 -> fe80::1%em0 -> ifp=lo0, origifp=em0
780 * ::1 -> ::1 -> ifp=lo0, origifp=lo0
781 *
782 * mtu can be 0 and will be refined later.
783 */
784 KASSERT((ifp != NULL), ("output interface must not be NULL"));
785 KASSERT((origifp != NULL), ("output address interface must not be NULL"));
786
787 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
788 /*
789 * IPSec checking which handles several cases.
790 * FAST IPSEC: We re-injected the packet.
791 * XXX: need scope argument.
792 */
793 if (IPSEC_ENABLED(ipv6)) {
794 if ((error = IPSEC_OUTPUT(ipv6, ifp, m, inp, mtu == 0 ?
795 ifp->if_mtu : mtu)) != 0) {
796 if (error == EINPROGRESS)
797 error = 0;
798 goto done;
799 }
800 }
801 #endif /* IPSEC */
802
803 if ((flags & IPV6_FORWARDING) == 0) {
804 /* XXX: the FORWARDING flag can be set for mrouting. */
805 in6_ifstat_inc(ifp, ifs6_out_request);
806 }
807
808 /* Setup data structures for scope ID checks. */
809 src0 = ip6->ip6_src;
810 bzero(&src_sa, sizeof(src_sa));
811 src_sa.sin6_family = AF_INET6;
812 src_sa.sin6_len = sizeof(src_sa);
813 src_sa.sin6_addr = ip6->ip6_src;
814
815 dst0 = ip6->ip6_dst;
816 /* Re-initialize to be sure. */
817 bzero(&dst_sa, sizeof(dst_sa));
818 dst_sa.sin6_family = AF_INET6;
819 dst_sa.sin6_len = sizeof(dst_sa);
820 dst_sa.sin6_addr = ip6->ip6_dst;
821
822 /* Check for valid scope ID. */
823 if (in6_setscope(&src0, origifp, &zone) == 0 &&
824 sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id &&
825 in6_setscope(&dst0, origifp, &zone) == 0 &&
826 sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) {
827 /*
828 * The outgoing interface is in the zone of the source
829 * and destination addresses.
830 *
831 */
832 } else if ((origifp->if_flags & IFF_LOOPBACK) == 0 ||
833 sa6_recoverscope(&src_sa) != 0 ||
834 sa6_recoverscope(&dst_sa) != 0 ||
835 dst_sa.sin6_scope_id == 0 ||
836 (src_sa.sin6_scope_id != 0 &&
837 src_sa.sin6_scope_id != dst_sa.sin6_scope_id) ||
838 ifnet_byindex(dst_sa.sin6_scope_id) == NULL) {
839 /*
840 * If the destination network interface is not a
841 * loopback interface, or the destination network
842 * address has no scope ID, or the source address has
843 * a scope ID set which is different from the
844 * destination address one, or there is no network
845 * interface representing this scope ID, the address
846 * pair is considered invalid.
847 */
848 IP6STAT_INC(ip6s_badscope);
849 in6_ifstat_inc(origifp, ifs6_out_discard);
850 if (error == 0)
851 error = EHOSTUNREACH; /* XXX */
852 goto bad;
853 }
854 /* All scope ID checks are successful. */
855
856 if (nh && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
857 if ((optvalid & IP6PO_VALID_NHINFO) != 0) {
858 /*
859 * The nexthop is explicitly specified by the
860 * application. We assume the next hop is an IPv6
861 * address.
862 */
863 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
864 }
865 else if ((nh->nh_flags & NHF_GATEWAY))
866 dst = &nh->gw6_sa;
867 }
868
869 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
870 m->m_flags &= ~(M_BCAST | M_MCAST); /* Just in case. */
871 } else {
872 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
873 in6_ifstat_inc(ifp, ifs6_out_mcast);
874
875 /* Confirm that the outgoing interface supports multicast. */
876 if (!(ifp->if_flags & IFF_MULTICAST)) {
877 IP6STAT_INC(ip6s_noroute);
878 in6_ifstat_inc(ifp, ifs6_out_discard);
879 error = ENETUNREACH;
880 goto bad;
881 }
882 if ((im6o == NULL && in6_mcast_loop) ||
883 (im6o && im6o->im6o_multicast_loop)) {
884 /*
885 * Loop back multicast datagram if not expressly
886 * forbidden to do so, even if we have not joined
887 * the address; protocols will filter it later,
888 * thus deferring a hash lookup and lock acquisition
889 * at the expense of an m_copym().
890 */
891 ip6_mloopback(ifp, m);
892 } else {
893 /*
894 * If we are acting as a multicast router, perform
895 * multicast forwarding as if the packet had just
896 * arrived on the interface to which we are about
897 * to send. The multicast forwarding function
898 * recursively calls this function, using the
899 * IPV6_FORWARDING flag to prevent infinite recursion.
900 *
901 * Multicasts that are looped back by ip6_mloopback(),
902 * above, will be forwarded by the ip6_input() routine,
903 * if necessary.
904 */
905 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
906 /*
907 * XXX: ip6_mforward expects that rcvif is NULL
908 * when it is called from the originating path.
909 * However, it may not always be the case.
910 */
911 m->m_pkthdr.rcvif = NULL;
912 if (ip6_mforward(ip6, ifp, m) != 0) {
913 m_freem(m);
914 goto done;
915 }
916 }
917 }
918 /*
919 * Multicasts with a hoplimit of zero may be looped back,
920 * above, but must not be transmitted on a network.
921 * Also, multicasts addressed to the loopback interface
922 * are not sent -- the above call to ip6_mloopback() will
923 * loop back a copy if this host actually belongs to the
924 * destination group on the loopback interface.
925 */
926 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
927 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
928 m_freem(m);
929 goto done;
930 }
931 }
932
933 /*
934 * Fill the outgoing inteface to tell the upper layer
935 * to increment per-interface statistics.
936 */
937 if (ifpp)
938 *ifpp = ifp;
939
940 /* Determine path MTU. */
941 ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, &mtu, fibnum,
942 *nexthdrp);
943 KASSERT(mtu > 0, ("%s:%d: mtu %ld, ro_pmtu %p ro %p ifp %p fibnum %u",
944 __func__, __LINE__, mtu, ro_pmtu, ro, ifp, fibnum));
945
946 /*
947 * The caller of this function may specify to use the minimum MTU
948 * in some cases.
949 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
950 * setting. The logic is a bit complicated; by default, unicast
951 * packets will follow path MTU while multicast packets will be sent at
952 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
953 * including unicast ones will be sent at the minimum MTU. Multicast
954 * packets will always be sent at the minimum MTU unless
955 * IP6PO_MINMTU_DISABLE is explicitly specified.
956 * See RFC 3542 for more details.
957 */
958 if (mtu > IPV6_MMTU) {
959 if ((flags & IPV6_MINMTU))
960 mtu = IPV6_MMTU;
961 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
962 mtu = IPV6_MMTU;
963 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
964 (opt == NULL ||
965 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
966 mtu = IPV6_MMTU;
967 }
968 }
969
970 /*
971 * Clear embedded scope identifiers if necessary.
972 * in6_clearscope() will touch the addresses only when necessary.
973 */
974 in6_clearscope(&ip6->ip6_src);
975 in6_clearscope(&ip6->ip6_dst);
976
977 /*
978 * If the outgoing packet contains a hop-by-hop options header,
979 * it must be examined and processed even by the source node.
980 * (RFC 2460, section 4.)
981 */
982 if (exthdrs.ip6e_hbh) {
983 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
984 u_int32_t dummy; /* XXX unused */
985 u_int32_t plen = 0; /* XXX: ip6_process will check the value */
986
987 #ifdef DIAGNOSTIC
988 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
989 panic("ip6e_hbh is not contiguous");
990 #endif
991 /*
992 * XXX: if we have to send an ICMPv6 error to the sender,
993 * we need the M_LOOP flag since icmp6_error() expects
994 * the IPv6 and the hop-by-hop options header are
995 * contiguous unless the flag is set.
996 */
997 m->m_flags |= M_LOOP;
998 m->m_pkthdr.rcvif = ifp;
999 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
1000 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
1001 &dummy, &plen) < 0) {
1002 /* m was already freed at this point. */
1003 error = EINVAL;/* better error? */
1004 goto done;
1005 }
1006 m->m_flags &= ~M_LOOP; /* XXX */
1007 m->m_pkthdr.rcvif = NULL;
1008 }
1009
1010 /* Jump over all PFIL processing if hooks are not active. */
1011 if (!PFIL_HOOKED_OUT(V_inet6_pfil_head))
1012 goto passout;
1013
1014 odst = ip6->ip6_dst;
1015 /* Run through list of hooks for output packets. */
1016 switch (pfil_mbuf_out(V_inet6_pfil_head, &m, ifp, inp)) {
1017 case PFIL_PASS:
1018 ip6 = mtod(m, struct ip6_hdr *);
1019 break;
1020 case PFIL_DROPPED:
1021 error = EACCES;
1022 /* FALLTHROUGH */
1023 case PFIL_CONSUMED:
1024 goto done;
1025 }
1026
1027 needfiblookup = 0;
1028 /* See if destination IP address was changed by packet filter. */
1029 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) {
1030 m->m_flags |= M_SKIP_FIREWALL;
1031 /* If destination is now ourself drop to ip6_input(). */
1032 if (in6_localip(&ip6->ip6_dst)) {
1033 m->m_flags |= M_FASTFWD_OURS;
1034 if (m->m_pkthdr.rcvif == NULL)
1035 m->m_pkthdr.rcvif = V_loif;
1036 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
1037 m->m_pkthdr.csum_flags |=
1038 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR;
1039 m->m_pkthdr.csum_data = 0xffff;
1040 }
1041 #if defined(SCTP) || defined(SCTP_SUPPORT)
1042 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6)
1043 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
1044 #endif
1045 error = netisr_queue(NETISR_IPV6, m);
1046 goto done;
1047 } else {
1048 if (ro != NULL)
1049 RO_INVALIDATE_CACHE(ro);
1050 needfiblookup = 1; /* Redo the routing table lookup. */
1051 }
1052 }
1053 /* See if fib was changed by packet filter. */
1054 if (fibnum != M_GETFIB(m)) {
1055 m->m_flags |= M_SKIP_FIREWALL;
1056 fibnum = M_GETFIB(m);
1057 if (ro != NULL)
1058 RO_INVALIDATE_CACHE(ro);
1059 needfiblookup = 1;
1060 }
1061 if (needfiblookup)
1062 goto again;
1063
1064 /* See if local, if yes, send it to netisr. */
1065 if (m->m_flags & M_FASTFWD_OURS) {
1066 if (m->m_pkthdr.rcvif == NULL)
1067 m->m_pkthdr.rcvif = V_loif;
1068 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
1069 m->m_pkthdr.csum_flags |=
1070 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR;
1071 m->m_pkthdr.csum_data = 0xffff;
1072 }
1073 #if defined(SCTP) || defined(SCTP_SUPPORT)
1074 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6)
1075 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
1076 #endif
1077 error = netisr_queue(NETISR_IPV6, m);
1078 goto done;
1079 }
1080 /* Or forward to some other address? */
1081 if ((m->m_flags & M_IP6_NEXTHOP) &&
1082 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
1083 if (ro != NULL)
1084 dst = (struct sockaddr_in6 *)&ro->ro_dst;
1085 else
1086 dst = &sin6;
1087 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6));
1088 m->m_flags |= M_SKIP_FIREWALL;
1089 m->m_flags &= ~M_IP6_NEXTHOP;
1090 m_tag_delete(m, fwd_tag);
1091 goto again;
1092 }
1093
1094 passout:
1095 if (vlan_pcp > -1)
1096 EVL_APPLY_PRI(m, vlan_pcp);
1097
1098 /* Ensure the packet data is mapped if the interface requires it. */
1099 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) {
1100 struct mbuf *m1;
1101
1102 error = mb_unmapped_to_ext(m, &m1);
1103 if (error != 0) {
1104 if (error == EINVAL) {
1105 if_printf(ifp, "TLS packet\n");
1106 /* XXXKIB */
1107 } else if (error == ENOMEM) {
1108 error = ENOBUFS;
1109 }
1110 IP6STAT_INC(ip6s_odropped);
1111 return (error);
1112 } else {
1113 m = m1;
1114 }
1115 }
1116
1117 /*
1118 * Send the packet to the outgoing interface.
1119 * If necessary, do IPv6 fragmentation before sending.
1120 *
1121 * 1: normal case (dontfrag == 0)
1122 * 1-a: send as is if tlen <= path mtu
1123 * 1-b: fragment if tlen > path mtu
1124 *
1125 * 2: if user asks us not to fragment (dontfrag == 1)
1126 * 2-a: send as is if tlen <= interface mtu
1127 * 2-b: error if tlen > interface mtu
1128 */
1129 sw_csum = m->m_pkthdr.csum_flags;
1130 if (!hdrsplit) {
1131 tso = ((sw_csum & ifp->if_hwassist &
1132 (CSUM_TSO | CSUM_INNER_TSO)) != 0) ? 1 : 0;
1133 sw_csum &= ~ifp->if_hwassist;
1134 } else
1135 tso = 0;
1136 /*
1137 * If we added extension headers, we will not do TSO and calculate the
1138 * checksums ourselves for now.
1139 * XXX-BZ Need a framework to know when the NIC can handle it, even
1140 * with ext. hdrs.
1141 */
1142 ip6_output_delayed_csum(m, ifp, sw_csum, plen, optlen);
1143 /* XXX-BZ m->m_pkthdr.csum_flags &= ~ifp->if_hwassist; */
1144 tlen = m->m_pkthdr.len;
1145
1146 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso)
1147 dontfrag = 1;
1148 else
1149 dontfrag = 0;
1150 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* Case 2-b. */
1151 /*
1152 * If the DONTFRAG option is specified, we cannot send the
1153 * packet when the data length is larger than the MTU of the
1154 * outgoing interface.
1155 * Notify the error by sending IPV6_PATHMTU ancillary data if
1156 * application wanted to know the MTU value. Also return an
1157 * error code (this is not described in the API spec).
1158 */
1159 if (inp != NULL)
1160 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu);
1161 error = EMSGSIZE;
1162 goto bad;
1163 }
1164
1165 /* Transmit packet without fragmentation. */
1166 if (dontfrag || tlen <= mtu) { /* Cases 1-a and 2-a. */
1167 struct in6_ifaddr *ia6;
1168
1169 ip6 = mtod(m, struct ip6_hdr *);
1170 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1171 if (ia6) {
1172 /* Record statistics for this interface address. */
1173 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1);
1174 counter_u64_add(ia6->ia_ifa.ifa_obytes,
1175 m->m_pkthdr.len);
1176 }
1177 error = ip6_output_send(inp, ifp, origifp, m, dst, ro,
1178 (flags & IP_NO_SND_TAG_RL) ? false : true);
1179 goto done;
1180 }
1181
1182 /* Try to fragment the packet. Case 1-b. */
1183 if (mtu < IPV6_MMTU) {
1184 /* Path MTU cannot be less than IPV6_MMTU. */
1185 error = EMSGSIZE;
1186 in6_ifstat_inc(ifp, ifs6_out_fragfail);
1187 goto bad;
1188 } else if (ip6->ip6_plen == 0) {
1189 /* Jumbo payload cannot be fragmented. */
1190 error = EMSGSIZE;
1191 in6_ifstat_inc(ifp, ifs6_out_fragfail);
1192 goto bad;
1193 } else {
1194 u_char nextproto;
1195
1196 /*
1197 * Too large for the destination or interface;
1198 * fragment if possible.
1199 * Must be able to put at least 8 bytes per fragment.
1200 */
1201 if (mtu > IPV6_MAXPACKET)
1202 mtu = IPV6_MAXPACKET;
1203
1204 len = (mtu - unfragpartlen - sizeof(struct ip6_frag)) & ~7;
1205 if (len < 8) {
1206 error = EMSGSIZE;
1207 in6_ifstat_inc(ifp, ifs6_out_fragfail);
1208 goto bad;
1209 }
1210
1211 /*
1212 * If the interface will not calculate checksums on
1213 * fragmented packets, then do it here.
1214 * XXX-BZ handle the hw offloading case. Need flags.
1215 */
1216 ip6_output_delayed_csum(m, ifp, m->m_pkthdr.csum_flags, plen,
1217 optlen);
1218
1219 /*
1220 * Change the next header field of the last header in the
1221 * unfragmentable part.
1222 */
1223 if (exthdrs.ip6e_rthdr) {
1224 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
1225 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
1226 } else if (exthdrs.ip6e_dest1) {
1227 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
1228 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
1229 } else if (exthdrs.ip6e_hbh) {
1230 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
1231 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
1232 } else {
1233 ip6 = mtod(m, struct ip6_hdr *);
1234 nextproto = ip6->ip6_nxt;
1235 ip6->ip6_nxt = IPPROTO_FRAGMENT;
1236 }
1237
1238 /*
1239 * Loop through length of segment after first fragment,
1240 * make new header and copy data of each part and link onto
1241 * chain.
1242 */
1243 m0 = m;
1244 id = htonl(ip6_randomid());
1245 error = ip6_fragment(ifp, m, unfragpartlen, nextproto,len, id);
1246 if (error != 0)
1247 goto sendorfree;
1248
1249 in6_ifstat_inc(ifp, ifs6_out_fragok);
1250 }
1251
1252 /* Remove leading garbage. */
1253 sendorfree:
1254 m = m0->m_nextpkt;
1255 m0->m_nextpkt = 0;
1256 m_freem(m0);
1257 for (; m; m = m0) {
1258 m0 = m->m_nextpkt;
1259 m->m_nextpkt = 0;
1260 if (error == 0) {
1261 /* Record statistics for this interface address. */
1262 if (ia) {
1263 counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
1264 counter_u64_add(ia->ia_ifa.ifa_obytes,
1265 m->m_pkthdr.len);
1266 }
1267 if (vlan_pcp > -1)
1268 EVL_APPLY_PRI(m, vlan_pcp);
1269 error = ip6_output_send(inp, ifp, origifp, m, dst, ro,
1270 true);
1271 } else
1272 m_freem(m);
1273 }
1274
1275 if (error == 0)
1276 IP6STAT_INC(ip6s_fragmented);
1277
1278 done:
1279 return (error);
1280
1281 freehdrs:
1282 m_freem(exthdrs.ip6e_hbh); /* m_freem() checks if mbuf is NULL. */
1283 m_freem(exthdrs.ip6e_dest1);
1284 m_freem(exthdrs.ip6e_rthdr);
1285 m_freem(exthdrs.ip6e_dest2);
1286 /* FALLTHROUGH */
1287 bad:
1288 if (m)
1289 m_freem(m);
1290 goto done;
1291 }
1292
1293 static int
ip6_copyexthdr(struct mbuf ** mp,caddr_t hdr,int hlen)1294 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen)
1295 {
1296 struct mbuf *m;
1297
1298 if (hlen > MCLBYTES)
1299 return (ENOBUFS); /* XXX */
1300
1301 if (hlen > MLEN)
1302 m = m_getcl(M_NOWAIT, MT_DATA, 0);
1303 else
1304 m = m_get(M_NOWAIT, MT_DATA);
1305 if (m == NULL)
1306 return (ENOBUFS);
1307 m->m_len = hlen;
1308 if (hdr)
1309 bcopy(hdr, mtod(m, caddr_t), hlen);
1310
1311 *mp = m;
1312 return (0);
1313 }
1314
1315 /*
1316 * Insert jumbo payload option.
1317 */
1318 static int
ip6_insert_jumboopt(struct ip6_exthdrs * exthdrs,u_int32_t plen)1319 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1320 {
1321 struct mbuf *mopt;
1322 u_char *optbuf;
1323 u_int32_t v;
1324
1325 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1326
1327 /*
1328 * If there is no hop-by-hop options header, allocate new one.
1329 * If there is one but it doesn't have enough space to store the
1330 * jumbo payload option, allocate a cluster to store the whole options.
1331 * Otherwise, use it to store the options.
1332 */
1333 if (exthdrs->ip6e_hbh == NULL) {
1334 mopt = m_get(M_NOWAIT, MT_DATA);
1335 if (mopt == NULL)
1336 return (ENOBUFS);
1337 mopt->m_len = JUMBOOPTLEN;
1338 optbuf = mtod(mopt, u_char *);
1339 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1340 exthdrs->ip6e_hbh = mopt;
1341 } else {
1342 struct ip6_hbh *hbh;
1343
1344 mopt = exthdrs->ip6e_hbh;
1345 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1346 /*
1347 * XXX assumption:
1348 * - exthdrs->ip6e_hbh is not referenced from places
1349 * other than exthdrs.
1350 * - exthdrs->ip6e_hbh is not an mbuf chain.
1351 */
1352 int oldoptlen = mopt->m_len;
1353 struct mbuf *n;
1354
1355 /*
1356 * XXX: give up if the whole (new) hbh header does
1357 * not fit even in an mbuf cluster.
1358 */
1359 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1360 return (ENOBUFS);
1361
1362 /*
1363 * As a consequence, we must always prepare a cluster
1364 * at this point.
1365 */
1366 n = m_getcl(M_NOWAIT, MT_DATA, 0);
1367 if (n == NULL)
1368 return (ENOBUFS);
1369 n->m_len = oldoptlen + JUMBOOPTLEN;
1370 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1371 oldoptlen);
1372 optbuf = mtod(n, caddr_t) + oldoptlen;
1373 m_freem(mopt);
1374 mopt = exthdrs->ip6e_hbh = n;
1375 } else {
1376 optbuf = mtod(mopt, u_char *) + mopt->m_len;
1377 mopt->m_len += JUMBOOPTLEN;
1378 }
1379 optbuf[0] = IP6OPT_PADN;
1380 optbuf[1] = 1;
1381
1382 /*
1383 * Adjust the header length according to the pad and
1384 * the jumbo payload option.
1385 */
1386 hbh = mtod(mopt, struct ip6_hbh *);
1387 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1388 }
1389
1390 /* fill in the option. */
1391 optbuf[2] = IP6OPT_JUMBO;
1392 optbuf[3] = 4;
1393 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1394 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1395
1396 /* finally, adjust the packet header length */
1397 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1398
1399 return (0);
1400 #undef JUMBOOPTLEN
1401 }
1402
1403 /*
1404 * Insert fragment header and copy unfragmentable header portions.
1405 */
1406 static int
ip6_insertfraghdr(struct mbuf * m0,struct mbuf * m,int hlen,struct ip6_frag ** frghdrp)1407 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1408 struct ip6_frag **frghdrp)
1409 {
1410 struct mbuf *n, *mlast;
1411
1412 if (hlen > sizeof(struct ip6_hdr)) {
1413 n = m_copym(m0, sizeof(struct ip6_hdr),
1414 hlen - sizeof(struct ip6_hdr), M_NOWAIT);
1415 if (n == NULL)
1416 return (ENOBUFS);
1417 m->m_next = n;
1418 } else
1419 n = m;
1420
1421 /* Search for the last mbuf of unfragmentable part. */
1422 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1423 ;
1424
1425 if (M_WRITABLE(mlast) &&
1426 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1427 /* use the trailing space of the last mbuf for the fragment hdr */
1428 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1429 mlast->m_len);
1430 mlast->m_len += sizeof(struct ip6_frag);
1431 m->m_pkthdr.len += sizeof(struct ip6_frag);
1432 } else {
1433 /* allocate a new mbuf for the fragment header */
1434 struct mbuf *mfrg;
1435
1436 mfrg = m_get(M_NOWAIT, MT_DATA);
1437 if (mfrg == NULL)
1438 return (ENOBUFS);
1439 mfrg->m_len = sizeof(struct ip6_frag);
1440 *frghdrp = mtod(mfrg, struct ip6_frag *);
1441 mlast->m_next = mfrg;
1442 }
1443
1444 return (0);
1445 }
1446
1447 /*
1448 * Calculates IPv6 path mtu for destination @dst.
1449 * Resulting MTU is stored in @mtup.
1450 *
1451 * Returns 0 on success.
1452 */
1453 static int
ip6_getpmtu_ctl(u_int fibnum,const struct in6_addr * dst,u_long * mtup)1454 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup)
1455 {
1456 struct epoch_tracker et;
1457 struct nhop_object *nh;
1458 struct in6_addr kdst;
1459 uint32_t scopeid;
1460 int error;
1461
1462 in6_splitscope(dst, &kdst, &scopeid);
1463
1464 NET_EPOCH_ENTER(et);
1465 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0);
1466 if (nh != NULL) {
1467 ip6_calcmtu(nh->nh_ifp, dst, nh->nh_mtu, mtup, 0);
1468 error = 0;
1469 } else
1470 error = EHOSTUNREACH;
1471 NET_EPOCH_EXIT(et);
1472
1473 return (error);
1474 }
1475
1476 /*
1477 * Calculates IPv6 path MTU for @dst based on transmit @ifp,
1478 * and cached data in @ro_pmtu.
1479 * MTU from (successful) route lookup is saved (along with dst)
1480 * inside @ro_pmtu to avoid subsequent route lookups after packet
1481 * filter processing.
1482 *
1483 * Stores mtu into @mtup.
1484 */
1485 static void
ip6_getpmtu(struct route_in6 * ro_pmtu,int do_lookup,struct ifnet * ifp,const struct in6_addr * dst,u_long * mtup,u_int fibnum,u_int proto)1486 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup,
1487 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup,
1488 u_int fibnum, u_int proto)
1489 {
1490 struct nhop_object *nh;
1491 struct in6_addr kdst;
1492 uint32_t scopeid;
1493 struct sockaddr_in6 *sa6_dst, sin6;
1494 u_long mtu;
1495
1496 NET_EPOCH_ASSERT();
1497
1498 mtu = 0;
1499 if (ro_pmtu == NULL || do_lookup) {
1500 /*
1501 * Here ro_pmtu has final destination address, while
1502 * ro might represent immediate destination.
1503 * Use ro_pmtu destination since mtu might differ.
1504 */
1505 if (ro_pmtu != NULL) {
1506 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1507 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))
1508 ro_pmtu->ro_mtu = 0;
1509 } else
1510 sa6_dst = &sin6;
1511
1512 if (ro_pmtu == NULL || ro_pmtu->ro_mtu == 0) {
1513 bzero(sa6_dst, sizeof(*sa6_dst));
1514 sa6_dst->sin6_family = AF_INET6;
1515 sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1516 sa6_dst->sin6_addr = *dst;
1517
1518 in6_splitscope(dst, &kdst, &scopeid);
1519 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0);
1520 if (nh != NULL) {
1521 mtu = nh->nh_mtu;
1522 if (ro_pmtu != NULL)
1523 ro_pmtu->ro_mtu = mtu;
1524 }
1525 } else
1526 mtu = ro_pmtu->ro_mtu;
1527 }
1528
1529 if (ro_pmtu != NULL && ro_pmtu->ro_nh != NULL)
1530 mtu = ro_pmtu->ro_nh->nh_mtu;
1531
1532 ip6_calcmtu(ifp, dst, mtu, mtup, proto);
1533 }
1534
1535 /*
1536 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and
1537 * hostcache data for @dst.
1538 * Stores mtu into @mtup.
1539 */
1540 static void
ip6_calcmtu(struct ifnet * ifp,const struct in6_addr * dst,u_long rt_mtu,u_long * mtup,u_int proto)1541 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu,
1542 u_long *mtup, u_int proto)
1543 {
1544 u_long mtu = 0;
1545
1546 if (rt_mtu > 0) {
1547 /* Skip the hostcache if the protocol handles PMTU changes. */
1548 if (proto != IPPROTO_TCP && proto != IPPROTO_SCTP) {
1549 struct in_conninfo inc = {
1550 .inc_flags = INC_ISIPV6,
1551 .inc6_faddr = *dst,
1552 };
1553
1554 mtu = tcp_hc_getmtu(&inc);
1555 }
1556
1557 if (mtu)
1558 mtu = min(mtu, rt_mtu);
1559 else
1560 mtu = rt_mtu;
1561 }
1562
1563 if (mtu == 0)
1564 mtu = IN6_LINKMTU(ifp);
1565
1566 *mtup = mtu;
1567 }
1568
1569 /*
1570 * IP6 socket option processing.
1571 */
1572 int
ip6_ctloutput(struct socket * so,struct sockopt * sopt)1573 ip6_ctloutput(struct socket *so, struct sockopt *sopt)
1574 {
1575 int optdatalen, uproto;
1576 void *optdata;
1577 struct inpcb *inp = sotoinpcb(so);
1578 int error, optval;
1579 int level, op, optname;
1580 int optlen;
1581 struct thread *td;
1582 #ifdef RSS
1583 uint32_t rss_bucket;
1584 int retval;
1585 #endif
1586
1587 /*
1588 * Don't use more than a quarter of mbuf clusters. N.B.:
1589 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow
1590 * on LP64 architectures, so cast to u_long to avoid undefined
1591 * behavior. ILP32 architectures cannot have nmbclusters
1592 * large enough to overflow for other reasons.
1593 */
1594 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4)
1595
1596 level = sopt->sopt_level;
1597 op = sopt->sopt_dir;
1598 optname = sopt->sopt_name;
1599 optlen = sopt->sopt_valsize;
1600 td = sopt->sopt_td;
1601 error = 0;
1602 optval = 0;
1603 uproto = (int)so->so_proto->pr_protocol;
1604
1605 if (level != IPPROTO_IPV6) {
1606 error = EINVAL;
1607
1608 if (sopt->sopt_level == SOL_SOCKET &&
1609 sopt->sopt_dir == SOPT_SET) {
1610 switch (sopt->sopt_name) {
1611 case SO_SETFIB:
1612 error = sooptcopyin(sopt, &optval,
1613 sizeof(optval), sizeof(optval));
1614 if (error != 0)
1615 break;
1616
1617 INP_WLOCK(inp);
1618 if ((inp->inp_flags & INP_BOUNDFIB) != 0 &&
1619 optval != so->so_fibnum) {
1620 INP_WUNLOCK(inp);
1621 error = EISCONN;
1622 break;
1623 }
1624 error = sosetfib(inp->inp_socket, optval);
1625 if (error == 0)
1626 inp->inp_inc.inc_fibnum = optval;
1627 INP_WUNLOCK(inp);
1628 break;
1629 case SO_MAX_PACING_RATE:
1630 #ifdef RATELIMIT
1631 INP_WLOCK(inp);
1632 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
1633 INP_WUNLOCK(inp);
1634 error = 0;
1635 #else
1636 error = EOPNOTSUPP;
1637 #endif
1638 break;
1639 default:
1640 break;
1641 }
1642 }
1643 } else { /* level == IPPROTO_IPV6 */
1644 switch (op) {
1645 case SOPT_SET:
1646 switch (optname) {
1647 case IPV6_2292PKTOPTIONS:
1648 #ifdef IPV6_PKTOPTIONS
1649 case IPV6_PKTOPTIONS:
1650 #endif
1651 {
1652 struct mbuf *m;
1653
1654 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) {
1655 printf("ip6_ctloutput: mbuf limit hit\n");
1656 error = ENOBUFS;
1657 break;
1658 }
1659
1660 error = soopt_getm(sopt, &m); /* XXX */
1661 if (error != 0)
1662 break;
1663 error = soopt_mcopyin(sopt, m); /* XXX */
1664 if (error != 0)
1665 break;
1666 INP_WLOCK(inp);
1667 error = ip6_pcbopts(&inp->in6p_outputopts, m,
1668 so, sopt);
1669 INP_WUNLOCK(inp);
1670 m_freem(m); /* XXX */
1671 break;
1672 }
1673
1674 /*
1675 * Use of some Hop-by-Hop options or some
1676 * Destination options, might require special
1677 * privilege. That is, normal applications
1678 * (without special privilege) might be forbidden
1679 * from setting certain options in outgoing packets,
1680 * and might never see certain options in received
1681 * packets. [RFC 2292 Section 6]
1682 * KAME specific note:
1683 * KAME prevents non-privileged users from sending or
1684 * receiving ANY hbh/dst options in order to avoid
1685 * overhead of parsing options in the kernel.
1686 */
1687 case IPV6_RECVHOPOPTS:
1688 case IPV6_RECVDSTOPTS:
1689 case IPV6_RECVRTHDRDSTOPTS:
1690 if (td != NULL) {
1691 error = priv_check(td,
1692 PRIV_NETINET_SETHDROPTS);
1693 if (error)
1694 break;
1695 }
1696 /* FALLTHROUGH */
1697 case IPV6_UNICAST_HOPS:
1698 case IPV6_HOPLIMIT:
1699
1700 case IPV6_RECVPKTINFO:
1701 case IPV6_RECVHOPLIMIT:
1702 case IPV6_RECVRTHDR:
1703 case IPV6_RECVPATHMTU:
1704 case IPV6_RECVTCLASS:
1705 case IPV6_RECVFLOWID:
1706 #ifdef RSS
1707 case IPV6_RECVRSSBUCKETID:
1708 #endif
1709 case IPV6_V6ONLY:
1710 case IPV6_AUTOFLOWLABEL:
1711 case IPV6_ORIGDSTADDR:
1712 case IPV6_BINDANY:
1713 case IPV6_VLAN_PCP:
1714 if (optname == IPV6_BINDANY && td != NULL) {
1715 error = priv_check(td,
1716 PRIV_NETINET_BINDANY);
1717 if (error)
1718 break;
1719 }
1720
1721 if (optlen != sizeof(int)) {
1722 error = EINVAL;
1723 break;
1724 }
1725 error = sooptcopyin(sopt, &optval,
1726 sizeof optval, sizeof optval);
1727 if (error)
1728 break;
1729 switch (optname) {
1730 case IPV6_UNICAST_HOPS:
1731 if (optval < -1 || optval >= 256)
1732 error = EINVAL;
1733 else {
1734 /* -1 = kernel default */
1735 inp->in6p_hops = optval;
1736 if ((inp->inp_vflag &
1737 INP_IPV4) != 0)
1738 inp->inp_ip_ttl = optval;
1739 }
1740 break;
1741 #define OPTSET(bit) \
1742 do { \
1743 INP_WLOCK(inp); \
1744 if (optval) \
1745 inp->inp_flags |= (bit); \
1746 else \
1747 inp->inp_flags &= ~(bit); \
1748 INP_WUNLOCK(inp); \
1749 } while (/*CONSTCOND*/ 0)
1750 #define OPTSET2292(bit) \
1751 do { \
1752 INP_WLOCK(inp); \
1753 inp->inp_flags |= IN6P_RFC2292; \
1754 if (optval) \
1755 inp->inp_flags |= (bit); \
1756 else \
1757 inp->inp_flags &= ~(bit); \
1758 INP_WUNLOCK(inp); \
1759 } while (/*CONSTCOND*/ 0)
1760 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0)
1761
1762 #define OPTSET2_N(bit, val) do { \
1763 if (val) \
1764 inp->inp_flags2 |= bit; \
1765 else \
1766 inp->inp_flags2 &= ~bit; \
1767 } while (0)
1768 #define OPTSET2(bit, val) do { \
1769 INP_WLOCK(inp); \
1770 OPTSET2_N(bit, val); \
1771 INP_WUNLOCK(inp); \
1772 } while (0)
1773 #define OPTBIT2(bit) (inp->inp_flags2 & (bit) ? 1 : 0)
1774 #define OPTSET2292_EXCLUSIVE(bit) \
1775 do { \
1776 INP_WLOCK(inp); \
1777 if (OPTBIT(IN6P_RFC2292)) { \
1778 error = EINVAL; \
1779 } else { \
1780 if (optval) \
1781 inp->inp_flags |= (bit); \
1782 else \
1783 inp->inp_flags &= ~(bit); \
1784 } \
1785 INP_WUNLOCK(inp); \
1786 } while (/*CONSTCOND*/ 0)
1787
1788 case IPV6_RECVPKTINFO:
1789 OPTSET2292_EXCLUSIVE(IN6P_PKTINFO);
1790 break;
1791
1792 case IPV6_HOPLIMIT:
1793 {
1794 struct ip6_pktopts **optp;
1795
1796 /* cannot mix with RFC2292 */
1797 if (OPTBIT(IN6P_RFC2292)) {
1798 error = EINVAL;
1799 break;
1800 }
1801 INP_WLOCK(inp);
1802 if (inp->inp_flags & INP_DROPPED) {
1803 INP_WUNLOCK(inp);
1804 return (ECONNRESET);
1805 }
1806 optp = &inp->in6p_outputopts;
1807 error = ip6_pcbopt(IPV6_HOPLIMIT,
1808 (u_char *)&optval, sizeof(optval),
1809 optp, (td != NULL) ? td->td_ucred :
1810 NULL, uproto);
1811 INP_WUNLOCK(inp);
1812 break;
1813 }
1814
1815 case IPV6_RECVHOPLIMIT:
1816 OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT);
1817 break;
1818
1819 case IPV6_RECVHOPOPTS:
1820 OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS);
1821 break;
1822
1823 case IPV6_RECVDSTOPTS:
1824 OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS);
1825 break;
1826
1827 case IPV6_RECVRTHDRDSTOPTS:
1828 OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS);
1829 break;
1830
1831 case IPV6_RECVRTHDR:
1832 OPTSET2292_EXCLUSIVE(IN6P_RTHDR);
1833 break;
1834
1835 case IPV6_RECVPATHMTU:
1836 /*
1837 * We ignore this option for TCP
1838 * sockets.
1839 * (RFC3542 leaves this case
1840 * unspecified.)
1841 */
1842 if (uproto != IPPROTO_TCP)
1843 OPTSET(IN6P_MTU);
1844 break;
1845
1846 case IPV6_RECVFLOWID:
1847 OPTSET2(INP_RECVFLOWID, optval);
1848 break;
1849
1850 #ifdef RSS
1851 case IPV6_RECVRSSBUCKETID:
1852 OPTSET2(INP_RECVRSSBUCKETID, optval);
1853 break;
1854 #endif
1855
1856 case IPV6_V6ONLY:
1857 INP_WLOCK(inp);
1858 if (inp->inp_lport ||
1859 !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) {
1860 /*
1861 * The socket is already bound.
1862 */
1863 INP_WUNLOCK(inp);
1864 error = EINVAL;
1865 break;
1866 }
1867 if (optval) {
1868 inp->inp_flags |= IN6P_IPV6_V6ONLY;
1869 inp->inp_vflag &= ~INP_IPV4;
1870 } else {
1871 inp->inp_flags &= ~IN6P_IPV6_V6ONLY;
1872 inp->inp_vflag |= INP_IPV4;
1873 }
1874 INP_WUNLOCK(inp);
1875 break;
1876 case IPV6_RECVTCLASS:
1877 /* cannot mix with RFC2292 XXX */
1878 OPTSET2292_EXCLUSIVE(IN6P_TCLASS);
1879 break;
1880 case IPV6_AUTOFLOWLABEL:
1881 OPTSET(IN6P_AUTOFLOWLABEL);
1882 break;
1883
1884 case IPV6_ORIGDSTADDR:
1885 OPTSET2(INP_ORIGDSTADDR, optval);
1886 break;
1887 case IPV6_BINDANY:
1888 OPTSET(INP_BINDANY);
1889 break;
1890 case IPV6_VLAN_PCP:
1891 if ((optval >= -1) && (optval <=
1892 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) {
1893 if (optval == -1) {
1894 INP_WLOCK(inp);
1895 inp->inp_flags2 &=
1896 ~(INP_2PCP_SET |
1897 INP_2PCP_MASK);
1898 INP_WUNLOCK(inp);
1899 } else {
1900 INP_WLOCK(inp);
1901 inp->inp_flags2 |=
1902 INP_2PCP_SET;
1903 inp->inp_flags2 &=
1904 ~INP_2PCP_MASK;
1905 inp->inp_flags2 |=
1906 optval <<
1907 INP_2PCP_SHIFT;
1908 INP_WUNLOCK(inp);
1909 }
1910 } else
1911 error = EINVAL;
1912 break;
1913 }
1914 break;
1915
1916 case IPV6_TCLASS:
1917 case IPV6_DONTFRAG:
1918 case IPV6_USE_MIN_MTU:
1919 case IPV6_PREFER_TEMPADDR:
1920 if (optlen != sizeof(optval)) {
1921 error = EINVAL;
1922 break;
1923 }
1924 error = sooptcopyin(sopt, &optval,
1925 sizeof optval, sizeof optval);
1926 if (error)
1927 break;
1928 {
1929 struct ip6_pktopts **optp;
1930 INP_WLOCK(inp);
1931 if (inp->inp_flags & INP_DROPPED) {
1932 INP_WUNLOCK(inp);
1933 return (ECONNRESET);
1934 }
1935 optp = &inp->in6p_outputopts;
1936 error = ip6_pcbopt(optname,
1937 (u_char *)&optval, sizeof(optval),
1938 optp, (td != NULL) ? td->td_ucred :
1939 NULL, uproto);
1940 INP_WUNLOCK(inp);
1941 break;
1942 }
1943
1944 case IPV6_2292PKTINFO:
1945 case IPV6_2292HOPLIMIT:
1946 case IPV6_2292HOPOPTS:
1947 case IPV6_2292DSTOPTS:
1948 case IPV6_2292RTHDR:
1949 /* RFC 2292 */
1950 if (optlen != sizeof(int)) {
1951 error = EINVAL;
1952 break;
1953 }
1954 error = sooptcopyin(sopt, &optval,
1955 sizeof optval, sizeof optval);
1956 if (error)
1957 break;
1958 switch (optname) {
1959 case IPV6_2292PKTINFO:
1960 OPTSET2292(IN6P_PKTINFO);
1961 break;
1962 case IPV6_2292HOPLIMIT:
1963 OPTSET2292(IN6P_HOPLIMIT);
1964 break;
1965 case IPV6_2292HOPOPTS:
1966 /*
1967 * Check super-user privilege.
1968 * See comments for IPV6_RECVHOPOPTS.
1969 */
1970 if (td != NULL) {
1971 error = priv_check(td,
1972 PRIV_NETINET_SETHDROPTS);
1973 if (error)
1974 return (error);
1975 }
1976 OPTSET2292(IN6P_HOPOPTS);
1977 break;
1978 case IPV6_2292DSTOPTS:
1979 if (td != NULL) {
1980 error = priv_check(td,
1981 PRIV_NETINET_SETHDROPTS);
1982 if (error)
1983 return (error);
1984 }
1985 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1986 break;
1987 case IPV6_2292RTHDR:
1988 OPTSET2292(IN6P_RTHDR);
1989 break;
1990 }
1991 break;
1992 case IPV6_PKTINFO:
1993 case IPV6_HOPOPTS:
1994 case IPV6_RTHDR:
1995 case IPV6_DSTOPTS:
1996 case IPV6_RTHDRDSTOPTS:
1997 case IPV6_NEXTHOP:
1998 {
1999 /* new advanced API (RFC3542) */
2000 u_char *optbuf;
2001 u_char optbuf_storage[MCLBYTES];
2002 int optlen;
2003 struct ip6_pktopts **optp;
2004
2005 /* cannot mix with RFC2292 */
2006 if (OPTBIT(IN6P_RFC2292)) {
2007 error = EINVAL;
2008 break;
2009 }
2010
2011 /*
2012 * We only ensure valsize is not too large
2013 * here. Further validation will be done
2014 * later.
2015 */
2016 error = sooptcopyin(sopt, optbuf_storage,
2017 sizeof(optbuf_storage), 0);
2018 if (error)
2019 break;
2020 optlen = sopt->sopt_valsize;
2021 optbuf = optbuf_storage;
2022 INP_WLOCK(inp);
2023 if (inp->inp_flags & INP_DROPPED) {
2024 INP_WUNLOCK(inp);
2025 return (ECONNRESET);
2026 }
2027 optp = &inp->in6p_outputopts;
2028 error = ip6_pcbopt(optname, optbuf, optlen,
2029 optp, (td != NULL) ? td->td_ucred : NULL,
2030 uproto);
2031 INP_WUNLOCK(inp);
2032 break;
2033 }
2034 #undef OPTSET
2035
2036 case IPV6_MULTICAST_IF:
2037 case IPV6_MULTICAST_HOPS:
2038 case IPV6_MULTICAST_LOOP:
2039 case IPV6_JOIN_GROUP:
2040 case IPV6_LEAVE_GROUP:
2041 case IPV6_MSFILTER:
2042 case MCAST_BLOCK_SOURCE:
2043 case MCAST_UNBLOCK_SOURCE:
2044 case MCAST_JOIN_GROUP:
2045 case MCAST_LEAVE_GROUP:
2046 case MCAST_JOIN_SOURCE_GROUP:
2047 case MCAST_LEAVE_SOURCE_GROUP:
2048 error = ip6_setmoptions(inp, sopt);
2049 break;
2050
2051 case IPV6_PORTRANGE:
2052 error = sooptcopyin(sopt, &optval,
2053 sizeof optval, sizeof optval);
2054 if (error)
2055 break;
2056
2057 INP_WLOCK(inp);
2058 switch (optval) {
2059 case IPV6_PORTRANGE_DEFAULT:
2060 inp->inp_flags &= ~(INP_LOWPORT);
2061 inp->inp_flags &= ~(INP_HIGHPORT);
2062 break;
2063
2064 case IPV6_PORTRANGE_HIGH:
2065 inp->inp_flags &= ~(INP_LOWPORT);
2066 inp->inp_flags |= INP_HIGHPORT;
2067 break;
2068
2069 case IPV6_PORTRANGE_LOW:
2070 inp->inp_flags &= ~(INP_HIGHPORT);
2071 inp->inp_flags |= INP_LOWPORT;
2072 break;
2073
2074 default:
2075 error = EINVAL;
2076 break;
2077 }
2078 INP_WUNLOCK(inp);
2079 break;
2080
2081 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
2082 case IPV6_IPSEC_POLICY:
2083 if (IPSEC_ENABLED(ipv6)) {
2084 error = IPSEC_PCBCTL(ipv6, inp, sopt);
2085 break;
2086 }
2087 /* FALLTHROUGH */
2088 #endif /* IPSEC */
2089
2090 default:
2091 error = ENOPROTOOPT;
2092 break;
2093 }
2094 break;
2095
2096 case SOPT_GET:
2097 switch (optname) {
2098 case IPV6_2292PKTOPTIONS:
2099 #ifdef IPV6_PKTOPTIONS
2100 case IPV6_PKTOPTIONS:
2101 #endif
2102 /*
2103 * RFC3542 (effectively) deprecated the
2104 * semantics of the 2292-style pktoptions.
2105 * Since it was not reliable in nature (i.e.,
2106 * applications had to expect the lack of some
2107 * information after all), it would make sense
2108 * to simplify this part by always returning
2109 * empty data.
2110 */
2111 sopt->sopt_valsize = 0;
2112 break;
2113
2114 case IPV6_RECVHOPOPTS:
2115 case IPV6_RECVDSTOPTS:
2116 case IPV6_RECVRTHDRDSTOPTS:
2117 case IPV6_UNICAST_HOPS:
2118 case IPV6_RECVPKTINFO:
2119 case IPV6_RECVHOPLIMIT:
2120 case IPV6_RECVRTHDR:
2121 case IPV6_RECVPATHMTU:
2122
2123 case IPV6_V6ONLY:
2124 case IPV6_PORTRANGE:
2125 case IPV6_RECVTCLASS:
2126 case IPV6_AUTOFLOWLABEL:
2127 case IPV6_BINDANY:
2128 case IPV6_FLOWID:
2129 case IPV6_FLOWTYPE:
2130 case IPV6_RECVFLOWID:
2131 #ifdef RSS
2132 case IPV6_RSSBUCKETID:
2133 case IPV6_RECVRSSBUCKETID:
2134 #endif
2135 case IPV6_VLAN_PCP:
2136 switch (optname) {
2137 case IPV6_RECVHOPOPTS:
2138 optval = OPTBIT(IN6P_HOPOPTS);
2139 break;
2140
2141 case IPV6_RECVDSTOPTS:
2142 optval = OPTBIT(IN6P_DSTOPTS);
2143 break;
2144
2145 case IPV6_RECVRTHDRDSTOPTS:
2146 optval = OPTBIT(IN6P_RTHDRDSTOPTS);
2147 break;
2148
2149 case IPV6_UNICAST_HOPS:
2150 optval = inp->in6p_hops;
2151 break;
2152
2153 case IPV6_RECVPKTINFO:
2154 optval = OPTBIT(IN6P_PKTINFO);
2155 break;
2156
2157 case IPV6_RECVHOPLIMIT:
2158 optval = OPTBIT(IN6P_HOPLIMIT);
2159 break;
2160
2161 case IPV6_RECVRTHDR:
2162 optval = OPTBIT(IN6P_RTHDR);
2163 break;
2164
2165 case IPV6_RECVPATHMTU:
2166 optval = OPTBIT(IN6P_MTU);
2167 break;
2168
2169 case IPV6_V6ONLY:
2170 optval = OPTBIT(IN6P_IPV6_V6ONLY);
2171 break;
2172
2173 case IPV6_PORTRANGE:
2174 {
2175 int flags;
2176 flags = inp->inp_flags;
2177 if (flags & INP_HIGHPORT)
2178 optval = IPV6_PORTRANGE_HIGH;
2179 else if (flags & INP_LOWPORT)
2180 optval = IPV6_PORTRANGE_LOW;
2181 else
2182 optval = 0;
2183 break;
2184 }
2185 case IPV6_RECVTCLASS:
2186 optval = OPTBIT(IN6P_TCLASS);
2187 break;
2188
2189 case IPV6_AUTOFLOWLABEL:
2190 optval = OPTBIT(IN6P_AUTOFLOWLABEL);
2191 break;
2192
2193 case IPV6_ORIGDSTADDR:
2194 optval = OPTBIT2(INP_ORIGDSTADDR);
2195 break;
2196
2197 case IPV6_BINDANY:
2198 optval = OPTBIT(INP_BINDANY);
2199 break;
2200
2201 case IPV6_FLOWID:
2202 optval = inp->inp_flowid;
2203 break;
2204
2205 case IPV6_FLOWTYPE:
2206 optval = inp->inp_flowtype;
2207 break;
2208
2209 case IPV6_RECVFLOWID:
2210 optval = OPTBIT2(INP_RECVFLOWID);
2211 break;
2212 #ifdef RSS
2213 case IPV6_RSSBUCKETID:
2214 retval =
2215 rss_hash2bucket(inp->inp_flowid,
2216 inp->inp_flowtype,
2217 &rss_bucket);
2218 if (retval == 0)
2219 optval = rss_bucket;
2220 else
2221 error = EINVAL;
2222 break;
2223
2224 case IPV6_RECVRSSBUCKETID:
2225 optval = OPTBIT2(INP_RECVRSSBUCKETID);
2226 break;
2227 #endif
2228
2229
2230 case IPV6_VLAN_PCP:
2231 if (OPTBIT2(INP_2PCP_SET)) {
2232 optval = (inp->inp_flags2 &
2233 INP_2PCP_MASK) >>
2234 INP_2PCP_SHIFT;
2235 } else {
2236 optval = -1;
2237 }
2238 break;
2239 }
2240
2241 if (error)
2242 break;
2243 error = sooptcopyout(sopt, &optval,
2244 sizeof optval);
2245 break;
2246
2247 case IPV6_PATHMTU:
2248 {
2249 u_long pmtu = 0;
2250 struct ip6_mtuinfo mtuinfo;
2251 struct in6_addr addr;
2252
2253 if (!(so->so_state & SS_ISCONNECTED))
2254 return (ENOTCONN);
2255 /*
2256 * XXX: we dot not consider the case of source
2257 * routing, or optional information to specify
2258 * the outgoing interface.
2259 * Copy faddr out of inp to avoid holding lock
2260 * on inp during route lookup.
2261 */
2262 INP_RLOCK(inp);
2263 bcopy(&inp->in6p_faddr, &addr, sizeof(addr));
2264 INP_RUNLOCK(inp);
2265 error = ip6_getpmtu_ctl(so->so_fibnum,
2266 &addr, &pmtu);
2267 if (error)
2268 break;
2269 if (pmtu > IPV6_MAXPACKET)
2270 pmtu = IPV6_MAXPACKET;
2271
2272 bzero(&mtuinfo, sizeof(mtuinfo));
2273 mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
2274 optdata = (void *)&mtuinfo;
2275 optdatalen = sizeof(mtuinfo);
2276 error = sooptcopyout(sopt, optdata,
2277 optdatalen);
2278 break;
2279 }
2280
2281 case IPV6_2292PKTINFO:
2282 case IPV6_2292HOPLIMIT:
2283 case IPV6_2292HOPOPTS:
2284 case IPV6_2292RTHDR:
2285 case IPV6_2292DSTOPTS:
2286 switch (optname) {
2287 case IPV6_2292PKTINFO:
2288 optval = OPTBIT(IN6P_PKTINFO);
2289 break;
2290 case IPV6_2292HOPLIMIT:
2291 optval = OPTBIT(IN6P_HOPLIMIT);
2292 break;
2293 case IPV6_2292HOPOPTS:
2294 optval = OPTBIT(IN6P_HOPOPTS);
2295 break;
2296 case IPV6_2292RTHDR:
2297 optval = OPTBIT(IN6P_RTHDR);
2298 break;
2299 case IPV6_2292DSTOPTS:
2300 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
2301 break;
2302 }
2303 error = sooptcopyout(sopt, &optval,
2304 sizeof optval);
2305 break;
2306 case IPV6_PKTINFO:
2307 case IPV6_HOPOPTS:
2308 case IPV6_RTHDR:
2309 case IPV6_DSTOPTS:
2310 case IPV6_RTHDRDSTOPTS:
2311 case IPV6_NEXTHOP:
2312 case IPV6_TCLASS:
2313 case IPV6_DONTFRAG:
2314 case IPV6_USE_MIN_MTU:
2315 case IPV6_PREFER_TEMPADDR:
2316 error = ip6_getpcbopt(inp, optname, sopt);
2317 break;
2318
2319 case IPV6_MULTICAST_IF:
2320 case IPV6_MULTICAST_HOPS:
2321 case IPV6_MULTICAST_LOOP:
2322 case IPV6_MSFILTER:
2323 error = ip6_getmoptions(inp, sopt);
2324 break;
2325
2326 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
2327 case IPV6_IPSEC_POLICY:
2328 if (IPSEC_ENABLED(ipv6)) {
2329 error = IPSEC_PCBCTL(ipv6, inp, sopt);
2330 break;
2331 }
2332 /* FALLTHROUGH */
2333 #endif /* IPSEC */
2334 default:
2335 error = ENOPROTOOPT;
2336 break;
2337 }
2338 break;
2339 }
2340 }
2341 return (error);
2342 }
2343
2344 int
ip6_raw_ctloutput(struct socket * so,struct sockopt * sopt)2345 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt)
2346 {
2347 int error = 0, optval, optlen;
2348 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
2349 struct inpcb *inp = sotoinpcb(so);
2350 int level, op, optname;
2351
2352 level = sopt->sopt_level;
2353 op = sopt->sopt_dir;
2354 optname = sopt->sopt_name;
2355 optlen = sopt->sopt_valsize;
2356
2357 if (level != IPPROTO_IPV6) {
2358 return (EINVAL);
2359 }
2360
2361 switch (optname) {
2362 case IPV6_CHECKSUM:
2363 /*
2364 * For ICMPv6 sockets, no modification allowed for checksum
2365 * offset, permit "no change" values to help existing apps.
2366 *
2367 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
2368 * for an ICMPv6 socket will fail."
2369 * The current behavior does not meet RFC3542.
2370 */
2371 switch (op) {
2372 case SOPT_SET:
2373 if (optlen != sizeof(int)) {
2374 error = EINVAL;
2375 break;
2376 }
2377 error = sooptcopyin(sopt, &optval, sizeof(optval),
2378 sizeof(optval));
2379 if (error)
2380 break;
2381 if (optval < -1 || (optval % 2) != 0) {
2382 /*
2383 * The API assumes non-negative even offset
2384 * values or -1 as a special value.
2385 */
2386 error = EINVAL;
2387 } else if (inp->inp_ip_p == IPPROTO_ICMPV6) {
2388 if (optval != icmp6off)
2389 error = EINVAL;
2390 } else
2391 inp->in6p_cksum = optval;
2392 break;
2393
2394 case SOPT_GET:
2395 if (inp->inp_ip_p == IPPROTO_ICMPV6)
2396 optval = icmp6off;
2397 else
2398 optval = inp->in6p_cksum;
2399
2400 error = sooptcopyout(sopt, &optval, sizeof(optval));
2401 break;
2402
2403 default:
2404 error = EINVAL;
2405 break;
2406 }
2407 break;
2408
2409 default:
2410 error = ENOPROTOOPT;
2411 break;
2412 }
2413
2414 return (error);
2415 }
2416
2417 /*
2418 * Set up IP6 options in pcb for insertion in output packets or
2419 * specifying behavior of outgoing packets.
2420 */
2421 static int
ip6_pcbopts(struct ip6_pktopts ** pktopt,struct mbuf * m,struct socket * so,struct sockopt * sopt)2422 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m,
2423 struct socket *so, struct sockopt *sopt)
2424 {
2425 struct ip6_pktopts *opt = *pktopt;
2426 int error = 0;
2427 struct thread *td = sopt->sopt_td;
2428 struct epoch_tracker et;
2429
2430 /* turn off any old options. */
2431 if (opt) {
2432 #ifdef DIAGNOSTIC
2433 if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2434 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2435 opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2436 printf("ip6_pcbopts: all specified options are cleared.\n");
2437 #endif
2438 ip6_clearpktopts(opt, -1);
2439 } else {
2440 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
2441 if (opt == NULL)
2442 return (ENOMEM);
2443 }
2444 *pktopt = NULL;
2445
2446 if (!m || m->m_len == 0) {
2447 /*
2448 * Only turning off any previous options, regardless of
2449 * whether the opt is just created or given.
2450 */
2451 free(opt, M_IP6OPT);
2452 return (0);
2453 }
2454
2455 /* set options specified by user. */
2456 NET_EPOCH_ENTER(et);
2457 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ?
2458 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) {
2459 ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2460 free(opt, M_IP6OPT);
2461 NET_EPOCH_EXIT(et);
2462 return (error);
2463 }
2464 NET_EPOCH_EXIT(et);
2465 *pktopt = opt;
2466 return (0);
2467 }
2468
2469 /*
2470 * initialize ip6_pktopts. beware that there are non-zero default values in
2471 * the struct.
2472 */
2473 void
ip6_initpktopts(struct ip6_pktopts * opt)2474 ip6_initpktopts(struct ip6_pktopts *opt)
2475 {
2476
2477 bzero(opt, sizeof(*opt));
2478 opt->ip6po_hlim = -1; /* -1 means default hop limit */
2479 opt->ip6po_tclass = -1; /* -1 means default traffic class */
2480 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2481 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2482 }
2483
2484 static int
ip6_pcbopt(int optname,u_char * buf,int len,struct ip6_pktopts ** pktopt,struct ucred * cred,int uproto)2485 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2486 struct ucred *cred, int uproto)
2487 {
2488 struct epoch_tracker et;
2489 struct ip6_pktopts *opt;
2490 int ret;
2491
2492 if (*pktopt == NULL) {
2493 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2494 M_NOWAIT);
2495 if (*pktopt == NULL)
2496 return (ENOBUFS);
2497 ip6_initpktopts(*pktopt);
2498 }
2499 opt = *pktopt;
2500
2501 NET_EPOCH_ENTER(et);
2502 ret = ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto);
2503 NET_EPOCH_EXIT(et);
2504
2505 return (ret);
2506 }
2507
2508 #define GET_PKTOPT_VAR(field, lenexpr) do { \
2509 if (pktopt && pktopt->field) { \
2510 INP_RUNLOCK(inp); \
2511 optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \
2512 malloc_optdata = true; \
2513 INP_RLOCK(inp); \
2514 if (inp->inp_flags & INP_DROPPED) { \
2515 INP_RUNLOCK(inp); \
2516 free(optdata, M_TEMP); \
2517 return (ECONNRESET); \
2518 } \
2519 pktopt = inp->in6p_outputopts; \
2520 if (pktopt && pktopt->field) { \
2521 optdatalen = min(lenexpr, sopt->sopt_valsize); \
2522 bcopy(pktopt->field, optdata, optdatalen); \
2523 } else { \
2524 free(optdata, M_TEMP); \
2525 optdata = NULL; \
2526 malloc_optdata = false; \
2527 } \
2528 } \
2529 } while(0)
2530
2531 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \
2532 (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3)
2533
2534 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \
2535 pktopt->field->sa_len)
2536
2537 static int
ip6_getpcbopt(struct inpcb * inp,int optname,struct sockopt * sopt)2538 ip6_getpcbopt(struct inpcb *inp, int optname, struct sockopt *sopt)
2539 {
2540 void *optdata = NULL;
2541 bool malloc_optdata = false;
2542 int optdatalen = 0;
2543 int error = 0;
2544 struct in6_pktinfo null_pktinfo;
2545 int deftclass = 0, on;
2546 int defminmtu = IP6PO_MINMTU_MCASTONLY;
2547 int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2548 struct ip6_pktopts *pktopt;
2549
2550 INP_RLOCK(inp);
2551 pktopt = inp->in6p_outputopts;
2552
2553 switch (optname) {
2554 case IPV6_PKTINFO:
2555 optdata = (void *)&null_pktinfo;
2556 if (pktopt && pktopt->ip6po_pktinfo) {
2557 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo,
2558 sizeof(null_pktinfo));
2559 in6_clearscope(&null_pktinfo.ipi6_addr);
2560 } else {
2561 /* XXX: we don't have to do this every time... */
2562 bzero(&null_pktinfo, sizeof(null_pktinfo));
2563 }
2564 optdatalen = sizeof(struct in6_pktinfo);
2565 break;
2566 case IPV6_TCLASS:
2567 if (pktopt && pktopt->ip6po_tclass >= 0)
2568 deftclass = pktopt->ip6po_tclass;
2569 optdata = (void *)&deftclass;
2570 optdatalen = sizeof(int);
2571 break;
2572 case IPV6_HOPOPTS:
2573 GET_PKTOPT_EXT_HDR(ip6po_hbh);
2574 break;
2575 case IPV6_RTHDR:
2576 GET_PKTOPT_EXT_HDR(ip6po_rthdr);
2577 break;
2578 case IPV6_RTHDRDSTOPTS:
2579 GET_PKTOPT_EXT_HDR(ip6po_dest1);
2580 break;
2581 case IPV6_DSTOPTS:
2582 GET_PKTOPT_EXT_HDR(ip6po_dest2);
2583 break;
2584 case IPV6_NEXTHOP:
2585 GET_PKTOPT_SOCKADDR(ip6po_nexthop);
2586 break;
2587 case IPV6_USE_MIN_MTU:
2588 if (pktopt)
2589 defminmtu = pktopt->ip6po_minmtu;
2590 optdata = (void *)&defminmtu;
2591 optdatalen = sizeof(int);
2592 break;
2593 case IPV6_DONTFRAG:
2594 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2595 on = 1;
2596 else
2597 on = 0;
2598 optdata = (void *)&on;
2599 optdatalen = sizeof(on);
2600 break;
2601 case IPV6_PREFER_TEMPADDR:
2602 if (pktopt)
2603 defpreftemp = pktopt->ip6po_prefer_tempaddr;
2604 optdata = (void *)&defpreftemp;
2605 optdatalen = sizeof(int);
2606 break;
2607 default: /* should not happen */
2608 #ifdef DIAGNOSTIC
2609 panic("ip6_getpcbopt: unexpected option\n");
2610 #endif
2611 INP_RUNLOCK(inp);
2612 return (ENOPROTOOPT);
2613 }
2614 INP_RUNLOCK(inp);
2615
2616 error = sooptcopyout(sopt, optdata, optdatalen);
2617 if (malloc_optdata)
2618 free(optdata, M_TEMP);
2619
2620 return (error);
2621 }
2622
2623 void
ip6_clearpktopts(struct ip6_pktopts * pktopt,int optname)2624 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2625 {
2626 if (pktopt == NULL)
2627 return;
2628
2629 if (optname == -1 || optname == IPV6_PKTINFO) {
2630 if (pktopt->ip6po_pktinfo)
2631 free(pktopt->ip6po_pktinfo, M_IP6OPT);
2632 pktopt->ip6po_pktinfo = NULL;
2633 }
2634 if (optname == -1 || optname == IPV6_HOPLIMIT) {
2635 pktopt->ip6po_hlim = -1;
2636 pktopt->ip6po_valid &= ~IP6PO_VALID_HLIM;
2637 }
2638 if (optname == -1 || optname == IPV6_TCLASS) {
2639 pktopt->ip6po_tclass = -1;
2640 pktopt->ip6po_valid &= ~IP6PO_VALID_TC;
2641 }
2642 if (optname == -1 || optname == IPV6_NEXTHOP) {
2643 if (pktopt->ip6po_nextroute.ro_nh) {
2644 NH_FREE(pktopt->ip6po_nextroute.ro_nh);
2645 pktopt->ip6po_nextroute.ro_nh = NULL;
2646 }
2647 if (pktopt->ip6po_nexthop)
2648 free(pktopt->ip6po_nexthop, M_IP6OPT);
2649 pktopt->ip6po_nexthop = NULL;
2650 pktopt->ip6po_valid &= ~IP6PO_VALID_NHINFO;
2651 }
2652 if (optname == -1 || optname == IPV6_HOPOPTS) {
2653 if (pktopt->ip6po_hbh)
2654 free(pktopt->ip6po_hbh, M_IP6OPT);
2655 pktopt->ip6po_hbh = NULL;
2656 pktopt->ip6po_valid &= ~IP6PO_VALID_HBH;
2657 }
2658 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2659 if (pktopt->ip6po_dest1)
2660 free(pktopt->ip6po_dest1, M_IP6OPT);
2661 pktopt->ip6po_dest1 = NULL;
2662 pktopt->ip6po_valid &= ~IP6PO_VALID_DEST1;
2663 }
2664 if (optname == -1 || optname == IPV6_RTHDR) {
2665 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2666 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2667 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2668 if (pktopt->ip6po_route.ro_nh) {
2669 NH_FREE(pktopt->ip6po_route.ro_nh);
2670 pktopt->ip6po_route.ro_nh = NULL;
2671 }
2672 pktopt->ip6po_valid &= ~IP6PO_VALID_RHINFO;
2673 }
2674 if (optname == -1 || optname == IPV6_DSTOPTS) {
2675 if (pktopt->ip6po_dest2)
2676 free(pktopt->ip6po_dest2, M_IP6OPT);
2677 pktopt->ip6po_dest2 = NULL;
2678 pktopt->ip6po_valid &= ~IP6PO_VALID_DEST2;
2679 }
2680 }
2681
2682 #define PKTOPT_EXTHDRCPY(type) \
2683 do {\
2684 if (src->type) {\
2685 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2686 dst->type = malloc(hlen, M_IP6OPT, canwait);\
2687 if (dst->type == NULL)\
2688 goto bad;\
2689 bcopy(src->type, dst->type, hlen);\
2690 }\
2691 } while (/*CONSTCOND*/ 0)
2692
2693 static int
copypktopts(struct ip6_pktopts * dst,struct ip6_pktopts * src,int canwait)2694 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2695 {
2696 if (dst == NULL || src == NULL) {
2697 printf("ip6_clearpktopts: invalid argument\n");
2698 return (EINVAL);
2699 }
2700
2701 dst->ip6po_hlim = src->ip6po_hlim;
2702 dst->ip6po_tclass = src->ip6po_tclass;
2703 dst->ip6po_flags = src->ip6po_flags;
2704 dst->ip6po_minmtu = src->ip6po_minmtu;
2705 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
2706 if (src->ip6po_pktinfo) {
2707 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2708 M_IP6OPT, canwait);
2709 if (dst->ip6po_pktinfo == NULL)
2710 goto bad;
2711 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2712 }
2713 if (src->ip6po_nexthop) {
2714 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2715 M_IP6OPT, canwait);
2716 if (dst->ip6po_nexthop == NULL)
2717 goto bad;
2718 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2719 src->ip6po_nexthop->sa_len);
2720 }
2721 PKTOPT_EXTHDRCPY(ip6po_hbh);
2722 PKTOPT_EXTHDRCPY(ip6po_dest1);
2723 PKTOPT_EXTHDRCPY(ip6po_dest2);
2724 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2725 dst->ip6po_valid = src->ip6po_valid;
2726 return (0);
2727
2728 bad:
2729 ip6_clearpktopts(dst, -1);
2730 return (ENOBUFS);
2731 }
2732 #undef PKTOPT_EXTHDRCPY
2733
2734 struct ip6_pktopts *
ip6_copypktopts(struct ip6_pktopts * src,int canwait)2735 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2736 {
2737 int error;
2738 struct ip6_pktopts *dst;
2739
2740 dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2741 if (dst == NULL)
2742 return (NULL);
2743 ip6_initpktopts(dst);
2744
2745 if ((error = copypktopts(dst, src, canwait)) != 0) {
2746 free(dst, M_IP6OPT);
2747 return (NULL);
2748 }
2749
2750 return (dst);
2751 }
2752
2753 void
ip6_freepcbopts(struct ip6_pktopts * pktopt)2754 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2755 {
2756 if (pktopt == NULL)
2757 return;
2758
2759 ip6_clearpktopts(pktopt, -1);
2760
2761 free(pktopt, M_IP6OPT);
2762 }
2763
2764 /*
2765 * Set IPv6 outgoing packet options based on advanced API.
2766 */
2767 int
ip6_setpktopts(struct mbuf * control,struct ip6_pktopts * opt,struct ip6_pktopts * stickyopt,struct ucred * cred,int uproto)2768 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2769 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto)
2770 {
2771 struct cmsghdr *cm = NULL;
2772
2773 if (control == NULL || opt == NULL)
2774 return (EINVAL);
2775
2776 /*
2777 * ip6_setpktopt can call ifnet_byindex(), so it's imperative that we
2778 * are in the network epoch here.
2779 */
2780 NET_EPOCH_ASSERT();
2781
2782 ip6_initpktopts(opt);
2783 if (stickyopt) {
2784 int error;
2785
2786 /*
2787 * If stickyopt is provided, make a local copy of the options
2788 * for this particular packet, then override them by ancillary
2789 * objects.
2790 * XXX: copypktopts() does not copy the cached route to a next
2791 * hop (if any). This is not very good in terms of efficiency,
2792 * but we can allow this since this option should be rarely
2793 * used.
2794 */
2795 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2796 return (error);
2797 }
2798
2799 /*
2800 * XXX: Currently, we assume all the optional information is stored
2801 * in a single mbuf.
2802 */
2803 if (control->m_next)
2804 return (EINVAL);
2805
2806 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2807 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2808 int error;
2809
2810 if (control->m_len < CMSG_LEN(0))
2811 return (EINVAL);
2812
2813 cm = mtod(control, struct cmsghdr *);
2814 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2815 return (EINVAL);
2816 if (cm->cmsg_level != IPPROTO_IPV6)
2817 continue;
2818
2819 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2820 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2821 if (error)
2822 return (error);
2823 }
2824
2825 return (0);
2826 }
2827
2828 /*
2829 * Set a particular packet option, as a sticky option or an ancillary data
2830 * item. "len" can be 0 only when it's a sticky option.
2831 * We have 4 cases of combination of "sticky" and "cmsg":
2832 * "sticky=0, cmsg=0": impossible
2833 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2834 * "sticky=1, cmsg=0": RFC3542 socket option
2835 * "sticky=1, cmsg=1": RFC2292 socket option
2836 */
2837 static int
ip6_setpktopt(int optname,u_char * buf,int len,struct ip6_pktopts * opt,struct ucred * cred,int sticky,int cmsg,int uproto)2838 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2839 struct ucred *cred, int sticky, int cmsg, int uproto)
2840 {
2841 int minmtupolicy, preftemp;
2842 int error;
2843
2844 NET_EPOCH_ASSERT();
2845
2846 if (!sticky && !cmsg) {
2847 #ifdef DIAGNOSTIC
2848 printf("ip6_setpktopt: impossible case\n");
2849 #endif
2850 return (EINVAL);
2851 }
2852
2853 /*
2854 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2855 * not be specified in the context of RFC3542. Conversely,
2856 * RFC3542 types should not be specified in the context of RFC2292.
2857 */
2858 if (!cmsg) {
2859 switch (optname) {
2860 case IPV6_2292PKTINFO:
2861 case IPV6_2292HOPLIMIT:
2862 case IPV6_2292NEXTHOP:
2863 case IPV6_2292HOPOPTS:
2864 case IPV6_2292DSTOPTS:
2865 case IPV6_2292RTHDR:
2866 case IPV6_2292PKTOPTIONS:
2867 return (ENOPROTOOPT);
2868 }
2869 }
2870 if (sticky && cmsg) {
2871 switch (optname) {
2872 case IPV6_PKTINFO:
2873 case IPV6_HOPLIMIT:
2874 case IPV6_NEXTHOP:
2875 case IPV6_HOPOPTS:
2876 case IPV6_DSTOPTS:
2877 case IPV6_RTHDRDSTOPTS:
2878 case IPV6_RTHDR:
2879 case IPV6_USE_MIN_MTU:
2880 case IPV6_DONTFRAG:
2881 case IPV6_TCLASS:
2882 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */
2883 return (ENOPROTOOPT);
2884 }
2885 }
2886
2887 switch (optname) {
2888 case IPV6_2292PKTINFO:
2889 case IPV6_PKTINFO:
2890 {
2891 struct ifnet *ifp = NULL;
2892 struct in6_pktinfo *pktinfo;
2893
2894 if (len != sizeof(struct in6_pktinfo))
2895 return (EINVAL);
2896
2897 pktinfo = (struct in6_pktinfo *)buf;
2898
2899 /*
2900 * An application can clear any sticky IPV6_PKTINFO option by
2901 * doing a "regular" setsockopt with ipi6_addr being
2902 * in6addr_any and ipi6_ifindex being zero.
2903 * [RFC 3542, Section 6]
2904 */
2905 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2906 pktinfo->ipi6_ifindex == 0 &&
2907 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2908 ip6_clearpktopts(opt, optname);
2909 break;
2910 }
2911
2912 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2913 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2914 return (EINVAL);
2915 }
2916 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr))
2917 return (EINVAL);
2918 /* validate the interface index if specified. */
2919 if (pktinfo->ipi6_ifindex) {
2920 ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
2921 if (ifp == NULL)
2922 return (ENXIO);
2923 }
2924 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL ||
2925 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0))
2926 return (ENETDOWN);
2927
2928 if (ifp != NULL &&
2929 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2930 struct in6_ifaddr *ia;
2931
2932 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL);
2933 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr);
2934 if (ia == NULL)
2935 return (EADDRNOTAVAIL);
2936 ifa_free(&ia->ia_ifa);
2937 }
2938 /*
2939 * We store the address anyway, and let in6_selectsrc()
2940 * validate the specified address. This is because ipi6_addr
2941 * may not have enough information about its scope zone, and
2942 * we may need additional information (such as outgoing
2943 * interface or the scope zone of a destination address) to
2944 * disambiguate the scope.
2945 * XXX: the delay of the validation may confuse the
2946 * application when it is used as a sticky option.
2947 */
2948 if (opt->ip6po_pktinfo == NULL) {
2949 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2950 M_IP6OPT, M_NOWAIT);
2951 if (opt->ip6po_pktinfo == NULL)
2952 return (ENOBUFS);
2953 }
2954 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
2955 opt->ip6po_valid |= IP6PO_VALID_PKTINFO;
2956 break;
2957 }
2958
2959 case IPV6_2292HOPLIMIT:
2960 case IPV6_HOPLIMIT:
2961 {
2962 int *hlimp;
2963
2964 /*
2965 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2966 * to simplify the ordering among hoplimit options.
2967 */
2968 if (optname == IPV6_HOPLIMIT && sticky)
2969 return (ENOPROTOOPT);
2970
2971 if (len != sizeof(int))
2972 return (EINVAL);
2973 hlimp = (int *)buf;
2974 if (*hlimp < -1 || *hlimp > 255)
2975 return (EINVAL);
2976
2977 opt->ip6po_hlim = *hlimp;
2978 opt->ip6po_valid |= IP6PO_VALID_HLIM;
2979 break;
2980 }
2981
2982 case IPV6_TCLASS:
2983 {
2984 int tclass;
2985
2986 if (len != sizeof(int))
2987 return (EINVAL);
2988 tclass = *(int *)buf;
2989 if (tclass < -1 || tclass > 255)
2990 return (EINVAL);
2991
2992 opt->ip6po_tclass = tclass;
2993 opt->ip6po_valid |= IP6PO_VALID_TC;
2994 break;
2995 }
2996
2997 case IPV6_2292NEXTHOP:
2998 case IPV6_NEXTHOP:
2999 if (cred != NULL) {
3000 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS);
3001 if (error)
3002 return (error);
3003 }
3004
3005 if (len == 0) { /* just remove the option */
3006 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3007 break;
3008 }
3009
3010 /* check if cmsg_len is large enough for sa_len */
3011 if (len < sizeof(struct sockaddr) || len < *buf)
3012 return (EINVAL);
3013
3014 switch (((struct sockaddr *)buf)->sa_family) {
3015 case AF_INET6:
3016 {
3017 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
3018 int error;
3019
3020 if (sa6->sin6_len != sizeof(struct sockaddr_in6))
3021 return (EINVAL);
3022
3023 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
3024 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
3025 return (EINVAL);
3026 }
3027 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone))
3028 != 0) {
3029 return (error);
3030 }
3031 break;
3032 }
3033 case AF_LINK: /* should eventually be supported */
3034 default:
3035 return (EAFNOSUPPORT);
3036 }
3037
3038 /* turn off the previous option, then set the new option. */
3039 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3040 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
3041 if (opt->ip6po_nexthop == NULL)
3042 return (ENOBUFS);
3043 bcopy(buf, opt->ip6po_nexthop, *buf);
3044 opt->ip6po_valid |= IP6PO_VALID_NHINFO;
3045 break;
3046
3047 case IPV6_2292HOPOPTS:
3048 case IPV6_HOPOPTS:
3049 {
3050 struct ip6_hbh *hbh;
3051 int hbhlen;
3052
3053 /*
3054 * XXX: We don't allow a non-privileged user to set ANY HbH
3055 * options, since per-option restriction has too much
3056 * overhead.
3057 */
3058 if (cred != NULL) {
3059 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS);
3060 if (error)
3061 return (error);
3062 }
3063
3064 if (len == 0) {
3065 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3066 break; /* just remove the option */
3067 }
3068
3069 /* message length validation */
3070 if (len < sizeof(struct ip6_hbh))
3071 return (EINVAL);
3072 hbh = (struct ip6_hbh *)buf;
3073 hbhlen = (hbh->ip6h_len + 1) << 3;
3074 if (len != hbhlen)
3075 return (EINVAL);
3076
3077 /* turn off the previous option, then set the new option. */
3078 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3079 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
3080 if (opt->ip6po_hbh == NULL)
3081 return (ENOBUFS);
3082 bcopy(hbh, opt->ip6po_hbh, hbhlen);
3083 opt->ip6po_valid |= IP6PO_VALID_HBH;
3084
3085 break;
3086 }
3087
3088 case IPV6_2292DSTOPTS:
3089 case IPV6_DSTOPTS:
3090 case IPV6_RTHDRDSTOPTS:
3091 {
3092 struct ip6_dest *dest, **newdest = NULL;
3093 int destlen;
3094
3095 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */
3096 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS);
3097 if (error)
3098 return (error);
3099 }
3100
3101 if (len == 0) {
3102 ip6_clearpktopts(opt, optname);
3103 break; /* just remove the option */
3104 }
3105
3106 /* message length validation */
3107 if (len < sizeof(struct ip6_dest))
3108 return (EINVAL);
3109 dest = (struct ip6_dest *)buf;
3110 destlen = (dest->ip6d_len + 1) << 3;
3111 if (len != destlen)
3112 return (EINVAL);
3113
3114 /*
3115 * Determine the position that the destination options header
3116 * should be inserted; before or after the routing header.
3117 */
3118 switch (optname) {
3119 case IPV6_2292DSTOPTS:
3120 /*
3121 * The old advacned API is ambiguous on this point.
3122 * Our approach is to determine the position based
3123 * according to the existence of a routing header.
3124 * Note, however, that this depends on the order of the
3125 * extension headers in the ancillary data; the 1st
3126 * part of the destination options header must appear
3127 * before the routing header in the ancillary data,
3128 * too.
3129 * RFC3542 solved the ambiguity by introducing
3130 * separate ancillary data or option types.
3131 */
3132 if (opt->ip6po_rthdr == NULL)
3133 newdest = &opt->ip6po_dest1;
3134 else
3135 newdest = &opt->ip6po_dest2;
3136 break;
3137 case IPV6_RTHDRDSTOPTS:
3138 newdest = &opt->ip6po_dest1;
3139 break;
3140 case IPV6_DSTOPTS:
3141 newdest = &opt->ip6po_dest2;
3142 break;
3143 }
3144
3145 /* turn off the previous option, then set the new option. */
3146 ip6_clearpktopts(opt, optname);
3147 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
3148 if (*newdest == NULL)
3149 return (ENOBUFS);
3150 bcopy(dest, *newdest, destlen);
3151 if (newdest == &opt->ip6po_dest1)
3152 opt->ip6po_valid |= IP6PO_VALID_DEST1;
3153 else
3154 opt->ip6po_valid |= IP6PO_VALID_DEST2;
3155
3156 break;
3157 }
3158
3159 case IPV6_2292RTHDR:
3160 case IPV6_RTHDR:
3161 {
3162 struct ip6_rthdr *rth;
3163 int rthlen;
3164
3165 if (len == 0) {
3166 ip6_clearpktopts(opt, IPV6_RTHDR);
3167 break; /* just remove the option */
3168 }
3169
3170 /* message length validation */
3171 if (len < sizeof(struct ip6_rthdr))
3172 return (EINVAL);
3173 rth = (struct ip6_rthdr *)buf;
3174 rthlen = (rth->ip6r_len + 1) << 3;
3175 if (len != rthlen)
3176 return (EINVAL);
3177
3178 switch (rth->ip6r_type) {
3179 case IPV6_RTHDR_TYPE_0:
3180 if (rth->ip6r_len == 0) /* must contain one addr */
3181 return (EINVAL);
3182 if (rth->ip6r_len % 2) /* length must be even */
3183 return (EINVAL);
3184 if (rth->ip6r_len / 2 != rth->ip6r_segleft)
3185 return (EINVAL);
3186 break;
3187 default:
3188 return (EINVAL); /* not supported */
3189 }
3190
3191 /* turn off the previous option */
3192 ip6_clearpktopts(opt, IPV6_RTHDR);
3193 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3194 if (opt->ip6po_rthdr == NULL)
3195 return (ENOBUFS);
3196 bcopy(rth, opt->ip6po_rthdr, rthlen);
3197 opt->ip6po_valid |= IP6PO_VALID_RHINFO;
3198
3199 break;
3200 }
3201
3202 case IPV6_USE_MIN_MTU:
3203 if (len != sizeof(int))
3204 return (EINVAL);
3205 minmtupolicy = *(int *)buf;
3206 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3207 minmtupolicy != IP6PO_MINMTU_DISABLE &&
3208 minmtupolicy != IP6PO_MINMTU_ALL) {
3209 return (EINVAL);
3210 }
3211 opt->ip6po_minmtu = minmtupolicy;
3212 break;
3213
3214 case IPV6_DONTFRAG:
3215 if (len != sizeof(int))
3216 return (EINVAL);
3217
3218 if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3219 /*
3220 * we ignore this option for TCP sockets.
3221 * (RFC3542 leaves this case unspecified.)
3222 */
3223 opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3224 } else
3225 opt->ip6po_flags |= IP6PO_DONTFRAG;
3226 break;
3227
3228 case IPV6_PREFER_TEMPADDR:
3229 if (len != sizeof(int))
3230 return (EINVAL);
3231 preftemp = *(int *)buf;
3232 if (preftemp != IP6PO_TEMPADDR_SYSTEM &&
3233 preftemp != IP6PO_TEMPADDR_NOTPREFER &&
3234 preftemp != IP6PO_TEMPADDR_PREFER) {
3235 return (EINVAL);
3236 }
3237 opt->ip6po_prefer_tempaddr = preftemp;
3238 break;
3239
3240 default:
3241 return (ENOPROTOOPT);
3242 } /* end of switch */
3243
3244 return (0);
3245 }
3246
3247 /*
3248 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3249 * packet to the input queue of a specified interface. Note that this
3250 * calls the output routine of the loopback "driver", but with an interface
3251 * pointer that might NOT be &loif -- easier than replicating that code here.
3252 */
3253 void
ip6_mloopback(struct ifnet * ifp,struct mbuf * m)3254 ip6_mloopback(struct ifnet *ifp, struct mbuf *m)
3255 {
3256 struct mbuf *copym;
3257 struct ip6_hdr *ip6;
3258
3259 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT);
3260 if (copym == NULL)
3261 return;
3262
3263 /*
3264 * Make sure to deep-copy IPv6 header portion in case the data
3265 * is in an mbuf cluster, so that we can safely override the IPv6
3266 * header portion later.
3267 */
3268 if (!M_WRITABLE(copym) ||
3269 copym->m_len < sizeof(struct ip6_hdr)) {
3270 copym = m_pullup(copym, sizeof(struct ip6_hdr));
3271 if (copym == NULL)
3272 return;
3273 }
3274 ip6 = mtod(copym, struct ip6_hdr *);
3275 /*
3276 * clear embedded scope identifiers if necessary.
3277 * in6_clearscope will touch the addresses only when necessary.
3278 */
3279 in6_clearscope(&ip6->ip6_src);
3280 in6_clearscope(&ip6->ip6_dst);
3281 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
3282 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 |
3283 CSUM_PSEUDO_HDR;
3284 copym->m_pkthdr.csum_data = 0xffff;
3285 }
3286 if_simloop(ifp, copym, AF_INET6, 0);
3287 }
3288
3289 /*
3290 * Chop IPv6 header off from the payload.
3291 */
3292 static int
ip6_splithdr(struct mbuf * m,struct ip6_exthdrs * exthdrs)3293 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3294 {
3295 struct mbuf *mh;
3296 struct ip6_hdr *ip6;
3297
3298 ip6 = mtod(m, struct ip6_hdr *);
3299 if (m->m_len > sizeof(*ip6)) {
3300 mh = m_gethdr(M_NOWAIT, MT_DATA);
3301 if (mh == NULL) {
3302 m_freem(m);
3303 return ENOBUFS;
3304 }
3305 m_move_pkthdr(mh, m);
3306 M_ALIGN(mh, sizeof(*ip6));
3307 m->m_len -= sizeof(*ip6);
3308 m->m_data += sizeof(*ip6);
3309 mh->m_next = m;
3310 m = mh;
3311 m->m_len = sizeof(*ip6);
3312 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
3313 }
3314 exthdrs->ip6e_ip6 = m;
3315 return 0;
3316 }
3317
3318 /*
3319 * Compute IPv6 extension header length.
3320 */
3321 int
ip6_optlen(struct inpcb * inp)3322 ip6_optlen(struct inpcb *inp)
3323 {
3324 int len;
3325
3326 if (!inp->in6p_outputopts)
3327 return 0;
3328
3329 len = 0;
3330 #define elen(x) \
3331 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3332
3333 len += elen(inp->in6p_outputopts->ip6po_hbh);
3334 if (inp->in6p_outputopts->ip6po_rthdr)
3335 /* dest1 is valid with rthdr only */
3336 len += elen(inp->in6p_outputopts->ip6po_dest1);
3337 len += elen(inp->in6p_outputopts->ip6po_rthdr);
3338 len += elen(inp->in6p_outputopts->ip6po_dest2);
3339 return len;
3340 #undef elen
3341 }
3342