xref: /freebsd/sys/netinet6/ip6_output.c (revision 0ff2d00d2aa37cd883ffd8c7363dddef9cba267e)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	$KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $
32  */
33 
34 /*-
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  */
62 
63 #include <sys/cdefs.h>
64 #include "opt_inet.h"
65 #include "opt_inet6.h"
66 #include "opt_ipsec.h"
67 #include "opt_kern_tls.h"
68 #include "opt_ratelimit.h"
69 #include "opt_route.h"
70 #include "opt_rss.h"
71 #include "opt_sctp.h"
72 
73 #include <sys/param.h>
74 #include <sys/kernel.h>
75 #include <sys/ktls.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/errno.h>
79 #include <sys/priv.h>
80 #include <sys/proc.h>
81 #include <sys/protosw.h>
82 #include <sys/socket.h>
83 #include <sys/socketvar.h>
84 #include <sys/syslog.h>
85 #include <sys/ucred.h>
86 
87 #include <machine/in_cksum.h>
88 
89 #include <net/if.h>
90 #include <net/if_var.h>
91 #include <net/if_private.h>
92 #include <net/if_vlan_var.h>
93 #include <net/if_llatbl.h>
94 #include <net/ethernet.h>
95 #include <net/netisr.h>
96 #include <net/route.h>
97 #include <net/route/nhop.h>
98 #include <net/pfil.h>
99 #include <net/rss_config.h>
100 #include <net/vnet.h>
101 
102 #include <netinet/in.h>
103 #include <netinet/in_var.h>
104 #include <netinet/ip_var.h>
105 #include <netinet6/in6_fib.h>
106 #include <netinet6/in6_var.h>
107 #include <netinet/ip6.h>
108 #include <netinet/icmp6.h>
109 #include <netinet6/ip6_var.h>
110 #include <netinet/in_pcb.h>
111 #include <netinet/tcp_var.h>
112 #include <netinet6/nd6.h>
113 #include <netinet6/in6_rss.h>
114 
115 #include <netipsec/ipsec_support.h>
116 #if defined(SCTP) || defined(SCTP_SUPPORT)
117 #include <netinet/sctp.h>
118 #include <netinet/sctp_crc32.h>
119 #endif
120 
121 #include <netinet6/scope6_var.h>
122 
123 extern int in6_mcast_loop;
124 
125 struct ip6_exthdrs {
126 	struct mbuf *ip6e_ip6;
127 	struct mbuf *ip6e_hbh;
128 	struct mbuf *ip6e_dest1;
129 	struct mbuf *ip6e_rthdr;
130 	struct mbuf *ip6e_dest2;
131 };
132 
133 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
134 
135 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
136 			   struct ucred *, int);
137 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *,
138 	struct socket *, struct sockopt *);
139 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *);
140 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *,
141 	struct ucred *, int, int, int);
142 
143 static int ip6_copyexthdr(struct mbuf **, caddr_t, int);
144 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
145 	struct ip6_frag **);
146 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
147 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
148 static int ip6_getpmtu(struct route_in6 *, int,
149 	struct ifnet *, const struct in6_addr *, u_long *, int *, u_int,
150 	u_int);
151 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long,
152 	u_long *, int *, u_int);
153 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *);
154 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
155 
156 /*
157  * Make an extension header from option data.  hp is the source,
158  * mp is the destination, and _ol is the optlen.
159  */
160 #define	MAKE_EXTHDR(hp, mp, _ol)					\
161     do {								\
162 	struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
163 	error = ip6_copyexthdr((mp), (caddr_t)(hp),		\
164 	    ((eh)->ip6e_len + 1) << 3);				\
165 	if (error)						\
166 		goto freehdrs;					\
167 	(_ol) += (*(mp))->m_len;				\
168     } while (/*CONSTCOND*/ 0)
169 
170 /*
171  * Form a chain of extension headers.
172  * m is the extension header mbuf
173  * mp is the previous mbuf in the chain
174  * p is the next header
175  * i is the type of option.
176  */
177 #define MAKE_CHAIN(m, mp, p, i)\
178     do {\
179 	if (m) {\
180 		if (!hdrsplit) \
181 			panic("%s:%d: assumption failed: "\
182 			    "hdr not split: hdrsplit %d exthdrs %p",\
183 			    __func__, __LINE__, hdrsplit, &exthdrs);\
184 		*mtod((m), u_char *) = *(p);\
185 		*(p) = (i);\
186 		p = mtod((m), u_char *);\
187 		(m)->m_next = (mp)->m_next;\
188 		(mp)->m_next = (m);\
189 		(mp) = (m);\
190 	}\
191     } while (/*CONSTCOND*/ 0)
192 
193 void
in6_delayed_cksum(struct mbuf * m,uint32_t plen,u_short offset)194 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset)
195 {
196 	u_short csum;
197 
198 	csum = in_cksum_skip(m, offset + plen, offset);
199 	if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0)
200 		csum = 0xffff;
201 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
202 
203 	if (offset + sizeof(csum) > m->m_len)
204 		m_copyback(m, offset, sizeof(csum), (caddr_t)&csum);
205 	else
206 		*(u_short *)mtodo(m, offset) = csum;
207 }
208 
209 static void
ip6_output_delayed_csum(struct mbuf * m,struct ifnet * ifp,int csum_flags,int plen,int optlen)210 ip6_output_delayed_csum(struct mbuf *m, struct ifnet *ifp, int csum_flags,
211     int plen, int optlen)
212 {
213 
214 	KASSERT((plen >= optlen), ("%s:%d: plen %d < optlen %d, m %p, ifp %p "
215 	    "csum_flags %#x",
216 	    __func__, __LINE__, plen, optlen, m, ifp, csum_flags));
217 
218 	if (csum_flags & CSUM_DELAY_DATA_IPV6) {
219 		in6_delayed_cksum(m, plen - optlen,
220 		    sizeof(struct ip6_hdr) + optlen);
221 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
222 	}
223 #if defined(SCTP) || defined(SCTP_SUPPORT)
224 	if (csum_flags & CSUM_SCTP_IPV6) {
225 		sctp_delayed_cksum(m, sizeof(struct ip6_hdr) + optlen);
226 		m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6;
227 	}
228 #endif
229 }
230 
231 int
ip6_fragment(struct ifnet * ifp,struct mbuf * m0,int hlen,u_char nextproto,int fraglen,uint32_t id)232 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto,
233     int fraglen , uint32_t id)
234 {
235 	struct mbuf *m, **mnext, *m_frgpart;
236 	struct ip6_hdr *ip6, *mhip6;
237 	struct ip6_frag *ip6f;
238 	int off;
239 	int error;
240 	int tlen = m0->m_pkthdr.len;
241 
242 	KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8"));
243 
244 	m = m0;
245 	ip6 = mtod(m, struct ip6_hdr *);
246 	mnext = &m->m_nextpkt;
247 
248 	for (off = hlen; off < tlen; off += fraglen) {
249 		m = m_gethdr(M_NOWAIT, MT_DATA);
250 		if (!m) {
251 			IP6STAT_INC(ip6s_odropped);
252 			return (ENOBUFS);
253 		}
254 
255 		/*
256 		 * Make sure the complete packet header gets copied
257 		 * from the originating mbuf to the newly created
258 		 * mbuf. This also ensures that existing firewall
259 		 * classification(s), VLAN tags and so on get copied
260 		 * to the resulting fragmented packet(s):
261 		 */
262 		if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) {
263 			m_free(m);
264 			IP6STAT_INC(ip6s_odropped);
265 			return (ENOBUFS);
266 		}
267 
268 		*mnext = m;
269 		mnext = &m->m_nextpkt;
270 		m->m_data += max_linkhdr;
271 		mhip6 = mtod(m, struct ip6_hdr *);
272 		*mhip6 = *ip6;
273 		m->m_len = sizeof(*mhip6);
274 		error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
275 		if (error) {
276 			IP6STAT_INC(ip6s_odropped);
277 			return (error);
278 		}
279 		ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
280 		if (off + fraglen >= tlen)
281 			fraglen = tlen - off;
282 		else
283 			ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
284 		mhip6->ip6_plen = htons((u_short)(fraglen + hlen +
285 		    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
286 		if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) {
287 			IP6STAT_INC(ip6s_odropped);
288 			return (ENOBUFS);
289 		}
290 		m_cat(m, m_frgpart);
291 		m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f);
292 		ip6f->ip6f_reserved = 0;
293 		ip6f->ip6f_ident = id;
294 		ip6f->ip6f_nxt = nextproto;
295 		IP6STAT_INC(ip6s_ofragments);
296 		in6_ifstat_inc(ifp, ifs6_out_fragcreat);
297 	}
298 
299 	return (0);
300 }
301 
302 static int
ip6_output_send(struct inpcb * inp,struct ifnet * ifp,struct ifnet * origifp,struct mbuf * m,struct sockaddr_in6 * dst,struct route_in6 * ro,bool stamp_tag)303 ip6_output_send(struct inpcb *inp, struct ifnet *ifp, struct ifnet *origifp,
304     struct mbuf *m, struct sockaddr_in6 *dst, struct route_in6 *ro,
305     bool stamp_tag)
306 {
307 #ifdef KERN_TLS
308 	struct ktls_session *tls = NULL;
309 #endif
310 	struct m_snd_tag *mst;
311 	int error;
312 
313 	MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
314 	mst = NULL;
315 
316 #ifdef KERN_TLS
317 	/*
318 	 * If this is an unencrypted TLS record, save a reference to
319 	 * the record.  This local reference is used to call
320 	 * ktls_output_eagain after the mbuf has been freed (thus
321 	 * dropping the mbuf's reference) in if_output.
322 	 */
323 	if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) {
324 		tls = ktls_hold(m->m_next->m_epg_tls);
325 		mst = tls->snd_tag;
326 
327 		/*
328 		 * If a TLS session doesn't have a valid tag, it must
329 		 * have had an earlier ifp mismatch, so drop this
330 		 * packet.
331 		 */
332 		if (mst == NULL) {
333 			m_freem(m);
334 			error = EAGAIN;
335 			goto done;
336 		}
337 		/*
338 		 * Always stamp tags that include NIC ktls.
339 		 */
340 		stamp_tag = true;
341 	}
342 #endif
343 #ifdef RATELIMIT
344 	if (inp != NULL && mst == NULL) {
345 		if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 ||
346 		    (inp->inp_snd_tag != NULL &&
347 		    inp->inp_snd_tag->ifp != ifp))
348 			in_pcboutput_txrtlmt(inp, ifp, m);
349 
350 		if (inp->inp_snd_tag != NULL)
351 			mst = inp->inp_snd_tag;
352 	}
353 #endif
354 	if (stamp_tag && mst != NULL) {
355 		KASSERT(m->m_pkthdr.rcvif == NULL,
356 		    ("trying to add a send tag to a forwarded packet"));
357 		if (mst->ifp != ifp) {
358 			m_freem(m);
359 			error = EAGAIN;
360 			goto done;
361 		}
362 
363 		/* stamp send tag on mbuf */
364 		m->m_pkthdr.snd_tag = m_snd_tag_ref(mst);
365 		m->m_pkthdr.csum_flags |= CSUM_SND_TAG;
366 	}
367 
368 	error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro);
369 
370 done:
371 	/* Check for route change invalidating send tags. */
372 #ifdef KERN_TLS
373 	if (tls != NULL) {
374 		if (error == EAGAIN)
375 			error = ktls_output_eagain(inp, tls);
376 		ktls_free(tls);
377 	}
378 #endif
379 #ifdef RATELIMIT
380 	if (error == EAGAIN)
381 		in_pcboutput_eagain(inp);
382 #endif
383 	return (error);
384 }
385 
386 /*
387  * IP6 output.
388  * The packet in mbuf chain m contains a skeletal IP6 header (with pri, len,
389  * nxt, hlim, src, dst).
390  * This function may modify ver and hlim only.
391  * The mbuf chain containing the packet will be freed.
392  * The mbuf opt, if present, will not be freed.
393  * If route_in6 ro is present and has ro_nh initialized, route lookup would be
394  * skipped and ro->ro_nh would be used. If ro is present but ro->ro_nh is NULL,
395  * then result of route lookup is stored in ro->ro_nh.
396  *
397  * Type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and nd_ifinfo.linkmtu
398  * is uint32_t.  So we use u_long to hold largest one, which is rt_mtu.
399  *
400  * ifpp - XXX: just for statistics
401  */
402 int
ip6_output(struct mbuf * m0,struct ip6_pktopts * opt,struct route_in6 * ro,int flags,struct ip6_moptions * im6o,struct ifnet ** ifpp,struct inpcb * inp)403 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt,
404     struct route_in6 *ro, int flags, struct ip6_moptions *im6o,
405     struct ifnet **ifpp, struct inpcb *inp)
406 {
407 	struct ip6_hdr *ip6;
408 	struct ifnet *ifp, *origifp;
409 	struct mbuf *m = m0;
410 	struct mbuf *mprev;
411 	struct route_in6 *ro_pmtu;
412 	struct nhop_object *nh;
413 	struct sockaddr_in6 *dst, sin6, src_sa, dst_sa;
414 	struct in6_addr odst;
415 	u_char *nexthdrp;
416 	int tlen, len;
417 	int error = 0;
418 	int vlan_pcp = -1;
419 	struct in6_ifaddr *ia = NULL;
420 	u_long mtu;
421 	int alwaysfrag, dontfrag;
422 	u_int32_t optlen, plen = 0, unfragpartlen;
423 	struct ip6_exthdrs exthdrs;
424 	struct in6_addr src0, dst0;
425 	u_int32_t zone;
426 	bool hdrsplit;
427 	int sw_csum, tso;
428 	int needfiblookup;
429 	uint32_t fibnum;
430 	struct m_tag *fwd_tag = NULL;
431 	uint32_t id;
432 	uint32_t optvalid;
433 
434 	NET_EPOCH_ASSERT();
435 
436 	if (inp != NULL) {
437 		INP_LOCK_ASSERT(inp);
438 		M_SETFIB(m, inp->inp_inc.inc_fibnum);
439 		if ((flags & IP_NODEFAULTFLOWID) == 0) {
440 			/* Unconditionally set flowid. */
441 			m->m_pkthdr.flowid = inp->inp_flowid;
442 			M_HASHTYPE_SET(m, inp->inp_flowtype);
443 		}
444 		if ((inp->inp_flags2 & INP_2PCP_SET) != 0)
445 			vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >>
446 			    INP_2PCP_SHIFT;
447 #ifdef NUMA
448 		m->m_pkthdr.numa_domain = inp->inp_numa_domain;
449 #endif
450 	}
451 
452 	/* Source address validation. */
453 	ip6 = mtod(m, struct ip6_hdr *);
454 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
455 	    (flags & IPV6_UNSPECSRC) == 0) {
456 		error = EOPNOTSUPP;
457 		IP6STAT_INC(ip6s_badscope);
458 		goto bad;
459 	}
460 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
461 		error = EOPNOTSUPP;
462 		IP6STAT_INC(ip6s_badscope);
463 		goto bad;
464 	}
465 
466 	/*
467 	 * If we are given packet options to add extension headers prepare them.
468 	 * Calculate the total length of the extension header chain.
469 	 * Keep the length of the unfragmentable part for fragmentation.
470 	 */
471 	bzero(&exthdrs, sizeof(exthdrs));
472 	optlen = optvalid = 0;
473 	unfragpartlen = sizeof(struct ip6_hdr);
474 	if (opt) {
475 		optvalid = opt->ip6po_valid;
476 
477 		/* Hop-by-Hop options header. */
478 		if ((optvalid & IP6PO_VALID_HBH) != 0)
479 			MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh, optlen);
480 
481 		/* Destination options header (1st part). */
482 		if ((optvalid & IP6PO_VALID_RHINFO) != 0) {
483 #ifndef RTHDR_SUPPORT_IMPLEMENTED
484 			/*
485 			 * If there is a routing header, discard the packet
486 			 * right away here. RH0/1 are obsolete and we do not
487 			 * currently support RH2/3/4.
488 			 * People trying to use RH253/254 may want to disable
489 			 * this check.
490 			 * The moment we do support any routing header (again)
491 			 * this block should check the routing type more
492 			 * selectively.
493 			 */
494 			error = EINVAL;
495 			goto bad;
496 #endif
497 
498 			/*
499 			 * Destination options header (1st part).
500 			 * This only makes sense with a routing header.
501 			 * See Section 9.2 of RFC 3542.
502 			 * Disabling this part just for MIP6 convenience is
503 			 * a bad idea.  We need to think carefully about a
504 			 * way to make the advanced API coexist with MIP6
505 			 * options, which might automatically be inserted in
506 			 * the kernel.
507 			 */
508 			if ((optvalid & IP6PO_VALID_DEST1) != 0)
509 				MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1,
510 				    optlen);
511 		}
512 		/* Routing header. */
513 		if ((optvalid & IP6PO_VALID_RHINFO) != 0)
514 			MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr, optlen);
515 
516 		unfragpartlen += optlen;
517 
518 		/*
519 		 * NOTE: we don't add AH/ESP length here (done in
520 		 * ip6_ipsec_output()).
521 		 */
522 
523 		/* Destination options header (2nd part). */
524 		if ((optvalid & IP6PO_VALID_DEST2) != 0)
525 			MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2, optlen);
526 	}
527 
528 	/*
529 	 * If there is at least one extension header,
530 	 * separate IP6 header from the payload.
531 	 */
532 	hdrsplit = false;
533 	if (optlen) {
534 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
535 			m = NULL;
536 			goto freehdrs;
537 		}
538 		m = exthdrs.ip6e_ip6;
539 		ip6 = mtod(m, struct ip6_hdr *);
540 		hdrsplit = true;
541 	}
542 
543 	/* Adjust mbuf packet header length. */
544 	m->m_pkthdr.len += optlen;
545 	plen = m->m_pkthdr.len - sizeof(*ip6);
546 
547 	/* If this is a jumbo payload, insert a jumbo payload option. */
548 	if (plen > IPV6_MAXPACKET) {
549 		if (!hdrsplit) {
550 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
551 				m = NULL;
552 				goto freehdrs;
553 			}
554 			m = exthdrs.ip6e_ip6;
555 			ip6 = mtod(m, struct ip6_hdr *);
556 			hdrsplit = true;
557 		}
558 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
559 			goto freehdrs;
560 		ip6->ip6_plen = 0;
561 	} else
562 		ip6->ip6_plen = htons(plen);
563 	nexthdrp = &ip6->ip6_nxt;
564 
565 	if (optlen) {
566 		/*
567 		 * Concatenate headers and fill in next header fields.
568 		 * Here we have, on "m"
569 		 *	IPv6 payload
570 		 * and we insert headers accordingly.
571 		 * Finally, we should be getting:
572 		 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload].
573 		 *
574 		 * During the header composing process "m" points to IPv6
575 		 * header.  "mprev" points to an extension header prior to esp.
576 		 */
577 		mprev = m;
578 
579 		/*
580 		 * We treat dest2 specially.  This makes IPsec processing
581 		 * much easier.  The goal here is to make mprev point the
582 		 * mbuf prior to dest2.
583 		 *
584 		 * Result: IPv6 dest2 payload.
585 		 * m and mprev will point to IPv6 header.
586 		 */
587 		if (exthdrs.ip6e_dest2) {
588 			if (!hdrsplit)
589 				panic("%s:%d: assumption failed: "
590 				    "hdr not split: hdrsplit %d exthdrs %p",
591 				    __func__, __LINE__, hdrsplit, &exthdrs);
592 			exthdrs.ip6e_dest2->m_next = m->m_next;
593 			m->m_next = exthdrs.ip6e_dest2;
594 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
595 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
596 		}
597 
598 		/*
599 		 * Result: IPv6 hbh dest1 rthdr dest2 payload.
600 		 * m will point to IPv6 header.  mprev will point to the
601 		 * extension header prior to dest2 (rthdr in the above case).
602 		 */
603 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
604 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
605 			   IPPROTO_DSTOPTS);
606 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
607 			   IPPROTO_ROUTING);
608 	}
609 
610 	IP6STAT_INC(ip6s_localout);
611 
612 	/* Route packet. */
613 	ro_pmtu = ro;
614 	if ((optvalid & IP6PO_VALID_RHINFO) != 0)
615 		ro = &opt->ip6po_route;
616 	if (ro != NULL)
617 		dst = (struct sockaddr_in6 *)&ro->ro_dst;
618 	else
619 		dst = &sin6;
620 	fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m);
621 
622 again:
623 	/*
624 	 * If specified, try to fill in the traffic class field.
625 	 * Do not override if a non-zero value is already set.
626 	 * We check the diffserv field and the ECN field separately.
627 	 */
628 	if ((optvalid & IP6PO_VALID_TC) != 0){
629 		int mask = 0;
630 
631 		if (IPV6_DSCP(ip6) == 0)
632 			mask |= 0xfc;
633 		if (IPV6_ECN(ip6) == 0)
634 			mask |= 0x03;
635 		if (mask != 0)
636 			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
637 	}
638 
639 	/* Fill in or override the hop limit field, if necessary. */
640 	if ((optvalid & IP6PO_VALID_HLIM) != 0)
641 		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
642 	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
643 		if (im6o != NULL)
644 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
645 		else
646 			ip6->ip6_hlim = V_ip6_defmcasthlim;
647 	}
648 
649 	if (ro == NULL || ro->ro_nh == NULL) {
650 		bzero(dst, sizeof(*dst));
651 		dst->sin6_family = AF_INET6;
652 		dst->sin6_len = sizeof(*dst);
653 		dst->sin6_addr = ip6->ip6_dst;
654 	}
655 	/*
656 	 * Validate route against routing table changes.
657 	 * Make sure that the address family is set in route.
658 	 */
659 	nh = NULL;
660 	ifp = NULL;
661 	mtu = 0;
662 	if (ro != NULL) {
663 		if (ro->ro_nh != NULL && inp != NULL) {
664 			ro->ro_dst.sin6_family = AF_INET6; /* XXX KASSERT? */
665 			NH_VALIDATE((struct route *)ro, &inp->inp_rt_cookie,
666 			    fibnum);
667 		}
668 		if (ro->ro_nh != NULL && fwd_tag == NULL &&
669 		    (!NH_IS_VALID(ro->ro_nh) ||
670 		    ro->ro_dst.sin6_family != AF_INET6 ||
671 		    !IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)))
672 			RO_INVALIDATE_CACHE(ro);
673 
674 		if (ro->ro_nh != NULL && fwd_tag == NULL &&
675 		    ro->ro_dst.sin6_family == AF_INET6 &&
676 		    IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) {
677 			/* Nexthop is valid and contains valid ifp */
678 			nh = ro->ro_nh;
679 		} else {
680 			if (ro->ro_lle)
681 				LLE_FREE(ro->ro_lle);	/* zeros ro_lle */
682 			ro->ro_lle = NULL;
683 			if (fwd_tag == NULL) {
684 				bzero(&dst_sa, sizeof(dst_sa));
685 				dst_sa.sin6_family = AF_INET6;
686 				dst_sa.sin6_len = sizeof(dst_sa);
687 				dst_sa.sin6_addr = ip6->ip6_dst;
688 			}
689 			error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp,
690 			    &nh, fibnum, m->m_pkthdr.flowid);
691 			if (error != 0) {
692 				IP6STAT_INC(ip6s_noroute);
693 				if (ifp != NULL)
694 					in6_ifstat_inc(ifp, ifs6_out_discard);
695 				goto bad;
696 			}
697 			/*
698 			 * At this point at least @ifp is not NULL
699 			 * Can be the case when dst is multicast, link-local or
700 			 * interface is explicitly specificed by the caller.
701 			 */
702 		}
703 		if (nh == NULL) {
704 			/*
705 			 * If in6_selectroute() does not return a nexthop
706 			 * dst may not have been updated.
707 			 */
708 			*dst = dst_sa;	/* XXX */
709 			origifp = ifp;
710 			mtu = ifp->if_mtu;
711 		} else {
712 			ifp = nh->nh_ifp;
713 			origifp = nh->nh_aifp;
714 			ia = (struct in6_ifaddr *)(nh->nh_ifa);
715 			counter_u64_add(nh->nh_pksent, 1);
716 		}
717 	} else {
718 		struct nhop_object *nh;
719 		struct in6_addr kdst;
720 		uint32_t scopeid;
721 
722 		if (fwd_tag == NULL) {
723 			bzero(&dst_sa, sizeof(dst_sa));
724 			dst_sa.sin6_family = AF_INET6;
725 			dst_sa.sin6_len = sizeof(dst_sa);
726 			dst_sa.sin6_addr = ip6->ip6_dst;
727 		}
728 
729 		if (IN6_IS_ADDR_MULTICAST(&dst_sa.sin6_addr) &&
730 		    im6o != NULL &&
731 		    (ifp = im6o->im6o_multicast_ifp) != NULL) {
732 			/* We do not need a route lookup. */
733 			*dst = dst_sa;	/* XXX */
734 			origifp = ifp;
735 			goto nonh6lookup;
736 		}
737 
738 		in6_splitscope(&dst_sa.sin6_addr, &kdst, &scopeid);
739 
740 		if (IN6_IS_ADDR_MC_LINKLOCAL(&dst_sa.sin6_addr) ||
741 		    IN6_IS_ADDR_MC_NODELOCAL(&dst_sa.sin6_addr)) {
742 			if (scopeid > 0) {
743 				ifp = in6_getlinkifnet(scopeid);
744 				if (ifp == NULL) {
745 					error = EHOSTUNREACH;
746 					goto bad;
747 				}
748 				*dst = dst_sa;	/* XXX */
749 				origifp = ifp;
750 				goto nonh6lookup;
751 			}
752 		}
753 
754 		nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE,
755 		    m->m_pkthdr.flowid);
756 		if (nh == NULL) {
757 			IP6STAT_INC(ip6s_noroute);
758 			/* No ifp in6_ifstat_inc(ifp, ifs6_out_discard); */
759 			error = EHOSTUNREACH;
760 			goto bad;
761 		}
762 
763 		ifp = nh->nh_ifp;
764 		origifp = nh->nh_aifp;
765 		ia = ifatoia6(nh->nh_ifa);
766 		if (nh->nh_flags & NHF_GATEWAY)
767 			dst->sin6_addr = nh->gw6_sa.sin6_addr;
768 		else if (fwd_tag != NULL)
769 			dst->sin6_addr = dst_sa.sin6_addr;
770 nonh6lookup:
771 		;
772 	}
773 	/*
774 	 * At this point ifp MUST be pointing to the valid transmit ifp.
775 	 * origifp MUST be valid and pointing to either the same ifp or,
776 	 * in case of loopback output, to the interface which ip6_src
777 	 * belongs to.
778 	 * Examples:
779 	 *  fe80::1%em0 -> fe80::2%em0 -> ifp=em0, origifp=em0
780 	 *  fe80::1%em0 -> fe80::1%em0 -> ifp=lo0, origifp=em0
781 	 *  ::1 -> ::1 -> ifp=lo0, origifp=lo0
782 	 *
783 	 * mtu can be 0 and will be refined later.
784 	 */
785 	KASSERT((ifp != NULL), ("output interface must not be NULL"));
786 	KASSERT((origifp != NULL), ("output address interface must not be NULL"));
787 
788 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
789 	/*
790 	 * IPSec checking which handles several cases.
791 	 * FAST IPSEC: We re-injected the packet.
792 	 * XXX: need scope argument.
793 	 */
794 	if (IPSEC_ENABLED(ipv6)) {
795 		if ((error = IPSEC_OUTPUT(ipv6, ifp, m, inp, mtu == 0 ?
796 		    ifp->if_mtu : mtu)) != 0) {
797 			if (error == EINPROGRESS)
798 				error = 0;
799 			goto done;
800 		}
801 	}
802 #endif /* IPSEC */
803 
804 	if ((flags & IPV6_FORWARDING) == 0) {
805 		/* XXX: the FORWARDING flag can be set for mrouting. */
806 		in6_ifstat_inc(ifp, ifs6_out_request);
807 	}
808 
809 	/* Setup data structures for scope ID checks. */
810 	src0 = ip6->ip6_src;
811 	bzero(&src_sa, sizeof(src_sa));
812 	src_sa.sin6_family = AF_INET6;
813 	src_sa.sin6_len = sizeof(src_sa);
814 	src_sa.sin6_addr = ip6->ip6_src;
815 
816 	dst0 = ip6->ip6_dst;
817 	/* Re-initialize to be sure. */
818 	bzero(&dst_sa, sizeof(dst_sa));
819 	dst_sa.sin6_family = AF_INET6;
820 	dst_sa.sin6_len = sizeof(dst_sa);
821 	dst_sa.sin6_addr = ip6->ip6_dst;
822 
823 	/* Check for valid scope ID. */
824 	if (in6_setscope(&src0, origifp, &zone) == 0 &&
825 	    sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id &&
826 	    in6_setscope(&dst0, origifp, &zone) == 0 &&
827 	    sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) {
828 		/*
829 		 * The outgoing interface is in the zone of the source
830 		 * and destination addresses.
831 		 *
832 		 */
833 	} else if ((origifp->if_flags & IFF_LOOPBACK) == 0 ||
834 	    sa6_recoverscope(&src_sa) != 0 ||
835 	    sa6_recoverscope(&dst_sa) != 0 ||
836 	    dst_sa.sin6_scope_id == 0 ||
837 	    (src_sa.sin6_scope_id != 0 &&
838 	    src_sa.sin6_scope_id != dst_sa.sin6_scope_id) ||
839 	    ifnet_byindex(dst_sa.sin6_scope_id) == NULL) {
840 		/*
841 		 * If the destination network interface is not a
842 		 * loopback interface, or the destination network
843 		 * address has no scope ID, or the source address has
844 		 * a scope ID set which is different from the
845 		 * destination address one, or there is no network
846 		 * interface representing this scope ID, the address
847 		 * pair is considered invalid.
848 		 */
849 		IP6STAT_INC(ip6s_badscope);
850 		in6_ifstat_inc(origifp, ifs6_out_discard);
851 		if (error == 0)
852 			error = EHOSTUNREACH; /* XXX */
853 		goto bad;
854 	}
855 	/* All scope ID checks are successful. */
856 
857 	if (nh && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
858 		if ((optvalid & IP6PO_VALID_NHINFO) != 0) {
859 			/*
860 			 * The nexthop is explicitly specified by the
861 			 * application.  We assume the next hop is an IPv6
862 			 * address.
863 			 */
864 			dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
865 		}
866 		else if ((nh->nh_flags & NHF_GATEWAY))
867 			dst = &nh->gw6_sa;
868 	}
869 
870 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
871 		m->m_flags &= ~(M_BCAST | M_MCAST); /* Just in case. */
872 	} else {
873 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
874 		in6_ifstat_inc(ifp, ifs6_out_mcast);
875 
876 		/* Confirm that the outgoing interface supports multicast. */
877 		if (!(ifp->if_flags & IFF_MULTICAST)) {
878 			IP6STAT_INC(ip6s_noroute);
879 			in6_ifstat_inc(ifp, ifs6_out_discard);
880 			error = ENETUNREACH;
881 			goto bad;
882 		}
883 		if ((im6o == NULL && in6_mcast_loop) ||
884 		    (im6o && im6o->im6o_multicast_loop)) {
885 			/*
886 			 * Loop back multicast datagram if not expressly
887 			 * forbidden to do so, even if we have not joined
888 			 * the address; protocols will filter it later,
889 			 * thus deferring a hash lookup and lock acquisition
890 			 * at the expense of an m_copym().
891 			 */
892 			ip6_mloopback(ifp, m);
893 		} else {
894 			/*
895 			 * If we are acting as a multicast router, perform
896 			 * multicast forwarding as if the packet had just
897 			 * arrived on the interface to which we are about
898 			 * to send.  The multicast forwarding function
899 			 * recursively calls this function, using the
900 			 * IPV6_FORWARDING flag to prevent infinite recursion.
901 			 *
902 			 * Multicasts that are looped back by ip6_mloopback(),
903 			 * above, will be forwarded by the ip6_input() routine,
904 			 * if necessary.
905 			 */
906 			if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
907 				/*
908 				 * XXX: ip6_mforward expects that rcvif is NULL
909 				 * when it is called from the originating path.
910 				 * However, it may not always be the case.
911 				 */
912 				m->m_pkthdr.rcvif = NULL;
913 				if (ip6_mforward(ip6, ifp, m) != 0) {
914 					m_freem(m);
915 					goto done;
916 				}
917 			}
918 		}
919 		/*
920 		 * Multicasts with a hoplimit of zero may be looped back,
921 		 * above, but must not be transmitted on a network.
922 		 * Also, multicasts addressed to the loopback interface
923 		 * are not sent -- the above call to ip6_mloopback() will
924 		 * loop back a copy if this host actually belongs to the
925 		 * destination group on the loopback interface.
926 		 */
927 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
928 		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
929 			m_freem(m);
930 			goto done;
931 		}
932 	}
933 
934 	/*
935 	 * Fill the outgoing inteface to tell the upper layer
936 	 * to increment per-interface statistics.
937 	 */
938 	if (ifpp)
939 		*ifpp = ifp;
940 
941 	/* Determine path MTU. */
942 	if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst,
943 		    &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0)
944 		goto bad;
945 	KASSERT(mtu > 0, ("%s:%d: mtu %ld, ro_pmtu %p ro %p ifp %p "
946 	    "alwaysfrag %d fibnum %u\n", __func__, __LINE__, mtu, ro_pmtu, ro,
947 	    ifp, alwaysfrag, fibnum));
948 
949 	/*
950 	 * The caller of this function may specify to use the minimum MTU
951 	 * in some cases.
952 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
953 	 * setting.  The logic is a bit complicated; by default, unicast
954 	 * packets will follow path MTU while multicast packets will be sent at
955 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
956 	 * including unicast ones will be sent at the minimum MTU.  Multicast
957 	 * packets will always be sent at the minimum MTU unless
958 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
959 	 * See RFC 3542 for more details.
960 	 */
961 	if (mtu > IPV6_MMTU) {
962 		if ((flags & IPV6_MINMTU))
963 			mtu = IPV6_MMTU;
964 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
965 			mtu = IPV6_MMTU;
966 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
967 			 (opt == NULL ||
968 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
969 			mtu = IPV6_MMTU;
970 		}
971 	}
972 
973 	/*
974 	 * Clear embedded scope identifiers if necessary.
975 	 * in6_clearscope() will touch the addresses only when necessary.
976 	 */
977 	in6_clearscope(&ip6->ip6_src);
978 	in6_clearscope(&ip6->ip6_dst);
979 
980 	/*
981 	 * If the outgoing packet contains a hop-by-hop options header,
982 	 * it must be examined and processed even by the source node.
983 	 * (RFC 2460, section 4.)
984 	 */
985 	if (exthdrs.ip6e_hbh) {
986 		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
987 		u_int32_t dummy; /* XXX unused */
988 		u_int32_t plen = 0; /* XXX: ip6_process will check the value */
989 
990 #ifdef DIAGNOSTIC
991 		if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
992 			panic("ip6e_hbh is not contiguous");
993 #endif
994 		/*
995 		 *  XXX: if we have to send an ICMPv6 error to the sender,
996 		 *       we need the M_LOOP flag since icmp6_error() expects
997 		 *       the IPv6 and the hop-by-hop options header are
998 		 *       contiguous unless the flag is set.
999 		 */
1000 		m->m_flags |= M_LOOP;
1001 		m->m_pkthdr.rcvif = ifp;
1002 		if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
1003 		    ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
1004 		    &dummy, &plen) < 0) {
1005 			/* m was already freed at this point. */
1006 			error = EINVAL;/* better error? */
1007 			goto done;
1008 		}
1009 		m->m_flags &= ~M_LOOP; /* XXX */
1010 		m->m_pkthdr.rcvif = NULL;
1011 	}
1012 
1013 	/* Jump over all PFIL processing if hooks are not active. */
1014 	if (!PFIL_HOOKED_OUT(V_inet6_pfil_head))
1015 		goto passout;
1016 
1017 	odst = ip6->ip6_dst;
1018 	/* Run through list of hooks for output packets. */
1019 	switch (pfil_mbuf_out(V_inet6_pfil_head, &m, ifp, inp)) {
1020 	case PFIL_PASS:
1021 		ip6 = mtod(m, struct ip6_hdr *);
1022 		break;
1023 	case PFIL_DROPPED:
1024 		error = EACCES;
1025 		/* FALLTHROUGH */
1026 	case PFIL_CONSUMED:
1027 		goto done;
1028 	}
1029 
1030 	needfiblookup = 0;
1031 	/* See if destination IP address was changed by packet filter. */
1032 	if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) {
1033 		m->m_flags |= M_SKIP_FIREWALL;
1034 		/* If destination is now ourself drop to ip6_input(). */
1035 		if (in6_localip(&ip6->ip6_dst)) {
1036 			m->m_flags |= M_FASTFWD_OURS;
1037 			if (m->m_pkthdr.rcvif == NULL)
1038 				m->m_pkthdr.rcvif = V_loif;
1039 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
1040 				m->m_pkthdr.csum_flags |=
1041 				    CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR;
1042 				m->m_pkthdr.csum_data = 0xffff;
1043 			}
1044 #if defined(SCTP) || defined(SCTP_SUPPORT)
1045 			if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6)
1046 				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
1047 #endif
1048 			error = netisr_queue(NETISR_IPV6, m);
1049 			goto done;
1050 		} else {
1051 			if (ro != NULL)
1052 				RO_INVALIDATE_CACHE(ro);
1053 			needfiblookup = 1; /* Redo the routing table lookup. */
1054 		}
1055 	}
1056 	/* See if fib was changed by packet filter. */
1057 	if (fibnum != M_GETFIB(m)) {
1058 		m->m_flags |= M_SKIP_FIREWALL;
1059 		fibnum = M_GETFIB(m);
1060 		if (ro != NULL)
1061 			RO_INVALIDATE_CACHE(ro);
1062 		needfiblookup = 1;
1063 	}
1064 	if (needfiblookup)
1065 		goto again;
1066 
1067 	/* See if local, if yes, send it to netisr. */
1068 	if (m->m_flags & M_FASTFWD_OURS) {
1069 		if (m->m_pkthdr.rcvif == NULL)
1070 			m->m_pkthdr.rcvif = V_loif;
1071 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
1072 			m->m_pkthdr.csum_flags |=
1073 			    CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR;
1074 			m->m_pkthdr.csum_data = 0xffff;
1075 		}
1076 #if defined(SCTP) || defined(SCTP_SUPPORT)
1077 		if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6)
1078 			m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
1079 #endif
1080 		error = netisr_queue(NETISR_IPV6, m);
1081 		goto done;
1082 	}
1083 	/* Or forward to some other address? */
1084 	if ((m->m_flags & M_IP6_NEXTHOP) &&
1085 	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
1086 		if (ro != NULL)
1087 			dst = (struct sockaddr_in6 *)&ro->ro_dst;
1088 		else
1089 			dst = &sin6;
1090 		bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6));
1091 		m->m_flags |= M_SKIP_FIREWALL;
1092 		m->m_flags &= ~M_IP6_NEXTHOP;
1093 		m_tag_delete(m, fwd_tag);
1094 		goto again;
1095 	}
1096 
1097 passout:
1098 	if (vlan_pcp > -1)
1099 		EVL_APPLY_PRI(m, vlan_pcp);
1100 
1101 	/* Ensure the packet data is mapped if the interface requires it. */
1102 	if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) {
1103 		struct mbuf *m1;
1104 
1105 		error = mb_unmapped_to_ext(m, &m1);
1106 		if (error != 0) {
1107 			if (error == EINVAL) {
1108 				if_printf(ifp, "TLS packet\n");
1109 				/* XXXKIB */
1110 			} else if (error == ENOMEM) {
1111 				error = ENOBUFS;
1112 			}
1113 			IP6STAT_INC(ip6s_odropped);
1114 			return (error);
1115 		} else {
1116 			m = m1;
1117 		}
1118 	}
1119 
1120 	/*
1121 	 * Send the packet to the outgoing interface.
1122 	 * If necessary, do IPv6 fragmentation before sending.
1123 	 *
1124 	 * The logic here is rather complex:
1125 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
1126 	 * 1-a:	send as is if tlen <= path mtu
1127 	 * 1-b:	fragment if tlen > path mtu
1128 	 *
1129 	 * 2: if user asks us not to fragment (dontfrag == 1)
1130 	 * 2-a:	send as is if tlen <= interface mtu
1131 	 * 2-b:	error if tlen > interface mtu
1132 	 *
1133 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
1134 	 *	always fragment
1135 	 *
1136 	 * 4: if dontfrag == 1 && alwaysfrag == 1
1137 	 *	error, as we cannot handle this conflicting request.
1138 	 */
1139 	sw_csum = m->m_pkthdr.csum_flags;
1140 	if (!hdrsplit) {
1141 		tso = ((sw_csum & ifp->if_hwassist &
1142 		    (CSUM_TSO | CSUM_INNER_TSO)) != 0) ? 1 : 0;
1143 		sw_csum &= ~ifp->if_hwassist;
1144 	} else
1145 		tso = 0;
1146 	/*
1147 	 * If we added extension headers, we will not do TSO and calculate the
1148 	 * checksums ourselves for now.
1149 	 * XXX-BZ  Need a framework to know when the NIC can handle it, even
1150 	 * with ext. hdrs.
1151 	 */
1152 	ip6_output_delayed_csum(m, ifp, sw_csum, plen, optlen);
1153 	/* XXX-BZ m->m_pkthdr.csum_flags &= ~ifp->if_hwassist; */
1154 	tlen = m->m_pkthdr.len;
1155 
1156 	if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso)
1157 		dontfrag = 1;
1158 	else
1159 		dontfrag = 0;
1160 	if (dontfrag && alwaysfrag) {	/* Case 4. */
1161 		/* Conflicting request - can't transmit. */
1162 		error = EMSGSIZE;
1163 		goto bad;
1164 	}
1165 	if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) {	/* Case 2-b. */
1166 		/*
1167 		 * Even if the DONTFRAG option is specified, we cannot send the
1168 		 * packet when the data length is larger than the MTU of the
1169 		 * outgoing interface.
1170 		 * Notify the error by sending IPV6_PATHMTU ancillary data if
1171 		 * application wanted to know the MTU value. Also return an
1172 		 * error code (this is not described in the API spec).
1173 		 */
1174 		if (inp != NULL)
1175 			ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu);
1176 		error = EMSGSIZE;
1177 		goto bad;
1178 	}
1179 
1180 	/* Transmit packet without fragmentation. */
1181 	if (dontfrag || (!alwaysfrag && tlen <= mtu)) {	/* Cases 1-a and 2-a. */
1182 		struct in6_ifaddr *ia6;
1183 
1184 		ip6 = mtod(m, struct ip6_hdr *);
1185 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1186 		if (ia6) {
1187 			/* Record statistics for this interface address. */
1188 			counter_u64_add(ia6->ia_ifa.ifa_opackets, 1);
1189 			counter_u64_add(ia6->ia_ifa.ifa_obytes,
1190 			    m->m_pkthdr.len);
1191 		}
1192 		error = ip6_output_send(inp, ifp, origifp, m, dst, ro,
1193 		    (flags & IP_NO_SND_TAG_RL) ? false : true);
1194 		goto done;
1195 	}
1196 
1197 	/* Try to fragment the packet.  Cases 1-b and 3. */
1198 	if (mtu < IPV6_MMTU) {
1199 		/* Path MTU cannot be less than IPV6_MMTU. */
1200 		error = EMSGSIZE;
1201 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
1202 		goto bad;
1203 	} else if (ip6->ip6_plen == 0) {
1204 		/* Jumbo payload cannot be fragmented. */
1205 		error = EMSGSIZE;
1206 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
1207 		goto bad;
1208 	} else {
1209 		u_char nextproto;
1210 
1211 		/*
1212 		 * Too large for the destination or interface;
1213 		 * fragment if possible.
1214 		 * Must be able to put at least 8 bytes per fragment.
1215 		 */
1216 		if (mtu > IPV6_MAXPACKET)
1217 			mtu = IPV6_MAXPACKET;
1218 
1219 		len = (mtu - unfragpartlen - sizeof(struct ip6_frag)) & ~7;
1220 		if (len < 8) {
1221 			error = EMSGSIZE;
1222 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
1223 			goto bad;
1224 		}
1225 
1226 		/*
1227 		 * If the interface will not calculate checksums on
1228 		 * fragmented packets, then do it here.
1229 		 * XXX-BZ handle the hw offloading case.  Need flags.
1230 		 */
1231 		ip6_output_delayed_csum(m, ifp, m->m_pkthdr.csum_flags, plen,
1232 		    optlen);
1233 
1234 		/*
1235 		 * Change the next header field of the last header in the
1236 		 * unfragmentable part.
1237 		 */
1238 		if (exthdrs.ip6e_rthdr) {
1239 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
1240 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
1241 		} else if (exthdrs.ip6e_dest1) {
1242 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
1243 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
1244 		} else if (exthdrs.ip6e_hbh) {
1245 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
1246 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
1247 		} else {
1248 			ip6 = mtod(m, struct ip6_hdr *);
1249 			nextproto = ip6->ip6_nxt;
1250 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
1251 		}
1252 
1253 		/*
1254 		 * Loop through length of segment after first fragment,
1255 		 * make new header and copy data of each part and link onto
1256 		 * chain.
1257 		 */
1258 		m0 = m;
1259 		id = htonl(ip6_randomid());
1260 		error = ip6_fragment(ifp, m, unfragpartlen, nextproto,len, id);
1261 		if (error != 0)
1262 			goto sendorfree;
1263 
1264 		in6_ifstat_inc(ifp, ifs6_out_fragok);
1265 	}
1266 
1267 	/* Remove leading garbage. */
1268 sendorfree:
1269 	m = m0->m_nextpkt;
1270 	m0->m_nextpkt = 0;
1271 	m_freem(m0);
1272 	for (; m; m = m0) {
1273 		m0 = m->m_nextpkt;
1274 		m->m_nextpkt = 0;
1275 		if (error == 0) {
1276 			/* Record statistics for this interface address. */
1277 			if (ia) {
1278 				counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
1279 				counter_u64_add(ia->ia_ifa.ifa_obytes,
1280 				    m->m_pkthdr.len);
1281 			}
1282 			if (vlan_pcp > -1)
1283 				EVL_APPLY_PRI(m, vlan_pcp);
1284 			error = ip6_output_send(inp, ifp, origifp, m, dst, ro,
1285 			    true);
1286 		} else
1287 			m_freem(m);
1288 	}
1289 
1290 	if (error == 0)
1291 		IP6STAT_INC(ip6s_fragmented);
1292 
1293 done:
1294 	return (error);
1295 
1296 freehdrs:
1297 	m_freem(exthdrs.ip6e_hbh);	/* m_freem() checks if mbuf is NULL. */
1298 	m_freem(exthdrs.ip6e_dest1);
1299 	m_freem(exthdrs.ip6e_rthdr);
1300 	m_freem(exthdrs.ip6e_dest2);
1301 	/* FALLTHROUGH */
1302 bad:
1303 	if (m)
1304 		m_freem(m);
1305 	goto done;
1306 }
1307 
1308 static int
ip6_copyexthdr(struct mbuf ** mp,caddr_t hdr,int hlen)1309 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen)
1310 {
1311 	struct mbuf *m;
1312 
1313 	if (hlen > MCLBYTES)
1314 		return (ENOBUFS); /* XXX */
1315 
1316 	if (hlen > MLEN)
1317 		m = m_getcl(M_NOWAIT, MT_DATA, 0);
1318 	else
1319 		m = m_get(M_NOWAIT, MT_DATA);
1320 	if (m == NULL)
1321 		return (ENOBUFS);
1322 	m->m_len = hlen;
1323 	if (hdr)
1324 		bcopy(hdr, mtod(m, caddr_t), hlen);
1325 
1326 	*mp = m;
1327 	return (0);
1328 }
1329 
1330 /*
1331  * Insert jumbo payload option.
1332  */
1333 static int
ip6_insert_jumboopt(struct ip6_exthdrs * exthdrs,u_int32_t plen)1334 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1335 {
1336 	struct mbuf *mopt;
1337 	u_char *optbuf;
1338 	u_int32_t v;
1339 
1340 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
1341 
1342 	/*
1343 	 * If there is no hop-by-hop options header, allocate new one.
1344 	 * If there is one but it doesn't have enough space to store the
1345 	 * jumbo payload option, allocate a cluster to store the whole options.
1346 	 * Otherwise, use it to store the options.
1347 	 */
1348 	if (exthdrs->ip6e_hbh == NULL) {
1349 		mopt = m_get(M_NOWAIT, MT_DATA);
1350 		if (mopt == NULL)
1351 			return (ENOBUFS);
1352 		mopt->m_len = JUMBOOPTLEN;
1353 		optbuf = mtod(mopt, u_char *);
1354 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
1355 		exthdrs->ip6e_hbh = mopt;
1356 	} else {
1357 		struct ip6_hbh *hbh;
1358 
1359 		mopt = exthdrs->ip6e_hbh;
1360 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1361 			/*
1362 			 * XXX assumption:
1363 			 * - exthdrs->ip6e_hbh is not referenced from places
1364 			 *   other than exthdrs.
1365 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
1366 			 */
1367 			int oldoptlen = mopt->m_len;
1368 			struct mbuf *n;
1369 
1370 			/*
1371 			 * XXX: give up if the whole (new) hbh header does
1372 			 * not fit even in an mbuf cluster.
1373 			 */
1374 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1375 				return (ENOBUFS);
1376 
1377 			/*
1378 			 * As a consequence, we must always prepare a cluster
1379 			 * at this point.
1380 			 */
1381 			n = m_getcl(M_NOWAIT, MT_DATA, 0);
1382 			if (n == NULL)
1383 				return (ENOBUFS);
1384 			n->m_len = oldoptlen + JUMBOOPTLEN;
1385 			bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1386 			    oldoptlen);
1387 			optbuf = mtod(n, caddr_t) + oldoptlen;
1388 			m_freem(mopt);
1389 			mopt = exthdrs->ip6e_hbh = n;
1390 		} else {
1391 			optbuf = mtod(mopt, u_char *) + mopt->m_len;
1392 			mopt->m_len += JUMBOOPTLEN;
1393 		}
1394 		optbuf[0] = IP6OPT_PADN;
1395 		optbuf[1] = 1;
1396 
1397 		/*
1398 		 * Adjust the header length according to the pad and
1399 		 * the jumbo payload option.
1400 		 */
1401 		hbh = mtod(mopt, struct ip6_hbh *);
1402 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1403 	}
1404 
1405 	/* fill in the option. */
1406 	optbuf[2] = IP6OPT_JUMBO;
1407 	optbuf[3] = 4;
1408 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1409 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1410 
1411 	/* finally, adjust the packet header length */
1412 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1413 
1414 	return (0);
1415 #undef JUMBOOPTLEN
1416 }
1417 
1418 /*
1419  * Insert fragment header and copy unfragmentable header portions.
1420  */
1421 static int
ip6_insertfraghdr(struct mbuf * m0,struct mbuf * m,int hlen,struct ip6_frag ** frghdrp)1422 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1423     struct ip6_frag **frghdrp)
1424 {
1425 	struct mbuf *n, *mlast;
1426 
1427 	if (hlen > sizeof(struct ip6_hdr)) {
1428 		n = m_copym(m0, sizeof(struct ip6_hdr),
1429 		    hlen - sizeof(struct ip6_hdr), M_NOWAIT);
1430 		if (n == NULL)
1431 			return (ENOBUFS);
1432 		m->m_next = n;
1433 	} else
1434 		n = m;
1435 
1436 	/* Search for the last mbuf of unfragmentable part. */
1437 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1438 		;
1439 
1440 	if (M_WRITABLE(mlast) &&
1441 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1442 		/* use the trailing space of the last mbuf for the fragment hdr */
1443 		*frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1444 		    mlast->m_len);
1445 		mlast->m_len += sizeof(struct ip6_frag);
1446 		m->m_pkthdr.len += sizeof(struct ip6_frag);
1447 	} else {
1448 		/* allocate a new mbuf for the fragment header */
1449 		struct mbuf *mfrg;
1450 
1451 		mfrg = m_get(M_NOWAIT, MT_DATA);
1452 		if (mfrg == NULL)
1453 			return (ENOBUFS);
1454 		mfrg->m_len = sizeof(struct ip6_frag);
1455 		*frghdrp = mtod(mfrg, struct ip6_frag *);
1456 		mlast->m_next = mfrg;
1457 	}
1458 
1459 	return (0);
1460 }
1461 
1462 /*
1463  * Calculates IPv6 path mtu for destination @dst.
1464  * Resulting MTU is stored in @mtup.
1465  *
1466  * Returns 0 on success.
1467  */
1468 static int
ip6_getpmtu_ctl(u_int fibnum,const struct in6_addr * dst,u_long * mtup)1469 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup)
1470 {
1471 	struct epoch_tracker et;
1472 	struct nhop_object *nh;
1473 	struct in6_addr kdst;
1474 	uint32_t scopeid;
1475 	int error;
1476 
1477 	in6_splitscope(dst, &kdst, &scopeid);
1478 
1479 	NET_EPOCH_ENTER(et);
1480 	nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0);
1481 	if (nh != NULL)
1482 		error = ip6_calcmtu(nh->nh_ifp, dst, nh->nh_mtu, mtup, NULL, 0);
1483 	else
1484 		error = EHOSTUNREACH;
1485 	NET_EPOCH_EXIT(et);
1486 
1487 	return (error);
1488 }
1489 
1490 /*
1491  * Calculates IPv6 path MTU for @dst based on transmit @ifp,
1492  * and cached data in @ro_pmtu.
1493  * MTU from (successful) route lookup is saved (along with dst)
1494  * inside @ro_pmtu to avoid subsequent route lookups after packet
1495  * filter processing.
1496  *
1497  * Stores mtu and always-frag value into @mtup and @alwaysfragp.
1498  * Returns 0 on success.
1499  */
1500 static int
ip6_getpmtu(struct route_in6 * ro_pmtu,int do_lookup,struct ifnet * ifp,const struct in6_addr * dst,u_long * mtup,int * alwaysfragp,u_int fibnum,u_int proto)1501 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup,
1502     struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup,
1503     int *alwaysfragp, u_int fibnum, u_int proto)
1504 {
1505 	struct nhop_object *nh;
1506 	struct in6_addr kdst;
1507 	uint32_t scopeid;
1508 	struct sockaddr_in6 *sa6_dst, sin6;
1509 	u_long mtu;
1510 
1511 	NET_EPOCH_ASSERT();
1512 
1513 	mtu = 0;
1514 	if (ro_pmtu == NULL || do_lookup) {
1515 		/*
1516 		 * Here ro_pmtu has final destination address, while
1517 		 * ro might represent immediate destination.
1518 		 * Use ro_pmtu destination since mtu might differ.
1519 		 */
1520 		if (ro_pmtu != NULL) {
1521 			sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1522 			if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))
1523 				ro_pmtu->ro_mtu = 0;
1524 		} else
1525 			sa6_dst = &sin6;
1526 
1527 		if (ro_pmtu == NULL || ro_pmtu->ro_mtu == 0) {
1528 			bzero(sa6_dst, sizeof(*sa6_dst));
1529 			sa6_dst->sin6_family = AF_INET6;
1530 			sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1531 			sa6_dst->sin6_addr = *dst;
1532 
1533 			in6_splitscope(dst, &kdst, &scopeid);
1534 			nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0);
1535 			if (nh != NULL) {
1536 				mtu = nh->nh_mtu;
1537 				if (ro_pmtu != NULL)
1538 					ro_pmtu->ro_mtu = mtu;
1539 			}
1540 		} else
1541 			mtu = ro_pmtu->ro_mtu;
1542 	}
1543 
1544 	if (ro_pmtu != NULL && ro_pmtu->ro_nh != NULL)
1545 		mtu = ro_pmtu->ro_nh->nh_mtu;
1546 
1547 	return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto));
1548 }
1549 
1550 /*
1551  * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and
1552  * hostcache data for @dst.
1553  * Stores mtu and always-frag value into @mtup and @alwaysfragp.
1554  *
1555  * Returns 0 on success.
1556  */
1557 static int
ip6_calcmtu(struct ifnet * ifp,const struct in6_addr * dst,u_long rt_mtu,u_long * mtup,int * alwaysfragp,u_int proto)1558 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu,
1559     u_long *mtup, int *alwaysfragp, u_int proto)
1560 {
1561 	u_long mtu = 0;
1562 	int alwaysfrag = 0;
1563 	int error = 0;
1564 
1565 	if (rt_mtu > 0) {
1566 		u_int32_t ifmtu;
1567 		struct in_conninfo inc;
1568 
1569 		bzero(&inc, sizeof(inc));
1570 		inc.inc_flags |= INC_ISIPV6;
1571 		inc.inc6_faddr = *dst;
1572 
1573 		ifmtu = IN6_LINKMTU(ifp);
1574 
1575 		/* TCP is known to react to pmtu changes so skip hc */
1576 		if (proto != IPPROTO_TCP)
1577 			mtu = tcp_hc_getmtu(&inc);
1578 
1579 		if (mtu)
1580 			mtu = min(mtu, rt_mtu);
1581 		else
1582 			mtu = rt_mtu;
1583 		if (mtu == 0)
1584 			mtu = ifmtu;
1585 		else if (mtu < IPV6_MMTU) {
1586 			/*
1587 			 * RFC2460 section 5, last paragraph:
1588 			 * if we record ICMPv6 too big message with
1589 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1590 			 * or smaller, with framgent header attached.
1591 			 * (fragment header is needed regardless from the
1592 			 * packet size, for translators to identify packets)
1593 			 */
1594 			alwaysfrag = 1;
1595 			mtu = IPV6_MMTU;
1596 		}
1597 	} else if (ifp) {
1598 		mtu = IN6_LINKMTU(ifp);
1599 	} else
1600 		error = EHOSTUNREACH; /* XXX */
1601 
1602 	*mtup = mtu;
1603 	if (alwaysfragp)
1604 		*alwaysfragp = alwaysfrag;
1605 	return (error);
1606 }
1607 
1608 /*
1609  * IP6 socket option processing.
1610  */
1611 int
ip6_ctloutput(struct socket * so,struct sockopt * sopt)1612 ip6_ctloutput(struct socket *so, struct sockopt *sopt)
1613 {
1614 	int optdatalen, uproto;
1615 	void *optdata;
1616 	struct inpcb *inp = sotoinpcb(so);
1617 	int error, optval;
1618 	int level, op, optname;
1619 	int optlen;
1620 	struct thread *td;
1621 #ifdef	RSS
1622 	uint32_t rss_bucket;
1623 	int retval;
1624 #endif
1625 
1626 /*
1627  * Don't use more than a quarter of mbuf clusters.  N.B.:
1628  * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow
1629  * on LP64 architectures, so cast to u_long to avoid undefined
1630  * behavior.  ILP32 architectures cannot have nmbclusters
1631  * large enough to overflow for other reasons.
1632  */
1633 #define IPV6_PKTOPTIONS_MBUF_LIMIT	((u_long)nmbclusters * MCLBYTES / 4)
1634 
1635 	level = sopt->sopt_level;
1636 	op = sopt->sopt_dir;
1637 	optname = sopt->sopt_name;
1638 	optlen = sopt->sopt_valsize;
1639 	td = sopt->sopt_td;
1640 	error = 0;
1641 	optval = 0;
1642 	uproto = (int)so->so_proto->pr_protocol;
1643 
1644 	if (level != IPPROTO_IPV6) {
1645 		error = EINVAL;
1646 
1647 		if (sopt->sopt_level == SOL_SOCKET &&
1648 		    sopt->sopt_dir == SOPT_SET) {
1649 			switch (sopt->sopt_name) {
1650 			case SO_SETFIB:
1651 				INP_WLOCK(inp);
1652 				inp->inp_inc.inc_fibnum = so->so_fibnum;
1653 				INP_WUNLOCK(inp);
1654 				error = 0;
1655 				break;
1656 			case SO_MAX_PACING_RATE:
1657 #ifdef RATELIMIT
1658 				INP_WLOCK(inp);
1659 				inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
1660 				INP_WUNLOCK(inp);
1661 				error = 0;
1662 #else
1663 				error = EOPNOTSUPP;
1664 #endif
1665 				break;
1666 			default:
1667 				break;
1668 			}
1669 		}
1670 	} else {		/* level == IPPROTO_IPV6 */
1671 		switch (op) {
1672 		case SOPT_SET:
1673 			switch (optname) {
1674 			case IPV6_2292PKTOPTIONS:
1675 #ifdef IPV6_PKTOPTIONS
1676 			case IPV6_PKTOPTIONS:
1677 #endif
1678 			{
1679 				struct mbuf *m;
1680 
1681 				if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) {
1682 					printf("ip6_ctloutput: mbuf limit hit\n");
1683 					error = ENOBUFS;
1684 					break;
1685 				}
1686 
1687 				error = soopt_getm(sopt, &m); /* XXX */
1688 				if (error != 0)
1689 					break;
1690 				error = soopt_mcopyin(sopt, m); /* XXX */
1691 				if (error != 0)
1692 					break;
1693 				INP_WLOCK(inp);
1694 				error = ip6_pcbopts(&inp->in6p_outputopts, m,
1695 				    so, sopt);
1696 				INP_WUNLOCK(inp);
1697 				m_freem(m); /* XXX */
1698 				break;
1699 			}
1700 
1701 			/*
1702 			 * Use of some Hop-by-Hop options or some
1703 			 * Destination options, might require special
1704 			 * privilege.  That is, normal applications
1705 			 * (without special privilege) might be forbidden
1706 			 * from setting certain options in outgoing packets,
1707 			 * and might never see certain options in received
1708 			 * packets. [RFC 2292 Section 6]
1709 			 * KAME specific note:
1710 			 *  KAME prevents non-privileged users from sending or
1711 			 *  receiving ANY hbh/dst options in order to avoid
1712 			 *  overhead of parsing options in the kernel.
1713 			 */
1714 			case IPV6_RECVHOPOPTS:
1715 			case IPV6_RECVDSTOPTS:
1716 			case IPV6_RECVRTHDRDSTOPTS:
1717 				if (td != NULL) {
1718 					error = priv_check(td,
1719 					    PRIV_NETINET_SETHDROPTS);
1720 					if (error)
1721 						break;
1722 				}
1723 				/* FALLTHROUGH */
1724 			case IPV6_UNICAST_HOPS:
1725 			case IPV6_HOPLIMIT:
1726 
1727 			case IPV6_RECVPKTINFO:
1728 			case IPV6_RECVHOPLIMIT:
1729 			case IPV6_RECVRTHDR:
1730 			case IPV6_RECVPATHMTU:
1731 			case IPV6_RECVTCLASS:
1732 			case IPV6_RECVFLOWID:
1733 #ifdef	RSS
1734 			case IPV6_RECVRSSBUCKETID:
1735 #endif
1736 			case IPV6_V6ONLY:
1737 			case IPV6_AUTOFLOWLABEL:
1738 			case IPV6_ORIGDSTADDR:
1739 			case IPV6_BINDANY:
1740 			case IPV6_VLAN_PCP:
1741 				if (optname == IPV6_BINDANY && td != NULL) {
1742 					error = priv_check(td,
1743 					    PRIV_NETINET_BINDANY);
1744 					if (error)
1745 						break;
1746 				}
1747 
1748 				if (optlen != sizeof(int)) {
1749 					error = EINVAL;
1750 					break;
1751 				}
1752 				error = sooptcopyin(sopt, &optval,
1753 					sizeof optval, sizeof optval);
1754 				if (error)
1755 					break;
1756 				switch (optname) {
1757 				case IPV6_UNICAST_HOPS:
1758 					if (optval < -1 || optval >= 256)
1759 						error = EINVAL;
1760 					else {
1761 						/* -1 = kernel default */
1762 						inp->in6p_hops = optval;
1763 						if ((inp->inp_vflag &
1764 						     INP_IPV4) != 0)
1765 							inp->inp_ip_ttl = optval;
1766 					}
1767 					break;
1768 #define OPTSET(bit) \
1769 do { \
1770 	INP_WLOCK(inp); \
1771 	if (optval) \
1772 		inp->inp_flags |= (bit); \
1773 	else \
1774 		inp->inp_flags &= ~(bit); \
1775 	INP_WUNLOCK(inp); \
1776 } while (/*CONSTCOND*/ 0)
1777 #define OPTSET2292(bit) \
1778 do { \
1779 	INP_WLOCK(inp); \
1780 	inp->inp_flags |= IN6P_RFC2292; \
1781 	if (optval) \
1782 		inp->inp_flags |= (bit); \
1783 	else \
1784 		inp->inp_flags &= ~(bit); \
1785 	INP_WUNLOCK(inp); \
1786 } while (/*CONSTCOND*/ 0)
1787 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0)
1788 
1789 #define OPTSET2_N(bit, val) do {					\
1790 	if (val)							\
1791 		inp->inp_flags2 |= bit;					\
1792 	else								\
1793 		inp->inp_flags2 &= ~bit;				\
1794 } while (0)
1795 #define OPTSET2(bit, val) do {						\
1796 	INP_WLOCK(inp);							\
1797 	OPTSET2_N(bit, val);						\
1798 	INP_WUNLOCK(inp);						\
1799 } while (0)
1800 #define OPTBIT2(bit) (inp->inp_flags2 & (bit) ? 1 : 0)
1801 #define OPTSET2292_EXCLUSIVE(bit)					\
1802 do {									\
1803 	INP_WLOCK(inp);							\
1804 	if (OPTBIT(IN6P_RFC2292)) {					\
1805 		error = EINVAL;						\
1806 	} else {							\
1807 		if (optval)						\
1808 			inp->inp_flags |= (bit);			\
1809 		else							\
1810 			inp->inp_flags &= ~(bit);			\
1811 	}								\
1812 	INP_WUNLOCK(inp);						\
1813 } while (/*CONSTCOND*/ 0)
1814 
1815 				case IPV6_RECVPKTINFO:
1816 					OPTSET2292_EXCLUSIVE(IN6P_PKTINFO);
1817 					break;
1818 
1819 				case IPV6_HOPLIMIT:
1820 				{
1821 					struct ip6_pktopts **optp;
1822 
1823 					/* cannot mix with RFC2292 */
1824 					if (OPTBIT(IN6P_RFC2292)) {
1825 						error = EINVAL;
1826 						break;
1827 					}
1828 					INP_WLOCK(inp);
1829 					if (inp->inp_flags & INP_DROPPED) {
1830 						INP_WUNLOCK(inp);
1831 						return (ECONNRESET);
1832 					}
1833 					optp = &inp->in6p_outputopts;
1834 					error = ip6_pcbopt(IPV6_HOPLIMIT,
1835 					    (u_char *)&optval, sizeof(optval),
1836 					    optp, (td != NULL) ? td->td_ucred :
1837 					    NULL, uproto);
1838 					INP_WUNLOCK(inp);
1839 					break;
1840 				}
1841 
1842 				case IPV6_RECVHOPLIMIT:
1843 					OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT);
1844 					break;
1845 
1846 				case IPV6_RECVHOPOPTS:
1847 					OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS);
1848 					break;
1849 
1850 				case IPV6_RECVDSTOPTS:
1851 					OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS);
1852 					break;
1853 
1854 				case IPV6_RECVRTHDRDSTOPTS:
1855 					OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS);
1856 					break;
1857 
1858 				case IPV6_RECVRTHDR:
1859 					OPTSET2292_EXCLUSIVE(IN6P_RTHDR);
1860 					break;
1861 
1862 				case IPV6_RECVPATHMTU:
1863 					/*
1864 					 * We ignore this option for TCP
1865 					 * sockets.
1866 					 * (RFC3542 leaves this case
1867 					 * unspecified.)
1868 					 */
1869 					if (uproto != IPPROTO_TCP)
1870 						OPTSET(IN6P_MTU);
1871 					break;
1872 
1873 				case IPV6_RECVFLOWID:
1874 					OPTSET2(INP_RECVFLOWID, optval);
1875 					break;
1876 
1877 #ifdef	RSS
1878 				case IPV6_RECVRSSBUCKETID:
1879 					OPTSET2(INP_RECVRSSBUCKETID, optval);
1880 					break;
1881 #endif
1882 
1883 				case IPV6_V6ONLY:
1884 					INP_WLOCK(inp);
1885 					if (inp->inp_lport ||
1886 					    !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) {
1887 						/*
1888 						 * The socket is already bound.
1889 						 */
1890 						INP_WUNLOCK(inp);
1891 						error = EINVAL;
1892 						break;
1893 					}
1894 					if (optval) {
1895 						inp->inp_flags |= IN6P_IPV6_V6ONLY;
1896 						inp->inp_vflag &= ~INP_IPV4;
1897 					} else {
1898 						inp->inp_flags &= ~IN6P_IPV6_V6ONLY;
1899 						inp->inp_vflag |= INP_IPV4;
1900 					}
1901 					INP_WUNLOCK(inp);
1902 					break;
1903 				case IPV6_RECVTCLASS:
1904 					/* cannot mix with RFC2292 XXX */
1905 					OPTSET2292_EXCLUSIVE(IN6P_TCLASS);
1906 					break;
1907 				case IPV6_AUTOFLOWLABEL:
1908 					OPTSET(IN6P_AUTOFLOWLABEL);
1909 					break;
1910 
1911 				case IPV6_ORIGDSTADDR:
1912 					OPTSET2(INP_ORIGDSTADDR, optval);
1913 					break;
1914 				case IPV6_BINDANY:
1915 					OPTSET(INP_BINDANY);
1916 					break;
1917 				case IPV6_VLAN_PCP:
1918 					if ((optval >= -1) && (optval <=
1919 					    (INP_2PCP_MASK >> INP_2PCP_SHIFT))) {
1920 						if (optval == -1) {
1921 							INP_WLOCK(inp);
1922 							inp->inp_flags2 &=
1923 							    ~(INP_2PCP_SET |
1924 							    INP_2PCP_MASK);
1925 							INP_WUNLOCK(inp);
1926 						} else {
1927 							INP_WLOCK(inp);
1928 							inp->inp_flags2 |=
1929 							    INP_2PCP_SET;
1930 							inp->inp_flags2 &=
1931 							    ~INP_2PCP_MASK;
1932 							inp->inp_flags2 |=
1933 							    optval <<
1934 							    INP_2PCP_SHIFT;
1935 							INP_WUNLOCK(inp);
1936 						}
1937 					} else
1938 						error = EINVAL;
1939 					break;
1940 				}
1941 				break;
1942 
1943 			case IPV6_TCLASS:
1944 			case IPV6_DONTFRAG:
1945 			case IPV6_USE_MIN_MTU:
1946 			case IPV6_PREFER_TEMPADDR:
1947 				if (optlen != sizeof(optval)) {
1948 					error = EINVAL;
1949 					break;
1950 				}
1951 				error = sooptcopyin(sopt, &optval,
1952 					sizeof optval, sizeof optval);
1953 				if (error)
1954 					break;
1955 				{
1956 					struct ip6_pktopts **optp;
1957 					INP_WLOCK(inp);
1958 					if (inp->inp_flags & INP_DROPPED) {
1959 						INP_WUNLOCK(inp);
1960 						return (ECONNRESET);
1961 					}
1962 					optp = &inp->in6p_outputopts;
1963 					error = ip6_pcbopt(optname,
1964 					    (u_char *)&optval, sizeof(optval),
1965 					    optp, (td != NULL) ? td->td_ucred :
1966 					    NULL, uproto);
1967 					INP_WUNLOCK(inp);
1968 					break;
1969 				}
1970 
1971 			case IPV6_2292PKTINFO:
1972 			case IPV6_2292HOPLIMIT:
1973 			case IPV6_2292HOPOPTS:
1974 			case IPV6_2292DSTOPTS:
1975 			case IPV6_2292RTHDR:
1976 				/* RFC 2292 */
1977 				if (optlen != sizeof(int)) {
1978 					error = EINVAL;
1979 					break;
1980 				}
1981 				error = sooptcopyin(sopt, &optval,
1982 					sizeof optval, sizeof optval);
1983 				if (error)
1984 					break;
1985 				switch (optname) {
1986 				case IPV6_2292PKTINFO:
1987 					OPTSET2292(IN6P_PKTINFO);
1988 					break;
1989 				case IPV6_2292HOPLIMIT:
1990 					OPTSET2292(IN6P_HOPLIMIT);
1991 					break;
1992 				case IPV6_2292HOPOPTS:
1993 					/*
1994 					 * Check super-user privilege.
1995 					 * See comments for IPV6_RECVHOPOPTS.
1996 					 */
1997 					if (td != NULL) {
1998 						error = priv_check(td,
1999 						    PRIV_NETINET_SETHDROPTS);
2000 						if (error)
2001 							return (error);
2002 					}
2003 					OPTSET2292(IN6P_HOPOPTS);
2004 					break;
2005 				case IPV6_2292DSTOPTS:
2006 					if (td != NULL) {
2007 						error = priv_check(td,
2008 						    PRIV_NETINET_SETHDROPTS);
2009 						if (error)
2010 							return (error);
2011 					}
2012 					OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
2013 					break;
2014 				case IPV6_2292RTHDR:
2015 					OPTSET2292(IN6P_RTHDR);
2016 					break;
2017 				}
2018 				break;
2019 			case IPV6_PKTINFO:
2020 			case IPV6_HOPOPTS:
2021 			case IPV6_RTHDR:
2022 			case IPV6_DSTOPTS:
2023 			case IPV6_RTHDRDSTOPTS:
2024 			case IPV6_NEXTHOP:
2025 			{
2026 				/* new advanced API (RFC3542) */
2027 				u_char *optbuf;
2028 				u_char optbuf_storage[MCLBYTES];
2029 				int optlen;
2030 				struct ip6_pktopts **optp;
2031 
2032 				/* cannot mix with RFC2292 */
2033 				if (OPTBIT(IN6P_RFC2292)) {
2034 					error = EINVAL;
2035 					break;
2036 				}
2037 
2038 				/*
2039 				 * We only ensure valsize is not too large
2040 				 * here.  Further validation will be done
2041 				 * later.
2042 				 */
2043 				error = sooptcopyin(sopt, optbuf_storage,
2044 				    sizeof(optbuf_storage), 0);
2045 				if (error)
2046 					break;
2047 				optlen = sopt->sopt_valsize;
2048 				optbuf = optbuf_storage;
2049 				INP_WLOCK(inp);
2050 				if (inp->inp_flags & INP_DROPPED) {
2051 					INP_WUNLOCK(inp);
2052 					return (ECONNRESET);
2053 				}
2054 				optp = &inp->in6p_outputopts;
2055 				error = ip6_pcbopt(optname, optbuf, optlen,
2056 				    optp, (td != NULL) ? td->td_ucred : NULL,
2057 				    uproto);
2058 				INP_WUNLOCK(inp);
2059 				break;
2060 			}
2061 #undef OPTSET
2062 
2063 			case IPV6_MULTICAST_IF:
2064 			case IPV6_MULTICAST_HOPS:
2065 			case IPV6_MULTICAST_LOOP:
2066 			case IPV6_JOIN_GROUP:
2067 			case IPV6_LEAVE_GROUP:
2068 			case IPV6_MSFILTER:
2069 			case MCAST_BLOCK_SOURCE:
2070 			case MCAST_UNBLOCK_SOURCE:
2071 			case MCAST_JOIN_GROUP:
2072 			case MCAST_LEAVE_GROUP:
2073 			case MCAST_JOIN_SOURCE_GROUP:
2074 			case MCAST_LEAVE_SOURCE_GROUP:
2075 				error = ip6_setmoptions(inp, sopt);
2076 				break;
2077 
2078 			case IPV6_PORTRANGE:
2079 				error = sooptcopyin(sopt, &optval,
2080 				    sizeof optval, sizeof optval);
2081 				if (error)
2082 					break;
2083 
2084 				INP_WLOCK(inp);
2085 				switch (optval) {
2086 				case IPV6_PORTRANGE_DEFAULT:
2087 					inp->inp_flags &= ~(INP_LOWPORT);
2088 					inp->inp_flags &= ~(INP_HIGHPORT);
2089 					break;
2090 
2091 				case IPV6_PORTRANGE_HIGH:
2092 					inp->inp_flags &= ~(INP_LOWPORT);
2093 					inp->inp_flags |= INP_HIGHPORT;
2094 					break;
2095 
2096 				case IPV6_PORTRANGE_LOW:
2097 					inp->inp_flags &= ~(INP_HIGHPORT);
2098 					inp->inp_flags |= INP_LOWPORT;
2099 					break;
2100 
2101 				default:
2102 					error = EINVAL;
2103 					break;
2104 				}
2105 				INP_WUNLOCK(inp);
2106 				break;
2107 
2108 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
2109 			case IPV6_IPSEC_POLICY:
2110 				if (IPSEC_ENABLED(ipv6)) {
2111 					error = IPSEC_PCBCTL(ipv6, inp, sopt);
2112 					break;
2113 				}
2114 				/* FALLTHROUGH */
2115 #endif /* IPSEC */
2116 
2117 			default:
2118 				error = ENOPROTOOPT;
2119 				break;
2120 			}
2121 			break;
2122 
2123 		case SOPT_GET:
2124 			switch (optname) {
2125 			case IPV6_2292PKTOPTIONS:
2126 #ifdef IPV6_PKTOPTIONS
2127 			case IPV6_PKTOPTIONS:
2128 #endif
2129 				/*
2130 				 * RFC3542 (effectively) deprecated the
2131 				 * semantics of the 2292-style pktoptions.
2132 				 * Since it was not reliable in nature (i.e.,
2133 				 * applications had to expect the lack of some
2134 				 * information after all), it would make sense
2135 				 * to simplify this part by always returning
2136 				 * empty data.
2137 				 */
2138 				sopt->sopt_valsize = 0;
2139 				break;
2140 
2141 			case IPV6_RECVHOPOPTS:
2142 			case IPV6_RECVDSTOPTS:
2143 			case IPV6_RECVRTHDRDSTOPTS:
2144 			case IPV6_UNICAST_HOPS:
2145 			case IPV6_RECVPKTINFO:
2146 			case IPV6_RECVHOPLIMIT:
2147 			case IPV6_RECVRTHDR:
2148 			case IPV6_RECVPATHMTU:
2149 
2150 			case IPV6_V6ONLY:
2151 			case IPV6_PORTRANGE:
2152 			case IPV6_RECVTCLASS:
2153 			case IPV6_AUTOFLOWLABEL:
2154 			case IPV6_BINDANY:
2155 			case IPV6_FLOWID:
2156 			case IPV6_FLOWTYPE:
2157 			case IPV6_RECVFLOWID:
2158 #ifdef	RSS
2159 			case IPV6_RSSBUCKETID:
2160 			case IPV6_RECVRSSBUCKETID:
2161 #endif
2162 			case IPV6_VLAN_PCP:
2163 				switch (optname) {
2164 				case IPV6_RECVHOPOPTS:
2165 					optval = OPTBIT(IN6P_HOPOPTS);
2166 					break;
2167 
2168 				case IPV6_RECVDSTOPTS:
2169 					optval = OPTBIT(IN6P_DSTOPTS);
2170 					break;
2171 
2172 				case IPV6_RECVRTHDRDSTOPTS:
2173 					optval = OPTBIT(IN6P_RTHDRDSTOPTS);
2174 					break;
2175 
2176 				case IPV6_UNICAST_HOPS:
2177 					optval = inp->in6p_hops;
2178 					break;
2179 
2180 				case IPV6_RECVPKTINFO:
2181 					optval = OPTBIT(IN6P_PKTINFO);
2182 					break;
2183 
2184 				case IPV6_RECVHOPLIMIT:
2185 					optval = OPTBIT(IN6P_HOPLIMIT);
2186 					break;
2187 
2188 				case IPV6_RECVRTHDR:
2189 					optval = OPTBIT(IN6P_RTHDR);
2190 					break;
2191 
2192 				case IPV6_RECVPATHMTU:
2193 					optval = OPTBIT(IN6P_MTU);
2194 					break;
2195 
2196 				case IPV6_V6ONLY:
2197 					optval = OPTBIT(IN6P_IPV6_V6ONLY);
2198 					break;
2199 
2200 				case IPV6_PORTRANGE:
2201 				    {
2202 					int flags;
2203 					flags = inp->inp_flags;
2204 					if (flags & INP_HIGHPORT)
2205 						optval = IPV6_PORTRANGE_HIGH;
2206 					else if (flags & INP_LOWPORT)
2207 						optval = IPV6_PORTRANGE_LOW;
2208 					else
2209 						optval = 0;
2210 					break;
2211 				    }
2212 				case IPV6_RECVTCLASS:
2213 					optval = OPTBIT(IN6P_TCLASS);
2214 					break;
2215 
2216 				case IPV6_AUTOFLOWLABEL:
2217 					optval = OPTBIT(IN6P_AUTOFLOWLABEL);
2218 					break;
2219 
2220 				case IPV6_ORIGDSTADDR:
2221 					optval = OPTBIT2(INP_ORIGDSTADDR);
2222 					break;
2223 
2224 				case IPV6_BINDANY:
2225 					optval = OPTBIT(INP_BINDANY);
2226 					break;
2227 
2228 				case IPV6_FLOWID:
2229 					optval = inp->inp_flowid;
2230 					break;
2231 
2232 				case IPV6_FLOWTYPE:
2233 					optval = inp->inp_flowtype;
2234 					break;
2235 
2236 				case IPV6_RECVFLOWID:
2237 					optval = OPTBIT2(INP_RECVFLOWID);
2238 					break;
2239 #ifdef	RSS
2240 				case IPV6_RSSBUCKETID:
2241 					retval =
2242 					    rss_hash2bucket(inp->inp_flowid,
2243 					    inp->inp_flowtype,
2244 					    &rss_bucket);
2245 					if (retval == 0)
2246 						optval = rss_bucket;
2247 					else
2248 						error = EINVAL;
2249 					break;
2250 
2251 				case IPV6_RECVRSSBUCKETID:
2252 					optval = OPTBIT2(INP_RECVRSSBUCKETID);
2253 					break;
2254 #endif
2255 
2256 
2257 				case IPV6_VLAN_PCP:
2258 					if (OPTBIT2(INP_2PCP_SET)) {
2259 						optval = (inp->inp_flags2 &
2260 							    INP_2PCP_MASK) >>
2261 							    INP_2PCP_SHIFT;
2262 					} else {
2263 						optval = -1;
2264 					}
2265 					break;
2266 				}
2267 
2268 				if (error)
2269 					break;
2270 				error = sooptcopyout(sopt, &optval,
2271 					sizeof optval);
2272 				break;
2273 
2274 			case IPV6_PATHMTU:
2275 			{
2276 				u_long pmtu = 0;
2277 				struct ip6_mtuinfo mtuinfo;
2278 				struct in6_addr addr;
2279 
2280 				if (!(so->so_state & SS_ISCONNECTED))
2281 					return (ENOTCONN);
2282 				/*
2283 				 * XXX: we dot not consider the case of source
2284 				 * routing, or optional information to specify
2285 				 * the outgoing interface.
2286 				 * Copy faddr out of inp to avoid holding lock
2287 				 * on inp during route lookup.
2288 				 */
2289 				INP_RLOCK(inp);
2290 				bcopy(&inp->in6p_faddr, &addr, sizeof(addr));
2291 				INP_RUNLOCK(inp);
2292 				error = ip6_getpmtu_ctl(so->so_fibnum,
2293 				    &addr, &pmtu);
2294 				if (error)
2295 					break;
2296 				if (pmtu > IPV6_MAXPACKET)
2297 					pmtu = IPV6_MAXPACKET;
2298 
2299 				bzero(&mtuinfo, sizeof(mtuinfo));
2300 				mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
2301 				optdata = (void *)&mtuinfo;
2302 				optdatalen = sizeof(mtuinfo);
2303 				error = sooptcopyout(sopt, optdata,
2304 				    optdatalen);
2305 				break;
2306 			}
2307 
2308 			case IPV6_2292PKTINFO:
2309 			case IPV6_2292HOPLIMIT:
2310 			case IPV6_2292HOPOPTS:
2311 			case IPV6_2292RTHDR:
2312 			case IPV6_2292DSTOPTS:
2313 				switch (optname) {
2314 				case IPV6_2292PKTINFO:
2315 					optval = OPTBIT(IN6P_PKTINFO);
2316 					break;
2317 				case IPV6_2292HOPLIMIT:
2318 					optval = OPTBIT(IN6P_HOPLIMIT);
2319 					break;
2320 				case IPV6_2292HOPOPTS:
2321 					optval = OPTBIT(IN6P_HOPOPTS);
2322 					break;
2323 				case IPV6_2292RTHDR:
2324 					optval = OPTBIT(IN6P_RTHDR);
2325 					break;
2326 				case IPV6_2292DSTOPTS:
2327 					optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
2328 					break;
2329 				}
2330 				error = sooptcopyout(sopt, &optval,
2331 				    sizeof optval);
2332 				break;
2333 			case IPV6_PKTINFO:
2334 			case IPV6_HOPOPTS:
2335 			case IPV6_RTHDR:
2336 			case IPV6_DSTOPTS:
2337 			case IPV6_RTHDRDSTOPTS:
2338 			case IPV6_NEXTHOP:
2339 			case IPV6_TCLASS:
2340 			case IPV6_DONTFRAG:
2341 			case IPV6_USE_MIN_MTU:
2342 			case IPV6_PREFER_TEMPADDR:
2343 				error = ip6_getpcbopt(inp, optname, sopt);
2344 				break;
2345 
2346 			case IPV6_MULTICAST_IF:
2347 			case IPV6_MULTICAST_HOPS:
2348 			case IPV6_MULTICAST_LOOP:
2349 			case IPV6_MSFILTER:
2350 				error = ip6_getmoptions(inp, sopt);
2351 				break;
2352 
2353 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
2354 			case IPV6_IPSEC_POLICY:
2355 				if (IPSEC_ENABLED(ipv6)) {
2356 					error = IPSEC_PCBCTL(ipv6, inp, sopt);
2357 					break;
2358 				}
2359 				/* FALLTHROUGH */
2360 #endif /* IPSEC */
2361 			default:
2362 				error = ENOPROTOOPT;
2363 				break;
2364 			}
2365 			break;
2366 		}
2367 	}
2368 	return (error);
2369 }
2370 
2371 int
ip6_raw_ctloutput(struct socket * so,struct sockopt * sopt)2372 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt)
2373 {
2374 	int error = 0, optval, optlen;
2375 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
2376 	struct inpcb *inp = sotoinpcb(so);
2377 	int level, op, optname;
2378 
2379 	level = sopt->sopt_level;
2380 	op = sopt->sopt_dir;
2381 	optname = sopt->sopt_name;
2382 	optlen = sopt->sopt_valsize;
2383 
2384 	if (level != IPPROTO_IPV6) {
2385 		return (EINVAL);
2386 	}
2387 
2388 	switch (optname) {
2389 	case IPV6_CHECKSUM:
2390 		/*
2391 		 * For ICMPv6 sockets, no modification allowed for checksum
2392 		 * offset, permit "no change" values to help existing apps.
2393 		 *
2394 		 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
2395 		 * for an ICMPv6 socket will fail."
2396 		 * The current behavior does not meet RFC3542.
2397 		 */
2398 		switch (op) {
2399 		case SOPT_SET:
2400 			if (optlen != sizeof(int)) {
2401 				error = EINVAL;
2402 				break;
2403 			}
2404 			error = sooptcopyin(sopt, &optval, sizeof(optval),
2405 					    sizeof(optval));
2406 			if (error)
2407 				break;
2408 			if (optval < -1 || (optval % 2) != 0) {
2409 				/*
2410 				 * The API assumes non-negative even offset
2411 				 * values or -1 as a special value.
2412 				 */
2413 				error = EINVAL;
2414 			} else if (inp->inp_ip_p == IPPROTO_ICMPV6) {
2415 				if (optval != icmp6off)
2416 					error = EINVAL;
2417 			} else
2418 				inp->in6p_cksum = optval;
2419 			break;
2420 
2421 		case SOPT_GET:
2422 			if (inp->inp_ip_p == IPPROTO_ICMPV6)
2423 				optval = icmp6off;
2424 			else
2425 				optval = inp->in6p_cksum;
2426 
2427 			error = sooptcopyout(sopt, &optval, sizeof(optval));
2428 			break;
2429 
2430 		default:
2431 			error = EINVAL;
2432 			break;
2433 		}
2434 		break;
2435 
2436 	default:
2437 		error = ENOPROTOOPT;
2438 		break;
2439 	}
2440 
2441 	return (error);
2442 }
2443 
2444 /*
2445  * Set up IP6 options in pcb for insertion in output packets or
2446  * specifying behavior of outgoing packets.
2447  */
2448 static int
ip6_pcbopts(struct ip6_pktopts ** pktopt,struct mbuf * m,struct socket * so,struct sockopt * sopt)2449 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m,
2450     struct socket *so, struct sockopt *sopt)
2451 {
2452 	struct ip6_pktopts *opt = *pktopt;
2453 	int error = 0;
2454 	struct thread *td = sopt->sopt_td;
2455 	struct epoch_tracker et;
2456 
2457 	/* turn off any old options. */
2458 	if (opt) {
2459 #ifdef DIAGNOSTIC
2460 		if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2461 		    opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2462 		    opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2463 			printf("ip6_pcbopts: all specified options are cleared.\n");
2464 #endif
2465 		ip6_clearpktopts(opt, -1);
2466 	} else {
2467 		opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
2468 		if (opt == NULL)
2469 			return (ENOMEM);
2470 	}
2471 	*pktopt = NULL;
2472 
2473 	if (!m || m->m_len == 0) {
2474 		/*
2475 		 * Only turning off any previous options, regardless of
2476 		 * whether the opt is just created or given.
2477 		 */
2478 		free(opt, M_IP6OPT);
2479 		return (0);
2480 	}
2481 
2482 	/*  set options specified by user. */
2483 	NET_EPOCH_ENTER(et);
2484 	if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ?
2485 	    td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) {
2486 		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2487 		free(opt, M_IP6OPT);
2488 		NET_EPOCH_EXIT(et);
2489 		return (error);
2490 	}
2491 	NET_EPOCH_EXIT(et);
2492 	*pktopt = opt;
2493 	return (0);
2494 }
2495 
2496 /*
2497  * initialize ip6_pktopts.  beware that there are non-zero default values in
2498  * the struct.
2499  */
2500 void
ip6_initpktopts(struct ip6_pktopts * opt)2501 ip6_initpktopts(struct ip6_pktopts *opt)
2502 {
2503 
2504 	bzero(opt, sizeof(*opt));
2505 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
2506 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
2507 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2508 	opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2509 }
2510 
2511 static int
ip6_pcbopt(int optname,u_char * buf,int len,struct ip6_pktopts ** pktopt,struct ucred * cred,int uproto)2512 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2513     struct ucred *cred, int uproto)
2514 {
2515 	struct epoch_tracker et;
2516 	struct ip6_pktopts *opt;
2517 	int ret;
2518 
2519 	if (*pktopt == NULL) {
2520 		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2521 		    M_NOWAIT);
2522 		if (*pktopt == NULL)
2523 			return (ENOBUFS);
2524 		ip6_initpktopts(*pktopt);
2525 	}
2526 	opt = *pktopt;
2527 
2528 	NET_EPOCH_ENTER(et);
2529 	ret = ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto);
2530 	NET_EPOCH_EXIT(et);
2531 
2532 	return (ret);
2533 }
2534 
2535 #define GET_PKTOPT_VAR(field, lenexpr) do {				\
2536 	if (pktopt && pktopt->field) {					\
2537 		INP_RUNLOCK(inp);					\
2538 		optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK);	\
2539 		malloc_optdata = true;					\
2540 		INP_RLOCK(inp);						\
2541 		if (inp->inp_flags & INP_DROPPED) {			\
2542 			INP_RUNLOCK(inp);				\
2543 			free(optdata, M_TEMP);				\
2544 			return (ECONNRESET);				\
2545 		}							\
2546 		pktopt = inp->in6p_outputopts;				\
2547 		if (pktopt && pktopt->field) {				\
2548 			optdatalen = min(lenexpr, sopt->sopt_valsize);	\
2549 			bcopy(pktopt->field, optdata, optdatalen);	\
2550 		} else {						\
2551 			free(optdata, M_TEMP);				\
2552 			optdata = NULL;					\
2553 			malloc_optdata = false;				\
2554 		}							\
2555 	}								\
2556 } while(0)
2557 
2558 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field,			\
2559 	(((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3)
2560 
2561 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field,		\
2562 	pktopt->field->sa_len)
2563 
2564 static int
ip6_getpcbopt(struct inpcb * inp,int optname,struct sockopt * sopt)2565 ip6_getpcbopt(struct inpcb *inp, int optname, struct sockopt *sopt)
2566 {
2567 	void *optdata = NULL;
2568 	bool malloc_optdata = false;
2569 	int optdatalen = 0;
2570 	int error = 0;
2571 	struct in6_pktinfo null_pktinfo;
2572 	int deftclass = 0, on;
2573 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
2574 	int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2575 	struct ip6_pktopts *pktopt;
2576 
2577 	INP_RLOCK(inp);
2578 	pktopt = inp->in6p_outputopts;
2579 
2580 	switch (optname) {
2581 	case IPV6_PKTINFO:
2582 		optdata = (void *)&null_pktinfo;
2583 		if (pktopt && pktopt->ip6po_pktinfo) {
2584 			bcopy(pktopt->ip6po_pktinfo, &null_pktinfo,
2585 			    sizeof(null_pktinfo));
2586 			in6_clearscope(&null_pktinfo.ipi6_addr);
2587 		} else {
2588 			/* XXX: we don't have to do this every time... */
2589 			bzero(&null_pktinfo, sizeof(null_pktinfo));
2590 		}
2591 		optdatalen = sizeof(struct in6_pktinfo);
2592 		break;
2593 	case IPV6_TCLASS:
2594 		if (pktopt && pktopt->ip6po_tclass >= 0)
2595 			deftclass = pktopt->ip6po_tclass;
2596 		optdata = (void *)&deftclass;
2597 		optdatalen = sizeof(int);
2598 		break;
2599 	case IPV6_HOPOPTS:
2600 		GET_PKTOPT_EXT_HDR(ip6po_hbh);
2601 		break;
2602 	case IPV6_RTHDR:
2603 		GET_PKTOPT_EXT_HDR(ip6po_rthdr);
2604 		break;
2605 	case IPV6_RTHDRDSTOPTS:
2606 		GET_PKTOPT_EXT_HDR(ip6po_dest1);
2607 		break;
2608 	case IPV6_DSTOPTS:
2609 		GET_PKTOPT_EXT_HDR(ip6po_dest2);
2610 		break;
2611 	case IPV6_NEXTHOP:
2612 		GET_PKTOPT_SOCKADDR(ip6po_nexthop);
2613 		break;
2614 	case IPV6_USE_MIN_MTU:
2615 		if (pktopt)
2616 			defminmtu = pktopt->ip6po_minmtu;
2617 		optdata = (void *)&defminmtu;
2618 		optdatalen = sizeof(int);
2619 		break;
2620 	case IPV6_DONTFRAG:
2621 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2622 			on = 1;
2623 		else
2624 			on = 0;
2625 		optdata = (void *)&on;
2626 		optdatalen = sizeof(on);
2627 		break;
2628 	case IPV6_PREFER_TEMPADDR:
2629 		if (pktopt)
2630 			defpreftemp = pktopt->ip6po_prefer_tempaddr;
2631 		optdata = (void *)&defpreftemp;
2632 		optdatalen = sizeof(int);
2633 		break;
2634 	default:		/* should not happen */
2635 #ifdef DIAGNOSTIC
2636 		panic("ip6_getpcbopt: unexpected option\n");
2637 #endif
2638 		INP_RUNLOCK(inp);
2639 		return (ENOPROTOOPT);
2640 	}
2641 	INP_RUNLOCK(inp);
2642 
2643 	error = sooptcopyout(sopt, optdata, optdatalen);
2644 	if (malloc_optdata)
2645 		free(optdata, M_TEMP);
2646 
2647 	return (error);
2648 }
2649 
2650 void
ip6_clearpktopts(struct ip6_pktopts * pktopt,int optname)2651 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2652 {
2653 	if (pktopt == NULL)
2654 		return;
2655 
2656 	if (optname == -1 || optname == IPV6_PKTINFO) {
2657 		if (pktopt->ip6po_pktinfo)
2658 			free(pktopt->ip6po_pktinfo, M_IP6OPT);
2659 		pktopt->ip6po_pktinfo = NULL;
2660 	}
2661 	if (optname == -1 || optname == IPV6_HOPLIMIT) {
2662 		pktopt->ip6po_hlim = -1;
2663 		pktopt->ip6po_valid &= ~IP6PO_VALID_HLIM;
2664 	}
2665 	if (optname == -1 || optname == IPV6_TCLASS) {
2666 		pktopt->ip6po_tclass = -1;
2667 		pktopt->ip6po_valid &= ~IP6PO_VALID_TC;
2668 	}
2669 	if (optname == -1 || optname == IPV6_NEXTHOP) {
2670 		if (pktopt->ip6po_nextroute.ro_nh) {
2671 			NH_FREE(pktopt->ip6po_nextroute.ro_nh);
2672 			pktopt->ip6po_nextroute.ro_nh = NULL;
2673 		}
2674 		if (pktopt->ip6po_nexthop)
2675 			free(pktopt->ip6po_nexthop, M_IP6OPT);
2676 		pktopt->ip6po_nexthop = NULL;
2677 		pktopt->ip6po_valid &= ~IP6PO_VALID_NHINFO;
2678 	}
2679 	if (optname == -1 || optname == IPV6_HOPOPTS) {
2680 		if (pktopt->ip6po_hbh)
2681 			free(pktopt->ip6po_hbh, M_IP6OPT);
2682 		pktopt->ip6po_hbh = NULL;
2683 		pktopt->ip6po_valid &= ~IP6PO_VALID_HBH;
2684 	}
2685 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2686 		if (pktopt->ip6po_dest1)
2687 			free(pktopt->ip6po_dest1, M_IP6OPT);
2688 		pktopt->ip6po_dest1 = NULL;
2689 		pktopt->ip6po_valid &= ~IP6PO_VALID_DEST1;
2690 	}
2691 	if (optname == -1 || optname == IPV6_RTHDR) {
2692 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2693 			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2694 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2695 		if (pktopt->ip6po_route.ro_nh) {
2696 			NH_FREE(pktopt->ip6po_route.ro_nh);
2697 			pktopt->ip6po_route.ro_nh = NULL;
2698 		}
2699 		pktopt->ip6po_valid &= ~IP6PO_VALID_RHINFO;
2700 	}
2701 	if (optname == -1 || optname == IPV6_DSTOPTS) {
2702 		if (pktopt->ip6po_dest2)
2703 			free(pktopt->ip6po_dest2, M_IP6OPT);
2704 		pktopt->ip6po_dest2 = NULL;
2705 		pktopt->ip6po_valid &= ~IP6PO_VALID_DEST2;
2706 	}
2707 }
2708 
2709 #define PKTOPT_EXTHDRCPY(type) \
2710 do {\
2711 	if (src->type) {\
2712 		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2713 		dst->type = malloc(hlen, M_IP6OPT, canwait);\
2714 		if (dst->type == NULL)\
2715 			goto bad;\
2716 		bcopy(src->type, dst->type, hlen);\
2717 	}\
2718 } while (/*CONSTCOND*/ 0)
2719 
2720 static int
copypktopts(struct ip6_pktopts * dst,struct ip6_pktopts * src,int canwait)2721 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2722 {
2723 	if (dst == NULL || src == NULL)  {
2724 		printf("ip6_clearpktopts: invalid argument\n");
2725 		return (EINVAL);
2726 	}
2727 
2728 	dst->ip6po_hlim = src->ip6po_hlim;
2729 	dst->ip6po_tclass = src->ip6po_tclass;
2730 	dst->ip6po_flags = src->ip6po_flags;
2731 	dst->ip6po_minmtu = src->ip6po_minmtu;
2732 	dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
2733 	if (src->ip6po_pktinfo) {
2734 		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2735 		    M_IP6OPT, canwait);
2736 		if (dst->ip6po_pktinfo == NULL)
2737 			goto bad;
2738 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2739 	}
2740 	if (src->ip6po_nexthop) {
2741 		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2742 		    M_IP6OPT, canwait);
2743 		if (dst->ip6po_nexthop == NULL)
2744 			goto bad;
2745 		bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2746 		    src->ip6po_nexthop->sa_len);
2747 	}
2748 	PKTOPT_EXTHDRCPY(ip6po_hbh);
2749 	PKTOPT_EXTHDRCPY(ip6po_dest1);
2750 	PKTOPT_EXTHDRCPY(ip6po_dest2);
2751 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2752 	dst->ip6po_valid = src->ip6po_valid;
2753 	return (0);
2754 
2755   bad:
2756 	ip6_clearpktopts(dst, -1);
2757 	return (ENOBUFS);
2758 }
2759 #undef PKTOPT_EXTHDRCPY
2760 
2761 struct ip6_pktopts *
ip6_copypktopts(struct ip6_pktopts * src,int canwait)2762 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2763 {
2764 	int error;
2765 	struct ip6_pktopts *dst;
2766 
2767 	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2768 	if (dst == NULL)
2769 		return (NULL);
2770 	ip6_initpktopts(dst);
2771 
2772 	if ((error = copypktopts(dst, src, canwait)) != 0) {
2773 		free(dst, M_IP6OPT);
2774 		return (NULL);
2775 	}
2776 
2777 	return (dst);
2778 }
2779 
2780 void
ip6_freepcbopts(struct ip6_pktopts * pktopt)2781 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2782 {
2783 	if (pktopt == NULL)
2784 		return;
2785 
2786 	ip6_clearpktopts(pktopt, -1);
2787 
2788 	free(pktopt, M_IP6OPT);
2789 }
2790 
2791 /*
2792  * Set IPv6 outgoing packet options based on advanced API.
2793  */
2794 int
ip6_setpktopts(struct mbuf * control,struct ip6_pktopts * opt,struct ip6_pktopts * stickyopt,struct ucred * cred,int uproto)2795 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2796     struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto)
2797 {
2798 	struct cmsghdr *cm = NULL;
2799 
2800 	if (control == NULL || opt == NULL)
2801 		return (EINVAL);
2802 
2803 	/*
2804 	 * ip6_setpktopt can call ifnet_byindex(), so it's imperative that we
2805 	 * are in the network epoch here.
2806 	 */
2807 	NET_EPOCH_ASSERT();
2808 
2809 	ip6_initpktopts(opt);
2810 	if (stickyopt) {
2811 		int error;
2812 
2813 		/*
2814 		 * If stickyopt is provided, make a local copy of the options
2815 		 * for this particular packet, then override them by ancillary
2816 		 * objects.
2817 		 * XXX: copypktopts() does not copy the cached route to a next
2818 		 * hop (if any).  This is not very good in terms of efficiency,
2819 		 * but we can allow this since this option should be rarely
2820 		 * used.
2821 		 */
2822 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2823 			return (error);
2824 	}
2825 
2826 	/*
2827 	 * XXX: Currently, we assume all the optional information is stored
2828 	 * in a single mbuf.
2829 	 */
2830 	if (control->m_next)
2831 		return (EINVAL);
2832 
2833 	for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2834 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2835 		int error;
2836 
2837 		if (control->m_len < CMSG_LEN(0))
2838 			return (EINVAL);
2839 
2840 		cm = mtod(control, struct cmsghdr *);
2841 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2842 			return (EINVAL);
2843 		if (cm->cmsg_level != IPPROTO_IPV6)
2844 			continue;
2845 
2846 		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2847 		    cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2848 		if (error)
2849 			return (error);
2850 	}
2851 
2852 	return (0);
2853 }
2854 
2855 /*
2856  * Set a particular packet option, as a sticky option or an ancillary data
2857  * item.  "len" can be 0 only when it's a sticky option.
2858  * We have 4 cases of combination of "sticky" and "cmsg":
2859  * "sticky=0, cmsg=0": impossible
2860  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2861  * "sticky=1, cmsg=0": RFC3542 socket option
2862  * "sticky=1, cmsg=1": RFC2292 socket option
2863  */
2864 static int
ip6_setpktopt(int optname,u_char * buf,int len,struct ip6_pktopts * opt,struct ucred * cred,int sticky,int cmsg,int uproto)2865 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2866     struct ucred *cred, int sticky, int cmsg, int uproto)
2867 {
2868 	int minmtupolicy, preftemp;
2869 	int error;
2870 
2871 	NET_EPOCH_ASSERT();
2872 
2873 	if (!sticky && !cmsg) {
2874 #ifdef DIAGNOSTIC
2875 		printf("ip6_setpktopt: impossible case\n");
2876 #endif
2877 		return (EINVAL);
2878 	}
2879 
2880 	/*
2881 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2882 	 * not be specified in the context of RFC3542.  Conversely,
2883 	 * RFC3542 types should not be specified in the context of RFC2292.
2884 	 */
2885 	if (!cmsg) {
2886 		switch (optname) {
2887 		case IPV6_2292PKTINFO:
2888 		case IPV6_2292HOPLIMIT:
2889 		case IPV6_2292NEXTHOP:
2890 		case IPV6_2292HOPOPTS:
2891 		case IPV6_2292DSTOPTS:
2892 		case IPV6_2292RTHDR:
2893 		case IPV6_2292PKTOPTIONS:
2894 			return (ENOPROTOOPT);
2895 		}
2896 	}
2897 	if (sticky && cmsg) {
2898 		switch (optname) {
2899 		case IPV6_PKTINFO:
2900 		case IPV6_HOPLIMIT:
2901 		case IPV6_NEXTHOP:
2902 		case IPV6_HOPOPTS:
2903 		case IPV6_DSTOPTS:
2904 		case IPV6_RTHDRDSTOPTS:
2905 		case IPV6_RTHDR:
2906 		case IPV6_USE_MIN_MTU:
2907 		case IPV6_DONTFRAG:
2908 		case IPV6_TCLASS:
2909 		case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */
2910 			return (ENOPROTOOPT);
2911 		}
2912 	}
2913 
2914 	switch (optname) {
2915 	case IPV6_2292PKTINFO:
2916 	case IPV6_PKTINFO:
2917 	{
2918 		struct ifnet *ifp = NULL;
2919 		struct in6_pktinfo *pktinfo;
2920 
2921 		if (len != sizeof(struct in6_pktinfo))
2922 			return (EINVAL);
2923 
2924 		pktinfo = (struct in6_pktinfo *)buf;
2925 
2926 		/*
2927 		 * An application can clear any sticky IPV6_PKTINFO option by
2928 		 * doing a "regular" setsockopt with ipi6_addr being
2929 		 * in6addr_any and ipi6_ifindex being zero.
2930 		 * [RFC 3542, Section 6]
2931 		 */
2932 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2933 		    pktinfo->ipi6_ifindex == 0 &&
2934 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2935 			ip6_clearpktopts(opt, optname);
2936 			break;
2937 		}
2938 
2939 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2940 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2941 			return (EINVAL);
2942 		}
2943 		if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr))
2944 			return (EINVAL);
2945 		/* validate the interface index if specified. */
2946 		if (pktinfo->ipi6_ifindex) {
2947 			ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
2948 			if (ifp == NULL)
2949 				return (ENXIO);
2950 		}
2951 		if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL ||
2952 		    (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0))
2953 			return (ENETDOWN);
2954 
2955 		if (ifp != NULL &&
2956 		    !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2957 			struct in6_ifaddr *ia;
2958 
2959 			in6_setscope(&pktinfo->ipi6_addr, ifp, NULL);
2960 			ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr);
2961 			if (ia == NULL)
2962 				return (EADDRNOTAVAIL);
2963 			ifa_free(&ia->ia_ifa);
2964 		}
2965 		/*
2966 		 * We store the address anyway, and let in6_selectsrc()
2967 		 * validate the specified address.  This is because ipi6_addr
2968 		 * may not have enough information about its scope zone, and
2969 		 * we may need additional information (such as outgoing
2970 		 * interface or the scope zone of a destination address) to
2971 		 * disambiguate the scope.
2972 		 * XXX: the delay of the validation may confuse the
2973 		 * application when it is used as a sticky option.
2974 		 */
2975 		if (opt->ip6po_pktinfo == NULL) {
2976 			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2977 			    M_IP6OPT, M_NOWAIT);
2978 			if (opt->ip6po_pktinfo == NULL)
2979 				return (ENOBUFS);
2980 		}
2981 		bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
2982 		opt->ip6po_valid |= IP6PO_VALID_PKTINFO;
2983 		break;
2984 	}
2985 
2986 	case IPV6_2292HOPLIMIT:
2987 	case IPV6_HOPLIMIT:
2988 	{
2989 		int *hlimp;
2990 
2991 		/*
2992 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2993 		 * to simplify the ordering among hoplimit options.
2994 		 */
2995 		if (optname == IPV6_HOPLIMIT && sticky)
2996 			return (ENOPROTOOPT);
2997 
2998 		if (len != sizeof(int))
2999 			return (EINVAL);
3000 		hlimp = (int *)buf;
3001 		if (*hlimp < -1 || *hlimp > 255)
3002 			return (EINVAL);
3003 
3004 		opt->ip6po_hlim = *hlimp;
3005 		opt->ip6po_valid |= IP6PO_VALID_HLIM;
3006 		break;
3007 	}
3008 
3009 	case IPV6_TCLASS:
3010 	{
3011 		int tclass;
3012 
3013 		if (len != sizeof(int))
3014 			return (EINVAL);
3015 		tclass = *(int *)buf;
3016 		if (tclass < -1 || tclass > 255)
3017 			return (EINVAL);
3018 
3019 		opt->ip6po_tclass = tclass;
3020 		opt->ip6po_valid |= IP6PO_VALID_TC;
3021 		break;
3022 	}
3023 
3024 	case IPV6_2292NEXTHOP:
3025 	case IPV6_NEXTHOP:
3026 		if (cred != NULL) {
3027 			error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS);
3028 			if (error)
3029 				return (error);
3030 		}
3031 
3032 		if (len == 0) {	/* just remove the option */
3033 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
3034 			break;
3035 		}
3036 
3037 		/* check if cmsg_len is large enough for sa_len */
3038 		if (len < sizeof(struct sockaddr) || len < *buf)
3039 			return (EINVAL);
3040 
3041 		switch (((struct sockaddr *)buf)->sa_family) {
3042 		case AF_INET6:
3043 		{
3044 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
3045 			int error;
3046 
3047 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
3048 				return (EINVAL);
3049 
3050 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
3051 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
3052 				return (EINVAL);
3053 			}
3054 			if ((error = sa6_embedscope(sa6, V_ip6_use_defzone))
3055 			    != 0) {
3056 				return (error);
3057 			}
3058 			break;
3059 		}
3060 		case AF_LINK:	/* should eventually be supported */
3061 		default:
3062 			return (EAFNOSUPPORT);
3063 		}
3064 
3065 		/* turn off the previous option, then set the new option. */
3066 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
3067 		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
3068 		if (opt->ip6po_nexthop == NULL)
3069 			return (ENOBUFS);
3070 		bcopy(buf, opt->ip6po_nexthop, *buf);
3071 		opt->ip6po_valid |= IP6PO_VALID_NHINFO;
3072 		break;
3073 
3074 	case IPV6_2292HOPOPTS:
3075 	case IPV6_HOPOPTS:
3076 	{
3077 		struct ip6_hbh *hbh;
3078 		int hbhlen;
3079 
3080 		/*
3081 		 * XXX: We don't allow a non-privileged user to set ANY HbH
3082 		 * options, since per-option restriction has too much
3083 		 * overhead.
3084 		 */
3085 		if (cred != NULL) {
3086 			error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS);
3087 			if (error)
3088 				return (error);
3089 		}
3090 
3091 		if (len == 0) {
3092 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
3093 			break;	/* just remove the option */
3094 		}
3095 
3096 		/* message length validation */
3097 		if (len < sizeof(struct ip6_hbh))
3098 			return (EINVAL);
3099 		hbh = (struct ip6_hbh *)buf;
3100 		hbhlen = (hbh->ip6h_len + 1) << 3;
3101 		if (len != hbhlen)
3102 			return (EINVAL);
3103 
3104 		/* turn off the previous option, then set the new option. */
3105 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
3106 		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
3107 		if (opt->ip6po_hbh == NULL)
3108 			return (ENOBUFS);
3109 		bcopy(hbh, opt->ip6po_hbh, hbhlen);
3110 		opt->ip6po_valid |= IP6PO_VALID_HBH;
3111 
3112 		break;
3113 	}
3114 
3115 	case IPV6_2292DSTOPTS:
3116 	case IPV6_DSTOPTS:
3117 	case IPV6_RTHDRDSTOPTS:
3118 	{
3119 		struct ip6_dest *dest, **newdest = NULL;
3120 		int destlen;
3121 
3122 		if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */
3123 			error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS);
3124 			if (error)
3125 				return (error);
3126 		}
3127 
3128 		if (len == 0) {
3129 			ip6_clearpktopts(opt, optname);
3130 			break;	/* just remove the option */
3131 		}
3132 
3133 		/* message length validation */
3134 		if (len < sizeof(struct ip6_dest))
3135 			return (EINVAL);
3136 		dest = (struct ip6_dest *)buf;
3137 		destlen = (dest->ip6d_len + 1) << 3;
3138 		if (len != destlen)
3139 			return (EINVAL);
3140 
3141 		/*
3142 		 * Determine the position that the destination options header
3143 		 * should be inserted; before or after the routing header.
3144 		 */
3145 		switch (optname) {
3146 		case IPV6_2292DSTOPTS:
3147 			/*
3148 			 * The old advacned API is ambiguous on this point.
3149 			 * Our approach is to determine the position based
3150 			 * according to the existence of a routing header.
3151 			 * Note, however, that this depends on the order of the
3152 			 * extension headers in the ancillary data; the 1st
3153 			 * part of the destination options header must appear
3154 			 * before the routing header in the ancillary data,
3155 			 * too.
3156 			 * RFC3542 solved the ambiguity by introducing
3157 			 * separate ancillary data or option types.
3158 			 */
3159 			if (opt->ip6po_rthdr == NULL)
3160 				newdest = &opt->ip6po_dest1;
3161 			else
3162 				newdest = &opt->ip6po_dest2;
3163 			break;
3164 		case IPV6_RTHDRDSTOPTS:
3165 			newdest = &opt->ip6po_dest1;
3166 			break;
3167 		case IPV6_DSTOPTS:
3168 			newdest = &opt->ip6po_dest2;
3169 			break;
3170 		}
3171 
3172 		/* turn off the previous option, then set the new option. */
3173 		ip6_clearpktopts(opt, optname);
3174 		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
3175 		if (*newdest == NULL)
3176 			return (ENOBUFS);
3177 		bcopy(dest, *newdest, destlen);
3178 		if (newdest == &opt->ip6po_dest1)
3179 			opt->ip6po_valid |= IP6PO_VALID_DEST1;
3180 		else
3181 			opt->ip6po_valid |= IP6PO_VALID_DEST2;
3182 
3183 		break;
3184 	}
3185 
3186 	case IPV6_2292RTHDR:
3187 	case IPV6_RTHDR:
3188 	{
3189 		struct ip6_rthdr *rth;
3190 		int rthlen;
3191 
3192 		if (len == 0) {
3193 			ip6_clearpktopts(opt, IPV6_RTHDR);
3194 			break;	/* just remove the option */
3195 		}
3196 
3197 		/* message length validation */
3198 		if (len < sizeof(struct ip6_rthdr))
3199 			return (EINVAL);
3200 		rth = (struct ip6_rthdr *)buf;
3201 		rthlen = (rth->ip6r_len + 1) << 3;
3202 		if (len != rthlen)
3203 			return (EINVAL);
3204 
3205 		switch (rth->ip6r_type) {
3206 		case IPV6_RTHDR_TYPE_0:
3207 			if (rth->ip6r_len == 0)	/* must contain one addr */
3208 				return (EINVAL);
3209 			if (rth->ip6r_len % 2) /* length must be even */
3210 				return (EINVAL);
3211 			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
3212 				return (EINVAL);
3213 			break;
3214 		default:
3215 			return (EINVAL);	/* not supported */
3216 		}
3217 
3218 		/* turn off the previous option */
3219 		ip6_clearpktopts(opt, IPV6_RTHDR);
3220 		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3221 		if (opt->ip6po_rthdr == NULL)
3222 			return (ENOBUFS);
3223 		bcopy(rth, opt->ip6po_rthdr, rthlen);
3224 		opt->ip6po_valid |= IP6PO_VALID_RHINFO;
3225 
3226 		break;
3227 	}
3228 
3229 	case IPV6_USE_MIN_MTU:
3230 		if (len != sizeof(int))
3231 			return (EINVAL);
3232 		minmtupolicy = *(int *)buf;
3233 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3234 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
3235 		    minmtupolicy != IP6PO_MINMTU_ALL) {
3236 			return (EINVAL);
3237 		}
3238 		opt->ip6po_minmtu = minmtupolicy;
3239 		break;
3240 
3241 	case IPV6_DONTFRAG:
3242 		if (len != sizeof(int))
3243 			return (EINVAL);
3244 
3245 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3246 			/*
3247 			 * we ignore this option for TCP sockets.
3248 			 * (RFC3542 leaves this case unspecified.)
3249 			 */
3250 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3251 		} else
3252 			opt->ip6po_flags |= IP6PO_DONTFRAG;
3253 		break;
3254 
3255 	case IPV6_PREFER_TEMPADDR:
3256 		if (len != sizeof(int))
3257 			return (EINVAL);
3258 		preftemp = *(int *)buf;
3259 		if (preftemp != IP6PO_TEMPADDR_SYSTEM &&
3260 		    preftemp != IP6PO_TEMPADDR_NOTPREFER &&
3261 		    preftemp != IP6PO_TEMPADDR_PREFER) {
3262 			return (EINVAL);
3263 		}
3264 		opt->ip6po_prefer_tempaddr = preftemp;
3265 		break;
3266 
3267 	default:
3268 		return (ENOPROTOOPT);
3269 	} /* end of switch */
3270 
3271 	return (0);
3272 }
3273 
3274 /*
3275  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3276  * packet to the input queue of a specified interface.  Note that this
3277  * calls the output routine of the loopback "driver", but with an interface
3278  * pointer that might NOT be &loif -- easier than replicating that code here.
3279  */
3280 void
ip6_mloopback(struct ifnet * ifp,struct mbuf * m)3281 ip6_mloopback(struct ifnet *ifp, struct mbuf *m)
3282 {
3283 	struct mbuf *copym;
3284 	struct ip6_hdr *ip6;
3285 
3286 	copym = m_copym(m, 0, M_COPYALL, M_NOWAIT);
3287 	if (copym == NULL)
3288 		return;
3289 
3290 	/*
3291 	 * Make sure to deep-copy IPv6 header portion in case the data
3292 	 * is in an mbuf cluster, so that we can safely override the IPv6
3293 	 * header portion later.
3294 	 */
3295 	if (!M_WRITABLE(copym) ||
3296 	    copym->m_len < sizeof(struct ip6_hdr)) {
3297 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
3298 		if (copym == NULL)
3299 			return;
3300 	}
3301 	ip6 = mtod(copym, struct ip6_hdr *);
3302 	/*
3303 	 * clear embedded scope identifiers if necessary.
3304 	 * in6_clearscope will touch the addresses only when necessary.
3305 	 */
3306 	in6_clearscope(&ip6->ip6_src);
3307 	in6_clearscope(&ip6->ip6_dst);
3308 	if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
3309 		copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 |
3310 		    CSUM_PSEUDO_HDR;
3311 		copym->m_pkthdr.csum_data = 0xffff;
3312 	}
3313 	if_simloop(ifp, copym, AF_INET6, 0);
3314 }
3315 
3316 /*
3317  * Chop IPv6 header off from the payload.
3318  */
3319 static int
ip6_splithdr(struct mbuf * m,struct ip6_exthdrs * exthdrs)3320 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3321 {
3322 	struct mbuf *mh;
3323 	struct ip6_hdr *ip6;
3324 
3325 	ip6 = mtod(m, struct ip6_hdr *);
3326 	if (m->m_len > sizeof(*ip6)) {
3327 		mh = m_gethdr(M_NOWAIT, MT_DATA);
3328 		if (mh == NULL) {
3329 			m_freem(m);
3330 			return ENOBUFS;
3331 		}
3332 		m_move_pkthdr(mh, m);
3333 		M_ALIGN(mh, sizeof(*ip6));
3334 		m->m_len -= sizeof(*ip6);
3335 		m->m_data += sizeof(*ip6);
3336 		mh->m_next = m;
3337 		m = mh;
3338 		m->m_len = sizeof(*ip6);
3339 		bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
3340 	}
3341 	exthdrs->ip6e_ip6 = m;
3342 	return 0;
3343 }
3344 
3345 /*
3346  * Compute IPv6 extension header length.
3347  */
3348 int
ip6_optlen(struct inpcb * inp)3349 ip6_optlen(struct inpcb *inp)
3350 {
3351 	int len;
3352 
3353 	if (!inp->in6p_outputopts)
3354 		return 0;
3355 
3356 	len = 0;
3357 #define elen(x) \
3358     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3359 
3360 	len += elen(inp->in6p_outputopts->ip6po_hbh);
3361 	if (inp->in6p_outputopts->ip6po_rthdr)
3362 		/* dest1 is valid with rthdr only */
3363 		len += elen(inp->in6p_outputopts->ip6po_dest1);
3364 	len += elen(inp->in6p_outputopts->ip6po_rthdr);
3365 	len += elen(inp->in6p_outputopts->ip6po_dest2);
3366 	return len;
3367 #undef elen
3368 }
3369