xref: /linux/arch/x86/mm/ioremap.c (revision 00c010e130e58301db2ea0cec1eadc931e1cb8cf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Re-map IO memory to kernel address space so that we can access it.
4  * This is needed for high PCI addresses that aren't mapped in the
5  * 640k-1MB IO memory area on PC's
6  *
7  * (C) Copyright 1995 1996 Linus Torvalds
8  */
9 
10 #include <linux/memblock.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/ioport.h>
14 #include <linux/ioremap.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17 #include <linux/mmiotrace.h>
18 #include <linux/cc_platform.h>
19 #include <linux/efi.h>
20 #include <linux/pgtable.h>
21 #include <linux/kmsan.h>
22 
23 #include <asm/set_memory.h>
24 #include <asm/e820/api.h>
25 #include <asm/efi.h>
26 #include <asm/fixmap.h>
27 #include <asm/tlbflush.h>
28 #include <asm/pgalloc.h>
29 #include <asm/memtype.h>
30 #include <asm/setup.h>
31 
32 #include "physaddr.h"
33 
34 /*
35  * Descriptor controlling ioremap() behavior.
36  */
37 struct ioremap_desc {
38 	unsigned int flags;
39 };
40 
41 /*
42  * Fix up the linear direct mapping of the kernel to avoid cache attribute
43  * conflicts.
44  */
ioremap_change_attr(unsigned long vaddr,unsigned long size,enum page_cache_mode pcm)45 int ioremap_change_attr(unsigned long vaddr, unsigned long size,
46 			enum page_cache_mode pcm)
47 {
48 	unsigned long nrpages = size >> PAGE_SHIFT;
49 	int err;
50 
51 	switch (pcm) {
52 	case _PAGE_CACHE_MODE_UC:
53 	default:
54 		err = _set_memory_uc(vaddr, nrpages);
55 		break;
56 	case _PAGE_CACHE_MODE_WC:
57 		err = _set_memory_wc(vaddr, nrpages);
58 		break;
59 	case _PAGE_CACHE_MODE_WT:
60 		err = _set_memory_wt(vaddr, nrpages);
61 		break;
62 	case _PAGE_CACHE_MODE_WB:
63 		err = _set_memory_wb(vaddr, nrpages);
64 		break;
65 	}
66 
67 	return err;
68 }
69 
70 /* Does the range (or a subset of) contain normal RAM? */
__ioremap_check_ram(struct resource * res)71 static unsigned int __ioremap_check_ram(struct resource *res)
72 {
73 	unsigned long start_pfn, stop_pfn;
74 	unsigned long pfn;
75 
76 	if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
77 		return 0;
78 
79 	start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
80 	stop_pfn = (res->end + 1) >> PAGE_SHIFT;
81 	if (stop_pfn > start_pfn) {
82 		for_each_valid_pfn(pfn, start_pfn, stop_pfn)
83 			if (!PageReserved(pfn_to_page(pfn)))
84 				return IORES_MAP_SYSTEM_RAM;
85 	}
86 
87 	return 0;
88 }
89 
90 /*
91  * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
92  * there the whole memory is already encrypted.
93  */
__ioremap_check_encrypted(struct resource * res)94 static unsigned int __ioremap_check_encrypted(struct resource *res)
95 {
96 	if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
97 		return 0;
98 
99 	switch (res->desc) {
100 	case IORES_DESC_NONE:
101 	case IORES_DESC_RESERVED:
102 		break;
103 	default:
104 		return IORES_MAP_ENCRYPTED;
105 	}
106 
107 	return 0;
108 }
109 
110 /*
111  * The EFI runtime services data area is not covered by walk_mem_res(), but must
112  * be mapped encrypted when SEV is active.
113  */
__ioremap_check_other(resource_size_t addr,struct ioremap_desc * desc)114 static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
115 {
116 	if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
117 		return;
118 
119 	if (x86_platform.hyper.is_private_mmio(addr)) {
120 		desc->flags |= IORES_MAP_ENCRYPTED;
121 		return;
122 	}
123 
124 	if (!IS_ENABLED(CONFIG_EFI))
125 		return;
126 
127 	if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA ||
128 	    (efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA &&
129 	     efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME))
130 		desc->flags |= IORES_MAP_ENCRYPTED;
131 }
132 
__ioremap_collect_map_flags(struct resource * res,void * arg)133 static int __ioremap_collect_map_flags(struct resource *res, void *arg)
134 {
135 	struct ioremap_desc *desc = arg;
136 
137 	if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
138 		desc->flags |= __ioremap_check_ram(res);
139 
140 	if (!(desc->flags & IORES_MAP_ENCRYPTED))
141 		desc->flags |= __ioremap_check_encrypted(res);
142 
143 	return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
144 			       (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
145 }
146 
147 /*
148  * To avoid multiple resource walks, this function walks resources marked as
149  * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
150  * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
151  *
152  * After that, deal with misc other ranges in __ioremap_check_other() which do
153  * not fall into the above category.
154  */
__ioremap_check_mem(resource_size_t addr,unsigned long size,struct ioremap_desc * desc)155 static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
156 				struct ioremap_desc *desc)
157 {
158 	u64 start, end;
159 
160 	start = (u64)addr;
161 	end = start + size - 1;
162 	memset(desc, 0, sizeof(struct ioremap_desc));
163 
164 	walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
165 
166 	__ioremap_check_other(addr, desc);
167 }
168 
169 /*
170  * Remap an arbitrary physical address space into the kernel virtual
171  * address space. It transparently creates kernel huge I/O mapping when
172  * the physical address is aligned by a huge page size (1GB or 2MB) and
173  * the requested size is at least the huge page size.
174  *
175  * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
176  * Therefore, the mapping code falls back to use a smaller page toward 4KB
177  * when a mapping range is covered by non-WB type of MTRRs.
178  *
179  * NOTE! We need to allow non-page-aligned mappings too: we will obviously
180  * have to convert them into an offset in a page-aligned mapping, but the
181  * caller shouldn't need to know that small detail.
182  */
183 static void __iomem *
__ioremap_caller(resource_size_t phys_addr,unsigned long size,enum page_cache_mode pcm,void * caller,bool encrypted)184 __ioremap_caller(resource_size_t phys_addr, unsigned long size,
185 		 enum page_cache_mode pcm, void *caller, bool encrypted)
186 {
187 	unsigned long offset, vaddr;
188 	resource_size_t last_addr;
189 	const resource_size_t unaligned_phys_addr = phys_addr;
190 	const unsigned long unaligned_size = size;
191 	struct ioremap_desc io_desc;
192 	struct vm_struct *area;
193 	enum page_cache_mode new_pcm;
194 	pgprot_t prot;
195 	int retval;
196 	void __iomem *ret_addr;
197 
198 	/* Don't allow wraparound or zero size */
199 	last_addr = phys_addr + size - 1;
200 	if (!size || last_addr < phys_addr)
201 		return NULL;
202 
203 	if (!phys_addr_valid(phys_addr)) {
204 		printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
205 		       (unsigned long long)phys_addr);
206 		WARN_ON_ONCE(1);
207 		return NULL;
208 	}
209 
210 	__ioremap_check_mem(phys_addr, size, &io_desc);
211 
212 	/*
213 	 * Don't allow anybody to remap normal RAM that we're using..
214 	 */
215 	if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
216 		WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
217 			  &phys_addr, &last_addr);
218 		return NULL;
219 	}
220 
221 	/*
222 	 * Mappings have to be page-aligned
223 	 */
224 	offset = phys_addr & ~PAGE_MASK;
225 	phys_addr &= PAGE_MASK;
226 	size = PAGE_ALIGN(last_addr+1) - phys_addr;
227 
228 	/*
229 	 * Mask out any bits not part of the actual physical
230 	 * address, like memory encryption bits.
231 	 */
232 	phys_addr &= PHYSICAL_PAGE_MASK;
233 
234 	retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
235 						pcm, &new_pcm);
236 	if (retval) {
237 		printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
238 		return NULL;
239 	}
240 
241 	if (pcm != new_pcm) {
242 		if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
243 			printk(KERN_ERR
244 		"ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
245 				(unsigned long long)phys_addr,
246 				(unsigned long long)(phys_addr + size),
247 				pcm, new_pcm);
248 			goto err_free_memtype;
249 		}
250 		pcm = new_pcm;
251 	}
252 
253 	/*
254 	 * If the page being mapped is in memory and SEV is active then
255 	 * make sure the memory encryption attribute is enabled in the
256 	 * resulting mapping.
257 	 * In TDX guests, memory is marked private by default. If encryption
258 	 * is not requested (using encrypted), explicitly set decrypt
259 	 * attribute in all IOREMAPPED memory.
260 	 */
261 	prot = PAGE_KERNEL_IO;
262 	if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
263 		prot = pgprot_encrypted(prot);
264 	else
265 		prot = pgprot_decrypted(prot);
266 
267 	switch (pcm) {
268 	case _PAGE_CACHE_MODE_UC:
269 	default:
270 		prot = __pgprot(pgprot_val(prot) |
271 				cachemode2protval(_PAGE_CACHE_MODE_UC));
272 		break;
273 	case _PAGE_CACHE_MODE_UC_MINUS:
274 		prot = __pgprot(pgprot_val(prot) |
275 				cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
276 		break;
277 	case _PAGE_CACHE_MODE_WC:
278 		prot = __pgprot(pgprot_val(prot) |
279 				cachemode2protval(_PAGE_CACHE_MODE_WC));
280 		break;
281 	case _PAGE_CACHE_MODE_WT:
282 		prot = __pgprot(pgprot_val(prot) |
283 				cachemode2protval(_PAGE_CACHE_MODE_WT));
284 		break;
285 	case _PAGE_CACHE_MODE_WB:
286 		break;
287 	}
288 
289 	/*
290 	 * Ok, go for it..
291 	 */
292 	area = get_vm_area_caller(size, VM_IOREMAP, caller);
293 	if (!area)
294 		goto err_free_memtype;
295 	area->phys_addr = phys_addr;
296 	vaddr = (unsigned long) area->addr;
297 
298 	if (memtype_kernel_map_sync(phys_addr, size, pcm))
299 		goto err_free_area;
300 
301 	if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
302 		goto err_free_area;
303 
304 	ret_addr = (void __iomem *) (vaddr + offset);
305 	mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
306 
307 	/*
308 	 * Check if the request spans more than any BAR in the iomem resource
309 	 * tree.
310 	 */
311 	if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
312 		pr_warn("caller %pS mapping multiple BARs\n", caller);
313 
314 	return ret_addr;
315 err_free_area:
316 	free_vm_area(area);
317 err_free_memtype:
318 	memtype_free(phys_addr, phys_addr + size);
319 	return NULL;
320 }
321 
322 /**
323  * ioremap     -   map bus memory into CPU space
324  * @phys_addr:    bus address of the memory
325  * @size:      size of the resource to map
326  *
327  * ioremap performs a platform specific sequence of operations to
328  * make bus memory CPU accessible via the readb/readw/readl/writeb/
329  * writew/writel functions and the other mmio helpers. The returned
330  * address is not guaranteed to be usable directly as a virtual
331  * address.
332  *
333  * This version of ioremap ensures that the memory is marked uncachable
334  * on the CPU as well as honouring existing caching rules from things like
335  * the PCI bus. Note that there are other caches and buffers on many
336  * busses. In particular driver authors should read up on PCI writes
337  *
338  * It's useful if some control registers are in such an area and
339  * write combining or read caching is not desirable:
340  *
341  * Must be freed with iounmap.
342  */
ioremap(resource_size_t phys_addr,unsigned long size)343 void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
344 {
345 	/*
346 	 * Ideally, this should be:
347 	 *	pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
348 	 *
349 	 * Till we fix all X drivers to use ioremap_wc(), we will use
350 	 * UC MINUS. Drivers that are certain they need or can already
351 	 * be converted over to strong UC can use ioremap_uc().
352 	 */
353 	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
354 
355 	return __ioremap_caller(phys_addr, size, pcm,
356 				__builtin_return_address(0), false);
357 }
358 EXPORT_SYMBOL(ioremap);
359 
360 /**
361  * ioremap_uc     -   map bus memory into CPU space as strongly uncachable
362  * @phys_addr:    bus address of the memory
363  * @size:      size of the resource to map
364  *
365  * ioremap_uc performs a platform specific sequence of operations to
366  * make bus memory CPU accessible via the readb/readw/readl/writeb/
367  * writew/writel functions and the other mmio helpers. The returned
368  * address is not guaranteed to be usable directly as a virtual
369  * address.
370  *
371  * This version of ioremap ensures that the memory is marked with a strong
372  * preference as completely uncachable on the CPU when possible. For non-PAT
373  * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
374  * systems this will set the PAT entry for the pages as strong UC.  This call
375  * will honor existing caching rules from things like the PCI bus. Note that
376  * there are other caches and buffers on many busses. In particular driver
377  * authors should read up on PCI writes.
378  *
379  * It's useful if some control registers are in such an area and
380  * write combining or read caching is not desirable:
381  *
382  * Must be freed with iounmap.
383  */
ioremap_uc(resource_size_t phys_addr,unsigned long size)384 void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
385 {
386 	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
387 
388 	return __ioremap_caller(phys_addr, size, pcm,
389 				__builtin_return_address(0), false);
390 }
391 EXPORT_SYMBOL_GPL(ioremap_uc);
392 
393 /**
394  * ioremap_wc	-	map memory into CPU space write combined
395  * @phys_addr:	bus address of the memory
396  * @size:	size of the resource to map
397  *
398  * This version of ioremap ensures that the memory is marked write combining.
399  * Write combining allows faster writes to some hardware devices.
400  *
401  * Must be freed with iounmap.
402  */
ioremap_wc(resource_size_t phys_addr,unsigned long size)403 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
404 {
405 	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
406 					__builtin_return_address(0), false);
407 }
408 EXPORT_SYMBOL(ioremap_wc);
409 
410 /**
411  * ioremap_wt	-	map memory into CPU space write through
412  * @phys_addr:	bus address of the memory
413  * @size:	size of the resource to map
414  *
415  * This version of ioremap ensures that the memory is marked write through.
416  * Write through stores data into memory while keeping the cache up-to-date.
417  *
418  * Must be freed with iounmap.
419  */
ioremap_wt(resource_size_t phys_addr,unsigned long size)420 void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
421 {
422 	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
423 					__builtin_return_address(0), false);
424 }
425 EXPORT_SYMBOL(ioremap_wt);
426 
ioremap_encrypted(resource_size_t phys_addr,unsigned long size)427 void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
428 {
429 	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
430 				__builtin_return_address(0), true);
431 }
432 EXPORT_SYMBOL(ioremap_encrypted);
433 
ioremap_cache(resource_size_t phys_addr,unsigned long size)434 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
435 {
436 	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
437 				__builtin_return_address(0), false);
438 }
439 EXPORT_SYMBOL(ioremap_cache);
440 
ioremap_prot(resource_size_t phys_addr,unsigned long size,pgprot_t prot)441 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
442 			   pgprot_t prot)
443 {
444 	return __ioremap_caller(phys_addr, size,
445 				pgprot2cachemode(prot),
446 				__builtin_return_address(0), false);
447 }
448 EXPORT_SYMBOL(ioremap_prot);
449 
450 /**
451  * iounmap - Free a IO remapping
452  * @addr: virtual address from ioremap_*
453  *
454  * Caller must ensure there is only one unmapping for the same pointer.
455  */
iounmap(volatile void __iomem * addr)456 void iounmap(volatile void __iomem *addr)
457 {
458 	struct vm_struct *p, *o;
459 
460 	if (WARN_ON_ONCE(!is_ioremap_addr((void __force *)addr)))
461 		return;
462 
463 	/*
464 	 * The PCI/ISA range special-casing was removed from __ioremap()
465 	 * so this check, in theory, can be removed. However, there are
466 	 * cases where iounmap() is called for addresses not obtained via
467 	 * ioremap() (vga16fb for example). Add a warning so that these
468 	 * cases can be caught and fixed.
469 	 */
470 	if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
471 	    (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
472 		WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
473 		return;
474 	}
475 
476 	mmiotrace_iounmap(addr);
477 
478 	addr = (volatile void __iomem *)
479 		(PAGE_MASK & (unsigned long __force)addr);
480 
481 	/* Use the vm area unlocked, assuming the caller
482 	   ensures there isn't another iounmap for the same address
483 	   in parallel. Reuse of the virtual address is prevented by
484 	   leaving it in the global lists until we're done with it.
485 	   cpa takes care of the direct mappings. */
486 	p = find_vm_area((void __force *)addr);
487 
488 	if (!p) {
489 		printk(KERN_ERR "iounmap: bad address %p\n", addr);
490 		dump_stack();
491 		return;
492 	}
493 
494 	kmsan_iounmap_page_range((unsigned long)addr,
495 		(unsigned long)addr + get_vm_area_size(p));
496 	memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
497 
498 	/* Finally remove it */
499 	o = remove_vm_area((void __force *)addr);
500 	BUG_ON(p != o || o == NULL);
501 	kfree(p);
502 }
503 EXPORT_SYMBOL(iounmap);
504 
arch_memremap_wb(phys_addr_t phys_addr,size_t size,unsigned long flags)505 void *arch_memremap_wb(phys_addr_t phys_addr, size_t size, unsigned long flags)
506 {
507 	if ((flags & MEMREMAP_DEC) || cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
508 		return (void __force *)ioremap_cache(phys_addr, size);
509 
510 	return (void __force *)ioremap_encrypted(phys_addr, size);
511 }
512 
513 /*
514  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
515  * access
516  */
xlate_dev_mem_ptr(phys_addr_t phys)517 void *xlate_dev_mem_ptr(phys_addr_t phys)
518 {
519 	unsigned long start  = phys &  PAGE_MASK;
520 	unsigned long offset = phys & ~PAGE_MASK;
521 	void *vaddr;
522 
523 	/* memremap() maps if RAM, otherwise falls back to ioremap() */
524 	vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
525 
526 	/* Only add the offset on success and return NULL if memremap() failed */
527 	if (vaddr)
528 		vaddr += offset;
529 
530 	return vaddr;
531 }
532 
unxlate_dev_mem_ptr(phys_addr_t phys,void * addr)533 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
534 {
535 	memunmap((void *)((unsigned long)addr & PAGE_MASK));
536 }
537 
538 #ifdef CONFIG_AMD_MEM_ENCRYPT
539 /*
540  * Examine the physical address to determine if it is an area of memory
541  * that should be mapped decrypted.  If the memory is not part of the
542  * kernel usable area it was accessed and created decrypted, so these
543  * areas should be mapped decrypted. And since the encryption key can
544  * change across reboots, persistent memory should also be mapped
545  * decrypted.
546  *
547  * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
548  * only persistent memory should be mapped decrypted.
549  */
memremap_should_map_decrypted(resource_size_t phys_addr,unsigned long size)550 static bool memremap_should_map_decrypted(resource_size_t phys_addr,
551 					  unsigned long size)
552 {
553 	int is_pmem;
554 
555 	/*
556 	 * Check if the address is part of a persistent memory region.
557 	 * This check covers areas added by E820, EFI and ACPI.
558 	 */
559 	is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
560 				    IORES_DESC_PERSISTENT_MEMORY);
561 	if (is_pmem != REGION_DISJOINT)
562 		return true;
563 
564 	/*
565 	 * Check if the non-volatile attribute is set for an EFI
566 	 * reserved area.
567 	 */
568 	if (efi_enabled(EFI_BOOT)) {
569 		switch (efi_mem_type(phys_addr)) {
570 		case EFI_RESERVED_TYPE:
571 			if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
572 				return true;
573 			break;
574 		default:
575 			break;
576 		}
577 	}
578 
579 	/* Check if the address is outside kernel usable area */
580 	switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
581 	case E820_TYPE_RESERVED:
582 	case E820_TYPE_ACPI:
583 	case E820_TYPE_NVS:
584 	case E820_TYPE_UNUSABLE:
585 		/* For SEV, these areas are encrypted */
586 		if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
587 			break;
588 		fallthrough;
589 
590 	case E820_TYPE_PRAM:
591 		return true;
592 	default:
593 		break;
594 	}
595 
596 	return false;
597 }
598 
599 /*
600  * Examine the physical address to determine if it is EFI data. Check
601  * it against the boot params structure and EFI tables and memory types.
602  */
memremap_is_efi_data(resource_size_t phys_addr)603 static bool memremap_is_efi_data(resource_size_t phys_addr)
604 {
605 	u64 paddr;
606 
607 	/* Check if the address is part of EFI boot/runtime data */
608 	if (!efi_enabled(EFI_BOOT))
609 		return false;
610 
611 	paddr = boot_params.efi_info.efi_memmap_hi;
612 	paddr <<= 32;
613 	paddr |= boot_params.efi_info.efi_memmap;
614 	if (phys_addr == paddr)
615 		return true;
616 
617 	paddr = boot_params.efi_info.efi_systab_hi;
618 	paddr <<= 32;
619 	paddr |= boot_params.efi_info.efi_systab;
620 	if (phys_addr == paddr)
621 		return true;
622 
623 	if (efi_is_table_address(phys_addr))
624 		return true;
625 
626 	switch (efi_mem_type(phys_addr)) {
627 	case EFI_BOOT_SERVICES_DATA:
628 	case EFI_RUNTIME_SERVICES_DATA:
629 		return true;
630 	default:
631 		break;
632 	}
633 
634 	return false;
635 }
636 
637 /*
638  * Examine the physical address to determine if it is boot data by checking
639  * it against the boot params setup_data chain.
640  */
__memremap_is_setup_data(resource_size_t phys_addr,bool early)641 static bool __ref __memremap_is_setup_data(resource_size_t phys_addr, bool early)
642 {
643 	unsigned int setup_data_sz = sizeof(struct setup_data);
644 	struct setup_indirect *indirect;
645 	struct setup_data *data;
646 	u64 paddr, paddr_next;
647 
648 	paddr = boot_params.hdr.setup_data;
649 	while (paddr) {
650 		unsigned int len, size;
651 
652 		if (phys_addr == paddr)
653 			return true;
654 
655 		if (early)
656 			data = early_memremap_decrypted(paddr, setup_data_sz);
657 		else
658 			data = memremap(paddr, setup_data_sz, MEMREMAP_WB | MEMREMAP_DEC);
659 		if (!data) {
660 			pr_warn("failed to remap setup_data entry\n");
661 			return false;
662 		}
663 
664 		size = setup_data_sz;
665 
666 		paddr_next = data->next;
667 		len = data->len;
668 
669 		if ((phys_addr > paddr) &&
670 		    (phys_addr < (paddr + setup_data_sz + len))) {
671 			if (early)
672 				early_memunmap(data, setup_data_sz);
673 			else
674 				memunmap(data);
675 			return true;
676 		}
677 
678 		if (data->type == SETUP_INDIRECT) {
679 			size += len;
680 			if (early) {
681 				early_memunmap(data, setup_data_sz);
682 				data = early_memremap_decrypted(paddr, size);
683 			} else {
684 				memunmap(data);
685 				data = memremap(paddr, size, MEMREMAP_WB | MEMREMAP_DEC);
686 			}
687 			if (!data) {
688 				pr_warn("failed to remap indirect setup_data\n");
689 				return false;
690 			}
691 
692 			indirect = (struct setup_indirect *)data->data;
693 
694 			if (indirect->type != SETUP_INDIRECT) {
695 				paddr = indirect->addr;
696 				len = indirect->len;
697 			}
698 		}
699 
700 		if (early)
701 			early_memunmap(data, size);
702 		else
703 			memunmap(data);
704 
705 		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
706 			return true;
707 
708 		paddr = paddr_next;
709 	}
710 
711 	return false;
712 }
713 
memremap_is_setup_data(resource_size_t phys_addr)714 static bool memremap_is_setup_data(resource_size_t phys_addr)
715 {
716 	return __memremap_is_setup_data(phys_addr, false);
717 }
718 
early_memremap_is_setup_data(resource_size_t phys_addr)719 static bool __init early_memremap_is_setup_data(resource_size_t phys_addr)
720 {
721 	return __memremap_is_setup_data(phys_addr, true);
722 }
723 
724 /*
725  * Architecture function to determine if RAM remap is allowed. By default, a
726  * RAM remap will map the data as encrypted. Determine if a RAM remap should
727  * not be done so that the data will be mapped decrypted.
728  */
arch_memremap_can_ram_remap(resource_size_t phys_addr,unsigned long size,unsigned long flags)729 bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
730 				 unsigned long flags)
731 {
732 	if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
733 		return true;
734 
735 	if (flags & MEMREMAP_ENC)
736 		return true;
737 
738 	if (flags & MEMREMAP_DEC)
739 		return false;
740 
741 	if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
742 		if (memremap_is_setup_data(phys_addr) ||
743 		    memremap_is_efi_data(phys_addr))
744 			return false;
745 	}
746 
747 	return !memremap_should_map_decrypted(phys_addr, size);
748 }
749 
750 /*
751  * Architecture override of __weak function to adjust the protection attributes
752  * used when remapping memory. By default, early_memremap() will map the data
753  * as encrypted. Determine if an encrypted mapping should not be done and set
754  * the appropriate protection attributes.
755  */
early_memremap_pgprot_adjust(resource_size_t phys_addr,unsigned long size,pgprot_t prot)756 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
757 					     unsigned long size,
758 					     pgprot_t prot)
759 {
760 	bool encrypted_prot;
761 
762 	if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
763 		return prot;
764 
765 	encrypted_prot = true;
766 
767 	if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
768 		if (early_memremap_is_setup_data(phys_addr) ||
769 		    memremap_is_efi_data(phys_addr))
770 			encrypted_prot = false;
771 	}
772 
773 	if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
774 		encrypted_prot = false;
775 
776 	return encrypted_prot ? pgprot_encrypted(prot)
777 			      : pgprot_decrypted(prot);
778 }
779 
phys_mem_access_encrypted(unsigned long phys_addr,unsigned long size)780 bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
781 {
782 	return arch_memremap_can_ram_remap(phys_addr, size, 0);
783 }
784 
785 /* Remap memory with encryption */
early_memremap_encrypted(resource_size_t phys_addr,unsigned long size)786 void __init *early_memremap_encrypted(resource_size_t phys_addr,
787 				      unsigned long size)
788 {
789 	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
790 }
791 
792 /*
793  * Remap memory with encryption and write-protected - cannot be called
794  * before pat_init() is called
795  */
early_memremap_encrypted_wp(resource_size_t phys_addr,unsigned long size)796 void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
797 					 unsigned long size)
798 {
799 	if (!x86_has_pat_wp())
800 		return NULL;
801 	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
802 }
803 
804 /* Remap memory without encryption */
early_memremap_decrypted(resource_size_t phys_addr,unsigned long size)805 void __init *early_memremap_decrypted(resource_size_t phys_addr,
806 				      unsigned long size)
807 {
808 	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
809 }
810 
811 /*
812  * Remap memory without encryption and write-protected - cannot be called
813  * before pat_init() is called
814  */
early_memremap_decrypted_wp(resource_size_t phys_addr,unsigned long size)815 void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
816 					 unsigned long size)
817 {
818 	if (!x86_has_pat_wp())
819 		return NULL;
820 	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
821 }
822 #endif	/* CONFIG_AMD_MEM_ENCRYPT */
823 
824 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
825 
early_ioremap_pmd(unsigned long addr)826 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
827 {
828 	/* Don't assume we're using swapper_pg_dir at this point */
829 	pgd_t *base = __va(read_cr3_pa());
830 	pgd_t *pgd = &base[pgd_index(addr)];
831 	p4d_t *p4d = p4d_offset(pgd, addr);
832 	pud_t *pud = pud_offset(p4d, addr);
833 	pmd_t *pmd = pmd_offset(pud, addr);
834 
835 	return pmd;
836 }
837 
early_ioremap_pte(unsigned long addr)838 static inline pte_t * __init early_ioremap_pte(unsigned long addr)
839 {
840 	return &bm_pte[pte_index(addr)];
841 }
842 
is_early_ioremap_ptep(pte_t * ptep)843 bool __init is_early_ioremap_ptep(pte_t *ptep)
844 {
845 	return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
846 }
847 
early_ioremap_init(void)848 void __init early_ioremap_init(void)
849 {
850 	pmd_t *pmd;
851 
852 #ifdef CONFIG_X86_64
853 	BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
854 #else
855 	WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
856 #endif
857 
858 	early_ioremap_setup();
859 
860 	pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
861 	memset(bm_pte, 0, sizeof(bm_pte));
862 	pmd_populate_kernel(&init_mm, pmd, bm_pte);
863 
864 	/*
865 	 * The boot-ioremap range spans multiple pmds, for which
866 	 * we are not prepared:
867 	 */
868 #define __FIXADDR_TOP (-PAGE_SIZE)
869 	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
870 		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
871 #undef __FIXADDR_TOP
872 	if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
873 		WARN_ON(1);
874 		printk(KERN_WARNING "pmd %p != %p\n",
875 		       pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
876 		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
877 			fix_to_virt(FIX_BTMAP_BEGIN));
878 		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n",
879 			fix_to_virt(FIX_BTMAP_END));
880 
881 		printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
882 		printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n",
883 		       FIX_BTMAP_BEGIN);
884 	}
885 }
886 
__early_set_fixmap(enum fixed_addresses idx,phys_addr_t phys,pgprot_t flags)887 void __init __early_set_fixmap(enum fixed_addresses idx,
888 			       phys_addr_t phys, pgprot_t flags)
889 {
890 	unsigned long addr = __fix_to_virt(idx);
891 	pte_t *pte;
892 
893 	if (idx >= __end_of_fixed_addresses) {
894 		BUG();
895 		return;
896 	}
897 	pte = early_ioremap_pte(addr);
898 
899 	/* Sanitize 'prot' against any unsupported bits: */
900 	pgprot_val(flags) &= __supported_pte_mask;
901 
902 	if (pgprot_val(flags))
903 		set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
904 	else
905 		pte_clear(&init_mm, addr, pte);
906 	flush_tlb_one_kernel(addr);
907 }
908