1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 */
6
7 #define pr_fmt(fmt) "iommu: " fmt
8
9 #include <linux/amba/bus.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/bits.h>
13 #include <linux/bug.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/host1x_context_bus.h>
20 #include <linux/iommu.h>
21 #include <linux/idr.h>
22 #include <linux/err.h>
23 #include <linux/pci.h>
24 #include <linux/pci-ats.h>
25 #include <linux/bitops.h>
26 #include <linux/platform_device.h>
27 #include <linux/property.h>
28 #include <linux/fsl/mc.h>
29 #include <linux/module.h>
30 #include <linux/cc_platform.h>
31 #include <linux/cdx/cdx_bus.h>
32 #include <trace/events/iommu.h>
33 #include <linux/sched/mm.h>
34 #include <linux/msi.h>
35
36 #include "dma-iommu.h"
37 #include "iommu-priv.h"
38
39 static struct kset *iommu_group_kset;
40 static DEFINE_IDA(iommu_group_ida);
41 static DEFINE_IDA(iommu_global_pasid_ida);
42
43 static unsigned int iommu_def_domain_type __read_mostly;
44 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT);
45 static u32 iommu_cmd_line __read_mostly;
46
47 struct iommu_group {
48 struct kobject kobj;
49 struct kobject *devices_kobj;
50 struct list_head devices;
51 struct xarray pasid_array;
52 struct mutex mutex;
53 void *iommu_data;
54 void (*iommu_data_release)(void *iommu_data);
55 char *name;
56 int id;
57 struct iommu_domain *default_domain;
58 struct iommu_domain *blocking_domain;
59 struct iommu_domain *domain;
60 struct list_head entry;
61 unsigned int owner_cnt;
62 void *owner;
63 };
64
65 struct group_device {
66 struct list_head list;
67 struct device *dev;
68 char *name;
69 };
70
71 /* Iterate over each struct group_device in a struct iommu_group */
72 #define for_each_group_device(group, pos) \
73 list_for_each_entry(pos, &(group)->devices, list)
74
75 struct iommu_group_attribute {
76 struct attribute attr;
77 ssize_t (*show)(struct iommu_group *group, char *buf);
78 ssize_t (*store)(struct iommu_group *group,
79 const char *buf, size_t count);
80 };
81
82 static const char * const iommu_group_resv_type_string[] = {
83 [IOMMU_RESV_DIRECT] = "direct",
84 [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable",
85 [IOMMU_RESV_RESERVED] = "reserved",
86 [IOMMU_RESV_MSI] = "msi",
87 [IOMMU_RESV_SW_MSI] = "msi",
88 };
89
90 #define IOMMU_CMD_LINE_DMA_API BIT(0)
91 #define IOMMU_CMD_LINE_STRICT BIT(1)
92
93 static int iommu_bus_notifier(struct notifier_block *nb,
94 unsigned long action, void *data);
95 static void iommu_release_device(struct device *dev);
96 static struct iommu_domain *
97 __iommu_group_domain_alloc(struct iommu_group *group, unsigned int type);
98 static int __iommu_attach_device(struct iommu_domain *domain,
99 struct device *dev);
100 static int __iommu_attach_group(struct iommu_domain *domain,
101 struct iommu_group *group);
102
103 enum {
104 IOMMU_SET_DOMAIN_MUST_SUCCEED = 1 << 0,
105 };
106
107 static int __iommu_device_set_domain(struct iommu_group *group,
108 struct device *dev,
109 struct iommu_domain *new_domain,
110 unsigned int flags);
111 static int __iommu_group_set_domain_internal(struct iommu_group *group,
112 struct iommu_domain *new_domain,
113 unsigned int flags);
__iommu_group_set_domain(struct iommu_group * group,struct iommu_domain * new_domain)114 static int __iommu_group_set_domain(struct iommu_group *group,
115 struct iommu_domain *new_domain)
116 {
117 return __iommu_group_set_domain_internal(group, new_domain, 0);
118 }
__iommu_group_set_domain_nofail(struct iommu_group * group,struct iommu_domain * new_domain)119 static void __iommu_group_set_domain_nofail(struct iommu_group *group,
120 struct iommu_domain *new_domain)
121 {
122 WARN_ON(__iommu_group_set_domain_internal(
123 group, new_domain, IOMMU_SET_DOMAIN_MUST_SUCCEED));
124 }
125
126 static int iommu_setup_default_domain(struct iommu_group *group,
127 int target_type);
128 static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
129 struct device *dev);
130 static ssize_t iommu_group_store_type(struct iommu_group *group,
131 const char *buf, size_t count);
132 static struct group_device *iommu_group_alloc_device(struct iommu_group *group,
133 struct device *dev);
134 static void __iommu_group_free_device(struct iommu_group *group,
135 struct group_device *grp_dev);
136
137 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \
138 struct iommu_group_attribute iommu_group_attr_##_name = \
139 __ATTR(_name, _mode, _show, _store)
140
141 #define to_iommu_group_attr(_attr) \
142 container_of(_attr, struct iommu_group_attribute, attr)
143 #define to_iommu_group(_kobj) \
144 container_of(_kobj, struct iommu_group, kobj)
145
146 static LIST_HEAD(iommu_device_list);
147 static DEFINE_SPINLOCK(iommu_device_lock);
148
149 static const struct bus_type * const iommu_buses[] = {
150 &platform_bus_type,
151 #ifdef CONFIG_PCI
152 &pci_bus_type,
153 #endif
154 #ifdef CONFIG_ARM_AMBA
155 &amba_bustype,
156 #endif
157 #ifdef CONFIG_FSL_MC_BUS
158 &fsl_mc_bus_type,
159 #endif
160 #ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS
161 &host1x_context_device_bus_type,
162 #endif
163 #ifdef CONFIG_CDX_BUS
164 &cdx_bus_type,
165 #endif
166 };
167
168 /*
169 * Use a function instead of an array here because the domain-type is a
170 * bit-field, so an array would waste memory.
171 */
iommu_domain_type_str(unsigned int t)172 static const char *iommu_domain_type_str(unsigned int t)
173 {
174 switch (t) {
175 case IOMMU_DOMAIN_BLOCKED:
176 return "Blocked";
177 case IOMMU_DOMAIN_IDENTITY:
178 return "Passthrough";
179 case IOMMU_DOMAIN_UNMANAGED:
180 return "Unmanaged";
181 case IOMMU_DOMAIN_DMA:
182 case IOMMU_DOMAIN_DMA_FQ:
183 return "Translated";
184 case IOMMU_DOMAIN_PLATFORM:
185 return "Platform";
186 default:
187 return "Unknown";
188 }
189 }
190
iommu_subsys_init(void)191 static int __init iommu_subsys_init(void)
192 {
193 struct notifier_block *nb;
194
195 if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
196 if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
197 iommu_set_default_passthrough(false);
198 else
199 iommu_set_default_translated(false);
200
201 if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
202 pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
203 iommu_set_default_translated(false);
204 }
205 }
206
207 if (!iommu_default_passthrough() && !iommu_dma_strict)
208 iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
209
210 pr_info("Default domain type: %s%s\n",
211 iommu_domain_type_str(iommu_def_domain_type),
212 (iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
213 " (set via kernel command line)" : "");
214
215 if (!iommu_default_passthrough())
216 pr_info("DMA domain TLB invalidation policy: %s mode%s\n",
217 iommu_dma_strict ? "strict" : "lazy",
218 (iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
219 " (set via kernel command line)" : "");
220
221 nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL);
222 if (!nb)
223 return -ENOMEM;
224
225 for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) {
226 nb[i].notifier_call = iommu_bus_notifier;
227 bus_register_notifier(iommu_buses[i], &nb[i]);
228 }
229
230 return 0;
231 }
232 subsys_initcall(iommu_subsys_init);
233
remove_iommu_group(struct device * dev,void * data)234 static int remove_iommu_group(struct device *dev, void *data)
235 {
236 if (dev->iommu && dev->iommu->iommu_dev == data)
237 iommu_release_device(dev);
238
239 return 0;
240 }
241
242 /**
243 * iommu_device_register() - Register an IOMMU hardware instance
244 * @iommu: IOMMU handle for the instance
245 * @ops: IOMMU ops to associate with the instance
246 * @hwdev: (optional) actual instance device, used for fwnode lookup
247 *
248 * Return: 0 on success, or an error.
249 */
iommu_device_register(struct iommu_device * iommu,const struct iommu_ops * ops,struct device * hwdev)250 int iommu_device_register(struct iommu_device *iommu,
251 const struct iommu_ops *ops, struct device *hwdev)
252 {
253 int err = 0;
254
255 /* We need to be able to take module references appropriately */
256 if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
257 return -EINVAL;
258
259 iommu->ops = ops;
260 if (hwdev)
261 iommu->fwnode = dev_fwnode(hwdev);
262
263 spin_lock(&iommu_device_lock);
264 list_add_tail(&iommu->list, &iommu_device_list);
265 spin_unlock(&iommu_device_lock);
266
267 for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++)
268 err = bus_iommu_probe(iommu_buses[i]);
269 if (err)
270 iommu_device_unregister(iommu);
271 return err;
272 }
273 EXPORT_SYMBOL_GPL(iommu_device_register);
274
iommu_device_unregister(struct iommu_device * iommu)275 void iommu_device_unregister(struct iommu_device *iommu)
276 {
277 for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++)
278 bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group);
279
280 spin_lock(&iommu_device_lock);
281 list_del(&iommu->list);
282 spin_unlock(&iommu_device_lock);
283
284 /* Pairs with the alloc in generic_single_device_group() */
285 iommu_group_put(iommu->singleton_group);
286 iommu->singleton_group = NULL;
287 }
288 EXPORT_SYMBOL_GPL(iommu_device_unregister);
289
290 #if IS_ENABLED(CONFIG_IOMMUFD_TEST)
iommu_device_unregister_bus(struct iommu_device * iommu,const struct bus_type * bus,struct notifier_block * nb)291 void iommu_device_unregister_bus(struct iommu_device *iommu,
292 const struct bus_type *bus,
293 struct notifier_block *nb)
294 {
295 bus_unregister_notifier(bus, nb);
296 iommu_device_unregister(iommu);
297 }
298 EXPORT_SYMBOL_GPL(iommu_device_unregister_bus);
299
300 /*
301 * Register an iommu driver against a single bus. This is only used by iommufd
302 * selftest to create a mock iommu driver. The caller must provide
303 * some memory to hold a notifier_block.
304 */
iommu_device_register_bus(struct iommu_device * iommu,const struct iommu_ops * ops,const struct bus_type * bus,struct notifier_block * nb)305 int iommu_device_register_bus(struct iommu_device *iommu,
306 const struct iommu_ops *ops,
307 const struct bus_type *bus,
308 struct notifier_block *nb)
309 {
310 int err;
311
312 iommu->ops = ops;
313 nb->notifier_call = iommu_bus_notifier;
314 err = bus_register_notifier(bus, nb);
315 if (err)
316 return err;
317
318 spin_lock(&iommu_device_lock);
319 list_add_tail(&iommu->list, &iommu_device_list);
320 spin_unlock(&iommu_device_lock);
321
322 err = bus_iommu_probe(bus);
323 if (err) {
324 iommu_device_unregister_bus(iommu, bus, nb);
325 return err;
326 }
327 return 0;
328 }
329 EXPORT_SYMBOL_GPL(iommu_device_register_bus);
330 #endif
331
dev_iommu_get(struct device * dev)332 static struct dev_iommu *dev_iommu_get(struct device *dev)
333 {
334 struct dev_iommu *param = dev->iommu;
335
336 lockdep_assert_held(&iommu_probe_device_lock);
337
338 if (param)
339 return param;
340
341 param = kzalloc(sizeof(*param), GFP_KERNEL);
342 if (!param)
343 return NULL;
344
345 mutex_init(¶m->lock);
346 dev->iommu = param;
347 return param;
348 }
349
dev_iommu_free(struct device * dev)350 static void dev_iommu_free(struct device *dev)
351 {
352 struct dev_iommu *param = dev->iommu;
353
354 dev->iommu = NULL;
355 if (param->fwspec) {
356 fwnode_handle_put(param->fwspec->iommu_fwnode);
357 kfree(param->fwspec);
358 }
359 kfree(param);
360 }
361
362 /*
363 * Internal equivalent of device_iommu_mapped() for when we care that a device
364 * actually has API ops, and don't want false positives from VFIO-only groups.
365 */
dev_has_iommu(struct device * dev)366 static bool dev_has_iommu(struct device *dev)
367 {
368 return dev->iommu && dev->iommu->iommu_dev;
369 }
370
dev_iommu_get_max_pasids(struct device * dev)371 static u32 dev_iommu_get_max_pasids(struct device *dev)
372 {
373 u32 max_pasids = 0, bits = 0;
374 int ret;
375
376 if (dev_is_pci(dev)) {
377 ret = pci_max_pasids(to_pci_dev(dev));
378 if (ret > 0)
379 max_pasids = ret;
380 } else {
381 ret = device_property_read_u32(dev, "pasid-num-bits", &bits);
382 if (!ret)
383 max_pasids = 1UL << bits;
384 }
385
386 return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids);
387 }
388
dev_iommu_priv_set(struct device * dev,void * priv)389 void dev_iommu_priv_set(struct device *dev, void *priv)
390 {
391 /* FSL_PAMU does something weird */
392 if (!IS_ENABLED(CONFIG_FSL_PAMU))
393 lockdep_assert_held(&iommu_probe_device_lock);
394 dev->iommu->priv = priv;
395 }
396 EXPORT_SYMBOL_GPL(dev_iommu_priv_set);
397
398 /*
399 * Init the dev->iommu and dev->iommu_group in the struct device and get the
400 * driver probed
401 */
iommu_init_device(struct device * dev,const struct iommu_ops * ops)402 static int iommu_init_device(struct device *dev, const struct iommu_ops *ops)
403 {
404 struct iommu_device *iommu_dev;
405 struct iommu_group *group;
406 int ret;
407
408 if (!dev_iommu_get(dev))
409 return -ENOMEM;
410
411 if (!try_module_get(ops->owner)) {
412 ret = -EINVAL;
413 goto err_free;
414 }
415
416 iommu_dev = ops->probe_device(dev);
417 if (IS_ERR(iommu_dev)) {
418 ret = PTR_ERR(iommu_dev);
419 goto err_module_put;
420 }
421 dev->iommu->iommu_dev = iommu_dev;
422
423 ret = iommu_device_link(iommu_dev, dev);
424 if (ret)
425 goto err_release;
426
427 group = ops->device_group(dev);
428 if (WARN_ON_ONCE(group == NULL))
429 group = ERR_PTR(-EINVAL);
430 if (IS_ERR(group)) {
431 ret = PTR_ERR(group);
432 goto err_unlink;
433 }
434 dev->iommu_group = group;
435
436 dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev);
437 if (ops->is_attach_deferred)
438 dev->iommu->attach_deferred = ops->is_attach_deferred(dev);
439 return 0;
440
441 err_unlink:
442 iommu_device_unlink(iommu_dev, dev);
443 err_release:
444 if (ops->release_device)
445 ops->release_device(dev);
446 err_module_put:
447 module_put(ops->owner);
448 err_free:
449 dev->iommu->iommu_dev = NULL;
450 dev_iommu_free(dev);
451 return ret;
452 }
453
iommu_deinit_device(struct device * dev)454 static void iommu_deinit_device(struct device *dev)
455 {
456 struct iommu_group *group = dev->iommu_group;
457 const struct iommu_ops *ops = dev_iommu_ops(dev);
458
459 lockdep_assert_held(&group->mutex);
460
461 iommu_device_unlink(dev->iommu->iommu_dev, dev);
462
463 /*
464 * release_device() must stop using any attached domain on the device.
465 * If there are still other devices in the group, they are not affected
466 * by this callback.
467 *
468 * If the iommu driver provides release_domain, the core code ensures
469 * that domain is attached prior to calling release_device. Drivers can
470 * use this to enforce a translation on the idle iommu. Typically, the
471 * global static blocked_domain is a good choice.
472 *
473 * Otherwise, the iommu driver must set the device to either an identity
474 * or a blocking translation in release_device() and stop using any
475 * domain pointer, as it is going to be freed.
476 *
477 * Regardless, if a delayed attach never occurred, then the release
478 * should still avoid touching any hardware configuration either.
479 */
480 if (!dev->iommu->attach_deferred && ops->release_domain)
481 ops->release_domain->ops->attach_dev(ops->release_domain, dev);
482
483 if (ops->release_device)
484 ops->release_device(dev);
485
486 /*
487 * If this is the last driver to use the group then we must free the
488 * domains before we do the module_put().
489 */
490 if (list_empty(&group->devices)) {
491 if (group->default_domain) {
492 iommu_domain_free(group->default_domain);
493 group->default_domain = NULL;
494 }
495 if (group->blocking_domain) {
496 iommu_domain_free(group->blocking_domain);
497 group->blocking_domain = NULL;
498 }
499 group->domain = NULL;
500 }
501
502 /* Caller must put iommu_group */
503 dev->iommu_group = NULL;
504 module_put(ops->owner);
505 dev_iommu_free(dev);
506 }
507
508 DEFINE_MUTEX(iommu_probe_device_lock);
509
__iommu_probe_device(struct device * dev,struct list_head * group_list)510 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
511 {
512 const struct iommu_ops *ops;
513 struct iommu_group *group;
514 struct group_device *gdev;
515 int ret;
516
517 /*
518 * For FDT-based systems and ACPI IORT/VIOT, drivers register IOMMU
519 * instances with non-NULL fwnodes, and client devices should have been
520 * identified with a fwspec by this point. Otherwise, we can currently
521 * assume that only one of Intel, AMD, s390, PAMU or legacy SMMUv2 can
522 * be present, and that any of their registered instances has suitable
523 * ops for probing, and thus cheekily co-opt the same mechanism.
524 */
525 ops = iommu_fwspec_ops(dev_iommu_fwspec_get(dev));
526 if (!ops)
527 return -ENODEV;
528 /*
529 * Serialise to avoid races between IOMMU drivers registering in
530 * parallel and/or the "replay" calls from ACPI/OF code via client
531 * driver probe. Once the latter have been cleaned up we should
532 * probably be able to use device_lock() here to minimise the scope,
533 * but for now enforcing a simple global ordering is fine.
534 */
535 lockdep_assert_held(&iommu_probe_device_lock);
536
537 /* Device is probed already if in a group */
538 if (dev->iommu_group)
539 return 0;
540
541 ret = iommu_init_device(dev, ops);
542 if (ret)
543 return ret;
544
545 group = dev->iommu_group;
546 gdev = iommu_group_alloc_device(group, dev);
547 mutex_lock(&group->mutex);
548 if (IS_ERR(gdev)) {
549 ret = PTR_ERR(gdev);
550 goto err_put_group;
551 }
552
553 /*
554 * The gdev must be in the list before calling
555 * iommu_setup_default_domain()
556 */
557 list_add_tail(&gdev->list, &group->devices);
558 WARN_ON(group->default_domain && !group->domain);
559 if (group->default_domain)
560 iommu_create_device_direct_mappings(group->default_domain, dev);
561 if (group->domain) {
562 ret = __iommu_device_set_domain(group, dev, group->domain, 0);
563 if (ret)
564 goto err_remove_gdev;
565 } else if (!group->default_domain && !group_list) {
566 ret = iommu_setup_default_domain(group, 0);
567 if (ret)
568 goto err_remove_gdev;
569 } else if (!group->default_domain) {
570 /*
571 * With a group_list argument we defer the default_domain setup
572 * to the caller by providing a de-duplicated list of groups
573 * that need further setup.
574 */
575 if (list_empty(&group->entry))
576 list_add_tail(&group->entry, group_list);
577 }
578
579 if (group->default_domain)
580 iommu_setup_dma_ops(dev);
581
582 mutex_unlock(&group->mutex);
583
584 return 0;
585
586 err_remove_gdev:
587 list_del(&gdev->list);
588 __iommu_group_free_device(group, gdev);
589 err_put_group:
590 iommu_deinit_device(dev);
591 mutex_unlock(&group->mutex);
592 iommu_group_put(group);
593
594 return ret;
595 }
596
iommu_probe_device(struct device * dev)597 int iommu_probe_device(struct device *dev)
598 {
599 const struct iommu_ops *ops;
600 int ret;
601
602 mutex_lock(&iommu_probe_device_lock);
603 ret = __iommu_probe_device(dev, NULL);
604 mutex_unlock(&iommu_probe_device_lock);
605 if (ret)
606 return ret;
607
608 ops = dev_iommu_ops(dev);
609 if (ops->probe_finalize)
610 ops->probe_finalize(dev);
611
612 return 0;
613 }
614
__iommu_group_free_device(struct iommu_group * group,struct group_device * grp_dev)615 static void __iommu_group_free_device(struct iommu_group *group,
616 struct group_device *grp_dev)
617 {
618 struct device *dev = grp_dev->dev;
619
620 sysfs_remove_link(group->devices_kobj, grp_dev->name);
621 sysfs_remove_link(&dev->kobj, "iommu_group");
622
623 trace_remove_device_from_group(group->id, dev);
624
625 /*
626 * If the group has become empty then ownership must have been
627 * released, and the current domain must be set back to NULL or
628 * the default domain.
629 */
630 if (list_empty(&group->devices))
631 WARN_ON(group->owner_cnt ||
632 group->domain != group->default_domain);
633
634 kfree(grp_dev->name);
635 kfree(grp_dev);
636 }
637
638 /* Remove the iommu_group from the struct device. */
__iommu_group_remove_device(struct device * dev)639 static void __iommu_group_remove_device(struct device *dev)
640 {
641 struct iommu_group *group = dev->iommu_group;
642 struct group_device *device;
643
644 mutex_lock(&group->mutex);
645 for_each_group_device(group, device) {
646 if (device->dev != dev)
647 continue;
648
649 list_del(&device->list);
650 __iommu_group_free_device(group, device);
651 if (dev_has_iommu(dev))
652 iommu_deinit_device(dev);
653 else
654 dev->iommu_group = NULL;
655 break;
656 }
657 mutex_unlock(&group->mutex);
658
659 /*
660 * Pairs with the get in iommu_init_device() or
661 * iommu_group_add_device()
662 */
663 iommu_group_put(group);
664 }
665
iommu_release_device(struct device * dev)666 static void iommu_release_device(struct device *dev)
667 {
668 struct iommu_group *group = dev->iommu_group;
669
670 if (group)
671 __iommu_group_remove_device(dev);
672
673 /* Free any fwspec if no iommu_driver was ever attached */
674 if (dev->iommu)
675 dev_iommu_free(dev);
676 }
677
iommu_set_def_domain_type(char * str)678 static int __init iommu_set_def_domain_type(char *str)
679 {
680 bool pt;
681 int ret;
682
683 ret = kstrtobool(str, &pt);
684 if (ret)
685 return ret;
686
687 if (pt)
688 iommu_set_default_passthrough(true);
689 else
690 iommu_set_default_translated(true);
691
692 return 0;
693 }
694 early_param("iommu.passthrough", iommu_set_def_domain_type);
695
iommu_dma_setup(char * str)696 static int __init iommu_dma_setup(char *str)
697 {
698 int ret = kstrtobool(str, &iommu_dma_strict);
699
700 if (!ret)
701 iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
702 return ret;
703 }
704 early_param("iommu.strict", iommu_dma_setup);
705
iommu_set_dma_strict(void)706 void iommu_set_dma_strict(void)
707 {
708 iommu_dma_strict = true;
709 if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
710 iommu_def_domain_type = IOMMU_DOMAIN_DMA;
711 }
712
iommu_group_attr_show(struct kobject * kobj,struct attribute * __attr,char * buf)713 static ssize_t iommu_group_attr_show(struct kobject *kobj,
714 struct attribute *__attr, char *buf)
715 {
716 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
717 struct iommu_group *group = to_iommu_group(kobj);
718 ssize_t ret = -EIO;
719
720 if (attr->show)
721 ret = attr->show(group, buf);
722 return ret;
723 }
724
iommu_group_attr_store(struct kobject * kobj,struct attribute * __attr,const char * buf,size_t count)725 static ssize_t iommu_group_attr_store(struct kobject *kobj,
726 struct attribute *__attr,
727 const char *buf, size_t count)
728 {
729 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
730 struct iommu_group *group = to_iommu_group(kobj);
731 ssize_t ret = -EIO;
732
733 if (attr->store)
734 ret = attr->store(group, buf, count);
735 return ret;
736 }
737
738 static const struct sysfs_ops iommu_group_sysfs_ops = {
739 .show = iommu_group_attr_show,
740 .store = iommu_group_attr_store,
741 };
742
iommu_group_create_file(struct iommu_group * group,struct iommu_group_attribute * attr)743 static int iommu_group_create_file(struct iommu_group *group,
744 struct iommu_group_attribute *attr)
745 {
746 return sysfs_create_file(&group->kobj, &attr->attr);
747 }
748
iommu_group_remove_file(struct iommu_group * group,struct iommu_group_attribute * attr)749 static void iommu_group_remove_file(struct iommu_group *group,
750 struct iommu_group_attribute *attr)
751 {
752 sysfs_remove_file(&group->kobj, &attr->attr);
753 }
754
iommu_group_show_name(struct iommu_group * group,char * buf)755 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
756 {
757 return sysfs_emit(buf, "%s\n", group->name);
758 }
759
760 /**
761 * iommu_insert_resv_region - Insert a new region in the
762 * list of reserved regions.
763 * @new: new region to insert
764 * @regions: list of regions
765 *
766 * Elements are sorted by start address and overlapping segments
767 * of the same type are merged.
768 */
iommu_insert_resv_region(struct iommu_resv_region * new,struct list_head * regions)769 static int iommu_insert_resv_region(struct iommu_resv_region *new,
770 struct list_head *regions)
771 {
772 struct iommu_resv_region *iter, *tmp, *nr, *top;
773 LIST_HEAD(stack);
774
775 nr = iommu_alloc_resv_region(new->start, new->length,
776 new->prot, new->type, GFP_KERNEL);
777 if (!nr)
778 return -ENOMEM;
779
780 /* First add the new element based on start address sorting */
781 list_for_each_entry(iter, regions, list) {
782 if (nr->start < iter->start ||
783 (nr->start == iter->start && nr->type <= iter->type))
784 break;
785 }
786 list_add_tail(&nr->list, &iter->list);
787
788 /* Merge overlapping segments of type nr->type in @regions, if any */
789 list_for_each_entry_safe(iter, tmp, regions, list) {
790 phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
791
792 /* no merge needed on elements of different types than @new */
793 if (iter->type != new->type) {
794 list_move_tail(&iter->list, &stack);
795 continue;
796 }
797
798 /* look for the last stack element of same type as @iter */
799 list_for_each_entry_reverse(top, &stack, list)
800 if (top->type == iter->type)
801 goto check_overlap;
802
803 list_move_tail(&iter->list, &stack);
804 continue;
805
806 check_overlap:
807 top_end = top->start + top->length - 1;
808
809 if (iter->start > top_end + 1) {
810 list_move_tail(&iter->list, &stack);
811 } else {
812 top->length = max(top_end, iter_end) - top->start + 1;
813 list_del(&iter->list);
814 kfree(iter);
815 }
816 }
817 list_splice(&stack, regions);
818 return 0;
819 }
820
821 static int
iommu_insert_device_resv_regions(struct list_head * dev_resv_regions,struct list_head * group_resv_regions)822 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
823 struct list_head *group_resv_regions)
824 {
825 struct iommu_resv_region *entry;
826 int ret = 0;
827
828 list_for_each_entry(entry, dev_resv_regions, list) {
829 ret = iommu_insert_resv_region(entry, group_resv_regions);
830 if (ret)
831 break;
832 }
833 return ret;
834 }
835
iommu_get_group_resv_regions(struct iommu_group * group,struct list_head * head)836 int iommu_get_group_resv_regions(struct iommu_group *group,
837 struct list_head *head)
838 {
839 struct group_device *device;
840 int ret = 0;
841
842 mutex_lock(&group->mutex);
843 for_each_group_device(group, device) {
844 struct list_head dev_resv_regions;
845
846 /*
847 * Non-API groups still expose reserved_regions in sysfs,
848 * so filter out calls that get here that way.
849 */
850 if (!dev_has_iommu(device->dev))
851 break;
852
853 INIT_LIST_HEAD(&dev_resv_regions);
854 iommu_get_resv_regions(device->dev, &dev_resv_regions);
855 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
856 iommu_put_resv_regions(device->dev, &dev_resv_regions);
857 if (ret)
858 break;
859 }
860 mutex_unlock(&group->mutex);
861 return ret;
862 }
863 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
864
iommu_group_show_resv_regions(struct iommu_group * group,char * buf)865 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
866 char *buf)
867 {
868 struct iommu_resv_region *region, *next;
869 struct list_head group_resv_regions;
870 int offset = 0;
871
872 INIT_LIST_HEAD(&group_resv_regions);
873 iommu_get_group_resv_regions(group, &group_resv_regions);
874
875 list_for_each_entry_safe(region, next, &group_resv_regions, list) {
876 offset += sysfs_emit_at(buf, offset, "0x%016llx 0x%016llx %s\n",
877 (long long)region->start,
878 (long long)(region->start +
879 region->length - 1),
880 iommu_group_resv_type_string[region->type]);
881 kfree(region);
882 }
883
884 return offset;
885 }
886
iommu_group_show_type(struct iommu_group * group,char * buf)887 static ssize_t iommu_group_show_type(struct iommu_group *group,
888 char *buf)
889 {
890 char *type = "unknown";
891
892 mutex_lock(&group->mutex);
893 if (group->default_domain) {
894 switch (group->default_domain->type) {
895 case IOMMU_DOMAIN_BLOCKED:
896 type = "blocked";
897 break;
898 case IOMMU_DOMAIN_IDENTITY:
899 type = "identity";
900 break;
901 case IOMMU_DOMAIN_UNMANAGED:
902 type = "unmanaged";
903 break;
904 case IOMMU_DOMAIN_DMA:
905 type = "DMA";
906 break;
907 case IOMMU_DOMAIN_DMA_FQ:
908 type = "DMA-FQ";
909 break;
910 }
911 }
912 mutex_unlock(&group->mutex);
913
914 return sysfs_emit(buf, "%s\n", type);
915 }
916
917 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
918
919 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
920 iommu_group_show_resv_regions, NULL);
921
922 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
923 iommu_group_store_type);
924
iommu_group_release(struct kobject * kobj)925 static void iommu_group_release(struct kobject *kobj)
926 {
927 struct iommu_group *group = to_iommu_group(kobj);
928
929 pr_debug("Releasing group %d\n", group->id);
930
931 if (group->iommu_data_release)
932 group->iommu_data_release(group->iommu_data);
933
934 ida_free(&iommu_group_ida, group->id);
935
936 /* Domains are free'd by iommu_deinit_device() */
937 WARN_ON(group->default_domain);
938 WARN_ON(group->blocking_domain);
939
940 kfree(group->name);
941 kfree(group);
942 }
943
944 static const struct kobj_type iommu_group_ktype = {
945 .sysfs_ops = &iommu_group_sysfs_ops,
946 .release = iommu_group_release,
947 };
948
949 /**
950 * iommu_group_alloc - Allocate a new group
951 *
952 * This function is called by an iommu driver to allocate a new iommu
953 * group. The iommu group represents the minimum granularity of the iommu.
954 * Upon successful return, the caller holds a reference to the supplied
955 * group in order to hold the group until devices are added. Use
956 * iommu_group_put() to release this extra reference count, allowing the
957 * group to be automatically reclaimed once it has no devices or external
958 * references.
959 */
iommu_group_alloc(void)960 struct iommu_group *iommu_group_alloc(void)
961 {
962 struct iommu_group *group;
963 int ret;
964
965 group = kzalloc(sizeof(*group), GFP_KERNEL);
966 if (!group)
967 return ERR_PTR(-ENOMEM);
968
969 group->kobj.kset = iommu_group_kset;
970 mutex_init(&group->mutex);
971 INIT_LIST_HEAD(&group->devices);
972 INIT_LIST_HEAD(&group->entry);
973 xa_init(&group->pasid_array);
974
975 ret = ida_alloc(&iommu_group_ida, GFP_KERNEL);
976 if (ret < 0) {
977 kfree(group);
978 return ERR_PTR(ret);
979 }
980 group->id = ret;
981
982 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
983 NULL, "%d", group->id);
984 if (ret) {
985 kobject_put(&group->kobj);
986 return ERR_PTR(ret);
987 }
988
989 group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
990 if (!group->devices_kobj) {
991 kobject_put(&group->kobj); /* triggers .release & free */
992 return ERR_PTR(-ENOMEM);
993 }
994
995 /*
996 * The devices_kobj holds a reference on the group kobject, so
997 * as long as that exists so will the group. We can therefore
998 * use the devices_kobj for reference counting.
999 */
1000 kobject_put(&group->kobj);
1001
1002 ret = iommu_group_create_file(group,
1003 &iommu_group_attr_reserved_regions);
1004 if (ret) {
1005 kobject_put(group->devices_kobj);
1006 return ERR_PTR(ret);
1007 }
1008
1009 ret = iommu_group_create_file(group, &iommu_group_attr_type);
1010 if (ret) {
1011 kobject_put(group->devices_kobj);
1012 return ERR_PTR(ret);
1013 }
1014
1015 pr_debug("Allocated group %d\n", group->id);
1016
1017 return group;
1018 }
1019 EXPORT_SYMBOL_GPL(iommu_group_alloc);
1020
1021 /**
1022 * iommu_group_get_iommudata - retrieve iommu_data registered for a group
1023 * @group: the group
1024 *
1025 * iommu drivers can store data in the group for use when doing iommu
1026 * operations. This function provides a way to retrieve it. Caller
1027 * should hold a group reference.
1028 */
iommu_group_get_iommudata(struct iommu_group * group)1029 void *iommu_group_get_iommudata(struct iommu_group *group)
1030 {
1031 return group->iommu_data;
1032 }
1033 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
1034
1035 /**
1036 * iommu_group_set_iommudata - set iommu_data for a group
1037 * @group: the group
1038 * @iommu_data: new data
1039 * @release: release function for iommu_data
1040 *
1041 * iommu drivers can store data in the group for use when doing iommu
1042 * operations. This function provides a way to set the data after
1043 * the group has been allocated. Caller should hold a group reference.
1044 */
iommu_group_set_iommudata(struct iommu_group * group,void * iommu_data,void (* release)(void * iommu_data))1045 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
1046 void (*release)(void *iommu_data))
1047 {
1048 group->iommu_data = iommu_data;
1049 group->iommu_data_release = release;
1050 }
1051 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
1052
1053 /**
1054 * iommu_group_set_name - set name for a group
1055 * @group: the group
1056 * @name: name
1057 *
1058 * Allow iommu driver to set a name for a group. When set it will
1059 * appear in a name attribute file under the group in sysfs.
1060 */
iommu_group_set_name(struct iommu_group * group,const char * name)1061 int iommu_group_set_name(struct iommu_group *group, const char *name)
1062 {
1063 int ret;
1064
1065 if (group->name) {
1066 iommu_group_remove_file(group, &iommu_group_attr_name);
1067 kfree(group->name);
1068 group->name = NULL;
1069 if (!name)
1070 return 0;
1071 }
1072
1073 group->name = kstrdup(name, GFP_KERNEL);
1074 if (!group->name)
1075 return -ENOMEM;
1076
1077 ret = iommu_group_create_file(group, &iommu_group_attr_name);
1078 if (ret) {
1079 kfree(group->name);
1080 group->name = NULL;
1081 return ret;
1082 }
1083
1084 return 0;
1085 }
1086 EXPORT_SYMBOL_GPL(iommu_group_set_name);
1087
iommu_create_device_direct_mappings(struct iommu_domain * domain,struct device * dev)1088 static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
1089 struct device *dev)
1090 {
1091 struct iommu_resv_region *entry;
1092 struct list_head mappings;
1093 unsigned long pg_size;
1094 int ret = 0;
1095
1096 pg_size = domain->pgsize_bitmap ? 1UL << __ffs(domain->pgsize_bitmap) : 0;
1097 INIT_LIST_HEAD(&mappings);
1098
1099 if (WARN_ON_ONCE(iommu_is_dma_domain(domain) && !pg_size))
1100 return -EINVAL;
1101
1102 iommu_get_resv_regions(dev, &mappings);
1103
1104 /* We need to consider overlapping regions for different devices */
1105 list_for_each_entry(entry, &mappings, list) {
1106 dma_addr_t start, end, addr;
1107 size_t map_size = 0;
1108
1109 if (entry->type == IOMMU_RESV_DIRECT)
1110 dev->iommu->require_direct = 1;
1111
1112 if ((entry->type != IOMMU_RESV_DIRECT &&
1113 entry->type != IOMMU_RESV_DIRECT_RELAXABLE) ||
1114 !iommu_is_dma_domain(domain))
1115 continue;
1116
1117 start = ALIGN(entry->start, pg_size);
1118 end = ALIGN(entry->start + entry->length, pg_size);
1119
1120 for (addr = start; addr <= end; addr += pg_size) {
1121 phys_addr_t phys_addr;
1122
1123 if (addr == end)
1124 goto map_end;
1125
1126 phys_addr = iommu_iova_to_phys(domain, addr);
1127 if (!phys_addr) {
1128 map_size += pg_size;
1129 continue;
1130 }
1131
1132 map_end:
1133 if (map_size) {
1134 ret = iommu_map(domain, addr - map_size,
1135 addr - map_size, map_size,
1136 entry->prot, GFP_KERNEL);
1137 if (ret)
1138 goto out;
1139 map_size = 0;
1140 }
1141 }
1142
1143 }
1144
1145 if (!list_empty(&mappings) && iommu_is_dma_domain(domain))
1146 iommu_flush_iotlb_all(domain);
1147
1148 out:
1149 iommu_put_resv_regions(dev, &mappings);
1150
1151 return ret;
1152 }
1153
1154 /* This is undone by __iommu_group_free_device() */
iommu_group_alloc_device(struct iommu_group * group,struct device * dev)1155 static struct group_device *iommu_group_alloc_device(struct iommu_group *group,
1156 struct device *dev)
1157 {
1158 int ret, i = 0;
1159 struct group_device *device;
1160
1161 device = kzalloc(sizeof(*device), GFP_KERNEL);
1162 if (!device)
1163 return ERR_PTR(-ENOMEM);
1164
1165 device->dev = dev;
1166
1167 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
1168 if (ret)
1169 goto err_free_device;
1170
1171 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
1172 rename:
1173 if (!device->name) {
1174 ret = -ENOMEM;
1175 goto err_remove_link;
1176 }
1177
1178 ret = sysfs_create_link_nowarn(group->devices_kobj,
1179 &dev->kobj, device->name);
1180 if (ret) {
1181 if (ret == -EEXIST && i >= 0) {
1182 /*
1183 * Account for the slim chance of collision
1184 * and append an instance to the name.
1185 */
1186 kfree(device->name);
1187 device->name = kasprintf(GFP_KERNEL, "%s.%d",
1188 kobject_name(&dev->kobj), i++);
1189 goto rename;
1190 }
1191 goto err_free_name;
1192 }
1193
1194 trace_add_device_to_group(group->id, dev);
1195
1196 dev_info(dev, "Adding to iommu group %d\n", group->id);
1197
1198 return device;
1199
1200 err_free_name:
1201 kfree(device->name);
1202 err_remove_link:
1203 sysfs_remove_link(&dev->kobj, "iommu_group");
1204 err_free_device:
1205 kfree(device);
1206 dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
1207 return ERR_PTR(ret);
1208 }
1209
1210 /**
1211 * iommu_group_add_device - add a device to an iommu group
1212 * @group: the group into which to add the device (reference should be held)
1213 * @dev: the device
1214 *
1215 * This function is called by an iommu driver to add a device into a
1216 * group. Adding a device increments the group reference count.
1217 */
iommu_group_add_device(struct iommu_group * group,struct device * dev)1218 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
1219 {
1220 struct group_device *gdev;
1221
1222 gdev = iommu_group_alloc_device(group, dev);
1223 if (IS_ERR(gdev))
1224 return PTR_ERR(gdev);
1225
1226 iommu_group_ref_get(group);
1227 dev->iommu_group = group;
1228
1229 mutex_lock(&group->mutex);
1230 list_add_tail(&gdev->list, &group->devices);
1231 mutex_unlock(&group->mutex);
1232 return 0;
1233 }
1234 EXPORT_SYMBOL_GPL(iommu_group_add_device);
1235
1236 /**
1237 * iommu_group_remove_device - remove a device from it's current group
1238 * @dev: device to be removed
1239 *
1240 * This function is called by an iommu driver to remove the device from
1241 * it's current group. This decrements the iommu group reference count.
1242 */
iommu_group_remove_device(struct device * dev)1243 void iommu_group_remove_device(struct device *dev)
1244 {
1245 struct iommu_group *group = dev->iommu_group;
1246
1247 if (!group)
1248 return;
1249
1250 dev_info(dev, "Removing from iommu group %d\n", group->id);
1251
1252 __iommu_group_remove_device(dev);
1253 }
1254 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
1255
1256 #if IS_ENABLED(CONFIG_LOCKDEP) && IS_ENABLED(CONFIG_IOMMU_API)
1257 /**
1258 * iommu_group_mutex_assert - Check device group mutex lock
1259 * @dev: the device that has group param set
1260 *
1261 * This function is called by an iommu driver to check whether it holds
1262 * group mutex lock for the given device or not.
1263 *
1264 * Note that this function must be called after device group param is set.
1265 */
iommu_group_mutex_assert(struct device * dev)1266 void iommu_group_mutex_assert(struct device *dev)
1267 {
1268 struct iommu_group *group = dev->iommu_group;
1269
1270 lockdep_assert_held(&group->mutex);
1271 }
1272 EXPORT_SYMBOL_GPL(iommu_group_mutex_assert);
1273 #endif
1274
iommu_group_first_dev(struct iommu_group * group)1275 static struct device *iommu_group_first_dev(struct iommu_group *group)
1276 {
1277 lockdep_assert_held(&group->mutex);
1278 return list_first_entry(&group->devices, struct group_device, list)->dev;
1279 }
1280
1281 /**
1282 * iommu_group_for_each_dev - iterate over each device in the group
1283 * @group: the group
1284 * @data: caller opaque data to be passed to callback function
1285 * @fn: caller supplied callback function
1286 *
1287 * This function is called by group users to iterate over group devices.
1288 * Callers should hold a reference count to the group during callback.
1289 * The group->mutex is held across callbacks, which will block calls to
1290 * iommu_group_add/remove_device.
1291 */
iommu_group_for_each_dev(struct iommu_group * group,void * data,int (* fn)(struct device *,void *))1292 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1293 int (*fn)(struct device *, void *))
1294 {
1295 struct group_device *device;
1296 int ret = 0;
1297
1298 mutex_lock(&group->mutex);
1299 for_each_group_device(group, device) {
1300 ret = fn(device->dev, data);
1301 if (ret)
1302 break;
1303 }
1304 mutex_unlock(&group->mutex);
1305
1306 return ret;
1307 }
1308 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1309
1310 /**
1311 * iommu_group_get - Return the group for a device and increment reference
1312 * @dev: get the group that this device belongs to
1313 *
1314 * This function is called by iommu drivers and users to get the group
1315 * for the specified device. If found, the group is returned and the group
1316 * reference in incremented, else NULL.
1317 */
iommu_group_get(struct device * dev)1318 struct iommu_group *iommu_group_get(struct device *dev)
1319 {
1320 struct iommu_group *group = dev->iommu_group;
1321
1322 if (group)
1323 kobject_get(group->devices_kobj);
1324
1325 return group;
1326 }
1327 EXPORT_SYMBOL_GPL(iommu_group_get);
1328
1329 /**
1330 * iommu_group_ref_get - Increment reference on a group
1331 * @group: the group to use, must not be NULL
1332 *
1333 * This function is called by iommu drivers to take additional references on an
1334 * existing group. Returns the given group for convenience.
1335 */
iommu_group_ref_get(struct iommu_group * group)1336 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1337 {
1338 kobject_get(group->devices_kobj);
1339 return group;
1340 }
1341 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1342
1343 /**
1344 * iommu_group_put - Decrement group reference
1345 * @group: the group to use
1346 *
1347 * This function is called by iommu drivers and users to release the
1348 * iommu group. Once the reference count is zero, the group is released.
1349 */
iommu_group_put(struct iommu_group * group)1350 void iommu_group_put(struct iommu_group *group)
1351 {
1352 if (group)
1353 kobject_put(group->devices_kobj);
1354 }
1355 EXPORT_SYMBOL_GPL(iommu_group_put);
1356
1357 /**
1358 * iommu_group_id - Return ID for a group
1359 * @group: the group to ID
1360 *
1361 * Return the unique ID for the group matching the sysfs group number.
1362 */
iommu_group_id(struct iommu_group * group)1363 int iommu_group_id(struct iommu_group *group)
1364 {
1365 return group->id;
1366 }
1367 EXPORT_SYMBOL_GPL(iommu_group_id);
1368
1369 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1370 unsigned long *devfns);
1371
1372 /*
1373 * To consider a PCI device isolated, we require ACS to support Source
1374 * Validation, Request Redirection, Completer Redirection, and Upstream
1375 * Forwarding. This effectively means that devices cannot spoof their
1376 * requester ID, requests and completions cannot be redirected, and all
1377 * transactions are forwarded upstream, even as it passes through a
1378 * bridge where the target device is downstream.
1379 */
1380 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1381
1382 /*
1383 * For multifunction devices which are not isolated from each other, find
1384 * all the other non-isolated functions and look for existing groups. For
1385 * each function, we also need to look for aliases to or from other devices
1386 * that may already have a group.
1387 */
get_pci_function_alias_group(struct pci_dev * pdev,unsigned long * devfns)1388 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1389 unsigned long *devfns)
1390 {
1391 struct pci_dev *tmp = NULL;
1392 struct iommu_group *group;
1393
1394 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1395 return NULL;
1396
1397 for_each_pci_dev(tmp) {
1398 if (tmp == pdev || tmp->bus != pdev->bus ||
1399 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1400 pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1401 continue;
1402
1403 group = get_pci_alias_group(tmp, devfns);
1404 if (group) {
1405 pci_dev_put(tmp);
1406 return group;
1407 }
1408 }
1409
1410 return NULL;
1411 }
1412
1413 /*
1414 * Look for aliases to or from the given device for existing groups. DMA
1415 * aliases are only supported on the same bus, therefore the search
1416 * space is quite small (especially since we're really only looking at pcie
1417 * device, and therefore only expect multiple slots on the root complex or
1418 * downstream switch ports). It's conceivable though that a pair of
1419 * multifunction devices could have aliases between them that would cause a
1420 * loop. To prevent this, we use a bitmap to track where we've been.
1421 */
get_pci_alias_group(struct pci_dev * pdev,unsigned long * devfns)1422 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1423 unsigned long *devfns)
1424 {
1425 struct pci_dev *tmp = NULL;
1426 struct iommu_group *group;
1427
1428 if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1429 return NULL;
1430
1431 group = iommu_group_get(&pdev->dev);
1432 if (group)
1433 return group;
1434
1435 for_each_pci_dev(tmp) {
1436 if (tmp == pdev || tmp->bus != pdev->bus)
1437 continue;
1438
1439 /* We alias them or they alias us */
1440 if (pci_devs_are_dma_aliases(pdev, tmp)) {
1441 group = get_pci_alias_group(tmp, devfns);
1442 if (group) {
1443 pci_dev_put(tmp);
1444 return group;
1445 }
1446
1447 group = get_pci_function_alias_group(tmp, devfns);
1448 if (group) {
1449 pci_dev_put(tmp);
1450 return group;
1451 }
1452 }
1453 }
1454
1455 return NULL;
1456 }
1457
1458 struct group_for_pci_data {
1459 struct pci_dev *pdev;
1460 struct iommu_group *group;
1461 };
1462
1463 /*
1464 * DMA alias iterator callback, return the last seen device. Stop and return
1465 * the IOMMU group if we find one along the way.
1466 */
get_pci_alias_or_group(struct pci_dev * pdev,u16 alias,void * opaque)1467 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1468 {
1469 struct group_for_pci_data *data = opaque;
1470
1471 data->pdev = pdev;
1472 data->group = iommu_group_get(&pdev->dev);
1473
1474 return data->group != NULL;
1475 }
1476
1477 /*
1478 * Generic device_group call-back function. It just allocates one
1479 * iommu-group per device.
1480 */
generic_device_group(struct device * dev)1481 struct iommu_group *generic_device_group(struct device *dev)
1482 {
1483 return iommu_group_alloc();
1484 }
1485 EXPORT_SYMBOL_GPL(generic_device_group);
1486
1487 /*
1488 * Generic device_group call-back function. It just allocates one
1489 * iommu-group per iommu driver instance shared by every device
1490 * probed by that iommu driver.
1491 */
generic_single_device_group(struct device * dev)1492 struct iommu_group *generic_single_device_group(struct device *dev)
1493 {
1494 struct iommu_device *iommu = dev->iommu->iommu_dev;
1495
1496 if (!iommu->singleton_group) {
1497 struct iommu_group *group;
1498
1499 group = iommu_group_alloc();
1500 if (IS_ERR(group))
1501 return group;
1502 iommu->singleton_group = group;
1503 }
1504 return iommu_group_ref_get(iommu->singleton_group);
1505 }
1506 EXPORT_SYMBOL_GPL(generic_single_device_group);
1507
1508 /*
1509 * Use standard PCI bus topology, isolation features, and DMA alias quirks
1510 * to find or create an IOMMU group for a device.
1511 */
pci_device_group(struct device * dev)1512 struct iommu_group *pci_device_group(struct device *dev)
1513 {
1514 struct pci_dev *pdev = to_pci_dev(dev);
1515 struct group_for_pci_data data;
1516 struct pci_bus *bus;
1517 struct iommu_group *group = NULL;
1518 u64 devfns[4] = { 0 };
1519
1520 if (WARN_ON(!dev_is_pci(dev)))
1521 return ERR_PTR(-EINVAL);
1522
1523 /*
1524 * Find the upstream DMA alias for the device. A device must not
1525 * be aliased due to topology in order to have its own IOMMU group.
1526 * If we find an alias along the way that already belongs to a
1527 * group, use it.
1528 */
1529 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1530 return data.group;
1531
1532 pdev = data.pdev;
1533
1534 /*
1535 * Continue upstream from the point of minimum IOMMU granularity
1536 * due to aliases to the point where devices are protected from
1537 * peer-to-peer DMA by PCI ACS. Again, if we find an existing
1538 * group, use it.
1539 */
1540 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1541 if (!bus->self)
1542 continue;
1543
1544 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1545 break;
1546
1547 pdev = bus->self;
1548
1549 group = iommu_group_get(&pdev->dev);
1550 if (group)
1551 return group;
1552 }
1553
1554 /*
1555 * Look for existing groups on device aliases. If we alias another
1556 * device or another device aliases us, use the same group.
1557 */
1558 group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1559 if (group)
1560 return group;
1561
1562 /*
1563 * Look for existing groups on non-isolated functions on the same
1564 * slot and aliases of those funcions, if any. No need to clear
1565 * the search bitmap, the tested devfns are still valid.
1566 */
1567 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1568 if (group)
1569 return group;
1570
1571 /* No shared group found, allocate new */
1572 return iommu_group_alloc();
1573 }
1574 EXPORT_SYMBOL_GPL(pci_device_group);
1575
1576 /* Get the IOMMU group for device on fsl-mc bus */
fsl_mc_device_group(struct device * dev)1577 struct iommu_group *fsl_mc_device_group(struct device *dev)
1578 {
1579 struct device *cont_dev = fsl_mc_cont_dev(dev);
1580 struct iommu_group *group;
1581
1582 group = iommu_group_get(cont_dev);
1583 if (!group)
1584 group = iommu_group_alloc();
1585 return group;
1586 }
1587 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1588
1589 static struct iommu_domain *
__iommu_group_alloc_default_domain(struct iommu_group * group,int req_type)1590 __iommu_group_alloc_default_domain(struct iommu_group *group, int req_type)
1591 {
1592 if (group->default_domain && group->default_domain->type == req_type)
1593 return group->default_domain;
1594 return __iommu_group_domain_alloc(group, req_type);
1595 }
1596
1597 /*
1598 * req_type of 0 means "auto" which means to select a domain based on
1599 * iommu_def_domain_type or what the driver actually supports.
1600 */
1601 static struct iommu_domain *
iommu_group_alloc_default_domain(struct iommu_group * group,int req_type)1602 iommu_group_alloc_default_domain(struct iommu_group *group, int req_type)
1603 {
1604 const struct iommu_ops *ops = dev_iommu_ops(iommu_group_first_dev(group));
1605 struct iommu_domain *dom;
1606
1607 lockdep_assert_held(&group->mutex);
1608
1609 /*
1610 * Allow legacy drivers to specify the domain that will be the default
1611 * domain. This should always be either an IDENTITY/BLOCKED/PLATFORM
1612 * domain. Do not use in new drivers.
1613 */
1614 if (ops->default_domain) {
1615 if (req_type != ops->default_domain->type)
1616 return ERR_PTR(-EINVAL);
1617 return ops->default_domain;
1618 }
1619
1620 if (req_type)
1621 return __iommu_group_alloc_default_domain(group, req_type);
1622
1623 /* The driver gave no guidance on what type to use, try the default */
1624 dom = __iommu_group_alloc_default_domain(group, iommu_def_domain_type);
1625 if (!IS_ERR(dom))
1626 return dom;
1627
1628 /* Otherwise IDENTITY and DMA_FQ defaults will try DMA */
1629 if (iommu_def_domain_type == IOMMU_DOMAIN_DMA)
1630 return ERR_PTR(-EINVAL);
1631 dom = __iommu_group_alloc_default_domain(group, IOMMU_DOMAIN_DMA);
1632 if (IS_ERR(dom))
1633 return dom;
1634
1635 pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1636 iommu_def_domain_type, group->name);
1637 return dom;
1638 }
1639
iommu_group_default_domain(struct iommu_group * group)1640 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1641 {
1642 return group->default_domain;
1643 }
1644
probe_iommu_group(struct device * dev,void * data)1645 static int probe_iommu_group(struct device *dev, void *data)
1646 {
1647 struct list_head *group_list = data;
1648 int ret;
1649
1650 mutex_lock(&iommu_probe_device_lock);
1651 ret = __iommu_probe_device(dev, group_list);
1652 mutex_unlock(&iommu_probe_device_lock);
1653 if (ret == -ENODEV)
1654 ret = 0;
1655
1656 return ret;
1657 }
1658
iommu_bus_notifier(struct notifier_block * nb,unsigned long action,void * data)1659 static int iommu_bus_notifier(struct notifier_block *nb,
1660 unsigned long action, void *data)
1661 {
1662 struct device *dev = data;
1663
1664 if (action == BUS_NOTIFY_ADD_DEVICE) {
1665 int ret;
1666
1667 ret = iommu_probe_device(dev);
1668 return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1669 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1670 iommu_release_device(dev);
1671 return NOTIFY_OK;
1672 }
1673
1674 return 0;
1675 }
1676
1677 /*
1678 * Combine the driver's chosen def_domain_type across all the devices in a
1679 * group. Drivers must give a consistent result.
1680 */
iommu_get_def_domain_type(struct iommu_group * group,struct device * dev,int cur_type)1681 static int iommu_get_def_domain_type(struct iommu_group *group,
1682 struct device *dev, int cur_type)
1683 {
1684 const struct iommu_ops *ops = dev_iommu_ops(dev);
1685 int type;
1686
1687 if (ops->default_domain) {
1688 /*
1689 * Drivers that declare a global static default_domain will
1690 * always choose that.
1691 */
1692 type = ops->default_domain->type;
1693 } else {
1694 if (ops->def_domain_type)
1695 type = ops->def_domain_type(dev);
1696 else
1697 return cur_type;
1698 }
1699 if (!type || cur_type == type)
1700 return cur_type;
1701 if (!cur_type)
1702 return type;
1703
1704 dev_err_ratelimited(
1705 dev,
1706 "IOMMU driver error, requesting conflicting def_domain_type, %s and %s, for devices in group %u.\n",
1707 iommu_domain_type_str(cur_type), iommu_domain_type_str(type),
1708 group->id);
1709
1710 /*
1711 * Try to recover, drivers are allowed to force IDENITY or DMA, IDENTITY
1712 * takes precedence.
1713 */
1714 if (type == IOMMU_DOMAIN_IDENTITY)
1715 return type;
1716 return cur_type;
1717 }
1718
1719 /*
1720 * A target_type of 0 will select the best domain type. 0 can be returned in
1721 * this case meaning the global default should be used.
1722 */
iommu_get_default_domain_type(struct iommu_group * group,int target_type)1723 static int iommu_get_default_domain_type(struct iommu_group *group,
1724 int target_type)
1725 {
1726 struct device *untrusted = NULL;
1727 struct group_device *gdev;
1728 int driver_type = 0;
1729
1730 lockdep_assert_held(&group->mutex);
1731
1732 /*
1733 * ARM32 drivers supporting CONFIG_ARM_DMA_USE_IOMMU can declare an
1734 * identity_domain and it will automatically become their default
1735 * domain. Later on ARM_DMA_USE_IOMMU will install its UNMANAGED domain.
1736 * Override the selection to IDENTITY.
1737 */
1738 if (IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU)) {
1739 static_assert(!(IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU) &&
1740 IS_ENABLED(CONFIG_IOMMU_DMA)));
1741 driver_type = IOMMU_DOMAIN_IDENTITY;
1742 }
1743
1744 for_each_group_device(group, gdev) {
1745 driver_type = iommu_get_def_domain_type(group, gdev->dev,
1746 driver_type);
1747
1748 if (dev_is_pci(gdev->dev) && to_pci_dev(gdev->dev)->untrusted) {
1749 /*
1750 * No ARM32 using systems will set untrusted, it cannot
1751 * work.
1752 */
1753 if (WARN_ON(IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU)))
1754 return -1;
1755 untrusted = gdev->dev;
1756 }
1757 }
1758
1759 /*
1760 * If the common dma ops are not selected in kconfig then we cannot use
1761 * IOMMU_DOMAIN_DMA at all. Force IDENTITY if nothing else has been
1762 * selected.
1763 */
1764 if (!IS_ENABLED(CONFIG_IOMMU_DMA)) {
1765 if (WARN_ON(driver_type == IOMMU_DOMAIN_DMA))
1766 return -1;
1767 if (!driver_type)
1768 driver_type = IOMMU_DOMAIN_IDENTITY;
1769 }
1770
1771 if (untrusted) {
1772 if (driver_type && driver_type != IOMMU_DOMAIN_DMA) {
1773 dev_err_ratelimited(
1774 untrusted,
1775 "Device is not trusted, but driver is overriding group %u to %s, refusing to probe.\n",
1776 group->id, iommu_domain_type_str(driver_type));
1777 return -1;
1778 }
1779 driver_type = IOMMU_DOMAIN_DMA;
1780 }
1781
1782 if (target_type) {
1783 if (driver_type && target_type != driver_type)
1784 return -1;
1785 return target_type;
1786 }
1787 return driver_type;
1788 }
1789
iommu_group_do_probe_finalize(struct device * dev)1790 static void iommu_group_do_probe_finalize(struct device *dev)
1791 {
1792 const struct iommu_ops *ops = dev_iommu_ops(dev);
1793
1794 if (ops->probe_finalize)
1795 ops->probe_finalize(dev);
1796 }
1797
bus_iommu_probe(const struct bus_type * bus)1798 int bus_iommu_probe(const struct bus_type *bus)
1799 {
1800 struct iommu_group *group, *next;
1801 LIST_HEAD(group_list);
1802 int ret;
1803
1804 ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1805 if (ret)
1806 return ret;
1807
1808 list_for_each_entry_safe(group, next, &group_list, entry) {
1809 struct group_device *gdev;
1810
1811 mutex_lock(&group->mutex);
1812
1813 /* Remove item from the list */
1814 list_del_init(&group->entry);
1815
1816 /*
1817 * We go to the trouble of deferred default domain creation so
1818 * that the cross-group default domain type and the setup of the
1819 * IOMMU_RESV_DIRECT will work correctly in non-hotpug scenarios.
1820 */
1821 ret = iommu_setup_default_domain(group, 0);
1822 if (ret) {
1823 mutex_unlock(&group->mutex);
1824 return ret;
1825 }
1826 for_each_group_device(group, gdev)
1827 iommu_setup_dma_ops(gdev->dev);
1828 mutex_unlock(&group->mutex);
1829
1830 /*
1831 * FIXME: Mis-locked because the ops->probe_finalize() call-back
1832 * of some IOMMU drivers calls arm_iommu_attach_device() which
1833 * in-turn might call back into IOMMU core code, where it tries
1834 * to take group->mutex, resulting in a deadlock.
1835 */
1836 for_each_group_device(group, gdev)
1837 iommu_group_do_probe_finalize(gdev->dev);
1838 }
1839
1840 return 0;
1841 }
1842
1843 /**
1844 * iommu_present() - make platform-specific assumptions about an IOMMU
1845 * @bus: bus to check
1846 *
1847 * Do not use this function. You want device_iommu_mapped() instead.
1848 *
1849 * Return: true if some IOMMU is present and aware of devices on the given bus;
1850 * in general it may not be the only IOMMU, and it may not have anything to do
1851 * with whatever device you are ultimately interested in.
1852 */
iommu_present(const struct bus_type * bus)1853 bool iommu_present(const struct bus_type *bus)
1854 {
1855 bool ret = false;
1856
1857 for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) {
1858 if (iommu_buses[i] == bus) {
1859 spin_lock(&iommu_device_lock);
1860 ret = !list_empty(&iommu_device_list);
1861 spin_unlock(&iommu_device_lock);
1862 }
1863 }
1864 return ret;
1865 }
1866 EXPORT_SYMBOL_GPL(iommu_present);
1867
1868 /**
1869 * device_iommu_capable() - check for a general IOMMU capability
1870 * @dev: device to which the capability would be relevant, if available
1871 * @cap: IOMMU capability
1872 *
1873 * Return: true if an IOMMU is present and supports the given capability
1874 * for the given device, otherwise false.
1875 */
device_iommu_capable(struct device * dev,enum iommu_cap cap)1876 bool device_iommu_capable(struct device *dev, enum iommu_cap cap)
1877 {
1878 const struct iommu_ops *ops;
1879
1880 if (!dev_has_iommu(dev))
1881 return false;
1882
1883 ops = dev_iommu_ops(dev);
1884 if (!ops->capable)
1885 return false;
1886
1887 return ops->capable(dev, cap);
1888 }
1889 EXPORT_SYMBOL_GPL(device_iommu_capable);
1890
1891 /**
1892 * iommu_group_has_isolated_msi() - Compute msi_device_has_isolated_msi()
1893 * for a group
1894 * @group: Group to query
1895 *
1896 * IOMMU groups should not have differing values of
1897 * msi_device_has_isolated_msi() for devices in a group. However nothing
1898 * directly prevents this, so ensure mistakes don't result in isolation failures
1899 * by checking that all the devices are the same.
1900 */
iommu_group_has_isolated_msi(struct iommu_group * group)1901 bool iommu_group_has_isolated_msi(struct iommu_group *group)
1902 {
1903 struct group_device *group_dev;
1904 bool ret = true;
1905
1906 mutex_lock(&group->mutex);
1907 for_each_group_device(group, group_dev)
1908 ret &= msi_device_has_isolated_msi(group_dev->dev);
1909 mutex_unlock(&group->mutex);
1910 return ret;
1911 }
1912 EXPORT_SYMBOL_GPL(iommu_group_has_isolated_msi);
1913
1914 /**
1915 * iommu_set_fault_handler() - set a fault handler for an iommu domain
1916 * @domain: iommu domain
1917 * @handler: fault handler
1918 * @token: user data, will be passed back to the fault handler
1919 *
1920 * This function should be used by IOMMU users which want to be notified
1921 * whenever an IOMMU fault happens.
1922 *
1923 * The fault handler itself should return 0 on success, and an appropriate
1924 * error code otherwise.
1925 */
iommu_set_fault_handler(struct iommu_domain * domain,iommu_fault_handler_t handler,void * token)1926 void iommu_set_fault_handler(struct iommu_domain *domain,
1927 iommu_fault_handler_t handler,
1928 void *token)
1929 {
1930 BUG_ON(!domain);
1931
1932 domain->handler = handler;
1933 domain->handler_token = token;
1934 }
1935 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1936
__iommu_domain_alloc(const struct iommu_ops * ops,struct device * dev,unsigned int type)1937 static struct iommu_domain *__iommu_domain_alloc(const struct iommu_ops *ops,
1938 struct device *dev,
1939 unsigned int type)
1940 {
1941 struct iommu_domain *domain;
1942 unsigned int alloc_type = type & IOMMU_DOMAIN_ALLOC_FLAGS;
1943
1944 if (alloc_type == IOMMU_DOMAIN_IDENTITY && ops->identity_domain)
1945 return ops->identity_domain;
1946 else if (alloc_type == IOMMU_DOMAIN_BLOCKED && ops->blocked_domain)
1947 return ops->blocked_domain;
1948 else if (type & __IOMMU_DOMAIN_PAGING && ops->domain_alloc_paging)
1949 domain = ops->domain_alloc_paging(dev);
1950 else if (ops->domain_alloc)
1951 domain = ops->domain_alloc(alloc_type);
1952 else
1953 return ERR_PTR(-EOPNOTSUPP);
1954
1955 /*
1956 * Many domain_alloc ops now return ERR_PTR, make things easier for the
1957 * driver by accepting ERR_PTR from all domain_alloc ops instead of
1958 * having two rules.
1959 */
1960 if (IS_ERR(domain))
1961 return domain;
1962 if (!domain)
1963 return ERR_PTR(-ENOMEM);
1964
1965 domain->type = type;
1966 domain->owner = ops;
1967 /*
1968 * If not already set, assume all sizes by default; the driver
1969 * may override this later
1970 */
1971 if (!domain->pgsize_bitmap)
1972 domain->pgsize_bitmap = ops->pgsize_bitmap;
1973
1974 if (!domain->ops)
1975 domain->ops = ops->default_domain_ops;
1976
1977 if (iommu_is_dma_domain(domain)) {
1978 int rc;
1979
1980 rc = iommu_get_dma_cookie(domain);
1981 if (rc) {
1982 iommu_domain_free(domain);
1983 return ERR_PTR(rc);
1984 }
1985 }
1986 return domain;
1987 }
1988
1989 static struct iommu_domain *
__iommu_group_domain_alloc(struct iommu_group * group,unsigned int type)1990 __iommu_group_domain_alloc(struct iommu_group *group, unsigned int type)
1991 {
1992 struct device *dev = iommu_group_first_dev(group);
1993
1994 return __iommu_domain_alloc(dev_iommu_ops(dev), dev, type);
1995 }
1996
__iommu_domain_alloc_dev(struct device * dev,void * data)1997 static int __iommu_domain_alloc_dev(struct device *dev, void *data)
1998 {
1999 const struct iommu_ops **ops = data;
2000
2001 if (!dev_has_iommu(dev))
2002 return 0;
2003
2004 if (WARN_ONCE(*ops && *ops != dev_iommu_ops(dev),
2005 "Multiple IOMMU drivers present for bus %s, which the public IOMMU API can't fully support yet. You will still need to disable one or more for this to work, sorry!\n",
2006 dev_bus_name(dev)))
2007 return -EBUSY;
2008
2009 *ops = dev_iommu_ops(dev);
2010 return 0;
2011 }
2012
2013 /*
2014 * The iommu ops in bus has been retired. Do not use this interface in
2015 * new drivers.
2016 */
iommu_domain_alloc(const struct bus_type * bus)2017 struct iommu_domain *iommu_domain_alloc(const struct bus_type *bus)
2018 {
2019 const struct iommu_ops *ops = NULL;
2020 int err = bus_for_each_dev(bus, NULL, &ops, __iommu_domain_alloc_dev);
2021 struct iommu_domain *domain;
2022
2023 if (err || !ops)
2024 return NULL;
2025
2026 domain = __iommu_domain_alloc(ops, NULL, IOMMU_DOMAIN_UNMANAGED);
2027 if (IS_ERR(domain))
2028 return NULL;
2029 return domain;
2030 }
2031 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
2032
2033 /**
2034 * iommu_paging_domain_alloc() - Allocate a paging domain
2035 * @dev: device for which the domain is allocated
2036 *
2037 * Allocate a paging domain which will be managed by a kernel driver. Return
2038 * allocated domain if successful, or a ERR pointer for failure.
2039 */
iommu_paging_domain_alloc(struct device * dev)2040 struct iommu_domain *iommu_paging_domain_alloc(struct device *dev)
2041 {
2042 if (!dev_has_iommu(dev))
2043 return ERR_PTR(-ENODEV);
2044
2045 return __iommu_domain_alloc(dev_iommu_ops(dev), dev, IOMMU_DOMAIN_UNMANAGED);
2046 }
2047 EXPORT_SYMBOL_GPL(iommu_paging_domain_alloc);
2048
iommu_domain_free(struct iommu_domain * domain)2049 void iommu_domain_free(struct iommu_domain *domain)
2050 {
2051 if (domain->type == IOMMU_DOMAIN_SVA)
2052 mmdrop(domain->mm);
2053 iommu_put_dma_cookie(domain);
2054 if (domain->ops->free)
2055 domain->ops->free(domain);
2056 }
2057 EXPORT_SYMBOL_GPL(iommu_domain_free);
2058
2059 /*
2060 * Put the group's domain back to the appropriate core-owned domain - either the
2061 * standard kernel-mode DMA configuration or an all-DMA-blocked domain.
2062 */
__iommu_group_set_core_domain(struct iommu_group * group)2063 static void __iommu_group_set_core_domain(struct iommu_group *group)
2064 {
2065 struct iommu_domain *new_domain;
2066
2067 if (group->owner)
2068 new_domain = group->blocking_domain;
2069 else
2070 new_domain = group->default_domain;
2071
2072 __iommu_group_set_domain_nofail(group, new_domain);
2073 }
2074
__iommu_attach_device(struct iommu_domain * domain,struct device * dev)2075 static int __iommu_attach_device(struct iommu_domain *domain,
2076 struct device *dev)
2077 {
2078 int ret;
2079
2080 if (unlikely(domain->ops->attach_dev == NULL))
2081 return -ENODEV;
2082
2083 ret = domain->ops->attach_dev(domain, dev);
2084 if (ret)
2085 return ret;
2086 dev->iommu->attach_deferred = 0;
2087 trace_attach_device_to_domain(dev);
2088 return 0;
2089 }
2090
2091 /**
2092 * iommu_attach_device - Attach an IOMMU domain to a device
2093 * @domain: IOMMU domain to attach
2094 * @dev: Device that will be attached
2095 *
2096 * Returns 0 on success and error code on failure
2097 *
2098 * Note that EINVAL can be treated as a soft failure, indicating
2099 * that certain configuration of the domain is incompatible with
2100 * the device. In this case attaching a different domain to the
2101 * device may succeed.
2102 */
iommu_attach_device(struct iommu_domain * domain,struct device * dev)2103 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
2104 {
2105 /* Caller must be a probed driver on dev */
2106 struct iommu_group *group = dev->iommu_group;
2107 int ret;
2108
2109 if (!group)
2110 return -ENODEV;
2111
2112 /*
2113 * Lock the group to make sure the device-count doesn't
2114 * change while we are attaching
2115 */
2116 mutex_lock(&group->mutex);
2117 ret = -EINVAL;
2118 if (list_count_nodes(&group->devices) != 1)
2119 goto out_unlock;
2120
2121 ret = __iommu_attach_group(domain, group);
2122
2123 out_unlock:
2124 mutex_unlock(&group->mutex);
2125 return ret;
2126 }
2127 EXPORT_SYMBOL_GPL(iommu_attach_device);
2128
iommu_deferred_attach(struct device * dev,struct iommu_domain * domain)2129 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2130 {
2131 if (dev->iommu && dev->iommu->attach_deferred)
2132 return __iommu_attach_device(domain, dev);
2133
2134 return 0;
2135 }
2136
iommu_detach_device(struct iommu_domain * domain,struct device * dev)2137 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2138 {
2139 /* Caller must be a probed driver on dev */
2140 struct iommu_group *group = dev->iommu_group;
2141
2142 if (!group)
2143 return;
2144
2145 mutex_lock(&group->mutex);
2146 if (WARN_ON(domain != group->domain) ||
2147 WARN_ON(list_count_nodes(&group->devices) != 1))
2148 goto out_unlock;
2149 __iommu_group_set_core_domain(group);
2150
2151 out_unlock:
2152 mutex_unlock(&group->mutex);
2153 }
2154 EXPORT_SYMBOL_GPL(iommu_detach_device);
2155
iommu_get_domain_for_dev(struct device * dev)2156 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2157 {
2158 /* Caller must be a probed driver on dev */
2159 struct iommu_group *group = dev->iommu_group;
2160
2161 if (!group)
2162 return NULL;
2163
2164 return group->domain;
2165 }
2166 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2167
2168 /*
2169 * For IOMMU_DOMAIN_DMA implementations which already provide their own
2170 * guarantees that the group and its default domain are valid and correct.
2171 */
iommu_get_dma_domain(struct device * dev)2172 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2173 {
2174 return dev->iommu_group->default_domain;
2175 }
2176
__iommu_attach_group(struct iommu_domain * domain,struct iommu_group * group)2177 static int __iommu_attach_group(struct iommu_domain *domain,
2178 struct iommu_group *group)
2179 {
2180 struct device *dev;
2181
2182 if (group->domain && group->domain != group->default_domain &&
2183 group->domain != group->blocking_domain)
2184 return -EBUSY;
2185
2186 dev = iommu_group_first_dev(group);
2187 if (!dev_has_iommu(dev) || dev_iommu_ops(dev) != domain->owner)
2188 return -EINVAL;
2189
2190 return __iommu_group_set_domain(group, domain);
2191 }
2192
2193 /**
2194 * iommu_attach_group - Attach an IOMMU domain to an IOMMU group
2195 * @domain: IOMMU domain to attach
2196 * @group: IOMMU group that will be attached
2197 *
2198 * Returns 0 on success and error code on failure
2199 *
2200 * Note that EINVAL can be treated as a soft failure, indicating
2201 * that certain configuration of the domain is incompatible with
2202 * the group. In this case attaching a different domain to the
2203 * group may succeed.
2204 */
iommu_attach_group(struct iommu_domain * domain,struct iommu_group * group)2205 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2206 {
2207 int ret;
2208
2209 mutex_lock(&group->mutex);
2210 ret = __iommu_attach_group(domain, group);
2211 mutex_unlock(&group->mutex);
2212
2213 return ret;
2214 }
2215 EXPORT_SYMBOL_GPL(iommu_attach_group);
2216
2217 /**
2218 * iommu_group_replace_domain - replace the domain that a group is attached to
2219 * @new_domain: new IOMMU domain to replace with
2220 * @group: IOMMU group that will be attached to the new domain
2221 *
2222 * This API allows the group to switch domains without being forced to go to
2223 * the blocking domain in-between.
2224 *
2225 * If the currently attached domain is a core domain (e.g. a default_domain),
2226 * it will act just like the iommu_attach_group().
2227 */
iommu_group_replace_domain(struct iommu_group * group,struct iommu_domain * new_domain)2228 int iommu_group_replace_domain(struct iommu_group *group,
2229 struct iommu_domain *new_domain)
2230 {
2231 int ret;
2232
2233 if (!new_domain)
2234 return -EINVAL;
2235
2236 mutex_lock(&group->mutex);
2237 ret = __iommu_group_set_domain(group, new_domain);
2238 mutex_unlock(&group->mutex);
2239 return ret;
2240 }
2241 EXPORT_SYMBOL_NS_GPL(iommu_group_replace_domain, IOMMUFD_INTERNAL);
2242
__iommu_device_set_domain(struct iommu_group * group,struct device * dev,struct iommu_domain * new_domain,unsigned int flags)2243 static int __iommu_device_set_domain(struct iommu_group *group,
2244 struct device *dev,
2245 struct iommu_domain *new_domain,
2246 unsigned int flags)
2247 {
2248 int ret;
2249
2250 /*
2251 * If the device requires IOMMU_RESV_DIRECT then we cannot allow
2252 * the blocking domain to be attached as it does not contain the
2253 * required 1:1 mapping. This test effectively excludes the device
2254 * being used with iommu_group_claim_dma_owner() which will block
2255 * vfio and iommufd as well.
2256 */
2257 if (dev->iommu->require_direct &&
2258 (new_domain->type == IOMMU_DOMAIN_BLOCKED ||
2259 new_domain == group->blocking_domain)) {
2260 dev_warn(dev,
2261 "Firmware has requested this device have a 1:1 IOMMU mapping, rejecting configuring the device without a 1:1 mapping. Contact your platform vendor.\n");
2262 return -EINVAL;
2263 }
2264
2265 if (dev->iommu->attach_deferred) {
2266 if (new_domain == group->default_domain)
2267 return 0;
2268 dev->iommu->attach_deferred = 0;
2269 }
2270
2271 ret = __iommu_attach_device(new_domain, dev);
2272 if (ret) {
2273 /*
2274 * If we have a blocking domain then try to attach that in hopes
2275 * of avoiding a UAF. Modern drivers should implement blocking
2276 * domains as global statics that cannot fail.
2277 */
2278 if ((flags & IOMMU_SET_DOMAIN_MUST_SUCCEED) &&
2279 group->blocking_domain &&
2280 group->blocking_domain != new_domain)
2281 __iommu_attach_device(group->blocking_domain, dev);
2282 return ret;
2283 }
2284 return 0;
2285 }
2286
2287 /*
2288 * If 0 is returned the group's domain is new_domain. If an error is returned
2289 * then the group's domain will be set back to the existing domain unless
2290 * IOMMU_SET_DOMAIN_MUST_SUCCEED, otherwise an error is returned and the group's
2291 * domains is left inconsistent. This is a driver bug to fail attach with a
2292 * previously good domain. We try to avoid a kernel UAF because of this.
2293 *
2294 * IOMMU groups are really the natural working unit of the IOMMU, but the IOMMU
2295 * API works on domains and devices. Bridge that gap by iterating over the
2296 * devices in a group. Ideally we'd have a single device which represents the
2297 * requestor ID of the group, but we also allow IOMMU drivers to create policy
2298 * defined minimum sets, where the physical hardware may be able to distiguish
2299 * members, but we wish to group them at a higher level (ex. untrusted
2300 * multi-function PCI devices). Thus we attach each device.
2301 */
__iommu_group_set_domain_internal(struct iommu_group * group,struct iommu_domain * new_domain,unsigned int flags)2302 static int __iommu_group_set_domain_internal(struct iommu_group *group,
2303 struct iommu_domain *new_domain,
2304 unsigned int flags)
2305 {
2306 struct group_device *last_gdev;
2307 struct group_device *gdev;
2308 int result;
2309 int ret;
2310
2311 lockdep_assert_held(&group->mutex);
2312
2313 if (group->domain == new_domain)
2314 return 0;
2315
2316 if (WARN_ON(!new_domain))
2317 return -EINVAL;
2318
2319 /*
2320 * Changing the domain is done by calling attach_dev() on the new
2321 * domain. This switch does not have to be atomic and DMA can be
2322 * discarded during the transition. DMA must only be able to access
2323 * either new_domain or group->domain, never something else.
2324 */
2325 result = 0;
2326 for_each_group_device(group, gdev) {
2327 ret = __iommu_device_set_domain(group, gdev->dev, new_domain,
2328 flags);
2329 if (ret) {
2330 result = ret;
2331 /*
2332 * Keep trying the other devices in the group. If a
2333 * driver fails attach to an otherwise good domain, and
2334 * does not support blocking domains, it should at least
2335 * drop its reference on the current domain so we don't
2336 * UAF.
2337 */
2338 if (flags & IOMMU_SET_DOMAIN_MUST_SUCCEED)
2339 continue;
2340 goto err_revert;
2341 }
2342 }
2343 group->domain = new_domain;
2344 return result;
2345
2346 err_revert:
2347 /*
2348 * This is called in error unwind paths. A well behaved driver should
2349 * always allow us to attach to a domain that was already attached.
2350 */
2351 last_gdev = gdev;
2352 for_each_group_device(group, gdev) {
2353 /*
2354 * A NULL domain can happen only for first probe, in which case
2355 * we leave group->domain as NULL and let release clean
2356 * everything up.
2357 */
2358 if (group->domain)
2359 WARN_ON(__iommu_device_set_domain(
2360 group, gdev->dev, group->domain,
2361 IOMMU_SET_DOMAIN_MUST_SUCCEED));
2362 if (gdev == last_gdev)
2363 break;
2364 }
2365 return ret;
2366 }
2367
iommu_detach_group(struct iommu_domain * domain,struct iommu_group * group)2368 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2369 {
2370 mutex_lock(&group->mutex);
2371 __iommu_group_set_core_domain(group);
2372 mutex_unlock(&group->mutex);
2373 }
2374 EXPORT_SYMBOL_GPL(iommu_detach_group);
2375
iommu_iova_to_phys(struct iommu_domain * domain,dma_addr_t iova)2376 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2377 {
2378 if (domain->type == IOMMU_DOMAIN_IDENTITY)
2379 return iova;
2380
2381 if (domain->type == IOMMU_DOMAIN_BLOCKED)
2382 return 0;
2383
2384 return domain->ops->iova_to_phys(domain, iova);
2385 }
2386 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2387
iommu_pgsize(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,size_t * count)2388 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2389 phys_addr_t paddr, size_t size, size_t *count)
2390 {
2391 unsigned int pgsize_idx, pgsize_idx_next;
2392 unsigned long pgsizes;
2393 size_t offset, pgsize, pgsize_next;
2394 unsigned long addr_merge = paddr | iova;
2395
2396 /* Page sizes supported by the hardware and small enough for @size */
2397 pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2398
2399 /* Constrain the page sizes further based on the maximum alignment */
2400 if (likely(addr_merge))
2401 pgsizes &= GENMASK(__ffs(addr_merge), 0);
2402
2403 /* Make sure we have at least one suitable page size */
2404 BUG_ON(!pgsizes);
2405
2406 /* Pick the biggest page size remaining */
2407 pgsize_idx = __fls(pgsizes);
2408 pgsize = BIT(pgsize_idx);
2409 if (!count)
2410 return pgsize;
2411
2412 /* Find the next biggest support page size, if it exists */
2413 pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2414 if (!pgsizes)
2415 goto out_set_count;
2416
2417 pgsize_idx_next = __ffs(pgsizes);
2418 pgsize_next = BIT(pgsize_idx_next);
2419
2420 /*
2421 * There's no point trying a bigger page size unless the virtual
2422 * and physical addresses are similarly offset within the larger page.
2423 */
2424 if ((iova ^ paddr) & (pgsize_next - 1))
2425 goto out_set_count;
2426
2427 /* Calculate the offset to the next page size alignment boundary */
2428 offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2429
2430 /*
2431 * If size is big enough to accommodate the larger page, reduce
2432 * the number of smaller pages.
2433 */
2434 if (offset + pgsize_next <= size)
2435 size = offset;
2436
2437 out_set_count:
2438 *count = size >> pgsize_idx;
2439 return pgsize;
2440 }
2441
__iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)2442 static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2443 phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2444 {
2445 const struct iommu_domain_ops *ops = domain->ops;
2446 unsigned long orig_iova = iova;
2447 unsigned int min_pagesz;
2448 size_t orig_size = size;
2449 phys_addr_t orig_paddr = paddr;
2450 int ret = 0;
2451
2452 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2453 return -EINVAL;
2454
2455 if (WARN_ON(!ops->map_pages || domain->pgsize_bitmap == 0UL))
2456 return -ENODEV;
2457
2458 /* find out the minimum page size supported */
2459 min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2460
2461 /*
2462 * both the virtual address and the physical one, as well as
2463 * the size of the mapping, must be aligned (at least) to the
2464 * size of the smallest page supported by the hardware
2465 */
2466 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2467 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2468 iova, &paddr, size, min_pagesz);
2469 return -EINVAL;
2470 }
2471
2472 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2473
2474 while (size) {
2475 size_t pgsize, count, mapped = 0;
2476
2477 pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
2478
2479 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2480 iova, &paddr, pgsize, count);
2481 ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2482 gfp, &mapped);
2483 /*
2484 * Some pages may have been mapped, even if an error occurred,
2485 * so we should account for those so they can be unmapped.
2486 */
2487 size -= mapped;
2488
2489 if (ret)
2490 break;
2491
2492 iova += mapped;
2493 paddr += mapped;
2494 }
2495
2496 /* unroll mapping in case something went wrong */
2497 if (ret)
2498 iommu_unmap(domain, orig_iova, orig_size - size);
2499 else
2500 trace_map(orig_iova, orig_paddr, orig_size);
2501
2502 return ret;
2503 }
2504
iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)2505 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2506 phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2507 {
2508 const struct iommu_domain_ops *ops = domain->ops;
2509 int ret;
2510
2511 might_sleep_if(gfpflags_allow_blocking(gfp));
2512
2513 /* Discourage passing strange GFP flags */
2514 if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2515 __GFP_HIGHMEM)))
2516 return -EINVAL;
2517
2518 ret = __iommu_map(domain, iova, paddr, size, prot, gfp);
2519 if (ret == 0 && ops->iotlb_sync_map) {
2520 ret = ops->iotlb_sync_map(domain, iova, size);
2521 if (ret)
2522 goto out_err;
2523 }
2524
2525 return ret;
2526
2527 out_err:
2528 /* undo mappings already done */
2529 iommu_unmap(domain, iova, size);
2530
2531 return ret;
2532 }
2533 EXPORT_SYMBOL_GPL(iommu_map);
2534
__iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2535 static size_t __iommu_unmap(struct iommu_domain *domain,
2536 unsigned long iova, size_t size,
2537 struct iommu_iotlb_gather *iotlb_gather)
2538 {
2539 const struct iommu_domain_ops *ops = domain->ops;
2540 size_t unmapped_page, unmapped = 0;
2541 unsigned long orig_iova = iova;
2542 unsigned int min_pagesz;
2543
2544 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2545 return 0;
2546
2547 if (WARN_ON(!ops->unmap_pages || domain->pgsize_bitmap == 0UL))
2548 return 0;
2549
2550 /* find out the minimum page size supported */
2551 min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2552
2553 /*
2554 * The virtual address, as well as the size of the mapping, must be
2555 * aligned (at least) to the size of the smallest page supported
2556 * by the hardware
2557 */
2558 if (!IS_ALIGNED(iova | size, min_pagesz)) {
2559 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2560 iova, size, min_pagesz);
2561 return 0;
2562 }
2563
2564 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2565
2566 /*
2567 * Keep iterating until we either unmap 'size' bytes (or more)
2568 * or we hit an area that isn't mapped.
2569 */
2570 while (unmapped < size) {
2571 size_t pgsize, count;
2572
2573 pgsize = iommu_pgsize(domain, iova, iova, size - unmapped, &count);
2574 unmapped_page = ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather);
2575 if (!unmapped_page)
2576 break;
2577
2578 pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2579 iova, unmapped_page);
2580
2581 iova += unmapped_page;
2582 unmapped += unmapped_page;
2583 }
2584
2585 trace_unmap(orig_iova, size, unmapped);
2586 return unmapped;
2587 }
2588
iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size)2589 size_t iommu_unmap(struct iommu_domain *domain,
2590 unsigned long iova, size_t size)
2591 {
2592 struct iommu_iotlb_gather iotlb_gather;
2593 size_t ret;
2594
2595 iommu_iotlb_gather_init(&iotlb_gather);
2596 ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2597 iommu_iotlb_sync(domain, &iotlb_gather);
2598
2599 return ret;
2600 }
2601 EXPORT_SYMBOL_GPL(iommu_unmap);
2602
iommu_unmap_fast(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2603 size_t iommu_unmap_fast(struct iommu_domain *domain,
2604 unsigned long iova, size_t size,
2605 struct iommu_iotlb_gather *iotlb_gather)
2606 {
2607 return __iommu_unmap(domain, iova, size, iotlb_gather);
2608 }
2609 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2610
iommu_map_sg(struct iommu_domain * domain,unsigned long iova,struct scatterlist * sg,unsigned int nents,int prot,gfp_t gfp)2611 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2612 struct scatterlist *sg, unsigned int nents, int prot,
2613 gfp_t gfp)
2614 {
2615 const struct iommu_domain_ops *ops = domain->ops;
2616 size_t len = 0, mapped = 0;
2617 phys_addr_t start;
2618 unsigned int i = 0;
2619 int ret;
2620
2621 might_sleep_if(gfpflags_allow_blocking(gfp));
2622
2623 /* Discourage passing strange GFP flags */
2624 if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2625 __GFP_HIGHMEM)))
2626 return -EINVAL;
2627
2628 while (i <= nents) {
2629 phys_addr_t s_phys = sg_phys(sg);
2630
2631 if (len && s_phys != start + len) {
2632 ret = __iommu_map(domain, iova + mapped, start,
2633 len, prot, gfp);
2634
2635 if (ret)
2636 goto out_err;
2637
2638 mapped += len;
2639 len = 0;
2640 }
2641
2642 if (sg_dma_is_bus_address(sg))
2643 goto next;
2644
2645 if (len) {
2646 len += sg->length;
2647 } else {
2648 len = sg->length;
2649 start = s_phys;
2650 }
2651
2652 next:
2653 if (++i < nents)
2654 sg = sg_next(sg);
2655 }
2656
2657 if (ops->iotlb_sync_map) {
2658 ret = ops->iotlb_sync_map(domain, iova, mapped);
2659 if (ret)
2660 goto out_err;
2661 }
2662 return mapped;
2663
2664 out_err:
2665 /* undo mappings already done */
2666 iommu_unmap(domain, iova, mapped);
2667
2668 return ret;
2669 }
2670 EXPORT_SYMBOL_GPL(iommu_map_sg);
2671
2672 /**
2673 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2674 * @domain: the iommu domain where the fault has happened
2675 * @dev: the device where the fault has happened
2676 * @iova: the faulting address
2677 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2678 *
2679 * This function should be called by the low-level IOMMU implementations
2680 * whenever IOMMU faults happen, to allow high-level users, that are
2681 * interested in such events, to know about them.
2682 *
2683 * This event may be useful for several possible use cases:
2684 * - mere logging of the event
2685 * - dynamic TLB/PTE loading
2686 * - if restarting of the faulting device is required
2687 *
2688 * Returns 0 on success and an appropriate error code otherwise (if dynamic
2689 * PTE/TLB loading will one day be supported, implementations will be able
2690 * to tell whether it succeeded or not according to this return value).
2691 *
2692 * Specifically, -ENOSYS is returned if a fault handler isn't installed
2693 * (though fault handlers can also return -ENOSYS, in case they want to
2694 * elicit the default behavior of the IOMMU drivers).
2695 */
report_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags)2696 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2697 unsigned long iova, int flags)
2698 {
2699 int ret = -ENOSYS;
2700
2701 /*
2702 * if upper layers showed interest and installed a fault handler,
2703 * invoke it.
2704 */
2705 if (domain->handler)
2706 ret = domain->handler(domain, dev, iova, flags,
2707 domain->handler_token);
2708
2709 trace_io_page_fault(dev, iova, flags);
2710 return ret;
2711 }
2712 EXPORT_SYMBOL_GPL(report_iommu_fault);
2713
iommu_init(void)2714 static int __init iommu_init(void)
2715 {
2716 iommu_group_kset = kset_create_and_add("iommu_groups",
2717 NULL, kernel_kobj);
2718 BUG_ON(!iommu_group_kset);
2719
2720 iommu_debugfs_setup();
2721
2722 return 0;
2723 }
2724 core_initcall(iommu_init);
2725
iommu_enable_nesting(struct iommu_domain * domain)2726 int iommu_enable_nesting(struct iommu_domain *domain)
2727 {
2728 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2729 return -EINVAL;
2730 if (!domain->ops->enable_nesting)
2731 return -EINVAL;
2732 return domain->ops->enable_nesting(domain);
2733 }
2734 EXPORT_SYMBOL_GPL(iommu_enable_nesting);
2735
iommu_set_pgtable_quirks(struct iommu_domain * domain,unsigned long quirk)2736 int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2737 unsigned long quirk)
2738 {
2739 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2740 return -EINVAL;
2741 if (!domain->ops->set_pgtable_quirks)
2742 return -EINVAL;
2743 return domain->ops->set_pgtable_quirks(domain, quirk);
2744 }
2745 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2746
2747 /**
2748 * iommu_get_resv_regions - get reserved regions
2749 * @dev: device for which to get reserved regions
2750 * @list: reserved region list for device
2751 *
2752 * This returns a list of reserved IOVA regions specific to this device.
2753 * A domain user should not map IOVA in these ranges.
2754 */
iommu_get_resv_regions(struct device * dev,struct list_head * list)2755 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2756 {
2757 const struct iommu_ops *ops = dev_iommu_ops(dev);
2758
2759 if (ops->get_resv_regions)
2760 ops->get_resv_regions(dev, list);
2761 }
2762 EXPORT_SYMBOL_GPL(iommu_get_resv_regions);
2763
2764 /**
2765 * iommu_put_resv_regions - release reserved regions
2766 * @dev: device for which to free reserved regions
2767 * @list: reserved region list for device
2768 *
2769 * This releases a reserved region list acquired by iommu_get_resv_regions().
2770 */
iommu_put_resv_regions(struct device * dev,struct list_head * list)2771 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2772 {
2773 struct iommu_resv_region *entry, *next;
2774
2775 list_for_each_entry_safe(entry, next, list, list) {
2776 if (entry->free)
2777 entry->free(dev, entry);
2778 else
2779 kfree(entry);
2780 }
2781 }
2782 EXPORT_SYMBOL(iommu_put_resv_regions);
2783
iommu_alloc_resv_region(phys_addr_t start,size_t length,int prot,enum iommu_resv_type type,gfp_t gfp)2784 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2785 size_t length, int prot,
2786 enum iommu_resv_type type,
2787 gfp_t gfp)
2788 {
2789 struct iommu_resv_region *region;
2790
2791 region = kzalloc(sizeof(*region), gfp);
2792 if (!region)
2793 return NULL;
2794
2795 INIT_LIST_HEAD(®ion->list);
2796 region->start = start;
2797 region->length = length;
2798 region->prot = prot;
2799 region->type = type;
2800 return region;
2801 }
2802 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2803
iommu_set_default_passthrough(bool cmd_line)2804 void iommu_set_default_passthrough(bool cmd_line)
2805 {
2806 if (cmd_line)
2807 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2808 iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2809 }
2810
iommu_set_default_translated(bool cmd_line)2811 void iommu_set_default_translated(bool cmd_line)
2812 {
2813 if (cmd_line)
2814 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2815 iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2816 }
2817
iommu_default_passthrough(void)2818 bool iommu_default_passthrough(void)
2819 {
2820 return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2821 }
2822 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2823
iommu_ops_from_fwnode(const struct fwnode_handle * fwnode)2824 const struct iommu_ops *iommu_ops_from_fwnode(const struct fwnode_handle *fwnode)
2825 {
2826 const struct iommu_ops *ops = NULL;
2827 struct iommu_device *iommu;
2828
2829 spin_lock(&iommu_device_lock);
2830 list_for_each_entry(iommu, &iommu_device_list, list)
2831 if (iommu->fwnode == fwnode) {
2832 ops = iommu->ops;
2833 break;
2834 }
2835 spin_unlock(&iommu_device_lock);
2836 return ops;
2837 }
2838
iommu_fwspec_init(struct device * dev,struct fwnode_handle * iommu_fwnode)2839 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode)
2840 {
2841 const struct iommu_ops *ops = iommu_ops_from_fwnode(iommu_fwnode);
2842 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2843
2844 if (!ops)
2845 return -EPROBE_DEFER;
2846
2847 if (fwspec)
2848 return ops == iommu_fwspec_ops(fwspec) ? 0 : -EINVAL;
2849
2850 if (!dev_iommu_get(dev))
2851 return -ENOMEM;
2852
2853 /* Preallocate for the overwhelmingly common case of 1 ID */
2854 fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2855 if (!fwspec)
2856 return -ENOMEM;
2857
2858 fwnode_handle_get(iommu_fwnode);
2859 fwspec->iommu_fwnode = iommu_fwnode;
2860 dev_iommu_fwspec_set(dev, fwspec);
2861 return 0;
2862 }
2863 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2864
iommu_fwspec_free(struct device * dev)2865 void iommu_fwspec_free(struct device *dev)
2866 {
2867 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2868
2869 if (fwspec) {
2870 fwnode_handle_put(fwspec->iommu_fwnode);
2871 kfree(fwspec);
2872 dev_iommu_fwspec_set(dev, NULL);
2873 }
2874 }
2875 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2876
iommu_fwspec_add_ids(struct device * dev,const u32 * ids,int num_ids)2877 int iommu_fwspec_add_ids(struct device *dev, const u32 *ids, int num_ids)
2878 {
2879 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2880 int i, new_num;
2881
2882 if (!fwspec)
2883 return -EINVAL;
2884
2885 new_num = fwspec->num_ids + num_ids;
2886 if (new_num > 1) {
2887 fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2888 GFP_KERNEL);
2889 if (!fwspec)
2890 return -ENOMEM;
2891
2892 dev_iommu_fwspec_set(dev, fwspec);
2893 }
2894
2895 for (i = 0; i < num_ids; i++)
2896 fwspec->ids[fwspec->num_ids + i] = ids[i];
2897
2898 fwspec->num_ids = new_num;
2899 return 0;
2900 }
2901 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2902
2903 /*
2904 * Per device IOMMU features.
2905 */
iommu_dev_enable_feature(struct device * dev,enum iommu_dev_features feat)2906 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2907 {
2908 if (dev_has_iommu(dev)) {
2909 const struct iommu_ops *ops = dev_iommu_ops(dev);
2910
2911 if (ops->dev_enable_feat)
2912 return ops->dev_enable_feat(dev, feat);
2913 }
2914
2915 return -ENODEV;
2916 }
2917 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2918
2919 /*
2920 * The device drivers should do the necessary cleanups before calling this.
2921 */
iommu_dev_disable_feature(struct device * dev,enum iommu_dev_features feat)2922 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2923 {
2924 if (dev_has_iommu(dev)) {
2925 const struct iommu_ops *ops = dev_iommu_ops(dev);
2926
2927 if (ops->dev_disable_feat)
2928 return ops->dev_disable_feat(dev, feat);
2929 }
2930
2931 return -EBUSY;
2932 }
2933 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2934
2935 /**
2936 * iommu_setup_default_domain - Set the default_domain for the group
2937 * @group: Group to change
2938 * @target_type: Domain type to set as the default_domain
2939 *
2940 * Allocate a default domain and set it as the current domain on the group. If
2941 * the group already has a default domain it will be changed to the target_type.
2942 * When target_type is 0 the default domain is selected based on driver and
2943 * system preferences.
2944 */
iommu_setup_default_domain(struct iommu_group * group,int target_type)2945 static int iommu_setup_default_domain(struct iommu_group *group,
2946 int target_type)
2947 {
2948 struct iommu_domain *old_dom = group->default_domain;
2949 struct group_device *gdev;
2950 struct iommu_domain *dom;
2951 bool direct_failed;
2952 int req_type;
2953 int ret;
2954
2955 lockdep_assert_held(&group->mutex);
2956
2957 req_type = iommu_get_default_domain_type(group, target_type);
2958 if (req_type < 0)
2959 return -EINVAL;
2960
2961 dom = iommu_group_alloc_default_domain(group, req_type);
2962 if (IS_ERR(dom))
2963 return PTR_ERR(dom);
2964
2965 if (group->default_domain == dom)
2966 return 0;
2967
2968 /*
2969 * IOMMU_RESV_DIRECT and IOMMU_RESV_DIRECT_RELAXABLE regions must be
2970 * mapped before their device is attached, in order to guarantee
2971 * continuity with any FW activity
2972 */
2973 direct_failed = false;
2974 for_each_group_device(group, gdev) {
2975 if (iommu_create_device_direct_mappings(dom, gdev->dev)) {
2976 direct_failed = true;
2977 dev_warn_once(
2978 gdev->dev->iommu->iommu_dev->dev,
2979 "IOMMU driver was not able to establish FW requested direct mapping.");
2980 }
2981 }
2982
2983 /* We must set default_domain early for __iommu_device_set_domain */
2984 group->default_domain = dom;
2985 if (!group->domain) {
2986 /*
2987 * Drivers are not allowed to fail the first domain attach.
2988 * The only way to recover from this is to fail attaching the
2989 * iommu driver and call ops->release_device. Put the domain
2990 * in group->default_domain so it is freed after.
2991 */
2992 ret = __iommu_group_set_domain_internal(
2993 group, dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
2994 if (WARN_ON(ret))
2995 goto out_free_old;
2996 } else {
2997 ret = __iommu_group_set_domain(group, dom);
2998 if (ret)
2999 goto err_restore_def_domain;
3000 }
3001
3002 /*
3003 * Drivers are supposed to allow mappings to be installed in a domain
3004 * before device attachment, but some don't. Hack around this defect by
3005 * trying again after attaching. If this happens it means the device
3006 * will not continuously have the IOMMU_RESV_DIRECT map.
3007 */
3008 if (direct_failed) {
3009 for_each_group_device(group, gdev) {
3010 ret = iommu_create_device_direct_mappings(dom, gdev->dev);
3011 if (ret)
3012 goto err_restore_domain;
3013 }
3014 }
3015
3016 out_free_old:
3017 if (old_dom)
3018 iommu_domain_free(old_dom);
3019 return ret;
3020
3021 err_restore_domain:
3022 if (old_dom)
3023 __iommu_group_set_domain_internal(
3024 group, old_dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
3025 err_restore_def_domain:
3026 if (old_dom) {
3027 iommu_domain_free(dom);
3028 group->default_domain = old_dom;
3029 }
3030 return ret;
3031 }
3032
3033 /*
3034 * Changing the default domain through sysfs requires the users to unbind the
3035 * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ
3036 * transition. Return failure if this isn't met.
3037 *
3038 * We need to consider the race between this and the device release path.
3039 * group->mutex is used here to guarantee that the device release path
3040 * will not be entered at the same time.
3041 */
iommu_group_store_type(struct iommu_group * group,const char * buf,size_t count)3042 static ssize_t iommu_group_store_type(struct iommu_group *group,
3043 const char *buf, size_t count)
3044 {
3045 struct group_device *gdev;
3046 int ret, req_type;
3047
3048 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
3049 return -EACCES;
3050
3051 if (WARN_ON(!group) || !group->default_domain)
3052 return -EINVAL;
3053
3054 if (sysfs_streq(buf, "identity"))
3055 req_type = IOMMU_DOMAIN_IDENTITY;
3056 else if (sysfs_streq(buf, "DMA"))
3057 req_type = IOMMU_DOMAIN_DMA;
3058 else if (sysfs_streq(buf, "DMA-FQ"))
3059 req_type = IOMMU_DOMAIN_DMA_FQ;
3060 else if (sysfs_streq(buf, "auto"))
3061 req_type = 0;
3062 else
3063 return -EINVAL;
3064
3065 mutex_lock(&group->mutex);
3066 /* We can bring up a flush queue without tearing down the domain. */
3067 if (req_type == IOMMU_DOMAIN_DMA_FQ &&
3068 group->default_domain->type == IOMMU_DOMAIN_DMA) {
3069 ret = iommu_dma_init_fq(group->default_domain);
3070 if (ret)
3071 goto out_unlock;
3072
3073 group->default_domain->type = IOMMU_DOMAIN_DMA_FQ;
3074 ret = count;
3075 goto out_unlock;
3076 }
3077
3078 /* Otherwise, ensure that device exists and no driver is bound. */
3079 if (list_empty(&group->devices) || group->owner_cnt) {
3080 ret = -EPERM;
3081 goto out_unlock;
3082 }
3083
3084 ret = iommu_setup_default_domain(group, req_type);
3085 if (ret)
3086 goto out_unlock;
3087
3088 /* Make sure dma_ops is appropriatley set */
3089 for_each_group_device(group, gdev)
3090 iommu_setup_dma_ops(gdev->dev);
3091
3092 out_unlock:
3093 mutex_unlock(&group->mutex);
3094 return ret ?: count;
3095 }
3096
3097 /**
3098 * iommu_device_use_default_domain() - Device driver wants to handle device
3099 * DMA through the kernel DMA API.
3100 * @dev: The device.
3101 *
3102 * The device driver about to bind @dev wants to do DMA through the kernel
3103 * DMA API. Return 0 if it is allowed, otherwise an error.
3104 */
iommu_device_use_default_domain(struct device * dev)3105 int iommu_device_use_default_domain(struct device *dev)
3106 {
3107 /* Caller is the driver core during the pre-probe path */
3108 struct iommu_group *group = dev->iommu_group;
3109 int ret = 0;
3110
3111 if (!group)
3112 return 0;
3113
3114 mutex_lock(&group->mutex);
3115 if (group->owner_cnt) {
3116 if (group->domain != group->default_domain || group->owner ||
3117 !xa_empty(&group->pasid_array)) {
3118 ret = -EBUSY;
3119 goto unlock_out;
3120 }
3121 }
3122
3123 group->owner_cnt++;
3124
3125 unlock_out:
3126 mutex_unlock(&group->mutex);
3127 return ret;
3128 }
3129
3130 /**
3131 * iommu_device_unuse_default_domain() - Device driver stops handling device
3132 * DMA through the kernel DMA API.
3133 * @dev: The device.
3134 *
3135 * The device driver doesn't want to do DMA through kernel DMA API anymore.
3136 * It must be called after iommu_device_use_default_domain().
3137 */
iommu_device_unuse_default_domain(struct device * dev)3138 void iommu_device_unuse_default_domain(struct device *dev)
3139 {
3140 /* Caller is the driver core during the post-probe path */
3141 struct iommu_group *group = dev->iommu_group;
3142
3143 if (!group)
3144 return;
3145
3146 mutex_lock(&group->mutex);
3147 if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array)))
3148 group->owner_cnt--;
3149
3150 mutex_unlock(&group->mutex);
3151 }
3152
__iommu_group_alloc_blocking_domain(struct iommu_group * group)3153 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group)
3154 {
3155 struct iommu_domain *domain;
3156
3157 if (group->blocking_domain)
3158 return 0;
3159
3160 domain = __iommu_group_domain_alloc(group, IOMMU_DOMAIN_BLOCKED);
3161 if (IS_ERR(domain)) {
3162 /*
3163 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED
3164 * create an empty domain instead.
3165 */
3166 domain = __iommu_group_domain_alloc(group,
3167 IOMMU_DOMAIN_UNMANAGED);
3168 if (IS_ERR(domain))
3169 return PTR_ERR(domain);
3170 }
3171 group->blocking_domain = domain;
3172 return 0;
3173 }
3174
__iommu_take_dma_ownership(struct iommu_group * group,void * owner)3175 static int __iommu_take_dma_ownership(struct iommu_group *group, void *owner)
3176 {
3177 int ret;
3178
3179 if ((group->domain && group->domain != group->default_domain) ||
3180 !xa_empty(&group->pasid_array))
3181 return -EBUSY;
3182
3183 ret = __iommu_group_alloc_blocking_domain(group);
3184 if (ret)
3185 return ret;
3186 ret = __iommu_group_set_domain(group, group->blocking_domain);
3187 if (ret)
3188 return ret;
3189
3190 group->owner = owner;
3191 group->owner_cnt++;
3192 return 0;
3193 }
3194
3195 /**
3196 * iommu_group_claim_dma_owner() - Set DMA ownership of a group
3197 * @group: The group.
3198 * @owner: Caller specified pointer. Used for exclusive ownership.
3199 *
3200 * This is to support backward compatibility for vfio which manages the dma
3201 * ownership in iommu_group level. New invocations on this interface should be
3202 * prohibited. Only a single owner may exist for a group.
3203 */
iommu_group_claim_dma_owner(struct iommu_group * group,void * owner)3204 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner)
3205 {
3206 int ret = 0;
3207
3208 if (WARN_ON(!owner))
3209 return -EINVAL;
3210
3211 mutex_lock(&group->mutex);
3212 if (group->owner_cnt) {
3213 ret = -EPERM;
3214 goto unlock_out;
3215 }
3216
3217 ret = __iommu_take_dma_ownership(group, owner);
3218 unlock_out:
3219 mutex_unlock(&group->mutex);
3220
3221 return ret;
3222 }
3223 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner);
3224
3225 /**
3226 * iommu_device_claim_dma_owner() - Set DMA ownership of a device
3227 * @dev: The device.
3228 * @owner: Caller specified pointer. Used for exclusive ownership.
3229 *
3230 * Claim the DMA ownership of a device. Multiple devices in the same group may
3231 * concurrently claim ownership if they present the same owner value. Returns 0
3232 * on success and error code on failure
3233 */
iommu_device_claim_dma_owner(struct device * dev,void * owner)3234 int iommu_device_claim_dma_owner(struct device *dev, void *owner)
3235 {
3236 /* Caller must be a probed driver on dev */
3237 struct iommu_group *group = dev->iommu_group;
3238 int ret = 0;
3239
3240 if (WARN_ON(!owner))
3241 return -EINVAL;
3242
3243 if (!group)
3244 return -ENODEV;
3245
3246 mutex_lock(&group->mutex);
3247 if (group->owner_cnt) {
3248 if (group->owner != owner) {
3249 ret = -EPERM;
3250 goto unlock_out;
3251 }
3252 group->owner_cnt++;
3253 goto unlock_out;
3254 }
3255
3256 ret = __iommu_take_dma_ownership(group, owner);
3257 unlock_out:
3258 mutex_unlock(&group->mutex);
3259 return ret;
3260 }
3261 EXPORT_SYMBOL_GPL(iommu_device_claim_dma_owner);
3262
__iommu_release_dma_ownership(struct iommu_group * group)3263 static void __iommu_release_dma_ownership(struct iommu_group *group)
3264 {
3265 if (WARN_ON(!group->owner_cnt || !group->owner ||
3266 !xa_empty(&group->pasid_array)))
3267 return;
3268
3269 group->owner_cnt = 0;
3270 group->owner = NULL;
3271 __iommu_group_set_domain_nofail(group, group->default_domain);
3272 }
3273
3274 /**
3275 * iommu_group_release_dma_owner() - Release DMA ownership of a group
3276 * @group: The group
3277 *
3278 * Release the DMA ownership claimed by iommu_group_claim_dma_owner().
3279 */
iommu_group_release_dma_owner(struct iommu_group * group)3280 void iommu_group_release_dma_owner(struct iommu_group *group)
3281 {
3282 mutex_lock(&group->mutex);
3283 __iommu_release_dma_ownership(group);
3284 mutex_unlock(&group->mutex);
3285 }
3286 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner);
3287
3288 /**
3289 * iommu_device_release_dma_owner() - Release DMA ownership of a device
3290 * @dev: The device.
3291 *
3292 * Release the DMA ownership claimed by iommu_device_claim_dma_owner().
3293 */
iommu_device_release_dma_owner(struct device * dev)3294 void iommu_device_release_dma_owner(struct device *dev)
3295 {
3296 /* Caller must be a probed driver on dev */
3297 struct iommu_group *group = dev->iommu_group;
3298
3299 mutex_lock(&group->mutex);
3300 if (group->owner_cnt > 1)
3301 group->owner_cnt--;
3302 else
3303 __iommu_release_dma_ownership(group);
3304 mutex_unlock(&group->mutex);
3305 }
3306 EXPORT_SYMBOL_GPL(iommu_device_release_dma_owner);
3307
3308 /**
3309 * iommu_group_dma_owner_claimed() - Query group dma ownership status
3310 * @group: The group.
3311 *
3312 * This provides status query on a given group. It is racy and only for
3313 * non-binding status reporting.
3314 */
iommu_group_dma_owner_claimed(struct iommu_group * group)3315 bool iommu_group_dma_owner_claimed(struct iommu_group *group)
3316 {
3317 unsigned int user;
3318
3319 mutex_lock(&group->mutex);
3320 user = group->owner_cnt;
3321 mutex_unlock(&group->mutex);
3322
3323 return user;
3324 }
3325 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed);
3326
__iommu_set_group_pasid(struct iommu_domain * domain,struct iommu_group * group,ioasid_t pasid)3327 static int __iommu_set_group_pasid(struct iommu_domain *domain,
3328 struct iommu_group *group, ioasid_t pasid)
3329 {
3330 struct group_device *device, *last_gdev;
3331 int ret;
3332
3333 for_each_group_device(group, device) {
3334 ret = domain->ops->set_dev_pasid(domain, device->dev, pasid);
3335 if (ret)
3336 goto err_revert;
3337 }
3338
3339 return 0;
3340
3341 err_revert:
3342 last_gdev = device;
3343 for_each_group_device(group, device) {
3344 const struct iommu_ops *ops = dev_iommu_ops(device->dev);
3345
3346 if (device == last_gdev)
3347 break;
3348 ops->remove_dev_pasid(device->dev, pasid, domain);
3349 }
3350 return ret;
3351 }
3352
__iommu_remove_group_pasid(struct iommu_group * group,ioasid_t pasid,struct iommu_domain * domain)3353 static void __iommu_remove_group_pasid(struct iommu_group *group,
3354 ioasid_t pasid,
3355 struct iommu_domain *domain)
3356 {
3357 struct group_device *device;
3358 const struct iommu_ops *ops;
3359
3360 for_each_group_device(group, device) {
3361 ops = dev_iommu_ops(device->dev);
3362 ops->remove_dev_pasid(device->dev, pasid, domain);
3363 }
3364 }
3365
3366 /*
3367 * iommu_attach_device_pasid() - Attach a domain to pasid of device
3368 * @domain: the iommu domain.
3369 * @dev: the attached device.
3370 * @pasid: the pasid of the device.
3371 * @handle: the attach handle.
3372 *
3373 * Return: 0 on success, or an error.
3374 */
iommu_attach_device_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid,struct iommu_attach_handle * handle)3375 int iommu_attach_device_pasid(struct iommu_domain *domain,
3376 struct device *dev, ioasid_t pasid,
3377 struct iommu_attach_handle *handle)
3378 {
3379 /* Caller must be a probed driver on dev */
3380 struct iommu_group *group = dev->iommu_group;
3381 struct group_device *device;
3382 int ret;
3383
3384 if (!domain->ops->set_dev_pasid)
3385 return -EOPNOTSUPP;
3386
3387 if (!group)
3388 return -ENODEV;
3389
3390 if (!dev_has_iommu(dev) || dev_iommu_ops(dev) != domain->owner ||
3391 pasid == IOMMU_NO_PASID)
3392 return -EINVAL;
3393
3394 mutex_lock(&group->mutex);
3395 for_each_group_device(group, device) {
3396 if (pasid >= device->dev->iommu->max_pasids) {
3397 ret = -EINVAL;
3398 goto out_unlock;
3399 }
3400 }
3401
3402 if (handle)
3403 handle->domain = domain;
3404
3405 ret = xa_insert(&group->pasid_array, pasid, handle, GFP_KERNEL);
3406 if (ret)
3407 goto out_unlock;
3408
3409 ret = __iommu_set_group_pasid(domain, group, pasid);
3410 if (ret)
3411 xa_erase(&group->pasid_array, pasid);
3412 out_unlock:
3413 mutex_unlock(&group->mutex);
3414 return ret;
3415 }
3416 EXPORT_SYMBOL_GPL(iommu_attach_device_pasid);
3417
3418 /*
3419 * iommu_detach_device_pasid() - Detach the domain from pasid of device
3420 * @domain: the iommu domain.
3421 * @dev: the attached device.
3422 * @pasid: the pasid of the device.
3423 *
3424 * The @domain must have been attached to @pasid of the @dev with
3425 * iommu_attach_device_pasid().
3426 */
iommu_detach_device_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid)3427 void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev,
3428 ioasid_t pasid)
3429 {
3430 /* Caller must be a probed driver on dev */
3431 struct iommu_group *group = dev->iommu_group;
3432
3433 mutex_lock(&group->mutex);
3434 __iommu_remove_group_pasid(group, pasid, domain);
3435 xa_erase(&group->pasid_array, pasid);
3436 mutex_unlock(&group->mutex);
3437 }
3438 EXPORT_SYMBOL_GPL(iommu_detach_device_pasid);
3439
iommu_alloc_global_pasid(struct device * dev)3440 ioasid_t iommu_alloc_global_pasid(struct device *dev)
3441 {
3442 int ret;
3443
3444 /* max_pasids == 0 means that the device does not support PASID */
3445 if (!dev->iommu->max_pasids)
3446 return IOMMU_PASID_INVALID;
3447
3448 /*
3449 * max_pasids is set up by vendor driver based on number of PASID bits
3450 * supported but the IDA allocation is inclusive.
3451 */
3452 ret = ida_alloc_range(&iommu_global_pasid_ida, IOMMU_FIRST_GLOBAL_PASID,
3453 dev->iommu->max_pasids - 1, GFP_KERNEL);
3454 return ret < 0 ? IOMMU_PASID_INVALID : ret;
3455 }
3456 EXPORT_SYMBOL_GPL(iommu_alloc_global_pasid);
3457
iommu_free_global_pasid(ioasid_t pasid)3458 void iommu_free_global_pasid(ioasid_t pasid)
3459 {
3460 if (WARN_ON(pasid == IOMMU_PASID_INVALID))
3461 return;
3462
3463 ida_free(&iommu_global_pasid_ida, pasid);
3464 }
3465 EXPORT_SYMBOL_GPL(iommu_free_global_pasid);
3466
3467 /**
3468 * iommu_attach_handle_get - Return the attach handle
3469 * @group: the iommu group that domain was attached to
3470 * @pasid: the pasid within the group
3471 * @type: matched domain type, 0 for any match
3472 *
3473 * Return handle or ERR_PTR(-ENOENT) on none, ERR_PTR(-EBUSY) on mismatch.
3474 *
3475 * Return the attach handle to the caller. The life cycle of an iommu attach
3476 * handle is from the time when the domain is attached to the time when the
3477 * domain is detached. Callers are required to synchronize the call of
3478 * iommu_attach_handle_get() with domain attachment and detachment. The attach
3479 * handle can only be used during its life cycle.
3480 */
3481 struct iommu_attach_handle *
iommu_attach_handle_get(struct iommu_group * group,ioasid_t pasid,unsigned int type)3482 iommu_attach_handle_get(struct iommu_group *group, ioasid_t pasid, unsigned int type)
3483 {
3484 struct iommu_attach_handle *handle;
3485
3486 xa_lock(&group->pasid_array);
3487 handle = xa_load(&group->pasid_array, pasid);
3488 if (!handle)
3489 handle = ERR_PTR(-ENOENT);
3490 else if (type && handle->domain->type != type)
3491 handle = ERR_PTR(-EBUSY);
3492 xa_unlock(&group->pasid_array);
3493
3494 return handle;
3495 }
3496 EXPORT_SYMBOL_NS_GPL(iommu_attach_handle_get, IOMMUFD_INTERNAL);
3497
3498 /**
3499 * iommu_attach_group_handle - Attach an IOMMU domain to an IOMMU group
3500 * @domain: IOMMU domain to attach
3501 * @group: IOMMU group that will be attached
3502 * @handle: attach handle
3503 *
3504 * Returns 0 on success and error code on failure.
3505 *
3506 * This is a variant of iommu_attach_group(). It allows the caller to provide
3507 * an attach handle and use it when the domain is attached. This is currently
3508 * used by IOMMUFD to deliver the I/O page faults.
3509 */
iommu_attach_group_handle(struct iommu_domain * domain,struct iommu_group * group,struct iommu_attach_handle * handle)3510 int iommu_attach_group_handle(struct iommu_domain *domain,
3511 struct iommu_group *group,
3512 struct iommu_attach_handle *handle)
3513 {
3514 int ret;
3515
3516 if (handle)
3517 handle->domain = domain;
3518
3519 mutex_lock(&group->mutex);
3520 ret = xa_insert(&group->pasid_array, IOMMU_NO_PASID, handle, GFP_KERNEL);
3521 if (ret)
3522 goto err_unlock;
3523
3524 ret = __iommu_attach_group(domain, group);
3525 if (ret)
3526 goto err_erase;
3527 mutex_unlock(&group->mutex);
3528
3529 return 0;
3530 err_erase:
3531 xa_erase(&group->pasid_array, IOMMU_NO_PASID);
3532 err_unlock:
3533 mutex_unlock(&group->mutex);
3534 return ret;
3535 }
3536 EXPORT_SYMBOL_NS_GPL(iommu_attach_group_handle, IOMMUFD_INTERNAL);
3537
3538 /**
3539 * iommu_detach_group_handle - Detach an IOMMU domain from an IOMMU group
3540 * @domain: IOMMU domain to attach
3541 * @group: IOMMU group that will be attached
3542 *
3543 * Detach the specified IOMMU domain from the specified IOMMU group.
3544 * It must be used in conjunction with iommu_attach_group_handle().
3545 */
iommu_detach_group_handle(struct iommu_domain * domain,struct iommu_group * group)3546 void iommu_detach_group_handle(struct iommu_domain *domain,
3547 struct iommu_group *group)
3548 {
3549 mutex_lock(&group->mutex);
3550 __iommu_group_set_core_domain(group);
3551 xa_erase(&group->pasid_array, IOMMU_NO_PASID);
3552 mutex_unlock(&group->mutex);
3553 }
3554 EXPORT_SYMBOL_NS_GPL(iommu_detach_group_handle, IOMMUFD_INTERNAL);
3555
3556 /**
3557 * iommu_replace_group_handle - replace the domain that a group is attached to
3558 * @group: IOMMU group that will be attached to the new domain
3559 * @new_domain: new IOMMU domain to replace with
3560 * @handle: attach handle
3561 *
3562 * This is a variant of iommu_group_replace_domain(). It allows the caller to
3563 * provide an attach handle for the new domain and use it when the domain is
3564 * attached.
3565 */
iommu_replace_group_handle(struct iommu_group * group,struct iommu_domain * new_domain,struct iommu_attach_handle * handle)3566 int iommu_replace_group_handle(struct iommu_group *group,
3567 struct iommu_domain *new_domain,
3568 struct iommu_attach_handle *handle)
3569 {
3570 void *curr;
3571 int ret;
3572
3573 if (!new_domain)
3574 return -EINVAL;
3575
3576 mutex_lock(&group->mutex);
3577 if (handle) {
3578 ret = xa_reserve(&group->pasid_array, IOMMU_NO_PASID, GFP_KERNEL);
3579 if (ret)
3580 goto err_unlock;
3581 handle->domain = new_domain;
3582 }
3583
3584 ret = __iommu_group_set_domain(group, new_domain);
3585 if (ret)
3586 goto err_release;
3587
3588 curr = xa_store(&group->pasid_array, IOMMU_NO_PASID, handle, GFP_KERNEL);
3589 WARN_ON(xa_is_err(curr));
3590
3591 mutex_unlock(&group->mutex);
3592
3593 return 0;
3594 err_release:
3595 xa_release(&group->pasid_array, IOMMU_NO_PASID);
3596 err_unlock:
3597 mutex_unlock(&group->mutex);
3598 return ret;
3599 }
3600 EXPORT_SYMBOL_NS_GPL(iommu_replace_group_handle, IOMMUFD_INTERNAL);
3601