xref: /linux/fs/iomap/direct-io.c (revision 3fd6c59042dbba50391e30862beac979491145fe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (c) 2016-2021 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/fscrypt.h>
10 #include <linux/pagemap.h>
11 #include <linux/iomap.h>
12 #include <linux/backing-dev.h>
13 #include <linux/uio.h>
14 #include <linux/task_io_accounting_ops.h>
15 #include "trace.h"
16 
17 #include "../internal.h"
18 
19 /*
20  * Private flags for iomap_dio, must not overlap with the public ones in
21  * iomap.h:
22  */
23 #define IOMAP_DIO_CALLER_COMP	(1U << 26)
24 #define IOMAP_DIO_INLINE_COMP	(1U << 27)
25 #define IOMAP_DIO_WRITE_THROUGH	(1U << 28)
26 #define IOMAP_DIO_NEED_SYNC	(1U << 29)
27 #define IOMAP_DIO_WRITE		(1U << 30)
28 #define IOMAP_DIO_DIRTY		(1U << 31)
29 
30 /*
31  * Used for sub block zeroing in iomap_dio_zero()
32  */
33 #define IOMAP_ZERO_PAGE_SIZE (SZ_64K)
34 #define IOMAP_ZERO_PAGE_ORDER (get_order(IOMAP_ZERO_PAGE_SIZE))
35 static struct page *zero_page;
36 
37 struct iomap_dio {
38 	struct kiocb		*iocb;
39 	const struct iomap_dio_ops *dops;
40 	loff_t			i_size;
41 	loff_t			size;
42 	atomic_t		ref;
43 	unsigned		flags;
44 	int			error;
45 	size_t			done_before;
46 	bool			wait_for_completion;
47 
48 	union {
49 		/* used during submission and for synchronous completion: */
50 		struct {
51 			struct iov_iter		*iter;
52 			struct task_struct	*waiter;
53 		} submit;
54 
55 		/* used for aio completion: */
56 		struct {
57 			struct work_struct	work;
58 		} aio;
59 	};
60 };
61 
iomap_dio_alloc_bio(const struct iomap_iter * iter,struct iomap_dio * dio,unsigned short nr_vecs,blk_opf_t opf)62 static struct bio *iomap_dio_alloc_bio(const struct iomap_iter *iter,
63 		struct iomap_dio *dio, unsigned short nr_vecs, blk_opf_t opf)
64 {
65 	if (dio->dops && dio->dops->bio_set)
66 		return bio_alloc_bioset(iter->iomap.bdev, nr_vecs, opf,
67 					GFP_KERNEL, dio->dops->bio_set);
68 	return bio_alloc(iter->iomap.bdev, nr_vecs, opf, GFP_KERNEL);
69 }
70 
iomap_dio_submit_bio(const struct iomap_iter * iter,struct iomap_dio * dio,struct bio * bio,loff_t pos)71 static void iomap_dio_submit_bio(const struct iomap_iter *iter,
72 		struct iomap_dio *dio, struct bio *bio, loff_t pos)
73 {
74 	struct kiocb *iocb = dio->iocb;
75 
76 	atomic_inc(&dio->ref);
77 
78 	/* Sync dio can't be polled reliably */
79 	if ((iocb->ki_flags & IOCB_HIPRI) && !is_sync_kiocb(iocb)) {
80 		bio_set_polled(bio, iocb);
81 		WRITE_ONCE(iocb->private, bio);
82 	}
83 
84 	if (dio->dops && dio->dops->submit_io)
85 		dio->dops->submit_io(iter, bio, pos);
86 	else
87 		submit_bio(bio);
88 }
89 
iomap_dio_complete(struct iomap_dio * dio)90 ssize_t iomap_dio_complete(struct iomap_dio *dio)
91 {
92 	const struct iomap_dio_ops *dops = dio->dops;
93 	struct kiocb *iocb = dio->iocb;
94 	loff_t offset = iocb->ki_pos;
95 	ssize_t ret = dio->error;
96 
97 	if (dops && dops->end_io)
98 		ret = dops->end_io(iocb, dio->size, ret, dio->flags);
99 
100 	if (likely(!ret)) {
101 		ret = dio->size;
102 		/* check for short read */
103 		if (offset + ret > dio->i_size &&
104 		    !(dio->flags & IOMAP_DIO_WRITE))
105 			ret = dio->i_size - offset;
106 	}
107 
108 	/*
109 	 * Try again to invalidate clean pages which might have been cached by
110 	 * non-direct readahead, or faulted in by get_user_pages() if the source
111 	 * of the write was an mmap'ed region of the file we're writing.  Either
112 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
113 	 * this invalidation fails, tough, the write still worked...
114 	 *
115 	 * And this page cache invalidation has to be after ->end_io(), as some
116 	 * filesystems convert unwritten extents to real allocations in
117 	 * ->end_io() when necessary, otherwise a racing buffer read would cache
118 	 * zeros from unwritten extents.
119 	 */
120 	if (!dio->error && dio->size && (dio->flags & IOMAP_DIO_WRITE))
121 		kiocb_invalidate_post_direct_write(iocb, dio->size);
122 
123 	inode_dio_end(file_inode(iocb->ki_filp));
124 
125 	if (ret > 0) {
126 		iocb->ki_pos += ret;
127 
128 		/*
129 		 * If this is a DSYNC write, make sure we push it to stable
130 		 * storage now that we've written data.
131 		 */
132 		if (dio->flags & IOMAP_DIO_NEED_SYNC)
133 			ret = generic_write_sync(iocb, ret);
134 		if (ret > 0)
135 			ret += dio->done_before;
136 	}
137 	trace_iomap_dio_complete(iocb, dio->error, ret);
138 	kfree(dio);
139 	return ret;
140 }
141 EXPORT_SYMBOL_GPL(iomap_dio_complete);
142 
iomap_dio_deferred_complete(void * data)143 static ssize_t iomap_dio_deferred_complete(void *data)
144 {
145 	return iomap_dio_complete(data);
146 }
147 
iomap_dio_complete_work(struct work_struct * work)148 static void iomap_dio_complete_work(struct work_struct *work)
149 {
150 	struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
151 	struct kiocb *iocb = dio->iocb;
152 
153 	iocb->ki_complete(iocb, iomap_dio_complete(dio));
154 }
155 
156 /*
157  * Set an error in the dio if none is set yet.  We have to use cmpxchg
158  * as the submission context and the completion context(s) can race to
159  * update the error.
160  */
iomap_dio_set_error(struct iomap_dio * dio,int ret)161 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
162 {
163 	cmpxchg(&dio->error, 0, ret);
164 }
165 
iomap_dio_bio_end_io(struct bio * bio)166 void iomap_dio_bio_end_io(struct bio *bio)
167 {
168 	struct iomap_dio *dio = bio->bi_private;
169 	bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
170 	struct kiocb *iocb = dio->iocb;
171 
172 	if (bio->bi_status)
173 		iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
174 	if (!atomic_dec_and_test(&dio->ref))
175 		goto release_bio;
176 
177 	/*
178 	 * Synchronous dio, task itself will handle any completion work
179 	 * that needs after IO. All we need to do is wake the task.
180 	 */
181 	if (dio->wait_for_completion) {
182 		struct task_struct *waiter = dio->submit.waiter;
183 
184 		WRITE_ONCE(dio->submit.waiter, NULL);
185 		blk_wake_io_task(waiter);
186 		goto release_bio;
187 	}
188 
189 	/*
190 	 * Flagged with IOMAP_DIO_INLINE_COMP, we can complete it inline
191 	 */
192 	if (dio->flags & IOMAP_DIO_INLINE_COMP) {
193 		WRITE_ONCE(iocb->private, NULL);
194 		iomap_dio_complete_work(&dio->aio.work);
195 		goto release_bio;
196 	}
197 
198 	/*
199 	 * If this dio is flagged with IOMAP_DIO_CALLER_COMP, then schedule
200 	 * our completion that way to avoid an async punt to a workqueue.
201 	 */
202 	if (dio->flags & IOMAP_DIO_CALLER_COMP) {
203 		/* only polled IO cares about private cleared */
204 		iocb->private = dio;
205 		iocb->dio_complete = iomap_dio_deferred_complete;
206 
207 		/*
208 		 * Invoke ->ki_complete() directly. We've assigned our
209 		 * dio_complete callback handler, and since the issuer set
210 		 * IOCB_DIO_CALLER_COMP, we know their ki_complete handler will
211 		 * notice ->dio_complete being set and will defer calling that
212 		 * handler until it can be done from a safe task context.
213 		 *
214 		 * Note that the 'res' being passed in here is not important
215 		 * for this case. The actual completion value of the request
216 		 * will be gotten from dio_complete when that is run by the
217 		 * issuer.
218 		 */
219 		iocb->ki_complete(iocb, 0);
220 		goto release_bio;
221 	}
222 
223 	/*
224 	 * Async DIO completion that requires filesystem level completion work
225 	 * gets punted to a work queue to complete as the operation may require
226 	 * more IO to be issued to finalise filesystem metadata changes or
227 	 * guarantee data integrity.
228 	 */
229 	INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
230 	queue_work(file_inode(iocb->ki_filp)->i_sb->s_dio_done_wq,
231 			&dio->aio.work);
232 release_bio:
233 	if (should_dirty) {
234 		bio_check_pages_dirty(bio);
235 	} else {
236 		bio_release_pages(bio, false);
237 		bio_put(bio);
238 	}
239 }
240 EXPORT_SYMBOL_GPL(iomap_dio_bio_end_io);
241 
iomap_dio_zero(const struct iomap_iter * iter,struct iomap_dio * dio,loff_t pos,unsigned len)242 static int iomap_dio_zero(const struct iomap_iter *iter, struct iomap_dio *dio,
243 		loff_t pos, unsigned len)
244 {
245 	struct inode *inode = file_inode(dio->iocb->ki_filp);
246 	struct bio *bio;
247 
248 	if (!len)
249 		return 0;
250 	/*
251 	 * Max block size supported is 64k
252 	 */
253 	if (WARN_ON_ONCE(len > IOMAP_ZERO_PAGE_SIZE))
254 		return -EINVAL;
255 
256 	bio = iomap_dio_alloc_bio(iter, dio, 1, REQ_OP_WRITE | REQ_SYNC | REQ_IDLE);
257 	fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits,
258 				  GFP_KERNEL);
259 	bio->bi_iter.bi_sector = iomap_sector(&iter->iomap, pos);
260 	bio->bi_private = dio;
261 	bio->bi_end_io = iomap_dio_bio_end_io;
262 
263 	__bio_add_page(bio, zero_page, len, 0);
264 	iomap_dio_submit_bio(iter, dio, bio, pos);
265 	return 0;
266 }
267 
268 /*
269  * Figure out the bio's operation flags from the dio request, the
270  * mapping, and whether or not we want FUA.  Note that we can end up
271  * clearing the WRITE_THROUGH flag in the dio request.
272  */
iomap_dio_bio_opflags(struct iomap_dio * dio,const struct iomap * iomap,bool use_fua,bool atomic)273 static inline blk_opf_t iomap_dio_bio_opflags(struct iomap_dio *dio,
274 		const struct iomap *iomap, bool use_fua, bool atomic)
275 {
276 	blk_opf_t opflags = REQ_SYNC | REQ_IDLE;
277 
278 	if (!(dio->flags & IOMAP_DIO_WRITE))
279 		return REQ_OP_READ;
280 
281 	opflags |= REQ_OP_WRITE;
282 	if (use_fua)
283 		opflags |= REQ_FUA;
284 	else
285 		dio->flags &= ~IOMAP_DIO_WRITE_THROUGH;
286 	if (atomic)
287 		opflags |= REQ_ATOMIC;
288 
289 	return opflags;
290 }
291 
iomap_dio_bio_iter(const struct iomap_iter * iter,struct iomap_dio * dio)292 static loff_t iomap_dio_bio_iter(const struct iomap_iter *iter,
293 		struct iomap_dio *dio)
294 {
295 	const struct iomap *iomap = &iter->iomap;
296 	struct inode *inode = iter->inode;
297 	unsigned int fs_block_size = i_blocksize(inode), pad;
298 	const loff_t length = iomap_length(iter);
299 	bool atomic = iter->flags & IOMAP_ATOMIC;
300 	loff_t pos = iter->pos;
301 	blk_opf_t bio_opf;
302 	struct bio *bio;
303 	bool need_zeroout = false;
304 	bool use_fua = false;
305 	int nr_pages, ret = 0;
306 	size_t copied = 0;
307 	size_t orig_count;
308 
309 	if (atomic && length != fs_block_size)
310 		return -EINVAL;
311 
312 	if ((pos | length) & (bdev_logical_block_size(iomap->bdev) - 1) ||
313 	    !bdev_iter_is_aligned(iomap->bdev, dio->submit.iter))
314 		return -EINVAL;
315 
316 	if (iomap->type == IOMAP_UNWRITTEN) {
317 		dio->flags |= IOMAP_DIO_UNWRITTEN;
318 		need_zeroout = true;
319 	}
320 
321 	if (iomap->flags & IOMAP_F_SHARED)
322 		dio->flags |= IOMAP_DIO_COW;
323 
324 	if (iomap->flags & IOMAP_F_NEW) {
325 		need_zeroout = true;
326 	} else if (iomap->type == IOMAP_MAPPED) {
327 		/*
328 		 * Use a FUA write if we need datasync semantics, this is a pure
329 		 * data IO that doesn't require any metadata updates (including
330 		 * after IO completion such as unwritten extent conversion) and
331 		 * the underlying device either supports FUA or doesn't have
332 		 * a volatile write cache. This allows us to avoid cache flushes
333 		 * on IO completion. If we can't use writethrough and need to
334 		 * sync, disable in-task completions as dio completion will
335 		 * need to call generic_write_sync() which will do a blocking
336 		 * fsync / cache flush call.
337 		 */
338 		if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
339 		    (dio->flags & IOMAP_DIO_WRITE_THROUGH) &&
340 		    (bdev_fua(iomap->bdev) || !bdev_write_cache(iomap->bdev)))
341 			use_fua = true;
342 		else if (dio->flags & IOMAP_DIO_NEED_SYNC)
343 			dio->flags &= ~IOMAP_DIO_CALLER_COMP;
344 	}
345 
346 	/*
347 	 * Save the original count and trim the iter to just the extent we
348 	 * are operating on right now.  The iter will be re-expanded once
349 	 * we are done.
350 	 */
351 	orig_count = iov_iter_count(dio->submit.iter);
352 	iov_iter_truncate(dio->submit.iter, length);
353 
354 	if (!iov_iter_count(dio->submit.iter))
355 		goto out;
356 
357 	/*
358 	 * We can only do deferred completion for pure overwrites that
359 	 * don't require additional IO at completion. This rules out
360 	 * writes that need zeroing or extent conversion, extend
361 	 * the file size, or issue journal IO or cache flushes
362 	 * during completion processing.
363 	 */
364 	if (need_zeroout ||
365 	    ((dio->flags & IOMAP_DIO_NEED_SYNC) && !use_fua) ||
366 	    ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode)))
367 		dio->flags &= ~IOMAP_DIO_CALLER_COMP;
368 
369 	/*
370 	 * The rules for polled IO completions follow the guidelines as the
371 	 * ones we set for inline and deferred completions. If none of those
372 	 * are available for this IO, clear the polled flag.
373 	 */
374 	if (!(dio->flags & (IOMAP_DIO_INLINE_COMP|IOMAP_DIO_CALLER_COMP)))
375 		dio->iocb->ki_flags &= ~IOCB_HIPRI;
376 
377 	if (need_zeroout) {
378 		/* zero out from the start of the block to the write offset */
379 		pad = pos & (fs_block_size - 1);
380 
381 		ret = iomap_dio_zero(iter, dio, pos - pad, pad);
382 		if (ret)
383 			goto out;
384 	}
385 
386 	bio_opf = iomap_dio_bio_opflags(dio, iomap, use_fua, atomic);
387 
388 	nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, BIO_MAX_VECS);
389 	do {
390 		size_t n;
391 		if (dio->error) {
392 			iov_iter_revert(dio->submit.iter, copied);
393 			copied = ret = 0;
394 			goto out;
395 		}
396 
397 		bio = iomap_dio_alloc_bio(iter, dio, nr_pages, bio_opf);
398 		fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits,
399 					  GFP_KERNEL);
400 		bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
401 		bio->bi_write_hint = inode->i_write_hint;
402 		bio->bi_ioprio = dio->iocb->ki_ioprio;
403 		bio->bi_private = dio;
404 		bio->bi_end_io = iomap_dio_bio_end_io;
405 
406 		ret = bio_iov_iter_get_pages(bio, dio->submit.iter);
407 		if (unlikely(ret)) {
408 			/*
409 			 * We have to stop part way through an IO. We must fall
410 			 * through to the sub-block tail zeroing here, otherwise
411 			 * this short IO may expose stale data in the tail of
412 			 * the block we haven't written data to.
413 			 */
414 			bio_put(bio);
415 			goto zero_tail;
416 		}
417 
418 		n = bio->bi_iter.bi_size;
419 		if (WARN_ON_ONCE(atomic && n != length)) {
420 			/*
421 			 * This bio should have covered the complete length,
422 			 * which it doesn't, so error. We may need to zero out
423 			 * the tail (complete FS block), similar to when
424 			 * bio_iov_iter_get_pages() returns an error, above.
425 			 */
426 			ret = -EINVAL;
427 			bio_put(bio);
428 			goto zero_tail;
429 		}
430 		if (dio->flags & IOMAP_DIO_WRITE) {
431 			task_io_account_write(n);
432 		} else {
433 			if (dio->flags & IOMAP_DIO_DIRTY)
434 				bio_set_pages_dirty(bio);
435 		}
436 
437 		dio->size += n;
438 		copied += n;
439 
440 		nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter,
441 						 BIO_MAX_VECS);
442 		/*
443 		 * We can only poll for single bio I/Os.
444 		 */
445 		if (nr_pages)
446 			dio->iocb->ki_flags &= ~IOCB_HIPRI;
447 		iomap_dio_submit_bio(iter, dio, bio, pos);
448 		pos += n;
449 	} while (nr_pages);
450 
451 	/*
452 	 * We need to zeroout the tail of a sub-block write if the extent type
453 	 * requires zeroing or the write extends beyond EOF. If we don't zero
454 	 * the block tail in the latter case, we can expose stale data via mmap
455 	 * reads of the EOF block.
456 	 */
457 zero_tail:
458 	if (need_zeroout ||
459 	    ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) {
460 		/* zero out from the end of the write to the end of the block */
461 		pad = pos & (fs_block_size - 1);
462 		if (pad)
463 			ret = iomap_dio_zero(iter, dio, pos,
464 					     fs_block_size - pad);
465 	}
466 out:
467 	/* Undo iter limitation to current extent */
468 	iov_iter_reexpand(dio->submit.iter, orig_count - copied);
469 	if (copied)
470 		return copied;
471 	return ret;
472 }
473 
iomap_dio_hole_iter(const struct iomap_iter * iter,struct iomap_dio * dio)474 static loff_t iomap_dio_hole_iter(const struct iomap_iter *iter,
475 		struct iomap_dio *dio)
476 {
477 	loff_t length = iov_iter_zero(iomap_length(iter), dio->submit.iter);
478 
479 	dio->size += length;
480 	if (!length)
481 		return -EFAULT;
482 	return length;
483 }
484 
iomap_dio_inline_iter(const struct iomap_iter * iomi,struct iomap_dio * dio)485 static loff_t iomap_dio_inline_iter(const struct iomap_iter *iomi,
486 		struct iomap_dio *dio)
487 {
488 	const struct iomap *iomap = &iomi->iomap;
489 	struct iov_iter *iter = dio->submit.iter;
490 	void *inline_data = iomap_inline_data(iomap, iomi->pos);
491 	loff_t length = iomap_length(iomi);
492 	loff_t pos = iomi->pos;
493 	size_t copied;
494 
495 	if (WARN_ON_ONCE(!iomap_inline_data_valid(iomap)))
496 		return -EIO;
497 
498 	if (dio->flags & IOMAP_DIO_WRITE) {
499 		loff_t size = iomi->inode->i_size;
500 
501 		if (pos > size)
502 			memset(iomap_inline_data(iomap, size), 0, pos - size);
503 		copied = copy_from_iter(inline_data, length, iter);
504 		if (copied) {
505 			if (pos + copied > size)
506 				i_size_write(iomi->inode, pos + copied);
507 			mark_inode_dirty(iomi->inode);
508 		}
509 	} else {
510 		copied = copy_to_iter(inline_data, length, iter);
511 	}
512 	dio->size += copied;
513 	if (!copied)
514 		return -EFAULT;
515 	return copied;
516 }
517 
iomap_dio_iter(const struct iomap_iter * iter,struct iomap_dio * dio)518 static loff_t iomap_dio_iter(const struct iomap_iter *iter,
519 		struct iomap_dio *dio)
520 {
521 	switch (iter->iomap.type) {
522 	case IOMAP_HOLE:
523 		if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
524 			return -EIO;
525 		return iomap_dio_hole_iter(iter, dio);
526 	case IOMAP_UNWRITTEN:
527 		if (!(dio->flags & IOMAP_DIO_WRITE))
528 			return iomap_dio_hole_iter(iter, dio);
529 		return iomap_dio_bio_iter(iter, dio);
530 	case IOMAP_MAPPED:
531 		return iomap_dio_bio_iter(iter, dio);
532 	case IOMAP_INLINE:
533 		return iomap_dio_inline_iter(iter, dio);
534 	case IOMAP_DELALLOC:
535 		/*
536 		 * DIO is not serialised against mmap() access at all, and so
537 		 * if the page_mkwrite occurs between the writeback and the
538 		 * iomap_iter() call in the DIO path, then it will see the
539 		 * DELALLOC block that the page-mkwrite allocated.
540 		 */
541 		pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n",
542 				    dio->iocb->ki_filp, current->comm);
543 		return -EIO;
544 	default:
545 		WARN_ON_ONCE(1);
546 		return -EIO;
547 	}
548 }
549 
550 /*
551  * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
552  * is being issued as AIO or not.  This allows us to optimise pure data writes
553  * to use REQ_FUA rather than requiring generic_write_sync() to issue a
554  * REQ_FLUSH post write. This is slightly tricky because a single request here
555  * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
556  * may be pure data writes. In that case, we still need to do a full data sync
557  * completion.
558  *
559  * When page faults are disabled and @dio_flags includes IOMAP_DIO_PARTIAL,
560  * __iomap_dio_rw can return a partial result if it encounters a non-resident
561  * page in @iter after preparing a transfer.  In that case, the non-resident
562  * pages can be faulted in and the request resumed with @done_before set to the
563  * number of bytes previously transferred.  The request will then complete with
564  * the correct total number of bytes transferred; this is essential for
565  * completing partial requests asynchronously.
566  *
567  * Returns -ENOTBLK In case of a page invalidation invalidation failure for
568  * writes.  The callers needs to fall back to buffered I/O in this case.
569  */
570 struct iomap_dio *
__iomap_dio_rw(struct kiocb * iocb,struct iov_iter * iter,const struct iomap_ops * ops,const struct iomap_dio_ops * dops,unsigned int dio_flags,void * private,size_t done_before)571 __iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
572 		const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
573 		unsigned int dio_flags, void *private, size_t done_before)
574 {
575 	struct inode *inode = file_inode(iocb->ki_filp);
576 	struct iomap_iter iomi = {
577 		.inode		= inode,
578 		.pos		= iocb->ki_pos,
579 		.len		= iov_iter_count(iter),
580 		.flags		= IOMAP_DIRECT,
581 		.private	= private,
582 	};
583 	bool wait_for_completion =
584 		is_sync_kiocb(iocb) || (dio_flags & IOMAP_DIO_FORCE_WAIT);
585 	struct blk_plug plug;
586 	struct iomap_dio *dio;
587 	loff_t ret = 0;
588 
589 	trace_iomap_dio_rw_begin(iocb, iter, dio_flags, done_before);
590 
591 	if (!iomi.len)
592 		return NULL;
593 
594 	dio = kmalloc(sizeof(*dio), GFP_KERNEL);
595 	if (!dio)
596 		return ERR_PTR(-ENOMEM);
597 
598 	dio->iocb = iocb;
599 	atomic_set(&dio->ref, 1);
600 	dio->size = 0;
601 	dio->i_size = i_size_read(inode);
602 	dio->dops = dops;
603 	dio->error = 0;
604 	dio->flags = 0;
605 	dio->done_before = done_before;
606 
607 	dio->submit.iter = iter;
608 	dio->submit.waiter = current;
609 
610 	if (iocb->ki_flags & IOCB_NOWAIT)
611 		iomi.flags |= IOMAP_NOWAIT;
612 
613 	if (iocb->ki_flags & IOCB_ATOMIC)
614 		iomi.flags |= IOMAP_ATOMIC;
615 
616 	if (iov_iter_rw(iter) == READ) {
617 		/* reads can always complete inline */
618 		dio->flags |= IOMAP_DIO_INLINE_COMP;
619 
620 		if (iomi.pos >= dio->i_size)
621 			goto out_free_dio;
622 
623 		if (user_backed_iter(iter))
624 			dio->flags |= IOMAP_DIO_DIRTY;
625 
626 		ret = kiocb_write_and_wait(iocb, iomi.len);
627 		if (ret)
628 			goto out_free_dio;
629 	} else {
630 		iomi.flags |= IOMAP_WRITE;
631 		dio->flags |= IOMAP_DIO_WRITE;
632 
633 		/*
634 		 * Flag as supporting deferred completions, if the issuer
635 		 * groks it. This can avoid a workqueue punt for writes.
636 		 * We may later clear this flag if we need to do other IO
637 		 * as part of this IO completion.
638 		 */
639 		if (iocb->ki_flags & IOCB_DIO_CALLER_COMP)
640 			dio->flags |= IOMAP_DIO_CALLER_COMP;
641 
642 		if (dio_flags & IOMAP_DIO_OVERWRITE_ONLY) {
643 			ret = -EAGAIN;
644 			if (iomi.pos >= dio->i_size ||
645 			    iomi.pos + iomi.len > dio->i_size)
646 				goto out_free_dio;
647 			iomi.flags |= IOMAP_OVERWRITE_ONLY;
648 		}
649 
650 		/* for data sync or sync, we need sync completion processing */
651 		if (iocb_is_dsync(iocb)) {
652 			dio->flags |= IOMAP_DIO_NEED_SYNC;
653 
654 		       /*
655 			* For datasync only writes, we optimistically try using
656 			* WRITE_THROUGH for this IO. This flag requires either
657 			* FUA writes through the device's write cache, or a
658 			* normal write to a device without a volatile write
659 			* cache. For the former, Any non-FUA write that occurs
660 			* will clear this flag, hence we know before completion
661 			* whether a cache flush is necessary.
662 			*/
663 			if (!(iocb->ki_flags & IOCB_SYNC))
664 				dio->flags |= IOMAP_DIO_WRITE_THROUGH;
665 		}
666 
667 		/*
668 		 * Try to invalidate cache pages for the range we are writing.
669 		 * If this invalidation fails, let the caller fall back to
670 		 * buffered I/O.
671 		 */
672 		ret = kiocb_invalidate_pages(iocb, iomi.len);
673 		if (ret) {
674 			if (ret != -EAGAIN) {
675 				trace_iomap_dio_invalidate_fail(inode, iomi.pos,
676 								iomi.len);
677 				if (iocb->ki_flags & IOCB_ATOMIC) {
678 					/*
679 					 * folio invalidation failed, maybe
680 					 * this is transient, unlock and see if
681 					 * the caller tries again.
682 					 */
683 					ret = -EAGAIN;
684 				} else {
685 					/* fall back to buffered write */
686 					ret = -ENOTBLK;
687 				}
688 			}
689 			goto out_free_dio;
690 		}
691 
692 		if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) {
693 			ret = sb_init_dio_done_wq(inode->i_sb);
694 			if (ret < 0)
695 				goto out_free_dio;
696 		}
697 	}
698 
699 	inode_dio_begin(inode);
700 
701 	blk_start_plug(&plug);
702 	while ((ret = iomap_iter(&iomi, ops)) > 0) {
703 		iomi.processed = iomap_dio_iter(&iomi, dio);
704 
705 		/*
706 		 * We can only poll for single bio I/Os.
707 		 */
708 		iocb->ki_flags &= ~IOCB_HIPRI;
709 	}
710 
711 	blk_finish_plug(&plug);
712 
713 	/*
714 	 * We only report that we've read data up to i_size.
715 	 * Revert iter to a state corresponding to that as some callers (such
716 	 * as the splice code) rely on it.
717 	 */
718 	if (iov_iter_rw(iter) == READ && iomi.pos >= dio->i_size)
719 		iov_iter_revert(iter, iomi.pos - dio->i_size);
720 
721 	if (ret == -EFAULT && dio->size && (dio_flags & IOMAP_DIO_PARTIAL)) {
722 		if (!(iocb->ki_flags & IOCB_NOWAIT))
723 			wait_for_completion = true;
724 		ret = 0;
725 	}
726 
727 	/* magic error code to fall back to buffered I/O */
728 	if (ret == -ENOTBLK) {
729 		wait_for_completion = true;
730 		ret = 0;
731 	}
732 	if (ret < 0)
733 		iomap_dio_set_error(dio, ret);
734 
735 	/*
736 	 * If all the writes we issued were already written through to the
737 	 * media, we don't need to flush the cache on IO completion. Clear the
738 	 * sync flag for this case.
739 	 */
740 	if (dio->flags & IOMAP_DIO_WRITE_THROUGH)
741 		dio->flags &= ~IOMAP_DIO_NEED_SYNC;
742 
743 	/*
744 	 * We are about to drop our additional submission reference, which
745 	 * might be the last reference to the dio.  There are three different
746 	 * ways we can progress here:
747 	 *
748 	 *  (a) If this is the last reference we will always complete and free
749 	 *	the dio ourselves.
750 	 *  (b) If this is not the last reference, and we serve an asynchronous
751 	 *	iocb, we must never touch the dio after the decrement, the
752 	 *	I/O completion handler will complete and free it.
753 	 *  (c) If this is not the last reference, but we serve a synchronous
754 	 *	iocb, the I/O completion handler will wake us up on the drop
755 	 *	of the final reference, and we will complete and free it here
756 	 *	after we got woken by the I/O completion handler.
757 	 */
758 	dio->wait_for_completion = wait_for_completion;
759 	if (!atomic_dec_and_test(&dio->ref)) {
760 		if (!wait_for_completion) {
761 			trace_iomap_dio_rw_queued(inode, iomi.pos, iomi.len);
762 			return ERR_PTR(-EIOCBQUEUED);
763 		}
764 
765 		for (;;) {
766 			set_current_state(TASK_UNINTERRUPTIBLE);
767 			if (!READ_ONCE(dio->submit.waiter))
768 				break;
769 
770 			blk_io_schedule();
771 		}
772 		__set_current_state(TASK_RUNNING);
773 	}
774 
775 	return dio;
776 
777 out_free_dio:
778 	kfree(dio);
779 	if (ret)
780 		return ERR_PTR(ret);
781 	return NULL;
782 }
783 EXPORT_SYMBOL_GPL(__iomap_dio_rw);
784 
785 ssize_t
iomap_dio_rw(struct kiocb * iocb,struct iov_iter * iter,const struct iomap_ops * ops,const struct iomap_dio_ops * dops,unsigned int dio_flags,void * private,size_t done_before)786 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
787 		const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
788 		unsigned int dio_flags, void *private, size_t done_before)
789 {
790 	struct iomap_dio *dio;
791 
792 	dio = __iomap_dio_rw(iocb, iter, ops, dops, dio_flags, private,
793 			     done_before);
794 	if (IS_ERR_OR_NULL(dio))
795 		return PTR_ERR_OR_ZERO(dio);
796 	return iomap_dio_complete(dio);
797 }
798 EXPORT_SYMBOL_GPL(iomap_dio_rw);
799 
iomap_dio_init(void)800 static int __init iomap_dio_init(void)
801 {
802 	zero_page = alloc_pages(GFP_KERNEL | __GFP_ZERO,
803 				IOMAP_ZERO_PAGE_ORDER);
804 
805 	if (!zero_page)
806 		return -ENOMEM;
807 
808 	return 0;
809 }
810 fs_initcall(iomap_dio_init);
811