1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/mm.h>
55 #include <linux/mman.h>
56 #include <linux/percpu.h>
57 #include <linux/slab.h>
58 #include <linux/bvec.h>
59 #include <linux/net.h>
60 #include <net/sock.h>
61 #include <linux/anon_inodes.h>
62 #include <linux/sched/mm.h>
63 #include <linux/uaccess.h>
64 #include <linux/nospec.h>
65 #include <linux/fsnotify.h>
66 #include <linux/fadvise.h>
67 #include <linux/task_work.h>
68 #include <linux/io_uring.h>
69 #include <linux/io_uring/cmd.h>
70 #include <linux/audit.h>
71 #include <linux/security.h>
72 #include <linux/jump_label.h>
73 #include <asm/shmparam.h>
74
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/io_uring.h>
77
78 #include <uapi/linux/io_uring.h>
79
80 #include "io-wq.h"
81
82 #include "io_uring.h"
83 #include "opdef.h"
84 #include "refs.h"
85 #include "tctx.h"
86 #include "register.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 #include "waitid.h"
95 #include "futex.h"
96 #include "napi.h"
97 #include "uring_cmd.h"
98 #include "msg_ring.h"
99 #include "memmap.h"
100 #include "zcrx.h"
101
102 #include "timeout.h"
103 #include "poll.h"
104 #include "rw.h"
105 #include "alloc_cache.h"
106 #include "eventfd.h"
107
108 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
109 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
110
111 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
112 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
113
114 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
115
116 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
117 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
118 REQ_F_ASYNC_DATA)
119
120 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | IO_REQ_LINK_FLAGS | \
121 REQ_F_REISSUE | IO_REQ_CLEAN_FLAGS)
122
123 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
124
125 #define IO_COMPL_BATCH 32
126 #define IO_REQ_ALLOC_BATCH 8
127 #define IO_LOCAL_TW_DEFAULT_MAX 20
128
129 struct io_defer_entry {
130 struct list_head list;
131 struct io_kiocb *req;
132 u32 seq;
133 };
134
135 /* requests with any of those set should undergo io_disarm_next() */
136 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
137
138 /*
139 * No waiters. It's larger than any valid value of the tw counter
140 * so that tests against ->cq_wait_nr would fail and skip wake_up().
141 */
142 #define IO_CQ_WAKE_INIT (-1U)
143 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
144 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1)
145
146 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
147 struct io_uring_task *tctx,
148 bool cancel_all,
149 bool is_sqpoll_thread);
150
151 static void io_queue_sqe(struct io_kiocb *req);
152
153 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray);
154
155 struct kmem_cache *req_cachep;
156 static struct workqueue_struct *iou_wq __ro_after_init;
157
158 static int __read_mostly sysctl_io_uring_disabled;
159 static int __read_mostly sysctl_io_uring_group = -1;
160
161 #ifdef CONFIG_SYSCTL
162 static const struct ctl_table kernel_io_uring_disabled_table[] = {
163 {
164 .procname = "io_uring_disabled",
165 .data = &sysctl_io_uring_disabled,
166 .maxlen = sizeof(sysctl_io_uring_disabled),
167 .mode = 0644,
168 .proc_handler = proc_dointvec_minmax,
169 .extra1 = SYSCTL_ZERO,
170 .extra2 = SYSCTL_TWO,
171 },
172 {
173 .procname = "io_uring_group",
174 .data = &sysctl_io_uring_group,
175 .maxlen = sizeof(gid_t),
176 .mode = 0644,
177 .proc_handler = proc_dointvec,
178 },
179 };
180 #endif
181
__io_cqring_events(struct io_ring_ctx * ctx)182 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
183 {
184 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
185 }
186
__io_cqring_events_user(struct io_ring_ctx * ctx)187 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
188 {
189 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
190 }
191
io_match_linked(struct io_kiocb * head)192 static bool io_match_linked(struct io_kiocb *head)
193 {
194 struct io_kiocb *req;
195
196 io_for_each_link(req, head) {
197 if (req->flags & REQ_F_INFLIGHT)
198 return true;
199 }
200 return false;
201 }
202
203 /*
204 * As io_match_task() but protected against racing with linked timeouts.
205 * User must not hold timeout_lock.
206 */
io_match_task_safe(struct io_kiocb * head,struct io_uring_task * tctx,bool cancel_all)207 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
208 bool cancel_all)
209 {
210 bool matched;
211
212 if (tctx && head->tctx != tctx)
213 return false;
214 if (cancel_all)
215 return true;
216
217 if (head->flags & REQ_F_LINK_TIMEOUT) {
218 struct io_ring_ctx *ctx = head->ctx;
219
220 /* protect against races with linked timeouts */
221 raw_spin_lock_irq(&ctx->timeout_lock);
222 matched = io_match_linked(head);
223 raw_spin_unlock_irq(&ctx->timeout_lock);
224 } else {
225 matched = io_match_linked(head);
226 }
227 return matched;
228 }
229
req_fail_link_node(struct io_kiocb * req,int res)230 static inline void req_fail_link_node(struct io_kiocb *req, int res)
231 {
232 req_set_fail(req);
233 io_req_set_res(req, res, 0);
234 }
235
io_req_add_to_cache(struct io_kiocb * req,struct io_ring_ctx * ctx)236 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
237 {
238 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
239 }
240
io_ring_ctx_ref_free(struct percpu_ref * ref)241 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
242 {
243 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
244
245 complete(&ctx->ref_comp);
246 }
247
io_fallback_req_func(struct work_struct * work)248 static __cold void io_fallback_req_func(struct work_struct *work)
249 {
250 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
251 fallback_work.work);
252 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
253 struct io_kiocb *req, *tmp;
254 struct io_tw_state ts = {};
255
256 percpu_ref_get(&ctx->refs);
257 mutex_lock(&ctx->uring_lock);
258 llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
259 req->io_task_work.func(req, ts);
260 io_submit_flush_completions(ctx);
261 mutex_unlock(&ctx->uring_lock);
262 percpu_ref_put(&ctx->refs);
263 }
264
io_alloc_hash_table(struct io_hash_table * table,unsigned bits)265 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
266 {
267 unsigned int hash_buckets;
268 int i;
269
270 do {
271 hash_buckets = 1U << bits;
272 table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]),
273 GFP_KERNEL_ACCOUNT);
274 if (table->hbs)
275 break;
276 if (bits == 1)
277 return -ENOMEM;
278 bits--;
279 } while (1);
280
281 table->hash_bits = bits;
282 for (i = 0; i < hash_buckets; i++)
283 INIT_HLIST_HEAD(&table->hbs[i].list);
284 return 0;
285 }
286
io_free_alloc_caches(struct io_ring_ctx * ctx)287 static void io_free_alloc_caches(struct io_ring_ctx *ctx)
288 {
289 io_alloc_cache_free(&ctx->apoll_cache, kfree);
290 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
291 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
292 io_alloc_cache_free(&ctx->cmd_cache, io_cmd_cache_free);
293 io_alloc_cache_free(&ctx->msg_cache, kfree);
294 io_futex_cache_free(ctx);
295 io_rsrc_cache_free(ctx);
296 }
297
io_ring_ctx_alloc(struct io_uring_params * p)298 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
299 {
300 struct io_ring_ctx *ctx;
301 int hash_bits;
302 bool ret;
303
304 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
305 if (!ctx)
306 return NULL;
307
308 xa_init(&ctx->io_bl_xa);
309
310 /*
311 * Use 5 bits less than the max cq entries, that should give us around
312 * 32 entries per hash list if totally full and uniformly spread, but
313 * don't keep too many buckets to not overconsume memory.
314 */
315 hash_bits = ilog2(p->cq_entries) - 5;
316 hash_bits = clamp(hash_bits, 1, 8);
317 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
318 goto err;
319 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
320 0, GFP_KERNEL))
321 goto err;
322
323 ctx->flags = p->flags;
324 ctx->hybrid_poll_time = LLONG_MAX;
325 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
326 init_waitqueue_head(&ctx->sqo_sq_wait);
327 INIT_LIST_HEAD(&ctx->sqd_list);
328 INIT_LIST_HEAD(&ctx->cq_overflow_list);
329 ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
330 sizeof(struct async_poll), 0);
331 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
332 sizeof(struct io_async_msghdr),
333 offsetof(struct io_async_msghdr, clear));
334 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
335 sizeof(struct io_async_rw),
336 offsetof(struct io_async_rw, clear));
337 ret |= io_alloc_cache_init(&ctx->cmd_cache, IO_ALLOC_CACHE_MAX,
338 sizeof(struct io_async_cmd),
339 sizeof(struct io_async_cmd));
340 spin_lock_init(&ctx->msg_lock);
341 ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX,
342 sizeof(struct io_kiocb), 0);
343 ret |= io_futex_cache_init(ctx);
344 ret |= io_rsrc_cache_init(ctx);
345 if (ret)
346 goto free_ref;
347 init_completion(&ctx->ref_comp);
348 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
349 mutex_init(&ctx->uring_lock);
350 init_waitqueue_head(&ctx->cq_wait);
351 init_waitqueue_head(&ctx->poll_wq);
352 spin_lock_init(&ctx->completion_lock);
353 raw_spin_lock_init(&ctx->timeout_lock);
354 INIT_WQ_LIST(&ctx->iopoll_list);
355 INIT_LIST_HEAD(&ctx->defer_list);
356 INIT_LIST_HEAD(&ctx->timeout_list);
357 INIT_LIST_HEAD(&ctx->ltimeout_list);
358 init_llist_head(&ctx->work_llist);
359 INIT_LIST_HEAD(&ctx->tctx_list);
360 ctx->submit_state.free_list.next = NULL;
361 INIT_HLIST_HEAD(&ctx->waitid_list);
362 #ifdef CONFIG_FUTEX
363 INIT_HLIST_HEAD(&ctx->futex_list);
364 #endif
365 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
366 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
367 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
368 io_napi_init(ctx);
369 mutex_init(&ctx->mmap_lock);
370
371 return ctx;
372
373 free_ref:
374 percpu_ref_exit(&ctx->refs);
375 err:
376 io_free_alloc_caches(ctx);
377 kvfree(ctx->cancel_table.hbs);
378 xa_destroy(&ctx->io_bl_xa);
379 kfree(ctx);
380 return NULL;
381 }
382
io_account_cq_overflow(struct io_ring_ctx * ctx)383 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
384 {
385 struct io_rings *r = ctx->rings;
386
387 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
388 ctx->cq_extra--;
389 }
390
req_need_defer(struct io_kiocb * req,u32 seq)391 static bool req_need_defer(struct io_kiocb *req, u32 seq)
392 {
393 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
394 struct io_ring_ctx *ctx = req->ctx;
395
396 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
397 }
398
399 return false;
400 }
401
io_clean_op(struct io_kiocb * req)402 static void io_clean_op(struct io_kiocb *req)
403 {
404 if (unlikely(req->flags & REQ_F_BUFFER_SELECTED))
405 io_kbuf_drop_legacy(req);
406
407 if (req->flags & REQ_F_NEED_CLEANUP) {
408 const struct io_cold_def *def = &io_cold_defs[req->opcode];
409
410 if (def->cleanup)
411 def->cleanup(req);
412 }
413 if ((req->flags & REQ_F_POLLED) && req->apoll) {
414 kfree(req->apoll->double_poll);
415 kfree(req->apoll);
416 req->apoll = NULL;
417 }
418 if (req->flags & REQ_F_INFLIGHT)
419 atomic_dec(&req->tctx->inflight_tracked);
420 if (req->flags & REQ_F_CREDS)
421 put_cred(req->creds);
422 if (req->flags & REQ_F_ASYNC_DATA) {
423 kfree(req->async_data);
424 req->async_data = NULL;
425 }
426 req->flags &= ~IO_REQ_CLEAN_FLAGS;
427 }
428
io_req_track_inflight(struct io_kiocb * req)429 static inline void io_req_track_inflight(struct io_kiocb *req)
430 {
431 if (!(req->flags & REQ_F_INFLIGHT)) {
432 req->flags |= REQ_F_INFLIGHT;
433 atomic_inc(&req->tctx->inflight_tracked);
434 }
435 }
436
__io_prep_linked_timeout(struct io_kiocb * req)437 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
438 {
439 if (WARN_ON_ONCE(!req->link))
440 return NULL;
441
442 req->flags &= ~REQ_F_ARM_LTIMEOUT;
443 req->flags |= REQ_F_LINK_TIMEOUT;
444
445 /* linked timeouts should have two refs once prep'ed */
446 io_req_set_refcount(req);
447 __io_req_set_refcount(req->link, 2);
448 return req->link;
449 }
450
io_prep_linked_timeout(struct io_kiocb * req)451 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
452 {
453 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
454 return NULL;
455 return __io_prep_linked_timeout(req);
456 }
457
__io_arm_ltimeout(struct io_kiocb * req)458 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
459 {
460 io_queue_linked_timeout(__io_prep_linked_timeout(req));
461 }
462
io_arm_ltimeout(struct io_kiocb * req)463 static inline void io_arm_ltimeout(struct io_kiocb *req)
464 {
465 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
466 __io_arm_ltimeout(req);
467 }
468
io_prep_async_work(struct io_kiocb * req)469 static void io_prep_async_work(struct io_kiocb *req)
470 {
471 const struct io_issue_def *def = &io_issue_defs[req->opcode];
472 struct io_ring_ctx *ctx = req->ctx;
473
474 if (!(req->flags & REQ_F_CREDS)) {
475 req->flags |= REQ_F_CREDS;
476 req->creds = get_current_cred();
477 }
478
479 req->work.list.next = NULL;
480 atomic_set(&req->work.flags, 0);
481 if (req->flags & REQ_F_FORCE_ASYNC)
482 atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
483
484 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
485 req->flags |= io_file_get_flags(req->file);
486
487 if (req->file && (req->flags & REQ_F_ISREG)) {
488 bool should_hash = def->hash_reg_file;
489
490 /* don't serialize this request if the fs doesn't need it */
491 if (should_hash && (req->file->f_flags & O_DIRECT) &&
492 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
493 should_hash = false;
494 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
495 io_wq_hash_work(&req->work, file_inode(req->file));
496 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
497 if (def->unbound_nonreg_file)
498 atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
499 }
500 }
501
io_prep_async_link(struct io_kiocb * req)502 static void io_prep_async_link(struct io_kiocb *req)
503 {
504 struct io_kiocb *cur;
505
506 if (req->flags & REQ_F_LINK_TIMEOUT) {
507 struct io_ring_ctx *ctx = req->ctx;
508
509 raw_spin_lock_irq(&ctx->timeout_lock);
510 io_for_each_link(cur, req)
511 io_prep_async_work(cur);
512 raw_spin_unlock_irq(&ctx->timeout_lock);
513 } else {
514 io_for_each_link(cur, req)
515 io_prep_async_work(cur);
516 }
517 }
518
io_queue_iowq(struct io_kiocb * req)519 static void io_queue_iowq(struct io_kiocb *req)
520 {
521 struct io_kiocb *link = io_prep_linked_timeout(req);
522 struct io_uring_task *tctx = req->tctx;
523
524 BUG_ON(!tctx);
525
526 if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
527 io_req_task_queue_fail(req, -ECANCELED);
528 return;
529 }
530
531 /* init ->work of the whole link before punting */
532 io_prep_async_link(req);
533
534 /*
535 * Not expected to happen, but if we do have a bug where this _can_
536 * happen, catch it here and ensure the request is marked as
537 * canceled. That will make io-wq go through the usual work cancel
538 * procedure rather than attempt to run this request (or create a new
539 * worker for it).
540 */
541 if (WARN_ON_ONCE(!same_thread_group(tctx->task, current)))
542 atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
543
544 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
545 io_wq_enqueue(tctx->io_wq, &req->work);
546 if (link)
547 io_queue_linked_timeout(link);
548 }
549
io_req_queue_iowq_tw(struct io_kiocb * req,io_tw_token_t tw)550 static void io_req_queue_iowq_tw(struct io_kiocb *req, io_tw_token_t tw)
551 {
552 io_queue_iowq(req);
553 }
554
io_req_queue_iowq(struct io_kiocb * req)555 void io_req_queue_iowq(struct io_kiocb *req)
556 {
557 req->io_task_work.func = io_req_queue_iowq_tw;
558 io_req_task_work_add(req);
559 }
560
io_queue_deferred(struct io_ring_ctx * ctx)561 static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx)
562 {
563 spin_lock(&ctx->completion_lock);
564 while (!list_empty(&ctx->defer_list)) {
565 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
566 struct io_defer_entry, list);
567
568 if (req_need_defer(de->req, de->seq))
569 break;
570 list_del_init(&de->list);
571 io_req_task_queue(de->req);
572 kfree(de);
573 }
574 spin_unlock(&ctx->completion_lock);
575 }
576
__io_commit_cqring_flush(struct io_ring_ctx * ctx)577 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
578 {
579 if (ctx->poll_activated)
580 io_poll_wq_wake(ctx);
581 if (ctx->off_timeout_used)
582 io_flush_timeouts(ctx);
583 if (ctx->drain_active)
584 io_queue_deferred(ctx);
585 if (ctx->has_evfd)
586 io_eventfd_flush_signal(ctx);
587 }
588
__io_cq_lock(struct io_ring_ctx * ctx)589 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
590 {
591 if (!ctx->lockless_cq)
592 spin_lock(&ctx->completion_lock);
593 }
594
io_cq_lock(struct io_ring_ctx * ctx)595 static inline void io_cq_lock(struct io_ring_ctx *ctx)
596 __acquires(ctx->completion_lock)
597 {
598 spin_lock(&ctx->completion_lock);
599 }
600
__io_cq_unlock_post(struct io_ring_ctx * ctx)601 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
602 {
603 io_commit_cqring(ctx);
604 if (!ctx->task_complete) {
605 if (!ctx->lockless_cq)
606 spin_unlock(&ctx->completion_lock);
607 /* IOPOLL rings only need to wake up if it's also SQPOLL */
608 if (!ctx->syscall_iopoll)
609 io_cqring_wake(ctx);
610 }
611 io_commit_cqring_flush(ctx);
612 }
613
io_cq_unlock_post(struct io_ring_ctx * ctx)614 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
615 __releases(ctx->completion_lock)
616 {
617 io_commit_cqring(ctx);
618 spin_unlock(&ctx->completion_lock);
619 io_cqring_wake(ctx);
620 io_commit_cqring_flush(ctx);
621 }
622
__io_cqring_overflow_flush(struct io_ring_ctx * ctx,bool dying)623 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
624 {
625 size_t cqe_size = sizeof(struct io_uring_cqe);
626
627 lockdep_assert_held(&ctx->uring_lock);
628
629 /* don't abort if we're dying, entries must get freed */
630 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
631 return;
632
633 if (ctx->flags & IORING_SETUP_CQE32)
634 cqe_size <<= 1;
635
636 io_cq_lock(ctx);
637 while (!list_empty(&ctx->cq_overflow_list)) {
638 struct io_uring_cqe *cqe;
639 struct io_overflow_cqe *ocqe;
640
641 ocqe = list_first_entry(&ctx->cq_overflow_list,
642 struct io_overflow_cqe, list);
643
644 if (!dying) {
645 if (!io_get_cqe_overflow(ctx, &cqe, true))
646 break;
647 memcpy(cqe, &ocqe->cqe, cqe_size);
648 }
649 list_del(&ocqe->list);
650 kfree(ocqe);
651
652 /*
653 * For silly syzbot cases that deliberately overflow by huge
654 * amounts, check if we need to resched and drop and
655 * reacquire the locks if so. Nothing real would ever hit this.
656 * Ideally we'd have a non-posting unlock for this, but hard
657 * to care for a non-real case.
658 */
659 if (need_resched()) {
660 io_cq_unlock_post(ctx);
661 mutex_unlock(&ctx->uring_lock);
662 cond_resched();
663 mutex_lock(&ctx->uring_lock);
664 io_cq_lock(ctx);
665 }
666 }
667
668 if (list_empty(&ctx->cq_overflow_list)) {
669 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
670 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
671 }
672 io_cq_unlock_post(ctx);
673 }
674
io_cqring_overflow_kill(struct io_ring_ctx * ctx)675 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
676 {
677 if (ctx->rings)
678 __io_cqring_overflow_flush(ctx, true);
679 }
680
io_cqring_do_overflow_flush(struct io_ring_ctx * ctx)681 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
682 {
683 mutex_lock(&ctx->uring_lock);
684 __io_cqring_overflow_flush(ctx, false);
685 mutex_unlock(&ctx->uring_lock);
686 }
687
688 /* must to be called somewhat shortly after putting a request */
io_put_task(struct io_kiocb * req)689 static inline void io_put_task(struct io_kiocb *req)
690 {
691 struct io_uring_task *tctx = req->tctx;
692
693 if (likely(tctx->task == current)) {
694 tctx->cached_refs++;
695 } else {
696 percpu_counter_sub(&tctx->inflight, 1);
697 if (unlikely(atomic_read(&tctx->in_cancel)))
698 wake_up(&tctx->wait);
699 put_task_struct(tctx->task);
700 }
701 }
702
io_task_refs_refill(struct io_uring_task * tctx)703 void io_task_refs_refill(struct io_uring_task *tctx)
704 {
705 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
706
707 percpu_counter_add(&tctx->inflight, refill);
708 refcount_add(refill, ¤t->usage);
709 tctx->cached_refs += refill;
710 }
711
io_uring_drop_tctx_refs(struct task_struct * task)712 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
713 {
714 struct io_uring_task *tctx = task->io_uring;
715 unsigned int refs = tctx->cached_refs;
716
717 if (refs) {
718 tctx->cached_refs = 0;
719 percpu_counter_sub(&tctx->inflight, refs);
720 put_task_struct_many(task, refs);
721 }
722 }
723
io_cqring_event_overflow(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,u64 extra1,u64 extra2)724 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
725 s32 res, u32 cflags, u64 extra1, u64 extra2)
726 {
727 struct io_overflow_cqe *ocqe;
728 size_t ocq_size = sizeof(struct io_overflow_cqe);
729 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
730
731 lockdep_assert_held(&ctx->completion_lock);
732
733 if (is_cqe32)
734 ocq_size += sizeof(struct io_uring_cqe);
735
736 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
737 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
738 if (!ocqe) {
739 /*
740 * If we're in ring overflow flush mode, or in task cancel mode,
741 * or cannot allocate an overflow entry, then we need to drop it
742 * on the floor.
743 */
744 io_account_cq_overflow(ctx);
745 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
746 return false;
747 }
748 if (list_empty(&ctx->cq_overflow_list)) {
749 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
750 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
751
752 }
753 ocqe->cqe.user_data = user_data;
754 ocqe->cqe.res = res;
755 ocqe->cqe.flags = cflags;
756 if (is_cqe32) {
757 ocqe->cqe.big_cqe[0] = extra1;
758 ocqe->cqe.big_cqe[1] = extra2;
759 }
760 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
761 return true;
762 }
763
io_req_cqe_overflow(struct io_kiocb * req)764 static void io_req_cqe_overflow(struct io_kiocb *req)
765 {
766 io_cqring_event_overflow(req->ctx, req->cqe.user_data,
767 req->cqe.res, req->cqe.flags,
768 req->big_cqe.extra1, req->big_cqe.extra2);
769 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
770 }
771
772 /*
773 * writes to the cq entry need to come after reading head; the
774 * control dependency is enough as we're using WRITE_ONCE to
775 * fill the cq entry
776 */
io_cqe_cache_refill(struct io_ring_ctx * ctx,bool overflow)777 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
778 {
779 struct io_rings *rings = ctx->rings;
780 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
781 unsigned int free, queued, len;
782
783 /*
784 * Posting into the CQ when there are pending overflowed CQEs may break
785 * ordering guarantees, which will affect links, F_MORE users and more.
786 * Force overflow the completion.
787 */
788 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
789 return false;
790
791 /* userspace may cheat modifying the tail, be safe and do min */
792 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
793 free = ctx->cq_entries - queued;
794 /* we need a contiguous range, limit based on the current array offset */
795 len = min(free, ctx->cq_entries - off);
796 if (!len)
797 return false;
798
799 if (ctx->flags & IORING_SETUP_CQE32) {
800 off <<= 1;
801 len <<= 1;
802 }
803
804 ctx->cqe_cached = &rings->cqes[off];
805 ctx->cqe_sentinel = ctx->cqe_cached + len;
806 return true;
807 }
808
io_fill_cqe_aux(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)809 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
810 u32 cflags)
811 {
812 struct io_uring_cqe *cqe;
813
814 ctx->cq_extra++;
815
816 /*
817 * If we can't get a cq entry, userspace overflowed the
818 * submission (by quite a lot). Increment the overflow count in
819 * the ring.
820 */
821 if (likely(io_get_cqe(ctx, &cqe))) {
822 WRITE_ONCE(cqe->user_data, user_data);
823 WRITE_ONCE(cqe->res, res);
824 WRITE_ONCE(cqe->flags, cflags);
825
826 if (ctx->flags & IORING_SETUP_CQE32) {
827 WRITE_ONCE(cqe->big_cqe[0], 0);
828 WRITE_ONCE(cqe->big_cqe[1], 0);
829 }
830
831 trace_io_uring_complete(ctx, NULL, cqe);
832 return true;
833 }
834 return false;
835 }
836
io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)837 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
838 {
839 bool filled;
840
841 io_cq_lock(ctx);
842 filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
843 if (!filled)
844 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
845 io_cq_unlock_post(ctx);
846 return filled;
847 }
848
849 /*
850 * Must be called from inline task_work so we now a flush will happen later,
851 * and obviously with ctx->uring_lock held (tw always has that).
852 */
io_add_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)853 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
854 {
855 if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
856 spin_lock(&ctx->completion_lock);
857 io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
858 spin_unlock(&ctx->completion_lock);
859 }
860 ctx->submit_state.cq_flush = true;
861 }
862
863 /*
864 * A helper for multishot requests posting additional CQEs.
865 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
866 */
io_req_post_cqe(struct io_kiocb * req,s32 res,u32 cflags)867 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
868 {
869 struct io_ring_ctx *ctx = req->ctx;
870 bool posted;
871
872 lockdep_assert(!io_wq_current_is_worker());
873 lockdep_assert_held(&ctx->uring_lock);
874
875 __io_cq_lock(ctx);
876 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
877 ctx->submit_state.cq_flush = true;
878 __io_cq_unlock_post(ctx);
879 return posted;
880 }
881
io_req_complete_post(struct io_kiocb * req,unsigned issue_flags)882 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
883 {
884 struct io_ring_ctx *ctx = req->ctx;
885 bool completed = true;
886
887 /*
888 * All execution paths but io-wq use the deferred completions by
889 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
890 */
891 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
892 return;
893
894 /*
895 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
896 * the submitter task context, IOPOLL protects with uring_lock.
897 */
898 if (ctx->lockless_cq || (req->flags & REQ_F_REISSUE)) {
899 defer_complete:
900 req->io_task_work.func = io_req_task_complete;
901 io_req_task_work_add(req);
902 return;
903 }
904
905 io_cq_lock(ctx);
906 if (!(req->flags & REQ_F_CQE_SKIP))
907 completed = io_fill_cqe_req(ctx, req);
908 io_cq_unlock_post(ctx);
909
910 if (!completed)
911 goto defer_complete;
912
913 /*
914 * We don't free the request here because we know it's called from
915 * io-wq only, which holds a reference, so it cannot be the last put.
916 */
917 req_ref_put(req);
918 }
919
io_req_defer_failed(struct io_kiocb * req,s32 res)920 void io_req_defer_failed(struct io_kiocb *req, s32 res)
921 __must_hold(&ctx->uring_lock)
922 {
923 const struct io_cold_def *def = &io_cold_defs[req->opcode];
924
925 lockdep_assert_held(&req->ctx->uring_lock);
926
927 req_set_fail(req);
928 io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED));
929 if (def->fail)
930 def->fail(req);
931 io_req_complete_defer(req);
932 }
933
934 /*
935 * Don't initialise the fields below on every allocation, but do that in
936 * advance and keep them valid across allocations.
937 */
io_preinit_req(struct io_kiocb * req,struct io_ring_ctx * ctx)938 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
939 {
940 req->ctx = ctx;
941 req->buf_node = NULL;
942 req->file_node = NULL;
943 req->link = NULL;
944 req->async_data = NULL;
945 /* not necessary, but safer to zero */
946 memset(&req->cqe, 0, sizeof(req->cqe));
947 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
948 }
949
950 /*
951 * A request might get retired back into the request caches even before opcode
952 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
953 * Because of that, io_alloc_req() should be called only under ->uring_lock
954 * and with extra caution to not get a request that is still worked on.
955 */
__io_alloc_req_refill(struct io_ring_ctx * ctx)956 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
957 __must_hold(&ctx->uring_lock)
958 {
959 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
960 void *reqs[IO_REQ_ALLOC_BATCH];
961 int ret;
962
963 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
964
965 /*
966 * Bulk alloc is all-or-nothing. If we fail to get a batch,
967 * retry single alloc to be on the safe side.
968 */
969 if (unlikely(ret <= 0)) {
970 reqs[0] = kmem_cache_alloc(req_cachep, gfp);
971 if (!reqs[0])
972 return false;
973 ret = 1;
974 }
975
976 percpu_ref_get_many(&ctx->refs, ret);
977 while (ret--) {
978 struct io_kiocb *req = reqs[ret];
979
980 io_preinit_req(req, ctx);
981 io_req_add_to_cache(req, ctx);
982 }
983 return true;
984 }
985
io_free_req(struct io_kiocb * req)986 __cold void io_free_req(struct io_kiocb *req)
987 {
988 /* refs were already put, restore them for io_req_task_complete() */
989 req->flags &= ~REQ_F_REFCOUNT;
990 /* we only want to free it, don't post CQEs */
991 req->flags |= REQ_F_CQE_SKIP;
992 req->io_task_work.func = io_req_task_complete;
993 io_req_task_work_add(req);
994 }
995
__io_req_find_next_prep(struct io_kiocb * req)996 static void __io_req_find_next_prep(struct io_kiocb *req)
997 {
998 struct io_ring_ctx *ctx = req->ctx;
999
1000 spin_lock(&ctx->completion_lock);
1001 io_disarm_next(req);
1002 spin_unlock(&ctx->completion_lock);
1003 }
1004
io_req_find_next(struct io_kiocb * req)1005 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1006 {
1007 struct io_kiocb *nxt;
1008
1009 /*
1010 * If LINK is set, we have dependent requests in this chain. If we
1011 * didn't fail this request, queue the first one up, moving any other
1012 * dependencies to the next request. In case of failure, fail the rest
1013 * of the chain.
1014 */
1015 if (unlikely(req->flags & IO_DISARM_MASK))
1016 __io_req_find_next_prep(req);
1017 nxt = req->link;
1018 req->link = NULL;
1019 return nxt;
1020 }
1021
ctx_flush_and_put(struct io_ring_ctx * ctx,io_tw_token_t tw)1022 static void ctx_flush_and_put(struct io_ring_ctx *ctx, io_tw_token_t tw)
1023 {
1024 if (!ctx)
1025 return;
1026 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1027 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1028
1029 io_submit_flush_completions(ctx);
1030 mutex_unlock(&ctx->uring_lock);
1031 percpu_ref_put(&ctx->refs);
1032 }
1033
1034 /*
1035 * Run queued task_work, returning the number of entries processed in *count.
1036 * If more entries than max_entries are available, stop processing once this
1037 * is reached and return the rest of the list.
1038 */
io_handle_tw_list(struct llist_node * node,unsigned int * count,unsigned int max_entries)1039 struct llist_node *io_handle_tw_list(struct llist_node *node,
1040 unsigned int *count,
1041 unsigned int max_entries)
1042 {
1043 struct io_ring_ctx *ctx = NULL;
1044 struct io_tw_state ts = { };
1045
1046 do {
1047 struct llist_node *next = node->next;
1048 struct io_kiocb *req = container_of(node, struct io_kiocb,
1049 io_task_work.node);
1050
1051 if (req->ctx != ctx) {
1052 ctx_flush_and_put(ctx, ts);
1053 ctx = req->ctx;
1054 mutex_lock(&ctx->uring_lock);
1055 percpu_ref_get(&ctx->refs);
1056 }
1057 INDIRECT_CALL_2(req->io_task_work.func,
1058 io_poll_task_func, io_req_rw_complete,
1059 req, ts);
1060 node = next;
1061 (*count)++;
1062 if (unlikely(need_resched())) {
1063 ctx_flush_and_put(ctx, ts);
1064 ctx = NULL;
1065 cond_resched();
1066 }
1067 } while (node && *count < max_entries);
1068
1069 ctx_flush_and_put(ctx, ts);
1070 return node;
1071 }
1072
__io_fallback_tw(struct llist_node * node,bool sync)1073 static __cold void __io_fallback_tw(struct llist_node *node, bool sync)
1074 {
1075 struct io_ring_ctx *last_ctx = NULL;
1076 struct io_kiocb *req;
1077
1078 while (node) {
1079 req = container_of(node, struct io_kiocb, io_task_work.node);
1080 node = node->next;
1081 if (sync && last_ctx != req->ctx) {
1082 if (last_ctx) {
1083 flush_delayed_work(&last_ctx->fallback_work);
1084 percpu_ref_put(&last_ctx->refs);
1085 }
1086 last_ctx = req->ctx;
1087 percpu_ref_get(&last_ctx->refs);
1088 }
1089 if (llist_add(&req->io_task_work.node,
1090 &req->ctx->fallback_llist))
1091 schedule_delayed_work(&req->ctx->fallback_work, 1);
1092 }
1093
1094 if (last_ctx) {
1095 flush_delayed_work(&last_ctx->fallback_work);
1096 percpu_ref_put(&last_ctx->refs);
1097 }
1098 }
1099
io_fallback_tw(struct io_uring_task * tctx,bool sync)1100 static void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1101 {
1102 struct llist_node *node = llist_del_all(&tctx->task_list);
1103
1104 __io_fallback_tw(node, sync);
1105 }
1106
tctx_task_work_run(struct io_uring_task * tctx,unsigned int max_entries,unsigned int * count)1107 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1108 unsigned int max_entries,
1109 unsigned int *count)
1110 {
1111 struct llist_node *node;
1112
1113 if (unlikely(current->flags & PF_EXITING)) {
1114 io_fallback_tw(tctx, true);
1115 return NULL;
1116 }
1117
1118 node = llist_del_all(&tctx->task_list);
1119 if (node) {
1120 node = llist_reverse_order(node);
1121 node = io_handle_tw_list(node, count, max_entries);
1122 }
1123
1124 /* relaxed read is enough as only the task itself sets ->in_cancel */
1125 if (unlikely(atomic_read(&tctx->in_cancel)))
1126 io_uring_drop_tctx_refs(current);
1127
1128 trace_io_uring_task_work_run(tctx, *count);
1129 return node;
1130 }
1131
tctx_task_work(struct callback_head * cb)1132 void tctx_task_work(struct callback_head *cb)
1133 {
1134 struct io_uring_task *tctx;
1135 struct llist_node *ret;
1136 unsigned int count = 0;
1137
1138 tctx = container_of(cb, struct io_uring_task, task_work);
1139 ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1140 /* can't happen */
1141 WARN_ON_ONCE(ret);
1142 }
1143
io_req_local_work_add(struct io_kiocb * req,unsigned flags)1144 static void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1145 {
1146 struct io_ring_ctx *ctx = req->ctx;
1147 unsigned nr_wait, nr_tw, nr_tw_prev;
1148 struct llist_node *head;
1149
1150 /* See comment above IO_CQ_WAKE_INIT */
1151 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1152
1153 /*
1154 * We don't know how many reuqests is there in the link and whether
1155 * they can even be queued lazily, fall back to non-lazy.
1156 */
1157 if (req->flags & IO_REQ_LINK_FLAGS)
1158 flags &= ~IOU_F_TWQ_LAZY_WAKE;
1159
1160 guard(rcu)();
1161
1162 head = READ_ONCE(ctx->work_llist.first);
1163 do {
1164 nr_tw_prev = 0;
1165 if (head) {
1166 struct io_kiocb *first_req = container_of(head,
1167 struct io_kiocb,
1168 io_task_work.node);
1169 /*
1170 * Might be executed at any moment, rely on
1171 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1172 */
1173 nr_tw_prev = READ_ONCE(first_req->nr_tw);
1174 }
1175
1176 /*
1177 * Theoretically, it can overflow, but that's fine as one of
1178 * previous adds should've tried to wake the task.
1179 */
1180 nr_tw = nr_tw_prev + 1;
1181 if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1182 nr_tw = IO_CQ_WAKE_FORCE;
1183
1184 req->nr_tw = nr_tw;
1185 req->io_task_work.node.next = head;
1186 } while (!try_cmpxchg(&ctx->work_llist.first, &head,
1187 &req->io_task_work.node));
1188
1189 /*
1190 * cmpxchg implies a full barrier, which pairs with the barrier
1191 * in set_current_state() on the io_cqring_wait() side. It's used
1192 * to ensure that either we see updated ->cq_wait_nr, or waiters
1193 * going to sleep will observe the work added to the list, which
1194 * is similar to the wait/wawke task state sync.
1195 */
1196
1197 if (!head) {
1198 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1199 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1200 if (ctx->has_evfd)
1201 io_eventfd_signal(ctx);
1202 }
1203
1204 nr_wait = atomic_read(&ctx->cq_wait_nr);
1205 /* not enough or no one is waiting */
1206 if (nr_tw < nr_wait)
1207 return;
1208 /* the previous add has already woken it up */
1209 if (nr_tw_prev >= nr_wait)
1210 return;
1211 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1212 }
1213
io_req_normal_work_add(struct io_kiocb * req)1214 static void io_req_normal_work_add(struct io_kiocb *req)
1215 {
1216 struct io_uring_task *tctx = req->tctx;
1217 struct io_ring_ctx *ctx = req->ctx;
1218
1219 /* task_work already pending, we're done */
1220 if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1221 return;
1222
1223 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1224 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1225
1226 /* SQPOLL doesn't need the task_work added, it'll run it itself */
1227 if (ctx->flags & IORING_SETUP_SQPOLL) {
1228 __set_notify_signal(tctx->task);
1229 return;
1230 }
1231
1232 if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method)))
1233 return;
1234
1235 io_fallback_tw(tctx, false);
1236 }
1237
__io_req_task_work_add(struct io_kiocb * req,unsigned flags)1238 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1239 {
1240 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1241 io_req_local_work_add(req, flags);
1242 else
1243 io_req_normal_work_add(req);
1244 }
1245
io_req_task_work_add_remote(struct io_kiocb * req,unsigned flags)1246 void io_req_task_work_add_remote(struct io_kiocb *req, unsigned flags)
1247 {
1248 if (WARN_ON_ONCE(!(req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)))
1249 return;
1250 __io_req_task_work_add(req, flags);
1251 }
1252
io_move_task_work_from_local(struct io_ring_ctx * ctx)1253 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1254 {
1255 struct llist_node *node = llist_del_all(&ctx->work_llist);
1256
1257 __io_fallback_tw(node, false);
1258 node = llist_del_all(&ctx->retry_llist);
1259 __io_fallback_tw(node, false);
1260 }
1261
io_run_local_work_continue(struct io_ring_ctx * ctx,int events,int min_events)1262 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1263 int min_events)
1264 {
1265 if (!io_local_work_pending(ctx))
1266 return false;
1267 if (events < min_events)
1268 return true;
1269 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1270 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1271 return false;
1272 }
1273
__io_run_local_work_loop(struct llist_node ** node,io_tw_token_t tw,int events)1274 static int __io_run_local_work_loop(struct llist_node **node,
1275 io_tw_token_t tw,
1276 int events)
1277 {
1278 int ret = 0;
1279
1280 while (*node) {
1281 struct llist_node *next = (*node)->next;
1282 struct io_kiocb *req = container_of(*node, struct io_kiocb,
1283 io_task_work.node);
1284 INDIRECT_CALL_2(req->io_task_work.func,
1285 io_poll_task_func, io_req_rw_complete,
1286 req, tw);
1287 *node = next;
1288 if (++ret >= events)
1289 break;
1290 }
1291
1292 return ret;
1293 }
1294
__io_run_local_work(struct io_ring_ctx * ctx,io_tw_token_t tw,int min_events,int max_events)1295 static int __io_run_local_work(struct io_ring_ctx *ctx, io_tw_token_t tw,
1296 int min_events, int max_events)
1297 {
1298 struct llist_node *node;
1299 unsigned int loops = 0;
1300 int ret = 0;
1301
1302 if (WARN_ON_ONCE(ctx->submitter_task != current))
1303 return -EEXIST;
1304 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1305 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1306 again:
1307 min_events -= ret;
1308 ret = __io_run_local_work_loop(&ctx->retry_llist.first, tw, max_events);
1309 if (ctx->retry_llist.first)
1310 goto retry_done;
1311
1312 /*
1313 * llists are in reverse order, flip it back the right way before
1314 * running the pending items.
1315 */
1316 node = llist_reverse_order(llist_del_all(&ctx->work_llist));
1317 ret += __io_run_local_work_loop(&node, tw, max_events - ret);
1318 ctx->retry_llist.first = node;
1319 loops++;
1320
1321 if (io_run_local_work_continue(ctx, ret, min_events))
1322 goto again;
1323 retry_done:
1324 io_submit_flush_completions(ctx);
1325 if (io_run_local_work_continue(ctx, ret, min_events))
1326 goto again;
1327
1328 trace_io_uring_local_work_run(ctx, ret, loops);
1329 return ret;
1330 }
1331
io_run_local_work_locked(struct io_ring_ctx * ctx,int min_events)1332 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1333 int min_events)
1334 {
1335 struct io_tw_state ts = {};
1336
1337 if (!io_local_work_pending(ctx))
1338 return 0;
1339 return __io_run_local_work(ctx, ts, min_events,
1340 max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
1341 }
1342
io_run_local_work(struct io_ring_ctx * ctx,int min_events,int max_events)1343 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events,
1344 int max_events)
1345 {
1346 struct io_tw_state ts = {};
1347 int ret;
1348
1349 mutex_lock(&ctx->uring_lock);
1350 ret = __io_run_local_work(ctx, ts, min_events, max_events);
1351 mutex_unlock(&ctx->uring_lock);
1352 return ret;
1353 }
1354
io_req_task_cancel(struct io_kiocb * req,io_tw_token_t tw)1355 static void io_req_task_cancel(struct io_kiocb *req, io_tw_token_t tw)
1356 {
1357 io_tw_lock(req->ctx, tw);
1358 io_req_defer_failed(req, req->cqe.res);
1359 }
1360
io_req_task_submit(struct io_kiocb * req,io_tw_token_t tw)1361 void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw)
1362 {
1363 io_tw_lock(req->ctx, tw);
1364 if (unlikely(io_should_terminate_tw()))
1365 io_req_defer_failed(req, -EFAULT);
1366 else if (req->flags & REQ_F_FORCE_ASYNC)
1367 io_queue_iowq(req);
1368 else
1369 io_queue_sqe(req);
1370 }
1371
io_req_task_queue_fail(struct io_kiocb * req,int ret)1372 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1373 {
1374 io_req_set_res(req, ret, 0);
1375 req->io_task_work.func = io_req_task_cancel;
1376 io_req_task_work_add(req);
1377 }
1378
io_req_task_queue(struct io_kiocb * req)1379 void io_req_task_queue(struct io_kiocb *req)
1380 {
1381 req->io_task_work.func = io_req_task_submit;
1382 io_req_task_work_add(req);
1383 }
1384
io_queue_next(struct io_kiocb * req)1385 void io_queue_next(struct io_kiocb *req)
1386 {
1387 struct io_kiocb *nxt = io_req_find_next(req);
1388
1389 if (nxt)
1390 io_req_task_queue(nxt);
1391 }
1392
io_free_batch_list(struct io_ring_ctx * ctx,struct io_wq_work_node * node)1393 static void io_free_batch_list(struct io_ring_ctx *ctx,
1394 struct io_wq_work_node *node)
1395 __must_hold(&ctx->uring_lock)
1396 {
1397 do {
1398 struct io_kiocb *req = container_of(node, struct io_kiocb,
1399 comp_list);
1400
1401 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1402 if (req->flags & REQ_F_REISSUE) {
1403 node = req->comp_list.next;
1404 req->flags &= ~REQ_F_REISSUE;
1405 io_queue_iowq(req);
1406 continue;
1407 }
1408 if (req->flags & REQ_F_REFCOUNT) {
1409 node = req->comp_list.next;
1410 if (!req_ref_put_and_test(req))
1411 continue;
1412 }
1413 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1414 struct async_poll *apoll = req->apoll;
1415
1416 if (apoll->double_poll)
1417 kfree(apoll->double_poll);
1418 io_cache_free(&ctx->apoll_cache, apoll);
1419 req->flags &= ~REQ_F_POLLED;
1420 }
1421 if (req->flags & IO_REQ_LINK_FLAGS)
1422 io_queue_next(req);
1423 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1424 io_clean_op(req);
1425 }
1426 io_put_file(req);
1427 io_req_put_rsrc_nodes(req);
1428 io_put_task(req);
1429
1430 node = req->comp_list.next;
1431 io_req_add_to_cache(req, ctx);
1432 } while (node);
1433 }
1434
__io_submit_flush_completions(struct io_ring_ctx * ctx)1435 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1436 __must_hold(&ctx->uring_lock)
1437 {
1438 struct io_submit_state *state = &ctx->submit_state;
1439 struct io_wq_work_node *node;
1440
1441 __io_cq_lock(ctx);
1442 __wq_list_for_each(node, &state->compl_reqs) {
1443 struct io_kiocb *req = container_of(node, struct io_kiocb,
1444 comp_list);
1445
1446 /*
1447 * Requests marked with REQUEUE should not post a CQE, they
1448 * will go through the io-wq retry machinery and post one
1449 * later.
1450 */
1451 if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) &&
1452 unlikely(!io_fill_cqe_req(ctx, req))) {
1453 if (ctx->lockless_cq) {
1454 spin_lock(&ctx->completion_lock);
1455 io_req_cqe_overflow(req);
1456 spin_unlock(&ctx->completion_lock);
1457 } else {
1458 io_req_cqe_overflow(req);
1459 }
1460 }
1461 }
1462 __io_cq_unlock_post(ctx);
1463
1464 if (!wq_list_empty(&state->compl_reqs)) {
1465 io_free_batch_list(ctx, state->compl_reqs.first);
1466 INIT_WQ_LIST(&state->compl_reqs);
1467 }
1468 ctx->submit_state.cq_flush = false;
1469 }
1470
io_cqring_events(struct io_ring_ctx * ctx)1471 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1472 {
1473 /* See comment at the top of this file */
1474 smp_rmb();
1475 return __io_cqring_events(ctx);
1476 }
1477
1478 /*
1479 * We can't just wait for polled events to come to us, we have to actively
1480 * find and complete them.
1481 */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)1482 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1483 {
1484 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1485 return;
1486
1487 mutex_lock(&ctx->uring_lock);
1488 while (!wq_list_empty(&ctx->iopoll_list)) {
1489 /* let it sleep and repeat later if can't complete a request */
1490 if (io_do_iopoll(ctx, true) == 0)
1491 break;
1492 /*
1493 * Ensure we allow local-to-the-cpu processing to take place,
1494 * in this case we need to ensure that we reap all events.
1495 * Also let task_work, etc. to progress by releasing the mutex
1496 */
1497 if (need_resched()) {
1498 mutex_unlock(&ctx->uring_lock);
1499 cond_resched();
1500 mutex_lock(&ctx->uring_lock);
1501 }
1502 }
1503 mutex_unlock(&ctx->uring_lock);
1504 }
1505
io_iopoll_check(struct io_ring_ctx * ctx,unsigned int min_events)1506 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned int min_events)
1507 {
1508 unsigned int nr_events = 0;
1509 unsigned long check_cq;
1510
1511 min_events = min(min_events, ctx->cq_entries);
1512
1513 lockdep_assert_held(&ctx->uring_lock);
1514
1515 if (!io_allowed_run_tw(ctx))
1516 return -EEXIST;
1517
1518 check_cq = READ_ONCE(ctx->check_cq);
1519 if (unlikely(check_cq)) {
1520 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1521 __io_cqring_overflow_flush(ctx, false);
1522 /*
1523 * Similarly do not spin if we have not informed the user of any
1524 * dropped CQE.
1525 */
1526 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1527 return -EBADR;
1528 }
1529 /*
1530 * Don't enter poll loop if we already have events pending.
1531 * If we do, we can potentially be spinning for commands that
1532 * already triggered a CQE (eg in error).
1533 */
1534 if (io_cqring_events(ctx))
1535 return 0;
1536
1537 do {
1538 int ret = 0;
1539
1540 /*
1541 * If a submit got punted to a workqueue, we can have the
1542 * application entering polling for a command before it gets
1543 * issued. That app will hold the uring_lock for the duration
1544 * of the poll right here, so we need to take a breather every
1545 * now and then to ensure that the issue has a chance to add
1546 * the poll to the issued list. Otherwise we can spin here
1547 * forever, while the workqueue is stuck trying to acquire the
1548 * very same mutex.
1549 */
1550 if (wq_list_empty(&ctx->iopoll_list) ||
1551 io_task_work_pending(ctx)) {
1552 u32 tail = ctx->cached_cq_tail;
1553
1554 (void) io_run_local_work_locked(ctx, min_events);
1555
1556 if (task_work_pending(current) ||
1557 wq_list_empty(&ctx->iopoll_list)) {
1558 mutex_unlock(&ctx->uring_lock);
1559 io_run_task_work();
1560 mutex_lock(&ctx->uring_lock);
1561 }
1562 /* some requests don't go through iopoll_list */
1563 if (tail != ctx->cached_cq_tail ||
1564 wq_list_empty(&ctx->iopoll_list))
1565 break;
1566 }
1567 ret = io_do_iopoll(ctx, !min_events);
1568 if (unlikely(ret < 0))
1569 return ret;
1570
1571 if (task_sigpending(current))
1572 return -EINTR;
1573 if (need_resched())
1574 break;
1575
1576 nr_events += ret;
1577 } while (nr_events < min_events);
1578
1579 return 0;
1580 }
1581
io_req_task_complete(struct io_kiocb * req,io_tw_token_t tw)1582 void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw)
1583 {
1584 io_req_complete_defer(req);
1585 }
1586
1587 /*
1588 * After the iocb has been issued, it's safe to be found on the poll list.
1589 * Adding the kiocb to the list AFTER submission ensures that we don't
1590 * find it from a io_do_iopoll() thread before the issuer is done
1591 * accessing the kiocb cookie.
1592 */
io_iopoll_req_issued(struct io_kiocb * req,unsigned int issue_flags)1593 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1594 {
1595 struct io_ring_ctx *ctx = req->ctx;
1596 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1597
1598 /* workqueue context doesn't hold uring_lock, grab it now */
1599 if (unlikely(needs_lock))
1600 mutex_lock(&ctx->uring_lock);
1601
1602 /*
1603 * Track whether we have multiple files in our lists. This will impact
1604 * how we do polling eventually, not spinning if we're on potentially
1605 * different devices.
1606 */
1607 if (wq_list_empty(&ctx->iopoll_list)) {
1608 ctx->poll_multi_queue = false;
1609 } else if (!ctx->poll_multi_queue) {
1610 struct io_kiocb *list_req;
1611
1612 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1613 comp_list);
1614 if (list_req->file != req->file)
1615 ctx->poll_multi_queue = true;
1616 }
1617
1618 /*
1619 * For fast devices, IO may have already completed. If it has, add
1620 * it to the front so we find it first.
1621 */
1622 if (READ_ONCE(req->iopoll_completed))
1623 wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1624 else
1625 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1626
1627 if (unlikely(needs_lock)) {
1628 /*
1629 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1630 * in sq thread task context or in io worker task context. If
1631 * current task context is sq thread, we don't need to check
1632 * whether should wake up sq thread.
1633 */
1634 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1635 wq_has_sleeper(&ctx->sq_data->wait))
1636 wake_up(&ctx->sq_data->wait);
1637
1638 mutex_unlock(&ctx->uring_lock);
1639 }
1640 }
1641
io_file_get_flags(struct file * file)1642 io_req_flags_t io_file_get_flags(struct file *file)
1643 {
1644 io_req_flags_t res = 0;
1645
1646 BUILD_BUG_ON(REQ_F_ISREG_BIT != REQ_F_SUPPORT_NOWAIT_BIT + 1);
1647
1648 if (S_ISREG(file_inode(file)->i_mode))
1649 res |= REQ_F_ISREG;
1650 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1651 res |= REQ_F_SUPPORT_NOWAIT;
1652 return res;
1653 }
1654
io_get_sequence(struct io_kiocb * req)1655 static u32 io_get_sequence(struct io_kiocb *req)
1656 {
1657 u32 seq = req->ctx->cached_sq_head;
1658 struct io_kiocb *cur;
1659
1660 /* need original cached_sq_head, but it was increased for each req */
1661 io_for_each_link(cur, req)
1662 seq--;
1663 return seq;
1664 }
1665
io_drain_req(struct io_kiocb * req)1666 static __cold void io_drain_req(struct io_kiocb *req)
1667 __must_hold(&ctx->uring_lock)
1668 {
1669 struct io_ring_ctx *ctx = req->ctx;
1670 struct io_defer_entry *de;
1671 int ret;
1672 u32 seq = io_get_sequence(req);
1673
1674 /* Still need defer if there is pending req in defer list. */
1675 spin_lock(&ctx->completion_lock);
1676 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1677 spin_unlock(&ctx->completion_lock);
1678 queue:
1679 ctx->drain_active = false;
1680 io_req_task_queue(req);
1681 return;
1682 }
1683 spin_unlock(&ctx->completion_lock);
1684
1685 io_prep_async_link(req);
1686 de = kmalloc(sizeof(*de), GFP_KERNEL);
1687 if (!de) {
1688 ret = -ENOMEM;
1689 io_req_defer_failed(req, ret);
1690 return;
1691 }
1692
1693 spin_lock(&ctx->completion_lock);
1694 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1695 spin_unlock(&ctx->completion_lock);
1696 kfree(de);
1697 goto queue;
1698 }
1699
1700 trace_io_uring_defer(req);
1701 de->req = req;
1702 de->seq = seq;
1703 list_add_tail(&de->list, &ctx->defer_list);
1704 spin_unlock(&ctx->completion_lock);
1705 }
1706
io_assign_file(struct io_kiocb * req,const struct io_issue_def * def,unsigned int issue_flags)1707 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1708 unsigned int issue_flags)
1709 {
1710 if (req->file || !def->needs_file)
1711 return true;
1712
1713 if (req->flags & REQ_F_FIXED_FILE)
1714 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1715 else
1716 req->file = io_file_get_normal(req, req->cqe.fd);
1717
1718 return !!req->file;
1719 }
1720
__io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags,const struct io_issue_def * def)1721 static inline int __io_issue_sqe(struct io_kiocb *req,
1722 unsigned int issue_flags,
1723 const struct io_issue_def *def)
1724 {
1725 const struct cred *creds = NULL;
1726 int ret;
1727
1728 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1729 creds = override_creds(req->creds);
1730
1731 if (!def->audit_skip)
1732 audit_uring_entry(req->opcode);
1733
1734 ret = def->issue(req, issue_flags);
1735
1736 if (!def->audit_skip)
1737 audit_uring_exit(!ret, ret);
1738
1739 if (creds)
1740 revert_creds(creds);
1741
1742 return ret;
1743 }
1744
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)1745 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1746 {
1747 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1748 int ret;
1749
1750 if (unlikely(!io_assign_file(req, def, issue_flags)))
1751 return -EBADF;
1752
1753 ret = __io_issue_sqe(req, issue_flags, def);
1754
1755 if (ret == IOU_OK) {
1756 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1757 io_req_complete_defer(req);
1758 else
1759 io_req_complete_post(req, issue_flags);
1760
1761 return 0;
1762 }
1763
1764 if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1765 ret = 0;
1766 io_arm_ltimeout(req);
1767
1768 /* If the op doesn't have a file, we're not polling for it */
1769 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1770 io_iopoll_req_issued(req, issue_flags);
1771 }
1772 return ret;
1773 }
1774
io_poll_issue(struct io_kiocb * req,io_tw_token_t tw)1775 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw)
1776 {
1777 const unsigned int issue_flags = IO_URING_F_NONBLOCK |
1778 IO_URING_F_MULTISHOT |
1779 IO_URING_F_COMPLETE_DEFER;
1780 int ret;
1781
1782 io_tw_lock(req->ctx, tw);
1783
1784 WARN_ON_ONCE(!req->file);
1785 if (WARN_ON_ONCE(req->ctx->flags & IORING_SETUP_IOPOLL))
1786 return -EFAULT;
1787
1788 ret = __io_issue_sqe(req, issue_flags, &io_issue_defs[req->opcode]);
1789
1790 WARN_ON_ONCE(ret == IOU_ISSUE_SKIP_COMPLETE);
1791 return ret;
1792 }
1793
io_wq_free_work(struct io_wq_work * work)1794 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1795 {
1796 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1797 struct io_kiocb *nxt = NULL;
1798
1799 if (req_ref_put_and_test_atomic(req)) {
1800 if (req->flags & IO_REQ_LINK_FLAGS)
1801 nxt = io_req_find_next(req);
1802 io_free_req(req);
1803 }
1804 return nxt ? &nxt->work : NULL;
1805 }
1806
io_wq_submit_work(struct io_wq_work * work)1807 void io_wq_submit_work(struct io_wq_work *work)
1808 {
1809 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1810 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1811 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1812 bool needs_poll = false;
1813 int ret = 0, err = -ECANCELED;
1814
1815 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1816 if (!(req->flags & REQ_F_REFCOUNT))
1817 __io_req_set_refcount(req, 2);
1818 else
1819 req_ref_get(req);
1820
1821 io_arm_ltimeout(req);
1822
1823 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1824 if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1825 fail:
1826 io_req_task_queue_fail(req, err);
1827 return;
1828 }
1829 if (!io_assign_file(req, def, issue_flags)) {
1830 err = -EBADF;
1831 atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1832 goto fail;
1833 }
1834
1835 /*
1836 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1837 * submitter task context. Final request completions are handed to the
1838 * right context, however this is not the case of auxiliary CQEs,
1839 * which is the main mean of operation for multishot requests.
1840 * Don't allow any multishot execution from io-wq. It's more restrictive
1841 * than necessary and also cleaner.
1842 */
1843 if (req->flags & (REQ_F_MULTISHOT|REQ_F_APOLL_MULTISHOT)) {
1844 err = -EBADFD;
1845 if (!io_file_can_poll(req))
1846 goto fail;
1847 if (req->file->f_flags & O_NONBLOCK ||
1848 req->file->f_mode & FMODE_NOWAIT) {
1849 err = -ECANCELED;
1850 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1851 goto fail;
1852 return;
1853 } else {
1854 req->flags &= ~(REQ_F_APOLL_MULTISHOT|REQ_F_MULTISHOT);
1855 }
1856 }
1857
1858 if (req->flags & REQ_F_FORCE_ASYNC) {
1859 bool opcode_poll = def->pollin || def->pollout;
1860
1861 if (opcode_poll && io_file_can_poll(req)) {
1862 needs_poll = true;
1863 issue_flags |= IO_URING_F_NONBLOCK;
1864 }
1865 }
1866
1867 do {
1868 ret = io_issue_sqe(req, issue_flags);
1869 if (ret != -EAGAIN)
1870 break;
1871
1872 /*
1873 * If REQ_F_NOWAIT is set, then don't wait or retry with
1874 * poll. -EAGAIN is final for that case.
1875 */
1876 if (req->flags & REQ_F_NOWAIT)
1877 break;
1878
1879 /*
1880 * We can get EAGAIN for iopolled IO even though we're
1881 * forcing a sync submission from here, since we can't
1882 * wait for request slots on the block side.
1883 */
1884 if (!needs_poll) {
1885 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1886 break;
1887 if (io_wq_worker_stopped())
1888 break;
1889 cond_resched();
1890 continue;
1891 }
1892
1893 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1894 return;
1895 /* aborted or ready, in either case retry blocking */
1896 needs_poll = false;
1897 issue_flags &= ~IO_URING_F_NONBLOCK;
1898 } while (1);
1899
1900 /* avoid locking problems by failing it from a clean context */
1901 if (ret)
1902 io_req_task_queue_fail(req, ret);
1903 }
1904
io_file_get_fixed(struct io_kiocb * req,int fd,unsigned int issue_flags)1905 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1906 unsigned int issue_flags)
1907 {
1908 struct io_ring_ctx *ctx = req->ctx;
1909 struct io_rsrc_node *node;
1910 struct file *file = NULL;
1911
1912 io_ring_submit_lock(ctx, issue_flags);
1913 node = io_rsrc_node_lookup(&ctx->file_table.data, fd);
1914 if (node) {
1915 io_req_assign_rsrc_node(&req->file_node, node);
1916 req->flags |= io_slot_flags(node);
1917 file = io_slot_file(node);
1918 }
1919 io_ring_submit_unlock(ctx, issue_flags);
1920 return file;
1921 }
1922
io_file_get_normal(struct io_kiocb * req,int fd)1923 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1924 {
1925 struct file *file = fget(fd);
1926
1927 trace_io_uring_file_get(req, fd);
1928
1929 /* we don't allow fixed io_uring files */
1930 if (file && io_is_uring_fops(file))
1931 io_req_track_inflight(req);
1932 return file;
1933 }
1934
io_queue_async(struct io_kiocb * req,int ret)1935 static void io_queue_async(struct io_kiocb *req, int ret)
1936 __must_hold(&req->ctx->uring_lock)
1937 {
1938 struct io_kiocb *linked_timeout;
1939
1940 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1941 io_req_defer_failed(req, ret);
1942 return;
1943 }
1944
1945 linked_timeout = io_prep_linked_timeout(req);
1946
1947 switch (io_arm_poll_handler(req, 0)) {
1948 case IO_APOLL_READY:
1949 io_kbuf_recycle(req, 0);
1950 io_req_task_queue(req);
1951 break;
1952 case IO_APOLL_ABORTED:
1953 io_kbuf_recycle(req, 0);
1954 io_queue_iowq(req);
1955 break;
1956 case IO_APOLL_OK:
1957 break;
1958 }
1959
1960 if (linked_timeout)
1961 io_queue_linked_timeout(linked_timeout);
1962 }
1963
io_queue_sqe(struct io_kiocb * req)1964 static inline void io_queue_sqe(struct io_kiocb *req)
1965 __must_hold(&req->ctx->uring_lock)
1966 {
1967 int ret;
1968
1969 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1970
1971 /*
1972 * We async punt it if the file wasn't marked NOWAIT, or if the file
1973 * doesn't support non-blocking read/write attempts
1974 */
1975 if (unlikely(ret))
1976 io_queue_async(req, ret);
1977 }
1978
io_queue_sqe_fallback(struct io_kiocb * req)1979 static void io_queue_sqe_fallback(struct io_kiocb *req)
1980 __must_hold(&req->ctx->uring_lock)
1981 {
1982 if (unlikely(req->flags & REQ_F_FAIL)) {
1983 /*
1984 * We don't submit, fail them all, for that replace hardlinks
1985 * with normal links. Extra REQ_F_LINK is tolerated.
1986 */
1987 req->flags &= ~REQ_F_HARDLINK;
1988 req->flags |= REQ_F_LINK;
1989 io_req_defer_failed(req, req->cqe.res);
1990 } else {
1991 if (unlikely(req->ctx->drain_active))
1992 io_drain_req(req);
1993 else
1994 io_queue_iowq(req);
1995 }
1996 }
1997
1998 /*
1999 * Check SQE restrictions (opcode and flags).
2000 *
2001 * Returns 'true' if SQE is allowed, 'false' otherwise.
2002 */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)2003 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2004 struct io_kiocb *req,
2005 unsigned int sqe_flags)
2006 {
2007 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2008 return false;
2009
2010 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2011 ctx->restrictions.sqe_flags_required)
2012 return false;
2013
2014 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2015 ctx->restrictions.sqe_flags_required))
2016 return false;
2017
2018 return true;
2019 }
2020
io_init_drain(struct io_ring_ctx * ctx)2021 static void io_init_drain(struct io_ring_ctx *ctx)
2022 {
2023 struct io_kiocb *head = ctx->submit_state.link.head;
2024
2025 ctx->drain_active = true;
2026 if (head) {
2027 /*
2028 * If we need to drain a request in the middle of a link, drain
2029 * the head request and the next request/link after the current
2030 * link. Considering sequential execution of links,
2031 * REQ_F_IO_DRAIN will be maintained for every request of our
2032 * link.
2033 */
2034 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2035 ctx->drain_next = true;
2036 }
2037 }
2038
io_init_fail_req(struct io_kiocb * req,int err)2039 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2040 {
2041 /* ensure per-opcode data is cleared if we fail before prep */
2042 memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2043 return err;
2044 }
2045
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2046 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2047 const struct io_uring_sqe *sqe)
2048 __must_hold(&ctx->uring_lock)
2049 {
2050 const struct io_issue_def *def;
2051 unsigned int sqe_flags;
2052 int personality;
2053 u8 opcode;
2054
2055 /* req is partially pre-initialised, see io_preinit_req() */
2056 req->opcode = opcode = READ_ONCE(sqe->opcode);
2057 /* same numerical values with corresponding REQ_F_*, safe to copy */
2058 sqe_flags = READ_ONCE(sqe->flags);
2059 req->flags = (__force io_req_flags_t) sqe_flags;
2060 req->cqe.user_data = READ_ONCE(sqe->user_data);
2061 req->file = NULL;
2062 req->tctx = current->io_uring;
2063 req->cancel_seq_set = false;
2064
2065 if (unlikely(opcode >= IORING_OP_LAST)) {
2066 req->opcode = 0;
2067 return io_init_fail_req(req, -EINVAL);
2068 }
2069 opcode = array_index_nospec(opcode, IORING_OP_LAST);
2070
2071 def = &io_issue_defs[opcode];
2072 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2073 /* enforce forwards compatibility on users */
2074 if (sqe_flags & ~SQE_VALID_FLAGS)
2075 return io_init_fail_req(req, -EINVAL);
2076 if (sqe_flags & IOSQE_BUFFER_SELECT) {
2077 if (!def->buffer_select)
2078 return io_init_fail_req(req, -EOPNOTSUPP);
2079 req->buf_index = READ_ONCE(sqe->buf_group);
2080 }
2081 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2082 ctx->drain_disabled = true;
2083 if (sqe_flags & IOSQE_IO_DRAIN) {
2084 if (ctx->drain_disabled)
2085 return io_init_fail_req(req, -EOPNOTSUPP);
2086 io_init_drain(ctx);
2087 }
2088 }
2089 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2090 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2091 return io_init_fail_req(req, -EACCES);
2092 /* knock it to the slow queue path, will be drained there */
2093 if (ctx->drain_active)
2094 req->flags |= REQ_F_FORCE_ASYNC;
2095 /* if there is no link, we're at "next" request and need to drain */
2096 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2097 ctx->drain_next = false;
2098 ctx->drain_active = true;
2099 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2100 }
2101 }
2102
2103 if (!def->ioprio && sqe->ioprio)
2104 return io_init_fail_req(req, -EINVAL);
2105 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2106 return io_init_fail_req(req, -EINVAL);
2107
2108 if (def->needs_file) {
2109 struct io_submit_state *state = &ctx->submit_state;
2110
2111 req->cqe.fd = READ_ONCE(sqe->fd);
2112
2113 /*
2114 * Plug now if we have more than 2 IO left after this, and the
2115 * target is potentially a read/write to block based storage.
2116 */
2117 if (state->need_plug && def->plug) {
2118 state->plug_started = true;
2119 state->need_plug = false;
2120 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2121 }
2122 }
2123
2124 personality = READ_ONCE(sqe->personality);
2125 if (personality) {
2126 int ret;
2127
2128 req->creds = xa_load(&ctx->personalities, personality);
2129 if (!req->creds)
2130 return io_init_fail_req(req, -EINVAL);
2131 get_cred(req->creds);
2132 ret = security_uring_override_creds(req->creds);
2133 if (ret) {
2134 put_cred(req->creds);
2135 return io_init_fail_req(req, ret);
2136 }
2137 req->flags |= REQ_F_CREDS;
2138 }
2139
2140 return def->prep(req, sqe);
2141 }
2142
io_submit_fail_init(const struct io_uring_sqe * sqe,struct io_kiocb * req,int ret)2143 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2144 struct io_kiocb *req, int ret)
2145 {
2146 struct io_ring_ctx *ctx = req->ctx;
2147 struct io_submit_link *link = &ctx->submit_state.link;
2148 struct io_kiocb *head = link->head;
2149
2150 trace_io_uring_req_failed(sqe, req, ret);
2151
2152 /*
2153 * Avoid breaking links in the middle as it renders links with SQPOLL
2154 * unusable. Instead of failing eagerly, continue assembling the link if
2155 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2156 * should find the flag and handle the rest.
2157 */
2158 req_fail_link_node(req, ret);
2159 if (head && !(head->flags & REQ_F_FAIL))
2160 req_fail_link_node(head, -ECANCELED);
2161
2162 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2163 if (head) {
2164 link->last->link = req;
2165 link->head = NULL;
2166 req = head;
2167 }
2168 io_queue_sqe_fallback(req);
2169 return ret;
2170 }
2171
2172 if (head)
2173 link->last->link = req;
2174 else
2175 link->head = req;
2176 link->last = req;
2177 return 0;
2178 }
2179
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2180 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2181 const struct io_uring_sqe *sqe)
2182 __must_hold(&ctx->uring_lock)
2183 {
2184 struct io_submit_link *link = &ctx->submit_state.link;
2185 int ret;
2186
2187 ret = io_init_req(ctx, req, sqe);
2188 if (unlikely(ret))
2189 return io_submit_fail_init(sqe, req, ret);
2190
2191 trace_io_uring_submit_req(req);
2192
2193 /*
2194 * If we already have a head request, queue this one for async
2195 * submittal once the head completes. If we don't have a head but
2196 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2197 * submitted sync once the chain is complete. If none of those
2198 * conditions are true (normal request), then just queue it.
2199 */
2200 if (unlikely(link->head)) {
2201 trace_io_uring_link(req, link->last);
2202 link->last->link = req;
2203 link->last = req;
2204
2205 if (req->flags & IO_REQ_LINK_FLAGS)
2206 return 0;
2207 /* last request of the link, flush it */
2208 req = link->head;
2209 link->head = NULL;
2210 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2211 goto fallback;
2212
2213 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2214 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2215 if (req->flags & IO_REQ_LINK_FLAGS) {
2216 link->head = req;
2217 link->last = req;
2218 } else {
2219 fallback:
2220 io_queue_sqe_fallback(req);
2221 }
2222 return 0;
2223 }
2224
2225 io_queue_sqe(req);
2226 return 0;
2227 }
2228
2229 /*
2230 * Batched submission is done, ensure local IO is flushed out.
2231 */
io_submit_state_end(struct io_ring_ctx * ctx)2232 static void io_submit_state_end(struct io_ring_ctx *ctx)
2233 {
2234 struct io_submit_state *state = &ctx->submit_state;
2235
2236 if (unlikely(state->link.head))
2237 io_queue_sqe_fallback(state->link.head);
2238 /* flush only after queuing links as they can generate completions */
2239 io_submit_flush_completions(ctx);
2240 if (state->plug_started)
2241 blk_finish_plug(&state->plug);
2242 }
2243
2244 /*
2245 * Start submission side cache.
2246 */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)2247 static void io_submit_state_start(struct io_submit_state *state,
2248 unsigned int max_ios)
2249 {
2250 state->plug_started = false;
2251 state->need_plug = max_ios > 2;
2252 state->submit_nr = max_ios;
2253 /* set only head, no need to init link_last in advance */
2254 state->link.head = NULL;
2255 }
2256
io_commit_sqring(struct io_ring_ctx * ctx)2257 static void io_commit_sqring(struct io_ring_ctx *ctx)
2258 {
2259 struct io_rings *rings = ctx->rings;
2260
2261 /*
2262 * Ensure any loads from the SQEs are done at this point,
2263 * since once we write the new head, the application could
2264 * write new data to them.
2265 */
2266 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2267 }
2268
2269 /*
2270 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2271 * that is mapped by userspace. This means that care needs to be taken to
2272 * ensure that reads are stable, as we cannot rely on userspace always
2273 * being a good citizen. If members of the sqe are validated and then later
2274 * used, it's important that those reads are done through READ_ONCE() to
2275 * prevent a re-load down the line.
2276 */
io_get_sqe(struct io_ring_ctx * ctx,const struct io_uring_sqe ** sqe)2277 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2278 {
2279 unsigned mask = ctx->sq_entries - 1;
2280 unsigned head = ctx->cached_sq_head++ & mask;
2281
2282 if (static_branch_unlikely(&io_key_has_sqarray) &&
2283 (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) {
2284 head = READ_ONCE(ctx->sq_array[head]);
2285 if (unlikely(head >= ctx->sq_entries)) {
2286 /* drop invalid entries */
2287 spin_lock(&ctx->completion_lock);
2288 ctx->cq_extra--;
2289 spin_unlock(&ctx->completion_lock);
2290 WRITE_ONCE(ctx->rings->sq_dropped,
2291 READ_ONCE(ctx->rings->sq_dropped) + 1);
2292 return false;
2293 }
2294 head = array_index_nospec(head, ctx->sq_entries);
2295 }
2296
2297 /*
2298 * The cached sq head (or cq tail) serves two purposes:
2299 *
2300 * 1) allows us to batch the cost of updating the user visible
2301 * head updates.
2302 * 2) allows the kernel side to track the head on its own, even
2303 * though the application is the one updating it.
2304 */
2305
2306 /* double index for 128-byte SQEs, twice as long */
2307 if (ctx->flags & IORING_SETUP_SQE128)
2308 head <<= 1;
2309 *sqe = &ctx->sq_sqes[head];
2310 return true;
2311 }
2312
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)2313 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2314 __must_hold(&ctx->uring_lock)
2315 {
2316 unsigned int entries = io_sqring_entries(ctx);
2317 unsigned int left;
2318 int ret;
2319
2320 if (unlikely(!entries))
2321 return 0;
2322 /* make sure SQ entry isn't read before tail */
2323 ret = left = min(nr, entries);
2324 io_get_task_refs(left);
2325 io_submit_state_start(&ctx->submit_state, left);
2326
2327 do {
2328 const struct io_uring_sqe *sqe;
2329 struct io_kiocb *req;
2330
2331 if (unlikely(!io_alloc_req(ctx, &req)))
2332 break;
2333 if (unlikely(!io_get_sqe(ctx, &sqe))) {
2334 io_req_add_to_cache(req, ctx);
2335 break;
2336 }
2337
2338 /*
2339 * Continue submitting even for sqe failure if the
2340 * ring was setup with IORING_SETUP_SUBMIT_ALL
2341 */
2342 if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2343 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2344 left--;
2345 break;
2346 }
2347 } while (--left);
2348
2349 if (unlikely(left)) {
2350 ret -= left;
2351 /* try again if it submitted nothing and can't allocate a req */
2352 if (!ret && io_req_cache_empty(ctx))
2353 ret = -EAGAIN;
2354 current->io_uring->cached_refs += left;
2355 }
2356
2357 io_submit_state_end(ctx);
2358 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2359 io_commit_sqring(ctx);
2360 return ret;
2361 }
2362
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)2363 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2364 int wake_flags, void *key)
2365 {
2366 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2367
2368 /*
2369 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2370 * the task, and the next invocation will do it.
2371 */
2372 if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2373 return autoremove_wake_function(curr, mode, wake_flags, key);
2374 return -1;
2375 }
2376
io_run_task_work_sig(struct io_ring_ctx * ctx)2377 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2378 {
2379 if (io_local_work_pending(ctx)) {
2380 __set_current_state(TASK_RUNNING);
2381 if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0)
2382 return 0;
2383 }
2384 if (io_run_task_work() > 0)
2385 return 0;
2386 if (task_sigpending(current))
2387 return -EINTR;
2388 return 0;
2389 }
2390
current_pending_io(void)2391 static bool current_pending_io(void)
2392 {
2393 struct io_uring_task *tctx = current->io_uring;
2394
2395 if (!tctx)
2396 return false;
2397 return percpu_counter_read_positive(&tctx->inflight);
2398 }
2399
io_cqring_timer_wakeup(struct hrtimer * timer)2400 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer)
2401 {
2402 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2403
2404 WRITE_ONCE(iowq->hit_timeout, 1);
2405 iowq->min_timeout = 0;
2406 wake_up_process(iowq->wq.private);
2407 return HRTIMER_NORESTART;
2408 }
2409
2410 /*
2411 * Doing min_timeout portion. If we saw any timeouts, events, or have work,
2412 * wake up. If not, and we have a normal timeout, switch to that and keep
2413 * sleeping.
2414 */
io_cqring_min_timer_wakeup(struct hrtimer * timer)2415 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer)
2416 {
2417 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2418 struct io_ring_ctx *ctx = iowq->ctx;
2419
2420 /* no general timeout, or shorter (or equal), we are done */
2421 if (iowq->timeout == KTIME_MAX ||
2422 ktime_compare(iowq->min_timeout, iowq->timeout) >= 0)
2423 goto out_wake;
2424 /* work we may need to run, wake function will see if we need to wake */
2425 if (io_has_work(ctx))
2426 goto out_wake;
2427 /* got events since we started waiting, min timeout is done */
2428 if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail))
2429 goto out_wake;
2430 /* if we have any events and min timeout expired, we're done */
2431 if (io_cqring_events(ctx))
2432 goto out_wake;
2433
2434 /*
2435 * If using deferred task_work running and application is waiting on
2436 * more than one request, ensure we reset it now where we are switching
2437 * to normal sleeps. Any request completion post min_wait should wake
2438 * the task and return.
2439 */
2440 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2441 atomic_set(&ctx->cq_wait_nr, 1);
2442 smp_mb();
2443 if (!llist_empty(&ctx->work_llist))
2444 goto out_wake;
2445 }
2446
2447 hrtimer_update_function(&iowq->t, io_cqring_timer_wakeup);
2448 hrtimer_set_expires(timer, iowq->timeout);
2449 return HRTIMER_RESTART;
2450 out_wake:
2451 return io_cqring_timer_wakeup(timer);
2452 }
2453
io_cqring_schedule_timeout(struct io_wait_queue * iowq,clockid_t clock_id,ktime_t start_time)2454 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq,
2455 clockid_t clock_id, ktime_t start_time)
2456 {
2457 ktime_t timeout;
2458
2459 if (iowq->min_timeout) {
2460 timeout = ktime_add_ns(iowq->min_timeout, start_time);
2461 hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id,
2462 HRTIMER_MODE_ABS);
2463 } else {
2464 timeout = iowq->timeout;
2465 hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id,
2466 HRTIMER_MODE_ABS);
2467 }
2468
2469 hrtimer_set_expires_range_ns(&iowq->t, timeout, 0);
2470 hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS);
2471
2472 if (!READ_ONCE(iowq->hit_timeout))
2473 schedule();
2474
2475 hrtimer_cancel(&iowq->t);
2476 destroy_hrtimer_on_stack(&iowq->t);
2477 __set_current_state(TASK_RUNNING);
2478
2479 return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0;
2480 }
2481
2482 struct ext_arg {
2483 size_t argsz;
2484 struct timespec64 ts;
2485 const sigset_t __user *sig;
2486 ktime_t min_time;
2487 bool ts_set;
2488 bool iowait;
2489 };
2490
__io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,struct ext_arg * ext_arg,ktime_t start_time)2491 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2492 struct io_wait_queue *iowq,
2493 struct ext_arg *ext_arg,
2494 ktime_t start_time)
2495 {
2496 int ret = 0;
2497
2498 /*
2499 * Mark us as being in io_wait if we have pending requests, so cpufreq
2500 * can take into account that the task is waiting for IO - turns out
2501 * to be important for low QD IO.
2502 */
2503 if (ext_arg->iowait && current_pending_io())
2504 current->in_iowait = 1;
2505 if (iowq->timeout != KTIME_MAX || iowq->min_timeout)
2506 ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time);
2507 else
2508 schedule();
2509 current->in_iowait = 0;
2510 return ret;
2511 }
2512
2513 /* If this returns > 0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,struct ext_arg * ext_arg,ktime_t start_time)2514 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2515 struct io_wait_queue *iowq,
2516 struct ext_arg *ext_arg,
2517 ktime_t start_time)
2518 {
2519 if (unlikely(READ_ONCE(ctx->check_cq)))
2520 return 1;
2521 if (unlikely(io_local_work_pending(ctx)))
2522 return 1;
2523 if (unlikely(task_work_pending(current)))
2524 return 1;
2525 if (unlikely(task_sigpending(current)))
2526 return -EINTR;
2527 if (unlikely(io_should_wake(iowq)))
2528 return 0;
2529
2530 return __io_cqring_wait_schedule(ctx, iowq, ext_arg, start_time);
2531 }
2532
2533 /*
2534 * Wait until events become available, if we don't already have some. The
2535 * application must reap them itself, as they reside on the shared cq ring.
2536 */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,u32 flags,struct ext_arg * ext_arg)2537 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags,
2538 struct ext_arg *ext_arg)
2539 {
2540 struct io_wait_queue iowq;
2541 struct io_rings *rings = ctx->rings;
2542 ktime_t start_time;
2543 int ret;
2544
2545 min_events = min_t(int, min_events, ctx->cq_entries);
2546
2547 if (!io_allowed_run_tw(ctx))
2548 return -EEXIST;
2549 if (io_local_work_pending(ctx))
2550 io_run_local_work(ctx, min_events,
2551 max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
2552 io_run_task_work();
2553
2554 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2555 io_cqring_do_overflow_flush(ctx);
2556 if (__io_cqring_events_user(ctx) >= min_events)
2557 return 0;
2558
2559 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2560 iowq.wq.private = current;
2561 INIT_LIST_HEAD(&iowq.wq.entry);
2562 iowq.ctx = ctx;
2563 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2564 iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail);
2565 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2566 iowq.hit_timeout = 0;
2567 iowq.min_timeout = ext_arg->min_time;
2568 iowq.timeout = KTIME_MAX;
2569 start_time = io_get_time(ctx);
2570
2571 if (ext_arg->ts_set) {
2572 iowq.timeout = timespec64_to_ktime(ext_arg->ts);
2573 if (!(flags & IORING_ENTER_ABS_TIMER))
2574 iowq.timeout = ktime_add(iowq.timeout, start_time);
2575 }
2576
2577 if (ext_arg->sig) {
2578 #ifdef CONFIG_COMPAT
2579 if (in_compat_syscall())
2580 ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig,
2581 ext_arg->argsz);
2582 else
2583 #endif
2584 ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz);
2585
2586 if (ret)
2587 return ret;
2588 }
2589
2590 io_napi_busy_loop(ctx, &iowq);
2591
2592 trace_io_uring_cqring_wait(ctx, min_events);
2593 do {
2594 unsigned long check_cq;
2595 int nr_wait;
2596
2597 /* if min timeout has been hit, don't reset wait count */
2598 if (!iowq.hit_timeout)
2599 nr_wait = (int) iowq.cq_tail -
2600 READ_ONCE(ctx->rings->cq.tail);
2601 else
2602 nr_wait = 1;
2603
2604 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2605 atomic_set(&ctx->cq_wait_nr, nr_wait);
2606 set_current_state(TASK_INTERRUPTIBLE);
2607 } else {
2608 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2609 TASK_INTERRUPTIBLE);
2610 }
2611
2612 ret = io_cqring_wait_schedule(ctx, &iowq, ext_arg, start_time);
2613 __set_current_state(TASK_RUNNING);
2614 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2615
2616 /*
2617 * Run task_work after scheduling and before io_should_wake().
2618 * If we got woken because of task_work being processed, run it
2619 * now rather than let the caller do another wait loop.
2620 */
2621 if (io_local_work_pending(ctx))
2622 io_run_local_work(ctx, nr_wait, nr_wait);
2623 io_run_task_work();
2624
2625 /*
2626 * Non-local task_work will be run on exit to userspace, but
2627 * if we're using DEFER_TASKRUN, then we could have waited
2628 * with a timeout for a number of requests. If the timeout
2629 * hits, we could have some requests ready to process. Ensure
2630 * this break is _after_ we have run task_work, to avoid
2631 * deferring running potentially pending requests until the
2632 * next time we wait for events.
2633 */
2634 if (ret < 0)
2635 break;
2636
2637 check_cq = READ_ONCE(ctx->check_cq);
2638 if (unlikely(check_cq)) {
2639 /* let the caller flush overflows, retry */
2640 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2641 io_cqring_do_overflow_flush(ctx);
2642 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2643 ret = -EBADR;
2644 break;
2645 }
2646 }
2647
2648 if (io_should_wake(&iowq)) {
2649 ret = 0;
2650 break;
2651 }
2652 cond_resched();
2653 } while (1);
2654
2655 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2656 finish_wait(&ctx->cq_wait, &iowq.wq);
2657 restore_saved_sigmask_unless(ret == -EINTR);
2658
2659 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2660 }
2661
io_rings_free(struct io_ring_ctx * ctx)2662 static void io_rings_free(struct io_ring_ctx *ctx)
2663 {
2664 io_free_region(ctx, &ctx->sq_region);
2665 io_free_region(ctx, &ctx->ring_region);
2666 ctx->rings = NULL;
2667 ctx->sq_sqes = NULL;
2668 }
2669
rings_size(unsigned int flags,unsigned int sq_entries,unsigned int cq_entries,size_t * sq_offset)2670 unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
2671 unsigned int cq_entries, size_t *sq_offset)
2672 {
2673 struct io_rings *rings;
2674 size_t off, sq_array_size;
2675
2676 off = struct_size(rings, cqes, cq_entries);
2677 if (off == SIZE_MAX)
2678 return SIZE_MAX;
2679 if (flags & IORING_SETUP_CQE32) {
2680 if (check_shl_overflow(off, 1, &off))
2681 return SIZE_MAX;
2682 }
2683
2684 #ifdef CONFIG_SMP
2685 off = ALIGN(off, SMP_CACHE_BYTES);
2686 if (off == 0)
2687 return SIZE_MAX;
2688 #endif
2689
2690 if (flags & IORING_SETUP_NO_SQARRAY) {
2691 *sq_offset = SIZE_MAX;
2692 return off;
2693 }
2694
2695 *sq_offset = off;
2696
2697 sq_array_size = array_size(sizeof(u32), sq_entries);
2698 if (sq_array_size == SIZE_MAX)
2699 return SIZE_MAX;
2700
2701 if (check_add_overflow(off, sq_array_size, &off))
2702 return SIZE_MAX;
2703
2704 return off;
2705 }
2706
io_req_caches_free(struct io_ring_ctx * ctx)2707 static void io_req_caches_free(struct io_ring_ctx *ctx)
2708 {
2709 struct io_kiocb *req;
2710 int nr = 0;
2711
2712 mutex_lock(&ctx->uring_lock);
2713
2714 while (!io_req_cache_empty(ctx)) {
2715 req = io_extract_req(ctx);
2716 kmem_cache_free(req_cachep, req);
2717 nr++;
2718 }
2719 if (nr)
2720 percpu_ref_put_many(&ctx->refs, nr);
2721 mutex_unlock(&ctx->uring_lock);
2722 }
2723
io_ring_ctx_free(struct io_ring_ctx * ctx)2724 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2725 {
2726 io_sq_thread_finish(ctx);
2727
2728 mutex_lock(&ctx->uring_lock);
2729 io_sqe_buffers_unregister(ctx);
2730 io_sqe_files_unregister(ctx);
2731 io_unregister_zcrx_ifqs(ctx);
2732 io_cqring_overflow_kill(ctx);
2733 io_eventfd_unregister(ctx);
2734 io_free_alloc_caches(ctx);
2735 io_destroy_buffers(ctx);
2736 io_free_region(ctx, &ctx->param_region);
2737 mutex_unlock(&ctx->uring_lock);
2738 if (ctx->sq_creds)
2739 put_cred(ctx->sq_creds);
2740 if (ctx->submitter_task)
2741 put_task_struct(ctx->submitter_task);
2742
2743 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2744
2745 if (ctx->mm_account) {
2746 mmdrop(ctx->mm_account);
2747 ctx->mm_account = NULL;
2748 }
2749 io_rings_free(ctx);
2750
2751 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
2752 static_branch_dec(&io_key_has_sqarray);
2753
2754 percpu_ref_exit(&ctx->refs);
2755 free_uid(ctx->user);
2756 io_req_caches_free(ctx);
2757 if (ctx->hash_map)
2758 io_wq_put_hash(ctx->hash_map);
2759 io_napi_free(ctx);
2760 kvfree(ctx->cancel_table.hbs);
2761 xa_destroy(&ctx->io_bl_xa);
2762 kfree(ctx);
2763 }
2764
io_activate_pollwq_cb(struct callback_head * cb)2765 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2766 {
2767 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2768 poll_wq_task_work);
2769
2770 mutex_lock(&ctx->uring_lock);
2771 ctx->poll_activated = true;
2772 mutex_unlock(&ctx->uring_lock);
2773
2774 /*
2775 * Wake ups for some events between start of polling and activation
2776 * might've been lost due to loose synchronisation.
2777 */
2778 wake_up_all(&ctx->poll_wq);
2779 percpu_ref_put(&ctx->refs);
2780 }
2781
io_activate_pollwq(struct io_ring_ctx * ctx)2782 __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2783 {
2784 spin_lock(&ctx->completion_lock);
2785 /* already activated or in progress */
2786 if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2787 goto out;
2788 if (WARN_ON_ONCE(!ctx->task_complete))
2789 goto out;
2790 if (!ctx->submitter_task)
2791 goto out;
2792 /*
2793 * with ->submitter_task only the submitter task completes requests, we
2794 * only need to sync with it, which is done by injecting a tw
2795 */
2796 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2797 percpu_ref_get(&ctx->refs);
2798 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2799 percpu_ref_put(&ctx->refs);
2800 out:
2801 spin_unlock(&ctx->completion_lock);
2802 }
2803
io_uring_poll(struct file * file,poll_table * wait)2804 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2805 {
2806 struct io_ring_ctx *ctx = file->private_data;
2807 __poll_t mask = 0;
2808
2809 if (unlikely(!ctx->poll_activated))
2810 io_activate_pollwq(ctx);
2811 /*
2812 * provides mb() which pairs with barrier from wq_has_sleeper
2813 * call in io_commit_cqring
2814 */
2815 poll_wait(file, &ctx->poll_wq, wait);
2816
2817 if (!io_sqring_full(ctx))
2818 mask |= EPOLLOUT | EPOLLWRNORM;
2819
2820 /*
2821 * Don't flush cqring overflow list here, just do a simple check.
2822 * Otherwise there could possible be ABBA deadlock:
2823 * CPU0 CPU1
2824 * ---- ----
2825 * lock(&ctx->uring_lock);
2826 * lock(&ep->mtx);
2827 * lock(&ctx->uring_lock);
2828 * lock(&ep->mtx);
2829 *
2830 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2831 * pushes them to do the flush.
2832 */
2833
2834 if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2835 mask |= EPOLLIN | EPOLLRDNORM;
2836
2837 return mask;
2838 }
2839
2840 struct io_tctx_exit {
2841 struct callback_head task_work;
2842 struct completion completion;
2843 struct io_ring_ctx *ctx;
2844 };
2845
io_tctx_exit_cb(struct callback_head * cb)2846 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2847 {
2848 struct io_uring_task *tctx = current->io_uring;
2849 struct io_tctx_exit *work;
2850
2851 work = container_of(cb, struct io_tctx_exit, task_work);
2852 /*
2853 * When @in_cancel, we're in cancellation and it's racy to remove the
2854 * node. It'll be removed by the end of cancellation, just ignore it.
2855 * tctx can be NULL if the queueing of this task_work raced with
2856 * work cancelation off the exec path.
2857 */
2858 if (tctx && !atomic_read(&tctx->in_cancel))
2859 io_uring_del_tctx_node((unsigned long)work->ctx);
2860 complete(&work->completion);
2861 }
2862
io_cancel_ctx_cb(struct io_wq_work * work,void * data)2863 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2864 {
2865 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2866
2867 return req->ctx == data;
2868 }
2869
io_ring_exit_work(struct work_struct * work)2870 static __cold void io_ring_exit_work(struct work_struct *work)
2871 {
2872 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2873 unsigned long timeout = jiffies + HZ * 60 * 5;
2874 unsigned long interval = HZ / 20;
2875 struct io_tctx_exit exit;
2876 struct io_tctx_node *node;
2877 int ret;
2878
2879 /*
2880 * If we're doing polled IO and end up having requests being
2881 * submitted async (out-of-line), then completions can come in while
2882 * we're waiting for refs to drop. We need to reap these manually,
2883 * as nobody else will be looking for them.
2884 */
2885 do {
2886 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2887 mutex_lock(&ctx->uring_lock);
2888 io_cqring_overflow_kill(ctx);
2889 mutex_unlock(&ctx->uring_lock);
2890 }
2891 if (ctx->ifq) {
2892 mutex_lock(&ctx->uring_lock);
2893 io_shutdown_zcrx_ifqs(ctx);
2894 mutex_unlock(&ctx->uring_lock);
2895 }
2896
2897 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2898 io_move_task_work_from_local(ctx);
2899
2900 /* The SQPOLL thread never reaches this path */
2901 while (io_uring_try_cancel_requests(ctx, NULL, true, false))
2902 cond_resched();
2903
2904 if (ctx->sq_data) {
2905 struct io_sq_data *sqd = ctx->sq_data;
2906 struct task_struct *tsk;
2907
2908 io_sq_thread_park(sqd);
2909 tsk = sqd->thread;
2910 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2911 io_wq_cancel_cb(tsk->io_uring->io_wq,
2912 io_cancel_ctx_cb, ctx, true);
2913 io_sq_thread_unpark(sqd);
2914 }
2915
2916 io_req_caches_free(ctx);
2917
2918 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2919 /* there is little hope left, don't run it too often */
2920 interval = HZ * 60;
2921 }
2922 /*
2923 * This is really an uninterruptible wait, as it has to be
2924 * complete. But it's also run from a kworker, which doesn't
2925 * take signals, so it's fine to make it interruptible. This
2926 * avoids scenarios where we knowingly can wait much longer
2927 * on completions, for example if someone does a SIGSTOP on
2928 * a task that needs to finish task_work to make this loop
2929 * complete. That's a synthetic situation that should not
2930 * cause a stuck task backtrace, and hence a potential panic
2931 * on stuck tasks if that is enabled.
2932 */
2933 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
2934
2935 init_completion(&exit.completion);
2936 init_task_work(&exit.task_work, io_tctx_exit_cb);
2937 exit.ctx = ctx;
2938
2939 mutex_lock(&ctx->uring_lock);
2940 while (!list_empty(&ctx->tctx_list)) {
2941 WARN_ON_ONCE(time_after(jiffies, timeout));
2942
2943 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2944 ctx_node);
2945 /* don't spin on a single task if cancellation failed */
2946 list_rotate_left(&ctx->tctx_list);
2947 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2948 if (WARN_ON_ONCE(ret))
2949 continue;
2950
2951 mutex_unlock(&ctx->uring_lock);
2952 /*
2953 * See comment above for
2954 * wait_for_completion_interruptible_timeout() on why this
2955 * wait is marked as interruptible.
2956 */
2957 wait_for_completion_interruptible(&exit.completion);
2958 mutex_lock(&ctx->uring_lock);
2959 }
2960 mutex_unlock(&ctx->uring_lock);
2961 spin_lock(&ctx->completion_lock);
2962 spin_unlock(&ctx->completion_lock);
2963
2964 /* pairs with RCU read section in io_req_local_work_add() */
2965 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2966 synchronize_rcu();
2967
2968 io_ring_ctx_free(ctx);
2969 }
2970
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)2971 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2972 {
2973 unsigned long index;
2974 struct creds *creds;
2975
2976 mutex_lock(&ctx->uring_lock);
2977 percpu_ref_kill(&ctx->refs);
2978 xa_for_each(&ctx->personalities, index, creds)
2979 io_unregister_personality(ctx, index);
2980 mutex_unlock(&ctx->uring_lock);
2981
2982 flush_delayed_work(&ctx->fallback_work);
2983
2984 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2985 /*
2986 * Use system_unbound_wq to avoid spawning tons of event kworkers
2987 * if we're exiting a ton of rings at the same time. It just adds
2988 * noise and overhead, there's no discernable change in runtime
2989 * over using system_wq.
2990 */
2991 queue_work(iou_wq, &ctx->exit_work);
2992 }
2993
io_uring_release(struct inode * inode,struct file * file)2994 static int io_uring_release(struct inode *inode, struct file *file)
2995 {
2996 struct io_ring_ctx *ctx = file->private_data;
2997
2998 file->private_data = NULL;
2999 io_ring_ctx_wait_and_kill(ctx);
3000 return 0;
3001 }
3002
3003 struct io_task_cancel {
3004 struct io_uring_task *tctx;
3005 bool all;
3006 };
3007
io_cancel_task_cb(struct io_wq_work * work,void * data)3008 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3009 {
3010 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3011 struct io_task_cancel *cancel = data;
3012
3013 return io_match_task_safe(req, cancel->tctx, cancel->all);
3014 }
3015
io_cancel_defer_files(struct io_ring_ctx * ctx,struct io_uring_task * tctx,bool cancel_all)3016 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3017 struct io_uring_task *tctx,
3018 bool cancel_all)
3019 {
3020 struct io_defer_entry *de;
3021 LIST_HEAD(list);
3022
3023 spin_lock(&ctx->completion_lock);
3024 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3025 if (io_match_task_safe(de->req, tctx, cancel_all)) {
3026 list_cut_position(&list, &ctx->defer_list, &de->list);
3027 break;
3028 }
3029 }
3030 spin_unlock(&ctx->completion_lock);
3031 if (list_empty(&list))
3032 return false;
3033
3034 while (!list_empty(&list)) {
3035 de = list_first_entry(&list, struct io_defer_entry, list);
3036 list_del_init(&de->list);
3037 io_req_task_queue_fail(de->req, -ECANCELED);
3038 kfree(de);
3039 }
3040 return true;
3041 }
3042
io_uring_try_cancel_iowq(struct io_ring_ctx * ctx)3043 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3044 {
3045 struct io_tctx_node *node;
3046 enum io_wq_cancel cret;
3047 bool ret = false;
3048
3049 mutex_lock(&ctx->uring_lock);
3050 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3051 struct io_uring_task *tctx = node->task->io_uring;
3052
3053 /*
3054 * io_wq will stay alive while we hold uring_lock, because it's
3055 * killed after ctx nodes, which requires to take the lock.
3056 */
3057 if (!tctx || !tctx->io_wq)
3058 continue;
3059 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3060 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3061 }
3062 mutex_unlock(&ctx->uring_lock);
3063
3064 return ret;
3065 }
3066
io_uring_try_cancel_requests(struct io_ring_ctx * ctx,struct io_uring_task * tctx,bool cancel_all,bool is_sqpoll_thread)3067 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3068 struct io_uring_task *tctx,
3069 bool cancel_all,
3070 bool is_sqpoll_thread)
3071 {
3072 struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, };
3073 enum io_wq_cancel cret;
3074 bool ret = false;
3075
3076 /* set it so io_req_local_work_add() would wake us up */
3077 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3078 atomic_set(&ctx->cq_wait_nr, 1);
3079 smp_mb();
3080 }
3081
3082 /* failed during ring init, it couldn't have issued any requests */
3083 if (!ctx->rings)
3084 return false;
3085
3086 if (!tctx) {
3087 ret |= io_uring_try_cancel_iowq(ctx);
3088 } else if (tctx->io_wq) {
3089 /*
3090 * Cancels requests of all rings, not only @ctx, but
3091 * it's fine as the task is in exit/exec.
3092 */
3093 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3094 &cancel, true);
3095 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3096 }
3097
3098 /* SQPOLL thread does its own polling */
3099 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3100 is_sqpoll_thread) {
3101 while (!wq_list_empty(&ctx->iopoll_list)) {
3102 io_iopoll_try_reap_events(ctx);
3103 ret = true;
3104 cond_resched();
3105 }
3106 }
3107
3108 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3109 io_allowed_defer_tw_run(ctx))
3110 ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0;
3111 ret |= io_cancel_defer_files(ctx, tctx, cancel_all);
3112 mutex_lock(&ctx->uring_lock);
3113 ret |= io_poll_remove_all(ctx, tctx, cancel_all);
3114 ret |= io_waitid_remove_all(ctx, tctx, cancel_all);
3115 ret |= io_futex_remove_all(ctx, tctx, cancel_all);
3116 ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all);
3117 mutex_unlock(&ctx->uring_lock);
3118 ret |= io_kill_timeouts(ctx, tctx, cancel_all);
3119 if (tctx)
3120 ret |= io_run_task_work() > 0;
3121 else
3122 ret |= flush_delayed_work(&ctx->fallback_work);
3123 return ret;
3124 }
3125
tctx_inflight(struct io_uring_task * tctx,bool tracked)3126 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3127 {
3128 if (tracked)
3129 return atomic_read(&tctx->inflight_tracked);
3130 return percpu_counter_sum(&tctx->inflight);
3131 }
3132
3133 /*
3134 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3135 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3136 */
io_uring_cancel_generic(bool cancel_all,struct io_sq_data * sqd)3137 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3138 {
3139 struct io_uring_task *tctx = current->io_uring;
3140 struct io_ring_ctx *ctx;
3141 struct io_tctx_node *node;
3142 unsigned long index;
3143 s64 inflight;
3144 DEFINE_WAIT(wait);
3145
3146 WARN_ON_ONCE(sqd && sqd->thread != current);
3147
3148 if (!current->io_uring)
3149 return;
3150 if (tctx->io_wq)
3151 io_wq_exit_start(tctx->io_wq);
3152
3153 atomic_inc(&tctx->in_cancel);
3154 do {
3155 bool loop = false;
3156
3157 io_uring_drop_tctx_refs(current);
3158 if (!tctx_inflight(tctx, !cancel_all))
3159 break;
3160
3161 /* read completions before cancelations */
3162 inflight = tctx_inflight(tctx, false);
3163 if (!inflight)
3164 break;
3165
3166 if (!sqd) {
3167 xa_for_each(&tctx->xa, index, node) {
3168 /* sqpoll task will cancel all its requests */
3169 if (node->ctx->sq_data)
3170 continue;
3171 loop |= io_uring_try_cancel_requests(node->ctx,
3172 current->io_uring,
3173 cancel_all,
3174 false);
3175 }
3176 } else {
3177 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3178 loop |= io_uring_try_cancel_requests(ctx,
3179 current->io_uring,
3180 cancel_all,
3181 true);
3182 }
3183
3184 if (loop) {
3185 cond_resched();
3186 continue;
3187 }
3188
3189 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3190 io_run_task_work();
3191 io_uring_drop_tctx_refs(current);
3192 xa_for_each(&tctx->xa, index, node) {
3193 if (io_local_work_pending(node->ctx)) {
3194 WARN_ON_ONCE(node->ctx->submitter_task &&
3195 node->ctx->submitter_task != current);
3196 goto end_wait;
3197 }
3198 }
3199 /*
3200 * If we've seen completions, retry without waiting. This
3201 * avoids a race where a completion comes in before we did
3202 * prepare_to_wait().
3203 */
3204 if (inflight == tctx_inflight(tctx, !cancel_all))
3205 schedule();
3206 end_wait:
3207 finish_wait(&tctx->wait, &wait);
3208 } while (1);
3209
3210 io_uring_clean_tctx(tctx);
3211 if (cancel_all) {
3212 /*
3213 * We shouldn't run task_works after cancel, so just leave
3214 * ->in_cancel set for normal exit.
3215 */
3216 atomic_dec(&tctx->in_cancel);
3217 /* for exec all current's requests should be gone, kill tctx */
3218 __io_uring_free(current);
3219 }
3220 }
3221
__io_uring_cancel(bool cancel_all)3222 void __io_uring_cancel(bool cancel_all)
3223 {
3224 io_uring_unreg_ringfd();
3225 io_uring_cancel_generic(cancel_all, NULL);
3226 }
3227
io_get_ext_arg_reg(struct io_ring_ctx * ctx,const struct io_uring_getevents_arg __user * uarg)3228 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx,
3229 const struct io_uring_getevents_arg __user *uarg)
3230 {
3231 unsigned long size = sizeof(struct io_uring_reg_wait);
3232 unsigned long offset = (uintptr_t)uarg;
3233 unsigned long end;
3234
3235 if (unlikely(offset % sizeof(long)))
3236 return ERR_PTR(-EFAULT);
3237
3238 /* also protects from NULL ->cq_wait_arg as the size would be 0 */
3239 if (unlikely(check_add_overflow(offset, size, &end) ||
3240 end > ctx->cq_wait_size))
3241 return ERR_PTR(-EFAULT);
3242
3243 offset = array_index_nospec(offset, ctx->cq_wait_size - size);
3244 return ctx->cq_wait_arg + offset;
3245 }
3246
io_validate_ext_arg(struct io_ring_ctx * ctx,unsigned flags,const void __user * argp,size_t argsz)3247 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3248 const void __user *argp, size_t argsz)
3249 {
3250 struct io_uring_getevents_arg arg;
3251
3252 if (!(flags & IORING_ENTER_EXT_ARG))
3253 return 0;
3254 if (flags & IORING_ENTER_EXT_ARG_REG)
3255 return -EINVAL;
3256 if (argsz != sizeof(arg))
3257 return -EINVAL;
3258 if (copy_from_user(&arg, argp, sizeof(arg)))
3259 return -EFAULT;
3260 return 0;
3261 }
3262
io_get_ext_arg(struct io_ring_ctx * ctx,unsigned flags,const void __user * argp,struct ext_arg * ext_arg)3263 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3264 const void __user *argp, struct ext_arg *ext_arg)
3265 {
3266 const struct io_uring_getevents_arg __user *uarg = argp;
3267 struct io_uring_getevents_arg arg;
3268
3269 ext_arg->iowait = !(flags & IORING_ENTER_NO_IOWAIT);
3270
3271 /*
3272 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3273 * is just a pointer to the sigset_t.
3274 */
3275 if (!(flags & IORING_ENTER_EXT_ARG)) {
3276 ext_arg->sig = (const sigset_t __user *) argp;
3277 return 0;
3278 }
3279
3280 if (flags & IORING_ENTER_EXT_ARG_REG) {
3281 struct io_uring_reg_wait *w;
3282
3283 if (ext_arg->argsz != sizeof(struct io_uring_reg_wait))
3284 return -EINVAL;
3285 w = io_get_ext_arg_reg(ctx, argp);
3286 if (IS_ERR(w))
3287 return PTR_ERR(w);
3288
3289 if (w->flags & ~IORING_REG_WAIT_TS)
3290 return -EINVAL;
3291 ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC;
3292 ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask));
3293 ext_arg->argsz = READ_ONCE(w->sigmask_sz);
3294 if (w->flags & IORING_REG_WAIT_TS) {
3295 ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec);
3296 ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec);
3297 ext_arg->ts_set = true;
3298 }
3299 return 0;
3300 }
3301
3302 /*
3303 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3304 * timespec and sigset_t pointers if good.
3305 */
3306 if (ext_arg->argsz != sizeof(arg))
3307 return -EINVAL;
3308 #ifdef CONFIG_64BIT
3309 if (!user_access_begin(uarg, sizeof(*uarg)))
3310 return -EFAULT;
3311 unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end);
3312 unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end);
3313 unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end);
3314 unsafe_get_user(arg.ts, &uarg->ts, uaccess_end);
3315 user_access_end();
3316 #else
3317 if (copy_from_user(&arg, uarg, sizeof(arg)))
3318 return -EFAULT;
3319 #endif
3320 ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
3321 ext_arg->sig = u64_to_user_ptr(arg.sigmask);
3322 ext_arg->argsz = arg.sigmask_sz;
3323 if (arg.ts) {
3324 if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts)))
3325 return -EFAULT;
3326 ext_arg->ts_set = true;
3327 }
3328 return 0;
3329 #ifdef CONFIG_64BIT
3330 uaccess_end:
3331 user_access_end();
3332 return -EFAULT;
3333 #endif
3334 }
3335
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)3336 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3337 u32, min_complete, u32, flags, const void __user *, argp,
3338 size_t, argsz)
3339 {
3340 struct io_ring_ctx *ctx;
3341 struct file *file;
3342 long ret;
3343
3344 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3345 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3346 IORING_ENTER_REGISTERED_RING |
3347 IORING_ENTER_ABS_TIMER |
3348 IORING_ENTER_EXT_ARG_REG |
3349 IORING_ENTER_NO_IOWAIT)))
3350 return -EINVAL;
3351
3352 /*
3353 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3354 * need only dereference our task private array to find it.
3355 */
3356 if (flags & IORING_ENTER_REGISTERED_RING) {
3357 struct io_uring_task *tctx = current->io_uring;
3358
3359 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3360 return -EINVAL;
3361 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3362 file = tctx->registered_rings[fd];
3363 if (unlikely(!file))
3364 return -EBADF;
3365 } else {
3366 file = fget(fd);
3367 if (unlikely(!file))
3368 return -EBADF;
3369 ret = -EOPNOTSUPP;
3370 if (unlikely(!io_is_uring_fops(file)))
3371 goto out;
3372 }
3373
3374 ctx = file->private_data;
3375 ret = -EBADFD;
3376 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3377 goto out;
3378
3379 /*
3380 * For SQ polling, the thread will do all submissions and completions.
3381 * Just return the requested submit count, and wake the thread if
3382 * we were asked to.
3383 */
3384 ret = 0;
3385 if (ctx->flags & IORING_SETUP_SQPOLL) {
3386 if (unlikely(ctx->sq_data->thread == NULL)) {
3387 ret = -EOWNERDEAD;
3388 goto out;
3389 }
3390 if (flags & IORING_ENTER_SQ_WAKEUP)
3391 wake_up(&ctx->sq_data->wait);
3392 if (flags & IORING_ENTER_SQ_WAIT)
3393 io_sqpoll_wait_sq(ctx);
3394
3395 ret = to_submit;
3396 } else if (to_submit) {
3397 ret = io_uring_add_tctx_node(ctx);
3398 if (unlikely(ret))
3399 goto out;
3400
3401 mutex_lock(&ctx->uring_lock);
3402 ret = io_submit_sqes(ctx, to_submit);
3403 if (ret != to_submit) {
3404 mutex_unlock(&ctx->uring_lock);
3405 goto out;
3406 }
3407 if (flags & IORING_ENTER_GETEVENTS) {
3408 if (ctx->syscall_iopoll)
3409 goto iopoll_locked;
3410 /*
3411 * Ignore errors, we'll soon call io_cqring_wait() and
3412 * it should handle ownership problems if any.
3413 */
3414 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3415 (void)io_run_local_work_locked(ctx, min_complete);
3416 }
3417 mutex_unlock(&ctx->uring_lock);
3418 }
3419
3420 if (flags & IORING_ENTER_GETEVENTS) {
3421 int ret2;
3422
3423 if (ctx->syscall_iopoll) {
3424 /*
3425 * We disallow the app entering submit/complete with
3426 * polling, but we still need to lock the ring to
3427 * prevent racing with polled issue that got punted to
3428 * a workqueue.
3429 */
3430 mutex_lock(&ctx->uring_lock);
3431 iopoll_locked:
3432 ret2 = io_validate_ext_arg(ctx, flags, argp, argsz);
3433 if (likely(!ret2))
3434 ret2 = io_iopoll_check(ctx, min_complete);
3435 mutex_unlock(&ctx->uring_lock);
3436 } else {
3437 struct ext_arg ext_arg = { .argsz = argsz };
3438
3439 ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg);
3440 if (likely(!ret2))
3441 ret2 = io_cqring_wait(ctx, min_complete, flags,
3442 &ext_arg);
3443 }
3444
3445 if (!ret) {
3446 ret = ret2;
3447
3448 /*
3449 * EBADR indicates that one or more CQE were dropped.
3450 * Once the user has been informed we can clear the bit
3451 * as they are obviously ok with those drops.
3452 */
3453 if (unlikely(ret2 == -EBADR))
3454 clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3455 &ctx->check_cq);
3456 }
3457 }
3458 out:
3459 if (!(flags & IORING_ENTER_REGISTERED_RING))
3460 fput(file);
3461 return ret;
3462 }
3463
3464 static const struct file_operations io_uring_fops = {
3465 .release = io_uring_release,
3466 .mmap = io_uring_mmap,
3467 .get_unmapped_area = io_uring_get_unmapped_area,
3468 #ifndef CONFIG_MMU
3469 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3470 #endif
3471 .poll = io_uring_poll,
3472 #ifdef CONFIG_PROC_FS
3473 .show_fdinfo = io_uring_show_fdinfo,
3474 #endif
3475 };
3476
io_is_uring_fops(struct file * file)3477 bool io_is_uring_fops(struct file *file)
3478 {
3479 return file->f_op == &io_uring_fops;
3480 }
3481
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)3482 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3483 struct io_uring_params *p)
3484 {
3485 struct io_uring_region_desc rd;
3486 struct io_rings *rings;
3487 size_t size, sq_array_offset;
3488 int ret;
3489
3490 /* make sure these are sane, as we already accounted them */
3491 ctx->sq_entries = p->sq_entries;
3492 ctx->cq_entries = p->cq_entries;
3493
3494 size = rings_size(ctx->flags, p->sq_entries, p->cq_entries,
3495 &sq_array_offset);
3496 if (size == SIZE_MAX)
3497 return -EOVERFLOW;
3498
3499 memset(&rd, 0, sizeof(rd));
3500 rd.size = PAGE_ALIGN(size);
3501 if (ctx->flags & IORING_SETUP_NO_MMAP) {
3502 rd.user_addr = p->cq_off.user_addr;
3503 rd.flags |= IORING_MEM_REGION_TYPE_USER;
3504 }
3505 ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING);
3506 if (ret)
3507 return ret;
3508 ctx->rings = rings = io_region_get_ptr(&ctx->ring_region);
3509
3510 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3511 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3512 rings->sq_ring_mask = p->sq_entries - 1;
3513 rings->cq_ring_mask = p->cq_entries - 1;
3514 rings->sq_ring_entries = p->sq_entries;
3515 rings->cq_ring_entries = p->cq_entries;
3516
3517 if (p->flags & IORING_SETUP_SQE128)
3518 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3519 else
3520 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3521 if (size == SIZE_MAX) {
3522 io_rings_free(ctx);
3523 return -EOVERFLOW;
3524 }
3525
3526 memset(&rd, 0, sizeof(rd));
3527 rd.size = PAGE_ALIGN(size);
3528 if (ctx->flags & IORING_SETUP_NO_MMAP) {
3529 rd.user_addr = p->sq_off.user_addr;
3530 rd.flags |= IORING_MEM_REGION_TYPE_USER;
3531 }
3532 ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES);
3533 if (ret) {
3534 io_rings_free(ctx);
3535 return ret;
3536 }
3537 ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region);
3538 return 0;
3539 }
3540
io_uring_install_fd(struct file * file)3541 static int io_uring_install_fd(struct file *file)
3542 {
3543 int fd;
3544
3545 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3546 if (fd < 0)
3547 return fd;
3548 fd_install(fd, file);
3549 return fd;
3550 }
3551
3552 /*
3553 * Allocate an anonymous fd, this is what constitutes the application
3554 * visible backing of an io_uring instance. The application mmaps this
3555 * fd to gain access to the SQ/CQ ring details.
3556 */
io_uring_get_file(struct io_ring_ctx * ctx)3557 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3558 {
3559 /* Create a new inode so that the LSM can block the creation. */
3560 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3561 O_RDWR | O_CLOEXEC, NULL);
3562 }
3563
io_uring_sanitise_params(struct io_uring_params * p)3564 static int io_uring_sanitise_params(struct io_uring_params *p)
3565 {
3566 unsigned flags = p->flags;
3567
3568 /* There is no way to mmap rings without a real fd */
3569 if ((flags & IORING_SETUP_REGISTERED_FD_ONLY) &&
3570 !(flags & IORING_SETUP_NO_MMAP))
3571 return -EINVAL;
3572
3573 if (flags & IORING_SETUP_SQPOLL) {
3574 /* IPI related flags don't make sense with SQPOLL */
3575 if (flags & (IORING_SETUP_COOP_TASKRUN |
3576 IORING_SETUP_TASKRUN_FLAG |
3577 IORING_SETUP_DEFER_TASKRUN))
3578 return -EINVAL;
3579 }
3580
3581 if (flags & IORING_SETUP_TASKRUN_FLAG) {
3582 if (!(flags & (IORING_SETUP_COOP_TASKRUN |
3583 IORING_SETUP_DEFER_TASKRUN)))
3584 return -EINVAL;
3585 }
3586
3587 /* HYBRID_IOPOLL only valid with IOPOLL */
3588 if ((flags & IORING_SETUP_HYBRID_IOPOLL) && !(flags & IORING_SETUP_IOPOLL))
3589 return -EINVAL;
3590
3591 /*
3592 * For DEFER_TASKRUN we require the completion task to be the same as
3593 * the submission task. This implies that there is only one submitter.
3594 */
3595 if ((flags & IORING_SETUP_DEFER_TASKRUN) &&
3596 !(flags & IORING_SETUP_SINGLE_ISSUER))
3597 return -EINVAL;
3598
3599 return 0;
3600 }
3601
io_uring_fill_params(unsigned entries,struct io_uring_params * p)3602 int io_uring_fill_params(unsigned entries, struct io_uring_params *p)
3603 {
3604 if (!entries)
3605 return -EINVAL;
3606 if (entries > IORING_MAX_ENTRIES) {
3607 if (!(p->flags & IORING_SETUP_CLAMP))
3608 return -EINVAL;
3609 entries = IORING_MAX_ENTRIES;
3610 }
3611
3612 /*
3613 * Use twice as many entries for the CQ ring. It's possible for the
3614 * application to drive a higher depth than the size of the SQ ring,
3615 * since the sqes are only used at submission time. This allows for
3616 * some flexibility in overcommitting a bit. If the application has
3617 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3618 * of CQ ring entries manually.
3619 */
3620 p->sq_entries = roundup_pow_of_two(entries);
3621 if (p->flags & IORING_SETUP_CQSIZE) {
3622 /*
3623 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3624 * to a power-of-two, if it isn't already. We do NOT impose
3625 * any cq vs sq ring sizing.
3626 */
3627 if (!p->cq_entries)
3628 return -EINVAL;
3629 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3630 if (!(p->flags & IORING_SETUP_CLAMP))
3631 return -EINVAL;
3632 p->cq_entries = IORING_MAX_CQ_ENTRIES;
3633 }
3634 p->cq_entries = roundup_pow_of_two(p->cq_entries);
3635 if (p->cq_entries < p->sq_entries)
3636 return -EINVAL;
3637 } else {
3638 p->cq_entries = 2 * p->sq_entries;
3639 }
3640
3641 p->sq_off.head = offsetof(struct io_rings, sq.head);
3642 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3643 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3644 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3645 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3646 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3647 p->sq_off.resv1 = 0;
3648 if (!(p->flags & IORING_SETUP_NO_MMAP))
3649 p->sq_off.user_addr = 0;
3650
3651 p->cq_off.head = offsetof(struct io_rings, cq.head);
3652 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3653 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3654 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3655 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3656 p->cq_off.cqes = offsetof(struct io_rings, cqes);
3657 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3658 p->cq_off.resv1 = 0;
3659 if (!(p->flags & IORING_SETUP_NO_MMAP))
3660 p->cq_off.user_addr = 0;
3661
3662 return 0;
3663 }
3664
io_uring_create(unsigned entries,struct io_uring_params * p,struct io_uring_params __user * params)3665 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3666 struct io_uring_params __user *params)
3667 {
3668 struct io_ring_ctx *ctx;
3669 struct io_uring_task *tctx;
3670 struct file *file;
3671 int ret;
3672
3673 ret = io_uring_sanitise_params(p);
3674 if (ret)
3675 return ret;
3676
3677 ret = io_uring_fill_params(entries, p);
3678 if (unlikely(ret))
3679 return ret;
3680
3681 ctx = io_ring_ctx_alloc(p);
3682 if (!ctx)
3683 return -ENOMEM;
3684
3685 ctx->clockid = CLOCK_MONOTONIC;
3686 ctx->clock_offset = 0;
3687
3688 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3689 static_branch_inc(&io_key_has_sqarray);
3690
3691 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3692 !(ctx->flags & IORING_SETUP_IOPOLL) &&
3693 !(ctx->flags & IORING_SETUP_SQPOLL))
3694 ctx->task_complete = true;
3695
3696 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3697 ctx->lockless_cq = true;
3698
3699 /*
3700 * lazy poll_wq activation relies on ->task_complete for synchronisation
3701 * purposes, see io_activate_pollwq()
3702 */
3703 if (!ctx->task_complete)
3704 ctx->poll_activated = true;
3705
3706 /*
3707 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3708 * space applications don't need to do io completion events
3709 * polling again, they can rely on io_sq_thread to do polling
3710 * work, which can reduce cpu usage and uring_lock contention.
3711 */
3712 if (ctx->flags & IORING_SETUP_IOPOLL &&
3713 !(ctx->flags & IORING_SETUP_SQPOLL))
3714 ctx->syscall_iopoll = 1;
3715
3716 ctx->compat = in_compat_syscall();
3717 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3718 ctx->user = get_uid(current_user());
3719
3720 /*
3721 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3722 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3723 */
3724 if (ctx->flags & (IORING_SETUP_SQPOLL|IORING_SETUP_COOP_TASKRUN))
3725 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3726 else
3727 ctx->notify_method = TWA_SIGNAL;
3728
3729 /*
3730 * This is just grabbed for accounting purposes. When a process exits,
3731 * the mm is exited and dropped before the files, hence we need to hang
3732 * on to this mm purely for the purposes of being able to unaccount
3733 * memory (locked/pinned vm). It's not used for anything else.
3734 */
3735 mmgrab(current->mm);
3736 ctx->mm_account = current->mm;
3737
3738 ret = io_allocate_scq_urings(ctx, p);
3739 if (ret)
3740 goto err;
3741
3742 if (!(p->flags & IORING_SETUP_NO_SQARRAY))
3743 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3744
3745 ret = io_sq_offload_create(ctx, p);
3746 if (ret)
3747 goto err;
3748
3749 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3750 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3751 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3752 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3753 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3754 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3755 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING |
3756 IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT |
3757 IORING_FEAT_RW_ATTR | IORING_FEAT_NO_IOWAIT;
3758
3759 if (copy_to_user(params, p, sizeof(*p))) {
3760 ret = -EFAULT;
3761 goto err;
3762 }
3763
3764 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3765 && !(ctx->flags & IORING_SETUP_R_DISABLED))
3766 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3767
3768 file = io_uring_get_file(ctx);
3769 if (IS_ERR(file)) {
3770 ret = PTR_ERR(file);
3771 goto err;
3772 }
3773
3774 ret = __io_uring_add_tctx_node(ctx);
3775 if (ret)
3776 goto err_fput;
3777 tctx = current->io_uring;
3778
3779 /*
3780 * Install ring fd as the very last thing, so we don't risk someone
3781 * having closed it before we finish setup
3782 */
3783 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3784 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3785 else
3786 ret = io_uring_install_fd(file);
3787 if (ret < 0)
3788 goto err_fput;
3789
3790 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3791 return ret;
3792 err:
3793 io_ring_ctx_wait_and_kill(ctx);
3794 return ret;
3795 err_fput:
3796 fput(file);
3797 return ret;
3798 }
3799
3800 /*
3801 * Sets up an aio uring context, and returns the fd. Applications asks for a
3802 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3803 * params structure passed in.
3804 */
io_uring_setup(u32 entries,struct io_uring_params __user * params)3805 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3806 {
3807 struct io_uring_params p;
3808 int i;
3809
3810 if (copy_from_user(&p, params, sizeof(p)))
3811 return -EFAULT;
3812 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3813 if (p.resv[i])
3814 return -EINVAL;
3815 }
3816
3817 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3818 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3819 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3820 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3821 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3822 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3823 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
3824 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
3825 IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL))
3826 return -EINVAL;
3827
3828 return io_uring_create(entries, &p, params);
3829 }
3830
io_uring_allowed(void)3831 static inline int io_uring_allowed(void)
3832 {
3833 int disabled = READ_ONCE(sysctl_io_uring_disabled);
3834 kgid_t io_uring_group;
3835
3836 if (disabled == 2)
3837 return -EPERM;
3838
3839 if (disabled == 0 || capable(CAP_SYS_ADMIN))
3840 goto allowed_lsm;
3841
3842 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3843 if (!gid_valid(io_uring_group))
3844 return -EPERM;
3845
3846 if (!in_group_p(io_uring_group))
3847 return -EPERM;
3848
3849 allowed_lsm:
3850 return security_uring_allowed();
3851 }
3852
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)3853 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3854 struct io_uring_params __user *, params)
3855 {
3856 int ret;
3857
3858 ret = io_uring_allowed();
3859 if (ret)
3860 return ret;
3861
3862 return io_uring_setup(entries, params);
3863 }
3864
io_uring_init(void)3865 static int __init io_uring_init(void)
3866 {
3867 struct kmem_cache_args kmem_args = {
3868 .useroffset = offsetof(struct io_kiocb, cmd.data),
3869 .usersize = sizeof_field(struct io_kiocb, cmd.data),
3870 .freeptr_offset = offsetof(struct io_kiocb, work),
3871 .use_freeptr_offset = true,
3872 };
3873
3874 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3875 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3876 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3877 } while (0)
3878
3879 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3880 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3881 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3882 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3883 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3884 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
3885 BUILD_BUG_SQE_ELEM(1, __u8, flags);
3886 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
3887 BUILD_BUG_SQE_ELEM(4, __s32, fd);
3888 BUILD_BUG_SQE_ELEM(8, __u64, off);
3889 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
3890 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
3891 BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3892 BUILD_BUG_SQE_ELEM(16, __u64, addr);
3893 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
3894 BUILD_BUG_SQE_ELEM(24, __u32, len);
3895 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
3896 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
3897 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3898 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
3899 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
3900 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
3901 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
3902 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
3903 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
3904 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
3905 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
3906 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
3907 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
3908 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
3909 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
3910 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
3911 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
3912 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
3913 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
3914 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
3915 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
3916 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
3917 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
3918 BUILD_BUG_SQE_ELEM(42, __u16, personality);
3919 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
3920 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
3921 BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
3922 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
3923 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
3924 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3925 BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr);
3926 BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask);
3927 BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
3928
3929 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3930 sizeof(struct io_uring_rsrc_update));
3931 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3932 sizeof(struct io_uring_rsrc_update2));
3933
3934 /* ->buf_index is u16 */
3935 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3936 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3937 offsetof(struct io_uring_buf_ring, tail));
3938
3939 /* should fit into one byte */
3940 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3941 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3942 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3943
3944 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
3945
3946 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3947
3948 /* top 8bits are for internal use */
3949 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
3950
3951 io_uring_optable_init();
3952
3953 /* imu->dir is u8 */
3954 BUILD_BUG_ON((IO_IMU_DEST | IO_IMU_SOURCE) > U8_MAX);
3955
3956 /*
3957 * Allow user copy in the per-command field, which starts after the
3958 * file in io_kiocb and until the opcode field. The openat2 handling
3959 * requires copying in user memory into the io_kiocb object in that
3960 * range, and HARDENED_USERCOPY will complain if we haven't
3961 * correctly annotated this range.
3962 */
3963 req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
3964 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
3965 SLAB_TYPESAFE_BY_RCU);
3966
3967 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
3968 BUG_ON(!iou_wq);
3969
3970 #ifdef CONFIG_SYSCTL
3971 register_sysctl_init("kernel", kernel_io_uring_disabled_table);
3972 #endif
3973
3974 return 0;
3975 };
3976 __initcall(io_uring_init);
3977