xref: /linux/fs/btrfs/scrub.c (revision 3fd6c59042dbba50391e30862beac979491145fe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "raid56.h"
20 #include "block-group.h"
21 #include "zoned.h"
22 #include "fs.h"
23 #include "accessors.h"
24 #include "file-item.h"
25 #include "scrub.h"
26 #include "raid-stripe-tree.h"
27 
28 /*
29  * This is only the first step towards a full-features scrub. It reads all
30  * extent and super block and verifies the checksums. In case a bad checksum
31  * is found or the extent cannot be read, good data will be written back if
32  * any can be found.
33  *
34  * Future enhancements:
35  *  - In case an unrepairable extent is encountered, track which files are
36  *    affected and report them
37  *  - track and record media errors, throw out bad devices
38  *  - add a mode to also read unallocated space
39  */
40 
41 struct scrub_ctx;
42 
43 /*
44  * The following value only influences the performance.
45  *
46  * This determines how many stripes would be submitted in one go,
47  * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
48  */
49 #define SCRUB_STRIPES_PER_GROUP		8
50 
51 /*
52  * How many groups we have for each sctx.
53  *
54  * This would be 8M per device, the same value as the old scrub in-flight bios
55  * size limit.
56  */
57 #define SCRUB_GROUPS_PER_SCTX		16
58 
59 #define SCRUB_TOTAL_STRIPES		(SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
60 
61 /*
62  * The following value times PAGE_SIZE needs to be large enough to match the
63  * largest node/leaf/sector size that shall be supported.
64  */
65 #define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
66 
67 /* Represent one sector and its needed info to verify the content. */
68 struct scrub_sector_verification {
69 	bool is_metadata;
70 
71 	union {
72 		/*
73 		 * Csum pointer for data csum verification.  Should point to a
74 		 * sector csum inside scrub_stripe::csums.
75 		 *
76 		 * NULL if this data sector has no csum.
77 		 */
78 		u8 *csum;
79 
80 		/*
81 		 * Extra info for metadata verification.  All sectors inside a
82 		 * tree block share the same generation.
83 		 */
84 		u64 generation;
85 	};
86 };
87 
88 enum scrub_stripe_flags {
89 	/* Set when @mirror_num, @dev, @physical and @logical are set. */
90 	SCRUB_STRIPE_FLAG_INITIALIZED,
91 
92 	/* Set when the read-repair is finished. */
93 	SCRUB_STRIPE_FLAG_REPAIR_DONE,
94 
95 	/*
96 	 * Set for data stripes if it's triggered from P/Q stripe.
97 	 * During such scrub, we should not report errors in data stripes, nor
98 	 * update the accounting.
99 	 */
100 	SCRUB_STRIPE_FLAG_NO_REPORT,
101 };
102 
103 #define SCRUB_STRIPE_PAGES		(BTRFS_STRIPE_LEN / PAGE_SIZE)
104 
105 /*
106  * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
107  */
108 struct scrub_stripe {
109 	struct scrub_ctx *sctx;
110 	struct btrfs_block_group *bg;
111 
112 	struct page *pages[SCRUB_STRIPE_PAGES];
113 	struct scrub_sector_verification *sectors;
114 
115 	struct btrfs_device *dev;
116 	u64 logical;
117 	u64 physical;
118 
119 	u16 mirror_num;
120 
121 	/* Should be BTRFS_STRIPE_LEN / sectorsize. */
122 	u16 nr_sectors;
123 
124 	/*
125 	 * How many data/meta extents are in this stripe.  Only for scrub status
126 	 * reporting purposes.
127 	 */
128 	u16 nr_data_extents;
129 	u16 nr_meta_extents;
130 
131 	atomic_t pending_io;
132 	wait_queue_head_t io_wait;
133 	wait_queue_head_t repair_wait;
134 
135 	/*
136 	 * Indicate the states of the stripe.  Bits are defined in
137 	 * scrub_stripe_flags enum.
138 	 */
139 	unsigned long state;
140 
141 	/* Indicate which sectors are covered by extent items. */
142 	unsigned long extent_sector_bitmap;
143 
144 	/*
145 	 * The errors hit during the initial read of the stripe.
146 	 *
147 	 * Would be utilized for error reporting and repair.
148 	 *
149 	 * The remaining init_nr_* records the number of errors hit, only used
150 	 * by error reporting.
151 	 */
152 	unsigned long init_error_bitmap;
153 	unsigned int init_nr_io_errors;
154 	unsigned int init_nr_csum_errors;
155 	unsigned int init_nr_meta_errors;
156 
157 	/*
158 	 * The following error bitmaps are all for the current status.
159 	 * Every time we submit a new read, these bitmaps may be updated.
160 	 *
161 	 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
162 	 *
163 	 * IO and csum errors can happen for both metadata and data.
164 	 */
165 	unsigned long error_bitmap;
166 	unsigned long io_error_bitmap;
167 	unsigned long csum_error_bitmap;
168 	unsigned long meta_error_bitmap;
169 
170 	/* For writeback (repair or replace) error reporting. */
171 	unsigned long write_error_bitmap;
172 
173 	/* Writeback can be concurrent, thus we need to protect the bitmap. */
174 	spinlock_t write_error_lock;
175 
176 	/*
177 	 * Checksum for the whole stripe if this stripe is inside a data block
178 	 * group.
179 	 */
180 	u8 *csums;
181 
182 	struct work_struct work;
183 };
184 
185 struct scrub_ctx {
186 	struct scrub_stripe	stripes[SCRUB_TOTAL_STRIPES];
187 	struct scrub_stripe	*raid56_data_stripes;
188 	struct btrfs_fs_info	*fs_info;
189 	struct btrfs_path	extent_path;
190 	struct btrfs_path	csum_path;
191 	int			first_free;
192 	int			cur_stripe;
193 	atomic_t		cancel_req;
194 	int			readonly;
195 
196 	/* State of IO submission throttling affecting the associated device */
197 	ktime_t			throttle_deadline;
198 	u64			throttle_sent;
199 
200 	int			is_dev_replace;
201 	u64			write_pointer;
202 
203 	struct mutex            wr_lock;
204 	struct btrfs_device     *wr_tgtdev;
205 
206 	/*
207 	 * statistics
208 	 */
209 	struct btrfs_scrub_progress stat;
210 	spinlock_t		stat_lock;
211 
212 	/*
213 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
214 	 * decrement bios_in_flight and workers_pending and then do a wakeup
215 	 * on the list_wait wait queue. We must ensure the main scrub task
216 	 * doesn't free the scrub context before or while the workers are
217 	 * doing the wakeup() call.
218 	 */
219 	refcount_t              refs;
220 };
221 
222 struct scrub_warning {
223 	struct btrfs_path	*path;
224 	u64			extent_item_size;
225 	const char		*errstr;
226 	u64			physical;
227 	u64			logical;
228 	struct btrfs_device	*dev;
229 };
230 
release_scrub_stripe(struct scrub_stripe * stripe)231 static void release_scrub_stripe(struct scrub_stripe *stripe)
232 {
233 	if (!stripe)
234 		return;
235 
236 	for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
237 		if (stripe->pages[i])
238 			__free_page(stripe->pages[i]);
239 		stripe->pages[i] = NULL;
240 	}
241 	kfree(stripe->sectors);
242 	kfree(stripe->csums);
243 	stripe->sectors = NULL;
244 	stripe->csums = NULL;
245 	stripe->sctx = NULL;
246 	stripe->state = 0;
247 }
248 
init_scrub_stripe(struct btrfs_fs_info * fs_info,struct scrub_stripe * stripe)249 static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
250 			     struct scrub_stripe *stripe)
251 {
252 	int ret;
253 
254 	memset(stripe, 0, sizeof(*stripe));
255 
256 	stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
257 	stripe->state = 0;
258 
259 	init_waitqueue_head(&stripe->io_wait);
260 	init_waitqueue_head(&stripe->repair_wait);
261 	atomic_set(&stripe->pending_io, 0);
262 	spin_lock_init(&stripe->write_error_lock);
263 
264 	ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages, false);
265 	if (ret < 0)
266 		goto error;
267 
268 	stripe->sectors = kcalloc(stripe->nr_sectors,
269 				  sizeof(struct scrub_sector_verification),
270 				  GFP_KERNEL);
271 	if (!stripe->sectors)
272 		goto error;
273 
274 	stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
275 				fs_info->csum_size, GFP_KERNEL);
276 	if (!stripe->csums)
277 		goto error;
278 	return 0;
279 error:
280 	release_scrub_stripe(stripe);
281 	return -ENOMEM;
282 }
283 
wait_scrub_stripe_io(struct scrub_stripe * stripe)284 static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
285 {
286 	wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
287 }
288 
289 static void scrub_put_ctx(struct scrub_ctx *sctx);
290 
__scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)291 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
292 {
293 	while (atomic_read(&fs_info->scrub_pause_req)) {
294 		mutex_unlock(&fs_info->scrub_lock);
295 		wait_event(fs_info->scrub_pause_wait,
296 		   atomic_read(&fs_info->scrub_pause_req) == 0);
297 		mutex_lock(&fs_info->scrub_lock);
298 	}
299 }
300 
scrub_pause_on(struct btrfs_fs_info * fs_info)301 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
302 {
303 	atomic_inc(&fs_info->scrubs_paused);
304 	wake_up(&fs_info->scrub_pause_wait);
305 }
306 
scrub_pause_off(struct btrfs_fs_info * fs_info)307 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
308 {
309 	mutex_lock(&fs_info->scrub_lock);
310 	__scrub_blocked_if_needed(fs_info);
311 	atomic_dec(&fs_info->scrubs_paused);
312 	mutex_unlock(&fs_info->scrub_lock);
313 
314 	wake_up(&fs_info->scrub_pause_wait);
315 }
316 
scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)317 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
318 {
319 	scrub_pause_on(fs_info);
320 	scrub_pause_off(fs_info);
321 }
322 
scrub_free_ctx(struct scrub_ctx * sctx)323 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
324 {
325 	int i;
326 
327 	if (!sctx)
328 		return;
329 
330 	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
331 		release_scrub_stripe(&sctx->stripes[i]);
332 
333 	kvfree(sctx);
334 }
335 
scrub_put_ctx(struct scrub_ctx * sctx)336 static void scrub_put_ctx(struct scrub_ctx *sctx)
337 {
338 	if (refcount_dec_and_test(&sctx->refs))
339 		scrub_free_ctx(sctx);
340 }
341 
scrub_setup_ctx(struct btrfs_fs_info * fs_info,int is_dev_replace)342 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
343 		struct btrfs_fs_info *fs_info, int is_dev_replace)
344 {
345 	struct scrub_ctx *sctx;
346 	int		i;
347 
348 	/* Since sctx has inline 128 stripes, it can go beyond 64K easily.  Use
349 	 * kvzalloc().
350 	 */
351 	sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
352 	if (!sctx)
353 		goto nomem;
354 	refcount_set(&sctx->refs, 1);
355 	sctx->is_dev_replace = is_dev_replace;
356 	sctx->fs_info = fs_info;
357 	sctx->extent_path.search_commit_root = 1;
358 	sctx->extent_path.skip_locking = 1;
359 	sctx->csum_path.search_commit_root = 1;
360 	sctx->csum_path.skip_locking = 1;
361 	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
362 		int ret;
363 
364 		ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
365 		if (ret < 0)
366 			goto nomem;
367 		sctx->stripes[i].sctx = sctx;
368 	}
369 	sctx->first_free = 0;
370 	atomic_set(&sctx->cancel_req, 0);
371 
372 	spin_lock_init(&sctx->stat_lock);
373 	sctx->throttle_deadline = 0;
374 
375 	mutex_init(&sctx->wr_lock);
376 	if (is_dev_replace) {
377 		WARN_ON(!fs_info->dev_replace.tgtdev);
378 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
379 	}
380 
381 	return sctx;
382 
383 nomem:
384 	scrub_free_ctx(sctx);
385 	return ERR_PTR(-ENOMEM);
386 }
387 
scrub_print_warning_inode(u64 inum,u64 offset,u64 num_bytes,u64 root,void * warn_ctx)388 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
389 				     u64 root, void *warn_ctx)
390 {
391 	u32 nlink;
392 	int ret;
393 	int i;
394 	unsigned nofs_flag;
395 	struct extent_buffer *eb;
396 	struct btrfs_inode_item *inode_item;
397 	struct scrub_warning *swarn = warn_ctx;
398 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
399 	struct inode_fs_paths *ipath = NULL;
400 	struct btrfs_root *local_root;
401 	struct btrfs_key key;
402 
403 	local_root = btrfs_get_fs_root(fs_info, root, true);
404 	if (IS_ERR(local_root)) {
405 		ret = PTR_ERR(local_root);
406 		goto err;
407 	}
408 
409 	/*
410 	 * this makes the path point to (inum INODE_ITEM ioff)
411 	 */
412 	key.objectid = inum;
413 	key.type = BTRFS_INODE_ITEM_KEY;
414 	key.offset = 0;
415 
416 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
417 	if (ret) {
418 		btrfs_put_root(local_root);
419 		btrfs_release_path(swarn->path);
420 		goto err;
421 	}
422 
423 	eb = swarn->path->nodes[0];
424 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
425 					struct btrfs_inode_item);
426 	nlink = btrfs_inode_nlink(eb, inode_item);
427 	btrfs_release_path(swarn->path);
428 
429 	/*
430 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
431 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
432 	 * not seem to be strictly necessary.
433 	 */
434 	nofs_flag = memalloc_nofs_save();
435 	ipath = init_ipath(4096, local_root, swarn->path);
436 	memalloc_nofs_restore(nofs_flag);
437 	if (IS_ERR(ipath)) {
438 		btrfs_put_root(local_root);
439 		ret = PTR_ERR(ipath);
440 		ipath = NULL;
441 		goto err;
442 	}
443 	ret = paths_from_inode(inum, ipath);
444 
445 	if (ret < 0)
446 		goto err;
447 
448 	/*
449 	 * we deliberately ignore the bit ipath might have been too small to
450 	 * hold all of the paths here
451 	 */
452 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
453 		btrfs_warn_in_rcu(fs_info,
454 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
455 				  swarn->errstr, swarn->logical,
456 				  btrfs_dev_name(swarn->dev),
457 				  swarn->physical,
458 				  root, inum, offset,
459 				  fs_info->sectorsize, nlink,
460 				  (char *)(unsigned long)ipath->fspath->val[i]);
461 
462 	btrfs_put_root(local_root);
463 	free_ipath(ipath);
464 	return 0;
465 
466 err:
467 	btrfs_warn_in_rcu(fs_info,
468 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
469 			  swarn->errstr, swarn->logical,
470 			  btrfs_dev_name(swarn->dev),
471 			  swarn->physical,
472 			  root, inum, offset, ret);
473 
474 	free_ipath(ipath);
475 	return 0;
476 }
477 
scrub_print_common_warning(const char * errstr,struct btrfs_device * dev,bool is_super,u64 logical,u64 physical)478 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
479 				       bool is_super, u64 logical, u64 physical)
480 {
481 	struct btrfs_fs_info *fs_info = dev->fs_info;
482 	struct btrfs_path *path;
483 	struct btrfs_key found_key;
484 	struct extent_buffer *eb;
485 	struct btrfs_extent_item *ei;
486 	struct scrub_warning swarn;
487 	u64 flags = 0;
488 	u32 item_size;
489 	int ret;
490 
491 	/* Super block error, no need to search extent tree. */
492 	if (is_super) {
493 		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
494 				  errstr, btrfs_dev_name(dev), physical);
495 		return;
496 	}
497 	path = btrfs_alloc_path();
498 	if (!path)
499 		return;
500 
501 	swarn.physical = physical;
502 	swarn.logical = logical;
503 	swarn.errstr = errstr;
504 	swarn.dev = NULL;
505 
506 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
507 				  &flags);
508 	if (ret < 0)
509 		goto out;
510 
511 	swarn.extent_item_size = found_key.offset;
512 
513 	eb = path->nodes[0];
514 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
515 	item_size = btrfs_item_size(eb, path->slots[0]);
516 
517 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
518 		unsigned long ptr = 0;
519 		u8 ref_level;
520 		u64 ref_root;
521 
522 		while (true) {
523 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
524 						      item_size, &ref_root,
525 						      &ref_level);
526 			if (ret < 0) {
527 				btrfs_warn(fs_info,
528 				"failed to resolve tree backref for logical %llu: %d",
529 						  swarn.logical, ret);
530 				break;
531 			}
532 			if (ret > 0)
533 				break;
534 			btrfs_warn_in_rcu(fs_info,
535 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
536 				errstr, swarn.logical, btrfs_dev_name(dev),
537 				swarn.physical, (ref_level ? "node" : "leaf"),
538 				ref_level, ref_root);
539 		}
540 		btrfs_release_path(path);
541 	} else {
542 		struct btrfs_backref_walk_ctx ctx = { 0 };
543 
544 		btrfs_release_path(path);
545 
546 		ctx.bytenr = found_key.objectid;
547 		ctx.extent_item_pos = swarn.logical - found_key.objectid;
548 		ctx.fs_info = fs_info;
549 
550 		swarn.path = path;
551 		swarn.dev = dev;
552 
553 		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
554 	}
555 
556 out:
557 	btrfs_free_path(path);
558 }
559 
fill_writer_pointer_gap(struct scrub_ctx * sctx,u64 physical)560 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
561 {
562 	int ret = 0;
563 	u64 length;
564 
565 	if (!btrfs_is_zoned(sctx->fs_info))
566 		return 0;
567 
568 	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
569 		return 0;
570 
571 	if (sctx->write_pointer < physical) {
572 		length = physical - sctx->write_pointer;
573 
574 		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
575 						sctx->write_pointer, length);
576 		if (!ret)
577 			sctx->write_pointer = physical;
578 	}
579 	return ret;
580 }
581 
scrub_stripe_get_page(struct scrub_stripe * stripe,int sector_nr)582 static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
583 {
584 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
585 	int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
586 
587 	return stripe->pages[page_index];
588 }
589 
scrub_stripe_get_page_offset(struct scrub_stripe * stripe,int sector_nr)590 static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
591 						 int sector_nr)
592 {
593 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
594 
595 	return offset_in_page(sector_nr << fs_info->sectorsize_bits);
596 }
597 
scrub_verify_one_metadata(struct scrub_stripe * stripe,int sector_nr)598 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
599 {
600 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
601 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
602 	const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
603 	const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
604 	const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
605 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
606 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
607 	u8 calculated_csum[BTRFS_CSUM_SIZE];
608 	struct btrfs_header *header;
609 
610 	/*
611 	 * Here we don't have a good way to attach the pages (and subpages)
612 	 * to a dummy extent buffer, thus we have to directly grab the members
613 	 * from pages.
614 	 */
615 	header = (struct btrfs_header *)(page_address(first_page) + first_off);
616 	memcpy(on_disk_csum, header->csum, fs_info->csum_size);
617 
618 	if (logical != btrfs_stack_header_bytenr(header)) {
619 		bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
620 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
621 		btrfs_warn_rl(fs_info,
622 		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
623 			      logical, stripe->mirror_num,
624 			      btrfs_stack_header_bytenr(header), logical);
625 		return;
626 	}
627 	if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
628 		   BTRFS_FSID_SIZE) != 0) {
629 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
630 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
631 		btrfs_warn_rl(fs_info,
632 		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
633 			      logical, stripe->mirror_num,
634 			      header->fsid, fs_info->fs_devices->fsid);
635 		return;
636 	}
637 	if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
638 		   BTRFS_UUID_SIZE) != 0) {
639 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
640 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
641 		btrfs_warn_rl(fs_info,
642 		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
643 			      logical, stripe->mirror_num,
644 			      header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
645 		return;
646 	}
647 
648 	/* Now check tree block csum. */
649 	shash->tfm = fs_info->csum_shash;
650 	crypto_shash_init(shash);
651 	crypto_shash_update(shash, page_address(first_page) + first_off +
652 			    BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
653 
654 	for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
655 		struct page *page = scrub_stripe_get_page(stripe, i);
656 		unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
657 
658 		crypto_shash_update(shash, page_address(page) + page_off,
659 				    fs_info->sectorsize);
660 	}
661 
662 	crypto_shash_final(shash, calculated_csum);
663 	if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
664 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
665 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
666 		btrfs_warn_rl(fs_info,
667 		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
668 			      logical, stripe->mirror_num,
669 			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
670 			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
671 		return;
672 	}
673 	if (stripe->sectors[sector_nr].generation !=
674 	    btrfs_stack_header_generation(header)) {
675 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
676 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
677 		btrfs_warn_rl(fs_info,
678 		"tree block %llu mirror %u has bad generation, has %llu want %llu",
679 			      logical, stripe->mirror_num,
680 			      btrfs_stack_header_generation(header),
681 			      stripe->sectors[sector_nr].generation);
682 		return;
683 	}
684 	bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
685 	bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
686 	bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
687 }
688 
scrub_verify_one_sector(struct scrub_stripe * stripe,int sector_nr)689 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
690 {
691 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
692 	struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
693 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
694 	struct page *page = scrub_stripe_get_page(stripe, sector_nr);
695 	unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
696 	u8 csum_buf[BTRFS_CSUM_SIZE];
697 	int ret;
698 
699 	ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
700 
701 	/* Sector not utilized, skip it. */
702 	if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
703 		return;
704 
705 	/* IO error, no need to check. */
706 	if (test_bit(sector_nr, &stripe->io_error_bitmap))
707 		return;
708 
709 	/* Metadata, verify the full tree block. */
710 	if (sector->is_metadata) {
711 		/*
712 		 * Check if the tree block crosses the stripe boundary.  If
713 		 * crossed the boundary, we cannot verify it but only give a
714 		 * warning.
715 		 *
716 		 * This can only happen on a very old filesystem where chunks
717 		 * are not ensured to be stripe aligned.
718 		 */
719 		if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
720 			btrfs_warn_rl(fs_info,
721 			"tree block at %llu crosses stripe boundary %llu",
722 				      stripe->logical +
723 				      (sector_nr << fs_info->sectorsize_bits),
724 				      stripe->logical);
725 			return;
726 		}
727 		scrub_verify_one_metadata(stripe, sector_nr);
728 		return;
729 	}
730 
731 	/*
732 	 * Data is easier, we just verify the data csum (if we have it).  For
733 	 * cases without csum, we have no other choice but to trust it.
734 	 */
735 	if (!sector->csum) {
736 		clear_bit(sector_nr, &stripe->error_bitmap);
737 		return;
738 	}
739 
740 	ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
741 	if (ret < 0) {
742 		set_bit(sector_nr, &stripe->csum_error_bitmap);
743 		set_bit(sector_nr, &stripe->error_bitmap);
744 	} else {
745 		clear_bit(sector_nr, &stripe->csum_error_bitmap);
746 		clear_bit(sector_nr, &stripe->error_bitmap);
747 	}
748 }
749 
750 /* Verify specified sectors of a stripe. */
scrub_verify_one_stripe(struct scrub_stripe * stripe,unsigned long bitmap)751 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
752 {
753 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
754 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
755 	int sector_nr;
756 
757 	for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
758 		scrub_verify_one_sector(stripe, sector_nr);
759 		if (stripe->sectors[sector_nr].is_metadata)
760 			sector_nr += sectors_per_tree - 1;
761 	}
762 }
763 
calc_sector_number(struct scrub_stripe * stripe,struct bio_vec * first_bvec)764 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
765 {
766 	int i;
767 
768 	for (i = 0; i < stripe->nr_sectors; i++) {
769 		if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
770 		    scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
771 			break;
772 	}
773 	ASSERT(i < stripe->nr_sectors);
774 	return i;
775 }
776 
777 /*
778  * Repair read is different to the regular read:
779  *
780  * - Only reads the failed sectors
781  * - May have extra blocksize limits
782  */
scrub_repair_read_endio(struct btrfs_bio * bbio)783 static void scrub_repair_read_endio(struct btrfs_bio *bbio)
784 {
785 	struct scrub_stripe *stripe = bbio->private;
786 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
787 	struct bio_vec *bvec;
788 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
789 	u32 bio_size = 0;
790 	int i;
791 
792 	ASSERT(sector_nr < stripe->nr_sectors);
793 
794 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
795 		bio_size += bvec->bv_len;
796 
797 	if (bbio->bio.bi_status) {
798 		bitmap_set(&stripe->io_error_bitmap, sector_nr,
799 			   bio_size >> fs_info->sectorsize_bits);
800 		bitmap_set(&stripe->error_bitmap, sector_nr,
801 			   bio_size >> fs_info->sectorsize_bits);
802 	} else {
803 		bitmap_clear(&stripe->io_error_bitmap, sector_nr,
804 			     bio_size >> fs_info->sectorsize_bits);
805 	}
806 	bio_put(&bbio->bio);
807 	if (atomic_dec_and_test(&stripe->pending_io))
808 		wake_up(&stripe->io_wait);
809 }
810 
calc_next_mirror(int mirror,int num_copies)811 static int calc_next_mirror(int mirror, int num_copies)
812 {
813 	ASSERT(mirror <= num_copies);
814 	return (mirror + 1 > num_copies) ? 1 : mirror + 1;
815 }
816 
scrub_stripe_submit_repair_read(struct scrub_stripe * stripe,int mirror,int blocksize,bool wait)817 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
818 					    int mirror, int blocksize, bool wait)
819 {
820 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
821 	struct btrfs_bio *bbio = NULL;
822 	const unsigned long old_error_bitmap = stripe->error_bitmap;
823 	int i;
824 
825 	ASSERT(stripe->mirror_num >= 1);
826 	ASSERT(atomic_read(&stripe->pending_io) == 0);
827 
828 	for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
829 		struct page *page;
830 		int pgoff;
831 		int ret;
832 
833 		page = scrub_stripe_get_page(stripe, i);
834 		pgoff = scrub_stripe_get_page_offset(stripe, i);
835 
836 		/* The current sector cannot be merged, submit the bio. */
837 		if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
838 			     bbio->bio.bi_iter.bi_size >= blocksize)) {
839 			ASSERT(bbio->bio.bi_iter.bi_size);
840 			atomic_inc(&stripe->pending_io);
841 			btrfs_submit_bbio(bbio, mirror);
842 			if (wait)
843 				wait_scrub_stripe_io(stripe);
844 			bbio = NULL;
845 		}
846 
847 		if (!bbio) {
848 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
849 				fs_info, scrub_repair_read_endio, stripe);
850 			bbio->bio.bi_iter.bi_sector = (stripe->logical +
851 				(i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
852 		}
853 
854 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
855 		ASSERT(ret == fs_info->sectorsize);
856 	}
857 	if (bbio) {
858 		ASSERT(bbio->bio.bi_iter.bi_size);
859 		atomic_inc(&stripe->pending_io);
860 		btrfs_submit_bbio(bbio, mirror);
861 		if (wait)
862 			wait_scrub_stripe_io(stripe);
863 	}
864 }
865 
scrub_stripe_report_errors(struct scrub_ctx * sctx,struct scrub_stripe * stripe)866 static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
867 				       struct scrub_stripe *stripe)
868 {
869 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
870 				      DEFAULT_RATELIMIT_BURST);
871 	struct btrfs_fs_info *fs_info = sctx->fs_info;
872 	struct btrfs_device *dev = NULL;
873 	u64 physical = 0;
874 	int nr_data_sectors = 0;
875 	int nr_meta_sectors = 0;
876 	int nr_nodatacsum_sectors = 0;
877 	int nr_repaired_sectors = 0;
878 	int sector_nr;
879 
880 	if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
881 		return;
882 
883 	/*
884 	 * Init needed infos for error reporting.
885 	 *
886 	 * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio()
887 	 * thus no need for dev/physical, error reporting still needs dev and physical.
888 	 */
889 	if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
890 		u64 mapped_len = fs_info->sectorsize;
891 		struct btrfs_io_context *bioc = NULL;
892 		int stripe_index = stripe->mirror_num - 1;
893 		int ret;
894 
895 		/* For scrub, our mirror_num should always start at 1. */
896 		ASSERT(stripe->mirror_num >= 1);
897 		ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
898 				      stripe->logical, &mapped_len, &bioc,
899 				      NULL, NULL);
900 		/*
901 		 * If we failed, dev will be NULL, and later detailed reports
902 		 * will just be skipped.
903 		 */
904 		if (ret < 0)
905 			goto skip;
906 		physical = bioc->stripes[stripe_index].physical;
907 		dev = bioc->stripes[stripe_index].dev;
908 		btrfs_put_bioc(bioc);
909 	}
910 
911 skip:
912 	for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
913 		bool repaired = false;
914 
915 		if (stripe->sectors[sector_nr].is_metadata) {
916 			nr_meta_sectors++;
917 		} else {
918 			nr_data_sectors++;
919 			if (!stripe->sectors[sector_nr].csum)
920 				nr_nodatacsum_sectors++;
921 		}
922 
923 		if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
924 		    !test_bit(sector_nr, &stripe->error_bitmap)) {
925 			nr_repaired_sectors++;
926 			repaired = true;
927 		}
928 
929 		/* Good sector from the beginning, nothing need to be done. */
930 		if (!test_bit(sector_nr, &stripe->init_error_bitmap))
931 			continue;
932 
933 		/*
934 		 * Report error for the corrupted sectors.  If repaired, just
935 		 * output the message of repaired message.
936 		 */
937 		if (repaired) {
938 			if (dev) {
939 				btrfs_err_rl_in_rcu(fs_info,
940 			"fixed up error at logical %llu on dev %s physical %llu",
941 					    stripe->logical, btrfs_dev_name(dev),
942 					    physical);
943 			} else {
944 				btrfs_err_rl_in_rcu(fs_info,
945 			"fixed up error at logical %llu on mirror %u",
946 					    stripe->logical, stripe->mirror_num);
947 			}
948 			continue;
949 		}
950 
951 		/* The remaining are all for unrepaired. */
952 		if (dev) {
953 			btrfs_err_rl_in_rcu(fs_info,
954 	"unable to fixup (regular) error at logical %llu on dev %s physical %llu",
955 					    stripe->logical, btrfs_dev_name(dev),
956 					    physical);
957 		} else {
958 			btrfs_err_rl_in_rcu(fs_info,
959 	"unable to fixup (regular) error at logical %llu on mirror %u",
960 					    stripe->logical, stripe->mirror_num);
961 		}
962 
963 		if (test_bit(sector_nr, &stripe->io_error_bitmap))
964 			if (__ratelimit(&rs) && dev)
965 				scrub_print_common_warning("i/o error", dev, false,
966 						     stripe->logical, physical);
967 		if (test_bit(sector_nr, &stripe->csum_error_bitmap))
968 			if (__ratelimit(&rs) && dev)
969 				scrub_print_common_warning("checksum error", dev, false,
970 						     stripe->logical, physical);
971 		if (test_bit(sector_nr, &stripe->meta_error_bitmap))
972 			if (__ratelimit(&rs) && dev)
973 				scrub_print_common_warning("header error", dev, false,
974 						     stripe->logical, physical);
975 	}
976 
977 	spin_lock(&sctx->stat_lock);
978 	sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
979 	sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
980 	sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
981 	sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
982 	sctx->stat.no_csum += nr_nodatacsum_sectors;
983 	sctx->stat.read_errors += stripe->init_nr_io_errors;
984 	sctx->stat.csum_errors += stripe->init_nr_csum_errors;
985 	sctx->stat.verify_errors += stripe->init_nr_meta_errors;
986 	sctx->stat.uncorrectable_errors +=
987 		bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
988 	sctx->stat.corrected_errors += nr_repaired_sectors;
989 	spin_unlock(&sctx->stat_lock);
990 }
991 
992 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
993 				unsigned long write_bitmap, bool dev_replace);
994 
995 /*
996  * The main entrance for all read related scrub work, including:
997  *
998  * - Wait for the initial read to finish
999  * - Verify and locate any bad sectors
1000  * - Go through the remaining mirrors and try to read as large blocksize as
1001  *   possible
1002  * - Go through all mirrors (including the failed mirror) sector-by-sector
1003  * - Submit writeback for repaired sectors
1004  *
1005  * Writeback for dev-replace does not happen here, it needs extra
1006  * synchronization for zoned devices.
1007  */
scrub_stripe_read_repair_worker(struct work_struct * work)1008 static void scrub_stripe_read_repair_worker(struct work_struct *work)
1009 {
1010 	struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
1011 	struct scrub_ctx *sctx = stripe->sctx;
1012 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1013 	int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1014 					  stripe->bg->length);
1015 	unsigned long repaired;
1016 	int mirror;
1017 	int i;
1018 
1019 	ASSERT(stripe->mirror_num > 0);
1020 
1021 	wait_scrub_stripe_io(stripe);
1022 	scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
1023 	/* Save the initial failed bitmap for later repair and report usage. */
1024 	stripe->init_error_bitmap = stripe->error_bitmap;
1025 	stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
1026 						  stripe->nr_sectors);
1027 	stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1028 						    stripe->nr_sectors);
1029 	stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1030 						    stripe->nr_sectors);
1031 
1032 	if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
1033 		goto out;
1034 
1035 	/*
1036 	 * Try all remaining mirrors.
1037 	 *
1038 	 * Here we still try to read as large block as possible, as this is
1039 	 * faster and we have extra safety nets to rely on.
1040 	 */
1041 	for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1042 	     mirror != stripe->mirror_num;
1043 	     mirror = calc_next_mirror(mirror, num_copies)) {
1044 		const unsigned long old_error_bitmap = stripe->error_bitmap;
1045 
1046 		scrub_stripe_submit_repair_read(stripe, mirror,
1047 						BTRFS_STRIPE_LEN, false);
1048 		wait_scrub_stripe_io(stripe);
1049 		scrub_verify_one_stripe(stripe, old_error_bitmap);
1050 		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1051 			goto out;
1052 	}
1053 
1054 	/*
1055 	 * Last safety net, try re-checking all mirrors, including the failed
1056 	 * one, sector-by-sector.
1057 	 *
1058 	 * As if one sector failed the drive's internal csum, the whole read
1059 	 * containing the offending sector would be marked as error.
1060 	 * Thus here we do sector-by-sector read.
1061 	 *
1062 	 * This can be slow, thus we only try it as the last resort.
1063 	 */
1064 
1065 	for (i = 0, mirror = stripe->mirror_num;
1066 	     i < num_copies;
1067 	     i++, mirror = calc_next_mirror(mirror, num_copies)) {
1068 		const unsigned long old_error_bitmap = stripe->error_bitmap;
1069 
1070 		scrub_stripe_submit_repair_read(stripe, mirror,
1071 						fs_info->sectorsize, true);
1072 		wait_scrub_stripe_io(stripe);
1073 		scrub_verify_one_stripe(stripe, old_error_bitmap);
1074 		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1075 			goto out;
1076 	}
1077 out:
1078 	/*
1079 	 * Submit the repaired sectors.  For zoned case, we cannot do repair
1080 	 * in-place, but queue the bg to be relocated.
1081 	 */
1082 	bitmap_andnot(&repaired, &stripe->init_error_bitmap, &stripe->error_bitmap,
1083 		      stripe->nr_sectors);
1084 	if (!sctx->readonly && !bitmap_empty(&repaired, stripe->nr_sectors)) {
1085 		if (btrfs_is_zoned(fs_info)) {
1086 			btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
1087 		} else {
1088 			scrub_write_sectors(sctx, stripe, repaired, false);
1089 			wait_scrub_stripe_io(stripe);
1090 		}
1091 	}
1092 
1093 	scrub_stripe_report_errors(sctx, stripe);
1094 	set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1095 	wake_up(&stripe->repair_wait);
1096 }
1097 
scrub_read_endio(struct btrfs_bio * bbio)1098 static void scrub_read_endio(struct btrfs_bio *bbio)
1099 {
1100 	struct scrub_stripe *stripe = bbio->private;
1101 	struct bio_vec *bvec;
1102 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1103 	int num_sectors;
1104 	u32 bio_size = 0;
1105 	int i;
1106 
1107 	ASSERT(sector_nr < stripe->nr_sectors);
1108 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1109 		bio_size += bvec->bv_len;
1110 	num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits;
1111 
1112 	if (bbio->bio.bi_status) {
1113 		bitmap_set(&stripe->io_error_bitmap, sector_nr, num_sectors);
1114 		bitmap_set(&stripe->error_bitmap, sector_nr, num_sectors);
1115 	} else {
1116 		bitmap_clear(&stripe->io_error_bitmap, sector_nr, num_sectors);
1117 	}
1118 	bio_put(&bbio->bio);
1119 	if (atomic_dec_and_test(&stripe->pending_io)) {
1120 		wake_up(&stripe->io_wait);
1121 		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1122 		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1123 	}
1124 }
1125 
scrub_write_endio(struct btrfs_bio * bbio)1126 static void scrub_write_endio(struct btrfs_bio *bbio)
1127 {
1128 	struct scrub_stripe *stripe = bbio->private;
1129 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1130 	struct bio_vec *bvec;
1131 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1132 	u32 bio_size = 0;
1133 	int i;
1134 
1135 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1136 		bio_size += bvec->bv_len;
1137 
1138 	if (bbio->bio.bi_status) {
1139 		unsigned long flags;
1140 
1141 		spin_lock_irqsave(&stripe->write_error_lock, flags);
1142 		bitmap_set(&stripe->write_error_bitmap, sector_nr,
1143 			   bio_size >> fs_info->sectorsize_bits);
1144 		spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1145 	}
1146 	bio_put(&bbio->bio);
1147 
1148 	if (atomic_dec_and_test(&stripe->pending_io))
1149 		wake_up(&stripe->io_wait);
1150 }
1151 
scrub_submit_write_bio(struct scrub_ctx * sctx,struct scrub_stripe * stripe,struct btrfs_bio * bbio,bool dev_replace)1152 static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1153 				   struct scrub_stripe *stripe,
1154 				   struct btrfs_bio *bbio, bool dev_replace)
1155 {
1156 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1157 	u32 bio_len = bbio->bio.bi_iter.bi_size;
1158 	u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1159 		      stripe->logical;
1160 
1161 	fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1162 	atomic_inc(&stripe->pending_io);
1163 	btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1164 	if (!btrfs_is_zoned(fs_info))
1165 		return;
1166 	/*
1167 	 * For zoned writeback, queue depth must be 1, thus we must wait for
1168 	 * the write to finish before the next write.
1169 	 */
1170 	wait_scrub_stripe_io(stripe);
1171 
1172 	/*
1173 	 * And also need to update the write pointer if write finished
1174 	 * successfully.
1175 	 */
1176 	if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1177 		      &stripe->write_error_bitmap))
1178 		sctx->write_pointer += bio_len;
1179 }
1180 
1181 /*
1182  * Submit the write bio(s) for the sectors specified by @write_bitmap.
1183  *
1184  * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1185  *
1186  * - Only needs logical bytenr and mirror_num
1187  *   Just like the scrub read path
1188  *
1189  * - Would only result in writes to the specified mirror
1190  *   Unlike the regular writeback path, which would write back to all stripes
1191  *
1192  * - Handle dev-replace and read-repair writeback differently
1193  */
scrub_write_sectors(struct scrub_ctx * sctx,struct scrub_stripe * stripe,unsigned long write_bitmap,bool dev_replace)1194 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1195 				unsigned long write_bitmap, bool dev_replace)
1196 {
1197 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1198 	struct btrfs_bio *bbio = NULL;
1199 	int sector_nr;
1200 
1201 	for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1202 		struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1203 		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1204 		int ret;
1205 
1206 		/* We should only writeback sectors covered by an extent. */
1207 		ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
1208 
1209 		/* Cannot merge with previous sector, submit the current one. */
1210 		if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1211 			scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1212 			bbio = NULL;
1213 		}
1214 		if (!bbio) {
1215 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1216 					       fs_info, scrub_write_endio, stripe);
1217 			bbio->bio.bi_iter.bi_sector = (stripe->logical +
1218 				(sector_nr << fs_info->sectorsize_bits)) >>
1219 				SECTOR_SHIFT;
1220 		}
1221 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1222 		ASSERT(ret == fs_info->sectorsize);
1223 	}
1224 	if (bbio)
1225 		scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1226 }
1227 
1228 /*
1229  * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1230  * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1231  */
scrub_throttle_dev_io(struct scrub_ctx * sctx,struct btrfs_device * device,unsigned int bio_size)1232 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1233 				  unsigned int bio_size)
1234 {
1235 	const int time_slice = 1000;
1236 	s64 delta;
1237 	ktime_t now;
1238 	u32 div;
1239 	u64 bwlimit;
1240 
1241 	bwlimit = READ_ONCE(device->scrub_speed_max);
1242 	if (bwlimit == 0)
1243 		return;
1244 
1245 	/*
1246 	 * Slice is divided into intervals when the IO is submitted, adjust by
1247 	 * bwlimit and maximum of 64 intervals.
1248 	 */
1249 	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1250 	div = min_t(u32, 64, div);
1251 
1252 	/* Start new epoch, set deadline */
1253 	now = ktime_get();
1254 	if (sctx->throttle_deadline == 0) {
1255 		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1256 		sctx->throttle_sent = 0;
1257 	}
1258 
1259 	/* Still in the time to send? */
1260 	if (ktime_before(now, sctx->throttle_deadline)) {
1261 		/* If current bio is within the limit, send it */
1262 		sctx->throttle_sent += bio_size;
1263 		if (sctx->throttle_sent <= div_u64(bwlimit, div))
1264 			return;
1265 
1266 		/* We're over the limit, sleep until the rest of the slice */
1267 		delta = ktime_ms_delta(sctx->throttle_deadline, now);
1268 	} else {
1269 		/* New request after deadline, start new epoch */
1270 		delta = 0;
1271 	}
1272 
1273 	if (delta) {
1274 		long timeout;
1275 
1276 		timeout = div_u64(delta * HZ, 1000);
1277 		schedule_timeout_interruptible(timeout);
1278 	}
1279 
1280 	/* Next call will start the deadline period */
1281 	sctx->throttle_deadline = 0;
1282 }
1283 
1284 /*
1285  * Given a physical address, this will calculate it's
1286  * logical offset. if this is a parity stripe, it will return
1287  * the most left data stripe's logical offset.
1288  *
1289  * return 0 if it is a data stripe, 1 means parity stripe.
1290  */
get_raid56_logic_offset(u64 physical,int num,struct btrfs_chunk_map * map,u64 * offset,u64 * stripe_start)1291 static int get_raid56_logic_offset(u64 physical, int num,
1292 				   struct btrfs_chunk_map *map, u64 *offset,
1293 				   u64 *stripe_start)
1294 {
1295 	int i;
1296 	int j = 0;
1297 	u64 last_offset;
1298 	const int data_stripes = nr_data_stripes(map);
1299 
1300 	last_offset = (physical - map->stripes[num].physical) * data_stripes;
1301 	if (stripe_start)
1302 		*stripe_start = last_offset;
1303 
1304 	*offset = last_offset;
1305 	for (i = 0; i < data_stripes; i++) {
1306 		u32 stripe_nr;
1307 		u32 stripe_index;
1308 		u32 rot;
1309 
1310 		*offset = last_offset + btrfs_stripe_nr_to_offset(i);
1311 
1312 		stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
1313 
1314 		/* Work out the disk rotation on this stripe-set */
1315 		rot = stripe_nr % map->num_stripes;
1316 		/* calculate which stripe this data locates */
1317 		rot += i;
1318 		stripe_index = rot % map->num_stripes;
1319 		if (stripe_index == num)
1320 			return 0;
1321 		if (stripe_index < num)
1322 			j++;
1323 	}
1324 	*offset = last_offset + btrfs_stripe_nr_to_offset(j);
1325 	return 1;
1326 }
1327 
1328 /*
1329  * Return 0 if the extent item range covers any byte of the range.
1330  * Return <0 if the extent item is before @search_start.
1331  * Return >0 if the extent item is after @start_start + @search_len.
1332  */
compare_extent_item_range(struct btrfs_path * path,u64 search_start,u64 search_len)1333 static int compare_extent_item_range(struct btrfs_path *path,
1334 				     u64 search_start, u64 search_len)
1335 {
1336 	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1337 	u64 len;
1338 	struct btrfs_key key;
1339 
1340 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1341 	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1342 	       key.type == BTRFS_METADATA_ITEM_KEY);
1343 	if (key.type == BTRFS_METADATA_ITEM_KEY)
1344 		len = fs_info->nodesize;
1345 	else
1346 		len = key.offset;
1347 
1348 	if (key.objectid + len <= search_start)
1349 		return -1;
1350 	if (key.objectid >= search_start + search_len)
1351 		return 1;
1352 	return 0;
1353 }
1354 
1355 /*
1356  * Locate one extent item which covers any byte in range
1357  * [@search_start, @search_start + @search_length)
1358  *
1359  * If the path is not initialized, we will initialize the search by doing
1360  * a btrfs_search_slot().
1361  * If the path is already initialized, we will use the path as the initial
1362  * slot, to avoid duplicated btrfs_search_slot() calls.
1363  *
1364  * NOTE: If an extent item starts before @search_start, we will still
1365  * return the extent item. This is for data extent crossing stripe boundary.
1366  *
1367  * Return 0 if we found such extent item, and @path will point to the extent item.
1368  * Return >0 if no such extent item can be found, and @path will be released.
1369  * Return <0 if hit fatal error, and @path will be released.
1370  */
find_first_extent_item(struct btrfs_root * extent_root,struct btrfs_path * path,u64 search_start,u64 search_len)1371 static int find_first_extent_item(struct btrfs_root *extent_root,
1372 				  struct btrfs_path *path,
1373 				  u64 search_start, u64 search_len)
1374 {
1375 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1376 	struct btrfs_key key;
1377 	int ret;
1378 
1379 	/* Continue using the existing path */
1380 	if (path->nodes[0])
1381 		goto search_forward;
1382 
1383 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1384 		key.type = BTRFS_METADATA_ITEM_KEY;
1385 	else
1386 		key.type = BTRFS_EXTENT_ITEM_KEY;
1387 	key.objectid = search_start;
1388 	key.offset = (u64)-1;
1389 
1390 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1391 	if (ret < 0)
1392 		return ret;
1393 	if (ret == 0) {
1394 		/*
1395 		 * Key with offset -1 found, there would have to exist an extent
1396 		 * item with such offset, but this is out of the valid range.
1397 		 */
1398 		btrfs_release_path(path);
1399 		return -EUCLEAN;
1400 	}
1401 
1402 	/*
1403 	 * Here we intentionally pass 0 as @min_objectid, as there could be
1404 	 * an extent item starting before @search_start.
1405 	 */
1406 	ret = btrfs_previous_extent_item(extent_root, path, 0);
1407 	if (ret < 0)
1408 		return ret;
1409 	/*
1410 	 * No matter whether we have found an extent item, the next loop will
1411 	 * properly do every check on the key.
1412 	 */
1413 search_forward:
1414 	while (true) {
1415 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1416 		if (key.objectid >= search_start + search_len)
1417 			break;
1418 		if (key.type != BTRFS_METADATA_ITEM_KEY &&
1419 		    key.type != BTRFS_EXTENT_ITEM_KEY)
1420 			goto next;
1421 
1422 		ret = compare_extent_item_range(path, search_start, search_len);
1423 		if (ret == 0)
1424 			return ret;
1425 		if (ret > 0)
1426 			break;
1427 next:
1428 		ret = btrfs_next_item(extent_root, path);
1429 		if (ret) {
1430 			/* Either no more items or a fatal error. */
1431 			btrfs_release_path(path);
1432 			return ret;
1433 		}
1434 	}
1435 	btrfs_release_path(path);
1436 	return 1;
1437 }
1438 
get_extent_info(struct btrfs_path * path,u64 * extent_start_ret,u64 * size_ret,u64 * flags_ret,u64 * generation_ret)1439 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1440 			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1441 {
1442 	struct btrfs_key key;
1443 	struct btrfs_extent_item *ei;
1444 
1445 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1446 	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1447 	       key.type == BTRFS_EXTENT_ITEM_KEY);
1448 	*extent_start_ret = key.objectid;
1449 	if (key.type == BTRFS_METADATA_ITEM_KEY)
1450 		*size_ret = path->nodes[0]->fs_info->nodesize;
1451 	else
1452 		*size_ret = key.offset;
1453 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1454 	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1455 	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1456 }
1457 
sync_write_pointer_for_zoned(struct scrub_ctx * sctx,u64 logical,u64 physical,u64 physical_end)1458 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1459 					u64 physical, u64 physical_end)
1460 {
1461 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1462 	int ret = 0;
1463 
1464 	if (!btrfs_is_zoned(fs_info))
1465 		return 0;
1466 
1467 	mutex_lock(&sctx->wr_lock);
1468 	if (sctx->write_pointer < physical_end) {
1469 		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1470 						    physical,
1471 						    sctx->write_pointer);
1472 		if (ret)
1473 			btrfs_err(fs_info,
1474 				  "zoned: failed to recover write pointer");
1475 	}
1476 	mutex_unlock(&sctx->wr_lock);
1477 	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1478 
1479 	return ret;
1480 }
1481 
fill_one_extent_info(struct btrfs_fs_info * fs_info,struct scrub_stripe * stripe,u64 extent_start,u64 extent_len,u64 extent_flags,u64 extent_gen)1482 static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1483 				 struct scrub_stripe *stripe,
1484 				 u64 extent_start, u64 extent_len,
1485 				 u64 extent_flags, u64 extent_gen)
1486 {
1487 	for (u64 cur_logical = max(stripe->logical, extent_start);
1488 	     cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1489 			       extent_start + extent_len);
1490 	     cur_logical += fs_info->sectorsize) {
1491 		const int nr_sector = (cur_logical - stripe->logical) >>
1492 				      fs_info->sectorsize_bits;
1493 		struct scrub_sector_verification *sector =
1494 						&stripe->sectors[nr_sector];
1495 
1496 		set_bit(nr_sector, &stripe->extent_sector_bitmap);
1497 		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1498 			sector->is_metadata = true;
1499 			sector->generation = extent_gen;
1500 		}
1501 	}
1502 }
1503 
scrub_stripe_reset_bitmaps(struct scrub_stripe * stripe)1504 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1505 {
1506 	stripe->extent_sector_bitmap = 0;
1507 	stripe->init_error_bitmap = 0;
1508 	stripe->init_nr_io_errors = 0;
1509 	stripe->init_nr_csum_errors = 0;
1510 	stripe->init_nr_meta_errors = 0;
1511 	stripe->error_bitmap = 0;
1512 	stripe->io_error_bitmap = 0;
1513 	stripe->csum_error_bitmap = 0;
1514 	stripe->meta_error_bitmap = 0;
1515 }
1516 
1517 /*
1518  * Locate one stripe which has at least one extent in its range.
1519  *
1520  * Return 0 if found such stripe, and store its info into @stripe.
1521  * Return >0 if there is no such stripe in the specified range.
1522  * Return <0 for error.
1523  */
scrub_find_fill_first_stripe(struct btrfs_block_group * bg,struct btrfs_path * extent_path,struct btrfs_path * csum_path,struct btrfs_device * dev,u64 physical,int mirror_num,u64 logical_start,u32 logical_len,struct scrub_stripe * stripe)1524 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1525 					struct btrfs_path *extent_path,
1526 					struct btrfs_path *csum_path,
1527 					struct btrfs_device *dev, u64 physical,
1528 					int mirror_num, u64 logical_start,
1529 					u32 logical_len,
1530 					struct scrub_stripe *stripe)
1531 {
1532 	struct btrfs_fs_info *fs_info = bg->fs_info;
1533 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1534 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1535 	const u64 logical_end = logical_start + logical_len;
1536 	u64 cur_logical = logical_start;
1537 	u64 stripe_end;
1538 	u64 extent_start;
1539 	u64 extent_len;
1540 	u64 extent_flags;
1541 	u64 extent_gen;
1542 	int ret;
1543 
1544 	memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1545 				   stripe->nr_sectors);
1546 	scrub_stripe_reset_bitmaps(stripe);
1547 
1548 	/* The range must be inside the bg. */
1549 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1550 
1551 	ret = find_first_extent_item(extent_root, extent_path, logical_start,
1552 				     logical_len);
1553 	/* Either error or not found. */
1554 	if (ret)
1555 		goto out;
1556 	get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
1557 			&extent_gen);
1558 	if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1559 		stripe->nr_meta_extents++;
1560 	if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1561 		stripe->nr_data_extents++;
1562 	cur_logical = max(extent_start, cur_logical);
1563 
1564 	/*
1565 	 * Round down to stripe boundary.
1566 	 *
1567 	 * The extra calculation against bg->start is to handle block groups
1568 	 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1569 	 */
1570 	stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1571 			  bg->start;
1572 	stripe->physical = physical + stripe->logical - logical_start;
1573 	stripe->dev = dev;
1574 	stripe->bg = bg;
1575 	stripe->mirror_num = mirror_num;
1576 	stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1577 
1578 	/* Fill the first extent info into stripe->sectors[] array. */
1579 	fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1580 			     extent_flags, extent_gen);
1581 	cur_logical = extent_start + extent_len;
1582 
1583 	/* Fill the extent info for the remaining sectors. */
1584 	while (cur_logical <= stripe_end) {
1585 		ret = find_first_extent_item(extent_root, extent_path, cur_logical,
1586 					     stripe_end - cur_logical + 1);
1587 		if (ret < 0)
1588 			goto out;
1589 		if (ret > 0) {
1590 			ret = 0;
1591 			break;
1592 		}
1593 		get_extent_info(extent_path, &extent_start, &extent_len,
1594 				&extent_flags, &extent_gen);
1595 		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1596 			stripe->nr_meta_extents++;
1597 		if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1598 			stripe->nr_data_extents++;
1599 		fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1600 				     extent_flags, extent_gen);
1601 		cur_logical = extent_start + extent_len;
1602 	}
1603 
1604 	/* Now fill the data csum. */
1605 	if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1606 		int sector_nr;
1607 		unsigned long csum_bitmap = 0;
1608 
1609 		/* Csum space should have already been allocated. */
1610 		ASSERT(stripe->csums);
1611 
1612 		/*
1613 		 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1614 		 * should contain at most 16 sectors.
1615 		 */
1616 		ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1617 
1618 		ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
1619 						stripe->logical, stripe_end,
1620 						stripe->csums, &csum_bitmap);
1621 		if (ret < 0)
1622 			goto out;
1623 		if (ret > 0)
1624 			ret = 0;
1625 
1626 		for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1627 			stripe->sectors[sector_nr].csum = stripe->csums +
1628 				sector_nr * fs_info->csum_size;
1629 		}
1630 	}
1631 	set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1632 out:
1633 	return ret;
1634 }
1635 
scrub_reset_stripe(struct scrub_stripe * stripe)1636 static void scrub_reset_stripe(struct scrub_stripe *stripe)
1637 {
1638 	scrub_stripe_reset_bitmaps(stripe);
1639 
1640 	stripe->nr_meta_extents = 0;
1641 	stripe->nr_data_extents = 0;
1642 	stripe->state = 0;
1643 
1644 	for (int i = 0; i < stripe->nr_sectors; i++) {
1645 		stripe->sectors[i].is_metadata = false;
1646 		stripe->sectors[i].csum = NULL;
1647 		stripe->sectors[i].generation = 0;
1648 	}
1649 }
1650 
stripe_length(const struct scrub_stripe * stripe)1651 static u32 stripe_length(const struct scrub_stripe *stripe)
1652 {
1653 	ASSERT(stripe->bg);
1654 
1655 	return min(BTRFS_STRIPE_LEN,
1656 		   stripe->bg->start + stripe->bg->length - stripe->logical);
1657 }
1658 
scrub_submit_extent_sector_read(struct scrub_stripe * stripe)1659 static void scrub_submit_extent_sector_read(struct scrub_stripe *stripe)
1660 {
1661 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1662 	struct btrfs_bio *bbio = NULL;
1663 	unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits;
1664 	u64 stripe_len = BTRFS_STRIPE_LEN;
1665 	int mirror = stripe->mirror_num;
1666 	int i;
1667 
1668 	atomic_inc(&stripe->pending_io);
1669 
1670 	for_each_set_bit(i, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
1671 		struct page *page = scrub_stripe_get_page(stripe, i);
1672 		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, i);
1673 
1674 		/* We're beyond the chunk boundary, no need to read anymore. */
1675 		if (i >= nr_sectors)
1676 			break;
1677 
1678 		/* The current sector cannot be merged, submit the bio. */
1679 		if (bbio &&
1680 		    ((i > 0 &&
1681 		      !test_bit(i - 1, &stripe->extent_sector_bitmap)) ||
1682 		     bbio->bio.bi_iter.bi_size >= stripe_len)) {
1683 			ASSERT(bbio->bio.bi_iter.bi_size);
1684 			atomic_inc(&stripe->pending_io);
1685 			btrfs_submit_bbio(bbio, mirror);
1686 			bbio = NULL;
1687 		}
1688 
1689 		if (!bbio) {
1690 			struct btrfs_io_stripe io_stripe = {};
1691 			struct btrfs_io_context *bioc = NULL;
1692 			const u64 logical = stripe->logical +
1693 					    (i << fs_info->sectorsize_bits);
1694 			int err;
1695 
1696 			io_stripe.rst_search_commit_root = true;
1697 			stripe_len = (nr_sectors - i) << fs_info->sectorsize_bits;
1698 			/*
1699 			 * For RST cases, we need to manually split the bbio to
1700 			 * follow the RST boundary.
1701 			 */
1702 			err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1703 					      &stripe_len, &bioc, &io_stripe, &mirror);
1704 			btrfs_put_bioc(bioc);
1705 			if (err < 0) {
1706 				if (err != -ENODATA) {
1707 					/*
1708 					 * Earlier btrfs_get_raid_extent_offset()
1709 					 * returned -ENODATA, which means there's
1710 					 * no entry for the corresponding range
1711 					 * in the stripe tree.  But if it's in
1712 					 * the extent tree, then it's a preallocated
1713 					 * extent and not an error.
1714 					 */
1715 					set_bit(i, &stripe->io_error_bitmap);
1716 					set_bit(i, &stripe->error_bitmap);
1717 				}
1718 				continue;
1719 			}
1720 
1721 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
1722 					       fs_info, scrub_read_endio, stripe);
1723 			bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT;
1724 		}
1725 
1726 		__bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1727 	}
1728 
1729 	if (bbio) {
1730 		ASSERT(bbio->bio.bi_iter.bi_size);
1731 		atomic_inc(&stripe->pending_io);
1732 		btrfs_submit_bbio(bbio, mirror);
1733 	}
1734 
1735 	if (atomic_dec_and_test(&stripe->pending_io)) {
1736 		wake_up(&stripe->io_wait);
1737 		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1738 		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1739 	}
1740 }
1741 
scrub_submit_initial_read(struct scrub_ctx * sctx,struct scrub_stripe * stripe)1742 static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1743 				      struct scrub_stripe *stripe)
1744 {
1745 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1746 	struct btrfs_bio *bbio;
1747 	unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits;
1748 	int mirror = stripe->mirror_num;
1749 
1750 	ASSERT(stripe->bg);
1751 	ASSERT(stripe->mirror_num > 0);
1752 	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1753 
1754 	if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) {
1755 		scrub_submit_extent_sector_read(stripe);
1756 		return;
1757 	}
1758 
1759 	bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1760 			       scrub_read_endio, stripe);
1761 
1762 	bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1763 	/* Read the whole range inside the chunk boundary. */
1764 	for (unsigned int cur = 0; cur < nr_sectors; cur++) {
1765 		struct page *page = scrub_stripe_get_page(stripe, cur);
1766 		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, cur);
1767 		int ret;
1768 
1769 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1770 		/* We should have allocated enough bio vectors. */
1771 		ASSERT(ret == fs_info->sectorsize);
1772 	}
1773 	atomic_inc(&stripe->pending_io);
1774 
1775 	/*
1776 	 * For dev-replace, either user asks to avoid the source dev, or
1777 	 * the device is missing, we try the next mirror instead.
1778 	 */
1779 	if (sctx->is_dev_replace &&
1780 	    (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1781 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1782 	     !stripe->dev->bdev)) {
1783 		int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1784 						  stripe->bg->length);
1785 
1786 		mirror = calc_next_mirror(mirror, num_copies);
1787 	}
1788 	btrfs_submit_bbio(bbio, mirror);
1789 }
1790 
stripe_has_metadata_error(struct scrub_stripe * stripe)1791 static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1792 {
1793 	int i;
1794 
1795 	for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1796 		if (stripe->sectors[i].is_metadata) {
1797 			struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1798 
1799 			btrfs_err(fs_info,
1800 			"stripe %llu has unrepaired metadata sector at %llu",
1801 				  stripe->logical,
1802 				  stripe->logical + (i << fs_info->sectorsize_bits));
1803 			return true;
1804 		}
1805 	}
1806 	return false;
1807 }
1808 
submit_initial_group_read(struct scrub_ctx * sctx,unsigned int first_slot,unsigned int nr_stripes)1809 static void submit_initial_group_read(struct scrub_ctx *sctx,
1810 				      unsigned int first_slot,
1811 				      unsigned int nr_stripes)
1812 {
1813 	struct blk_plug plug;
1814 
1815 	ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
1816 	ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
1817 
1818 	scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1819 			      btrfs_stripe_nr_to_offset(nr_stripes));
1820 	blk_start_plug(&plug);
1821 	for (int i = 0; i < nr_stripes; i++) {
1822 		struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
1823 
1824 		/* Those stripes should be initialized. */
1825 		ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1826 		scrub_submit_initial_read(sctx, stripe);
1827 	}
1828 	blk_finish_plug(&plug);
1829 }
1830 
flush_scrub_stripes(struct scrub_ctx * sctx)1831 static int flush_scrub_stripes(struct scrub_ctx *sctx)
1832 {
1833 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1834 	struct scrub_stripe *stripe;
1835 	const int nr_stripes = sctx->cur_stripe;
1836 	int ret = 0;
1837 
1838 	if (!nr_stripes)
1839 		return 0;
1840 
1841 	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
1842 
1843 	/* Submit the stripes which are populated but not submitted. */
1844 	if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
1845 		const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
1846 
1847 		submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
1848 	}
1849 
1850 	for (int i = 0; i < nr_stripes; i++) {
1851 		stripe = &sctx->stripes[i];
1852 
1853 		wait_event(stripe->repair_wait,
1854 			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1855 	}
1856 
1857 	/* Submit for dev-replace. */
1858 	if (sctx->is_dev_replace) {
1859 		/*
1860 		 * For dev-replace, if we know there is something wrong with
1861 		 * metadata, we should immediately abort.
1862 		 */
1863 		for (int i = 0; i < nr_stripes; i++) {
1864 			if (stripe_has_metadata_error(&sctx->stripes[i])) {
1865 				ret = -EIO;
1866 				goto out;
1867 			}
1868 		}
1869 		for (int i = 0; i < nr_stripes; i++) {
1870 			unsigned long good;
1871 
1872 			stripe = &sctx->stripes[i];
1873 
1874 			ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
1875 
1876 			bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1877 				      &stripe->error_bitmap, stripe->nr_sectors);
1878 			scrub_write_sectors(sctx, stripe, good, true);
1879 		}
1880 	}
1881 
1882 	/* Wait for the above writebacks to finish. */
1883 	for (int i = 0; i < nr_stripes; i++) {
1884 		stripe = &sctx->stripes[i];
1885 
1886 		wait_scrub_stripe_io(stripe);
1887 		spin_lock(&sctx->stat_lock);
1888 		sctx->stat.last_physical = stripe->physical + stripe_length(stripe);
1889 		spin_unlock(&sctx->stat_lock);
1890 		scrub_reset_stripe(stripe);
1891 	}
1892 out:
1893 	sctx->cur_stripe = 0;
1894 	return ret;
1895 }
1896 
raid56_scrub_wait_endio(struct bio * bio)1897 static void raid56_scrub_wait_endio(struct bio *bio)
1898 {
1899 	complete(bio->bi_private);
1900 }
1901 
queue_scrub_stripe(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_device * dev,int mirror_num,u64 logical,u32 length,u64 physical,u64 * found_logical_ret)1902 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1903 			      struct btrfs_device *dev, int mirror_num,
1904 			      u64 logical, u32 length, u64 physical,
1905 			      u64 *found_logical_ret)
1906 {
1907 	struct scrub_stripe *stripe;
1908 	int ret;
1909 
1910 	/*
1911 	 * There should always be one slot left, as caller filling the last
1912 	 * slot should flush them all.
1913 	 */
1914 	ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
1915 
1916 	/* @found_logical_ret must be specified. */
1917 	ASSERT(found_logical_ret);
1918 
1919 	stripe = &sctx->stripes[sctx->cur_stripe];
1920 	scrub_reset_stripe(stripe);
1921 	ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
1922 					   &sctx->csum_path, dev, physical,
1923 					   mirror_num, logical, length, stripe);
1924 	/* Either >0 as no more extents or <0 for error. */
1925 	if (ret)
1926 		return ret;
1927 	*found_logical_ret = stripe->logical;
1928 	sctx->cur_stripe++;
1929 
1930 	/* We filled one group, submit it. */
1931 	if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
1932 		const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
1933 
1934 		submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
1935 	}
1936 
1937 	/* Last slot used, flush them all. */
1938 	if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
1939 		return flush_scrub_stripes(sctx);
1940 	return 0;
1941 }
1942 
scrub_raid56_parity_stripe(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,struct btrfs_block_group * bg,struct btrfs_chunk_map * map,u64 full_stripe_start)1943 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1944 				      struct btrfs_device *scrub_dev,
1945 				      struct btrfs_block_group *bg,
1946 				      struct btrfs_chunk_map *map,
1947 				      u64 full_stripe_start)
1948 {
1949 	DECLARE_COMPLETION_ONSTACK(io_done);
1950 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1951 	struct btrfs_raid_bio *rbio;
1952 	struct btrfs_io_context *bioc = NULL;
1953 	struct btrfs_path extent_path = { 0 };
1954 	struct btrfs_path csum_path = { 0 };
1955 	struct bio *bio;
1956 	struct scrub_stripe *stripe;
1957 	bool all_empty = true;
1958 	const int data_stripes = nr_data_stripes(map);
1959 	unsigned long extent_bitmap = 0;
1960 	u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1961 	int ret;
1962 
1963 	ASSERT(sctx->raid56_data_stripes);
1964 
1965 	/*
1966 	 * For data stripe search, we cannot reuse the same extent/csum paths,
1967 	 * as the data stripe bytenr may be smaller than previous extent.  Thus
1968 	 * we have to use our own extent/csum paths.
1969 	 */
1970 	extent_path.search_commit_root = 1;
1971 	extent_path.skip_locking = 1;
1972 	csum_path.search_commit_root = 1;
1973 	csum_path.skip_locking = 1;
1974 
1975 	for (int i = 0; i < data_stripes; i++) {
1976 		int stripe_index;
1977 		int rot;
1978 		u64 physical;
1979 
1980 		stripe = &sctx->raid56_data_stripes[i];
1981 		rot = div_u64(full_stripe_start - bg->start,
1982 			      data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1983 		stripe_index = (i + rot) % map->num_stripes;
1984 		physical = map->stripes[stripe_index].physical +
1985 			   btrfs_stripe_nr_to_offset(rot);
1986 
1987 		scrub_reset_stripe(stripe);
1988 		set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
1989 		ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
1990 				map->stripes[stripe_index].dev, physical, 1,
1991 				full_stripe_start + btrfs_stripe_nr_to_offset(i),
1992 				BTRFS_STRIPE_LEN, stripe);
1993 		if (ret < 0)
1994 			goto out;
1995 		/*
1996 		 * No extent in this data stripe, need to manually mark them
1997 		 * initialized to make later read submission happy.
1998 		 */
1999 		if (ret > 0) {
2000 			stripe->logical = full_stripe_start +
2001 					  btrfs_stripe_nr_to_offset(i);
2002 			stripe->dev = map->stripes[stripe_index].dev;
2003 			stripe->mirror_num = 1;
2004 			set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
2005 		}
2006 	}
2007 
2008 	/* Check if all data stripes are empty. */
2009 	for (int i = 0; i < data_stripes; i++) {
2010 		stripe = &sctx->raid56_data_stripes[i];
2011 		if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
2012 			all_empty = false;
2013 			break;
2014 		}
2015 	}
2016 	if (all_empty) {
2017 		ret = 0;
2018 		goto out;
2019 	}
2020 
2021 	for (int i = 0; i < data_stripes; i++) {
2022 		stripe = &sctx->raid56_data_stripes[i];
2023 		scrub_submit_initial_read(sctx, stripe);
2024 	}
2025 	for (int i = 0; i < data_stripes; i++) {
2026 		stripe = &sctx->raid56_data_stripes[i];
2027 
2028 		wait_event(stripe->repair_wait,
2029 			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
2030 	}
2031 	/* For now, no zoned support for RAID56. */
2032 	ASSERT(!btrfs_is_zoned(sctx->fs_info));
2033 
2034 	/*
2035 	 * Now all data stripes are properly verified. Check if we have any
2036 	 * unrepaired, if so abort immediately or we could further corrupt the
2037 	 * P/Q stripes.
2038 	 *
2039 	 * During the loop, also populate extent_bitmap.
2040 	 */
2041 	for (int i = 0; i < data_stripes; i++) {
2042 		unsigned long error;
2043 
2044 		stripe = &sctx->raid56_data_stripes[i];
2045 
2046 		/*
2047 		 * We should only check the errors where there is an extent.
2048 		 * As we may hit an empty data stripe while it's missing.
2049 		 */
2050 		bitmap_and(&error, &stripe->error_bitmap,
2051 			   &stripe->extent_sector_bitmap, stripe->nr_sectors);
2052 		if (!bitmap_empty(&error, stripe->nr_sectors)) {
2053 			btrfs_err(fs_info,
2054 "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
2055 				  full_stripe_start, i, stripe->nr_sectors,
2056 				  &error);
2057 			ret = -EIO;
2058 			goto out;
2059 		}
2060 		bitmap_or(&extent_bitmap, &extent_bitmap,
2061 			  &stripe->extent_sector_bitmap, stripe->nr_sectors);
2062 	}
2063 
2064 	/* Now we can check and regenerate the P/Q stripe. */
2065 	bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
2066 	bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
2067 	bio->bi_private = &io_done;
2068 	bio->bi_end_io = raid56_scrub_wait_endio;
2069 
2070 	btrfs_bio_counter_inc_blocked(fs_info);
2071 	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
2072 			      &length, &bioc, NULL, NULL);
2073 	if (ret < 0) {
2074 		btrfs_put_bioc(bioc);
2075 		btrfs_bio_counter_dec(fs_info);
2076 		goto out;
2077 	}
2078 	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
2079 				BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
2080 	btrfs_put_bioc(bioc);
2081 	if (!rbio) {
2082 		ret = -ENOMEM;
2083 		btrfs_bio_counter_dec(fs_info);
2084 		goto out;
2085 	}
2086 	/* Use the recovered stripes as cache to avoid read them from disk again. */
2087 	for (int i = 0; i < data_stripes; i++) {
2088 		stripe = &sctx->raid56_data_stripes[i];
2089 
2090 		raid56_parity_cache_data_pages(rbio, stripe->pages,
2091 				full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
2092 	}
2093 	raid56_parity_submit_scrub_rbio(rbio);
2094 	wait_for_completion_io(&io_done);
2095 	ret = blk_status_to_errno(bio->bi_status);
2096 	bio_put(bio);
2097 	btrfs_bio_counter_dec(fs_info);
2098 
2099 	btrfs_release_path(&extent_path);
2100 	btrfs_release_path(&csum_path);
2101 out:
2102 	return ret;
2103 }
2104 
2105 /*
2106  * Scrub one range which can only has simple mirror based profile.
2107  * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
2108  *  RAID0/RAID10).
2109  *
2110  * Since we may need to handle a subset of block group, we need @logical_start
2111  * and @logical_length parameter.
2112  */
scrub_simple_mirror(struct scrub_ctx * sctx,struct btrfs_block_group * bg,u64 logical_start,u64 logical_length,struct btrfs_device * device,u64 physical,int mirror_num)2113 static int scrub_simple_mirror(struct scrub_ctx *sctx,
2114 			       struct btrfs_block_group *bg,
2115 			       u64 logical_start, u64 logical_length,
2116 			       struct btrfs_device *device,
2117 			       u64 physical, int mirror_num)
2118 {
2119 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2120 	const u64 logical_end = logical_start + logical_length;
2121 	u64 cur_logical = logical_start;
2122 	int ret = 0;
2123 
2124 	/* The range must be inside the bg */
2125 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
2126 
2127 	/* Go through each extent items inside the logical range */
2128 	while (cur_logical < logical_end) {
2129 		u64 found_logical = U64_MAX;
2130 		u64 cur_physical = physical + cur_logical - logical_start;
2131 
2132 		/* Canceled? */
2133 		if (atomic_read(&fs_info->scrub_cancel_req) ||
2134 		    atomic_read(&sctx->cancel_req)) {
2135 			ret = -ECANCELED;
2136 			break;
2137 		}
2138 		/* Paused? */
2139 		if (atomic_read(&fs_info->scrub_pause_req)) {
2140 			/* Push queued extents */
2141 			scrub_blocked_if_needed(fs_info);
2142 		}
2143 		/* Block group removed? */
2144 		spin_lock(&bg->lock);
2145 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2146 			spin_unlock(&bg->lock);
2147 			ret = 0;
2148 			break;
2149 		}
2150 		spin_unlock(&bg->lock);
2151 
2152 		ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
2153 					 cur_logical, logical_end - cur_logical,
2154 					 cur_physical, &found_logical);
2155 		if (ret > 0) {
2156 			/* No more extent, just update the accounting */
2157 			spin_lock(&sctx->stat_lock);
2158 			sctx->stat.last_physical = physical + logical_length;
2159 			spin_unlock(&sctx->stat_lock);
2160 			ret = 0;
2161 			break;
2162 		}
2163 		if (ret < 0)
2164 			break;
2165 
2166 		/* queue_scrub_stripe() returned 0, @found_logical must be updated. */
2167 		ASSERT(found_logical != U64_MAX);
2168 		cur_logical = found_logical + BTRFS_STRIPE_LEN;
2169 
2170 		/* Don't hold CPU for too long time */
2171 		cond_resched();
2172 	}
2173 	return ret;
2174 }
2175 
2176 /* Calculate the full stripe length for simple stripe based profiles */
simple_stripe_full_stripe_len(const struct btrfs_chunk_map * map)2177 static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map)
2178 {
2179 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2180 			    BTRFS_BLOCK_GROUP_RAID10));
2181 
2182 	return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
2183 }
2184 
2185 /* Get the logical bytenr for the stripe */
simple_stripe_get_logical(struct btrfs_chunk_map * map,struct btrfs_block_group * bg,int stripe_index)2186 static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map,
2187 				     struct btrfs_block_group *bg,
2188 				     int stripe_index)
2189 {
2190 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2191 			    BTRFS_BLOCK_GROUP_RAID10));
2192 	ASSERT(stripe_index < map->num_stripes);
2193 
2194 	/*
2195 	 * (stripe_index / sub_stripes) gives how many data stripes we need to
2196 	 * skip.
2197 	 */
2198 	return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2199 	       bg->start;
2200 }
2201 
2202 /* Get the mirror number for the stripe */
simple_stripe_mirror_num(struct btrfs_chunk_map * map,int stripe_index)2203 static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index)
2204 {
2205 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2206 			    BTRFS_BLOCK_GROUP_RAID10));
2207 	ASSERT(stripe_index < map->num_stripes);
2208 
2209 	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2210 	return stripe_index % map->sub_stripes + 1;
2211 }
2212 
scrub_simple_stripe(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct btrfs_device * device,int stripe_index)2213 static int scrub_simple_stripe(struct scrub_ctx *sctx,
2214 			       struct btrfs_block_group *bg,
2215 			       struct btrfs_chunk_map *map,
2216 			       struct btrfs_device *device,
2217 			       int stripe_index)
2218 {
2219 	const u64 logical_increment = simple_stripe_full_stripe_len(map);
2220 	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2221 	const u64 orig_physical = map->stripes[stripe_index].physical;
2222 	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2223 	u64 cur_logical = orig_logical;
2224 	u64 cur_physical = orig_physical;
2225 	int ret = 0;
2226 
2227 	while (cur_logical < bg->start + bg->length) {
2228 		/*
2229 		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2230 		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2231 		 * this stripe.
2232 		 */
2233 		ret = scrub_simple_mirror(sctx, bg, cur_logical,
2234 					  BTRFS_STRIPE_LEN, device, cur_physical,
2235 					  mirror_num);
2236 		if (ret)
2237 			return ret;
2238 		/* Skip to next stripe which belongs to the target device */
2239 		cur_logical += logical_increment;
2240 		/* For physical offset, we just go to next stripe */
2241 		cur_physical += BTRFS_STRIPE_LEN;
2242 	}
2243 	return ret;
2244 }
2245 
scrub_stripe(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct btrfs_device * scrub_dev,int stripe_index)2246 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2247 					   struct btrfs_block_group *bg,
2248 					   struct btrfs_chunk_map *map,
2249 					   struct btrfs_device *scrub_dev,
2250 					   int stripe_index)
2251 {
2252 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2253 	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2254 	const u64 chunk_logical = bg->start;
2255 	int ret;
2256 	int ret2;
2257 	u64 physical = map->stripes[stripe_index].physical;
2258 	const u64 dev_stripe_len = btrfs_calc_stripe_length(map);
2259 	const u64 physical_end = physical + dev_stripe_len;
2260 	u64 logical;
2261 	u64 logic_end;
2262 	/* The logical increment after finishing one stripe */
2263 	u64 increment;
2264 	/* Offset inside the chunk */
2265 	u64 offset;
2266 	u64 stripe_logical;
2267 
2268 	/* Extent_path should be released by now. */
2269 	ASSERT(sctx->extent_path.nodes[0] == NULL);
2270 
2271 	scrub_blocked_if_needed(fs_info);
2272 
2273 	if (sctx->is_dev_replace &&
2274 	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2275 		mutex_lock(&sctx->wr_lock);
2276 		sctx->write_pointer = physical;
2277 		mutex_unlock(&sctx->wr_lock);
2278 	}
2279 
2280 	/* Prepare the extra data stripes used by RAID56. */
2281 	if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2282 		ASSERT(sctx->raid56_data_stripes == NULL);
2283 
2284 		sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2285 						    sizeof(struct scrub_stripe),
2286 						    GFP_KERNEL);
2287 		if (!sctx->raid56_data_stripes) {
2288 			ret = -ENOMEM;
2289 			goto out;
2290 		}
2291 		for (int i = 0; i < nr_data_stripes(map); i++) {
2292 			ret = init_scrub_stripe(fs_info,
2293 						&sctx->raid56_data_stripes[i]);
2294 			if (ret < 0)
2295 				goto out;
2296 			sctx->raid56_data_stripes[i].bg = bg;
2297 			sctx->raid56_data_stripes[i].sctx = sctx;
2298 		}
2299 	}
2300 	/*
2301 	 * There used to be a big double loop to handle all profiles using the
2302 	 * same routine, which grows larger and more gross over time.
2303 	 *
2304 	 * So here we handle each profile differently, so simpler profiles
2305 	 * have simpler scrubbing function.
2306 	 */
2307 	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2308 			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2309 		/*
2310 		 * Above check rules out all complex profile, the remaining
2311 		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2312 		 * mirrored duplication without stripe.
2313 		 *
2314 		 * Only @physical and @mirror_num needs to calculated using
2315 		 * @stripe_index.
2316 		 */
2317 		ret = scrub_simple_mirror(sctx, bg, bg->start, bg->length,
2318 				scrub_dev, map->stripes[stripe_index].physical,
2319 				stripe_index + 1);
2320 		offset = 0;
2321 		goto out;
2322 	}
2323 	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2324 		ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2325 		offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2326 		goto out;
2327 	}
2328 
2329 	/* Only RAID56 goes through the old code */
2330 	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2331 	ret = 0;
2332 
2333 	/* Calculate the logical end of the stripe */
2334 	get_raid56_logic_offset(physical_end, stripe_index,
2335 				map, &logic_end, NULL);
2336 	logic_end += chunk_logical;
2337 
2338 	/* Initialize @offset in case we need to go to out: label */
2339 	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2340 	increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2341 
2342 	/*
2343 	 * Due to the rotation, for RAID56 it's better to iterate each stripe
2344 	 * using their physical offset.
2345 	 */
2346 	while (physical < physical_end) {
2347 		ret = get_raid56_logic_offset(physical, stripe_index, map,
2348 					      &logical, &stripe_logical);
2349 		logical += chunk_logical;
2350 		if (ret) {
2351 			/* it is parity strip */
2352 			stripe_logical += chunk_logical;
2353 			ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2354 							 map, stripe_logical);
2355 			spin_lock(&sctx->stat_lock);
2356 			sctx->stat.last_physical = min(physical + BTRFS_STRIPE_LEN,
2357 						       physical_end);
2358 			spin_unlock(&sctx->stat_lock);
2359 			if (ret)
2360 				goto out;
2361 			goto next;
2362 		}
2363 
2364 		/*
2365 		 * Now we're at a data stripe, scrub each extents in the range.
2366 		 *
2367 		 * At this stage, if we ignore the repair part, inside each data
2368 		 * stripe it is no different than SINGLE profile.
2369 		 * We can reuse scrub_simple_mirror() here, as the repair part
2370 		 * is still based on @mirror_num.
2371 		 */
2372 		ret = scrub_simple_mirror(sctx, bg, logical, BTRFS_STRIPE_LEN,
2373 					  scrub_dev, physical, 1);
2374 		if (ret < 0)
2375 			goto out;
2376 next:
2377 		logical += increment;
2378 		physical += BTRFS_STRIPE_LEN;
2379 		spin_lock(&sctx->stat_lock);
2380 		sctx->stat.last_physical = physical;
2381 		spin_unlock(&sctx->stat_lock);
2382 	}
2383 out:
2384 	ret2 = flush_scrub_stripes(sctx);
2385 	if (!ret)
2386 		ret = ret2;
2387 	btrfs_release_path(&sctx->extent_path);
2388 	btrfs_release_path(&sctx->csum_path);
2389 
2390 	if (sctx->raid56_data_stripes) {
2391 		for (int i = 0; i < nr_data_stripes(map); i++)
2392 			release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2393 		kfree(sctx->raid56_data_stripes);
2394 		sctx->raid56_data_stripes = NULL;
2395 	}
2396 
2397 	if (sctx->is_dev_replace && ret >= 0) {
2398 		int ret2;
2399 
2400 		ret2 = sync_write_pointer_for_zoned(sctx,
2401 				chunk_logical + offset,
2402 				map->stripes[stripe_index].physical,
2403 				physical_end);
2404 		if (ret2)
2405 			ret = ret2;
2406 	}
2407 
2408 	return ret < 0 ? ret : 0;
2409 }
2410 
scrub_chunk(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_device * scrub_dev,u64 dev_offset,u64 dev_extent_len)2411 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2412 					  struct btrfs_block_group *bg,
2413 					  struct btrfs_device *scrub_dev,
2414 					  u64 dev_offset,
2415 					  u64 dev_extent_len)
2416 {
2417 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2418 	struct btrfs_chunk_map *map;
2419 	int i;
2420 	int ret = 0;
2421 
2422 	map = btrfs_find_chunk_map(fs_info, bg->start, bg->length);
2423 	if (!map) {
2424 		/*
2425 		 * Might have been an unused block group deleted by the cleaner
2426 		 * kthread or relocation.
2427 		 */
2428 		spin_lock(&bg->lock);
2429 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2430 			ret = -EINVAL;
2431 		spin_unlock(&bg->lock);
2432 
2433 		return ret;
2434 	}
2435 	if (map->start != bg->start)
2436 		goto out;
2437 	if (map->chunk_len < dev_extent_len)
2438 		goto out;
2439 
2440 	for (i = 0; i < map->num_stripes; ++i) {
2441 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2442 		    map->stripes[i].physical == dev_offset) {
2443 			ret = scrub_stripe(sctx, bg, map, scrub_dev, i);
2444 			if (ret)
2445 				goto out;
2446 		}
2447 	}
2448 out:
2449 	btrfs_free_chunk_map(map);
2450 
2451 	return ret;
2452 }
2453 
finish_extent_writes_for_zoned(struct btrfs_root * root,struct btrfs_block_group * cache)2454 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2455 					  struct btrfs_block_group *cache)
2456 {
2457 	struct btrfs_fs_info *fs_info = cache->fs_info;
2458 
2459 	if (!btrfs_is_zoned(fs_info))
2460 		return 0;
2461 
2462 	btrfs_wait_block_group_reservations(cache);
2463 	btrfs_wait_nocow_writers(cache);
2464 	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache);
2465 
2466 	return btrfs_commit_current_transaction(root);
2467 }
2468 
2469 static noinline_for_stack
scrub_enumerate_chunks(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,u64 start,u64 end)2470 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2471 			   struct btrfs_device *scrub_dev, u64 start, u64 end)
2472 {
2473 	struct btrfs_dev_extent *dev_extent = NULL;
2474 	struct btrfs_path *path;
2475 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2476 	struct btrfs_root *root = fs_info->dev_root;
2477 	u64 chunk_offset;
2478 	int ret = 0;
2479 	int ro_set;
2480 	int slot;
2481 	struct extent_buffer *l;
2482 	struct btrfs_key key;
2483 	struct btrfs_key found_key;
2484 	struct btrfs_block_group *cache;
2485 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2486 
2487 	path = btrfs_alloc_path();
2488 	if (!path)
2489 		return -ENOMEM;
2490 
2491 	path->reada = READA_FORWARD;
2492 	path->search_commit_root = 1;
2493 	path->skip_locking = 1;
2494 
2495 	key.objectid = scrub_dev->devid;
2496 	key.offset = 0ull;
2497 	key.type = BTRFS_DEV_EXTENT_KEY;
2498 
2499 	while (1) {
2500 		u64 dev_extent_len;
2501 
2502 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2503 		if (ret < 0)
2504 			break;
2505 		if (ret > 0) {
2506 			if (path->slots[0] >=
2507 			    btrfs_header_nritems(path->nodes[0])) {
2508 				ret = btrfs_next_leaf(root, path);
2509 				if (ret < 0)
2510 					break;
2511 				if (ret > 0) {
2512 					ret = 0;
2513 					break;
2514 				}
2515 			} else {
2516 				ret = 0;
2517 			}
2518 		}
2519 
2520 		l = path->nodes[0];
2521 		slot = path->slots[0];
2522 
2523 		btrfs_item_key_to_cpu(l, &found_key, slot);
2524 
2525 		if (found_key.objectid != scrub_dev->devid)
2526 			break;
2527 
2528 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2529 			break;
2530 
2531 		if (found_key.offset >= end)
2532 			break;
2533 
2534 		if (found_key.offset < key.offset)
2535 			break;
2536 
2537 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2538 		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2539 
2540 		if (found_key.offset + dev_extent_len <= start)
2541 			goto skip;
2542 
2543 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2544 
2545 		/*
2546 		 * get a reference on the corresponding block group to prevent
2547 		 * the chunk from going away while we scrub it
2548 		 */
2549 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2550 
2551 		/* some chunks are removed but not committed to disk yet,
2552 		 * continue scrubbing */
2553 		if (!cache)
2554 			goto skip;
2555 
2556 		ASSERT(cache->start <= chunk_offset);
2557 		/*
2558 		 * We are using the commit root to search for device extents, so
2559 		 * that means we could have found a device extent item from a
2560 		 * block group that was deleted in the current transaction. The
2561 		 * logical start offset of the deleted block group, stored at
2562 		 * @chunk_offset, might be part of the logical address range of
2563 		 * a new block group (which uses different physical extents).
2564 		 * In this case btrfs_lookup_block_group() has returned the new
2565 		 * block group, and its start address is less than @chunk_offset.
2566 		 *
2567 		 * We skip such new block groups, because it's pointless to
2568 		 * process them, as we won't find their extents because we search
2569 		 * for them using the commit root of the extent tree. For a device
2570 		 * replace it's also fine to skip it, we won't miss copying them
2571 		 * to the target device because we have the write duplication
2572 		 * setup through the regular write path (by btrfs_map_block()),
2573 		 * and we have committed a transaction when we started the device
2574 		 * replace, right after setting up the device replace state.
2575 		 */
2576 		if (cache->start < chunk_offset) {
2577 			btrfs_put_block_group(cache);
2578 			goto skip;
2579 		}
2580 
2581 		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2582 			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2583 				btrfs_put_block_group(cache);
2584 				goto skip;
2585 			}
2586 		}
2587 
2588 		/*
2589 		 * Make sure that while we are scrubbing the corresponding block
2590 		 * group doesn't get its logical address and its device extents
2591 		 * reused for another block group, which can possibly be of a
2592 		 * different type and different profile. We do this to prevent
2593 		 * false error detections and crashes due to bogus attempts to
2594 		 * repair extents.
2595 		 */
2596 		spin_lock(&cache->lock);
2597 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2598 			spin_unlock(&cache->lock);
2599 			btrfs_put_block_group(cache);
2600 			goto skip;
2601 		}
2602 		btrfs_freeze_block_group(cache);
2603 		spin_unlock(&cache->lock);
2604 
2605 		/*
2606 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2607 		 * to avoid deadlock caused by:
2608 		 * btrfs_inc_block_group_ro()
2609 		 * -> btrfs_wait_for_commit()
2610 		 * -> btrfs_commit_transaction()
2611 		 * -> btrfs_scrub_pause()
2612 		 */
2613 		scrub_pause_on(fs_info);
2614 
2615 		/*
2616 		 * Don't do chunk preallocation for scrub.
2617 		 *
2618 		 * This is especially important for SYSTEM bgs, or we can hit
2619 		 * -EFBIG from btrfs_finish_chunk_alloc() like:
2620 		 * 1. The only SYSTEM bg is marked RO.
2621 		 *    Since SYSTEM bg is small, that's pretty common.
2622 		 * 2. New SYSTEM bg will be allocated
2623 		 *    Due to regular version will allocate new chunk.
2624 		 * 3. New SYSTEM bg is empty and will get cleaned up
2625 		 *    Before cleanup really happens, it's marked RO again.
2626 		 * 4. Empty SYSTEM bg get scrubbed
2627 		 *    We go back to 2.
2628 		 *
2629 		 * This can easily boost the amount of SYSTEM chunks if cleaner
2630 		 * thread can't be triggered fast enough, and use up all space
2631 		 * of btrfs_super_block::sys_chunk_array
2632 		 *
2633 		 * While for dev replace, we need to try our best to mark block
2634 		 * group RO, to prevent race between:
2635 		 * - Write duplication
2636 		 *   Contains latest data
2637 		 * - Scrub copy
2638 		 *   Contains data from commit tree
2639 		 *
2640 		 * If target block group is not marked RO, nocow writes can
2641 		 * be overwritten by scrub copy, causing data corruption.
2642 		 * So for dev-replace, it's not allowed to continue if a block
2643 		 * group is not RO.
2644 		 */
2645 		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2646 		if (!ret && sctx->is_dev_replace) {
2647 			ret = finish_extent_writes_for_zoned(root, cache);
2648 			if (ret) {
2649 				btrfs_dec_block_group_ro(cache);
2650 				scrub_pause_off(fs_info);
2651 				btrfs_put_block_group(cache);
2652 				break;
2653 			}
2654 		}
2655 
2656 		if (ret == 0) {
2657 			ro_set = 1;
2658 		} else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2659 			   !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2660 			/*
2661 			 * btrfs_inc_block_group_ro return -ENOSPC when it
2662 			 * failed in creating new chunk for metadata.
2663 			 * It is not a problem for scrub, because
2664 			 * metadata are always cowed, and our scrub paused
2665 			 * commit_transactions.
2666 			 *
2667 			 * For RAID56 chunks, we have to mark them read-only
2668 			 * for scrub, as later we would use our own cache
2669 			 * out of RAID56 realm.
2670 			 * Thus we want the RAID56 bg to be marked RO to
2671 			 * prevent RMW from screwing up out cache.
2672 			 */
2673 			ro_set = 0;
2674 		} else if (ret == -ETXTBSY) {
2675 			btrfs_warn(fs_info,
2676 		   "skipping scrub of block group %llu due to active swapfile",
2677 				   cache->start);
2678 			scrub_pause_off(fs_info);
2679 			ret = 0;
2680 			goto skip_unfreeze;
2681 		} else {
2682 			btrfs_warn(fs_info,
2683 				   "failed setting block group ro: %d", ret);
2684 			btrfs_unfreeze_block_group(cache);
2685 			btrfs_put_block_group(cache);
2686 			scrub_pause_off(fs_info);
2687 			break;
2688 		}
2689 
2690 		/*
2691 		 * Now the target block is marked RO, wait for nocow writes to
2692 		 * finish before dev-replace.
2693 		 * COW is fine, as COW never overwrites extents in commit tree.
2694 		 */
2695 		if (sctx->is_dev_replace) {
2696 			btrfs_wait_nocow_writers(cache);
2697 			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache);
2698 		}
2699 
2700 		scrub_pause_off(fs_info);
2701 		down_write(&dev_replace->rwsem);
2702 		dev_replace->cursor_right = found_key.offset + dev_extent_len;
2703 		dev_replace->cursor_left = found_key.offset;
2704 		dev_replace->item_needs_writeback = 1;
2705 		up_write(&dev_replace->rwsem);
2706 
2707 		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2708 				  dev_extent_len);
2709 		if (sctx->is_dev_replace &&
2710 		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2711 						      cache, found_key.offset))
2712 			ro_set = 0;
2713 
2714 		down_write(&dev_replace->rwsem);
2715 		dev_replace->cursor_left = dev_replace->cursor_right;
2716 		dev_replace->item_needs_writeback = 1;
2717 		up_write(&dev_replace->rwsem);
2718 
2719 		if (ro_set)
2720 			btrfs_dec_block_group_ro(cache);
2721 
2722 		/*
2723 		 * We might have prevented the cleaner kthread from deleting
2724 		 * this block group if it was already unused because we raced
2725 		 * and set it to RO mode first. So add it back to the unused
2726 		 * list, otherwise it might not ever be deleted unless a manual
2727 		 * balance is triggered or it becomes used and unused again.
2728 		 */
2729 		spin_lock(&cache->lock);
2730 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2731 		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
2732 			spin_unlock(&cache->lock);
2733 			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2734 				btrfs_discard_queue_work(&fs_info->discard_ctl,
2735 							 cache);
2736 			else
2737 				btrfs_mark_bg_unused(cache);
2738 		} else {
2739 			spin_unlock(&cache->lock);
2740 		}
2741 skip_unfreeze:
2742 		btrfs_unfreeze_block_group(cache);
2743 		btrfs_put_block_group(cache);
2744 		if (ret)
2745 			break;
2746 		if (sctx->is_dev_replace &&
2747 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2748 			ret = -EIO;
2749 			break;
2750 		}
2751 		if (sctx->stat.malloc_errors > 0) {
2752 			ret = -ENOMEM;
2753 			break;
2754 		}
2755 skip:
2756 		key.offset = found_key.offset + dev_extent_len;
2757 		btrfs_release_path(path);
2758 	}
2759 
2760 	btrfs_free_path(path);
2761 
2762 	return ret;
2763 }
2764 
scrub_one_super(struct scrub_ctx * sctx,struct btrfs_device * dev,struct page * page,u64 physical,u64 generation)2765 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2766 			   struct page *page, u64 physical, u64 generation)
2767 {
2768 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2769 	struct bio_vec bvec;
2770 	struct bio bio;
2771 	struct btrfs_super_block *sb = page_address(page);
2772 	int ret;
2773 
2774 	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2775 	bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2776 	__bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2777 	ret = submit_bio_wait(&bio);
2778 	bio_uninit(&bio);
2779 
2780 	if (ret < 0)
2781 		return ret;
2782 	ret = btrfs_check_super_csum(fs_info, sb);
2783 	if (ret != 0) {
2784 		btrfs_err_rl(fs_info,
2785 			"super block at physical %llu devid %llu has bad csum",
2786 			physical, dev->devid);
2787 		return -EIO;
2788 	}
2789 	if (btrfs_super_generation(sb) != generation) {
2790 		btrfs_err_rl(fs_info,
2791 "super block at physical %llu devid %llu has bad generation %llu expect %llu",
2792 			     physical, dev->devid,
2793 			     btrfs_super_generation(sb), generation);
2794 		return -EUCLEAN;
2795 	}
2796 
2797 	return btrfs_validate_super(fs_info, sb, -1);
2798 }
2799 
scrub_supers(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev)2800 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2801 					   struct btrfs_device *scrub_dev)
2802 {
2803 	int	i;
2804 	u64	bytenr;
2805 	u64	gen;
2806 	int ret = 0;
2807 	struct page *page;
2808 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2809 
2810 	if (BTRFS_FS_ERROR(fs_info))
2811 		return -EROFS;
2812 
2813 	page = alloc_page(GFP_KERNEL);
2814 	if (!page) {
2815 		spin_lock(&sctx->stat_lock);
2816 		sctx->stat.malloc_errors++;
2817 		spin_unlock(&sctx->stat_lock);
2818 		return -ENOMEM;
2819 	}
2820 
2821 	/* Seed devices of a new filesystem has their own generation. */
2822 	if (scrub_dev->fs_devices != fs_info->fs_devices)
2823 		gen = scrub_dev->generation;
2824 	else
2825 		gen = btrfs_get_last_trans_committed(fs_info);
2826 
2827 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2828 		ret = btrfs_sb_log_location(scrub_dev, i, 0, &bytenr);
2829 		if (ret == -ENOENT)
2830 			break;
2831 
2832 		if (ret) {
2833 			spin_lock(&sctx->stat_lock);
2834 			sctx->stat.super_errors++;
2835 			spin_unlock(&sctx->stat_lock);
2836 			continue;
2837 		}
2838 
2839 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
2840 		    scrub_dev->commit_total_bytes)
2841 			break;
2842 		if (!btrfs_check_super_location(scrub_dev, bytenr))
2843 			continue;
2844 
2845 		ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2846 		if (ret) {
2847 			spin_lock(&sctx->stat_lock);
2848 			sctx->stat.super_errors++;
2849 			spin_unlock(&sctx->stat_lock);
2850 		}
2851 	}
2852 	__free_page(page);
2853 	return 0;
2854 }
2855 
scrub_workers_put(struct btrfs_fs_info * fs_info)2856 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2857 {
2858 	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2859 					&fs_info->scrub_lock)) {
2860 		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2861 
2862 		fs_info->scrub_workers = NULL;
2863 		mutex_unlock(&fs_info->scrub_lock);
2864 
2865 		if (scrub_workers)
2866 			destroy_workqueue(scrub_workers);
2867 	}
2868 }
2869 
2870 /*
2871  * get a reference count on fs_info->scrub_workers. start worker if necessary
2872  */
scrub_workers_get(struct btrfs_fs_info * fs_info)2873 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
2874 {
2875 	struct workqueue_struct *scrub_workers = NULL;
2876 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2877 	int max_active = fs_info->thread_pool_size;
2878 	int ret = -ENOMEM;
2879 
2880 	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2881 		return 0;
2882 
2883 	scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
2884 	if (!scrub_workers)
2885 		return -ENOMEM;
2886 
2887 	mutex_lock(&fs_info->scrub_lock);
2888 	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2889 		ASSERT(fs_info->scrub_workers == NULL);
2890 		fs_info->scrub_workers = scrub_workers;
2891 		refcount_set(&fs_info->scrub_workers_refcnt, 1);
2892 		mutex_unlock(&fs_info->scrub_lock);
2893 		return 0;
2894 	}
2895 	/* Other thread raced in and created the workers for us */
2896 	refcount_inc(&fs_info->scrub_workers_refcnt);
2897 	mutex_unlock(&fs_info->scrub_lock);
2898 
2899 	ret = 0;
2900 
2901 	destroy_workqueue(scrub_workers);
2902 	return ret;
2903 }
2904 
btrfs_scrub_dev(struct btrfs_fs_info * fs_info,u64 devid,u64 start,u64 end,struct btrfs_scrub_progress * progress,int readonly,int is_dev_replace)2905 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2906 		    u64 end, struct btrfs_scrub_progress *progress,
2907 		    int readonly, int is_dev_replace)
2908 {
2909 	struct btrfs_dev_lookup_args args = { .devid = devid };
2910 	struct scrub_ctx *sctx;
2911 	int ret;
2912 	struct btrfs_device *dev;
2913 	unsigned int nofs_flag;
2914 	bool need_commit = false;
2915 
2916 	if (btrfs_fs_closing(fs_info))
2917 		return -EAGAIN;
2918 
2919 	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2920 	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
2921 
2922 	/*
2923 	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2924 	 * value (max nodesize / min sectorsize), thus nodesize should always
2925 	 * be fine.
2926 	 */
2927 	ASSERT(fs_info->nodesize <=
2928 	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
2929 
2930 	/* Allocate outside of device_list_mutex */
2931 	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2932 	if (IS_ERR(sctx))
2933 		return PTR_ERR(sctx);
2934 
2935 	ret = scrub_workers_get(fs_info);
2936 	if (ret)
2937 		goto out_free_ctx;
2938 
2939 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2940 	dev = btrfs_find_device(fs_info->fs_devices, &args);
2941 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2942 		     !is_dev_replace)) {
2943 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2944 		ret = -ENODEV;
2945 		goto out;
2946 	}
2947 
2948 	if (!is_dev_replace && !readonly &&
2949 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2950 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2951 		btrfs_err_in_rcu(fs_info,
2952 			"scrub on devid %llu: filesystem on %s is not writable",
2953 				 devid, btrfs_dev_name(dev));
2954 		ret = -EROFS;
2955 		goto out;
2956 	}
2957 
2958 	mutex_lock(&fs_info->scrub_lock);
2959 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2960 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2961 		mutex_unlock(&fs_info->scrub_lock);
2962 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2963 		ret = -EIO;
2964 		goto out;
2965 	}
2966 
2967 	down_read(&fs_info->dev_replace.rwsem);
2968 	if (dev->scrub_ctx ||
2969 	    (!is_dev_replace &&
2970 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2971 		up_read(&fs_info->dev_replace.rwsem);
2972 		mutex_unlock(&fs_info->scrub_lock);
2973 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2974 		ret = -EINPROGRESS;
2975 		goto out;
2976 	}
2977 	up_read(&fs_info->dev_replace.rwsem);
2978 
2979 	sctx->readonly = readonly;
2980 	dev->scrub_ctx = sctx;
2981 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2982 
2983 	/*
2984 	 * checking @scrub_pause_req here, we can avoid
2985 	 * race between committing transaction and scrubbing.
2986 	 */
2987 	__scrub_blocked_if_needed(fs_info);
2988 	atomic_inc(&fs_info->scrubs_running);
2989 	mutex_unlock(&fs_info->scrub_lock);
2990 
2991 	/*
2992 	 * In order to avoid deadlock with reclaim when there is a transaction
2993 	 * trying to pause scrub, make sure we use GFP_NOFS for all the
2994 	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2995 	 * invoked by our callees. The pausing request is done when the
2996 	 * transaction commit starts, and it blocks the transaction until scrub
2997 	 * is paused (done at specific points at scrub_stripe() or right above
2998 	 * before incrementing fs_info->scrubs_running).
2999 	 */
3000 	nofs_flag = memalloc_nofs_save();
3001 	if (!is_dev_replace) {
3002 		u64 old_super_errors;
3003 
3004 		spin_lock(&sctx->stat_lock);
3005 		old_super_errors = sctx->stat.super_errors;
3006 		spin_unlock(&sctx->stat_lock);
3007 
3008 		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3009 		/*
3010 		 * by holding device list mutex, we can
3011 		 * kick off writing super in log tree sync.
3012 		 */
3013 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3014 		ret = scrub_supers(sctx, dev);
3015 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3016 
3017 		spin_lock(&sctx->stat_lock);
3018 		/*
3019 		 * Super block errors found, but we can not commit transaction
3020 		 * at current context, since btrfs_commit_transaction() needs
3021 		 * to pause the current running scrub (hold by ourselves).
3022 		 */
3023 		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
3024 			need_commit = true;
3025 		spin_unlock(&sctx->stat_lock);
3026 	}
3027 
3028 	if (!ret)
3029 		ret = scrub_enumerate_chunks(sctx, dev, start, end);
3030 	memalloc_nofs_restore(nofs_flag);
3031 
3032 	atomic_dec(&fs_info->scrubs_running);
3033 	wake_up(&fs_info->scrub_pause_wait);
3034 
3035 	if (progress)
3036 		memcpy(progress, &sctx->stat, sizeof(*progress));
3037 
3038 	if (!is_dev_replace)
3039 		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3040 			ret ? "not finished" : "finished", devid, ret);
3041 
3042 	mutex_lock(&fs_info->scrub_lock);
3043 	dev->scrub_ctx = NULL;
3044 	mutex_unlock(&fs_info->scrub_lock);
3045 
3046 	scrub_workers_put(fs_info);
3047 	scrub_put_ctx(sctx);
3048 
3049 	/*
3050 	 * We found some super block errors before, now try to force a
3051 	 * transaction commit, as scrub has finished.
3052 	 */
3053 	if (need_commit) {
3054 		struct btrfs_trans_handle *trans;
3055 
3056 		trans = btrfs_start_transaction(fs_info->tree_root, 0);
3057 		if (IS_ERR(trans)) {
3058 			ret = PTR_ERR(trans);
3059 			btrfs_err(fs_info,
3060 	"scrub: failed to start transaction to fix super block errors: %d", ret);
3061 			return ret;
3062 		}
3063 		ret = btrfs_commit_transaction(trans);
3064 		if (ret < 0)
3065 			btrfs_err(fs_info,
3066 	"scrub: failed to commit transaction to fix super block errors: %d", ret);
3067 	}
3068 	return ret;
3069 out:
3070 	scrub_workers_put(fs_info);
3071 out_free_ctx:
3072 	scrub_free_ctx(sctx);
3073 
3074 	return ret;
3075 }
3076 
btrfs_scrub_pause(struct btrfs_fs_info * fs_info)3077 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3078 {
3079 	mutex_lock(&fs_info->scrub_lock);
3080 	atomic_inc(&fs_info->scrub_pause_req);
3081 	while (atomic_read(&fs_info->scrubs_paused) !=
3082 	       atomic_read(&fs_info->scrubs_running)) {
3083 		mutex_unlock(&fs_info->scrub_lock);
3084 		wait_event(fs_info->scrub_pause_wait,
3085 			   atomic_read(&fs_info->scrubs_paused) ==
3086 			   atomic_read(&fs_info->scrubs_running));
3087 		mutex_lock(&fs_info->scrub_lock);
3088 	}
3089 	mutex_unlock(&fs_info->scrub_lock);
3090 }
3091 
btrfs_scrub_continue(struct btrfs_fs_info * fs_info)3092 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3093 {
3094 	atomic_dec(&fs_info->scrub_pause_req);
3095 	wake_up(&fs_info->scrub_pause_wait);
3096 }
3097 
btrfs_scrub_cancel(struct btrfs_fs_info * fs_info)3098 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3099 {
3100 	mutex_lock(&fs_info->scrub_lock);
3101 	if (!atomic_read(&fs_info->scrubs_running)) {
3102 		mutex_unlock(&fs_info->scrub_lock);
3103 		return -ENOTCONN;
3104 	}
3105 
3106 	atomic_inc(&fs_info->scrub_cancel_req);
3107 	while (atomic_read(&fs_info->scrubs_running)) {
3108 		mutex_unlock(&fs_info->scrub_lock);
3109 		wait_event(fs_info->scrub_pause_wait,
3110 			   atomic_read(&fs_info->scrubs_running) == 0);
3111 		mutex_lock(&fs_info->scrub_lock);
3112 	}
3113 	atomic_dec(&fs_info->scrub_cancel_req);
3114 	mutex_unlock(&fs_info->scrub_lock);
3115 
3116 	return 0;
3117 }
3118 
btrfs_scrub_cancel_dev(struct btrfs_device * dev)3119 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
3120 {
3121 	struct btrfs_fs_info *fs_info = dev->fs_info;
3122 	struct scrub_ctx *sctx;
3123 
3124 	mutex_lock(&fs_info->scrub_lock);
3125 	sctx = dev->scrub_ctx;
3126 	if (!sctx) {
3127 		mutex_unlock(&fs_info->scrub_lock);
3128 		return -ENOTCONN;
3129 	}
3130 	atomic_inc(&sctx->cancel_req);
3131 	while (dev->scrub_ctx) {
3132 		mutex_unlock(&fs_info->scrub_lock);
3133 		wait_event(fs_info->scrub_pause_wait,
3134 			   dev->scrub_ctx == NULL);
3135 		mutex_lock(&fs_info->scrub_lock);
3136 	}
3137 	mutex_unlock(&fs_info->scrub_lock);
3138 
3139 	return 0;
3140 }
3141 
btrfs_scrub_progress(struct btrfs_fs_info * fs_info,u64 devid,struct btrfs_scrub_progress * progress)3142 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3143 			 struct btrfs_scrub_progress *progress)
3144 {
3145 	struct btrfs_dev_lookup_args args = { .devid = devid };
3146 	struct btrfs_device *dev;
3147 	struct scrub_ctx *sctx = NULL;
3148 
3149 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3150 	dev = btrfs_find_device(fs_info->fs_devices, &args);
3151 	if (dev)
3152 		sctx = dev->scrub_ctx;
3153 	if (sctx)
3154 		memcpy(progress, &sctx->stat, sizeof(*progress));
3155 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3156 
3157 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3158 }
3159