1 /*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
6 * Copyright (c) 1994 John S. Dyson
7 * All rights reserved.
8 * Copyright (c) 1994 David Greenman
9 * All rights reserved.
10 * Copyright (c) 2003 Peter Wemm
11 * All rights reserved.
12 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
13 * All rights reserved.
14 *
15 * This code is derived from software contributed to Berkeley by
16 * the Systems Programming Group of the University of Utah Computer
17 * Science Department and William Jolitz of UUNET Technologies Inc.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 * 1. Redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer.
24 * 2. Redistributions in binary form must reproduce the above copyright
25 * notice, this list of conditions and the following disclaimer in the
26 * documentation and/or other materials provided with the distribution.
27 * 3. All advertising materials mentioning features or use of this software
28 * must display the following acknowledgement:
29 * This product includes software developed by the University of
30 * California, Berkeley and its contributors.
31 * 4. Neither the name of the University nor the names of its contributors
32 * may be used to endorse or promote products derived from this software
33 * without specific prior written permission.
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45 * SUCH DAMAGE.
46 */
47 /*-
48 * Copyright (c) 2003 Networks Associates Technology, Inc.
49 * Copyright (c) 2014-2020 The FreeBSD Foundation
50 * All rights reserved.
51 *
52 * This software was developed for the FreeBSD Project by Jake Burkholder,
53 * Safeport Network Services, and Network Associates Laboratories, the
54 * Security Research Division of Network Associates, Inc. under
55 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
56 * CHATS research program.
57 *
58 * Portions of this software were developed by
59 * Konstantin Belousov <kib@FreeBSD.org> under sponsorship from
60 * the FreeBSD Foundation.
61 *
62 * Redistribution and use in source and binary forms, with or without
63 * modification, are permitted provided that the following conditions
64 * are met:
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in the
69 * documentation and/or other materials provided with the distribution.
70 *
71 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
72 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
75 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81 * SUCH DAMAGE.
82 */
83
84 #define AMD64_NPT_AWARE
85
86 #include <sys/cdefs.h>
87 /*
88 * Manages physical address maps.
89 *
90 * Since the information managed by this module is
91 * also stored by the logical address mapping module,
92 * this module may throw away valid virtual-to-physical
93 * mappings at almost any time. However, invalidations
94 * of virtual-to-physical mappings must be done as
95 * requested.
96 *
97 * In order to cope with hardware architectures which
98 * make virtual-to-physical map invalidates expensive,
99 * this module may delay invalidate or reduced protection
100 * operations until such time as they are actually
101 * necessary. This module is given full information as
102 * to which processors are currently using which maps,
103 * and to when physical maps must be made correct.
104 */
105
106 #include "opt_ddb.h"
107 #include "opt_pmap.h"
108 #include "opt_vm.h"
109
110 #include <sys/param.h>
111 #include <sys/asan.h>
112 #include <sys/bitstring.h>
113 #include <sys/bus.h>
114 #include <sys/systm.h>
115 #include <sys/counter.h>
116 #include <sys/kernel.h>
117 #include <sys/ktr.h>
118 #include <sys/lock.h>
119 #include <sys/malloc.h>
120 #include <sys/mman.h>
121 #include <sys/msan.h>
122 #include <sys/mutex.h>
123 #include <sys/proc.h>
124 #include <sys/rangeset.h>
125 #include <sys/rwlock.h>
126 #include <sys/sbuf.h>
127 #include <sys/smr.h>
128 #include <sys/sx.h>
129 #include <sys/turnstile.h>
130 #include <sys/vmem.h>
131 #include <sys/vmmeter.h>
132 #include <sys/sched.h>
133 #include <sys/sysctl.h>
134 #include <sys/smp.h>
135 #ifdef DDB
136 #include <sys/kdb.h>
137 #include <ddb/ddb.h>
138 #endif
139
140 #include <vm/vm.h>
141 #include <vm/vm_param.h>
142 #include <vm/vm_kern.h>
143 #include <vm/vm_page.h>
144 #include <vm/vm_map.h>
145 #include <vm/vm_object.h>
146 #include <vm/vm_extern.h>
147 #include <vm/vm_pageout.h>
148 #include <vm/vm_pager.h>
149 #include <vm/vm_phys.h>
150 #include <vm/vm_radix.h>
151 #include <vm/vm_reserv.h>
152 #include <vm/vm_dumpset.h>
153 #include <vm/uma.h>
154
155 #include <machine/asan.h>
156 #include <machine/intr_machdep.h>
157 #include <x86/apicvar.h>
158 #include <x86/ifunc.h>
159 #include <machine/cpu.h>
160 #include <machine/cputypes.h>
161 #include <machine/md_var.h>
162 #include <machine/msan.h>
163 #include <machine/pcb.h>
164 #include <machine/specialreg.h>
165 #ifdef SMP
166 #include <machine/smp.h>
167 #endif
168 #include <machine/sysarch.h>
169 #include <machine/tss.h>
170
171 #ifdef NUMA
172 #define PMAP_MEMDOM MAXMEMDOM
173 #else
174 #define PMAP_MEMDOM 1
175 #endif
176
177 static __inline bool
pmap_type_guest(pmap_t pmap)178 pmap_type_guest(pmap_t pmap)
179 {
180
181 return ((pmap->pm_type == PT_EPT) || (pmap->pm_type == PT_RVI));
182 }
183
184 static __inline bool
pmap_emulate_ad_bits(pmap_t pmap)185 pmap_emulate_ad_bits(pmap_t pmap)
186 {
187
188 return ((pmap->pm_flags & PMAP_EMULATE_AD_BITS) != 0);
189 }
190
191 static __inline pt_entry_t
pmap_valid_bit(pmap_t pmap)192 pmap_valid_bit(pmap_t pmap)
193 {
194 pt_entry_t mask;
195
196 switch (pmap->pm_type) {
197 case PT_X86:
198 case PT_RVI:
199 mask = X86_PG_V;
200 break;
201 case PT_EPT:
202 if (pmap_emulate_ad_bits(pmap))
203 mask = EPT_PG_EMUL_V;
204 else
205 mask = EPT_PG_READ;
206 break;
207 default:
208 panic("pmap_valid_bit: invalid pm_type %d", pmap->pm_type);
209 }
210
211 return (mask);
212 }
213
214 static __inline pt_entry_t
pmap_rw_bit(pmap_t pmap)215 pmap_rw_bit(pmap_t pmap)
216 {
217 pt_entry_t mask;
218
219 switch (pmap->pm_type) {
220 case PT_X86:
221 case PT_RVI:
222 mask = X86_PG_RW;
223 break;
224 case PT_EPT:
225 if (pmap_emulate_ad_bits(pmap))
226 mask = EPT_PG_EMUL_RW;
227 else
228 mask = EPT_PG_WRITE;
229 break;
230 default:
231 panic("pmap_rw_bit: invalid pm_type %d", pmap->pm_type);
232 }
233
234 return (mask);
235 }
236
237 static pt_entry_t pg_g;
238
239 static __inline pt_entry_t
pmap_global_bit(pmap_t pmap)240 pmap_global_bit(pmap_t pmap)
241 {
242 pt_entry_t mask;
243
244 switch (pmap->pm_type) {
245 case PT_X86:
246 mask = pg_g;
247 break;
248 case PT_RVI:
249 case PT_EPT:
250 mask = 0;
251 break;
252 default:
253 panic("pmap_global_bit: invalid pm_type %d", pmap->pm_type);
254 }
255
256 return (mask);
257 }
258
259 static __inline pt_entry_t
pmap_accessed_bit(pmap_t pmap)260 pmap_accessed_bit(pmap_t pmap)
261 {
262 pt_entry_t mask;
263
264 switch (pmap->pm_type) {
265 case PT_X86:
266 case PT_RVI:
267 mask = X86_PG_A;
268 break;
269 case PT_EPT:
270 if (pmap_emulate_ad_bits(pmap))
271 mask = EPT_PG_READ;
272 else
273 mask = EPT_PG_A;
274 break;
275 default:
276 panic("pmap_accessed_bit: invalid pm_type %d", pmap->pm_type);
277 }
278
279 return (mask);
280 }
281
282 static __inline pt_entry_t
pmap_modified_bit(pmap_t pmap)283 pmap_modified_bit(pmap_t pmap)
284 {
285 pt_entry_t mask;
286
287 switch (pmap->pm_type) {
288 case PT_X86:
289 case PT_RVI:
290 mask = X86_PG_M;
291 break;
292 case PT_EPT:
293 if (pmap_emulate_ad_bits(pmap))
294 mask = EPT_PG_WRITE;
295 else
296 mask = EPT_PG_M;
297 break;
298 default:
299 panic("pmap_modified_bit: invalid pm_type %d", pmap->pm_type);
300 }
301
302 return (mask);
303 }
304
305 static __inline pt_entry_t
pmap_pku_mask_bit(pmap_t pmap)306 pmap_pku_mask_bit(pmap_t pmap)
307 {
308
309 return (pmap->pm_type == PT_X86 ? X86_PG_PKU_MASK : 0);
310 }
311
312 static __inline bool
safe_to_clear_referenced(pmap_t pmap,pt_entry_t pte)313 safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
314 {
315
316 if (!pmap_emulate_ad_bits(pmap))
317 return (true);
318
319 KASSERT(pmap->pm_type == PT_EPT, ("invalid pm_type %d", pmap->pm_type));
320
321 /*
322 * XWR = 010 or 110 will cause an unconditional EPT misconfiguration
323 * so we don't let the referenced (aka EPT_PG_READ) bit to be cleared
324 * if the EPT_PG_WRITE bit is set.
325 */
326 if ((pte & EPT_PG_WRITE) != 0)
327 return (false);
328
329 /*
330 * XWR = 100 is allowed only if the PMAP_SUPPORTS_EXEC_ONLY is set.
331 */
332 if ((pte & EPT_PG_EXECUTE) == 0 ||
333 ((pmap->pm_flags & PMAP_SUPPORTS_EXEC_ONLY) != 0))
334 return (true);
335 else
336 return (false);
337 }
338
339 #ifdef PV_STATS
340 #define PV_STAT(x) do { x ; } while (0)
341 #else
342 #define PV_STAT(x) do { } while (0)
343 #endif
344
345 #ifdef NUMA
346 #define pa_index(pa) ({ \
347 KASSERT((pa) <= vm_phys_segs[vm_phys_nsegs - 1].end, \
348 ("address %lx beyond the last segment", (pa))); \
349 (pa) >> PDRSHIFT; \
350 })
351 #define pa_to_pmdp(pa) (&pv_table[pa_index(pa)])
352 #define pa_to_pvh(pa) (&(pa_to_pmdp(pa)->pv_page))
353 #define PHYS_TO_PV_LIST_LOCK(pa) ({ \
354 struct rwlock *_lock; \
355 if (__predict_false((pa) > pmap_last_pa)) \
356 _lock = &pv_dummy_large.pv_lock; \
357 else \
358 _lock = &(pa_to_pmdp(pa)->pv_lock); \
359 _lock; \
360 })
361 #else
362 #define pa_index(pa) ((pa) >> PDRSHIFT)
363 #define pa_to_pvh(pa) (&pv_table[pa_index(pa)])
364
365 #define NPV_LIST_LOCKS MAXCPU
366
367 #define PHYS_TO_PV_LIST_LOCK(pa) \
368 (&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
369 #endif
370
371 #define CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa) do { \
372 struct rwlock **_lockp = (lockp); \
373 struct rwlock *_new_lock; \
374 \
375 _new_lock = PHYS_TO_PV_LIST_LOCK(pa); \
376 if (_new_lock != *_lockp) { \
377 if (*_lockp != NULL) \
378 rw_wunlock(*_lockp); \
379 *_lockp = _new_lock; \
380 rw_wlock(*_lockp); \
381 } \
382 } while (0)
383
384 #define CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m) \
385 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
386
387 #define RELEASE_PV_LIST_LOCK(lockp) do { \
388 struct rwlock **_lockp = (lockp); \
389 \
390 if (*_lockp != NULL) { \
391 rw_wunlock(*_lockp); \
392 *_lockp = NULL; \
393 } \
394 } while (0)
395
396 #define VM_PAGE_TO_PV_LIST_LOCK(m) \
397 PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
398
399 /*
400 * Statically allocate kernel pmap memory. However, memory for
401 * pm_pcids is obtained after the dynamic allocator is operational.
402 * Initialize it with a non-canonical pointer to catch early accesses
403 * regardless of the active mapping.
404 */
405 struct pmap kernel_pmap_store = {
406 .pm_pcidp = (void *)0xdeadbeefdeadbeef,
407 };
408
409 vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */
410 vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
411
412 int nkpt;
413 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
414 "Number of kernel page table pages allocated on bootup");
415
416 static int ndmpdp;
417 vm_paddr_t dmaplimit;
418 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
419 pt_entry_t pg_nx;
420
421 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
422 "VM/pmap parameters");
423
424 static int __read_frequently pg_ps_enabled = 1;
425 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
426 &pg_ps_enabled, 0, "Are large page mappings enabled?");
427
428 int __read_frequently la57 = 0;
429 SYSCTL_INT(_vm_pmap, OID_AUTO, la57, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
430 &la57, 0,
431 "5-level paging for host is enabled");
432
433 /*
434 * The default value is needed in order to preserve compatibility with
435 * some userspace programs that put tags into sign-extended bits.
436 */
437 int prefer_uva_la48 = 1;
438 SYSCTL_INT(_vm_pmap, OID_AUTO, prefer_uva_la48, CTLFLAG_RDTUN,
439 &prefer_uva_la48, 0,
440 "Userspace maps are limited to LA48 unless otherwise configured");
441
442 static bool
pmap_is_la57(pmap_t pmap)443 pmap_is_la57(pmap_t pmap)
444 {
445 if (pmap->pm_type == PT_X86)
446 return (la57);
447 return (false); /* XXXKIB handle EPT */
448 }
449
450 #define PAT_INDEX_SIZE 8
451 static int pat_index[PAT_INDEX_SIZE]; /* cache mode to PAT index conversion */
452
453 static u_int64_t KPTphys; /* phys addr of kernel level 1 */
454 static u_int64_t KPDphys; /* phys addr of kernel level 2 */
455 static u_int64_t KPDPphys; /* phys addr of kernel level 3 */
456 u_int64_t KPML4phys; /* phys addr of kernel level 4 */
457 u_int64_t KPML5phys; /* phys addr of kernel level 5,
458 if supported */
459
460 #ifdef KASAN
461 static uint64_t KASANPDPphys;
462 #endif
463 #ifdef KMSAN
464 static uint64_t KMSANSHADPDPphys;
465 static uint64_t KMSANORIGPDPphys;
466
467 /*
468 * To support systems with large amounts of memory, it is necessary to extend
469 * the maximum size of the direct map. This could eat into the space reserved
470 * for the shadow map.
471 */
472 _Static_assert(DMPML4I + NDMPML4E <= KMSANSHADPML4I, "direct map overflow");
473 #endif
474
475 static pml4_entry_t *kernel_pml4;
476 static u_int64_t DMPDphys; /* phys addr of direct mapped level 2 */
477 static u_int64_t DMPDPphys; /* phys addr of direct mapped level 3 */
478 static int ndmpdpphys; /* number of DMPDPphys pages */
479
480 vm_paddr_t kernphys; /* phys addr of start of bootstrap data */
481 vm_paddr_t KERNend; /* and the end */
482
483 /*
484 * pmap_mapdev support pre initialization (i.e. console)
485 */
486 #define PMAP_PREINIT_MAPPING_COUNT 8
487 static struct pmap_preinit_mapping {
488 vm_paddr_t pa;
489 vm_offset_t va;
490 vm_size_t sz;
491 int mode;
492 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
493 static int pmap_initialized;
494
495 /*
496 * Data for the pv entry allocation mechanism.
497 * Updates to pv_invl_gen are protected by the pv list lock but reads are not.
498 */
499 #ifdef NUMA
500 static __inline int
pc_to_domain(struct pv_chunk * pc)501 pc_to_domain(struct pv_chunk *pc)
502 {
503
504 return (vm_phys_domain(DMAP_TO_PHYS((vm_offset_t)pc)));
505 }
506 #else
507 static __inline int
pc_to_domain(struct pv_chunk * pc __unused)508 pc_to_domain(struct pv_chunk *pc __unused)
509 {
510
511 return (0);
512 }
513 #endif
514
515 struct pv_chunks_list {
516 struct mtx pvc_lock;
517 TAILQ_HEAD(pch, pv_chunk) pvc_list;
518 int active_reclaims;
519 } __aligned(CACHE_LINE_SIZE);
520
521 struct pv_chunks_list __exclusive_cache_line pv_chunks[PMAP_MEMDOM];
522
523 #ifdef NUMA
524 struct pmap_large_md_page {
525 struct rwlock pv_lock;
526 struct md_page pv_page;
527 u_long pv_invl_gen;
528 };
529 __exclusive_cache_line static struct pmap_large_md_page pv_dummy_large;
530 #define pv_dummy pv_dummy_large.pv_page
531 __read_mostly static struct pmap_large_md_page *pv_table;
532 __read_mostly vm_paddr_t pmap_last_pa;
533 #else
534 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
535 static u_long pv_invl_gen[NPV_LIST_LOCKS];
536 static struct md_page *pv_table;
537 static struct md_page pv_dummy;
538 #endif
539
540 /*
541 * All those kernel PT submaps that BSD is so fond of
542 */
543 pt_entry_t *CMAP1 = NULL;
544 caddr_t CADDR1 = 0;
545 static vm_offset_t qframe = 0;
546 static struct mtx qframe_mtx;
547
548 static int pmap_flags = PMAP_PDE_SUPERPAGE; /* flags for x86 pmaps */
549
550 static vmem_t *large_vmem;
551 static u_int lm_ents;
552 #define PMAP_ADDRESS_IN_LARGEMAP(va) ((va) >= LARGEMAP_MIN_ADDRESS && \
553 (va) < LARGEMAP_MIN_ADDRESS + NBPML4 * (u_long)lm_ents)
554
555 int pmap_pcid_enabled = 1;
556 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
557 &pmap_pcid_enabled, 0, "Is TLB Context ID enabled ?");
558 int invpcid_works = 0;
559 SYSCTL_INT(_vm_pmap, OID_AUTO, invpcid_works, CTLFLAG_RD, &invpcid_works, 0,
560 "Is the invpcid instruction available ?");
561 int invlpgb_works;
562 SYSCTL_INT(_vm_pmap, OID_AUTO, invlpgb_works, CTLFLAG_RD, &invlpgb_works, 0,
563 "Is the invlpgb instruction available?");
564 int invlpgb_maxcnt;
565 int pmap_pcid_invlpg_workaround = 0;
566 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_invlpg_workaround,
567 CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
568 &pmap_pcid_invlpg_workaround, 0,
569 "Enable small core PCID/INVLPG workaround");
570 int pmap_pcid_invlpg_workaround_uena = 1;
571
572 int __read_frequently pti = 0;
573 SYSCTL_INT(_vm_pmap, OID_AUTO, pti, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
574 &pti, 0,
575 "Page Table Isolation enabled");
576 static vm_object_t pti_obj;
577 static pml4_entry_t *pti_pml4;
578 static vm_pindex_t pti_pg_idx;
579 static bool pti_finalized;
580
581 static int pmap_growkernel_panic = 0;
582 SYSCTL_INT(_vm_pmap, OID_AUTO, growkernel_panic, CTLFLAG_RDTUN,
583 &pmap_growkernel_panic, 0,
584 "panic on failure to allocate kernel page table page");
585
586 struct pmap_pkru_range {
587 struct rs_el pkru_rs_el;
588 u_int pkru_keyidx;
589 int pkru_flags;
590 };
591
592 static uma_zone_t pmap_pkru_ranges_zone;
593 static bool pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
594 pt_entry_t *pte);
595 static pt_entry_t pmap_pkru_get(pmap_t pmap, vm_offset_t va);
596 static void pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
597 static void *pkru_dup_range(void *ctx, void *data);
598 static void pkru_free_range(void *ctx, void *node);
599 static int pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap);
600 static int pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
601 static void pmap_pkru_deassign_all(pmap_t pmap);
602
603 static COUNTER_U64_DEFINE_EARLY(pcid_save_cnt);
604 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pcid_save_cnt, CTLFLAG_RD,
605 &pcid_save_cnt, "Count of saved TLB context on switch");
606
607 static LIST_HEAD(, pmap_invl_gen) pmap_invl_gen_tracker =
608 LIST_HEAD_INITIALIZER(&pmap_invl_gen_tracker);
609 static struct mtx invl_gen_mtx;
610 /* Fake lock object to satisfy turnstiles interface. */
611 static struct lock_object invl_gen_ts = {
612 .lo_name = "invlts",
613 };
614 static struct pmap_invl_gen pmap_invl_gen_head = {
615 .gen = 1,
616 .next = NULL,
617 };
618 static u_long pmap_invl_gen = 1;
619 static int pmap_invl_waiters;
620 static struct callout pmap_invl_callout;
621 static bool pmap_invl_callout_inited;
622
623 #define PMAP_ASSERT_NOT_IN_DI() \
624 KASSERT(pmap_not_in_di(), ("DI already started"))
625
626 static bool
pmap_di_locked(void)627 pmap_di_locked(void)
628 {
629 int tun;
630
631 if ((cpu_feature2 & CPUID2_CX16) == 0)
632 return (true);
633 tun = 0;
634 TUNABLE_INT_FETCH("vm.pmap.di_locked", &tun);
635 return (tun != 0);
636 }
637
638 static int
sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)639 sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)
640 {
641 int locked;
642
643 locked = pmap_di_locked();
644 return (sysctl_handle_int(oidp, &locked, 0, req));
645 }
646 SYSCTL_PROC(_vm_pmap, OID_AUTO, di_locked, CTLTYPE_INT | CTLFLAG_RDTUN |
647 CTLFLAG_MPSAFE, 0, 0, sysctl_pmap_di_locked, "",
648 "Locked delayed invalidation");
649
650 static bool pmap_not_in_di_l(void);
651 static bool pmap_not_in_di_u(void);
652 DEFINE_IFUNC(, bool, pmap_not_in_di, (void))
653 {
654
655 return (pmap_di_locked() ? pmap_not_in_di_l : pmap_not_in_di_u);
656 }
657
658 static bool
pmap_not_in_di_l(void)659 pmap_not_in_di_l(void)
660 {
661 struct pmap_invl_gen *invl_gen;
662
663 invl_gen = &curthread->td_md.md_invl_gen;
664 return (invl_gen->gen == 0);
665 }
666
667 static void
pmap_thread_init_invl_gen_l(struct thread * td)668 pmap_thread_init_invl_gen_l(struct thread *td)
669 {
670 struct pmap_invl_gen *invl_gen;
671
672 invl_gen = &td->td_md.md_invl_gen;
673 invl_gen->gen = 0;
674 }
675
676 static void
pmap_delayed_invl_wait_block(u_long * m_gen,u_long * invl_gen)677 pmap_delayed_invl_wait_block(u_long *m_gen, u_long *invl_gen)
678 {
679 struct turnstile *ts;
680
681 ts = turnstile_trywait(&invl_gen_ts);
682 if (*m_gen > atomic_load_long(invl_gen))
683 turnstile_wait(ts, NULL, TS_SHARED_QUEUE);
684 else
685 turnstile_cancel(ts);
686 }
687
688 static void
pmap_delayed_invl_finish_unblock(u_long new_gen)689 pmap_delayed_invl_finish_unblock(u_long new_gen)
690 {
691 struct turnstile *ts;
692
693 turnstile_chain_lock(&invl_gen_ts);
694 ts = turnstile_lookup(&invl_gen_ts);
695 if (new_gen != 0)
696 pmap_invl_gen = new_gen;
697 if (ts != NULL) {
698 turnstile_broadcast(ts, TS_SHARED_QUEUE);
699 turnstile_unpend(ts);
700 }
701 turnstile_chain_unlock(&invl_gen_ts);
702 }
703
704 /*
705 * Start a new Delayed Invalidation (DI) block of code, executed by
706 * the current thread. Within a DI block, the current thread may
707 * destroy both the page table and PV list entries for a mapping and
708 * then release the corresponding PV list lock before ensuring that
709 * the mapping is flushed from the TLBs of any processors with the
710 * pmap active.
711 */
712 static void
pmap_delayed_invl_start_l(void)713 pmap_delayed_invl_start_l(void)
714 {
715 struct pmap_invl_gen *invl_gen;
716 u_long currgen;
717
718 invl_gen = &curthread->td_md.md_invl_gen;
719 PMAP_ASSERT_NOT_IN_DI();
720 mtx_lock(&invl_gen_mtx);
721 if (LIST_EMPTY(&pmap_invl_gen_tracker))
722 currgen = pmap_invl_gen;
723 else
724 currgen = LIST_FIRST(&pmap_invl_gen_tracker)->gen;
725 invl_gen->gen = currgen + 1;
726 LIST_INSERT_HEAD(&pmap_invl_gen_tracker, invl_gen, link);
727 mtx_unlock(&invl_gen_mtx);
728 }
729
730 /*
731 * Finish the DI block, previously started by the current thread. All
732 * required TLB flushes for the pages marked by
733 * pmap_delayed_invl_page() must be finished before this function is
734 * called.
735 *
736 * This function works by bumping the global DI generation number to
737 * the generation number of the current thread's DI, unless there is a
738 * pending DI that started earlier. In the latter case, bumping the
739 * global DI generation number would incorrectly signal that the
740 * earlier DI had finished. Instead, this function bumps the earlier
741 * DI's generation number to match the generation number of the
742 * current thread's DI.
743 */
744 static void
pmap_delayed_invl_finish_l(void)745 pmap_delayed_invl_finish_l(void)
746 {
747 struct pmap_invl_gen *invl_gen, *next;
748
749 invl_gen = &curthread->td_md.md_invl_gen;
750 KASSERT(invl_gen->gen != 0, ("missed invl_start"));
751 mtx_lock(&invl_gen_mtx);
752 next = LIST_NEXT(invl_gen, link);
753 if (next == NULL)
754 pmap_delayed_invl_finish_unblock(invl_gen->gen);
755 else
756 next->gen = invl_gen->gen;
757 LIST_REMOVE(invl_gen, link);
758 mtx_unlock(&invl_gen_mtx);
759 invl_gen->gen = 0;
760 }
761
762 static bool
pmap_not_in_di_u(void)763 pmap_not_in_di_u(void)
764 {
765 struct pmap_invl_gen *invl_gen;
766
767 invl_gen = &curthread->td_md.md_invl_gen;
768 return (((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) != 0);
769 }
770
771 static void
pmap_thread_init_invl_gen_u(struct thread * td)772 pmap_thread_init_invl_gen_u(struct thread *td)
773 {
774 struct pmap_invl_gen *invl_gen;
775
776 invl_gen = &td->td_md.md_invl_gen;
777 invl_gen->gen = 0;
778 invl_gen->next = (void *)PMAP_INVL_GEN_NEXT_INVALID;
779 }
780
781 static bool
pmap_di_load_invl(struct pmap_invl_gen * ptr,struct pmap_invl_gen * out)782 pmap_di_load_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *out)
783 {
784 uint64_t new_high, new_low, old_high, old_low;
785 char res;
786
787 old_low = new_low = 0;
788 old_high = new_high = (uintptr_t)0;
789
790 __asm volatile("lock;cmpxchg16b\t%1"
791 : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
792 : "b"(new_low), "c" (new_high)
793 : "memory", "cc");
794 if (res == 0) {
795 if ((old_high & PMAP_INVL_GEN_NEXT_INVALID) != 0)
796 return (false);
797 out->gen = old_low;
798 out->next = (void *)old_high;
799 } else {
800 out->gen = new_low;
801 out->next = (void *)new_high;
802 }
803 return (true);
804 }
805
806 static bool
pmap_di_store_invl(struct pmap_invl_gen * ptr,struct pmap_invl_gen * old_val,struct pmap_invl_gen * new_val)807 pmap_di_store_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *old_val,
808 struct pmap_invl_gen *new_val)
809 {
810 uint64_t new_high, new_low, old_high, old_low;
811 char res;
812
813 new_low = new_val->gen;
814 new_high = (uintptr_t)new_val->next;
815 old_low = old_val->gen;
816 old_high = (uintptr_t)old_val->next;
817
818 __asm volatile("lock;cmpxchg16b\t%1"
819 : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
820 : "b"(new_low), "c" (new_high)
821 : "memory", "cc");
822 return (res);
823 }
824
825 static COUNTER_U64_DEFINE_EARLY(pv_page_count);
826 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_page_count, CTLFLAG_RD,
827 &pv_page_count, "Current number of allocated pv pages");
828
829 static COUNTER_U64_DEFINE_EARLY(user_pt_page_count);
830 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, user_pt_page_count, CTLFLAG_RD,
831 &user_pt_page_count,
832 "Current number of allocated page table pages for userspace");
833
834 static COUNTER_U64_DEFINE_EARLY(kernel_pt_page_count);
835 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, kernel_pt_page_count, CTLFLAG_RD,
836 &kernel_pt_page_count,
837 "Current number of allocated page table pages for the kernel");
838
839 #ifdef PV_STATS
840
841 static COUNTER_U64_DEFINE_EARLY(invl_start_restart);
842 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_start_restart,
843 CTLFLAG_RD, &invl_start_restart,
844 "Number of delayed TLB invalidation request restarts");
845
846 static COUNTER_U64_DEFINE_EARLY(invl_finish_restart);
847 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_finish_restart, CTLFLAG_RD,
848 &invl_finish_restart,
849 "Number of delayed TLB invalidation completion restarts");
850
851 static int invl_max_qlen;
852 SYSCTL_INT(_vm_pmap, OID_AUTO, invl_max_qlen, CTLFLAG_RD,
853 &invl_max_qlen, 0,
854 "Maximum delayed TLB invalidation request queue length");
855 #endif
856
857 #define di_delay locks_delay
858
859 static void
pmap_delayed_invl_start_u(void)860 pmap_delayed_invl_start_u(void)
861 {
862 struct pmap_invl_gen *invl_gen, *p, prev, new_prev;
863 struct thread *td;
864 struct lock_delay_arg lda;
865 uintptr_t prevl;
866 u_char pri;
867 #ifdef PV_STATS
868 int i, ii;
869 #endif
870
871 td = curthread;
872 invl_gen = &td->td_md.md_invl_gen;
873 PMAP_ASSERT_NOT_IN_DI();
874 lock_delay_arg_init(&lda, &di_delay);
875 invl_gen->saved_pri = 0;
876 pri = td->td_base_pri;
877 if (pri > PVM) {
878 thread_lock(td);
879 pri = td->td_base_pri;
880 if (pri > PVM) {
881 invl_gen->saved_pri = pri;
882 sched_prio(td, PVM);
883 }
884 thread_unlock(td);
885 }
886 again:
887 PV_STAT(i = 0);
888 for (p = &pmap_invl_gen_head;; p = prev.next) {
889 PV_STAT(i++);
890 prevl = (uintptr_t)atomic_load_ptr(&p->next);
891 if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
892 PV_STAT(counter_u64_add(invl_start_restart, 1));
893 lock_delay(&lda);
894 goto again;
895 }
896 if (prevl == 0)
897 break;
898 prev.next = (void *)prevl;
899 }
900 #ifdef PV_STATS
901 if ((ii = invl_max_qlen) < i)
902 atomic_cmpset_int(&invl_max_qlen, ii, i);
903 #endif
904
905 if (!pmap_di_load_invl(p, &prev) || prev.next != NULL) {
906 PV_STAT(counter_u64_add(invl_start_restart, 1));
907 lock_delay(&lda);
908 goto again;
909 }
910
911 new_prev.gen = prev.gen;
912 new_prev.next = invl_gen;
913 invl_gen->gen = prev.gen + 1;
914
915 /* Formal fence between store to invl->gen and updating *p. */
916 atomic_thread_fence_rel();
917
918 /*
919 * After inserting an invl_gen element with invalid bit set,
920 * this thread blocks any other thread trying to enter the
921 * delayed invalidation block. Do not allow to remove us from
922 * the CPU, because it causes starvation for other threads.
923 */
924 critical_enter();
925
926 /*
927 * ABA for *p is not possible there, since p->gen can only
928 * increase. So if the *p thread finished its di, then
929 * started a new one and got inserted into the list at the
930 * same place, its gen will appear greater than the previously
931 * read gen.
932 */
933 if (!pmap_di_store_invl(p, &prev, &new_prev)) {
934 critical_exit();
935 PV_STAT(counter_u64_add(invl_start_restart, 1));
936 lock_delay(&lda);
937 goto again;
938 }
939
940 /*
941 * There we clear PMAP_INVL_GEN_NEXT_INVALID in
942 * invl_gen->next, allowing other threads to iterate past us.
943 * pmap_di_store_invl() provides fence between the generation
944 * write and the update of next.
945 */
946 invl_gen->next = NULL;
947 critical_exit();
948 }
949
950 static bool
pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen * invl_gen,struct pmap_invl_gen * p)951 pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen *invl_gen,
952 struct pmap_invl_gen *p)
953 {
954 struct pmap_invl_gen prev, new_prev;
955 u_long mygen;
956
957 /*
958 * Load invl_gen->gen after setting invl_gen->next
959 * PMAP_INVL_GEN_NEXT_INVALID. This prevents larger
960 * generations to propagate to our invl_gen->gen. Lock prefix
961 * in atomic_set_ptr() worked as seq_cst fence.
962 */
963 mygen = atomic_load_long(&invl_gen->gen);
964
965 if (!pmap_di_load_invl(p, &prev) || prev.next != invl_gen)
966 return (false);
967
968 KASSERT(prev.gen < mygen,
969 ("invalid di gen sequence %lu %lu", prev.gen, mygen));
970 new_prev.gen = mygen;
971 new_prev.next = (void *)((uintptr_t)invl_gen->next &
972 ~PMAP_INVL_GEN_NEXT_INVALID);
973
974 /* Formal fence between load of prev and storing update to it. */
975 atomic_thread_fence_rel();
976
977 return (pmap_di_store_invl(p, &prev, &new_prev));
978 }
979
980 static void
pmap_delayed_invl_finish_u(void)981 pmap_delayed_invl_finish_u(void)
982 {
983 struct pmap_invl_gen *invl_gen, *p;
984 struct thread *td;
985 struct lock_delay_arg lda;
986 uintptr_t prevl;
987
988 td = curthread;
989 invl_gen = &td->td_md.md_invl_gen;
990 KASSERT(invl_gen->gen != 0, ("missed invl_start: gen 0"));
991 KASSERT(((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) == 0,
992 ("missed invl_start: INVALID"));
993 lock_delay_arg_init(&lda, &di_delay);
994
995 again:
996 for (p = &pmap_invl_gen_head; p != NULL; p = (void *)prevl) {
997 prevl = (uintptr_t)atomic_load_ptr(&p->next);
998 if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
999 PV_STAT(counter_u64_add(invl_finish_restart, 1));
1000 lock_delay(&lda);
1001 goto again;
1002 }
1003 if ((void *)prevl == invl_gen)
1004 break;
1005 }
1006
1007 /*
1008 * It is legitimate to not find ourself on the list if a
1009 * thread before us finished its DI and started it again.
1010 */
1011 if (__predict_false(p == NULL)) {
1012 PV_STAT(counter_u64_add(invl_finish_restart, 1));
1013 lock_delay(&lda);
1014 goto again;
1015 }
1016
1017 critical_enter();
1018 atomic_set_ptr((uintptr_t *)&invl_gen->next,
1019 PMAP_INVL_GEN_NEXT_INVALID);
1020 if (!pmap_delayed_invl_finish_u_crit(invl_gen, p)) {
1021 atomic_clear_ptr((uintptr_t *)&invl_gen->next,
1022 PMAP_INVL_GEN_NEXT_INVALID);
1023 critical_exit();
1024 PV_STAT(counter_u64_add(invl_finish_restart, 1));
1025 lock_delay(&lda);
1026 goto again;
1027 }
1028 critical_exit();
1029 if (atomic_load_int(&pmap_invl_waiters) > 0)
1030 pmap_delayed_invl_finish_unblock(0);
1031 if (invl_gen->saved_pri != 0) {
1032 thread_lock(td);
1033 sched_prio(td, invl_gen->saved_pri);
1034 thread_unlock(td);
1035 }
1036 }
1037
1038 #ifdef DDB
DB_SHOW_COMMAND(di_queue,pmap_di_queue)1039 DB_SHOW_COMMAND(di_queue, pmap_di_queue)
1040 {
1041 struct pmap_invl_gen *p, *pn;
1042 struct thread *td;
1043 uintptr_t nextl;
1044 bool first;
1045
1046 for (p = &pmap_invl_gen_head, first = true; p != NULL; p = pn,
1047 first = false) {
1048 nextl = (uintptr_t)atomic_load_ptr(&p->next);
1049 pn = (void *)(nextl & ~PMAP_INVL_GEN_NEXT_INVALID);
1050 td = first ? NULL : __containerof(p, struct thread,
1051 td_md.md_invl_gen);
1052 db_printf("gen %lu inv %d td %p tid %d\n", p->gen,
1053 (nextl & PMAP_INVL_GEN_NEXT_INVALID) != 0, td,
1054 td != NULL ? td->td_tid : -1);
1055 }
1056 }
1057 #endif
1058
1059 #ifdef PV_STATS
1060 static COUNTER_U64_DEFINE_EARLY(invl_wait);
1061 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait,
1062 CTLFLAG_RD, &invl_wait,
1063 "Number of times DI invalidation blocked pmap_remove_all/write");
1064
1065 static COUNTER_U64_DEFINE_EARLY(invl_wait_slow);
1066 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait_slow, CTLFLAG_RD,
1067 &invl_wait_slow, "Number of slow invalidation waits for lockless DI");
1068
1069 #endif
1070
1071 #ifdef NUMA
1072 static u_long *
pmap_delayed_invl_genp(vm_page_t m)1073 pmap_delayed_invl_genp(vm_page_t m)
1074 {
1075 vm_paddr_t pa;
1076 u_long *gen;
1077
1078 pa = VM_PAGE_TO_PHYS(m);
1079 if (__predict_false((pa) > pmap_last_pa))
1080 gen = &pv_dummy_large.pv_invl_gen;
1081 else
1082 gen = &(pa_to_pmdp(pa)->pv_invl_gen);
1083
1084 return (gen);
1085 }
1086 #else
1087 static u_long *
pmap_delayed_invl_genp(vm_page_t m)1088 pmap_delayed_invl_genp(vm_page_t m)
1089 {
1090
1091 return (&pv_invl_gen[pa_index(VM_PAGE_TO_PHYS(m)) % NPV_LIST_LOCKS]);
1092 }
1093 #endif
1094
1095 static void
pmap_delayed_invl_callout_func(void * arg __unused)1096 pmap_delayed_invl_callout_func(void *arg __unused)
1097 {
1098
1099 if (atomic_load_int(&pmap_invl_waiters) == 0)
1100 return;
1101 pmap_delayed_invl_finish_unblock(0);
1102 }
1103
1104 static void
pmap_delayed_invl_callout_init(void * arg __unused)1105 pmap_delayed_invl_callout_init(void *arg __unused)
1106 {
1107
1108 if (pmap_di_locked())
1109 return;
1110 callout_init(&pmap_invl_callout, 1);
1111 pmap_invl_callout_inited = true;
1112 }
1113 SYSINIT(pmap_di_callout, SI_SUB_CPU + 1, SI_ORDER_ANY,
1114 pmap_delayed_invl_callout_init, NULL);
1115
1116 /*
1117 * Ensure that all currently executing DI blocks, that need to flush
1118 * TLB for the given page m, actually flushed the TLB at the time the
1119 * function returned. If the page m has an empty PV list and we call
1120 * pmap_delayed_invl_wait(), upon its return we know that no CPU has a
1121 * valid mapping for the page m in either its page table or TLB.
1122 *
1123 * This function works by blocking until the global DI generation
1124 * number catches up with the generation number associated with the
1125 * given page m and its PV list. Since this function's callers
1126 * typically own an object lock and sometimes own a page lock, it
1127 * cannot sleep. Instead, it blocks on a turnstile to relinquish the
1128 * processor.
1129 */
1130 static void
pmap_delayed_invl_wait_l(vm_page_t m)1131 pmap_delayed_invl_wait_l(vm_page_t m)
1132 {
1133 u_long *m_gen;
1134 #ifdef PV_STATS
1135 bool accounted = false;
1136 #endif
1137
1138 m_gen = pmap_delayed_invl_genp(m);
1139 while (*m_gen > pmap_invl_gen) {
1140 #ifdef PV_STATS
1141 if (!accounted) {
1142 counter_u64_add(invl_wait, 1);
1143 accounted = true;
1144 }
1145 #endif
1146 pmap_delayed_invl_wait_block(m_gen, &pmap_invl_gen);
1147 }
1148 }
1149
1150 static void
pmap_delayed_invl_wait_u(vm_page_t m)1151 pmap_delayed_invl_wait_u(vm_page_t m)
1152 {
1153 u_long *m_gen;
1154 struct lock_delay_arg lda;
1155 bool fast;
1156
1157 fast = true;
1158 m_gen = pmap_delayed_invl_genp(m);
1159 lock_delay_arg_init(&lda, &di_delay);
1160 while (*m_gen > atomic_load_long(&pmap_invl_gen_head.gen)) {
1161 if (fast || !pmap_invl_callout_inited) {
1162 PV_STAT(counter_u64_add(invl_wait, 1));
1163 lock_delay(&lda);
1164 fast = false;
1165 } else {
1166 /*
1167 * The page's invalidation generation number
1168 * is still below the current thread's number.
1169 * Prepare to block so that we do not waste
1170 * CPU cycles or worse, suffer livelock.
1171 *
1172 * Since it is impossible to block without
1173 * racing with pmap_delayed_invl_finish_u(),
1174 * prepare for the race by incrementing
1175 * pmap_invl_waiters and arming a 1-tick
1176 * callout which will unblock us if we lose
1177 * the race.
1178 */
1179 atomic_add_int(&pmap_invl_waiters, 1);
1180
1181 /*
1182 * Re-check the current thread's invalidation
1183 * generation after incrementing
1184 * pmap_invl_waiters, so that there is no race
1185 * with pmap_delayed_invl_finish_u() setting
1186 * the page generation and checking
1187 * pmap_invl_waiters. The only race allowed
1188 * is for a missed unblock, which is handled
1189 * by the callout.
1190 */
1191 if (*m_gen >
1192 atomic_load_long(&pmap_invl_gen_head.gen)) {
1193 callout_reset(&pmap_invl_callout, 1,
1194 pmap_delayed_invl_callout_func, NULL);
1195 PV_STAT(counter_u64_add(invl_wait_slow, 1));
1196 pmap_delayed_invl_wait_block(m_gen,
1197 &pmap_invl_gen_head.gen);
1198 }
1199 atomic_add_int(&pmap_invl_waiters, -1);
1200 }
1201 }
1202 }
1203
1204 DEFINE_IFUNC(, void, pmap_thread_init_invl_gen, (struct thread *))
1205 {
1206
1207 return (pmap_di_locked() ? pmap_thread_init_invl_gen_l :
1208 pmap_thread_init_invl_gen_u);
1209 }
1210
1211 DEFINE_IFUNC(static, void, pmap_delayed_invl_start, (void))
1212 {
1213
1214 return (pmap_di_locked() ? pmap_delayed_invl_start_l :
1215 pmap_delayed_invl_start_u);
1216 }
1217
1218 DEFINE_IFUNC(static, void, pmap_delayed_invl_finish, (void))
1219 {
1220
1221 return (pmap_di_locked() ? pmap_delayed_invl_finish_l :
1222 pmap_delayed_invl_finish_u);
1223 }
1224
1225 DEFINE_IFUNC(static, void, pmap_delayed_invl_wait, (vm_page_t))
1226 {
1227
1228 return (pmap_di_locked() ? pmap_delayed_invl_wait_l :
1229 pmap_delayed_invl_wait_u);
1230 }
1231
1232 /*
1233 * Mark the page m's PV list as participating in the current thread's
1234 * DI block. Any threads concurrently using m's PV list to remove or
1235 * restrict all mappings to m will wait for the current thread's DI
1236 * block to complete before proceeding.
1237 *
1238 * The function works by setting the DI generation number for m's PV
1239 * list to at least the DI generation number of the current thread.
1240 * This forces a caller of pmap_delayed_invl_wait() to block until
1241 * current thread calls pmap_delayed_invl_finish().
1242 */
1243 static void
pmap_delayed_invl_page(vm_page_t m)1244 pmap_delayed_invl_page(vm_page_t m)
1245 {
1246 u_long gen, *m_gen;
1247
1248 rw_assert(VM_PAGE_TO_PV_LIST_LOCK(m), RA_WLOCKED);
1249 gen = curthread->td_md.md_invl_gen.gen;
1250 if (gen == 0)
1251 return;
1252 m_gen = pmap_delayed_invl_genp(m);
1253 if (*m_gen < gen)
1254 *m_gen = gen;
1255 }
1256
1257 /*
1258 * Crashdump maps.
1259 */
1260 static caddr_t crashdumpmap;
1261
1262 /*
1263 * Internal flags for pmap_enter()'s helper functions.
1264 */
1265 #define PMAP_ENTER_NORECLAIM 0x1000000 /* Don't reclaim PV entries. */
1266 #define PMAP_ENTER_NOREPLACE 0x2000000 /* Don't replace mappings. */
1267
1268 /*
1269 * Internal flags for pmap_mapdev_internal() and
1270 * pmap_change_props_locked().
1271 */
1272 #define MAPDEV_FLUSHCACHE 0x00000001 /* Flush cache after mapping. */
1273 #define MAPDEV_SETATTR 0x00000002 /* Modify existing attrs. */
1274 #define MAPDEV_ASSERTVALID 0x00000004 /* Assert mapping validity. */
1275
1276 TAILQ_HEAD(pv_chunklist, pv_chunk);
1277
1278 static void free_pv_chunk(struct pv_chunk *pc);
1279 static void free_pv_chunk_batch(struct pv_chunklist *batch);
1280 static void free_pv_entry(pmap_t pmap, pv_entry_t pv);
1281 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
1282 static int popcnt_pc_map_pq(uint64_t *map);
1283 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
1284 static void reserve_pv_entries(pmap_t pmap, int needed,
1285 struct rwlock **lockp);
1286 static void pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1287 struct rwlock **lockp);
1288 static bool pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde,
1289 u_int flags, struct rwlock **lockp);
1290 #if VM_NRESERVLEVEL > 0
1291 static void pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1292 struct rwlock **lockp);
1293 #endif
1294 static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
1295 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
1296 vm_offset_t va);
1297
1298 static void pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
1299 static int pmap_change_props_locked(vm_offset_t va, vm_size_t size,
1300 vm_prot_t prot, int mode, int flags);
1301 static bool pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
1302 static bool pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde,
1303 vm_offset_t va, struct rwlock **lockp);
1304 static bool pmap_demote_pde_mpte(pmap_t pmap, pd_entry_t *pde,
1305 vm_offset_t va, struct rwlock **lockp, vm_page_t mpte);
1306 static bool pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe,
1307 vm_offset_t va, vm_page_t m);
1308 static int pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
1309 vm_prot_t prot, struct rwlock **lockp);
1310 static int pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde,
1311 u_int flags, vm_page_t m, struct rwlock **lockp);
1312 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
1313 vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
1314 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
1315 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
1316 bool allpte_PG_A_set);
1317 static void pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,
1318 vm_offset_t eva);
1319 static void pmap_invalidate_cache_range_all(vm_offset_t sva,
1320 vm_offset_t eva);
1321 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
1322 pd_entry_t pde);
1323 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
1324 static vm_page_t pmap_large_map_getptp_unlocked(void);
1325 static vm_paddr_t pmap_large_map_kextract(vm_offset_t va);
1326 #if VM_NRESERVLEVEL > 0
1327 static bool pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
1328 vm_page_t mpte, struct rwlock **lockp);
1329 #endif
1330 static bool pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
1331 vm_prot_t prot);
1332 static void pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask);
1333 static void pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva,
1334 bool exec);
1335 static pdp_entry_t *pmap_pti_pdpe(vm_offset_t va);
1336 static pd_entry_t *pmap_pti_pde(vm_offset_t va);
1337 static void pmap_pti_wire_pte(void *pte);
1338 static int pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
1339 bool remove_pt, struct spglist *free, struct rwlock **lockp);
1340 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
1341 pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
1342 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
1343 static void pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1344 struct spglist *free);
1345 static bool pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1346 pd_entry_t *pde, struct spglist *free,
1347 struct rwlock **lockp);
1348 static bool pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
1349 vm_page_t m, struct rwlock **lockp);
1350 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1351 pd_entry_t newpde);
1352 static void pmap_update_pde_invalidate(pmap_t, vm_offset_t va, pd_entry_t pde);
1353
1354 static pd_entry_t *pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
1355 struct rwlock **lockp);
1356 static vm_page_t pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex,
1357 struct rwlock **lockp, vm_offset_t va);
1358 static vm_page_t pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex,
1359 struct rwlock **lockp, vm_offset_t va);
1360 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
1361 struct rwlock **lockp);
1362
1363 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
1364 struct spglist *free);
1365 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
1366
1367 static vm_page_t pmap_alloc_pt_page(pmap_t, vm_pindex_t, int);
1368 static void pmap_free_pt_page(pmap_t, vm_page_t, bool);
1369
1370 /********************/
1371 /* Inline functions */
1372 /********************/
1373
1374 /*
1375 * Return a non-clipped indexes for a given VA, which are page table
1376 * pages indexes at the corresponding level.
1377 */
1378 static __inline vm_pindex_t
pmap_pde_pindex(vm_offset_t va)1379 pmap_pde_pindex(vm_offset_t va)
1380 {
1381 return (va >> PDRSHIFT);
1382 }
1383
1384 static __inline vm_pindex_t
pmap_pdpe_pindex(vm_offset_t va)1385 pmap_pdpe_pindex(vm_offset_t va)
1386 {
1387 return (NUPDE + (va >> PDPSHIFT));
1388 }
1389
1390 static __inline vm_pindex_t
pmap_pml4e_pindex(vm_offset_t va)1391 pmap_pml4e_pindex(vm_offset_t va)
1392 {
1393 return (NUPDE + NUPDPE + (va >> PML4SHIFT));
1394 }
1395
1396 static __inline vm_pindex_t
pmap_pml5e_pindex(vm_offset_t va)1397 pmap_pml5e_pindex(vm_offset_t va)
1398 {
1399 return (NUPDE + NUPDPE + NUPML4E + (va >> PML5SHIFT));
1400 }
1401
1402 static __inline pml4_entry_t *
pmap_pml5e(pmap_t pmap,vm_offset_t va)1403 pmap_pml5e(pmap_t pmap, vm_offset_t va)
1404 {
1405
1406 MPASS(pmap_is_la57(pmap));
1407 return (&pmap->pm_pmltop[pmap_pml5e_index(va)]);
1408 }
1409
1410 static __inline pml4_entry_t *
pmap_pml5e_u(pmap_t pmap,vm_offset_t va)1411 pmap_pml5e_u(pmap_t pmap, vm_offset_t va)
1412 {
1413
1414 MPASS(pmap_is_la57(pmap));
1415 return (&pmap->pm_pmltopu[pmap_pml5e_index(va)]);
1416 }
1417
1418 static __inline pml4_entry_t *
pmap_pml5e_to_pml4e(pml5_entry_t * pml5e,vm_offset_t va)1419 pmap_pml5e_to_pml4e(pml5_entry_t *pml5e, vm_offset_t va)
1420 {
1421 pml4_entry_t *pml4e;
1422
1423 /* XXX MPASS(pmap_is_la57(pmap); */
1424 pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1425 return (&pml4e[pmap_pml4e_index(va)]);
1426 }
1427
1428 /* Return a pointer to the PML4 slot that corresponds to a VA */
1429 static __inline pml4_entry_t *
pmap_pml4e(pmap_t pmap,vm_offset_t va)1430 pmap_pml4e(pmap_t pmap, vm_offset_t va)
1431 {
1432 pml5_entry_t *pml5e;
1433 pml4_entry_t *pml4e;
1434 pt_entry_t PG_V;
1435
1436 if (pmap_is_la57(pmap)) {
1437 pml5e = pmap_pml5e(pmap, va);
1438 PG_V = pmap_valid_bit(pmap);
1439 if ((*pml5e & PG_V) == 0)
1440 return (NULL);
1441 pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1442 } else {
1443 pml4e = pmap->pm_pmltop;
1444 }
1445 return (&pml4e[pmap_pml4e_index(va)]);
1446 }
1447
1448 static __inline pml4_entry_t *
pmap_pml4e_u(pmap_t pmap,vm_offset_t va)1449 pmap_pml4e_u(pmap_t pmap, vm_offset_t va)
1450 {
1451 MPASS(!pmap_is_la57(pmap));
1452 return (&pmap->pm_pmltopu[pmap_pml4e_index(va)]);
1453 }
1454
1455 /* Return a pointer to the PDP slot that corresponds to a VA */
1456 static __inline pdp_entry_t *
pmap_pml4e_to_pdpe(pml4_entry_t * pml4e,vm_offset_t va)1457 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
1458 {
1459 pdp_entry_t *pdpe;
1460
1461 pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
1462 return (&pdpe[pmap_pdpe_index(va)]);
1463 }
1464
1465 /* Return a pointer to the PDP slot that corresponds to a VA */
1466 static __inline pdp_entry_t *
pmap_pdpe(pmap_t pmap,vm_offset_t va)1467 pmap_pdpe(pmap_t pmap, vm_offset_t va)
1468 {
1469 pml4_entry_t *pml4e;
1470 pt_entry_t PG_V;
1471
1472 PG_V = pmap_valid_bit(pmap);
1473 pml4e = pmap_pml4e(pmap, va);
1474 if (pml4e == NULL || (*pml4e & PG_V) == 0)
1475 return (NULL);
1476 return (pmap_pml4e_to_pdpe(pml4e, va));
1477 }
1478
1479 /* Return a pointer to the PD slot that corresponds to a VA */
1480 static __inline pd_entry_t *
pmap_pdpe_to_pde(pdp_entry_t * pdpe,vm_offset_t va)1481 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
1482 {
1483 pd_entry_t *pde;
1484
1485 KASSERT((*pdpe & PG_PS) == 0,
1486 ("%s: pdpe %#lx is a leaf", __func__, *pdpe));
1487 pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
1488 return (&pde[pmap_pde_index(va)]);
1489 }
1490
1491 /* Return a pointer to the PD slot that corresponds to a VA */
1492 static __inline pd_entry_t *
pmap_pde(pmap_t pmap,vm_offset_t va)1493 pmap_pde(pmap_t pmap, vm_offset_t va)
1494 {
1495 pdp_entry_t *pdpe;
1496 pt_entry_t PG_V;
1497
1498 PG_V = pmap_valid_bit(pmap);
1499 pdpe = pmap_pdpe(pmap, va);
1500 if (pdpe == NULL || (*pdpe & PG_V) == 0)
1501 return (NULL);
1502 KASSERT((*pdpe & PG_PS) == 0,
1503 ("pmap_pde for 1G page, pmap %p va %#lx", pmap, va));
1504 return (pmap_pdpe_to_pde(pdpe, va));
1505 }
1506
1507 /* Return a pointer to the PT slot that corresponds to a VA */
1508 static __inline pt_entry_t *
pmap_pde_to_pte(pd_entry_t * pde,vm_offset_t va)1509 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
1510 {
1511 pt_entry_t *pte;
1512
1513 KASSERT((*pde & PG_PS) == 0,
1514 ("%s: pde %#lx is a leaf", __func__, *pde));
1515 pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
1516 return (&pte[pmap_pte_index(va)]);
1517 }
1518
1519 /* Return a pointer to the PT slot that corresponds to a VA */
1520 static __inline pt_entry_t *
pmap_pte(pmap_t pmap,vm_offset_t va)1521 pmap_pte(pmap_t pmap, vm_offset_t va)
1522 {
1523 pd_entry_t *pde;
1524 pt_entry_t PG_V;
1525
1526 PG_V = pmap_valid_bit(pmap);
1527 pde = pmap_pde(pmap, va);
1528 if (pde == NULL || (*pde & PG_V) == 0)
1529 return (NULL);
1530 if ((*pde & PG_PS) != 0) /* compat with i386 pmap_pte() */
1531 return ((pt_entry_t *)pde);
1532 return (pmap_pde_to_pte(pde, va));
1533 }
1534
1535 static __inline void
pmap_resident_count_adj(pmap_t pmap,int count)1536 pmap_resident_count_adj(pmap_t pmap, int count)
1537 {
1538
1539 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1540 KASSERT(pmap->pm_stats.resident_count + count >= 0,
1541 ("pmap %p resident count underflow %ld %d", pmap,
1542 pmap->pm_stats.resident_count, count));
1543 pmap->pm_stats.resident_count += count;
1544 }
1545
1546 static __inline void
pmap_pt_page_count_pinit(pmap_t pmap,int count)1547 pmap_pt_page_count_pinit(pmap_t pmap, int count)
1548 {
1549 KASSERT(pmap->pm_stats.resident_count + count >= 0,
1550 ("pmap %p resident count underflow %ld %d", pmap,
1551 pmap->pm_stats.resident_count, count));
1552 pmap->pm_stats.resident_count += count;
1553 }
1554
1555 static __inline void
pmap_pt_page_count_adj(pmap_t pmap,int count)1556 pmap_pt_page_count_adj(pmap_t pmap, int count)
1557 {
1558 if (pmap == kernel_pmap)
1559 counter_u64_add(kernel_pt_page_count, count);
1560 else {
1561 if (pmap != NULL)
1562 pmap_resident_count_adj(pmap, count);
1563 counter_u64_add(user_pt_page_count, count);
1564 }
1565 }
1566
1567 pt_entry_t vtoptem __read_mostly = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
1568 NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1) << 3;
1569 vm_offset_t PTmap __read_mostly = (vm_offset_t)P4Tmap;
1570
1571 pt_entry_t *
vtopte(vm_offset_t va)1572 vtopte(vm_offset_t va)
1573 {
1574 KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopte on a uva/gpa 0x%0lx", va));
1575
1576 return ((pt_entry_t *)(PTmap + ((va >> (PAGE_SHIFT - 3)) & vtoptem)));
1577 }
1578
1579 pd_entry_t vtopdem __read_mostly = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
1580 NPML4EPGSHIFT)) - 1) << 3;
1581 vm_offset_t PDmap __read_mostly = (vm_offset_t)P4Dmap;
1582
1583 static __inline pd_entry_t *
vtopde(vm_offset_t va)1584 vtopde(vm_offset_t va)
1585 {
1586 KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopde on a uva/gpa 0x%0lx", va));
1587
1588 return ((pt_entry_t *)(PDmap + ((va >> (PDRSHIFT - 3)) & vtopdem)));
1589 }
1590
1591 static u_int64_t
allocpages(vm_paddr_t * firstaddr,int n)1592 allocpages(vm_paddr_t *firstaddr, int n)
1593 {
1594 u_int64_t ret;
1595
1596 ret = *firstaddr;
1597 bzero((void *)ret, n * PAGE_SIZE);
1598 *firstaddr += n * PAGE_SIZE;
1599 return (ret);
1600 }
1601
1602 CTASSERT(powerof2(NDMPML4E));
1603
1604 /* number of kernel PDP slots */
1605 #define NKPDPE(ptpgs) howmany(ptpgs, NPDEPG)
1606
1607 static void
nkpt_init(vm_paddr_t addr)1608 nkpt_init(vm_paddr_t addr)
1609 {
1610 int pt_pages;
1611
1612 #ifdef NKPT
1613 pt_pages = NKPT;
1614 #else
1615 pt_pages = howmany(addr - kernphys, NBPDR) + 1; /* +1 for 2M hole @0 */
1616 pt_pages += NKPDPE(pt_pages);
1617
1618 /*
1619 * Add some slop beyond the bare minimum required for bootstrapping
1620 * the kernel.
1621 *
1622 * This is quite important when allocating KVA for kernel modules.
1623 * The modules are required to be linked in the negative 2GB of
1624 * the address space. If we run out of KVA in this region then
1625 * pmap_growkernel() will need to allocate page table pages to map
1626 * the entire 512GB of KVA space which is an unnecessary tax on
1627 * physical memory.
1628 *
1629 * Secondly, device memory mapped as part of setting up the low-
1630 * level console(s) is taken from KVA, starting at virtual_avail.
1631 * This is because cninit() is called after pmap_bootstrap() but
1632 * before vm_mem_init() and pmap_init(). 20MB for a frame buffer
1633 * is not uncommon.
1634 */
1635 pt_pages += 32; /* 64MB additional slop. */
1636 #endif
1637 nkpt = pt_pages;
1638 }
1639
1640 /*
1641 * Returns the proper write/execute permission for a physical page that is
1642 * part of the initial boot allocations.
1643 *
1644 * If the page has kernel text, it is marked as read-only. If the page has
1645 * kernel read-only data, it is marked as read-only/not-executable. If the
1646 * page has only read-write data, it is marked as read-write/not-executable.
1647 * If the page is below/above the kernel range, it is marked as read-write.
1648 *
1649 * This function operates on 2M pages, since we map the kernel space that
1650 * way.
1651 */
1652 static inline pt_entry_t
bootaddr_rwx(vm_paddr_t pa)1653 bootaddr_rwx(vm_paddr_t pa)
1654 {
1655 /*
1656 * The kernel is loaded at a 2MB-aligned address, and memory below that
1657 * need not be executable. The .bss section is padded to a 2MB
1658 * boundary, so memory following the kernel need not be executable
1659 * either. Preloaded kernel modules have their mapping permissions
1660 * fixed up by the linker.
1661 */
1662 if (pa < trunc_2mpage(kernphys + btext - KERNSTART) ||
1663 pa >= trunc_2mpage(kernphys + _end - KERNSTART))
1664 return (X86_PG_RW | pg_nx);
1665
1666 /*
1667 * The linker should ensure that the read-only and read-write
1668 * portions don't share the same 2M page, so this shouldn't
1669 * impact read-only data. However, in any case, any page with
1670 * read-write data needs to be read-write.
1671 */
1672 if (pa >= trunc_2mpage(kernphys + brwsection - KERNSTART))
1673 return (X86_PG_RW | pg_nx);
1674
1675 /*
1676 * Mark any 2M page containing kernel text as read-only. Mark
1677 * other pages with read-only data as read-only and not executable.
1678 * (It is likely a small portion of the read-only data section will
1679 * be marked as read-only, but executable. This should be acceptable
1680 * since the read-only protection will keep the data from changing.)
1681 * Note that fixups to the .text section will still work until we
1682 * set CR0.WP.
1683 */
1684 if (pa < round_2mpage(kernphys + etext - KERNSTART))
1685 return (0);
1686 return (pg_nx);
1687 }
1688
1689 extern const char la57_trampoline[];
1690
1691 static void
pmap_bootstrap_la57(vm_paddr_t * firstaddr)1692 pmap_bootstrap_la57(vm_paddr_t *firstaddr)
1693 {
1694 void (*la57_tramp)(uint64_t pml5);
1695 pml5_entry_t *pt;
1696
1697 if ((cpu_stdext_feature2 & CPUID_STDEXT2_LA57) == 0)
1698 return;
1699 la57 = 1;
1700 TUNABLE_INT_FETCH("vm.pmap.la57", &la57);
1701 if (!la57)
1702 return;
1703
1704 KPML5phys = allocpages(firstaddr, 1);
1705 KPML4phys = rcr3() & 0xfffff000; /* pml4 from loader must be < 4G */
1706
1707 pt = (pml5_entry_t *)KPML5phys;
1708 pt[0] = KPML4phys | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
1709 pt[NPML4EPG - 1] = KPML4phys | X86_PG_V | X86_PG_RW | X86_PG_A |
1710 X86_PG_M;
1711
1712 la57_tramp = (void (*)(uint64_t))((uintptr_t)la57_trampoline -
1713 KERNSTART + amd64_loadaddr());
1714 printf("Calling la57 trampoline at %p, KPML5phys %#lx ...",
1715 la57_tramp, KPML5phys);
1716 la57_tramp(KPML5phys);
1717 printf(" alive in la57 mode\n");
1718 }
1719
1720 static void
create_pagetables(vm_paddr_t * firstaddr)1721 create_pagetables(vm_paddr_t *firstaddr)
1722 {
1723 pd_entry_t *pd_p;
1724 pdp_entry_t *pdp_p;
1725 pml4_entry_t *p4_p;
1726 pml5_entry_t *p5_p;
1727 uint64_t DMPDkernphys;
1728 vm_paddr_t pax;
1729 #ifdef KASAN
1730 pt_entry_t *pt_p;
1731 uint64_t KASANPDphys, KASANPTphys, KASANphys;
1732 vm_offset_t kasankernbase;
1733 int kasankpdpi, kasankpdi, nkasanpte;
1734 #endif
1735 int i, j, ndm1g, nkpdpe, nkdmpde;
1736
1737 TSENTER();
1738 /* Allocate page table pages for the direct map */
1739 ndmpdp = howmany(ptoa(Maxmem), NBPDP);
1740 if (ndmpdp < 4) /* Minimum 4GB of dirmap */
1741 ndmpdp = 4;
1742 ndmpdpphys = howmany(ndmpdp, NPDPEPG);
1743 if (ndmpdpphys > NDMPML4E) {
1744 /*
1745 * Each NDMPML4E allows 512 GB, so limit to that,
1746 * and then readjust ndmpdp and ndmpdpphys.
1747 */
1748 printf("NDMPML4E limits system to %d GB\n", NDMPML4E * 512);
1749 Maxmem = atop(NDMPML4E * NBPML4);
1750 ndmpdpphys = NDMPML4E;
1751 ndmpdp = NDMPML4E * NPDEPG;
1752 }
1753 DMPDPphys = allocpages(firstaddr, ndmpdpphys);
1754 ndm1g = 0;
1755 if ((amd_feature & AMDID_PAGE1GB) != 0) {
1756 /*
1757 * Calculate the number of 1G pages that will fully fit in
1758 * Maxmem.
1759 */
1760 ndm1g = ptoa(Maxmem) >> PDPSHIFT;
1761
1762 /*
1763 * Allocate 2M pages for the kernel. These will be used in
1764 * place of the one or more 1G pages from ndm1g that maps
1765 * kernel memory into DMAP.
1766 */
1767 nkdmpde = howmany((vm_offset_t)brwsection - KERNSTART +
1768 kernphys - rounddown2(kernphys, NBPDP), NBPDP);
1769 DMPDkernphys = allocpages(firstaddr, nkdmpde);
1770 }
1771 if (ndm1g < ndmpdp)
1772 DMPDphys = allocpages(firstaddr, ndmpdp - ndm1g);
1773 dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
1774
1775 /* Allocate pages. */
1776 KPML4phys = allocpages(firstaddr, 1);
1777 KPDPphys = allocpages(firstaddr, NKPML4E);
1778 #ifdef KASAN
1779 KASANPDPphys = allocpages(firstaddr, NKASANPML4E);
1780 KASANPDphys = allocpages(firstaddr, 1);
1781 #endif
1782 #ifdef KMSAN
1783 /*
1784 * The KMSAN shadow maps are initially left unpopulated, since there is
1785 * no need to shadow memory above KERNBASE.
1786 */
1787 KMSANSHADPDPphys = allocpages(firstaddr, NKMSANSHADPML4E);
1788 KMSANORIGPDPphys = allocpages(firstaddr, NKMSANORIGPML4E);
1789 #endif
1790
1791 /*
1792 * Allocate the initial number of kernel page table pages required to
1793 * bootstrap. We defer this until after all memory-size dependent
1794 * allocations are done (e.g. direct map), so that we don't have to
1795 * build in too much slop in our estimate.
1796 *
1797 * Note that when NKPML4E > 1, we have an empty page underneath
1798 * all but the KPML4I'th one, so we need NKPML4E-1 extra (zeroed)
1799 * pages. (pmap_enter requires a PD page to exist for each KPML4E.)
1800 */
1801 nkpt_init(*firstaddr);
1802 nkpdpe = NKPDPE(nkpt);
1803
1804 KPTphys = allocpages(firstaddr, nkpt);
1805 KPDphys = allocpages(firstaddr, nkpdpe);
1806
1807 #ifdef KASAN
1808 nkasanpte = howmany(nkpt, KASAN_SHADOW_SCALE);
1809 KASANPTphys = allocpages(firstaddr, nkasanpte);
1810 KASANphys = allocpages(firstaddr, nkasanpte * NPTEPG);
1811 #endif
1812
1813 /*
1814 * Connect the zero-filled PT pages to their PD entries. This
1815 * implicitly maps the PT pages at their correct locations within
1816 * the PTmap.
1817 */
1818 pd_p = (pd_entry_t *)KPDphys;
1819 for (i = 0; i < nkpt; i++)
1820 pd_p[i] = (KPTphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1821
1822 /*
1823 * Map from start of the kernel in physical memory (staging
1824 * area) to the end of loader preallocated memory using 2MB
1825 * pages. This replaces some of the PD entries created above.
1826 * For compatibility, identity map 2M at the start.
1827 */
1828 pd_p[0] = X86_PG_V | PG_PS | pg_g | X86_PG_M | X86_PG_A |
1829 X86_PG_RW | pg_nx;
1830 for (i = 1, pax = kernphys; pax < KERNend; i++, pax += NBPDR) {
1831 /* Preset PG_M and PG_A because demotion expects it. */
1832 pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1833 X86_PG_A | bootaddr_rwx(pax);
1834 }
1835
1836 /*
1837 * Because we map the physical blocks in 2M pages, adjust firstaddr
1838 * to record the physical blocks we've actually mapped into kernel
1839 * virtual address space.
1840 */
1841 if (*firstaddr < round_2mpage(KERNend))
1842 *firstaddr = round_2mpage(KERNend);
1843
1844 /* And connect up the PD to the PDP (leaving room for L4 pages) */
1845 pdp_p = (pdp_entry_t *)(KPDPphys + ptoa(KPML4I - KPML4BASE));
1846 for (i = 0; i < nkpdpe; i++)
1847 pdp_p[i + KPDPI] = (KPDphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1848
1849 #ifdef KASAN
1850 kasankernbase = kasan_md_addr_to_shad(KERNBASE);
1851 kasankpdpi = pmap_pdpe_index(kasankernbase);
1852 kasankpdi = pmap_pde_index(kasankernbase);
1853
1854 pdp_p = (pdp_entry_t *)KASANPDPphys;
1855 pdp_p[kasankpdpi] = (KASANPDphys | X86_PG_RW | X86_PG_V | pg_nx);
1856
1857 pd_p = (pd_entry_t *)KASANPDphys;
1858 for (i = 0; i < nkasanpte; i++)
1859 pd_p[i + kasankpdi] = (KASANPTphys + ptoa(i)) | X86_PG_RW |
1860 X86_PG_V | pg_nx;
1861
1862 pt_p = (pt_entry_t *)KASANPTphys;
1863 for (i = 0; i < nkasanpte * NPTEPG; i++)
1864 pt_p[i] = (KASANphys + ptoa(i)) | X86_PG_RW | X86_PG_V |
1865 X86_PG_M | X86_PG_A | pg_nx;
1866 #endif
1867
1868 /*
1869 * Now, set up the direct map region using 2MB and/or 1GB pages. If
1870 * the end of physical memory is not aligned to a 1GB page boundary,
1871 * then the residual physical memory is mapped with 2MB pages. Later,
1872 * if pmap_mapdev{_attr}() uses the direct map for non-write-back
1873 * memory, pmap_change_attr() will demote any 2MB or 1GB page mappings
1874 * that are partially used.
1875 */
1876 pd_p = (pd_entry_t *)DMPDphys;
1877 for (i = NPDEPG * ndm1g, j = 0; i < NPDEPG * ndmpdp; i++, j++) {
1878 pd_p[j] = (vm_paddr_t)i << PDRSHIFT;
1879 /* Preset PG_M and PG_A because demotion expects it. */
1880 pd_p[j] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1881 X86_PG_M | X86_PG_A | pg_nx;
1882 }
1883 pdp_p = (pdp_entry_t *)DMPDPphys;
1884 for (i = 0; i < ndm1g; i++) {
1885 pdp_p[i] = (vm_paddr_t)i << PDPSHIFT;
1886 /* Preset PG_M and PG_A because demotion expects it. */
1887 pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1888 X86_PG_M | X86_PG_A | pg_nx;
1889 }
1890 for (j = 0; i < ndmpdp; i++, j++) {
1891 pdp_p[i] = DMPDphys + ptoa(j);
1892 pdp_p[i] |= X86_PG_RW | X86_PG_V | pg_nx;
1893 }
1894
1895 /*
1896 * Instead of using a 1G page for the memory containing the kernel,
1897 * use 2M pages with read-only and no-execute permissions. (If using 1G
1898 * pages, this will partially overwrite the PDPEs above.)
1899 */
1900 if (ndm1g > 0) {
1901 pd_p = (pd_entry_t *)DMPDkernphys;
1902 for (i = 0, pax = rounddown2(kernphys, NBPDP);
1903 i < NPDEPG * nkdmpde; i++, pax += NBPDR) {
1904 pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1905 X86_PG_A | pg_nx | bootaddr_rwx(pax);
1906 }
1907 j = rounddown2(kernphys, NBPDP) >> PDPSHIFT;
1908 for (i = 0; i < nkdmpde; i++) {
1909 pdp_p[i + j] = (DMPDkernphys + ptoa(i)) |
1910 X86_PG_RW | X86_PG_V | pg_nx;
1911 }
1912 }
1913
1914 /* And recursively map PML4 to itself in order to get PTmap */
1915 p4_p = (pml4_entry_t *)KPML4phys;
1916 p4_p[PML4PML4I] = KPML4phys;
1917 p4_p[PML4PML4I] |= X86_PG_RW | X86_PG_V | pg_nx;
1918
1919 #ifdef KASAN
1920 /* Connect the KASAN shadow map slots up to the PML4. */
1921 for (i = 0; i < NKASANPML4E; i++) {
1922 p4_p[KASANPML4I + i] = KASANPDPphys + ptoa(i);
1923 p4_p[KASANPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1924 }
1925 #endif
1926
1927 #ifdef KMSAN
1928 /* Connect the KMSAN shadow map slots up to the PML4. */
1929 for (i = 0; i < NKMSANSHADPML4E; i++) {
1930 p4_p[KMSANSHADPML4I + i] = KMSANSHADPDPphys + ptoa(i);
1931 p4_p[KMSANSHADPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1932 }
1933
1934 /* Connect the KMSAN origin map slots up to the PML4. */
1935 for (i = 0; i < NKMSANORIGPML4E; i++) {
1936 p4_p[KMSANORIGPML4I + i] = KMSANORIGPDPphys + ptoa(i);
1937 p4_p[KMSANORIGPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1938 }
1939 #endif
1940
1941 /* Connect the Direct Map slots up to the PML4. */
1942 for (i = 0; i < ndmpdpphys; i++) {
1943 p4_p[DMPML4I + i] = DMPDPphys + ptoa(i);
1944 p4_p[DMPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1945 }
1946
1947 /* Connect the KVA slots up to the PML4 */
1948 for (i = 0; i < NKPML4E; i++) {
1949 p4_p[KPML4BASE + i] = KPDPphys + ptoa(i);
1950 p4_p[KPML4BASE + i] |= X86_PG_RW | X86_PG_V;
1951 }
1952
1953 kernel_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
1954
1955 if (la57) {
1956 /* XXXKIB bootstrap KPML5phys page is lost */
1957 KPML5phys = allocpages(firstaddr, 1);
1958 for (i = 0, p5_p = (pml5_entry_t *)KPML5phys; i < NPML5EPG;
1959 i++) {
1960 if (i == PML5PML5I) {
1961 /*
1962 * Recursively map PML5 to itself in
1963 * order to get PTmap and PDmap.
1964 */
1965 p5_p[i] = KPML5phys | X86_PG_RW | X86_PG_A |
1966 X86_PG_M | X86_PG_V | pg_nx;
1967 } else if (i == pmap_pml5e_index(UPT_MAX_ADDRESS)) {
1968 p5_p[i] = KPML4phys | X86_PG_RW | X86_PG_A |
1969 X86_PG_M | X86_PG_V;
1970 } else {
1971 p5_p[i] = 0;
1972 }
1973 }
1974 }
1975 TSEXIT();
1976 }
1977
1978 /*
1979 * Bootstrap the system enough to run with virtual memory.
1980 *
1981 * On amd64 this is called after mapping has already been enabled
1982 * and just syncs the pmap module with what has already been done.
1983 * [We can't call it easily with mapping off since the kernel is not
1984 * mapped with PA == VA, hence we would have to relocate every address
1985 * from the linked base (virtual) address "KERNBASE" to the actual
1986 * (physical) address starting relative to 0]
1987 */
1988 void
pmap_bootstrap(vm_paddr_t * firstaddr)1989 pmap_bootstrap(vm_paddr_t *firstaddr)
1990 {
1991 vm_offset_t va;
1992 pt_entry_t *pte, *pcpu_pte;
1993 struct region_descriptor r_gdt;
1994 uint64_t cr4, pcpu0_phys;
1995 u_long res;
1996 int i;
1997
1998 TSENTER();
1999 KERNend = *firstaddr;
2000 res = atop(KERNend - (vm_paddr_t)kernphys);
2001
2002 if (!pti)
2003 pg_g = X86_PG_G;
2004
2005 /*
2006 * Create an initial set of page tables to run the kernel in.
2007 */
2008 pmap_bootstrap_la57(firstaddr);
2009 create_pagetables(firstaddr);
2010
2011 pcpu0_phys = allocpages(firstaddr, 1);
2012
2013 /*
2014 * Add a physical memory segment (vm_phys_seg) corresponding to the
2015 * preallocated kernel page table pages so that vm_page structures
2016 * representing these pages will be created. The vm_page structures
2017 * are required for promotion of the corresponding kernel virtual
2018 * addresses to superpage mappings.
2019 */
2020 vm_phys_early_add_seg(KPTphys, KPTphys + ptoa(nkpt));
2021
2022 /*
2023 * Account for the virtual addresses mapped by create_pagetables().
2024 */
2025 virtual_avail = (vm_offset_t)KERNSTART + round_2mpage(KERNend -
2026 (vm_paddr_t)kernphys);
2027 virtual_end = VM_MAX_KERNEL_ADDRESS;
2028
2029 /*
2030 * Enable PG_G global pages, then switch to the kernel page
2031 * table from the bootstrap page table. After the switch, it
2032 * is possible to enable SMEP and SMAP since PG_U bits are
2033 * correct now.
2034 */
2035 cr4 = rcr4();
2036 cr4 |= CR4_PGE;
2037 load_cr4(cr4);
2038 load_cr3(la57 ? KPML5phys : KPML4phys);
2039 if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
2040 cr4 |= CR4_SMEP;
2041 if (cpu_stdext_feature & CPUID_STDEXT_SMAP)
2042 cr4 |= CR4_SMAP;
2043 load_cr4(cr4);
2044
2045 /*
2046 * Initialize the kernel pmap (which is statically allocated).
2047 * Count bootstrap data as being resident in case any of this data is
2048 * later unmapped (using pmap_remove()) and freed.
2049 */
2050 PMAP_LOCK_INIT(kernel_pmap);
2051 if (la57) {
2052 vtoptem = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT +
2053 NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2054 PTmap = (vm_offset_t)P5Tmap;
2055 vtopdem = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
2056 NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2057 PDmap = (vm_offset_t)P5Dmap;
2058 kernel_pmap->pm_pmltop = (void *)PHYS_TO_DMAP(KPML5phys);
2059 kernel_pmap->pm_cr3 = KPML5phys;
2060 pmap_pt_page_count_adj(kernel_pmap, 1); /* top-level page */
2061 } else {
2062 kernel_pmap->pm_pmltop = kernel_pml4;
2063 kernel_pmap->pm_cr3 = KPML4phys;
2064 }
2065 kernel_pmap->pm_ucr3 = PMAP_NO_CR3;
2066 TAILQ_INIT(&kernel_pmap->pm_pvchunk);
2067 kernel_pmap->pm_stats.resident_count = res;
2068 vm_radix_init(&kernel_pmap->pm_root);
2069 kernel_pmap->pm_flags = pmap_flags;
2070 if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
2071 rangeset_init(&kernel_pmap->pm_pkru, pkru_dup_range,
2072 pkru_free_range, kernel_pmap, M_NOWAIT);
2073 }
2074
2075 /*
2076 * The kernel pmap is always active on all CPUs. Once CPUs are
2077 * enumerated, the mask will be set equal to all_cpus.
2078 */
2079 CPU_FILL(&kernel_pmap->pm_active);
2080
2081 /*
2082 * Initialize the TLB invalidations generation number lock.
2083 */
2084 mtx_init(&invl_gen_mtx, "invlgn", NULL, MTX_DEF);
2085
2086 /*
2087 * Reserve some special page table entries/VA space for temporary
2088 * mapping of pages.
2089 */
2090 #define SYSMAP(c, p, v, n) \
2091 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
2092
2093 va = virtual_avail;
2094 pte = vtopte(va);
2095
2096 /*
2097 * Crashdump maps. The first page is reused as CMAP1 for the
2098 * memory test.
2099 */
2100 SYSMAP(caddr_t, CMAP1, crashdumpmap, MAXDUMPPGS)
2101 CADDR1 = crashdumpmap;
2102
2103 SYSMAP(struct pcpu *, pcpu_pte, __pcpu, MAXCPU);
2104 virtual_avail = va;
2105
2106 /*
2107 * Map the BSP PCPU now, the rest of the PCPUs are mapped by
2108 * amd64_mp_alloc_pcpu()/start_all_aps() when we know the
2109 * number of CPUs and NUMA affinity.
2110 */
2111 pcpu_pte[0] = pcpu0_phys | X86_PG_V | X86_PG_RW | pg_g | pg_nx |
2112 X86_PG_M | X86_PG_A;
2113 for (i = 1; i < MAXCPU; i++)
2114 pcpu_pte[i] = 0;
2115
2116 /*
2117 * Re-initialize PCPU area for BSP after switching.
2118 * Make hardware use gdt and common_tss from the new PCPU.
2119 * Also clears the usage of temporary gdt during switch to
2120 * LA57 paging.
2121 */
2122 STAILQ_INIT(&cpuhead);
2123 wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2124 pcpu_init(&__pcpu[0], 0, sizeof(struct pcpu));
2125 amd64_bsp_pcpu_init1(&__pcpu[0]);
2126 amd64_bsp_ist_init(&__pcpu[0]);
2127 __pcpu[0].pc_common_tss.tss_iobase = sizeof(struct amd64tss) +
2128 IOPERM_BITMAP_SIZE;
2129 memcpy(__pcpu[0].pc_gdt, temp_bsp_pcpu.pc_gdt, NGDT *
2130 sizeof(struct user_segment_descriptor));
2131 gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&__pcpu[0].pc_common_tss;
2132 ssdtosyssd(&gdt_segs[GPROC0_SEL],
2133 (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
2134 r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
2135 r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
2136 lgdt(&r_gdt);
2137 wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2138 ltr(GSEL(GPROC0_SEL, SEL_KPL));
2139 __pcpu[0].pc_dynamic = temp_bsp_pcpu.pc_dynamic;
2140 __pcpu[0].pc_acpi_id = temp_bsp_pcpu.pc_acpi_id;
2141
2142 /*
2143 * Initialize the PAT MSR.
2144 * pmap_init_pat() clears and sets CR4_PGE, which, as a
2145 * side-effect, invalidates stale PG_G TLB entries that might
2146 * have been created in our pre-boot environment.
2147 */
2148 pmap_init_pat();
2149
2150 /* Initialize TLB Context Id. */
2151 if (pmap_pcid_enabled) {
2152 kernel_pmap->pm_pcidp = (void *)(uintptr_t)
2153 offsetof(struct pcpu, pc_kpmap_store);
2154
2155 PCPU_SET(kpmap_store.pm_pcid, PMAP_PCID_KERN);
2156 PCPU_SET(kpmap_store.pm_gen, 1);
2157
2158 /*
2159 * PMAP_PCID_KERN + 1 is used for initialization of
2160 * proc0 pmap. The pmap' pcid state might be used by
2161 * EFIRT entry before first context switch, so it
2162 * needs to be valid.
2163 */
2164 PCPU_SET(pcid_next, PMAP_PCID_KERN + 2);
2165 PCPU_SET(pcid_gen, 1);
2166
2167 /*
2168 * pcpu area for APs is zeroed during AP startup.
2169 * pc_pcid_next and pc_pcid_gen are initialized by AP
2170 * during pcpu setup.
2171 */
2172 load_cr4(rcr4() | CR4_PCIDE);
2173 }
2174 TSEXIT();
2175 }
2176
2177 /*
2178 * Setup the PAT MSR.
2179 */
2180 void
pmap_init_pat(void)2181 pmap_init_pat(void)
2182 {
2183 uint64_t pat_msr;
2184 u_long cr0, cr4;
2185 int i;
2186
2187 /* Bail if this CPU doesn't implement PAT. */
2188 if ((cpu_feature & CPUID_PAT) == 0)
2189 panic("no PAT??");
2190
2191 /* Set default PAT index table. */
2192 for (i = 0; i < PAT_INDEX_SIZE; i++)
2193 pat_index[i] = -1;
2194 pat_index[PAT_WRITE_BACK] = 0;
2195 pat_index[PAT_WRITE_THROUGH] = 1;
2196 pat_index[PAT_UNCACHEABLE] = 3;
2197 pat_index[PAT_WRITE_COMBINING] = 6;
2198 pat_index[PAT_WRITE_PROTECTED] = 5;
2199 pat_index[PAT_UNCACHED] = 2;
2200
2201 /*
2202 * Initialize default PAT entries.
2203 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
2204 * Program 5 and 6 as WP and WC.
2205 *
2206 * Leave 4 and 7 as WB and UC. Note that a recursive page table
2207 * mapping for a 2M page uses a PAT value with the bit 3 set due
2208 * to its overload with PG_PS.
2209 */
2210 pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
2211 PAT_VALUE(1, PAT_WRITE_THROUGH) |
2212 PAT_VALUE(2, PAT_UNCACHED) |
2213 PAT_VALUE(3, PAT_UNCACHEABLE) |
2214 PAT_VALUE(4, PAT_WRITE_BACK) |
2215 PAT_VALUE(5, PAT_WRITE_PROTECTED) |
2216 PAT_VALUE(6, PAT_WRITE_COMBINING) |
2217 PAT_VALUE(7, PAT_UNCACHEABLE);
2218
2219 /* Disable PGE. */
2220 cr4 = rcr4();
2221 load_cr4(cr4 & ~CR4_PGE);
2222
2223 /* Disable caches (CD = 1, NW = 0). */
2224 cr0 = rcr0();
2225 load_cr0((cr0 & ~CR0_NW) | CR0_CD);
2226
2227 /* Flushes caches and TLBs. */
2228 wbinvd();
2229 invltlb();
2230
2231 /* Update PAT and index table. */
2232 wrmsr(MSR_PAT, pat_msr);
2233
2234 /* Flush caches and TLBs again. */
2235 wbinvd();
2236 invltlb();
2237
2238 /* Restore caches and PGE. */
2239 load_cr0(cr0);
2240 load_cr4(cr4);
2241 }
2242
2243 vm_page_t
pmap_page_alloc_below_4g(bool zeroed)2244 pmap_page_alloc_below_4g(bool zeroed)
2245 {
2246 return (vm_page_alloc_noobj_contig((zeroed ? VM_ALLOC_ZERO : 0),
2247 1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT));
2248 }
2249
2250 /*
2251 * Initialize a vm_page's machine-dependent fields.
2252 */
2253 void
pmap_page_init(vm_page_t m)2254 pmap_page_init(vm_page_t m)
2255 {
2256
2257 TAILQ_INIT(&m->md.pv_list);
2258 m->md.pat_mode = PAT_WRITE_BACK;
2259 }
2260
2261 static int pmap_allow_2m_x_ept;
2262 SYSCTL_INT(_vm_pmap, OID_AUTO, allow_2m_x_ept, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
2263 &pmap_allow_2m_x_ept, 0,
2264 "Allow executable superpage mappings in EPT");
2265
2266 void
pmap_allow_2m_x_ept_recalculate(void)2267 pmap_allow_2m_x_ept_recalculate(void)
2268 {
2269 /*
2270 * SKL002, SKL012S. Since the EPT format is only used by
2271 * Intel CPUs, the vendor check is merely a formality.
2272 */
2273 if (!(cpu_vendor_id != CPU_VENDOR_INTEL ||
2274 (cpu_ia32_arch_caps & IA32_ARCH_CAP_IF_PSCHANGE_MC_NO) != 0 ||
2275 (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
2276 (CPUID_TO_MODEL(cpu_id) == 0x26 || /* Atoms */
2277 CPUID_TO_MODEL(cpu_id) == 0x27 ||
2278 CPUID_TO_MODEL(cpu_id) == 0x35 ||
2279 CPUID_TO_MODEL(cpu_id) == 0x36 ||
2280 CPUID_TO_MODEL(cpu_id) == 0x37 ||
2281 CPUID_TO_MODEL(cpu_id) == 0x86 ||
2282 CPUID_TO_MODEL(cpu_id) == 0x1c ||
2283 CPUID_TO_MODEL(cpu_id) == 0x4a ||
2284 CPUID_TO_MODEL(cpu_id) == 0x4c ||
2285 CPUID_TO_MODEL(cpu_id) == 0x4d ||
2286 CPUID_TO_MODEL(cpu_id) == 0x5a ||
2287 CPUID_TO_MODEL(cpu_id) == 0x5c ||
2288 CPUID_TO_MODEL(cpu_id) == 0x5d ||
2289 CPUID_TO_MODEL(cpu_id) == 0x5f ||
2290 CPUID_TO_MODEL(cpu_id) == 0x6e ||
2291 CPUID_TO_MODEL(cpu_id) == 0x7a ||
2292 CPUID_TO_MODEL(cpu_id) == 0x57 || /* Knights */
2293 CPUID_TO_MODEL(cpu_id) == 0x85))))
2294 pmap_allow_2m_x_ept = 1;
2295 #ifndef BURN_BRIDGES
2296 TUNABLE_INT_FETCH("hw.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2297 #endif
2298 TUNABLE_INT_FETCH("vm.pmap.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2299 }
2300
2301 static bool
pmap_allow_2m_x_page(pmap_t pmap,bool executable)2302 pmap_allow_2m_x_page(pmap_t pmap, bool executable)
2303 {
2304
2305 return (pmap->pm_type != PT_EPT || !executable ||
2306 !pmap_allow_2m_x_ept);
2307 }
2308
2309 #ifdef NUMA
2310 static void
pmap_init_pv_table(void)2311 pmap_init_pv_table(void)
2312 {
2313 struct pmap_large_md_page *pvd;
2314 vm_size_t s;
2315 long start, end, highest, pv_npg;
2316 int domain, i, j, pages;
2317
2318 /*
2319 * For correctness we depend on the size being evenly divisible into a
2320 * page. As a tradeoff between performance and total memory use, the
2321 * entry is 64 bytes (aka one cacheline) in size. Not being smaller
2322 * avoids false-sharing, but not being 128 bytes potentially allows for
2323 * avoidable traffic due to adjacent cacheline prefetcher.
2324 *
2325 * Assert the size so that accidental changes fail to compile.
2326 */
2327 CTASSERT((sizeof(*pvd) == 64));
2328
2329 /*
2330 * Calculate the size of the array.
2331 */
2332 pmap_last_pa = vm_phys_segs[vm_phys_nsegs - 1].end;
2333 pv_npg = howmany(pmap_last_pa, NBPDR);
2334 s = (vm_size_t)pv_npg * sizeof(struct pmap_large_md_page);
2335 s = round_page(s);
2336 pv_table = (struct pmap_large_md_page *)kva_alloc(s);
2337 if (pv_table == NULL)
2338 panic("%s: kva_alloc failed\n", __func__);
2339
2340 /*
2341 * Iterate physical segments to allocate space for respective pages.
2342 */
2343 highest = -1;
2344 s = 0;
2345 for (i = 0; i < vm_phys_nsegs; i++) {
2346 end = vm_phys_segs[i].end / NBPDR;
2347 domain = vm_phys_segs[i].domain;
2348
2349 if (highest >= end)
2350 continue;
2351
2352 start = highest + 1;
2353 pvd = &pv_table[start];
2354
2355 pages = end - start + 1;
2356 s = round_page(pages * sizeof(*pvd));
2357 highest = start + (s / sizeof(*pvd)) - 1;
2358
2359 for (j = 0; j < s; j += PAGE_SIZE) {
2360 vm_page_t m = vm_page_alloc_noobj_domain(domain, 0);
2361 if (m == NULL)
2362 panic("failed to allocate PV table page");
2363 pmap_qenter((vm_offset_t)pvd + j, &m, 1);
2364 }
2365
2366 for (j = 0; j < s / sizeof(*pvd); j++) {
2367 rw_init_flags(&pvd->pv_lock, "pmap pv list", RW_NEW);
2368 TAILQ_INIT(&pvd->pv_page.pv_list);
2369 pvd->pv_page.pv_gen = 0;
2370 pvd->pv_page.pat_mode = 0;
2371 pvd->pv_invl_gen = 0;
2372 pvd++;
2373 }
2374 }
2375 pvd = &pv_dummy_large;
2376 rw_init_flags(&pvd->pv_lock, "pmap pv list dummy", RW_NEW);
2377 TAILQ_INIT(&pvd->pv_page.pv_list);
2378 pvd->pv_page.pv_gen = 0;
2379 pvd->pv_page.pat_mode = 0;
2380 pvd->pv_invl_gen = 0;
2381 }
2382 #else
2383 static void
pmap_init_pv_table(void)2384 pmap_init_pv_table(void)
2385 {
2386 vm_size_t s;
2387 long i, pv_npg;
2388
2389 /*
2390 * Initialize the pool of pv list locks.
2391 */
2392 for (i = 0; i < NPV_LIST_LOCKS; i++)
2393 rw_init(&pv_list_locks[i], "pmap pv list");
2394
2395 /*
2396 * Calculate the size of the pv head table for superpages.
2397 */
2398 pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, NBPDR);
2399
2400 /*
2401 * Allocate memory for the pv head table for superpages.
2402 */
2403 s = (vm_size_t)pv_npg * sizeof(struct md_page);
2404 s = round_page(s);
2405 pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
2406 for (i = 0; i < pv_npg; i++)
2407 TAILQ_INIT(&pv_table[i].pv_list);
2408 TAILQ_INIT(&pv_dummy.pv_list);
2409 }
2410 #endif
2411
2412 /*
2413 * Initialize the pmap module.
2414 *
2415 * Called by vm_mem_init(), to initialize any structures that the pmap
2416 * system needs to map virtual memory.
2417 */
2418 void
pmap_init(void)2419 pmap_init(void)
2420 {
2421 struct pmap_preinit_mapping *ppim;
2422 vm_page_t m, mpte;
2423 int error, i, ret, skz63;
2424
2425 /* L1TF, reserve page @0 unconditionally */
2426 vm_page_blacklist_add(0, bootverbose);
2427
2428 /* Detect bare-metal Skylake Server and Skylake-X. */
2429 if (vm_guest == VM_GUEST_NO && cpu_vendor_id == CPU_VENDOR_INTEL &&
2430 CPUID_TO_FAMILY(cpu_id) == 0x6 && CPUID_TO_MODEL(cpu_id) == 0x55) {
2431 /*
2432 * Skylake-X errata SKZ63. Processor May Hang When
2433 * Executing Code In an HLE Transaction Region between
2434 * 40000000H and 403FFFFFH.
2435 *
2436 * Mark the pages in the range as preallocated. It
2437 * seems to be impossible to distinguish between
2438 * Skylake Server and Skylake X.
2439 */
2440 skz63 = 1;
2441 TUNABLE_INT_FETCH("hw.skz63_enable", &skz63);
2442 if (skz63 != 0) {
2443 if (bootverbose)
2444 printf("SKZ63: skipping 4M RAM starting "
2445 "at physical 1G\n");
2446 for (i = 0; i < atop(0x400000); i++) {
2447 ret = vm_page_blacklist_add(0x40000000 +
2448 ptoa(i), false);
2449 if (!ret && bootverbose)
2450 printf("page at %#x already used\n",
2451 0x40000000 + ptoa(i));
2452 }
2453 }
2454 }
2455
2456 /* IFU */
2457 pmap_allow_2m_x_ept_recalculate();
2458
2459 /*
2460 * Initialize the vm page array entries for the kernel pmap's
2461 * page table pages.
2462 */
2463 PMAP_LOCK(kernel_pmap);
2464 for (i = 0; i < nkpt; i++) {
2465 mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
2466 KASSERT(mpte >= vm_page_array &&
2467 mpte < &vm_page_array[vm_page_array_size],
2468 ("pmap_init: page table page is out of range"));
2469 mpte->pindex = pmap_pde_pindex(KERNBASE) + i;
2470 mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
2471 mpte->ref_count = 1;
2472
2473 /*
2474 * Collect the page table pages that were replaced by a 2MB
2475 * page in create_pagetables(). They are zero filled.
2476 */
2477 if ((i == 0 ||
2478 kernphys + ((vm_paddr_t)(i - 1) << PDRSHIFT) < KERNend) &&
2479 pmap_insert_pt_page(kernel_pmap, mpte, false, false))
2480 panic("pmap_init: pmap_insert_pt_page failed");
2481 }
2482 PMAP_UNLOCK(kernel_pmap);
2483 vm_wire_add(nkpt);
2484
2485 /*
2486 * If the kernel is running on a virtual machine, then it must assume
2487 * that MCA is enabled by the hypervisor. Moreover, the kernel must
2488 * be prepared for the hypervisor changing the vendor and family that
2489 * are reported by CPUID. Consequently, the workaround for AMD Family
2490 * 10h Erratum 383 is enabled if the processor's feature set does not
2491 * include at least one feature that is only supported by older Intel
2492 * or newer AMD processors.
2493 */
2494 if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
2495 (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
2496 CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
2497 AMDID2_FMA4)) == 0)
2498 workaround_erratum383 = 1;
2499
2500 /*
2501 * Are large page mappings enabled?
2502 */
2503 TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
2504 if (pg_ps_enabled) {
2505 KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
2506 ("pmap_init: can't assign to pagesizes[1]"));
2507 pagesizes[1] = NBPDR;
2508 if ((amd_feature & AMDID_PAGE1GB) != 0) {
2509 KASSERT(MAXPAGESIZES > 2 && pagesizes[2] == 0,
2510 ("pmap_init: can't assign to pagesizes[2]"));
2511 pagesizes[2] = NBPDP;
2512 }
2513 }
2514
2515 /*
2516 * Initialize pv chunk lists.
2517 */
2518 for (i = 0; i < PMAP_MEMDOM; i++) {
2519 mtx_init(&pv_chunks[i].pvc_lock, "pmap pv chunk list", NULL, MTX_DEF);
2520 TAILQ_INIT(&pv_chunks[i].pvc_list);
2521 }
2522 pmap_init_pv_table();
2523
2524 pmap_initialized = 1;
2525 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
2526 ppim = pmap_preinit_mapping + i;
2527 if (ppim->va == 0)
2528 continue;
2529 /* Make the direct map consistent */
2530 if (ppim->pa < dmaplimit && ppim->pa + ppim->sz <= dmaplimit) {
2531 (void)pmap_change_attr(PHYS_TO_DMAP(ppim->pa),
2532 ppim->sz, ppim->mode);
2533 }
2534 if (!bootverbose)
2535 continue;
2536 printf("PPIM %u: PA=%#lx, VA=%#lx, size=%#lx, mode=%#x\n", i,
2537 ppim->pa, ppim->va, ppim->sz, ppim->mode);
2538 }
2539
2540 mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
2541 error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
2542 (vmem_addr_t *)&qframe);
2543 if (error != 0)
2544 panic("qframe allocation failed");
2545
2546 lm_ents = 8;
2547 TUNABLE_INT_FETCH("vm.pmap.large_map_pml4_entries", &lm_ents);
2548 if (lm_ents > LMEPML4I - LMSPML4I + 1)
2549 lm_ents = LMEPML4I - LMSPML4I + 1;
2550 #ifdef KMSAN
2551 if (lm_ents > KMSANORIGPML4I - LMSPML4I) {
2552 printf(
2553 "pmap: shrinking large map for KMSAN (%d slots to %ld slots)\n",
2554 lm_ents, KMSANORIGPML4I - LMSPML4I);
2555 lm_ents = KMSANORIGPML4I - LMSPML4I;
2556 }
2557 #endif
2558 if (bootverbose)
2559 printf("pmap: large map %u PML4 slots (%lu GB)\n",
2560 lm_ents, (u_long)lm_ents * (NBPML4 / 1024 / 1024 / 1024));
2561 if (lm_ents != 0) {
2562 large_vmem = vmem_create("large", LARGEMAP_MIN_ADDRESS,
2563 (vmem_size_t)lm_ents * NBPML4, PAGE_SIZE, 0, M_WAITOK);
2564 if (large_vmem == NULL) {
2565 printf("pmap: cannot create large map\n");
2566 lm_ents = 0;
2567 }
2568 for (i = 0; i < lm_ents; i++) {
2569 m = pmap_large_map_getptp_unlocked();
2570 /* XXXKIB la57 */
2571 kernel_pml4[LMSPML4I + i] = X86_PG_V |
2572 X86_PG_RW | X86_PG_A | X86_PG_M | pg_nx |
2573 VM_PAGE_TO_PHYS(m);
2574 }
2575 }
2576 }
2577
2578 SYSCTL_UINT(_vm_pmap, OID_AUTO, large_map_pml4_entries,
2579 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &lm_ents, 0,
2580 "Maximum number of PML4 entries for use by large map (tunable). "
2581 "Each entry corresponds to 512GB of address space.");
2582
2583 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2584 "2MB page mapping counters");
2585
2586 static COUNTER_U64_DEFINE_EARLY(pmap_pde_demotions);
2587 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, demotions,
2588 CTLFLAG_RD, &pmap_pde_demotions, "2MB page demotions");
2589
2590 static COUNTER_U64_DEFINE_EARLY(pmap_pde_mappings);
2591 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
2592 &pmap_pde_mappings, "2MB page mappings");
2593
2594 static COUNTER_U64_DEFINE_EARLY(pmap_pde_p_failures);
2595 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
2596 &pmap_pde_p_failures, "2MB page promotion failures");
2597
2598 static COUNTER_U64_DEFINE_EARLY(pmap_pde_promotions);
2599 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
2600 &pmap_pde_promotions, "2MB page promotions");
2601
2602 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pdpe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2603 "1GB page mapping counters");
2604
2605 static COUNTER_U64_DEFINE_EARLY(pmap_pdpe_demotions);
2606 SYSCTL_COUNTER_U64(_vm_pmap_pdpe, OID_AUTO, demotions, CTLFLAG_RD,
2607 &pmap_pdpe_demotions, "1GB page demotions");
2608
2609 /***************************************************
2610 * Low level helper routines.....
2611 ***************************************************/
2612
2613 static pt_entry_t
pmap_swap_pat(pmap_t pmap,pt_entry_t entry)2614 pmap_swap_pat(pmap_t pmap, pt_entry_t entry)
2615 {
2616 int x86_pat_bits = X86_PG_PTE_PAT | X86_PG_PDE_PAT;
2617
2618 switch (pmap->pm_type) {
2619 case PT_X86:
2620 case PT_RVI:
2621 /* Verify that both PAT bits are not set at the same time */
2622 KASSERT((entry & x86_pat_bits) != x86_pat_bits,
2623 ("Invalid PAT bits in entry %#lx", entry));
2624
2625 /* Swap the PAT bits if one of them is set */
2626 if ((entry & x86_pat_bits) != 0)
2627 entry ^= x86_pat_bits;
2628 break;
2629 case PT_EPT:
2630 /*
2631 * Nothing to do - the memory attributes are represented
2632 * the same way for regular pages and superpages.
2633 */
2634 break;
2635 default:
2636 panic("pmap_switch_pat_bits: bad pm_type %d", pmap->pm_type);
2637 }
2638
2639 return (entry);
2640 }
2641
2642 bool
pmap_is_valid_memattr(pmap_t pmap __unused,vm_memattr_t mode)2643 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
2644 {
2645
2646 return (mode >= 0 && mode < PAT_INDEX_SIZE &&
2647 pat_index[(int)mode] >= 0);
2648 }
2649
2650 /*
2651 * Determine the appropriate bits to set in a PTE or PDE for a specified
2652 * caching mode.
2653 */
2654 int
pmap_cache_bits(pmap_t pmap,int mode,bool is_pde)2655 pmap_cache_bits(pmap_t pmap, int mode, bool is_pde)
2656 {
2657 int cache_bits, pat_flag, pat_idx;
2658
2659 if (!pmap_is_valid_memattr(pmap, mode))
2660 panic("Unknown caching mode %d\n", mode);
2661
2662 switch (pmap->pm_type) {
2663 case PT_X86:
2664 case PT_RVI:
2665 /* The PAT bit is different for PTE's and PDE's. */
2666 pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2667
2668 /* Map the caching mode to a PAT index. */
2669 pat_idx = pat_index[mode];
2670
2671 /* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
2672 cache_bits = 0;
2673 if (pat_idx & 0x4)
2674 cache_bits |= pat_flag;
2675 if (pat_idx & 0x2)
2676 cache_bits |= PG_NC_PCD;
2677 if (pat_idx & 0x1)
2678 cache_bits |= PG_NC_PWT;
2679 break;
2680
2681 case PT_EPT:
2682 cache_bits = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(mode);
2683 break;
2684
2685 default:
2686 panic("unsupported pmap type %d", pmap->pm_type);
2687 }
2688
2689 return (cache_bits);
2690 }
2691
2692 static int
pmap_cache_mask(pmap_t pmap,bool is_pde)2693 pmap_cache_mask(pmap_t pmap, bool is_pde)
2694 {
2695 int mask;
2696
2697 switch (pmap->pm_type) {
2698 case PT_X86:
2699 case PT_RVI:
2700 mask = is_pde ? X86_PG_PDE_CACHE : X86_PG_PTE_CACHE;
2701 break;
2702 case PT_EPT:
2703 mask = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(0x7);
2704 break;
2705 default:
2706 panic("pmap_cache_mask: invalid pm_type %d", pmap->pm_type);
2707 }
2708
2709 return (mask);
2710 }
2711
2712 static int
pmap_pat_index(pmap_t pmap,pt_entry_t pte,bool is_pde)2713 pmap_pat_index(pmap_t pmap, pt_entry_t pte, bool is_pde)
2714 {
2715 int pat_flag, pat_idx;
2716
2717 pat_idx = 0;
2718 switch (pmap->pm_type) {
2719 case PT_X86:
2720 case PT_RVI:
2721 /* The PAT bit is different for PTE's and PDE's. */
2722 pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2723
2724 if ((pte & pat_flag) != 0)
2725 pat_idx |= 0x4;
2726 if ((pte & PG_NC_PCD) != 0)
2727 pat_idx |= 0x2;
2728 if ((pte & PG_NC_PWT) != 0)
2729 pat_idx |= 0x1;
2730 break;
2731 case PT_EPT:
2732 if ((pte & EPT_PG_IGNORE_PAT) != 0)
2733 panic("EPT PTE %#lx has no PAT memory type", pte);
2734 pat_idx = (pte & EPT_PG_MEMORY_TYPE(0x7)) >> 3;
2735 break;
2736 }
2737
2738 /* See pmap_init_pat(). */
2739 if (pat_idx == 4)
2740 pat_idx = 0;
2741 if (pat_idx == 7)
2742 pat_idx = 3;
2743
2744 return (pat_idx);
2745 }
2746
2747 bool
pmap_ps_enabled(pmap_t pmap)2748 pmap_ps_enabled(pmap_t pmap)
2749 {
2750
2751 return (pg_ps_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
2752 }
2753
2754 static void
pmap_update_pde_store(pmap_t pmap,pd_entry_t * pde,pd_entry_t newpde)2755 pmap_update_pde_store(pmap_t pmap, pd_entry_t *pde, pd_entry_t newpde)
2756 {
2757
2758 switch (pmap->pm_type) {
2759 case PT_X86:
2760 break;
2761 case PT_RVI:
2762 case PT_EPT:
2763 /*
2764 * XXX
2765 * This is a little bogus since the generation number is
2766 * supposed to be bumped up when a region of the address
2767 * space is invalidated in the page tables.
2768 *
2769 * In this case the old PDE entry is valid but yet we want
2770 * to make sure that any mappings using the old entry are
2771 * invalidated in the TLB.
2772 *
2773 * The reason this works as expected is because we rendezvous
2774 * "all" host cpus and force any vcpu context to exit as a
2775 * side-effect.
2776 */
2777 atomic_add_long(&pmap->pm_eptgen, 1);
2778 break;
2779 default:
2780 panic("pmap_update_pde_store: bad pm_type %d", pmap->pm_type);
2781 }
2782 pde_store(pde, newpde);
2783 }
2784
2785 /*
2786 * After changing the page size for the specified virtual address in the page
2787 * table, flush the corresponding entries from the processor's TLB. Only the
2788 * calling processor's TLB is affected.
2789 *
2790 * The calling thread must be pinned to a processor.
2791 */
2792 static void
pmap_update_pde_invalidate(pmap_t pmap,vm_offset_t va,pd_entry_t newpde)2793 pmap_update_pde_invalidate(pmap_t pmap, vm_offset_t va, pd_entry_t newpde)
2794 {
2795 pt_entry_t PG_G;
2796
2797 if (pmap_type_guest(pmap))
2798 return;
2799
2800 KASSERT(pmap->pm_type == PT_X86,
2801 ("pmap_update_pde_invalidate: invalid type %d", pmap->pm_type));
2802
2803 PG_G = pmap_global_bit(pmap);
2804
2805 if ((newpde & PG_PS) == 0)
2806 /* Demotion: flush a specific 2MB page mapping. */
2807 pmap_invlpg(pmap, va);
2808 else if ((newpde & PG_G) == 0)
2809 /*
2810 * Promotion: flush every 4KB page mapping from the TLB
2811 * because there are too many to flush individually.
2812 */
2813 invltlb();
2814 else {
2815 /*
2816 * Promotion: flush every 4KB page mapping from the TLB,
2817 * including any global (PG_G) mappings.
2818 */
2819 invltlb_glob();
2820 }
2821 }
2822
2823 /*
2824 * The amd64 pmap uses different approaches to TLB invalidation
2825 * depending on the kernel configuration, available hardware features,
2826 * and known hardware errata. The kernel configuration option that
2827 * has the greatest operational impact on TLB invalidation is PTI,
2828 * which is enabled automatically on affected Intel CPUs. The most
2829 * impactful hardware features are first PCID, and then INVPCID
2830 * instruction presence. PCID usage is quite different for PTI
2831 * vs. non-PTI.
2832 *
2833 * * Kernel Page Table Isolation (PTI or KPTI) is used to mitigate
2834 * the Meltdown bug in some Intel CPUs. Under PTI, each user address
2835 * space is served by two page tables, user and kernel. The user
2836 * page table only maps user space and a kernel trampoline. The
2837 * kernel trampoline includes the entirety of the kernel text but
2838 * only the kernel data that is needed to switch from user to kernel
2839 * mode. The kernel page table maps the user and kernel address
2840 * spaces in their entirety. It is identical to the per-process
2841 * page table used in non-PTI mode.
2842 *
2843 * User page tables are only used when the CPU is in user mode.
2844 * Consequently, some TLB invalidations can be postponed until the
2845 * switch from kernel to user mode. In contrast, the user
2846 * space part of the kernel page table is used for copyout(9), so
2847 * TLB invalidations on this page table cannot be similarly postponed.
2848 *
2849 * The existence of a user mode page table for the given pmap is
2850 * indicated by a pm_ucr3 value that differs from PMAP_NO_CR3, in
2851 * which case pm_ucr3 contains the %cr3 register value for the user
2852 * mode page table's root.
2853 *
2854 * * The pm_active bitmask indicates which CPUs currently have the
2855 * pmap active. A CPU's bit is set on context switch to the pmap, and
2856 * cleared on switching off this CPU. For the kernel page table,
2857 * the pm_active field is immutable and contains all CPUs. The
2858 * kernel page table is always logically active on every processor,
2859 * but not necessarily in use by the hardware, e.g., in PTI mode.
2860 *
2861 * When requesting invalidation of virtual addresses with
2862 * pmap_invalidate_XXX() functions, the pmap sends shootdown IPIs to
2863 * all CPUs recorded as active in pm_active. Updates to and reads
2864 * from pm_active are not synchronized, and so they may race with
2865 * each other. Shootdown handlers are prepared to handle the race.
2866 *
2867 * * PCID is an optional feature of the long mode x86 MMU where TLB
2868 * entries are tagged with the 'Process ID' of the address space
2869 * they belong to. This feature provides a limited namespace for
2870 * process identifiers, 12 bits, supporting 4095 simultaneous IDs
2871 * total.
2872 *
2873 * Allocation of a PCID to a pmap is done by an algorithm described
2874 * in section 15.12, "Other TLB Consistency Algorithms", of
2875 * Vahalia's book "Unix Internals". A PCID cannot be allocated for
2876 * the whole lifetime of a pmap in pmap_pinit() due to the limited
2877 * namespace. Instead, a per-CPU, per-pmap PCID is assigned when
2878 * the CPU is about to start caching TLB entries from a pmap,
2879 * i.e., on the context switch that activates the pmap on the CPU.
2880 *
2881 * The PCID allocator maintains a per-CPU, per-pmap generation
2882 * count, pm_gen, which is incremented each time a new PCID is
2883 * allocated. On TLB invalidation, the generation counters for the
2884 * pmap are zeroed, which signals the context switch code that the
2885 * previously allocated PCID is no longer valid. Effectively,
2886 * zeroing any of these counters triggers a TLB shootdown for the
2887 * given CPU/address space, due to the allocation of a new PCID.
2888 *
2889 * Zeroing can be performed remotely. Consequently, if a pmap is
2890 * inactive on a CPU, then a TLB shootdown for that pmap and CPU can
2891 * be initiated by an ordinary memory access to reset the target
2892 * CPU's generation count within the pmap. The CPU initiating the
2893 * TLB shootdown does not need to send an IPI to the target CPU.
2894 *
2895 * * PTI + PCID. The available PCIDs are divided into two sets: PCIDs
2896 * for complete (kernel) page tables, and PCIDs for user mode page
2897 * tables. A user PCID value is obtained from the kernel PCID value
2898 * by setting the highest bit, 11, to 1 (0x800 == PMAP_PCID_USER_PT).
2899 *
2900 * User space page tables are activated on return to user mode, by
2901 * loading pm_ucr3 into %cr3. If the PCPU(ucr3_load_mask) requests
2902 * clearing bit 63 of the loaded ucr3, this effectively causes
2903 * complete invalidation of the user mode TLB entries for the
2904 * current pmap. In which case, local invalidations of individual
2905 * pages in the user page table are skipped.
2906 *
2907 * * Local invalidation, all modes. If the requested invalidation is
2908 * for a specific address or the total invalidation of a currently
2909 * active pmap, then the TLB is flushed using INVLPG for a kernel
2910 * page table, and INVPCID(INVPCID_CTXGLOB)/invltlb_glob() for a
2911 * user space page table(s).
2912 *
2913 * If the INVPCID instruction is available, it is used to flush user
2914 * entries from the kernel page table.
2915 *
2916 * When PCID is enabled, the INVLPG instruction invalidates all TLB
2917 * entries for the given page that either match the current PCID or
2918 * are global. Since TLB entries for the same page under different
2919 * PCIDs are unaffected, kernel pages which reside in all address
2920 * spaces could be problematic. We avoid the problem by creating
2921 * all kernel PTEs with the global flag (PG_G) set, when PTI is
2922 * disabled.
2923 *
2924 * * mode: PTI disabled, PCID present. The kernel reserves PCID 0 for its
2925 * address space, all other 4095 PCIDs are used for user mode spaces
2926 * as described above. A context switch allocates a new PCID if
2927 * the recorded PCID is zero or the recorded generation does not match
2928 * the CPU's generation, effectively flushing the TLB for this address space.
2929 * Total remote invalidation is performed by zeroing pm_gen for all CPUs.
2930 * local user page: INVLPG
2931 * local kernel page: INVLPG
2932 * local user total: INVPCID(CTX)
2933 * local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
2934 * remote user page, inactive pmap: zero pm_gen
2935 * remote user page, active pmap: zero pm_gen + IPI:INVLPG
2936 * (Both actions are required to handle the aforementioned pm_active races.)
2937 * remote kernel page: IPI:INVLPG
2938 * remote user total, inactive pmap: zero pm_gen
2939 * remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) or
2940 * reload %cr3)
2941 * (See note above about pm_active races.)
2942 * remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
2943 *
2944 * PTI enabled, PCID present.
2945 * local user page: INVLPG for kpt, INVPCID(ADDR) or (INVLPG for ucr3)
2946 * for upt
2947 * local kernel page: INVLPG
2948 * local user total: INVPCID(CTX) or reload %cr3 for kpt, clear PCID_SAVE
2949 * on loading UCR3 into %cr3 for upt
2950 * local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
2951 * remote user page, inactive pmap: zero pm_gen
2952 * remote user page, active pmap: zero pm_gen + IPI:(INVLPG for kpt,
2953 * INVPCID(ADDR) for upt)
2954 * remote kernel page: IPI:INVLPG
2955 * remote user total, inactive pmap: zero pm_gen
2956 * remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) for kpt,
2957 * clear PCID_SAVE on loading UCR3 into $cr3 for upt)
2958 * remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
2959 *
2960 * No PCID.
2961 * local user page: INVLPG
2962 * local kernel page: INVLPG
2963 * local user total: reload %cr3
2964 * local kernel total: invltlb_glob()
2965 * remote user page, inactive pmap: -
2966 * remote user page, active pmap: IPI:INVLPG
2967 * remote kernel page: IPI:INVLPG
2968 * remote user total, inactive pmap: -
2969 * remote user total, active pmap: IPI:(reload %cr3)
2970 * remote kernel total: IPI:invltlb_glob()
2971 * Since on return to user mode, the reload of %cr3 with ucr3 causes
2972 * TLB invalidation, no specific action is required for user page table.
2973 *
2974 * EPT. EPT pmaps do not map KVA, all mappings are userspace.
2975 * XXX TODO
2976 */
2977
2978 #ifdef SMP
2979 /*
2980 * Interrupt the cpus that are executing in the guest context.
2981 * This will force the vcpu to exit and the cached EPT mappings
2982 * will be invalidated by the host before the next vmresume.
2983 */
2984 static __inline void
pmap_invalidate_ept(pmap_t pmap)2985 pmap_invalidate_ept(pmap_t pmap)
2986 {
2987 smr_seq_t goal;
2988 int ipinum;
2989
2990 sched_pin();
2991 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
2992 ("pmap_invalidate_ept: absurd pm_active"));
2993
2994 /*
2995 * The TLB mappings associated with a vcpu context are not
2996 * flushed each time a different vcpu is chosen to execute.
2997 *
2998 * This is in contrast with a process's vtop mappings that
2999 * are flushed from the TLB on each context switch.
3000 *
3001 * Therefore we need to do more than just a TLB shootdown on
3002 * the active cpus in 'pmap->pm_active'. To do this we keep
3003 * track of the number of invalidations performed on this pmap.
3004 *
3005 * Each vcpu keeps a cache of this counter and compares it
3006 * just before a vmresume. If the counter is out-of-date an
3007 * invept will be done to flush stale mappings from the TLB.
3008 *
3009 * To ensure that all vCPU threads have observed the new counter
3010 * value before returning, we use SMR. Ordering is important here:
3011 * the VMM enters an SMR read section before loading the counter
3012 * and after updating the pm_active bit set. Thus, pm_active is
3013 * a superset of active readers, and any reader that has observed
3014 * the goal has observed the new counter value.
3015 */
3016 atomic_add_long(&pmap->pm_eptgen, 1);
3017
3018 goal = smr_advance(pmap->pm_eptsmr);
3019
3020 /*
3021 * Force the vcpu to exit and trap back into the hypervisor.
3022 */
3023 ipinum = pmap->pm_flags & PMAP_NESTED_IPIMASK;
3024 ipi_selected(pmap->pm_active, ipinum);
3025 sched_unpin();
3026
3027 /*
3028 * Ensure that all active vCPUs will observe the new generation counter
3029 * value before executing any more guest instructions.
3030 */
3031 smr_wait(pmap->pm_eptsmr, goal);
3032 }
3033
3034 static inline void
pmap_invalidate_preipi_pcid(pmap_t pmap)3035 pmap_invalidate_preipi_pcid(pmap_t pmap)
3036 {
3037 struct pmap_pcid *pcidp;
3038 u_int cpuid, i;
3039
3040 sched_pin();
3041
3042 cpuid = PCPU_GET(cpuid);
3043 if (pmap != PCPU_GET(curpmap))
3044 cpuid = 0xffffffff; /* An impossible value */
3045
3046 CPU_FOREACH(i) {
3047 if (cpuid != i) {
3048 pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
3049 pcidp->pm_gen = 0;
3050 }
3051 }
3052
3053 /*
3054 * The fence is between stores to pm_gen and the read of the
3055 * pm_active mask. We need to ensure that it is impossible
3056 * for us to miss the bit update in pm_active and
3057 * simultaneously observe a non-zero pm_gen in
3058 * pmap_activate_sw(), otherwise TLB update is missed.
3059 * Without the fence, IA32 allows such an outcome. Note that
3060 * pm_active is updated by a locked operation, which provides
3061 * the reciprocal fence.
3062 */
3063 atomic_thread_fence_seq_cst();
3064 }
3065
3066 static void
pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)3067 pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)
3068 {
3069 sched_pin();
3070 }
3071
3072 DEFINE_IFUNC(static, void, pmap_invalidate_preipi, (pmap_t))
3073 {
3074 return (pmap_pcid_enabled ? pmap_invalidate_preipi_pcid :
3075 pmap_invalidate_preipi_nopcid);
3076 }
3077
3078 static inline void
pmap_invalidate_page_pcid_cb(pmap_t pmap,vm_offset_t va,const bool invpcid_works1)3079 pmap_invalidate_page_pcid_cb(pmap_t pmap, vm_offset_t va,
3080 const bool invpcid_works1)
3081 {
3082 struct invpcid_descr d;
3083 uint64_t kcr3, ucr3;
3084 uint32_t pcid;
3085
3086 /*
3087 * Because pm_pcid is recalculated on a context switch, we
3088 * must ensure there is no preemption, not just pinning.
3089 * Otherwise, we might use a stale value below.
3090 */
3091 CRITICAL_ASSERT(curthread);
3092
3093 /*
3094 * No need to do anything with user page tables invalidation
3095 * if there is no user page table, or invalidation is deferred
3096 * until the return to userspace. ucr3_load_mask is stable
3097 * because we have preemption disabled.
3098 */
3099 if (pmap->pm_ucr3 == PMAP_NO_CR3 ||
3100 PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3101 return;
3102
3103 pcid = pmap_get_pcid(pmap);
3104 if (invpcid_works1) {
3105 d.pcid = pcid | PMAP_PCID_USER_PT;
3106 d.pad = 0;
3107 d.addr = va;
3108 invpcid(&d, INVPCID_ADDR);
3109 } else {
3110 kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3111 ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3112 pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3113 }
3114 }
3115
3116 static void
pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap,vm_offset_t va)3117 pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap, vm_offset_t va)
3118 {
3119 pmap_invalidate_page_pcid_cb(pmap, va, true);
3120 }
3121
3122 static void
pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t va)3123 pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t va)
3124 {
3125 pmap_invalidate_page_pcid_cb(pmap, va, false);
3126 }
3127
3128 static void
pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused,vm_offset_t va __unused)3129 pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused, vm_offset_t va __unused)
3130 {
3131 }
3132
3133 DEFINE_IFUNC(static, void, pmap_invalidate_page_cb, (pmap_t, vm_offset_t))
3134 {
3135 if (pmap_pcid_enabled)
3136 return (invpcid_works ? pmap_invalidate_page_pcid_invpcid_cb :
3137 pmap_invalidate_page_pcid_noinvpcid_cb);
3138 return (pmap_invalidate_page_nopcid_cb);
3139 }
3140
3141 static void
pmap_invalidate_page_curcpu_cb(pmap_t pmap,vm_offset_t va,vm_offset_t addr2 __unused)3142 pmap_invalidate_page_curcpu_cb(pmap_t pmap, vm_offset_t va,
3143 vm_offset_t addr2 __unused)
3144 {
3145 if (pmap == kernel_pmap) {
3146 pmap_invlpg(kernel_pmap, va);
3147 } else if (pmap == PCPU_GET(curpmap)) {
3148 invlpg(va);
3149 pmap_invalidate_page_cb(pmap, va);
3150 }
3151 }
3152
3153 void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va)3154 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3155 {
3156 if (pmap_type_guest(pmap)) {
3157 pmap_invalidate_ept(pmap);
3158 return;
3159 }
3160
3161 KASSERT(pmap->pm_type == PT_X86,
3162 ("pmap_invalidate_page: invalid type %d", pmap->pm_type));
3163
3164 pmap_invalidate_preipi(pmap);
3165 smp_masked_invlpg(va, pmap, pmap_invalidate_page_curcpu_cb);
3166 }
3167
3168 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
3169 #define PMAP_INVLPG_THRESHOLD (4 * 1024 * PAGE_SIZE)
3170
3171 static void
pmap_invalidate_range_pcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,const bool invpcid_works1)3172 pmap_invalidate_range_pcid_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3173 const bool invpcid_works1)
3174 {
3175 struct invpcid_descr d;
3176 uint64_t kcr3, ucr3;
3177 uint32_t pcid;
3178
3179 CRITICAL_ASSERT(curthread);
3180
3181 if (pmap != PCPU_GET(curpmap) ||
3182 pmap->pm_ucr3 == PMAP_NO_CR3 ||
3183 PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3184 return;
3185
3186 pcid = pmap_get_pcid(pmap);
3187 if (invpcid_works1) {
3188 d.pcid = pcid | PMAP_PCID_USER_PT;
3189 d.pad = 0;
3190 for (d.addr = sva; d.addr < eva; d.addr += PAGE_SIZE)
3191 invpcid(&d, INVPCID_ADDR);
3192 } else {
3193 kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3194 ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3195 pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3196 }
3197 }
3198
3199 static void
pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3200 pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap, vm_offset_t sva,
3201 vm_offset_t eva)
3202 {
3203 pmap_invalidate_range_pcid_cb(pmap, sva, eva, true);
3204 }
3205
3206 static void
pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3207 pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t sva,
3208 vm_offset_t eva)
3209 {
3210 pmap_invalidate_range_pcid_cb(pmap, sva, eva, false);
3211 }
3212
3213 static void
pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused,vm_offset_t sva __unused,vm_offset_t eva __unused)3214 pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused, vm_offset_t sva __unused,
3215 vm_offset_t eva __unused)
3216 {
3217 }
3218
3219 DEFINE_IFUNC(static, void, pmap_invalidate_range_cb, (pmap_t, vm_offset_t,
3220 vm_offset_t))
3221 {
3222 if (pmap_pcid_enabled)
3223 return (invpcid_works ? pmap_invalidate_range_pcid_invpcid_cb :
3224 pmap_invalidate_range_pcid_noinvpcid_cb);
3225 return (pmap_invalidate_range_nopcid_cb);
3226 }
3227
3228 static void
pmap_invalidate_range_curcpu_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3229 pmap_invalidate_range_curcpu_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3230 {
3231 vm_offset_t addr;
3232
3233 if (pmap == kernel_pmap) {
3234 if (PCPU_GET(pcid_invlpg_workaround)) {
3235 struct invpcid_descr d = { 0 };
3236
3237 invpcid(&d, INVPCID_CTXGLOB);
3238 } else {
3239 for (addr = sva; addr < eva; addr += PAGE_SIZE)
3240 invlpg(addr);
3241 }
3242 } else if (pmap == PCPU_GET(curpmap)) {
3243 for (addr = sva; addr < eva; addr += PAGE_SIZE)
3244 invlpg(addr);
3245 pmap_invalidate_range_cb(pmap, sva, eva);
3246 }
3247 }
3248
3249 void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3250 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3251 {
3252 if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
3253 pmap_invalidate_all(pmap);
3254 return;
3255 }
3256
3257 if (pmap_type_guest(pmap)) {
3258 pmap_invalidate_ept(pmap);
3259 return;
3260 }
3261
3262 KASSERT(pmap->pm_type == PT_X86,
3263 ("pmap_invalidate_range: invalid type %d", pmap->pm_type));
3264
3265 pmap_invalidate_preipi(pmap);
3266 smp_masked_invlpg_range(sva, eva, pmap,
3267 pmap_invalidate_range_curcpu_cb);
3268 }
3269
3270 static inline void
pmap_invalidate_all_pcid_cb(pmap_t pmap,bool invpcid_works1)3271 pmap_invalidate_all_pcid_cb(pmap_t pmap, bool invpcid_works1)
3272 {
3273 struct invpcid_descr d;
3274 uint64_t kcr3;
3275 uint32_t pcid;
3276
3277 if (pmap == kernel_pmap) {
3278 if (invpcid_works1) {
3279 bzero(&d, sizeof(d));
3280 invpcid(&d, INVPCID_CTXGLOB);
3281 } else {
3282 invltlb_glob();
3283 }
3284 } else if (pmap == PCPU_GET(curpmap)) {
3285 CRITICAL_ASSERT(curthread);
3286
3287 pcid = pmap_get_pcid(pmap);
3288 if (invpcid_works1) {
3289 d.pcid = pcid;
3290 d.pad = 0;
3291 d.addr = 0;
3292 invpcid(&d, INVPCID_CTX);
3293 } else {
3294 kcr3 = pmap->pm_cr3 | pcid;
3295 load_cr3(kcr3);
3296 }
3297 if (pmap->pm_ucr3 != PMAP_NO_CR3)
3298 PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
3299 }
3300 }
3301
3302 static void
pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap)3303 pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap)
3304 {
3305 pmap_invalidate_all_pcid_cb(pmap, true);
3306 }
3307
3308 static void
pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap)3309 pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap)
3310 {
3311 pmap_invalidate_all_pcid_cb(pmap, false);
3312 }
3313
3314 static void
pmap_invalidate_all_nopcid_cb(pmap_t pmap)3315 pmap_invalidate_all_nopcid_cb(pmap_t pmap)
3316 {
3317 if (pmap == kernel_pmap)
3318 invltlb_glob();
3319 else if (pmap == PCPU_GET(curpmap))
3320 invltlb();
3321 }
3322
3323 DEFINE_IFUNC(static, void, pmap_invalidate_all_cb, (pmap_t))
3324 {
3325 if (pmap_pcid_enabled)
3326 return (invpcid_works ? pmap_invalidate_all_pcid_invpcid_cb :
3327 pmap_invalidate_all_pcid_noinvpcid_cb);
3328 return (pmap_invalidate_all_nopcid_cb);
3329 }
3330
3331 static void
pmap_invalidate_all_curcpu_cb(pmap_t pmap,vm_offset_t addr1 __unused,vm_offset_t addr2 __unused)3332 pmap_invalidate_all_curcpu_cb(pmap_t pmap, vm_offset_t addr1 __unused,
3333 vm_offset_t addr2 __unused)
3334 {
3335 pmap_invalidate_all_cb(pmap);
3336 }
3337
3338 void
pmap_invalidate_all(pmap_t pmap)3339 pmap_invalidate_all(pmap_t pmap)
3340 {
3341 if (pmap_type_guest(pmap)) {
3342 pmap_invalidate_ept(pmap);
3343 return;
3344 }
3345
3346 KASSERT(pmap->pm_type == PT_X86,
3347 ("pmap_invalidate_all: invalid type %d", pmap->pm_type));
3348
3349 pmap_invalidate_preipi(pmap);
3350 smp_masked_invltlb(pmap, pmap_invalidate_all_curcpu_cb);
3351 }
3352
3353 static void
pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused,vm_offset_t va __unused,vm_offset_t addr2 __unused)3354 pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused, vm_offset_t va __unused,
3355 vm_offset_t addr2 __unused)
3356 {
3357 wbinvd();
3358 }
3359
3360 void
pmap_invalidate_cache(void)3361 pmap_invalidate_cache(void)
3362 {
3363 sched_pin();
3364 smp_cache_flush(pmap_invalidate_cache_curcpu_cb);
3365 }
3366
3367 struct pde_action {
3368 cpuset_t invalidate; /* processors that invalidate their TLB */
3369 pmap_t pmap;
3370 vm_offset_t va;
3371 pd_entry_t *pde;
3372 pd_entry_t newpde;
3373 u_int store; /* processor that updates the PDE */
3374 };
3375
3376 static void
pmap_update_pde_action(void * arg)3377 pmap_update_pde_action(void *arg)
3378 {
3379 struct pde_action *act = arg;
3380
3381 if (act->store == PCPU_GET(cpuid))
3382 pmap_update_pde_store(act->pmap, act->pde, act->newpde);
3383 }
3384
3385 static void
pmap_update_pde_teardown(void * arg)3386 pmap_update_pde_teardown(void *arg)
3387 {
3388 struct pde_action *act = arg;
3389
3390 if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
3391 pmap_update_pde_invalidate(act->pmap, act->va, act->newpde);
3392 }
3393
3394 /*
3395 * Change the page size for the specified virtual address in a way that
3396 * prevents any possibility of the TLB ever having two entries that map the
3397 * same virtual address using different page sizes. This is the recommended
3398 * workaround for Erratum 383 on AMD Family 10h processors. It prevents a
3399 * machine check exception for a TLB state that is improperly diagnosed as a
3400 * hardware error.
3401 */
3402 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)3403 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3404 {
3405 struct pde_action act;
3406 cpuset_t active, other_cpus;
3407 u_int cpuid;
3408
3409 sched_pin();
3410 cpuid = PCPU_GET(cpuid);
3411 other_cpus = all_cpus;
3412 CPU_CLR(cpuid, &other_cpus);
3413 if (pmap == kernel_pmap || pmap_type_guest(pmap))
3414 active = all_cpus;
3415 else {
3416 active = pmap->pm_active;
3417 }
3418 if (CPU_OVERLAP(&active, &other_cpus)) {
3419 act.store = cpuid;
3420 act.invalidate = active;
3421 act.va = va;
3422 act.pmap = pmap;
3423 act.pde = pde;
3424 act.newpde = newpde;
3425 CPU_SET(cpuid, &active);
3426 smp_rendezvous_cpus(active,
3427 smp_no_rendezvous_barrier, pmap_update_pde_action,
3428 pmap_update_pde_teardown, &act);
3429 } else {
3430 pmap_update_pde_store(pmap, pde, newpde);
3431 if (CPU_ISSET(cpuid, &active))
3432 pmap_update_pde_invalidate(pmap, va, newpde);
3433 }
3434 sched_unpin();
3435 }
3436 #else /* !SMP */
3437 /*
3438 * Normal, non-SMP, invalidation functions.
3439 */
3440 void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va)3441 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3442 {
3443 struct invpcid_descr d;
3444 struct pmap_pcid *pcidp;
3445 uint64_t kcr3, ucr3;
3446 uint32_t pcid;
3447
3448 if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3449 pmap->pm_eptgen++;
3450 return;
3451 }
3452 KASSERT(pmap->pm_type == PT_X86,
3453 ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3454
3455 if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3456 invlpg(va);
3457 if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3458 pmap->pm_ucr3 != PMAP_NO_CR3) {
3459 critical_enter();
3460 pcid = pmap_get_pcid(pmap);
3461 if (invpcid_works) {
3462 d.pcid = pcid | PMAP_PCID_USER_PT;
3463 d.pad = 0;
3464 d.addr = va;
3465 invpcid(&d, INVPCID_ADDR);
3466 } else {
3467 kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3468 ucr3 = pmap->pm_ucr3 | pcid |
3469 PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3470 pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3471 }
3472 critical_exit();
3473 }
3474 } else if (pmap_pcid_enabled) {
3475 pcidp = zpcpu_get(pmap->pm_pcidp);
3476 pcidp->pm_gen = 0;
3477 }
3478 }
3479
3480 void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3481 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3482 {
3483 struct invpcid_descr d;
3484 struct pmap_pcid *pcidp;
3485 vm_offset_t addr;
3486 uint64_t kcr3, ucr3;
3487 uint32_t pcid;
3488
3489 if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3490 pmap->pm_eptgen++;
3491 return;
3492 }
3493 KASSERT(pmap->pm_type == PT_X86,
3494 ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3495
3496 if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3497 for (addr = sva; addr < eva; addr += PAGE_SIZE)
3498 invlpg(addr);
3499 if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3500 pmap->pm_ucr3 != PMAP_NO_CR3) {
3501 critical_enter();
3502 pcid = pmap_get_pcid(pmap);
3503 if (invpcid_works) {
3504 d.pcid = pcid | PMAP_PCID_USER_PT;
3505 d.pad = 0;
3506 d.addr = sva;
3507 for (; d.addr < eva; d.addr += PAGE_SIZE)
3508 invpcid(&d, INVPCID_ADDR);
3509 } else {
3510 kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3511 ucr3 = pmap->pm_ucr3 | pcid |
3512 PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3513 pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3514 }
3515 critical_exit();
3516 }
3517 } else if (pmap_pcid_enabled) {
3518 pcidp = zpcpu_get(pmap->pm_pcidp);
3519 pcidp->pm_gen = 0;
3520 }
3521 }
3522
3523 void
pmap_invalidate_all(pmap_t pmap)3524 pmap_invalidate_all(pmap_t pmap)
3525 {
3526 struct invpcid_descr d;
3527 struct pmap_pcid *pcidp;
3528 uint64_t kcr3, ucr3;
3529 uint32_t pcid;
3530
3531 if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3532 pmap->pm_eptgen++;
3533 return;
3534 }
3535 KASSERT(pmap->pm_type == PT_X86,
3536 ("pmap_invalidate_all: unknown type %d", pmap->pm_type));
3537
3538 if (pmap == kernel_pmap) {
3539 if (pmap_pcid_enabled && invpcid_works) {
3540 bzero(&d, sizeof(d));
3541 invpcid(&d, INVPCID_CTXGLOB);
3542 } else {
3543 invltlb_glob();
3544 }
3545 } else if (pmap == PCPU_GET(curpmap)) {
3546 if (pmap_pcid_enabled) {
3547 critical_enter();
3548 pcid = pmap_get_pcid(pmap);
3549 if (invpcid_works) {
3550 d.pcid = pcid;
3551 d.pad = 0;
3552 d.addr = 0;
3553 invpcid(&d, INVPCID_CTX);
3554 if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3555 d.pcid |= PMAP_PCID_USER_PT;
3556 invpcid(&d, INVPCID_CTX);
3557 }
3558 } else {
3559 kcr3 = pmap->pm_cr3 | pcid;
3560 if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3561 ucr3 = pmap->pm_ucr3 | pcid |
3562 PMAP_PCID_USER_PT;
3563 pmap_pti_pcid_invalidate(ucr3, kcr3);
3564 } else
3565 load_cr3(kcr3);
3566 }
3567 critical_exit();
3568 } else {
3569 invltlb();
3570 }
3571 } else if (pmap_pcid_enabled) {
3572 pcidp = zpcpu_get(pmap->pm_pcidp);
3573 pcidp->pm_gen = 0;
3574 }
3575 }
3576
3577 void
pmap_invalidate_cache(void)3578 pmap_invalidate_cache(void)
3579 {
3580
3581 wbinvd();
3582 }
3583
3584 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)3585 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3586 {
3587 struct pmap_pcid *pcidp;
3588
3589 pmap_update_pde_store(pmap, pde, newpde);
3590 if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap))
3591 pmap_update_pde_invalidate(pmap, va, newpde);
3592 else {
3593 pcidp = zpcpu_get(pmap->pm_pcidp);
3594 pcidp->pm_gen = 0;
3595 }
3596 }
3597 #endif /* !SMP */
3598
3599 static void
pmap_invalidate_pde_page(pmap_t pmap,vm_offset_t va,pd_entry_t pde)3600 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
3601 {
3602
3603 /*
3604 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
3605 * by a promotion that did not invalidate the 512 4KB page mappings
3606 * that might exist in the TLB. Consequently, at this point, the TLB
3607 * may hold both 4KB and 2MB page mappings for the address range [va,
3608 * va + NBPDR). Therefore, the entire range must be invalidated here.
3609 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
3610 * 4KB page mappings for the address range [va, va + NBPDR), and so a
3611 * single INVLPG suffices to invalidate the 2MB page mapping from the
3612 * TLB.
3613 */
3614 if ((pde & PG_PROMOTED) != 0)
3615 pmap_invalidate_range(pmap, va, va + NBPDR - 1);
3616 else
3617 pmap_invalidate_page(pmap, va);
3618 }
3619
3620 DEFINE_IFUNC(, void, pmap_invalidate_cache_range,
3621 (vm_offset_t sva, vm_offset_t eva))
3622 {
3623
3624 if ((cpu_feature & CPUID_SS) != 0)
3625 return (pmap_invalidate_cache_range_selfsnoop);
3626 if ((cpu_feature & CPUID_CLFSH) != 0)
3627 return (pmap_force_invalidate_cache_range);
3628 return (pmap_invalidate_cache_range_all);
3629 }
3630
3631 #define PMAP_CLFLUSH_THRESHOLD (2 * 1024 * 1024)
3632
3633 static void
pmap_invalidate_cache_range_check_align(vm_offset_t sva,vm_offset_t eva)3634 pmap_invalidate_cache_range_check_align(vm_offset_t sva, vm_offset_t eva)
3635 {
3636
3637 KASSERT((sva & PAGE_MASK) == 0,
3638 ("pmap_invalidate_cache_range: sva not page-aligned"));
3639 KASSERT((eva & PAGE_MASK) == 0,
3640 ("pmap_invalidate_cache_range: eva not page-aligned"));
3641 }
3642
3643 static void
pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,vm_offset_t eva)3644 pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva, vm_offset_t eva)
3645 {
3646
3647 pmap_invalidate_cache_range_check_align(sva, eva);
3648 }
3649
3650 void
pmap_force_invalidate_cache_range(vm_offset_t sva,vm_offset_t eva)3651 pmap_force_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
3652 {
3653
3654 sva &= ~(vm_offset_t)(cpu_clflush_line_size - 1);
3655
3656 /*
3657 * XXX: Some CPUs fault, hang, or trash the local APIC
3658 * registers if we use CLFLUSH on the local APIC range. The
3659 * local APIC is always uncached, so we don't need to flush
3660 * for that range anyway.
3661 */
3662 if (pmap_kextract(sva) == lapic_paddr)
3663 return;
3664
3665 if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0) {
3666 /*
3667 * Do per-cache line flush. Use a locked
3668 * instruction to insure that previous stores are
3669 * included in the write-back. The processor
3670 * propagates flush to other processors in the cache
3671 * coherence domain.
3672 */
3673 atomic_thread_fence_seq_cst();
3674 for (; sva < eva; sva += cpu_clflush_line_size)
3675 clflushopt(sva);
3676 atomic_thread_fence_seq_cst();
3677 } else {
3678 /*
3679 * Writes are ordered by CLFLUSH on Intel CPUs.
3680 */
3681 if (cpu_vendor_id != CPU_VENDOR_INTEL)
3682 mfence();
3683 for (; sva < eva; sva += cpu_clflush_line_size)
3684 clflush(sva);
3685 if (cpu_vendor_id != CPU_VENDOR_INTEL)
3686 mfence();
3687 }
3688 }
3689
3690 static void
pmap_invalidate_cache_range_all(vm_offset_t sva,vm_offset_t eva)3691 pmap_invalidate_cache_range_all(vm_offset_t sva, vm_offset_t eva)
3692 {
3693
3694 pmap_invalidate_cache_range_check_align(sva, eva);
3695 pmap_invalidate_cache();
3696 }
3697
3698 /*
3699 * Remove the specified set of pages from the data and instruction caches.
3700 *
3701 * In contrast to pmap_invalidate_cache_range(), this function does not
3702 * rely on the CPU's self-snoop feature, because it is intended for use
3703 * when moving pages into a different cache domain.
3704 */
3705 void
pmap_invalidate_cache_pages(vm_page_t * pages,int count)3706 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
3707 {
3708 vm_offset_t daddr, eva;
3709 int i;
3710 bool useclflushopt;
3711
3712 useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
3713 if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
3714 ((cpu_feature & CPUID_CLFSH) == 0 && !useclflushopt))
3715 pmap_invalidate_cache();
3716 else {
3717 if (useclflushopt)
3718 atomic_thread_fence_seq_cst();
3719 else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3720 mfence();
3721 for (i = 0; i < count; i++) {
3722 daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
3723 eva = daddr + PAGE_SIZE;
3724 for (; daddr < eva; daddr += cpu_clflush_line_size) {
3725 if (useclflushopt)
3726 clflushopt(daddr);
3727 else
3728 clflush(daddr);
3729 }
3730 }
3731 if (useclflushopt)
3732 atomic_thread_fence_seq_cst();
3733 else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3734 mfence();
3735 }
3736 }
3737
3738 void
pmap_flush_cache_range(vm_offset_t sva,vm_offset_t eva)3739 pmap_flush_cache_range(vm_offset_t sva, vm_offset_t eva)
3740 {
3741
3742 pmap_invalidate_cache_range_check_align(sva, eva);
3743
3744 if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) == 0) {
3745 pmap_force_invalidate_cache_range(sva, eva);
3746 return;
3747 }
3748
3749 /* See comment in pmap_force_invalidate_cache_range(). */
3750 if (pmap_kextract(sva) == lapic_paddr)
3751 return;
3752
3753 atomic_thread_fence_seq_cst();
3754 for (; sva < eva; sva += cpu_clflush_line_size)
3755 clwb(sva);
3756 atomic_thread_fence_seq_cst();
3757 }
3758
3759 void
pmap_flush_cache_phys_range(vm_paddr_t spa,vm_paddr_t epa,vm_memattr_t mattr)3760 pmap_flush_cache_phys_range(vm_paddr_t spa, vm_paddr_t epa, vm_memattr_t mattr)
3761 {
3762 pt_entry_t *pte;
3763 vm_offset_t vaddr;
3764 int error __diagused;
3765 int pte_bits;
3766
3767 KASSERT((spa & PAGE_MASK) == 0,
3768 ("pmap_flush_cache_phys_range: spa not page-aligned"));
3769 KASSERT((epa & PAGE_MASK) == 0,
3770 ("pmap_flush_cache_phys_range: epa not page-aligned"));
3771
3772 if (spa < dmaplimit) {
3773 pmap_flush_cache_range(PHYS_TO_DMAP(spa), PHYS_TO_DMAP(MIN(
3774 dmaplimit, epa)));
3775 if (dmaplimit >= epa)
3776 return;
3777 spa = dmaplimit;
3778 }
3779
3780 pte_bits = pmap_cache_bits(kernel_pmap, mattr, false) | X86_PG_RW |
3781 X86_PG_V;
3782 error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3783 &vaddr);
3784 KASSERT(error == 0, ("vmem_alloc failed: %d", error));
3785 pte = vtopte(vaddr);
3786 for (; spa < epa; spa += PAGE_SIZE) {
3787 sched_pin();
3788 pte_store(pte, spa | pte_bits);
3789 pmap_invlpg(kernel_pmap, vaddr);
3790 /* XXXKIB atomic inside flush_cache_range are excessive */
3791 pmap_flush_cache_range(vaddr, vaddr + PAGE_SIZE);
3792 sched_unpin();
3793 }
3794 vmem_free(kernel_arena, vaddr, PAGE_SIZE);
3795 }
3796
3797 /*
3798 * Routine: pmap_extract
3799 * Function:
3800 * Extract the physical page address associated
3801 * with the given map/virtual_address pair.
3802 */
3803 vm_paddr_t
pmap_extract(pmap_t pmap,vm_offset_t va)3804 pmap_extract(pmap_t pmap, vm_offset_t va)
3805 {
3806 pdp_entry_t *pdpe;
3807 pd_entry_t *pde;
3808 pt_entry_t *pte, PG_V;
3809 vm_paddr_t pa;
3810
3811 pa = 0;
3812 PG_V = pmap_valid_bit(pmap);
3813 PMAP_LOCK(pmap);
3814 pdpe = pmap_pdpe(pmap, va);
3815 if (pdpe != NULL && (*pdpe & PG_V) != 0) {
3816 if ((*pdpe & PG_PS) != 0)
3817 pa = (*pdpe & PG_PS_FRAME) | (va & PDPMASK);
3818 else {
3819 pde = pmap_pdpe_to_pde(pdpe, va);
3820 if ((*pde & PG_V) != 0) {
3821 if ((*pde & PG_PS) != 0) {
3822 pa = (*pde & PG_PS_FRAME) |
3823 (va & PDRMASK);
3824 } else {
3825 pte = pmap_pde_to_pte(pde, va);
3826 pa = (*pte & PG_FRAME) |
3827 (va & PAGE_MASK);
3828 }
3829 }
3830 }
3831 }
3832 PMAP_UNLOCK(pmap);
3833 return (pa);
3834 }
3835
3836 /*
3837 * Routine: pmap_extract_and_hold
3838 * Function:
3839 * Atomically extract and hold the physical page
3840 * with the given pmap and virtual address pair
3841 * if that mapping permits the given protection.
3842 */
3843 vm_page_t
pmap_extract_and_hold(pmap_t pmap,vm_offset_t va,vm_prot_t prot)3844 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3845 {
3846 pdp_entry_t pdpe, *pdpep;
3847 pd_entry_t pde, *pdep;
3848 pt_entry_t pte, PG_RW, PG_V;
3849 vm_page_t m;
3850
3851 m = NULL;
3852 PG_RW = pmap_rw_bit(pmap);
3853 PG_V = pmap_valid_bit(pmap);
3854 PMAP_LOCK(pmap);
3855
3856 pdpep = pmap_pdpe(pmap, va);
3857 if (pdpep == NULL || ((pdpe = *pdpep) & PG_V) == 0)
3858 goto out;
3859 if ((pdpe & PG_PS) != 0) {
3860 if ((pdpe & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3861 goto out;
3862 m = PHYS_TO_VM_PAGE((pdpe & PG_PS_FRAME) | (va & PDPMASK));
3863 goto check_page;
3864 }
3865
3866 pdep = pmap_pdpe_to_pde(pdpep, va);
3867 if (pdep == NULL || ((pde = *pdep) & PG_V) == 0)
3868 goto out;
3869 if ((pde & PG_PS) != 0) {
3870 if ((pde & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3871 goto out;
3872 m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) | (va & PDRMASK));
3873 goto check_page;
3874 }
3875
3876 pte = *pmap_pde_to_pte(pdep, va);
3877 if ((pte & PG_V) == 0 ||
3878 ((pte & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0))
3879 goto out;
3880 m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3881
3882 check_page:
3883 if (m != NULL && !vm_page_wire_mapped(m))
3884 m = NULL;
3885 out:
3886 PMAP_UNLOCK(pmap);
3887 return (m);
3888 }
3889
3890 /*
3891 * Routine: pmap_kextract
3892 * Function:
3893 * Extract the physical page address associated with the given kernel
3894 * virtual address.
3895 */
3896 vm_paddr_t
pmap_kextract(vm_offset_t va)3897 pmap_kextract(vm_offset_t va)
3898 {
3899 pd_entry_t pde;
3900 vm_paddr_t pa;
3901
3902 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
3903 pa = DMAP_TO_PHYS(va);
3904 } else if (PMAP_ADDRESS_IN_LARGEMAP(va)) {
3905 pa = pmap_large_map_kextract(va);
3906 } else {
3907 pde = *vtopde(va);
3908 if (pde & PG_PS) {
3909 pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
3910 } else {
3911 /*
3912 * Beware of a concurrent promotion that changes the
3913 * PDE at this point! For example, vtopte() must not
3914 * be used to access the PTE because it would use the
3915 * new PDE. It is, however, safe to use the old PDE
3916 * because the page table page is preserved by the
3917 * promotion.
3918 */
3919 pa = *pmap_pde_to_pte(&pde, va);
3920 pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3921 }
3922 }
3923 return (pa);
3924 }
3925
3926 /***************************************************
3927 * Low level mapping routines.....
3928 ***************************************************/
3929
3930 /*
3931 * Add a wired page to the kva.
3932 * Note: not SMP coherent.
3933 */
3934 void
pmap_kenter(vm_offset_t va,vm_paddr_t pa)3935 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
3936 {
3937 pt_entry_t *pte;
3938
3939 pte = vtopte(va);
3940 pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
3941 X86_PG_RW | X86_PG_V);
3942 }
3943
3944 static __inline void
pmap_kenter_attr(vm_offset_t va,vm_paddr_t pa,int mode)3945 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
3946 {
3947 pt_entry_t *pte;
3948 int cache_bits;
3949
3950 pte = vtopte(va);
3951 cache_bits = pmap_cache_bits(kernel_pmap, mode, false);
3952 pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
3953 X86_PG_RW | X86_PG_V | cache_bits);
3954 }
3955
3956 /*
3957 * Remove a page from the kernel pagetables.
3958 * Note: not SMP coherent.
3959 */
3960 void
pmap_kremove(vm_offset_t va)3961 pmap_kremove(vm_offset_t va)
3962 {
3963 pt_entry_t *pte;
3964
3965 pte = vtopte(va);
3966 pte_clear(pte);
3967 }
3968
3969 /*
3970 * Used to map a range of physical addresses into kernel
3971 * virtual address space.
3972 *
3973 * The value passed in '*virt' is a suggested virtual address for
3974 * the mapping. Architectures which can support a direct-mapped
3975 * physical to virtual region can return the appropriate address
3976 * within that region, leaving '*virt' unchanged. Other
3977 * architectures should map the pages starting at '*virt' and
3978 * update '*virt' with the first usable address after the mapped
3979 * region.
3980 */
3981 vm_offset_t
pmap_map(vm_offset_t * virt,vm_paddr_t start,vm_paddr_t end,int prot)3982 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
3983 {
3984 return PHYS_TO_DMAP(start);
3985 }
3986
3987 /*
3988 * Add a list of wired pages to the kva
3989 * this routine is only used for temporary
3990 * kernel mappings that do not need to have
3991 * page modification or references recorded.
3992 * Note that old mappings are simply written
3993 * over. The page *must* be wired.
3994 * Note: SMP coherent. Uses a ranged shootdown IPI.
3995 */
3996 void
pmap_qenter(vm_offset_t sva,vm_page_t * ma,int count)3997 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
3998 {
3999 pt_entry_t *endpte, oldpte, pa, *pte;
4000 vm_page_t m;
4001 int cache_bits;
4002
4003 oldpte = 0;
4004 pte = vtopte(sva);
4005 endpte = pte + count;
4006 while (pte < endpte) {
4007 m = *ma++;
4008 cache_bits = pmap_cache_bits(kernel_pmap, m->md.pat_mode, false);
4009 pa = VM_PAGE_TO_PHYS(m) | cache_bits;
4010 if ((*pte & (PG_FRAME | X86_PG_PTE_CACHE)) != pa) {
4011 oldpte |= *pte;
4012 pte_store(pte, pa | pg_g | pg_nx | X86_PG_A |
4013 X86_PG_M | X86_PG_RW | X86_PG_V);
4014 }
4015 pte++;
4016 }
4017 if (__predict_false((oldpte & X86_PG_V) != 0))
4018 pmap_invalidate_range(kernel_pmap, sva, sva + count *
4019 PAGE_SIZE);
4020 }
4021
4022 /*
4023 * This routine tears out page mappings from the
4024 * kernel -- it is meant only for temporary mappings.
4025 * Note: SMP coherent. Uses a ranged shootdown IPI.
4026 */
4027 void
pmap_qremove(vm_offset_t sva,int count)4028 pmap_qremove(vm_offset_t sva, int count)
4029 {
4030 vm_offset_t va;
4031
4032 va = sva;
4033 while (count-- > 0) {
4034 /*
4035 * pmap_enter() calls within the kernel virtual
4036 * address space happen on virtual addresses from
4037 * subarenas that import superpage-sized and -aligned
4038 * address ranges. So, the virtual address that we
4039 * allocate to use with pmap_qenter() can't be close
4040 * enough to one of those pmap_enter() calls for it to
4041 * be caught up in a promotion.
4042 */
4043 KASSERT(va >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", va));
4044 KASSERT((*vtopde(va) & X86_PG_PS) == 0,
4045 ("pmap_qremove on promoted va %#lx", va));
4046
4047 pmap_kremove(va);
4048 va += PAGE_SIZE;
4049 }
4050 pmap_invalidate_range(kernel_pmap, sva, va);
4051 }
4052
4053 /***************************************************
4054 * Page table page management routines.....
4055 ***************************************************/
4056 /*
4057 * Schedule the specified unused page table page to be freed. Specifically,
4058 * add the page to the specified list of pages that will be released to the
4059 * physical memory manager after the TLB has been updated.
4060 */
4061 static __inline void
pmap_add_delayed_free_list(vm_page_t m,struct spglist * free,bool set_PG_ZERO)4062 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free, bool set_PG_ZERO)
4063 {
4064
4065 if (set_PG_ZERO)
4066 m->flags |= PG_ZERO;
4067 else
4068 m->flags &= ~PG_ZERO;
4069 SLIST_INSERT_HEAD(free, m, plinks.s.ss);
4070 }
4071
4072 /*
4073 * Inserts the specified page table page into the specified pmap's collection
4074 * of idle page table pages. Each of a pmap's page table pages is responsible
4075 * for mapping a distinct range of virtual addresses. The pmap's collection is
4076 * ordered by this virtual address range.
4077 *
4078 * If "promoted" is false, then the page table page "mpte" must be zero filled;
4079 * "mpte"'s valid field will be set to 0.
4080 *
4081 * If "promoted" is true and "allpte_PG_A_set" is false, then "mpte" must
4082 * contain valid mappings with identical attributes except for PG_A; "mpte"'s
4083 * valid field will be set to 1.
4084 *
4085 * If "promoted" and "allpte_PG_A_set" are both true, then "mpte" must contain
4086 * valid mappings with identical attributes including PG_A; "mpte"'s valid
4087 * field will be set to VM_PAGE_BITS_ALL.
4088 */
4089 static __inline int
pmap_insert_pt_page(pmap_t pmap,vm_page_t mpte,bool promoted,bool allpte_PG_A_set)4090 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
4091 bool allpte_PG_A_set)
4092 {
4093
4094 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4095 KASSERT(promoted || !allpte_PG_A_set,
4096 ("a zero-filled PTP can't have PG_A set in every PTE"));
4097 mpte->valid = promoted ? (allpte_PG_A_set ? VM_PAGE_BITS_ALL : 1) : 0;
4098 return (vm_radix_insert(&pmap->pm_root, mpte));
4099 }
4100
4101 /*
4102 * Removes the page table page mapping the specified virtual address from the
4103 * specified pmap's collection of idle page table pages, and returns it.
4104 * Otherwise, returns NULL if there is no page table page corresponding to the
4105 * specified virtual address.
4106 */
4107 static __inline vm_page_t
pmap_remove_pt_page(pmap_t pmap,vm_offset_t va)4108 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4109 {
4110
4111 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4112 return (vm_radix_remove(&pmap->pm_root, pmap_pde_pindex(va)));
4113 }
4114
4115 /*
4116 * Decrements a page table page's reference count, which is used to record the
4117 * number of valid page table entries within the page. If the reference count
4118 * drops to zero, then the page table page is unmapped. Returns true if the
4119 * page table page was unmapped and false otherwise.
4120 */
4121 static inline bool
pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)4122 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4123 {
4124
4125 --m->ref_count;
4126 if (m->ref_count == 0) {
4127 _pmap_unwire_ptp(pmap, va, m, free);
4128 return (true);
4129 } else
4130 return (false);
4131 }
4132
4133 static void
_pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)4134 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4135 {
4136 pml5_entry_t *pml5;
4137 pml4_entry_t *pml4;
4138 pdp_entry_t *pdp;
4139 pd_entry_t *pd;
4140 vm_page_t pdpg, pdppg, pml4pg;
4141
4142 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4143
4144 /*
4145 * unmap the page table page
4146 */
4147 if (m->pindex >= NUPDE + NUPDPE + NUPML4E) {
4148 /* PML4 page */
4149 MPASS(pmap_is_la57(pmap));
4150 pml5 = pmap_pml5e(pmap, va);
4151 *pml5 = 0;
4152 if (pmap->pm_pmltopu != NULL && va <= VM_MAXUSER_ADDRESS) {
4153 pml5 = pmap_pml5e_u(pmap, va);
4154 *pml5 = 0;
4155 }
4156 } else if (m->pindex >= NUPDE + NUPDPE) {
4157 /* PDP page */
4158 pml4 = pmap_pml4e(pmap, va);
4159 *pml4 = 0;
4160 if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4161 va <= VM_MAXUSER_ADDRESS) {
4162 pml4 = pmap_pml4e_u(pmap, va);
4163 *pml4 = 0;
4164 }
4165 } else if (m->pindex >= NUPDE) {
4166 /* PD page */
4167 pdp = pmap_pdpe(pmap, va);
4168 *pdp = 0;
4169 } else {
4170 /* PTE page */
4171 pd = pmap_pde(pmap, va);
4172 *pd = 0;
4173 }
4174 if (m->pindex < NUPDE) {
4175 /* We just released a PT, unhold the matching PD */
4176 pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
4177 pmap_unwire_ptp(pmap, va, pdpg, free);
4178 } else if (m->pindex < NUPDE + NUPDPE) {
4179 /* We just released a PD, unhold the matching PDP */
4180 pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
4181 pmap_unwire_ptp(pmap, va, pdppg, free);
4182 } else if (m->pindex < NUPDE + NUPDPE + NUPML4E && pmap_is_la57(pmap)) {
4183 /* We just released a PDP, unhold the matching PML4 */
4184 pml4pg = PHYS_TO_VM_PAGE(*pmap_pml5e(pmap, va) & PG_FRAME);
4185 pmap_unwire_ptp(pmap, va, pml4pg, free);
4186 }
4187
4188 pmap_pt_page_count_adj(pmap, -1);
4189
4190 /*
4191 * Put page on a list so that it is released after
4192 * *ALL* TLB shootdown is done
4193 */
4194 pmap_add_delayed_free_list(m, free, true);
4195 }
4196
4197 /*
4198 * After removing a page table entry, this routine is used to
4199 * conditionally free the page, and manage the reference count.
4200 */
4201 static int
pmap_unuse_pt(pmap_t pmap,vm_offset_t va,pd_entry_t ptepde,struct spglist * free)4202 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
4203 struct spglist *free)
4204 {
4205 vm_page_t mpte;
4206
4207 if (va >= VM_MAXUSER_ADDRESS)
4208 return (0);
4209 KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4210 mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4211 return (pmap_unwire_ptp(pmap, va, mpte, free));
4212 }
4213
4214 /*
4215 * Release a page table page reference after a failed attempt to create a
4216 * mapping.
4217 */
4218 static void
pmap_abort_ptp(pmap_t pmap,vm_offset_t va,vm_page_t mpte)4219 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
4220 {
4221 struct spglist free;
4222
4223 SLIST_INIT(&free);
4224 if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
4225 /*
4226 * Although "va" was never mapped, paging-structure caches
4227 * could nonetheless have entries that refer to the freed
4228 * page table pages. Invalidate those entries.
4229 */
4230 pmap_invalidate_page(pmap, va);
4231 vm_page_free_pages_toq(&free, true);
4232 }
4233 }
4234
4235 static void
pmap_pinit_pcids(pmap_t pmap,uint32_t pcid,int gen)4236 pmap_pinit_pcids(pmap_t pmap, uint32_t pcid, int gen)
4237 {
4238 struct pmap_pcid *pcidp;
4239 int i;
4240
4241 CPU_FOREACH(i) {
4242 pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
4243 pcidp->pm_pcid = pcid;
4244 pcidp->pm_gen = gen;
4245 }
4246 }
4247
4248 void
pmap_pinit0(pmap_t pmap)4249 pmap_pinit0(pmap_t pmap)
4250 {
4251 struct proc *p;
4252 struct thread *td;
4253
4254 PMAP_LOCK_INIT(pmap);
4255 pmap->pm_pmltop = kernel_pmap->pm_pmltop;
4256 pmap->pm_pmltopu = NULL;
4257 pmap->pm_cr3 = kernel_pmap->pm_cr3;
4258 /* hack to keep pmap_pti_pcid_invalidate() alive */
4259 pmap->pm_ucr3 = PMAP_NO_CR3;
4260 vm_radix_init(&pmap->pm_root);
4261 CPU_ZERO(&pmap->pm_active);
4262 TAILQ_INIT(&pmap->pm_pvchunk);
4263 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4264 pmap->pm_flags = pmap_flags;
4265 pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8, M_WAITOK);
4266 pmap_pinit_pcids(pmap, PMAP_PCID_KERN + 1, 1);
4267 pmap_activate_boot(pmap);
4268 td = curthread;
4269 if (pti) {
4270 p = td->td_proc;
4271 PROC_LOCK(p);
4272 p->p_md.md_flags |= P_MD_KPTI;
4273 PROC_UNLOCK(p);
4274 }
4275 pmap_thread_init_invl_gen(td);
4276
4277 if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4278 pmap_pkru_ranges_zone = uma_zcreate("pkru ranges",
4279 sizeof(struct pmap_pkru_range), NULL, NULL, NULL, NULL,
4280 UMA_ALIGN_PTR, 0);
4281 }
4282 }
4283
4284 void
pmap_pinit_pml4(vm_page_t pml4pg)4285 pmap_pinit_pml4(vm_page_t pml4pg)
4286 {
4287 pml4_entry_t *pm_pml4;
4288 int i;
4289
4290 pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
4291
4292 /* Wire in kernel global address entries. */
4293 for (i = 0; i < NKPML4E; i++) {
4294 pm_pml4[KPML4BASE + i] = (KPDPphys + ptoa(i)) | X86_PG_RW |
4295 X86_PG_V;
4296 }
4297 #ifdef KASAN
4298 for (i = 0; i < NKASANPML4E; i++) {
4299 pm_pml4[KASANPML4I + i] = (KASANPDPphys + ptoa(i)) | X86_PG_RW |
4300 X86_PG_V | pg_nx;
4301 }
4302 #endif
4303 #ifdef KMSAN
4304 for (i = 0; i < NKMSANSHADPML4E; i++) {
4305 pm_pml4[KMSANSHADPML4I + i] = (KMSANSHADPDPphys + ptoa(i)) |
4306 X86_PG_RW | X86_PG_V | pg_nx;
4307 }
4308 for (i = 0; i < NKMSANORIGPML4E; i++) {
4309 pm_pml4[KMSANORIGPML4I + i] = (KMSANORIGPDPphys + ptoa(i)) |
4310 X86_PG_RW | X86_PG_V | pg_nx;
4311 }
4312 #endif
4313 for (i = 0; i < ndmpdpphys; i++) {
4314 pm_pml4[DMPML4I + i] = (DMPDPphys + ptoa(i)) | X86_PG_RW |
4315 X86_PG_V;
4316 }
4317
4318 /* install self-referential address mapping entry(s) */
4319 pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | X86_PG_V | X86_PG_RW |
4320 X86_PG_A | X86_PG_M;
4321
4322 /* install large map entries if configured */
4323 for (i = 0; i < lm_ents; i++)
4324 pm_pml4[LMSPML4I + i] = kernel_pmap->pm_pmltop[LMSPML4I + i];
4325 }
4326
4327 void
pmap_pinit_pml5(vm_page_t pml5pg)4328 pmap_pinit_pml5(vm_page_t pml5pg)
4329 {
4330 pml5_entry_t *pm_pml5;
4331
4332 pm_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pg));
4333
4334 /*
4335 * Add pml5 entry at top of KVA pointing to existing pml4 table,
4336 * entering all existing kernel mappings into level 5 table.
4337 */
4338 pm_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
4339 X86_PG_RW | X86_PG_A | X86_PG_M;
4340
4341 /*
4342 * Install self-referential address mapping entry.
4343 */
4344 pm_pml5[PML5PML5I] = VM_PAGE_TO_PHYS(pml5pg) |
4345 X86_PG_RW | X86_PG_V | X86_PG_M | X86_PG_A;
4346 }
4347
4348 static void
pmap_pinit_pml4_pti(vm_page_t pml4pgu)4349 pmap_pinit_pml4_pti(vm_page_t pml4pgu)
4350 {
4351 pml4_entry_t *pm_pml4u;
4352 int i;
4353
4354 pm_pml4u = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pgu));
4355 for (i = 0; i < NPML4EPG; i++)
4356 pm_pml4u[i] = pti_pml4[i];
4357 }
4358
4359 static void
pmap_pinit_pml5_pti(vm_page_t pml5pgu)4360 pmap_pinit_pml5_pti(vm_page_t pml5pgu)
4361 {
4362 pml5_entry_t *pm_pml5u;
4363
4364 pm_pml5u = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pgu));
4365 pagezero(pm_pml5u);
4366
4367 /*
4368 * Add pml5 entry at top of KVA pointing to existing pml4 pti
4369 * table, entering all kernel mappings needed for usermode
4370 * into level 5 table.
4371 */
4372 pm_pml5u[pmap_pml5e_index(UPT_MAX_ADDRESS)] =
4373 pmap_kextract((vm_offset_t)pti_pml4) |
4374 X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
4375 }
4376
4377 /* Allocate a page table page and do related bookkeeping */
4378 static vm_page_t
pmap_alloc_pt_page(pmap_t pmap,vm_pindex_t pindex,int flags)4379 pmap_alloc_pt_page(pmap_t pmap, vm_pindex_t pindex, int flags)
4380 {
4381 vm_page_t m;
4382
4383 m = vm_page_alloc_noobj(flags);
4384 if (__predict_false(m == NULL))
4385 return (NULL);
4386 m->pindex = pindex;
4387 pmap_pt_page_count_adj(pmap, 1);
4388 return (m);
4389 }
4390
4391 static void
pmap_free_pt_page(pmap_t pmap,vm_page_t m,bool zerofilled)4392 pmap_free_pt_page(pmap_t pmap, vm_page_t m, bool zerofilled)
4393 {
4394 /*
4395 * This function assumes the page will need to be unwired,
4396 * even though the counterpart allocation in pmap_alloc_pt_page()
4397 * doesn't enforce VM_ALLOC_WIRED. However, all current uses
4398 * of pmap_free_pt_page() require unwiring. The case in which
4399 * a PT page doesn't require unwiring because its ref_count has
4400 * naturally reached 0 is handled through _pmap_unwire_ptp().
4401 */
4402 vm_page_unwire_noq(m);
4403 if (zerofilled)
4404 vm_page_free_zero(m);
4405 else
4406 vm_page_free(m);
4407
4408 pmap_pt_page_count_adj(pmap, -1);
4409 }
4410
4411 _Static_assert(sizeof(struct pmap_pcid) == 8, "Fix pcpu zone for pm_pcidp");
4412
4413 /*
4414 * Initialize a preallocated and zeroed pmap structure,
4415 * such as one in a vmspace structure.
4416 */
4417 int
pmap_pinit_type(pmap_t pmap,enum pmap_type pm_type,int flags)4418 pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags)
4419 {
4420 vm_page_t pmltop_pg, pmltop_pgu;
4421 vm_paddr_t pmltop_phys;
4422
4423 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4424
4425 /*
4426 * Allocate the page directory page. Pass NULL instead of a
4427 * pointer to the pmap here to avoid calling
4428 * pmap_resident_count_adj() through pmap_pt_page_count_adj(),
4429 * since that requires pmap lock. Instead do the accounting
4430 * manually.
4431 *
4432 * Note that final call to pmap_remove() optimization that
4433 * checks for zero resident_count is basically disabled by
4434 * accounting for top-level page. But the optimization was
4435 * not effective since we started using non-managed mapping of
4436 * the shared page.
4437 */
4438 pmltop_pg = pmap_alloc_pt_page(NULL, 0, VM_ALLOC_WIRED | VM_ALLOC_ZERO |
4439 VM_ALLOC_WAITOK);
4440 pmap_pt_page_count_pinit(pmap, 1);
4441
4442 pmltop_phys = VM_PAGE_TO_PHYS(pmltop_pg);
4443 pmap->pm_pmltop = (pml5_entry_t *)PHYS_TO_DMAP(pmltop_phys);
4444
4445 if (pmap_pcid_enabled) {
4446 if (pmap->pm_pcidp == NULL)
4447 pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8,
4448 M_WAITOK);
4449 pmap_pinit_pcids(pmap, PMAP_PCID_NONE, 0);
4450 }
4451 pmap->pm_cr3 = PMAP_NO_CR3; /* initialize to an invalid value */
4452 pmap->pm_ucr3 = PMAP_NO_CR3;
4453 pmap->pm_pmltopu = NULL;
4454
4455 pmap->pm_type = pm_type;
4456
4457 /*
4458 * Do not install the host kernel mappings in the nested page
4459 * tables. These mappings are meaningless in the guest physical
4460 * address space.
4461 * Install minimal kernel mappings in PTI case.
4462 */
4463 switch (pm_type) {
4464 case PT_X86:
4465 pmap->pm_cr3 = pmltop_phys;
4466 if (pmap_is_la57(pmap))
4467 pmap_pinit_pml5(pmltop_pg);
4468 else
4469 pmap_pinit_pml4(pmltop_pg);
4470 if ((curproc->p_md.md_flags & P_MD_KPTI) != 0) {
4471 /*
4472 * As with pmltop_pg, pass NULL instead of a
4473 * pointer to the pmap to ensure that the PTI
4474 * page counted explicitly.
4475 */
4476 pmltop_pgu = pmap_alloc_pt_page(NULL, 0,
4477 VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
4478 pmap_pt_page_count_pinit(pmap, 1);
4479 pmap->pm_pmltopu = (pml4_entry_t *)PHYS_TO_DMAP(
4480 VM_PAGE_TO_PHYS(pmltop_pgu));
4481 if (pmap_is_la57(pmap))
4482 pmap_pinit_pml5_pti(pmltop_pgu);
4483 else
4484 pmap_pinit_pml4_pti(pmltop_pgu);
4485 pmap->pm_ucr3 = VM_PAGE_TO_PHYS(pmltop_pgu);
4486 }
4487 if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4488 rangeset_init(&pmap->pm_pkru, pkru_dup_range,
4489 pkru_free_range, pmap, M_NOWAIT);
4490 }
4491 break;
4492 case PT_EPT:
4493 case PT_RVI:
4494 pmap->pm_eptsmr = smr_create("pmap", 0, 0);
4495 break;
4496 }
4497
4498 vm_radix_init(&pmap->pm_root);
4499 CPU_ZERO(&pmap->pm_active);
4500 TAILQ_INIT(&pmap->pm_pvchunk);
4501 pmap->pm_flags = flags;
4502 pmap->pm_eptgen = 0;
4503
4504 return (1);
4505 }
4506
4507 int
pmap_pinit(pmap_t pmap)4508 pmap_pinit(pmap_t pmap)
4509 {
4510
4511 return (pmap_pinit_type(pmap, PT_X86, pmap_flags));
4512 }
4513
4514 static void
pmap_allocpte_free_unref(pmap_t pmap,vm_offset_t va,pt_entry_t * pte)4515 pmap_allocpte_free_unref(pmap_t pmap, vm_offset_t va, pt_entry_t *pte)
4516 {
4517 vm_page_t mpg;
4518 struct spglist free;
4519
4520 mpg = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
4521 if (mpg->ref_count != 0)
4522 return;
4523 SLIST_INIT(&free);
4524 _pmap_unwire_ptp(pmap, va, mpg, &free);
4525 pmap_invalidate_page(pmap, va);
4526 vm_page_free_pages_toq(&free, true);
4527 }
4528
4529 static pml4_entry_t *
pmap_allocpte_getpml4(pmap_t pmap,struct rwlock ** lockp,vm_offset_t va,bool addref)4530 pmap_allocpte_getpml4(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4531 bool addref)
4532 {
4533 vm_pindex_t pml5index;
4534 pml5_entry_t *pml5;
4535 pml4_entry_t *pml4;
4536 vm_page_t pml4pg;
4537 pt_entry_t PG_V;
4538 bool allocated;
4539
4540 if (!pmap_is_la57(pmap))
4541 return (&pmap->pm_pmltop[pmap_pml4e_index(va)]);
4542
4543 PG_V = pmap_valid_bit(pmap);
4544 pml5index = pmap_pml5e_index(va);
4545 pml5 = &pmap->pm_pmltop[pml5index];
4546 if ((*pml5 & PG_V) == 0) {
4547 if (pmap_allocpte_nosleep(pmap, pmap_pml5e_pindex(va), lockp,
4548 va) == NULL)
4549 return (NULL);
4550 allocated = true;
4551 } else {
4552 allocated = false;
4553 }
4554 pml4 = (pml4_entry_t *)PHYS_TO_DMAP(*pml5 & PG_FRAME);
4555 pml4 = &pml4[pmap_pml4e_index(va)];
4556 if ((*pml4 & PG_V) == 0) {
4557 pml4pg = PHYS_TO_VM_PAGE(*pml5 & PG_FRAME);
4558 if (allocated && !addref)
4559 pml4pg->ref_count--;
4560 else if (!allocated && addref)
4561 pml4pg->ref_count++;
4562 }
4563 return (pml4);
4564 }
4565
4566 static pdp_entry_t *
pmap_allocpte_getpdp(pmap_t pmap,struct rwlock ** lockp,vm_offset_t va,bool addref)4567 pmap_allocpte_getpdp(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4568 bool addref)
4569 {
4570 vm_page_t pdppg;
4571 pml4_entry_t *pml4;
4572 pdp_entry_t *pdp;
4573 pt_entry_t PG_V;
4574 bool allocated;
4575
4576 PG_V = pmap_valid_bit(pmap);
4577
4578 pml4 = pmap_allocpte_getpml4(pmap, lockp, va, false);
4579 if (pml4 == NULL)
4580 return (NULL);
4581
4582 if ((*pml4 & PG_V) == 0) {
4583 /* Have to allocate a new pdp, recurse */
4584 if (pmap_allocpte_nosleep(pmap, pmap_pml4e_pindex(va), lockp,
4585 va) == NULL) {
4586 if (pmap_is_la57(pmap))
4587 pmap_allocpte_free_unref(pmap, va,
4588 pmap_pml5e(pmap, va));
4589 return (NULL);
4590 }
4591 allocated = true;
4592 } else {
4593 allocated = false;
4594 }
4595 pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
4596 pdp = &pdp[pmap_pdpe_index(va)];
4597 if ((*pdp & PG_V) == 0) {
4598 pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
4599 if (allocated && !addref)
4600 pdppg->ref_count--;
4601 else if (!allocated && addref)
4602 pdppg->ref_count++;
4603 }
4604 return (pdp);
4605 }
4606
4607 /*
4608 * The ptepindexes, i.e. page indices, of the page table pages encountered
4609 * while translating virtual address va are defined as follows:
4610 * - for the page table page (last level),
4611 * ptepindex = pmap_pde_pindex(va) = va >> PDRSHIFT,
4612 * in other words, it is just the index of the PDE that maps the page
4613 * table page.
4614 * - for the page directory page,
4615 * ptepindex = NUPDE (number of userland PD entries) +
4616 * (pmap_pde_index(va) >> NPDEPGSHIFT)
4617 * i.e. index of PDPE is put after the last index of PDE,
4618 * - for the page directory pointer page,
4619 * ptepindex = NUPDE + NUPDPE + (pmap_pde_index(va) >> (NPDEPGSHIFT +
4620 * NPML4EPGSHIFT),
4621 * i.e. index of pml4e is put after the last index of PDPE,
4622 * - for the PML4 page (if LA57 mode is enabled),
4623 * ptepindex = NUPDE + NUPDPE + NUPML4E + (pmap_pde_index(va) >>
4624 * (NPDEPGSHIFT + NPML4EPGSHIFT + NPML5EPGSHIFT),
4625 * i.e. index of pml5e is put after the last index of PML4E.
4626 *
4627 * Define an order on the paging entries, where all entries of the
4628 * same height are put together, then heights are put from deepest to
4629 * root. Then ptexpindex is the sequential number of the
4630 * corresponding paging entry in this order.
4631 *
4632 * The values of NUPDE, NUPDPE, and NUPML4E are determined by the size of
4633 * LA57 paging structures even in LA48 paging mode. Moreover, the
4634 * ptepindexes are calculated as if the paging structures were 5-level
4635 * regardless of the actual mode of operation.
4636 *
4637 * The root page at PML4/PML5 does not participate in this indexing scheme,
4638 * since it is statically allocated by pmap_pinit() and not by pmap_allocpte().
4639 */
4640 static vm_page_t
pmap_allocpte_nosleep(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp,vm_offset_t va)4641 pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4642 vm_offset_t va)
4643 {
4644 vm_pindex_t pml5index, pml4index;
4645 pml5_entry_t *pml5, *pml5u;
4646 pml4_entry_t *pml4, *pml4u;
4647 pdp_entry_t *pdp;
4648 pd_entry_t *pd;
4649 vm_page_t m, pdpg;
4650 pt_entry_t PG_A, PG_M, PG_RW, PG_V;
4651
4652 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4653
4654 PG_A = pmap_accessed_bit(pmap);
4655 PG_M = pmap_modified_bit(pmap);
4656 PG_V = pmap_valid_bit(pmap);
4657 PG_RW = pmap_rw_bit(pmap);
4658
4659 /*
4660 * Allocate a page table page.
4661 */
4662 m = pmap_alloc_pt_page(pmap, ptepindex,
4663 VM_ALLOC_WIRED | VM_ALLOC_ZERO);
4664 if (m == NULL)
4665 return (NULL);
4666
4667 /*
4668 * Map the pagetable page into the process address space, if
4669 * it isn't already there.
4670 */
4671 if (ptepindex >= NUPDE + NUPDPE + NUPML4E) {
4672 MPASS(pmap_is_la57(pmap));
4673
4674 pml5index = pmap_pml5e_index(va);
4675 pml5 = &pmap->pm_pmltop[pml5index];
4676 KASSERT((*pml5 & PG_V) == 0,
4677 ("pmap %p va %#lx pml5 %#lx", pmap, va, *pml5));
4678 *pml5 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4679
4680 if (pmap->pm_pmltopu != NULL && pml5index < NUPML5E) {
4681 MPASS(pmap->pm_ucr3 != PMAP_NO_CR3);
4682 *pml5 |= pg_nx;
4683
4684 pml5u = &pmap->pm_pmltopu[pml5index];
4685 *pml5u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4686 PG_A | PG_M;
4687 }
4688 } else if (ptepindex >= NUPDE + NUPDPE) {
4689 pml4index = pmap_pml4e_index(va);
4690 /* Wire up a new PDPE page */
4691 pml4 = pmap_allocpte_getpml4(pmap, lockp, va, true);
4692 if (pml4 == NULL) {
4693 pmap_free_pt_page(pmap, m, true);
4694 return (NULL);
4695 }
4696 KASSERT((*pml4 & PG_V) == 0,
4697 ("pmap %p va %#lx pml4 %#lx", pmap, va, *pml4));
4698 *pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4699
4700 if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4701 pml4index < NUPML4E) {
4702 MPASS(pmap->pm_ucr3 != PMAP_NO_CR3);
4703
4704 /*
4705 * PTI: Make all user-space mappings in the
4706 * kernel-mode page table no-execute so that
4707 * we detect any programming errors that leave
4708 * the kernel-mode page table active on return
4709 * to user space.
4710 */
4711 *pml4 |= pg_nx;
4712
4713 pml4u = &pmap->pm_pmltopu[pml4index];
4714 *pml4u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4715 PG_A | PG_M;
4716 }
4717 } else if (ptepindex >= NUPDE) {
4718 /* Wire up a new PDE page */
4719 pdp = pmap_allocpte_getpdp(pmap, lockp, va, true);
4720 if (pdp == NULL) {
4721 pmap_free_pt_page(pmap, m, true);
4722 return (NULL);
4723 }
4724 KASSERT((*pdp & PG_V) == 0,
4725 ("pmap %p va %#lx pdp %#lx", pmap, va, *pdp));
4726 *pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4727 } else {
4728 /* Wire up a new PTE page */
4729 pdp = pmap_allocpte_getpdp(pmap, lockp, va, false);
4730 if (pdp == NULL) {
4731 pmap_free_pt_page(pmap, m, true);
4732 return (NULL);
4733 }
4734 if ((*pdp & PG_V) == 0) {
4735 /* Have to allocate a new pd, recurse */
4736 if (pmap_allocpte_nosleep(pmap, pmap_pdpe_pindex(va),
4737 lockp, va) == NULL) {
4738 pmap_allocpte_free_unref(pmap, va,
4739 pmap_pml4e(pmap, va));
4740 pmap_free_pt_page(pmap, m, true);
4741 return (NULL);
4742 }
4743 } else {
4744 /* Add reference to the pd page */
4745 pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
4746 pdpg->ref_count++;
4747 }
4748 pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
4749
4750 /* Now we know where the page directory page is */
4751 pd = &pd[pmap_pde_index(va)];
4752 KASSERT((*pd & PG_V) == 0,
4753 ("pmap %p va %#lx pd %#lx", pmap, va, *pd));
4754 *pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4755 }
4756
4757 return (m);
4758 }
4759
4760 /*
4761 * This routine is called if the desired page table page does not exist.
4762 *
4763 * If page table page allocation fails, this routine may sleep before
4764 * returning NULL. It sleeps only if a lock pointer was given. Sleep
4765 * occurs right before returning to the caller. This way, we never
4766 * drop pmap lock to sleep while a page table page has ref_count == 0,
4767 * which prevents the page from being freed under us.
4768 */
4769 static vm_page_t
pmap_allocpte_alloc(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp,vm_offset_t va)4770 pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4771 vm_offset_t va)
4772 {
4773 vm_page_t m;
4774
4775 m = pmap_allocpte_nosleep(pmap, ptepindex, lockp, va);
4776 if (m == NULL && lockp != NULL) {
4777 RELEASE_PV_LIST_LOCK(lockp);
4778 PMAP_UNLOCK(pmap);
4779 PMAP_ASSERT_NOT_IN_DI();
4780 vm_wait(NULL);
4781 PMAP_LOCK(pmap);
4782 }
4783 return (m);
4784 }
4785
4786 static pd_entry_t *
pmap_alloc_pde(pmap_t pmap,vm_offset_t va,vm_page_t * pdpgp,struct rwlock ** lockp)4787 pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
4788 struct rwlock **lockp)
4789 {
4790 pdp_entry_t *pdpe, PG_V;
4791 pd_entry_t *pde;
4792 vm_page_t pdpg;
4793 vm_pindex_t pdpindex;
4794
4795 PG_V = pmap_valid_bit(pmap);
4796
4797 retry:
4798 pdpe = pmap_pdpe(pmap, va);
4799 if (pdpe != NULL && (*pdpe & PG_V) != 0) {
4800 pde = pmap_pdpe_to_pde(pdpe, va);
4801 if (va < VM_MAXUSER_ADDRESS) {
4802 /* Add a reference to the pd page. */
4803 pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
4804 pdpg->ref_count++;
4805 } else
4806 pdpg = NULL;
4807 } else if (va < VM_MAXUSER_ADDRESS) {
4808 /* Allocate a pd page. */
4809 pdpindex = pmap_pde_pindex(va) >> NPDPEPGSHIFT;
4810 pdpg = pmap_allocpte_alloc(pmap, NUPDE + pdpindex, lockp, va);
4811 if (pdpg == NULL) {
4812 if (lockp != NULL)
4813 goto retry;
4814 else
4815 return (NULL);
4816 }
4817 pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4818 pde = &pde[pmap_pde_index(va)];
4819 } else
4820 panic("pmap_alloc_pde: missing page table page for va %#lx",
4821 va);
4822 *pdpgp = pdpg;
4823 return (pde);
4824 }
4825
4826 static vm_page_t
pmap_allocpte(pmap_t pmap,vm_offset_t va,struct rwlock ** lockp)4827 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4828 {
4829 vm_pindex_t ptepindex;
4830 pd_entry_t *pd, PG_V;
4831 vm_page_t m;
4832
4833 PG_V = pmap_valid_bit(pmap);
4834
4835 /*
4836 * Calculate pagetable page index
4837 */
4838 ptepindex = pmap_pde_pindex(va);
4839 retry:
4840 /*
4841 * Get the page directory entry
4842 */
4843 pd = pmap_pde(pmap, va);
4844
4845 /*
4846 * This supports switching from a 2MB page to a
4847 * normal 4K page.
4848 */
4849 if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
4850 if (!pmap_demote_pde_locked(pmap, pd, va, lockp)) {
4851 /*
4852 * Invalidation of the 2MB page mapping may have caused
4853 * the deallocation of the underlying PD page.
4854 */
4855 pd = NULL;
4856 }
4857 }
4858
4859 /*
4860 * If the page table page is mapped, we just increment the
4861 * hold count, and activate it.
4862 */
4863 if (pd != NULL && (*pd & PG_V) != 0) {
4864 m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
4865 m->ref_count++;
4866 } else {
4867 /*
4868 * Here if the pte page isn't mapped, or if it has been
4869 * deallocated.
4870 */
4871 m = pmap_allocpte_alloc(pmap, ptepindex, lockp, va);
4872 if (m == NULL && lockp != NULL)
4873 goto retry;
4874 }
4875 return (m);
4876 }
4877
4878 /***************************************************
4879 * Pmap allocation/deallocation routines.
4880 ***************************************************/
4881
4882 /*
4883 * Release any resources held by the given physical map.
4884 * Called when a pmap initialized by pmap_pinit is being released.
4885 * Should only be called if the map contains no valid mappings.
4886 */
4887 void
pmap_release(pmap_t pmap)4888 pmap_release(pmap_t pmap)
4889 {
4890 vm_page_t m;
4891 int i;
4892
4893 KASSERT(vm_radix_is_empty(&pmap->pm_root),
4894 ("pmap_release: pmap %p has reserved page table page(s)",
4895 pmap));
4896 KASSERT(CPU_EMPTY(&pmap->pm_active),
4897 ("releasing active pmap %p", pmap));
4898
4899 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_pmltop));
4900
4901 if (pmap_is_la57(pmap)) {
4902 pmap->pm_pmltop[pmap_pml5e_index(UPT_MAX_ADDRESS)] = 0;
4903 pmap->pm_pmltop[PML5PML5I] = 0;
4904 } else {
4905 for (i = 0; i < NKPML4E; i++) /* KVA */
4906 pmap->pm_pmltop[KPML4BASE + i] = 0;
4907 #ifdef KASAN
4908 for (i = 0; i < NKASANPML4E; i++) /* KASAN shadow map */
4909 pmap->pm_pmltop[KASANPML4I + i] = 0;
4910 #endif
4911 #ifdef KMSAN
4912 for (i = 0; i < NKMSANSHADPML4E; i++) /* KMSAN shadow map */
4913 pmap->pm_pmltop[KMSANSHADPML4I + i] = 0;
4914 for (i = 0; i < NKMSANORIGPML4E; i++) /* KMSAN shadow map */
4915 pmap->pm_pmltop[KMSANORIGPML4I + i] = 0;
4916 #endif
4917 for (i = 0; i < ndmpdpphys; i++)/* Direct Map */
4918 pmap->pm_pmltop[DMPML4I + i] = 0;
4919 pmap->pm_pmltop[PML4PML4I] = 0; /* Recursive Mapping */
4920 for (i = 0; i < lm_ents; i++) /* Large Map */
4921 pmap->pm_pmltop[LMSPML4I + i] = 0;
4922 }
4923
4924 pmap_free_pt_page(NULL, m, true);
4925 pmap_pt_page_count_pinit(pmap, -1);
4926
4927 if (pmap->pm_pmltopu != NULL) {
4928 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->
4929 pm_pmltopu));
4930 pmap_free_pt_page(NULL, m, false);
4931 pmap_pt_page_count_pinit(pmap, -1);
4932 }
4933 if (pmap->pm_type == PT_X86 &&
4934 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
4935 rangeset_fini(&pmap->pm_pkru);
4936
4937 KASSERT(pmap->pm_stats.resident_count == 0,
4938 ("pmap_release: pmap %p resident count %ld != 0",
4939 pmap, pmap->pm_stats.resident_count));
4940 }
4941
4942 static int
kvm_size(SYSCTL_HANDLER_ARGS)4943 kvm_size(SYSCTL_HANDLER_ARGS)
4944 {
4945 unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
4946
4947 return sysctl_handle_long(oidp, &ksize, 0, req);
4948 }
4949 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4950 0, 0, kvm_size, "LU",
4951 "Size of KVM");
4952
4953 static int
kvm_free(SYSCTL_HANDLER_ARGS)4954 kvm_free(SYSCTL_HANDLER_ARGS)
4955 {
4956 unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
4957
4958 return sysctl_handle_long(oidp, &kfree, 0, req);
4959 }
4960 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4961 0, 0, kvm_free, "LU",
4962 "Amount of KVM free");
4963
4964 #ifdef KMSAN
4965 static void
pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa,vm_size_t size)4966 pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa, vm_size_t size)
4967 {
4968 pdp_entry_t *pdpe;
4969 pd_entry_t *pde;
4970 pt_entry_t *pte;
4971 vm_paddr_t dummypa, dummypd, dummypt;
4972 int i, npde, npdpg;
4973
4974 npdpg = howmany(size, NBPDP);
4975 npde = size / NBPDR;
4976
4977 dummypa = vm_phys_early_alloc(-1, PAGE_SIZE);
4978 pagezero((void *)PHYS_TO_DMAP(dummypa));
4979
4980 dummypt = vm_phys_early_alloc(-1, PAGE_SIZE);
4981 pagezero((void *)PHYS_TO_DMAP(dummypt));
4982 dummypd = vm_phys_early_alloc(-1, PAGE_SIZE * npdpg);
4983 for (i = 0; i < npdpg; i++)
4984 pagezero((void *)PHYS_TO_DMAP(dummypd + ptoa(i)));
4985
4986 pte = (pt_entry_t *)PHYS_TO_DMAP(dummypt);
4987 for (i = 0; i < NPTEPG; i++)
4988 pte[i] = (pt_entry_t)(dummypa | X86_PG_V | X86_PG_RW |
4989 X86_PG_A | X86_PG_M | pg_nx);
4990
4991 pde = (pd_entry_t *)PHYS_TO_DMAP(dummypd);
4992 for (i = 0; i < npde; i++)
4993 pde[i] = (pd_entry_t)(dummypt | X86_PG_V | X86_PG_RW | pg_nx);
4994
4995 pdpe = (pdp_entry_t *)PHYS_TO_DMAP(pdppa);
4996 for (i = 0; i < npdpg; i++)
4997 pdpe[i] = (pdp_entry_t)(dummypd + ptoa(i) | X86_PG_V |
4998 X86_PG_RW | pg_nx);
4999 }
5000
5001 static void
pmap_kmsan_page_array_startup(vm_offset_t start,vm_offset_t end)5002 pmap_kmsan_page_array_startup(vm_offset_t start, vm_offset_t end)
5003 {
5004 vm_size_t size;
5005
5006 KASSERT(start % NBPDP == 0, ("unaligned page array start address"));
5007
5008 /*
5009 * The end of the page array's KVA region is 2MB aligned, see
5010 * kmem_init().
5011 */
5012 size = round_2mpage(end) - start;
5013 pmap_kmsan_shadow_map_page_array(KMSANSHADPDPphys, size);
5014 pmap_kmsan_shadow_map_page_array(KMSANORIGPDPphys, size);
5015 }
5016 #endif
5017
5018 /*
5019 * Allocate physical memory for the vm_page array and map it into KVA,
5020 * attempting to back the vm_pages with domain-local memory.
5021 */
5022 void
pmap_page_array_startup(long pages)5023 pmap_page_array_startup(long pages)
5024 {
5025 pdp_entry_t *pdpe;
5026 pd_entry_t *pde, newpdir;
5027 vm_offset_t va, start, end;
5028 vm_paddr_t pa;
5029 long pfn;
5030 int domain, i;
5031
5032 vm_page_array_size = pages;
5033
5034 start = VM_MIN_KERNEL_ADDRESS;
5035 end = start + pages * sizeof(struct vm_page);
5036 for (va = start; va < end; va += NBPDR) {
5037 pfn = first_page + (va - start) / sizeof(struct vm_page);
5038 domain = vm_phys_domain(ptoa(pfn));
5039 pdpe = pmap_pdpe(kernel_pmap, va);
5040 if ((*pdpe & X86_PG_V) == 0) {
5041 pa = vm_phys_early_alloc(domain, PAGE_SIZE);
5042 dump_add_page(pa);
5043 pagezero((void *)PHYS_TO_DMAP(pa));
5044 *pdpe = (pdp_entry_t)(pa | X86_PG_V | X86_PG_RW |
5045 X86_PG_A | X86_PG_M);
5046 }
5047 pde = pmap_pdpe_to_pde(pdpe, va);
5048 if ((*pde & X86_PG_V) != 0)
5049 panic("Unexpected pde");
5050 pa = vm_phys_early_alloc(domain, NBPDR);
5051 for (i = 0; i < NPDEPG; i++)
5052 dump_add_page(pa + i * PAGE_SIZE);
5053 newpdir = (pd_entry_t)(pa | X86_PG_V | X86_PG_RW | X86_PG_A |
5054 X86_PG_M | PG_PS | pg_g | pg_nx);
5055 pde_store(pde, newpdir);
5056 }
5057 vm_page_array = (vm_page_t)start;
5058
5059 #ifdef KMSAN
5060 pmap_kmsan_page_array_startup(start, end);
5061 #endif
5062 }
5063
5064 /*
5065 * grow the number of kernel page table entries, if needed
5066 */
5067 static int
pmap_growkernel_nopanic(vm_offset_t addr)5068 pmap_growkernel_nopanic(vm_offset_t addr)
5069 {
5070 vm_paddr_t paddr;
5071 vm_page_t nkpg;
5072 pd_entry_t *pde, newpdir;
5073 pdp_entry_t *pdpe;
5074 vm_offset_t end;
5075 int rv;
5076
5077 TSENTER();
5078 mtx_assert(&kernel_map->system_mtx, MA_OWNED);
5079 rv = KERN_SUCCESS;
5080
5081 /*
5082 * The kernel map covers two distinct regions of KVA: that used
5083 * for dynamic kernel memory allocations, and the uppermost 2GB
5084 * of the virtual address space. The latter is used to map the
5085 * kernel and loadable kernel modules. This scheme enables the
5086 * use of a special code generation model for kernel code which
5087 * takes advantage of compact addressing modes in machine code.
5088 *
5089 * Both regions grow upwards; to avoid wasting memory, the gap
5090 * in between is unmapped. If "addr" is above "KERNBASE", the
5091 * kernel's region is grown, otherwise the kmem region is grown.
5092 *
5093 * The correctness of this action is based on the following
5094 * argument: vm_map_insert() allocates contiguous ranges of the
5095 * kernel virtual address space. It calls this function if a range
5096 * ends after "kernel_vm_end". If the kernel is mapped between
5097 * "kernel_vm_end" and "addr", then the range cannot begin at
5098 * "kernel_vm_end". In fact, its beginning address cannot be less
5099 * than the kernel. Thus, there is no immediate need to allocate
5100 * any new kernel page table pages between "kernel_vm_end" and
5101 * "KERNBASE".
5102 */
5103 if (KERNBASE < addr) {
5104 end = KERNBASE + nkpt * NBPDR;
5105 if (end == 0) {
5106 TSEXIT();
5107 return (rv);
5108 }
5109 } else {
5110 end = kernel_vm_end;
5111 }
5112
5113 addr = roundup2(addr, NBPDR);
5114 if (addr - 1 >= vm_map_max(kernel_map))
5115 addr = vm_map_max(kernel_map);
5116 if (addr <= end) {
5117 /*
5118 * The grown region is already mapped, so there is
5119 * nothing to do.
5120 */
5121 TSEXIT();
5122 return (rv);
5123 }
5124
5125 kasan_shadow_map(end, addr - end);
5126 kmsan_shadow_map(end, addr - end);
5127 while (end < addr) {
5128 pdpe = pmap_pdpe(kernel_pmap, end);
5129 if ((*pdpe & X86_PG_V) == 0) {
5130 nkpg = pmap_alloc_pt_page(kernel_pmap,
5131 pmap_pdpe_pindex(end), VM_ALLOC_INTERRUPT |
5132 VM_ALLOC_NOFREE | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
5133 if (nkpg == NULL) {
5134 rv = KERN_RESOURCE_SHORTAGE;
5135 break;
5136 }
5137 paddr = VM_PAGE_TO_PHYS(nkpg);
5138 *pdpe = (pdp_entry_t)(paddr | X86_PG_V | X86_PG_RW |
5139 X86_PG_A | X86_PG_M);
5140 continue; /* try again */
5141 }
5142 pde = pmap_pdpe_to_pde(pdpe, end);
5143 if ((*pde & X86_PG_V) != 0) {
5144 end = (end + NBPDR) & ~PDRMASK;
5145 if (end - 1 >= vm_map_max(kernel_map)) {
5146 end = vm_map_max(kernel_map);
5147 break;
5148 }
5149 continue;
5150 }
5151
5152 nkpg = pmap_alloc_pt_page(kernel_pmap, pmap_pde_pindex(end),
5153 VM_ALLOC_INTERRUPT | VM_ALLOC_NOFREE | VM_ALLOC_WIRED |
5154 VM_ALLOC_ZERO);
5155 if (nkpg == NULL) {
5156 rv = KERN_RESOURCE_SHORTAGE;
5157 break;
5158 }
5159
5160 paddr = VM_PAGE_TO_PHYS(nkpg);
5161 newpdir = paddr | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
5162 pde_store(pde, newpdir);
5163
5164 end = (end + NBPDR) & ~PDRMASK;
5165 if (end - 1 >= vm_map_max(kernel_map)) {
5166 end = vm_map_max(kernel_map);
5167 break;
5168 }
5169 }
5170
5171 if (end <= KERNBASE)
5172 kernel_vm_end = end;
5173 else
5174 nkpt = howmany(end - KERNBASE, NBPDR);
5175 TSEXIT();
5176 return (rv);
5177 }
5178
5179 int
pmap_growkernel(vm_offset_t addr)5180 pmap_growkernel(vm_offset_t addr)
5181 {
5182 int rv;
5183
5184 rv = pmap_growkernel_nopanic(addr);
5185 if (rv != KERN_SUCCESS && pmap_growkernel_panic)
5186 panic("pmap_growkernel: no memory to grow kernel");
5187 return (rv);
5188 }
5189
5190 /***************************************************
5191 * page management routines.
5192 ***************************************************/
5193
5194 static const uint64_t pc_freemask[_NPCM] = {
5195 [0 ... _NPCM - 2] = PC_FREEN,
5196 [_NPCM - 1] = PC_FREEL
5197 };
5198
5199 #ifdef PV_STATS
5200
5201 static COUNTER_U64_DEFINE_EARLY(pc_chunk_count);
5202 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD,
5203 &pc_chunk_count, "Current number of pv entry cnunks");
5204
5205 static COUNTER_U64_DEFINE_EARLY(pc_chunk_allocs);
5206 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD,
5207 &pc_chunk_allocs, "Total number of pv entry chunks allocated");
5208
5209 static COUNTER_U64_DEFINE_EARLY(pc_chunk_frees);
5210 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD,
5211 &pc_chunk_frees, "Total number of pv entry chunks freed");
5212
5213 static COUNTER_U64_DEFINE_EARLY(pc_chunk_tryfail);
5214 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD,
5215 &pc_chunk_tryfail,
5216 "Number of failed attempts to get a pv entry chunk page");
5217
5218 static COUNTER_U64_DEFINE_EARLY(pv_entry_frees);
5219 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD,
5220 &pv_entry_frees, "Total number of pv entries freed");
5221
5222 static COUNTER_U64_DEFINE_EARLY(pv_entry_allocs);
5223 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD,
5224 &pv_entry_allocs, "Total number of pv entries allocated");
5225
5226 static COUNTER_U64_DEFINE_EARLY(pv_entry_count);
5227 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD,
5228 &pv_entry_count, "Current number of pv entries");
5229
5230 static COUNTER_U64_DEFINE_EARLY(pv_entry_spare);
5231 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD,
5232 &pv_entry_spare, "Current number of spare pv entries");
5233 #endif
5234
5235 static void
reclaim_pv_chunk_leave_pmap(pmap_t pmap,pmap_t locked_pmap,bool start_di)5236 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap, bool start_di)
5237 {
5238
5239 if (pmap == NULL)
5240 return;
5241 pmap_invalidate_all(pmap);
5242 if (pmap != locked_pmap)
5243 PMAP_UNLOCK(pmap);
5244 if (start_di)
5245 pmap_delayed_invl_finish();
5246 }
5247
5248 /*
5249 * We are in a serious low memory condition. Resort to
5250 * drastic measures to free some pages so we can allocate
5251 * another pv entry chunk.
5252 *
5253 * Returns NULL if PV entries were reclaimed from the specified pmap.
5254 *
5255 * We do not, however, unmap 2mpages because subsequent accesses will
5256 * allocate per-page pv entries until repromotion occurs, thereby
5257 * exacerbating the shortage of free pv entries.
5258 */
5259 static vm_page_t
reclaim_pv_chunk_domain(pmap_t locked_pmap,struct rwlock ** lockp,int domain)5260 reclaim_pv_chunk_domain(pmap_t locked_pmap, struct rwlock **lockp, int domain)
5261 {
5262 struct pv_chunks_list *pvc;
5263 struct pv_chunk *pc, *pc_marker, *pc_marker_end;
5264 struct pv_chunk_header pc_marker_b, pc_marker_end_b;
5265 struct md_page *pvh;
5266 pd_entry_t *pde;
5267 pmap_t next_pmap, pmap;
5268 pt_entry_t *pte, tpte;
5269 pt_entry_t PG_G, PG_A, PG_M, PG_RW;
5270 pv_entry_t pv;
5271 vm_offset_t va;
5272 vm_page_t m, m_pc;
5273 struct spglist free;
5274 uint64_t inuse;
5275 int bit, field, freed;
5276 bool start_di, restart;
5277
5278 PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
5279 KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
5280 pmap = NULL;
5281 m_pc = NULL;
5282 PG_G = PG_A = PG_M = PG_RW = 0;
5283 SLIST_INIT(&free);
5284 bzero(&pc_marker_b, sizeof(pc_marker_b));
5285 bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
5286 pc_marker = (struct pv_chunk *)&pc_marker_b;
5287 pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
5288
5289 /*
5290 * A delayed invalidation block should already be active if
5291 * pmap_advise() or pmap_remove() called this function by way
5292 * of pmap_demote_pde_locked().
5293 */
5294 start_di = pmap_not_in_di();
5295
5296 pvc = &pv_chunks[domain];
5297 mtx_lock(&pvc->pvc_lock);
5298 pvc->active_reclaims++;
5299 TAILQ_INSERT_HEAD(&pvc->pvc_list, pc_marker, pc_lru);
5300 TAILQ_INSERT_TAIL(&pvc->pvc_list, pc_marker_end, pc_lru);
5301 while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
5302 SLIST_EMPTY(&free)) {
5303 next_pmap = pc->pc_pmap;
5304 if (next_pmap == NULL) {
5305 /*
5306 * The next chunk is a marker. However, it is
5307 * not our marker, so active_reclaims must be
5308 * > 1. Consequently, the next_chunk code
5309 * will not rotate the pv_chunks list.
5310 */
5311 goto next_chunk;
5312 }
5313 mtx_unlock(&pvc->pvc_lock);
5314
5315 /*
5316 * A pv_chunk can only be removed from the pc_lru list
5317 * when both pc_chunks_mutex is owned and the
5318 * corresponding pmap is locked.
5319 */
5320 if (pmap != next_pmap) {
5321 restart = false;
5322 reclaim_pv_chunk_leave_pmap(pmap, locked_pmap,
5323 start_di);
5324 pmap = next_pmap;
5325 /* Avoid deadlock and lock recursion. */
5326 if (pmap > locked_pmap) {
5327 RELEASE_PV_LIST_LOCK(lockp);
5328 PMAP_LOCK(pmap);
5329 if (start_di)
5330 pmap_delayed_invl_start();
5331 mtx_lock(&pvc->pvc_lock);
5332 restart = true;
5333 } else if (pmap != locked_pmap) {
5334 if (PMAP_TRYLOCK(pmap)) {
5335 if (start_di)
5336 pmap_delayed_invl_start();
5337 mtx_lock(&pvc->pvc_lock);
5338 restart = true;
5339 } else {
5340 pmap = NULL; /* pmap is not locked */
5341 mtx_lock(&pvc->pvc_lock);
5342 pc = TAILQ_NEXT(pc_marker, pc_lru);
5343 if (pc == NULL ||
5344 pc->pc_pmap != next_pmap)
5345 continue;
5346 goto next_chunk;
5347 }
5348 } else if (start_di)
5349 pmap_delayed_invl_start();
5350 PG_G = pmap_global_bit(pmap);
5351 PG_A = pmap_accessed_bit(pmap);
5352 PG_M = pmap_modified_bit(pmap);
5353 PG_RW = pmap_rw_bit(pmap);
5354 if (restart)
5355 continue;
5356 }
5357
5358 /*
5359 * Destroy every non-wired, 4 KB page mapping in the chunk.
5360 */
5361 freed = 0;
5362 for (field = 0; field < _NPCM; field++) {
5363 for (inuse = ~pc->pc_map[field] & pc_freemask[field];
5364 inuse != 0; inuse &= ~(1UL << bit)) {
5365 bit = bsfq(inuse);
5366 pv = &pc->pc_pventry[field * 64 + bit];
5367 va = pv->pv_va;
5368 pde = pmap_pde(pmap, va);
5369 if ((*pde & PG_PS) != 0)
5370 continue;
5371 pte = pmap_pde_to_pte(pde, va);
5372 if ((*pte & PG_W) != 0)
5373 continue;
5374 tpte = pte_load_clear(pte);
5375 if ((tpte & PG_G) != 0)
5376 pmap_invalidate_page(pmap, va);
5377 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
5378 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5379 vm_page_dirty(m);
5380 if ((tpte & PG_A) != 0)
5381 vm_page_aflag_set(m, PGA_REFERENCED);
5382 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5383 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5384 m->md.pv_gen++;
5385 if (TAILQ_EMPTY(&m->md.pv_list) &&
5386 (m->flags & PG_FICTITIOUS) == 0) {
5387 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5388 if (TAILQ_EMPTY(&pvh->pv_list)) {
5389 vm_page_aflag_clear(m,
5390 PGA_WRITEABLE);
5391 }
5392 }
5393 pmap_delayed_invl_page(m);
5394 pc->pc_map[field] |= 1UL << bit;
5395 pmap_unuse_pt(pmap, va, *pde, &free);
5396 freed++;
5397 }
5398 }
5399 if (freed == 0) {
5400 mtx_lock(&pvc->pvc_lock);
5401 goto next_chunk;
5402 }
5403 /* Every freed mapping is for a 4 KB page. */
5404 pmap_resident_count_adj(pmap, -freed);
5405 PV_STAT(counter_u64_add(pv_entry_frees, freed));
5406 PV_STAT(counter_u64_add(pv_entry_spare, freed));
5407 PV_STAT(counter_u64_add(pv_entry_count, -freed));
5408 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5409 if (pc_is_free(pc)) {
5410 PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5411 PV_STAT(counter_u64_add(pc_chunk_count, -1));
5412 PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5413 /* Entire chunk is free; return it. */
5414 m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5415 dump_drop_page(m_pc->phys_addr);
5416 mtx_lock(&pvc->pvc_lock);
5417 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5418 break;
5419 }
5420 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5421 mtx_lock(&pvc->pvc_lock);
5422 /* One freed pv entry in locked_pmap is sufficient. */
5423 if (pmap == locked_pmap)
5424 break;
5425 next_chunk:
5426 TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5427 TAILQ_INSERT_AFTER(&pvc->pvc_list, pc, pc_marker, pc_lru);
5428 if (pvc->active_reclaims == 1 && pmap != NULL) {
5429 /*
5430 * Rotate the pv chunks list so that we do not
5431 * scan the same pv chunks that could not be
5432 * freed (because they contained a wired
5433 * and/or superpage mapping) on every
5434 * invocation of reclaim_pv_chunk().
5435 */
5436 while ((pc = TAILQ_FIRST(&pvc->pvc_list)) != pc_marker) {
5437 MPASS(pc->pc_pmap != NULL);
5438 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5439 TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5440 }
5441 }
5442 }
5443 TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5444 TAILQ_REMOVE(&pvc->pvc_list, pc_marker_end, pc_lru);
5445 pvc->active_reclaims--;
5446 mtx_unlock(&pvc->pvc_lock);
5447 reclaim_pv_chunk_leave_pmap(pmap, locked_pmap, start_di);
5448 if (m_pc == NULL && !SLIST_EMPTY(&free)) {
5449 m_pc = SLIST_FIRST(&free);
5450 SLIST_REMOVE_HEAD(&free, plinks.s.ss);
5451 /* Recycle a freed page table page. */
5452 m_pc->ref_count = 1;
5453 }
5454 vm_page_free_pages_toq(&free, true);
5455 return (m_pc);
5456 }
5457
5458 static vm_page_t
reclaim_pv_chunk(pmap_t locked_pmap,struct rwlock ** lockp)5459 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
5460 {
5461 vm_page_t m;
5462 int i, domain;
5463
5464 domain = PCPU_GET(domain);
5465 for (i = 0; i < vm_ndomains; i++) {
5466 m = reclaim_pv_chunk_domain(locked_pmap, lockp, domain);
5467 if (m != NULL)
5468 break;
5469 domain = (domain + 1) % vm_ndomains;
5470 }
5471
5472 return (m);
5473 }
5474
5475 /*
5476 * free the pv_entry back to the free list
5477 */
5478 static void
free_pv_entry(pmap_t pmap,pv_entry_t pv)5479 free_pv_entry(pmap_t pmap, pv_entry_t pv)
5480 {
5481 struct pv_chunk *pc;
5482 int idx, field, bit;
5483
5484 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5485 PV_STAT(counter_u64_add(pv_entry_frees, 1));
5486 PV_STAT(counter_u64_add(pv_entry_spare, 1));
5487 PV_STAT(counter_u64_add(pv_entry_count, -1));
5488 pc = pv_to_chunk(pv);
5489 idx = pv - &pc->pc_pventry[0];
5490 field = idx / 64;
5491 bit = idx % 64;
5492 pc->pc_map[field] |= 1ul << bit;
5493 if (!pc_is_free(pc)) {
5494 /* 98% of the time, pc is already at the head of the list. */
5495 if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
5496 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5497 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5498 }
5499 return;
5500 }
5501 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5502 free_pv_chunk(pc);
5503 }
5504
5505 static void
free_pv_chunk_dequeued(struct pv_chunk * pc)5506 free_pv_chunk_dequeued(struct pv_chunk *pc)
5507 {
5508 vm_page_t m;
5509
5510 PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5511 PV_STAT(counter_u64_add(pc_chunk_count, -1));
5512 PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5513 counter_u64_add(pv_page_count, -1);
5514 /* entire chunk is free, return it */
5515 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5516 dump_drop_page(m->phys_addr);
5517 vm_page_unwire_noq(m);
5518 vm_page_free(m);
5519 }
5520
5521 static void
free_pv_chunk(struct pv_chunk * pc)5522 free_pv_chunk(struct pv_chunk *pc)
5523 {
5524 struct pv_chunks_list *pvc;
5525
5526 pvc = &pv_chunks[pc_to_domain(pc)];
5527 mtx_lock(&pvc->pvc_lock);
5528 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5529 mtx_unlock(&pvc->pvc_lock);
5530 free_pv_chunk_dequeued(pc);
5531 }
5532
5533 static void
free_pv_chunk_batch(struct pv_chunklist * batch)5534 free_pv_chunk_batch(struct pv_chunklist *batch)
5535 {
5536 struct pv_chunks_list *pvc;
5537 struct pv_chunk *pc, *npc;
5538 int i;
5539
5540 for (i = 0; i < vm_ndomains; i++) {
5541 if (TAILQ_EMPTY(&batch[i]))
5542 continue;
5543 pvc = &pv_chunks[i];
5544 mtx_lock(&pvc->pvc_lock);
5545 TAILQ_FOREACH(pc, &batch[i], pc_list) {
5546 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5547 }
5548 mtx_unlock(&pvc->pvc_lock);
5549 }
5550
5551 for (i = 0; i < vm_ndomains; i++) {
5552 TAILQ_FOREACH_SAFE(pc, &batch[i], pc_list, npc) {
5553 free_pv_chunk_dequeued(pc);
5554 }
5555 }
5556 }
5557
5558 /*
5559 * Returns a new PV entry, allocating a new PV chunk from the system when
5560 * needed. If this PV chunk allocation fails and a PV list lock pointer was
5561 * given, a PV chunk is reclaimed from an arbitrary pmap. Otherwise, NULL is
5562 * returned.
5563 *
5564 * The given PV list lock may be released.
5565 */
5566 static pv_entry_t
get_pv_entry(pmap_t pmap,struct rwlock ** lockp)5567 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
5568 {
5569 struct pv_chunks_list *pvc;
5570 int bit, field;
5571 pv_entry_t pv;
5572 struct pv_chunk *pc;
5573 vm_page_t m;
5574
5575 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5576 PV_STAT(counter_u64_add(pv_entry_allocs, 1));
5577 retry:
5578 pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5579 if (pc != NULL) {
5580 for (field = 0; field < _NPCM; field++) {
5581 if (pc->pc_map[field]) {
5582 bit = bsfq(pc->pc_map[field]);
5583 break;
5584 }
5585 }
5586 if (field < _NPCM) {
5587 pv = &pc->pc_pventry[field * 64 + bit];
5588 pc->pc_map[field] &= ~(1ul << bit);
5589 /* If this was the last item, move it to tail */
5590 if (pc_is_full(pc)) {
5591 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5592 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
5593 pc_list);
5594 }
5595 PV_STAT(counter_u64_add(pv_entry_count, 1));
5596 PV_STAT(counter_u64_add(pv_entry_spare, -1));
5597 return (pv);
5598 }
5599 }
5600 /* No free items, allocate another chunk */
5601 m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5602 if (m == NULL) {
5603 if (lockp == NULL) {
5604 PV_STAT(counter_u64_add(pc_chunk_tryfail, 1));
5605 return (NULL);
5606 }
5607 m = reclaim_pv_chunk(pmap, lockp);
5608 if (m == NULL)
5609 goto retry;
5610 } else
5611 counter_u64_add(pv_page_count, 1);
5612 PV_STAT(counter_u64_add(pc_chunk_count, 1));
5613 PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5614 dump_add_page(m->phys_addr);
5615 pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5616 pc->pc_pmap = pmap;
5617 pc->pc_map[0] = PC_FREEN & ~1ul; /* preallocated bit 0 */
5618 pc->pc_map[1] = PC_FREEN;
5619 pc->pc_map[2] = PC_FREEL;
5620 pvc = &pv_chunks[vm_page_domain(m)];
5621 mtx_lock(&pvc->pvc_lock);
5622 TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5623 mtx_unlock(&pvc->pvc_lock);
5624 pv = &pc->pc_pventry[0];
5625 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5626 PV_STAT(counter_u64_add(pv_entry_count, 1));
5627 PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV - 1));
5628 return (pv);
5629 }
5630
5631 /*
5632 * Returns the number of one bits within the given PV chunk map.
5633 *
5634 * The erratas for Intel processors state that "POPCNT Instruction May
5635 * Take Longer to Execute Than Expected". It is believed that the
5636 * issue is the spurious dependency on the destination register.
5637 * Provide a hint to the register rename logic that the destination
5638 * value is overwritten, by clearing it, as suggested in the
5639 * optimization manual. It should be cheap for unaffected processors
5640 * as well.
5641 *
5642 * Reference numbers for erratas are
5643 * 4th Gen Core: HSD146
5644 * 5th Gen Core: BDM85
5645 * 6th Gen Core: SKL029
5646 */
5647 static int
popcnt_pc_map_pq(uint64_t * map)5648 popcnt_pc_map_pq(uint64_t *map)
5649 {
5650 u_long result, tmp;
5651
5652 __asm __volatile("xorl %k0,%k0;popcntq %2,%0;"
5653 "xorl %k1,%k1;popcntq %3,%1;addl %k1,%k0;"
5654 "xorl %k1,%k1;popcntq %4,%1;addl %k1,%k0"
5655 : "=&r" (result), "=&r" (tmp)
5656 : "m" (map[0]), "m" (map[1]), "m" (map[2]));
5657 return (result);
5658 }
5659
5660 /*
5661 * Ensure that the number of spare PV entries in the specified pmap meets or
5662 * exceeds the given count, "needed".
5663 *
5664 * The given PV list lock may be released.
5665 */
5666 static void
reserve_pv_entries(pmap_t pmap,int needed,struct rwlock ** lockp)5667 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
5668 {
5669 struct pv_chunks_list *pvc;
5670 struct pch new_tail[PMAP_MEMDOM];
5671 struct pv_chunk *pc;
5672 vm_page_t m;
5673 int avail, free, i;
5674 bool reclaimed;
5675
5676 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5677 KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
5678
5679 /*
5680 * Newly allocated PV chunks must be stored in a private list until
5681 * the required number of PV chunks have been allocated. Otherwise,
5682 * reclaim_pv_chunk() could recycle one of these chunks. In
5683 * contrast, these chunks must be added to the pmap upon allocation.
5684 */
5685 for (i = 0; i < PMAP_MEMDOM; i++)
5686 TAILQ_INIT(&new_tail[i]);
5687 retry:
5688 avail = 0;
5689 TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
5690 #ifndef __POPCNT__
5691 if ((cpu_feature2 & CPUID2_POPCNT) == 0)
5692 bit_count((bitstr_t *)pc->pc_map, 0,
5693 sizeof(pc->pc_map) * NBBY, &free);
5694 else
5695 #endif
5696 free = popcnt_pc_map_pq(pc->pc_map);
5697 if (free == 0)
5698 break;
5699 avail += free;
5700 if (avail >= needed)
5701 break;
5702 }
5703 for (reclaimed = false; avail < needed; avail += _NPCPV) {
5704 m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5705 if (m == NULL) {
5706 m = reclaim_pv_chunk(pmap, lockp);
5707 if (m == NULL)
5708 goto retry;
5709 reclaimed = true;
5710 } else
5711 counter_u64_add(pv_page_count, 1);
5712 PV_STAT(counter_u64_add(pc_chunk_count, 1));
5713 PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5714 dump_add_page(m->phys_addr);
5715 pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5716 pc->pc_pmap = pmap;
5717 pc->pc_map[0] = PC_FREEN;
5718 pc->pc_map[1] = PC_FREEN;
5719 pc->pc_map[2] = PC_FREEL;
5720 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5721 TAILQ_INSERT_TAIL(&new_tail[vm_page_domain(m)], pc, pc_lru);
5722 PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV));
5723
5724 /*
5725 * The reclaim might have freed a chunk from the current pmap.
5726 * If that chunk contained available entries, we need to
5727 * re-count the number of available entries.
5728 */
5729 if (reclaimed)
5730 goto retry;
5731 }
5732 for (i = 0; i < vm_ndomains; i++) {
5733 if (TAILQ_EMPTY(&new_tail[i]))
5734 continue;
5735 pvc = &pv_chunks[i];
5736 mtx_lock(&pvc->pvc_lock);
5737 TAILQ_CONCAT(&pvc->pvc_list, &new_tail[i], pc_lru);
5738 mtx_unlock(&pvc->pvc_lock);
5739 }
5740 }
5741
5742 /*
5743 * First find and then remove the pv entry for the specified pmap and virtual
5744 * address from the specified pv list. Returns the pv entry if found and NULL
5745 * otherwise. This operation can be performed on pv lists for either 4KB or
5746 * 2MB page mappings.
5747 */
5748 static __inline pv_entry_t
pmap_pvh_remove(struct md_page * pvh,pmap_t pmap,vm_offset_t va)5749 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5750 {
5751 pv_entry_t pv;
5752
5753 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5754 if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
5755 TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5756 pvh->pv_gen++;
5757 break;
5758 }
5759 }
5760 return (pv);
5761 }
5762
5763 /*
5764 * After demotion from a 2MB page mapping to 512 4KB page mappings,
5765 * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
5766 * entries for each of the 4KB page mappings.
5767 */
5768 static void
pmap_pv_demote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)5769 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5770 struct rwlock **lockp)
5771 {
5772 struct md_page *pvh;
5773 struct pv_chunk *pc;
5774 pv_entry_t pv;
5775 vm_offset_t va_last;
5776 vm_page_t m;
5777 int bit, field;
5778
5779 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5780 KASSERT((pa & PDRMASK) == 0,
5781 ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
5782 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5783
5784 /*
5785 * Transfer the 2mpage's pv entry for this mapping to the first
5786 * page's pv list. Once this transfer begins, the pv list lock
5787 * must not be released until the last pv entry is reinstantiated.
5788 */
5789 pvh = pa_to_pvh(pa);
5790 va = trunc_2mpage(va);
5791 pv = pmap_pvh_remove(pvh, pmap, va);
5792 KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
5793 m = PHYS_TO_VM_PAGE(pa);
5794 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5795 m->md.pv_gen++;
5796 /* Instantiate the remaining NPTEPG - 1 pv entries. */
5797 PV_STAT(counter_u64_add(pv_entry_allocs, NPTEPG - 1));
5798 va_last = va + NBPDR - PAGE_SIZE;
5799 for (;;) {
5800 pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5801 KASSERT(!pc_is_full(pc), ("pmap_pv_demote_pde: missing spare"));
5802 for (field = 0; field < _NPCM; field++) {
5803 while (pc->pc_map[field]) {
5804 bit = bsfq(pc->pc_map[field]);
5805 pc->pc_map[field] &= ~(1ul << bit);
5806 pv = &pc->pc_pventry[field * 64 + bit];
5807 va += PAGE_SIZE;
5808 pv->pv_va = va;
5809 m++;
5810 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5811 ("pmap_pv_demote_pde: page %p is not managed", m));
5812 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5813 m->md.pv_gen++;
5814 if (va == va_last)
5815 goto out;
5816 }
5817 }
5818 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5819 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5820 }
5821 out:
5822 if (pc_is_full(pc)) {
5823 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5824 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5825 }
5826 PV_STAT(counter_u64_add(pv_entry_count, NPTEPG - 1));
5827 PV_STAT(counter_u64_add(pv_entry_spare, -(NPTEPG - 1)));
5828 }
5829
5830 #if VM_NRESERVLEVEL > 0
5831 /*
5832 * After promotion from 512 4KB page mappings to a single 2MB page mapping,
5833 * replace the many pv entries for the 4KB page mappings by a single pv entry
5834 * for the 2MB page mapping.
5835 */
5836 static void
pmap_pv_promote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)5837 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5838 struct rwlock **lockp)
5839 {
5840 struct md_page *pvh;
5841 pv_entry_t pv;
5842 vm_offset_t va_last;
5843 vm_page_t m;
5844
5845 KASSERT((pa & PDRMASK) == 0,
5846 ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
5847 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5848
5849 /*
5850 * Transfer the first page's pv entry for this mapping to the 2mpage's
5851 * pv list. Aside from avoiding the cost of a call to get_pv_entry(),
5852 * a transfer avoids the possibility that get_pv_entry() calls
5853 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
5854 * mappings that is being promoted.
5855 */
5856 m = PHYS_TO_VM_PAGE(pa);
5857 va = trunc_2mpage(va);
5858 pv = pmap_pvh_remove(&m->md, pmap, va);
5859 KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
5860 pvh = pa_to_pvh(pa);
5861 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5862 pvh->pv_gen++;
5863 /* Free the remaining NPTEPG - 1 pv entries. */
5864 va_last = va + NBPDR - PAGE_SIZE;
5865 do {
5866 m++;
5867 va += PAGE_SIZE;
5868 pmap_pvh_free(&m->md, pmap, va);
5869 } while (va < va_last);
5870 }
5871 #endif /* VM_NRESERVLEVEL > 0 */
5872
5873 /*
5874 * First find and then destroy the pv entry for the specified pmap and virtual
5875 * address. This operation can be performed on pv lists for either 4KB or 2MB
5876 * page mappings.
5877 */
5878 static void
pmap_pvh_free(struct md_page * pvh,pmap_t pmap,vm_offset_t va)5879 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5880 {
5881 pv_entry_t pv;
5882
5883 pv = pmap_pvh_remove(pvh, pmap, va);
5884 KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
5885 free_pv_entry(pmap, pv);
5886 }
5887
5888 /*
5889 * Conditionally create the PV entry for a 4KB page mapping if the required
5890 * memory can be allocated without resorting to reclamation.
5891 */
5892 static bool
pmap_try_insert_pv_entry(pmap_t pmap,vm_offset_t va,vm_page_t m,struct rwlock ** lockp)5893 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
5894 struct rwlock **lockp)
5895 {
5896 pv_entry_t pv;
5897
5898 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5899 /* Pass NULL instead of the lock pointer to disable reclamation. */
5900 if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
5901 pv->pv_va = va;
5902 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5903 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5904 m->md.pv_gen++;
5905 return (true);
5906 } else
5907 return (false);
5908 }
5909
5910 /*
5911 * Create the PV entry for a 2MB page mapping. Always returns true unless the
5912 * flag PMAP_ENTER_NORECLAIM is specified. If that flag is specified, returns
5913 * false if the PV entry cannot be allocated without resorting to reclamation.
5914 */
5915 static bool
pmap_pv_insert_pde(pmap_t pmap,vm_offset_t va,pd_entry_t pde,u_int flags,struct rwlock ** lockp)5916 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde, u_int flags,
5917 struct rwlock **lockp)
5918 {
5919 struct md_page *pvh;
5920 pv_entry_t pv;
5921 vm_paddr_t pa;
5922
5923 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5924 /* Pass NULL instead of the lock pointer to disable reclamation. */
5925 if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
5926 NULL : lockp)) == NULL)
5927 return (false);
5928 pv->pv_va = va;
5929 pa = pde & PG_PS_FRAME;
5930 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5931 pvh = pa_to_pvh(pa);
5932 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5933 pvh->pv_gen++;
5934 return (true);
5935 }
5936
5937 /*
5938 * Fills a page table page with mappings to consecutive physical pages.
5939 */
5940 static void
pmap_fill_ptp(pt_entry_t * firstpte,pt_entry_t newpte)5941 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
5942 {
5943 pt_entry_t *pte;
5944
5945 for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
5946 *pte = newpte;
5947 newpte += PAGE_SIZE;
5948 }
5949 }
5950
5951 /*
5952 * Tries to demote a 2MB page mapping. If demotion fails, the 2MB page
5953 * mapping is invalidated.
5954 */
5955 static bool
pmap_demote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)5956 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
5957 {
5958 struct rwlock *lock;
5959 bool rv;
5960
5961 lock = NULL;
5962 rv = pmap_demote_pde_locked(pmap, pde, va, &lock);
5963 if (lock != NULL)
5964 rw_wunlock(lock);
5965 return (rv);
5966 }
5967
5968 static void
pmap_demote_pde_check(pt_entry_t * firstpte __unused,pt_entry_t newpte __unused)5969 pmap_demote_pde_check(pt_entry_t *firstpte __unused, pt_entry_t newpte __unused)
5970 {
5971 #ifdef INVARIANTS
5972 #ifdef DIAGNOSTIC
5973 pt_entry_t *xpte, *ypte;
5974
5975 for (xpte = firstpte; xpte < firstpte + NPTEPG;
5976 xpte++, newpte += PAGE_SIZE) {
5977 if ((*xpte & PG_FRAME) != (newpte & PG_FRAME)) {
5978 printf("pmap_demote_pde: xpte %zd and newpte map "
5979 "different pages: found %#lx, expected %#lx\n",
5980 xpte - firstpte, *xpte, newpte);
5981 printf("page table dump\n");
5982 for (ypte = firstpte; ypte < firstpte + NPTEPG; ypte++)
5983 printf("%zd %#lx\n", ypte - firstpte, *ypte);
5984 panic("firstpte");
5985 }
5986 }
5987 #else
5988 KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
5989 ("pmap_demote_pde: firstpte and newpte map different physical"
5990 " addresses"));
5991 #endif
5992 #endif
5993 }
5994
5995 static void
pmap_demote_pde_abort(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t oldpde,struct rwlock ** lockp)5996 pmap_demote_pde_abort(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
5997 pd_entry_t oldpde, struct rwlock **lockp)
5998 {
5999 struct spglist free;
6000 vm_offset_t sva;
6001
6002 SLIST_INIT(&free);
6003 sva = trunc_2mpage(va);
6004 pmap_remove_pde(pmap, pde, sva, true, &free, lockp);
6005 if ((oldpde & pmap_global_bit(pmap)) == 0)
6006 pmap_invalidate_pde_page(pmap, sva, oldpde);
6007 vm_page_free_pages_toq(&free, true);
6008 CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#lx in pmap %p",
6009 va, pmap);
6010 }
6011
6012 static bool
pmap_demote_pde_locked(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,struct rwlock ** lockp)6013 pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
6014 struct rwlock **lockp)
6015 {
6016 return (pmap_demote_pde_mpte(pmap, pde, va, lockp, NULL));
6017 }
6018
6019 static bool
pmap_demote_pde_mpte(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,struct rwlock ** lockp,vm_page_t mpte)6020 pmap_demote_pde_mpte(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
6021 struct rwlock **lockp, vm_page_t mpte)
6022 {
6023 pd_entry_t newpde, oldpde;
6024 pt_entry_t *firstpte, newpte;
6025 pt_entry_t PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
6026 vm_paddr_t mptepa;
6027 int PG_PTE_CACHE;
6028 bool in_kernel;
6029
6030 PG_A = pmap_accessed_bit(pmap);
6031 PG_G = pmap_global_bit(pmap);
6032 PG_M = pmap_modified_bit(pmap);
6033 PG_RW = pmap_rw_bit(pmap);
6034 PG_V = pmap_valid_bit(pmap);
6035 PG_PTE_CACHE = pmap_cache_mask(pmap, false);
6036 PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6037
6038 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6039 oldpde = *pde;
6040 KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
6041 ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
6042 KASSERT((oldpde & PG_MANAGED) == 0 || lockp != NULL,
6043 ("pmap_demote_pde: lockp for a managed mapping is NULL"));
6044 in_kernel = va >= VM_MAXUSER_ADDRESS;
6045 if (mpte == NULL) {
6046 /*
6047 * Invalidate the 2MB page mapping and return "failure" if the
6048 * mapping was never accessed.
6049 */
6050 if ((oldpde & PG_A) == 0) {
6051 KASSERT((oldpde & PG_W) == 0,
6052 ("pmap_demote_pde: a wired mapping is missing PG_A"));
6053 pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
6054 return (false);
6055 }
6056
6057 mpte = pmap_remove_pt_page(pmap, va);
6058 if (mpte == NULL) {
6059 KASSERT((oldpde & PG_W) == 0,
6060 ("pmap_demote_pde: page table page for a wired mapping is missing"));
6061
6062 /*
6063 * If the page table page is missing and the mapping
6064 * is for a kernel address, the mapping must belong to
6065 * the direct map. Page table pages are preallocated
6066 * for every other part of the kernel address space,
6067 * so the direct map region is the only part of the
6068 * kernel address space that must be handled here.
6069 */
6070 KASSERT(!in_kernel || (va >= DMAP_MIN_ADDRESS &&
6071 va < DMAP_MAX_ADDRESS),
6072 ("pmap_demote_pde: No saved mpte for va %#lx", va));
6073
6074 /*
6075 * If the 2MB page mapping belongs to the direct map
6076 * region of the kernel's address space, then the page
6077 * allocation request specifies the highest possible
6078 * priority (VM_ALLOC_INTERRUPT). Otherwise, the
6079 * priority is normal.
6080 */
6081 mpte = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
6082 (in_kernel ? VM_ALLOC_INTERRUPT : 0) |
6083 VM_ALLOC_WIRED);
6084
6085 /*
6086 * If the allocation of the new page table page fails,
6087 * invalidate the 2MB page mapping and return "failure".
6088 */
6089 if (mpte == NULL) {
6090 pmap_demote_pde_abort(pmap, va, pde, oldpde,
6091 lockp);
6092 return (false);
6093 }
6094
6095 if (!in_kernel)
6096 mpte->ref_count = NPTEPG;
6097 }
6098 }
6099 mptepa = VM_PAGE_TO_PHYS(mpte);
6100 firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
6101 newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
6102 KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
6103 ("pmap_demote_pde: oldpde is missing PG_M"));
6104 newpte = oldpde & ~PG_PS;
6105 newpte = pmap_swap_pat(pmap, newpte);
6106
6107 /*
6108 * If the PTP is not leftover from an earlier promotion or it does not
6109 * have PG_A set in every PTE, then fill it. The new PTEs will all
6110 * have PG_A set.
6111 */
6112 if (!vm_page_all_valid(mpte))
6113 pmap_fill_ptp(firstpte, newpte);
6114
6115 pmap_demote_pde_check(firstpte, newpte);
6116
6117 /*
6118 * If the mapping has changed attributes, update the PTEs.
6119 */
6120 if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
6121 pmap_fill_ptp(firstpte, newpte);
6122
6123 /*
6124 * The spare PV entries must be reserved prior to demoting the
6125 * mapping, that is, prior to changing the PDE. Otherwise, the state
6126 * of the PDE and the PV lists will be inconsistent, which can result
6127 * in reclaim_pv_chunk() attempting to remove a PV entry from the
6128 * wrong PV list and pmap_pv_demote_pde() failing to find the expected
6129 * PV entry for the 2MB page mapping that is being demoted.
6130 */
6131 if ((oldpde & PG_MANAGED) != 0)
6132 reserve_pv_entries(pmap, NPTEPG - 1, lockp);
6133
6134 /*
6135 * Demote the mapping. This pmap is locked. The old PDE has
6136 * PG_A set. If the old PDE has PG_RW set, it also has PG_M
6137 * set. Thus, there is no danger of a race with another
6138 * processor changing the setting of PG_A and/or PG_M between
6139 * the read above and the store below.
6140 */
6141 if (workaround_erratum383)
6142 pmap_update_pde(pmap, va, pde, newpde);
6143 else
6144 pde_store(pde, newpde);
6145
6146 /*
6147 * Invalidate a stale recursive mapping of the page table page.
6148 */
6149 if (in_kernel)
6150 pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6151
6152 /*
6153 * Demote the PV entry.
6154 */
6155 if ((oldpde & PG_MANAGED) != 0)
6156 pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME, lockp);
6157
6158 counter_u64_add(pmap_pde_demotions, 1);
6159 CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#lx in pmap %p",
6160 va, pmap);
6161 return (true);
6162 }
6163
6164 /*
6165 * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
6166 */
6167 static void
pmap_remove_kernel_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,bool remove_pt)6168 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
6169 bool remove_pt)
6170 {
6171 pd_entry_t newpde;
6172 vm_paddr_t mptepa;
6173 vm_page_t mpte;
6174
6175 KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
6176 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6177 if (remove_pt)
6178 mpte = pmap_remove_pt_page(pmap, va);
6179 else
6180 mpte = vm_radix_lookup(&pmap->pm_root, pmap_pde_pindex(va));
6181 if (mpte == NULL)
6182 panic("pmap_remove_kernel_pde: Missing pt page.");
6183
6184 mptepa = VM_PAGE_TO_PHYS(mpte);
6185 newpde = mptepa | X86_PG_M | X86_PG_A | X86_PG_RW | X86_PG_V;
6186
6187 /*
6188 * If this page table page was unmapped by a promotion, then it
6189 * contains valid mappings. Zero it to invalidate those mappings.
6190 */
6191 if (vm_page_any_valid(mpte))
6192 pagezero((void *)PHYS_TO_DMAP(mptepa));
6193
6194 /*
6195 * Demote the mapping.
6196 */
6197 if (workaround_erratum383)
6198 pmap_update_pde(pmap, va, pde, newpde);
6199 else
6200 pde_store(pde, newpde);
6201
6202 /*
6203 * Invalidate a stale recursive mapping of the page table page.
6204 */
6205 pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6206 }
6207
6208 /*
6209 * pmap_remove_pde: do the things to unmap a superpage in a process
6210 */
6211 static int
pmap_remove_pde(pmap_t pmap,pd_entry_t * pdq,vm_offset_t sva,bool remove_pt,struct spglist * free,struct rwlock ** lockp)6212 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva, bool remove_pt,
6213 struct spglist *free, struct rwlock **lockp)
6214 {
6215 struct md_page *pvh;
6216 pd_entry_t oldpde;
6217 vm_offset_t eva, va;
6218 vm_page_t m, mpte;
6219 pt_entry_t PG_G, PG_A, PG_M, PG_RW;
6220
6221 PG_G = pmap_global_bit(pmap);
6222 PG_A = pmap_accessed_bit(pmap);
6223 PG_M = pmap_modified_bit(pmap);
6224 PG_RW = pmap_rw_bit(pmap);
6225
6226 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6227 KASSERT((sva & PDRMASK) == 0,
6228 ("pmap_remove_pde: sva is not 2mpage aligned"));
6229 oldpde = pte_load_clear(pdq);
6230 if (oldpde & PG_W)
6231 pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
6232 if ((oldpde & PG_G) != 0)
6233 pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6234 pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
6235 if (oldpde & PG_MANAGED) {
6236 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
6237 pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
6238 pmap_pvh_free(pvh, pmap, sva);
6239 eva = sva + NBPDR;
6240 for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6241 va < eva; va += PAGE_SIZE, m++) {
6242 if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
6243 vm_page_dirty(m);
6244 if (oldpde & PG_A)
6245 vm_page_aflag_set(m, PGA_REFERENCED);
6246 if (TAILQ_EMPTY(&m->md.pv_list) &&
6247 TAILQ_EMPTY(&pvh->pv_list))
6248 vm_page_aflag_clear(m, PGA_WRITEABLE);
6249 pmap_delayed_invl_page(m);
6250 }
6251 }
6252 if (pmap == kernel_pmap) {
6253 pmap_remove_kernel_pde(pmap, pdq, sva, remove_pt);
6254 } else {
6255 mpte = pmap_remove_pt_page(pmap, sva);
6256 if (mpte != NULL) {
6257 KASSERT(vm_page_any_valid(mpte),
6258 ("pmap_remove_pde: pte page not promoted"));
6259 pmap_pt_page_count_adj(pmap, -1);
6260 KASSERT(mpte->ref_count == NPTEPG,
6261 ("pmap_remove_pde: pte page ref count error"));
6262 mpte->ref_count = 0;
6263 pmap_add_delayed_free_list(mpte, free, false);
6264 }
6265 }
6266 return (pmap_unuse_pt(pmap, sva, *pmap_pdpe(pmap, sva), free));
6267 }
6268
6269 /*
6270 * pmap_remove_pte: do the things to unmap a page in a process
6271 */
6272 static int
pmap_remove_pte(pmap_t pmap,pt_entry_t * ptq,vm_offset_t va,pd_entry_t ptepde,struct spglist * free,struct rwlock ** lockp)6273 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
6274 pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
6275 {
6276 struct md_page *pvh;
6277 pt_entry_t oldpte, PG_A, PG_M, PG_RW;
6278 vm_page_t m;
6279
6280 PG_A = pmap_accessed_bit(pmap);
6281 PG_M = pmap_modified_bit(pmap);
6282 PG_RW = pmap_rw_bit(pmap);
6283
6284 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6285 oldpte = pte_load_clear(ptq);
6286 if (oldpte & PG_W)
6287 pmap->pm_stats.wired_count -= 1;
6288 pmap_resident_count_adj(pmap, -1);
6289 if (oldpte & PG_MANAGED) {
6290 m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
6291 if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6292 vm_page_dirty(m);
6293 if (oldpte & PG_A)
6294 vm_page_aflag_set(m, PGA_REFERENCED);
6295 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
6296 pmap_pvh_free(&m->md, pmap, va);
6297 if (TAILQ_EMPTY(&m->md.pv_list) &&
6298 (m->flags & PG_FICTITIOUS) == 0) {
6299 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
6300 if (TAILQ_EMPTY(&pvh->pv_list))
6301 vm_page_aflag_clear(m, PGA_WRITEABLE);
6302 }
6303 pmap_delayed_invl_page(m);
6304 }
6305 return (pmap_unuse_pt(pmap, va, ptepde, free));
6306 }
6307
6308 /*
6309 * Remove a single page from a process address space
6310 */
6311 static void
pmap_remove_page(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,struct spglist * free)6312 pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
6313 struct spglist *free)
6314 {
6315 struct rwlock *lock;
6316 pt_entry_t *pte, PG_V;
6317
6318 PG_V = pmap_valid_bit(pmap);
6319 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6320 if ((*pde & PG_V) == 0)
6321 return;
6322 pte = pmap_pde_to_pte(pde, va);
6323 if ((*pte & PG_V) == 0)
6324 return;
6325 lock = NULL;
6326 pmap_remove_pte(pmap, pte, va, *pde, free, &lock);
6327 if (lock != NULL)
6328 rw_wunlock(lock);
6329 pmap_invalidate_page(pmap, va);
6330 }
6331
6332 /*
6333 * Removes the specified range of addresses from the page table page.
6334 */
6335 static bool
pmap_remove_ptes(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pd_entry_t * pde,struct spglist * free,struct rwlock ** lockp)6336 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
6337 pd_entry_t *pde, struct spglist *free, struct rwlock **lockp)
6338 {
6339 pt_entry_t PG_G, *pte;
6340 vm_offset_t va;
6341 bool anyvalid;
6342
6343 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6344 PG_G = pmap_global_bit(pmap);
6345 anyvalid = false;
6346 va = eva;
6347 for (pte = pmap_pde_to_pte(pde, sva); sva != eva; pte++,
6348 sva += PAGE_SIZE) {
6349 if (*pte == 0) {
6350 if (va != eva) {
6351 pmap_invalidate_range(pmap, va, sva);
6352 va = eva;
6353 }
6354 continue;
6355 }
6356 if ((*pte & PG_G) == 0)
6357 anyvalid = true;
6358 else if (va == eva)
6359 va = sva;
6360 if (pmap_remove_pte(pmap, pte, sva, *pde, free, lockp)) {
6361 sva += PAGE_SIZE;
6362 break;
6363 }
6364 }
6365 if (va != eva)
6366 pmap_invalidate_range(pmap, va, sva);
6367 return (anyvalid);
6368 }
6369
6370 static void
pmap_remove1(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,bool map_delete)6371 pmap_remove1(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, bool map_delete)
6372 {
6373 struct rwlock *lock;
6374 vm_page_t mt;
6375 vm_offset_t va_next;
6376 pml5_entry_t *pml5e;
6377 pml4_entry_t *pml4e;
6378 pdp_entry_t *pdpe;
6379 pd_entry_t ptpaddr, *pde;
6380 pt_entry_t PG_G, PG_V;
6381 struct spglist free;
6382 int anyvalid;
6383
6384 PG_G = pmap_global_bit(pmap);
6385 PG_V = pmap_valid_bit(pmap);
6386
6387 /*
6388 * If there are no resident pages besides the top level page
6389 * table page(s), there is nothing to do. Kernel pmap always
6390 * accounts whole preloaded area as resident, which makes its
6391 * resident count > 2.
6392 * Perform an unsynchronized read. This is, however, safe.
6393 */
6394 if (pmap->pm_stats.resident_count <= 1 + (pmap->pm_pmltopu != NULL ?
6395 1 : 0))
6396 return;
6397
6398 anyvalid = 0;
6399 SLIST_INIT(&free);
6400
6401 pmap_delayed_invl_start();
6402 PMAP_LOCK(pmap);
6403 if (map_delete)
6404 pmap_pkru_on_remove(pmap, sva, eva);
6405
6406 /*
6407 * special handling of removing one page. a very
6408 * common operation and easy to short circuit some
6409 * code.
6410 */
6411 if (sva + PAGE_SIZE == eva) {
6412 pde = pmap_pde(pmap, sva);
6413 if (pde && (*pde & PG_PS) == 0) {
6414 pmap_remove_page(pmap, sva, pde, &free);
6415 goto out;
6416 }
6417 }
6418
6419 lock = NULL;
6420 for (; sva < eva; sva = va_next) {
6421 if (pmap->pm_stats.resident_count == 0)
6422 break;
6423
6424 if (pmap_is_la57(pmap)) {
6425 pml5e = pmap_pml5e(pmap, sva);
6426 if ((*pml5e & PG_V) == 0) {
6427 va_next = (sva + NBPML5) & ~PML5MASK;
6428 if (va_next < sva)
6429 va_next = eva;
6430 continue;
6431 }
6432 pml4e = pmap_pml5e_to_pml4e(pml5e, sva);
6433 } else {
6434 pml4e = pmap_pml4e(pmap, sva);
6435 }
6436 if ((*pml4e & PG_V) == 0) {
6437 va_next = (sva + NBPML4) & ~PML4MASK;
6438 if (va_next < sva)
6439 va_next = eva;
6440 continue;
6441 }
6442
6443 va_next = (sva + NBPDP) & ~PDPMASK;
6444 if (va_next < sva)
6445 va_next = eva;
6446 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6447 if ((*pdpe & PG_V) == 0)
6448 continue;
6449 if ((*pdpe & PG_PS) != 0) {
6450 KASSERT(va_next <= eva,
6451 ("partial update of non-transparent 1G mapping "
6452 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6453 *pdpe, sva, eva, va_next));
6454 MPASS(pmap != kernel_pmap); /* XXXKIB */
6455 MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
6456 anyvalid = 1;
6457 *pdpe = 0;
6458 pmap_resident_count_adj(pmap, -NBPDP / PAGE_SIZE);
6459 mt = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, sva) & PG_FRAME);
6460 pmap_unwire_ptp(pmap, sva, mt, &free);
6461 continue;
6462 }
6463
6464 /*
6465 * Calculate index for next page table.
6466 */
6467 va_next = (sva + NBPDR) & ~PDRMASK;
6468 if (va_next < sva)
6469 va_next = eva;
6470
6471 pde = pmap_pdpe_to_pde(pdpe, sva);
6472 ptpaddr = *pde;
6473
6474 /*
6475 * Weed out invalid mappings.
6476 */
6477 if (ptpaddr == 0)
6478 continue;
6479
6480 /*
6481 * Check for large page.
6482 */
6483 if ((ptpaddr & PG_PS) != 0) {
6484 /*
6485 * Are we removing the entire large page? If not,
6486 * demote the mapping and fall through.
6487 */
6488 if (sva + NBPDR == va_next && eva >= va_next) {
6489 /*
6490 * The TLB entry for a PG_G mapping is
6491 * invalidated by pmap_remove_pde().
6492 */
6493 if ((ptpaddr & PG_G) == 0)
6494 anyvalid = 1;
6495 pmap_remove_pde(pmap, pde, sva, true, &free,
6496 &lock);
6497 continue;
6498 } else if (!pmap_demote_pde_locked(pmap, pde, sva,
6499 &lock)) {
6500 /* The large page mapping was destroyed. */
6501 continue;
6502 } else
6503 ptpaddr = *pde;
6504 }
6505
6506 /*
6507 * Limit our scan to either the end of the va represented
6508 * by the current page table page, or to the end of the
6509 * range being removed.
6510 */
6511 if (va_next > eva)
6512 va_next = eva;
6513
6514 if (pmap_remove_ptes(pmap, sva, va_next, pde, &free, &lock))
6515 anyvalid = 1;
6516 }
6517 if (lock != NULL)
6518 rw_wunlock(lock);
6519 out:
6520 if (anyvalid)
6521 pmap_invalidate_all(pmap);
6522 PMAP_UNLOCK(pmap);
6523 pmap_delayed_invl_finish();
6524 vm_page_free_pages_toq(&free, true);
6525 }
6526
6527 /*
6528 * Remove the given range of addresses from the specified map.
6529 *
6530 * It is assumed that the start and end are properly
6531 * rounded to the page size.
6532 */
6533 void
pmap_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)6534 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6535 {
6536 pmap_remove1(pmap, sva, eva, false);
6537 }
6538
6539 /*
6540 * Remove the given range of addresses as part of a logical unmap
6541 * operation. This has the effect of calling pmap_remove(), but
6542 * also clears any metadata that should persist for the lifetime
6543 * of a logical mapping.
6544 */
6545 void
pmap_map_delete(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)6546 pmap_map_delete(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6547 {
6548 pmap_remove1(pmap, sva, eva, true);
6549 }
6550
6551 /*
6552 * Routine: pmap_remove_all
6553 * Function:
6554 * Removes this physical page from
6555 * all physical maps in which it resides.
6556 * Reflects back modify bits to the pager.
6557 *
6558 * Notes:
6559 * Original versions of this routine were very
6560 * inefficient because they iteratively called
6561 * pmap_remove (slow...)
6562 */
6563
6564 void
pmap_remove_all(vm_page_t m)6565 pmap_remove_all(vm_page_t m)
6566 {
6567 struct md_page *pvh;
6568 pv_entry_t pv;
6569 pmap_t pmap;
6570 struct rwlock *lock;
6571 pt_entry_t *pte, tpte, PG_A, PG_M, PG_RW;
6572 pd_entry_t *pde;
6573 vm_offset_t va;
6574 struct spglist free;
6575 int pvh_gen, md_gen;
6576
6577 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
6578 ("pmap_remove_all: page %p is not managed", m));
6579 SLIST_INIT(&free);
6580 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
6581 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
6582 pa_to_pvh(VM_PAGE_TO_PHYS(m));
6583 rw_wlock(lock);
6584 retry:
6585 while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
6586 pmap = PV_PMAP(pv);
6587 if (!PMAP_TRYLOCK(pmap)) {
6588 pvh_gen = pvh->pv_gen;
6589 rw_wunlock(lock);
6590 PMAP_LOCK(pmap);
6591 rw_wlock(lock);
6592 if (pvh_gen != pvh->pv_gen) {
6593 PMAP_UNLOCK(pmap);
6594 goto retry;
6595 }
6596 }
6597 va = pv->pv_va;
6598 pde = pmap_pde(pmap, va);
6599 (void)pmap_demote_pde_locked(pmap, pde, va, &lock);
6600 PMAP_UNLOCK(pmap);
6601 }
6602 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
6603 pmap = PV_PMAP(pv);
6604 if (!PMAP_TRYLOCK(pmap)) {
6605 pvh_gen = pvh->pv_gen;
6606 md_gen = m->md.pv_gen;
6607 rw_wunlock(lock);
6608 PMAP_LOCK(pmap);
6609 rw_wlock(lock);
6610 if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
6611 PMAP_UNLOCK(pmap);
6612 goto retry;
6613 }
6614 }
6615 PG_A = pmap_accessed_bit(pmap);
6616 PG_M = pmap_modified_bit(pmap);
6617 PG_RW = pmap_rw_bit(pmap);
6618 pmap_resident_count_adj(pmap, -1);
6619 pde = pmap_pde(pmap, pv->pv_va);
6620 KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
6621 " a 2mpage in page %p's pv list", m));
6622 pte = pmap_pde_to_pte(pde, pv->pv_va);
6623 tpte = pte_load_clear(pte);
6624 if (tpte & PG_W)
6625 pmap->pm_stats.wired_count--;
6626 if (tpte & PG_A)
6627 vm_page_aflag_set(m, PGA_REFERENCED);
6628
6629 /*
6630 * Update the vm_page_t clean and reference bits.
6631 */
6632 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6633 vm_page_dirty(m);
6634 pmap_unuse_pt(pmap, pv->pv_va, *pde, &free);
6635 pmap_invalidate_page(pmap, pv->pv_va);
6636 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
6637 m->md.pv_gen++;
6638 free_pv_entry(pmap, pv);
6639 PMAP_UNLOCK(pmap);
6640 }
6641 vm_page_aflag_clear(m, PGA_WRITEABLE);
6642 rw_wunlock(lock);
6643 pmap_delayed_invl_wait(m);
6644 vm_page_free_pages_toq(&free, true);
6645 }
6646
6647 /*
6648 * pmap_protect_pde: do the things to protect a 2mpage in a process
6649 */
6650 static bool
pmap_protect_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t sva,vm_prot_t prot)6651 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
6652 {
6653 pd_entry_t newpde, oldpde;
6654 vm_page_t m, mt;
6655 bool anychanged;
6656 pt_entry_t PG_G, PG_M, PG_RW;
6657
6658 PG_G = pmap_global_bit(pmap);
6659 PG_M = pmap_modified_bit(pmap);
6660 PG_RW = pmap_rw_bit(pmap);
6661
6662 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6663 KASSERT((sva & PDRMASK) == 0,
6664 ("pmap_protect_pde: sva is not 2mpage aligned"));
6665 anychanged = false;
6666 retry:
6667 oldpde = newpde = *pde;
6668 if ((prot & VM_PROT_WRITE) == 0) {
6669 if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
6670 (PG_MANAGED | PG_M | PG_RW)) {
6671 m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6672 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
6673 vm_page_dirty(mt);
6674 }
6675 newpde &= ~(PG_RW | PG_M);
6676 }
6677 if ((prot & VM_PROT_EXECUTE) == 0)
6678 newpde |= pg_nx;
6679 if (newpde != oldpde) {
6680 /*
6681 * As an optimization to future operations on this PDE, clear
6682 * PG_PROMOTED. The impending invalidation will remove any
6683 * lingering 4KB page mappings from the TLB.
6684 */
6685 if (!atomic_cmpset_long(pde, oldpde, newpde & ~PG_PROMOTED))
6686 goto retry;
6687 if ((oldpde & PG_G) != 0)
6688 pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6689 else
6690 anychanged = true;
6691 }
6692 return (anychanged);
6693 }
6694
6695 /*
6696 * Set the physical protection on the
6697 * specified range of this map as requested.
6698 */
6699 void
pmap_protect(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,vm_prot_t prot)6700 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
6701 {
6702 vm_page_t m;
6703 vm_offset_t va_next;
6704 pml4_entry_t *pml4e;
6705 pdp_entry_t *pdpe;
6706 pd_entry_t ptpaddr, *pde;
6707 pt_entry_t *pte, PG_G, PG_M, PG_RW, PG_V;
6708 pt_entry_t obits, pbits;
6709 bool anychanged;
6710
6711 KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
6712 if (prot == VM_PROT_NONE) {
6713 pmap_remove(pmap, sva, eva);
6714 return;
6715 }
6716
6717 if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
6718 (VM_PROT_WRITE|VM_PROT_EXECUTE))
6719 return;
6720
6721 PG_G = pmap_global_bit(pmap);
6722 PG_M = pmap_modified_bit(pmap);
6723 PG_V = pmap_valid_bit(pmap);
6724 PG_RW = pmap_rw_bit(pmap);
6725 anychanged = false;
6726
6727 /*
6728 * Although this function delays and batches the invalidation
6729 * of stale TLB entries, it does not need to call
6730 * pmap_delayed_invl_start() and
6731 * pmap_delayed_invl_finish(), because it does not
6732 * ordinarily destroy mappings. Stale TLB entries from
6733 * protection-only changes need only be invalidated before the
6734 * pmap lock is released, because protection-only changes do
6735 * not destroy PV entries. Even operations that iterate over
6736 * a physical page's PV list of mappings, like
6737 * pmap_remove_write(), acquire the pmap lock for each
6738 * mapping. Consequently, for protection-only changes, the
6739 * pmap lock suffices to synchronize both page table and TLB
6740 * updates.
6741 *
6742 * This function only destroys a mapping if pmap_demote_pde()
6743 * fails. In that case, stale TLB entries are immediately
6744 * invalidated.
6745 */
6746
6747 PMAP_LOCK(pmap);
6748 for (; sva < eva; sva = va_next) {
6749 pml4e = pmap_pml4e(pmap, sva);
6750 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
6751 va_next = (sva + NBPML4) & ~PML4MASK;
6752 if (va_next < sva)
6753 va_next = eva;
6754 continue;
6755 }
6756
6757 va_next = (sva + NBPDP) & ~PDPMASK;
6758 if (va_next < sva)
6759 va_next = eva;
6760 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6761 if ((*pdpe & PG_V) == 0)
6762 continue;
6763 if ((*pdpe & PG_PS) != 0) {
6764 KASSERT(va_next <= eva,
6765 ("partial update of non-transparent 1G mapping "
6766 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6767 *pdpe, sva, eva, va_next));
6768 retry_pdpe:
6769 obits = pbits = *pdpe;
6770 MPASS((pbits & (PG_MANAGED | PG_G)) == 0);
6771 MPASS(pmap != kernel_pmap); /* XXXKIB */
6772 if ((prot & VM_PROT_WRITE) == 0)
6773 pbits &= ~(PG_RW | PG_M);
6774 if ((prot & VM_PROT_EXECUTE) == 0)
6775 pbits |= pg_nx;
6776
6777 if (pbits != obits) {
6778 if (!atomic_cmpset_long(pdpe, obits, pbits))
6779 /* PG_PS cannot be cleared under us, */
6780 goto retry_pdpe;
6781 anychanged = true;
6782 }
6783 continue;
6784 }
6785
6786 va_next = (sva + NBPDR) & ~PDRMASK;
6787 if (va_next < sva)
6788 va_next = eva;
6789
6790 pde = pmap_pdpe_to_pde(pdpe, sva);
6791 ptpaddr = *pde;
6792
6793 /*
6794 * Weed out invalid mappings.
6795 */
6796 if (ptpaddr == 0)
6797 continue;
6798
6799 /*
6800 * Check for large page.
6801 */
6802 if ((ptpaddr & PG_PS) != 0) {
6803 /*
6804 * Are we protecting the entire large page?
6805 */
6806 if (sva + NBPDR == va_next && eva >= va_next) {
6807 /*
6808 * The TLB entry for a PG_G mapping is
6809 * invalidated by pmap_protect_pde().
6810 */
6811 if (pmap_protect_pde(pmap, pde, sva, prot))
6812 anychanged = true;
6813 continue;
6814 }
6815
6816 /*
6817 * Does the large page mapping need to change? If so,
6818 * demote it and fall through.
6819 */
6820 pbits = ptpaddr;
6821 if ((prot & VM_PROT_WRITE) == 0)
6822 pbits &= ~(PG_RW | PG_M);
6823 if ((prot & VM_PROT_EXECUTE) == 0)
6824 pbits |= pg_nx;
6825 if (ptpaddr == pbits || !pmap_demote_pde(pmap, pde,
6826 sva)) {
6827 /*
6828 * Either the large page mapping doesn't need
6829 * to change, or it was destroyed during
6830 * demotion.
6831 */
6832 continue;
6833 }
6834 }
6835
6836 if (va_next > eva)
6837 va_next = eva;
6838
6839 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
6840 sva += PAGE_SIZE) {
6841 retry:
6842 obits = pbits = *pte;
6843 if ((pbits & PG_V) == 0)
6844 continue;
6845
6846 if ((prot & VM_PROT_WRITE) == 0) {
6847 if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
6848 (PG_MANAGED | PG_M | PG_RW)) {
6849 m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
6850 vm_page_dirty(m);
6851 }
6852 pbits &= ~(PG_RW | PG_M);
6853 }
6854 if ((prot & VM_PROT_EXECUTE) == 0)
6855 pbits |= pg_nx;
6856
6857 if (pbits != obits) {
6858 if (!atomic_cmpset_long(pte, obits, pbits))
6859 goto retry;
6860 if (obits & PG_G)
6861 pmap_invalidate_page(pmap, sva);
6862 else
6863 anychanged = true;
6864 }
6865 }
6866 }
6867 if (anychanged)
6868 pmap_invalidate_all(pmap);
6869 PMAP_UNLOCK(pmap);
6870 }
6871
6872 static bool
pmap_pde_ept_executable(pmap_t pmap,pd_entry_t pde)6873 pmap_pde_ept_executable(pmap_t pmap, pd_entry_t pde)
6874 {
6875
6876 if (pmap->pm_type != PT_EPT)
6877 return (false);
6878 return ((pde & EPT_PG_EXECUTE) != 0);
6879 }
6880
6881 #if VM_NRESERVLEVEL > 0
6882 /*
6883 * Tries to promote the 512, contiguous 4KB page mappings that are within a
6884 * single page table page (PTP) to a single 2MB page mapping. For promotion
6885 * to occur, two conditions must be met: (1) the 4KB page mappings must map
6886 * aligned, contiguous physical memory and (2) the 4KB page mappings must have
6887 * identical characteristics.
6888 */
6889 static bool
pmap_promote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,vm_page_t mpte,struct rwlock ** lockp)6890 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va, vm_page_t mpte,
6891 struct rwlock **lockp)
6892 {
6893 pd_entry_t newpde;
6894 pt_entry_t *firstpte, oldpte, pa, *pte;
6895 pt_entry_t allpte_PG_A, PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
6896 int PG_PTE_CACHE;
6897
6898 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6899 if (!pmap_ps_enabled(pmap))
6900 return (false);
6901
6902 PG_A = pmap_accessed_bit(pmap);
6903 PG_G = pmap_global_bit(pmap);
6904 PG_M = pmap_modified_bit(pmap);
6905 PG_V = pmap_valid_bit(pmap);
6906 PG_RW = pmap_rw_bit(pmap);
6907 PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6908 PG_PTE_CACHE = pmap_cache_mask(pmap, false);
6909
6910 /*
6911 * Examine the first PTE in the specified PTP. Abort if this PTE is
6912 * ineligible for promotion due to hardware errata, invalid, or does
6913 * not map the first 4KB physical page within a 2MB page.
6914 */
6915 firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
6916 newpde = *firstpte;
6917 if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap, newpde)))
6918 return (false);
6919 if ((newpde & ((PG_FRAME & PDRMASK) | PG_V)) != PG_V) {
6920 counter_u64_add(pmap_pde_p_failures, 1);
6921 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6922 " in pmap %p", va, pmap);
6923 return (false);
6924 }
6925
6926 /*
6927 * Both here and in the below "for" loop, to allow for repromotion
6928 * after MADV_FREE, conditionally write protect a clean PTE before
6929 * possibly aborting the promotion due to other PTE attributes. Why?
6930 * Suppose that MADV_FREE is applied to a part of a superpage, the
6931 * address range [S, E). pmap_advise() will demote the superpage
6932 * mapping, destroy the 4KB page mapping at the end of [S, E), and
6933 * clear PG_M and PG_A in the PTEs for the rest of [S, E). Later,
6934 * imagine that the memory in [S, E) is recycled, but the last 4KB
6935 * page in [S, E) is not the last to be rewritten, or simply accessed.
6936 * In other words, there is still a 4KB page in [S, E), call it P,
6937 * that is writeable but PG_M and PG_A are clear in P's PTE. Unless
6938 * we write protect P before aborting the promotion, if and when P is
6939 * finally rewritten, there won't be a page fault to trigger
6940 * repromotion.
6941 */
6942 setpde:
6943 if ((newpde & (PG_M | PG_RW)) == PG_RW) {
6944 /*
6945 * When PG_M is already clear, PG_RW can be cleared without
6946 * a TLB invalidation.
6947 */
6948 if (!atomic_fcmpset_long(firstpte, &newpde, newpde & ~PG_RW))
6949 goto setpde;
6950 newpde &= ~PG_RW;
6951 CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6952 " in pmap %p", va & ~PDRMASK, pmap);
6953 }
6954
6955 /*
6956 * Examine each of the other PTEs in the specified PTP. Abort if this
6957 * PTE maps an unexpected 4KB physical page or does not have identical
6958 * characteristics to the first PTE.
6959 */
6960 allpte_PG_A = newpde & PG_A;
6961 pa = (newpde & (PG_PS_FRAME | PG_V)) + NBPDR - PAGE_SIZE;
6962 for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
6963 oldpte = *pte;
6964 if ((oldpte & (PG_FRAME | PG_V)) != pa) {
6965 counter_u64_add(pmap_pde_p_failures, 1);
6966 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6967 " in pmap %p", va, pmap);
6968 return (false);
6969 }
6970 setpte:
6971 if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
6972 /*
6973 * When PG_M is already clear, PG_RW can be cleared
6974 * without a TLB invalidation.
6975 */
6976 if (!atomic_fcmpset_long(pte, &oldpte, oldpte & ~PG_RW))
6977 goto setpte;
6978 oldpte &= ~PG_RW;
6979 CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6980 " in pmap %p", (oldpte & PG_FRAME & PDRMASK) |
6981 (va & ~PDRMASK), pmap);
6982 }
6983 if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
6984 counter_u64_add(pmap_pde_p_failures, 1);
6985 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6986 " in pmap %p", va, pmap);
6987 return (false);
6988 }
6989 allpte_PG_A &= oldpte;
6990 pa -= PAGE_SIZE;
6991 }
6992
6993 /*
6994 * Unless all PTEs have PG_A set, clear it from the superpage mapping,
6995 * so that promotions triggered by speculative mappings, such as
6996 * pmap_enter_quick(), don't automatically mark the underlying pages
6997 * as referenced.
6998 */
6999 newpde &= ~PG_A | allpte_PG_A;
7000
7001 /*
7002 * EPT PTEs with PG_M set and PG_A clear are not supported by early
7003 * MMUs supporting EPT.
7004 */
7005 KASSERT((newpde & PG_A) != 0 || safe_to_clear_referenced(pmap, newpde),
7006 ("unsupported EPT PTE"));
7007
7008 /*
7009 * Save the PTP in its current state until the PDE mapping the
7010 * superpage is demoted by pmap_demote_pde() or destroyed by
7011 * pmap_remove_pde(). If PG_A is not set in every PTE, then request
7012 * that the PTP be refilled on demotion.
7013 */
7014 if (mpte == NULL)
7015 mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7016 KASSERT(mpte >= vm_page_array &&
7017 mpte < &vm_page_array[vm_page_array_size],
7018 ("pmap_promote_pde: page table page is out of range"));
7019 KASSERT(mpte->pindex == pmap_pde_pindex(va),
7020 ("pmap_promote_pde: page table page's pindex is wrong "
7021 "mpte %p pidx %#lx va %#lx va pde pidx %#lx",
7022 mpte, mpte->pindex, va, pmap_pde_pindex(va)));
7023 if (pmap_insert_pt_page(pmap, mpte, true, allpte_PG_A != 0)) {
7024 counter_u64_add(pmap_pde_p_failures, 1);
7025 CTR2(KTR_PMAP,
7026 "pmap_promote_pde: failure for va %#lx in pmap %p", va,
7027 pmap);
7028 return (false);
7029 }
7030
7031 /*
7032 * Promote the pv entries.
7033 */
7034 if ((newpde & PG_MANAGED) != 0)
7035 pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME, lockp);
7036
7037 /*
7038 * Propagate the PAT index to its proper position.
7039 */
7040 newpde = pmap_swap_pat(pmap, newpde);
7041
7042 /*
7043 * Map the superpage.
7044 */
7045 if (workaround_erratum383)
7046 pmap_update_pde(pmap, va, pde, PG_PS | newpde);
7047 else
7048 pde_store(pde, PG_PROMOTED | PG_PS | newpde);
7049
7050 counter_u64_add(pmap_pde_promotions, 1);
7051 CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#lx"
7052 " in pmap %p", va, pmap);
7053 return (true);
7054 }
7055 #endif /* VM_NRESERVLEVEL > 0 */
7056
7057 static int
pmap_enter_largepage(pmap_t pmap,vm_offset_t va,pt_entry_t newpte,int flags,int psind)7058 pmap_enter_largepage(pmap_t pmap, vm_offset_t va, pt_entry_t newpte, int flags,
7059 int psind)
7060 {
7061 vm_page_t mp;
7062 pt_entry_t origpte, *pml4e, *pdpe, *pde, pten, PG_V;
7063
7064 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7065 KASSERT(psind > 0 && psind < MAXPAGESIZES && pagesizes[psind] != 0,
7066 ("psind %d unexpected", psind));
7067 KASSERT(((newpte & PG_FRAME) & (pagesizes[psind] - 1)) == 0,
7068 ("unaligned phys address %#lx newpte %#lx psind %d",
7069 newpte & PG_FRAME, newpte, psind));
7070 KASSERT((va & (pagesizes[psind] - 1)) == 0,
7071 ("unaligned va %#lx psind %d", va, psind));
7072 KASSERT(va < VM_MAXUSER_ADDRESS,
7073 ("kernel mode non-transparent superpage")); /* XXXKIB */
7074 KASSERT(va + pagesizes[psind] < VM_MAXUSER_ADDRESS,
7075 ("overflowing user map va %#lx psind %d", va, psind)); /* XXXKIB */
7076
7077 PG_V = pmap_valid_bit(pmap);
7078
7079 restart:
7080 pten = newpte;
7081 if (!pmap_pkru_same(pmap, va, va + pagesizes[psind], &pten))
7082 return (KERN_PROTECTION_FAILURE);
7083
7084 if (psind == 2) { /* 1G */
7085 pml4e = pmap_pml4e(pmap, va);
7086 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7087 mp = pmap_allocpte_alloc(pmap, pmap_pml4e_pindex(va),
7088 NULL, va);
7089 if (mp == NULL)
7090 goto allocf;
7091 pdpe = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
7092 pdpe = &pdpe[pmap_pdpe_index(va)];
7093 origpte = *pdpe;
7094 MPASS(origpte == 0);
7095 } else {
7096 pdpe = pmap_pml4e_to_pdpe(pml4e, va);
7097 KASSERT(pdpe != NULL, ("va %#lx lost pdpe", va));
7098 origpte = *pdpe;
7099 if ((origpte & PG_V) == 0) {
7100 mp = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
7101 mp->ref_count++;
7102 }
7103 }
7104 *pdpe = pten;
7105 } else /* (psind == 1) */ { /* 2M */
7106 pde = pmap_pde(pmap, va);
7107 if (pde == NULL) {
7108 mp = pmap_allocpte_alloc(pmap, pmap_pdpe_pindex(va),
7109 NULL, va);
7110 if (mp == NULL)
7111 goto allocf;
7112 pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
7113 pde = &pde[pmap_pde_index(va)];
7114 origpte = *pde;
7115 MPASS(origpte == 0);
7116 } else {
7117 origpte = *pde;
7118 if ((origpte & PG_V) == 0) {
7119 pdpe = pmap_pdpe(pmap, va);
7120 MPASS(pdpe != NULL && (*pdpe & PG_V) != 0);
7121 mp = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
7122 mp->ref_count++;
7123 }
7124 }
7125 *pde = pten;
7126 }
7127 KASSERT((origpte & PG_V) == 0 || ((origpte & PG_PS) != 0 &&
7128 (origpte & PG_PS_FRAME) == (pten & PG_PS_FRAME)),
7129 ("va %#lx changing %s phys page origpte %#lx pten %#lx",
7130 va, psind == 2 ? "1G" : "2M", origpte, pten));
7131 if ((pten & PG_W) != 0 && (origpte & PG_W) == 0)
7132 pmap->pm_stats.wired_count += pagesizes[psind] / PAGE_SIZE;
7133 else if ((pten & PG_W) == 0 && (origpte & PG_W) != 0)
7134 pmap->pm_stats.wired_count -= pagesizes[psind] / PAGE_SIZE;
7135 if ((origpte & PG_V) == 0)
7136 pmap_resident_count_adj(pmap, pagesizes[psind] / PAGE_SIZE);
7137
7138 return (KERN_SUCCESS);
7139
7140 allocf:
7141 if ((flags & PMAP_ENTER_NOSLEEP) != 0)
7142 return (KERN_RESOURCE_SHORTAGE);
7143 PMAP_UNLOCK(pmap);
7144 vm_wait(NULL);
7145 PMAP_LOCK(pmap);
7146 goto restart;
7147 }
7148
7149 /*
7150 * Insert the given physical page (p) at
7151 * the specified virtual address (v) in the
7152 * target physical map with the protection requested.
7153 *
7154 * If specified, the page will be wired down, meaning
7155 * that the related pte can not be reclaimed.
7156 *
7157 * NB: This is the only routine which MAY NOT lazy-evaluate
7158 * or lose information. That is, this routine must actually
7159 * insert this page into the given map NOW.
7160 *
7161 * When destroying both a page table and PV entry, this function
7162 * performs the TLB invalidation before releasing the PV list
7163 * lock, so we do not need pmap_delayed_invl_page() calls here.
7164 */
7165 int
pmap_enter(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind)7166 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7167 u_int flags, int8_t psind)
7168 {
7169 struct rwlock *lock;
7170 pd_entry_t *pde;
7171 pt_entry_t *pte, PG_G, PG_A, PG_M, PG_RW, PG_V;
7172 pt_entry_t newpte, origpte;
7173 pv_entry_t pv;
7174 vm_paddr_t opa, pa;
7175 vm_page_t mpte, om;
7176 int rv;
7177 bool nosleep;
7178
7179 PG_A = pmap_accessed_bit(pmap);
7180 PG_G = pmap_global_bit(pmap);
7181 PG_M = pmap_modified_bit(pmap);
7182 PG_V = pmap_valid_bit(pmap);
7183 PG_RW = pmap_rw_bit(pmap);
7184
7185 va = trunc_page(va);
7186 KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
7187 KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
7188 ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)",
7189 va));
7190 KASSERT((m->oflags & VPO_UNMANAGED) != 0 || !VA_IS_CLEANMAP(va),
7191 ("pmap_enter: managed mapping within the clean submap"));
7192 if ((m->oflags & VPO_UNMANAGED) == 0)
7193 VM_PAGE_OBJECT_BUSY_ASSERT(m);
7194 KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
7195 ("pmap_enter: flags %u has reserved bits set", flags));
7196 pa = VM_PAGE_TO_PHYS(m);
7197 newpte = (pt_entry_t)(pa | PG_A | PG_V);
7198 if ((flags & VM_PROT_WRITE) != 0)
7199 newpte |= PG_M;
7200 if ((prot & VM_PROT_WRITE) != 0)
7201 newpte |= PG_RW;
7202 KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
7203 ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
7204 if ((prot & VM_PROT_EXECUTE) == 0)
7205 newpte |= pg_nx;
7206 if ((flags & PMAP_ENTER_WIRED) != 0)
7207 newpte |= PG_W;
7208 if (va < VM_MAXUSER_ADDRESS)
7209 newpte |= PG_U;
7210 if (pmap == kernel_pmap)
7211 newpte |= PG_G;
7212 newpte |= pmap_cache_bits(pmap, m->md.pat_mode, psind > 0);
7213
7214 /*
7215 * Set modified bit gratuitously for writeable mappings if
7216 * the page is unmanaged. We do not want to take a fault
7217 * to do the dirty bit accounting for these mappings.
7218 */
7219 if ((m->oflags & VPO_UNMANAGED) != 0) {
7220 if ((newpte & PG_RW) != 0)
7221 newpte |= PG_M;
7222 } else
7223 newpte |= PG_MANAGED;
7224
7225 lock = NULL;
7226 PMAP_LOCK(pmap);
7227 if ((flags & PMAP_ENTER_LARGEPAGE) != 0) {
7228 KASSERT((m->oflags & VPO_UNMANAGED) != 0,
7229 ("managed largepage va %#lx flags %#x", va, flags));
7230 rv = pmap_enter_largepage(pmap, va, newpte | PG_PS, flags,
7231 psind);
7232 goto out;
7233 }
7234 if (psind == 1) {
7235 /* Assert the required virtual and physical alignment. */
7236 KASSERT((va & PDRMASK) == 0, ("pmap_enter: va unaligned"));
7237 KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
7238 rv = pmap_enter_pde(pmap, va, newpte | PG_PS, flags, m, &lock);
7239 goto out;
7240 }
7241 mpte = NULL;
7242
7243 /*
7244 * In the case that a page table page is not
7245 * resident, we are creating it here.
7246 */
7247 retry:
7248 pde = pmap_pde(pmap, va);
7249 if (pde != NULL && (*pde & PG_V) != 0 && ((*pde & PG_PS) == 0 ||
7250 pmap_demote_pde_locked(pmap, pde, va, &lock))) {
7251 pte = pmap_pde_to_pte(pde, va);
7252 if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
7253 mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7254 mpte->ref_count++;
7255 }
7256 } else if (va < VM_MAXUSER_ADDRESS) {
7257 /*
7258 * Here if the pte page isn't mapped, or if it has been
7259 * deallocated.
7260 */
7261 nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
7262 mpte = pmap_allocpte_alloc(pmap, pmap_pde_pindex(va),
7263 nosleep ? NULL : &lock, va);
7264 if (mpte == NULL && nosleep) {
7265 rv = KERN_RESOURCE_SHORTAGE;
7266 goto out;
7267 }
7268 goto retry;
7269 } else
7270 panic("pmap_enter: invalid page directory va=%#lx", va);
7271
7272 origpte = *pte;
7273 pv = NULL;
7274 if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86)
7275 newpte |= pmap_pkru_get(pmap, va);
7276
7277 /*
7278 * Is the specified virtual address already mapped?
7279 */
7280 if ((origpte & PG_V) != 0) {
7281 /*
7282 * Wiring change, just update stats. We don't worry about
7283 * wiring PT pages as they remain resident as long as there
7284 * are valid mappings in them. Hence, if a user page is wired,
7285 * the PT page will be also.
7286 */
7287 if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
7288 pmap->pm_stats.wired_count++;
7289 else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
7290 pmap->pm_stats.wired_count--;
7291
7292 /*
7293 * Remove the extra PT page reference.
7294 */
7295 if (mpte != NULL) {
7296 mpte->ref_count--;
7297 KASSERT(mpte->ref_count > 0,
7298 ("pmap_enter: missing reference to page table page,"
7299 " va: 0x%lx", va));
7300 }
7301
7302 /*
7303 * Has the physical page changed?
7304 */
7305 opa = origpte & PG_FRAME;
7306 if (opa == pa) {
7307 /*
7308 * No, might be a protection or wiring change.
7309 */
7310 if ((origpte & PG_MANAGED) != 0 &&
7311 (newpte & PG_RW) != 0)
7312 vm_page_aflag_set(m, PGA_WRITEABLE);
7313 if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
7314 goto unchanged;
7315 goto validate;
7316 }
7317
7318 /*
7319 * The physical page has changed. Temporarily invalidate
7320 * the mapping. This ensures that all threads sharing the
7321 * pmap keep a consistent view of the mapping, which is
7322 * necessary for the correct handling of COW faults. It
7323 * also permits reuse of the old mapping's PV entry,
7324 * avoiding an allocation.
7325 *
7326 * For consistency, handle unmanaged mappings the same way.
7327 */
7328 origpte = pte_load_clear(pte);
7329 KASSERT((origpte & PG_FRAME) == opa,
7330 ("pmap_enter: unexpected pa update for %#lx", va));
7331 if ((origpte & PG_MANAGED) != 0) {
7332 om = PHYS_TO_VM_PAGE(opa);
7333
7334 /*
7335 * The pmap lock is sufficient to synchronize with
7336 * concurrent calls to pmap_page_test_mappings() and
7337 * pmap_ts_referenced().
7338 */
7339 if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
7340 vm_page_dirty(om);
7341 if ((origpte & PG_A) != 0) {
7342 pmap_invalidate_page(pmap, va);
7343 vm_page_aflag_set(om, PGA_REFERENCED);
7344 }
7345 CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
7346 pv = pmap_pvh_remove(&om->md, pmap, va);
7347 KASSERT(pv != NULL,
7348 ("pmap_enter: no PV entry for %#lx", va));
7349 if ((newpte & PG_MANAGED) == 0)
7350 free_pv_entry(pmap, pv);
7351 if ((om->a.flags & PGA_WRITEABLE) != 0 &&
7352 TAILQ_EMPTY(&om->md.pv_list) &&
7353 ((om->flags & PG_FICTITIOUS) != 0 ||
7354 TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
7355 vm_page_aflag_clear(om, PGA_WRITEABLE);
7356 } else {
7357 /*
7358 * Since this mapping is unmanaged, assume that PG_A
7359 * is set.
7360 */
7361 pmap_invalidate_page(pmap, va);
7362 }
7363 origpte = 0;
7364 } else {
7365 /*
7366 * Increment the counters.
7367 */
7368 if ((newpte & PG_W) != 0)
7369 pmap->pm_stats.wired_count++;
7370 pmap_resident_count_adj(pmap, 1);
7371 }
7372
7373 /*
7374 * Enter on the PV list if part of our managed memory.
7375 */
7376 if ((newpte & PG_MANAGED) != 0) {
7377 if (pv == NULL) {
7378 pv = get_pv_entry(pmap, &lock);
7379 pv->pv_va = va;
7380 }
7381 CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
7382 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
7383 m->md.pv_gen++;
7384 if ((newpte & PG_RW) != 0)
7385 vm_page_aflag_set(m, PGA_WRITEABLE);
7386 }
7387
7388 /*
7389 * Update the PTE.
7390 */
7391 if ((origpte & PG_V) != 0) {
7392 validate:
7393 origpte = pte_load_store(pte, newpte);
7394 KASSERT((origpte & PG_FRAME) == pa,
7395 ("pmap_enter: unexpected pa update for %#lx", va));
7396 if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
7397 (PG_M | PG_RW)) {
7398 if ((origpte & PG_MANAGED) != 0)
7399 vm_page_dirty(m);
7400
7401 /*
7402 * Although the PTE may still have PG_RW set, TLB
7403 * invalidation may nonetheless be required because
7404 * the PTE no longer has PG_M set.
7405 */
7406 } else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
7407 /*
7408 * This PTE change does not require TLB invalidation.
7409 */
7410 goto unchanged;
7411 }
7412 if ((origpte & PG_A) != 0)
7413 pmap_invalidate_page(pmap, va);
7414 } else
7415 pte_store(pte, newpte);
7416
7417 unchanged:
7418
7419 #if VM_NRESERVLEVEL > 0
7420 /*
7421 * If both the page table page and the reservation are fully
7422 * populated, then attempt promotion.
7423 */
7424 if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
7425 (m->flags & PG_FICTITIOUS) == 0 &&
7426 vm_reserv_level_iffullpop(m) == 0)
7427 (void)pmap_promote_pde(pmap, pde, va, mpte, &lock);
7428 #endif
7429
7430 rv = KERN_SUCCESS;
7431 out:
7432 if (lock != NULL)
7433 rw_wunlock(lock);
7434 PMAP_UNLOCK(pmap);
7435 return (rv);
7436 }
7437
7438 /*
7439 * Tries to create a read- and/or execute-only 2MB page mapping. Returns
7440 * KERN_SUCCESS if the mapping was created. Otherwise, returns an error
7441 * value. See pmap_enter_pde() for the possible error values when "no sleep",
7442 * "no replace", and "no reclaim" are specified.
7443 */
7444 static int
pmap_enter_2mpage(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,struct rwlock ** lockp)7445 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7446 struct rwlock **lockp)
7447 {
7448 pd_entry_t newpde;
7449 pt_entry_t PG_V;
7450
7451 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7452 PG_V = pmap_valid_bit(pmap);
7453 newpde = VM_PAGE_TO_PHYS(m) |
7454 pmap_cache_bits(pmap, m->md.pat_mode, true) | PG_PS | PG_V;
7455 if ((m->oflags & VPO_UNMANAGED) == 0)
7456 newpde |= PG_MANAGED;
7457 if ((prot & VM_PROT_EXECUTE) == 0)
7458 newpde |= pg_nx;
7459 if (va < VM_MAXUSER_ADDRESS)
7460 newpde |= PG_U;
7461 return (pmap_enter_pde(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
7462 PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp));
7463 }
7464
7465 /*
7466 * Returns true if every page table entry in the specified page table page is
7467 * zero.
7468 */
7469 static bool
pmap_every_pte_zero(vm_paddr_t pa)7470 pmap_every_pte_zero(vm_paddr_t pa)
7471 {
7472 pt_entry_t *pt_end, *pte;
7473
7474 KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
7475 pte = (pt_entry_t *)PHYS_TO_DMAP(pa);
7476 for (pt_end = pte + NPTEPG; pte < pt_end; pte++) {
7477 if (*pte != 0)
7478 return (false);
7479 }
7480 return (true);
7481 }
7482
7483 /*
7484 * Tries to create the specified 2MB page mapping. Returns KERN_SUCCESS if
7485 * the mapping was created, and one of KERN_FAILURE, KERN_NO_SPACE,
7486 * KERN_PROTECTION_FAILURE, or KERN_RESOURCE_SHORTAGE otherwise. Returns
7487 * KERN_FAILURE if either (1) PMAP_ENTER_NOREPLACE was specified and a 4KB
7488 * page mapping already exists within the 2MB virtual address range starting
7489 * at the specified virtual address or (2) the requested 2MB page mapping is
7490 * not supported due to hardware errata. Returns KERN_NO_SPACE if
7491 * PMAP_ENTER_NOREPLACE was specified and a 2MB page mapping already exists at
7492 * the specified virtual address. Returns KERN_PROTECTION_FAILURE if the PKRU
7493 * settings are not the same across the 2MB virtual address range starting at
7494 * the specified virtual address. Returns KERN_RESOURCE_SHORTAGE if either
7495 * (1) PMAP_ENTER_NOSLEEP was specified and a page table page allocation
7496 * failed or (2) PMAP_ENTER_NORECLAIM was specified and a PV entry allocation
7497 * failed.
7498 *
7499 * The parameter "m" is only used when creating a managed, writeable mapping.
7500 */
7501 static int
pmap_enter_pde(pmap_t pmap,vm_offset_t va,pd_entry_t newpde,u_int flags,vm_page_t m,struct rwlock ** lockp)7502 pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde, u_int flags,
7503 vm_page_t m, struct rwlock **lockp)
7504 {
7505 struct spglist free;
7506 pd_entry_t oldpde, *pde;
7507 pt_entry_t PG_G, PG_RW, PG_V;
7508 vm_page_t mt, pdpg;
7509 vm_page_t uwptpg;
7510
7511 PG_G = pmap_global_bit(pmap);
7512 PG_RW = pmap_rw_bit(pmap);
7513 KASSERT((newpde & (pmap_modified_bit(pmap) | PG_RW)) != PG_RW,
7514 ("pmap_enter_pde: newpde is missing PG_M"));
7515 PG_V = pmap_valid_bit(pmap);
7516 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7517
7518 if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap,
7519 newpde))) {
7520 CTR2(KTR_PMAP, "pmap_enter_pde: 2m x blocked for va %#lx"
7521 " in pmap %p", va, pmap);
7522 return (KERN_FAILURE);
7523 }
7524 if ((pde = pmap_alloc_pde(pmap, va, &pdpg, (flags &
7525 PMAP_ENTER_NOSLEEP) != 0 ? NULL : lockp)) == NULL) {
7526 CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7527 " in pmap %p", va, pmap);
7528 return (KERN_RESOURCE_SHORTAGE);
7529 }
7530
7531 /*
7532 * If pkru is not same for the whole pde range, return failure
7533 * and let vm_fault() cope. Check after pde allocation, since
7534 * it could sleep.
7535 */
7536 if (!pmap_pkru_same(pmap, va, va + NBPDR, &newpde)) {
7537 pmap_abort_ptp(pmap, va, pdpg);
7538 return (KERN_PROTECTION_FAILURE);
7539 }
7540
7541 /*
7542 * If there are existing mappings, either abort or remove them.
7543 */
7544 oldpde = *pde;
7545 if ((oldpde & PG_V) != 0) {
7546 KASSERT(pdpg == NULL || pdpg->ref_count > 1,
7547 ("pmap_enter_pde: pdpg's reference count is too low"));
7548 if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
7549 if ((oldpde & PG_PS) != 0) {
7550 if (pdpg != NULL)
7551 pdpg->ref_count--;
7552 CTR2(KTR_PMAP,
7553 "pmap_enter_pde: no space for va %#lx"
7554 " in pmap %p", va, pmap);
7555 return (KERN_NO_SPACE);
7556 } else if (va < VM_MAXUSER_ADDRESS ||
7557 !pmap_every_pte_zero(oldpde & PG_FRAME)) {
7558 if (pdpg != NULL)
7559 pdpg->ref_count--;
7560 CTR2(KTR_PMAP,
7561 "pmap_enter_pde: failure for va %#lx"
7562 " in pmap %p", va, pmap);
7563 return (KERN_FAILURE);
7564 }
7565 }
7566 /* Break the existing mapping(s). */
7567 SLIST_INIT(&free);
7568 if ((oldpde & PG_PS) != 0) {
7569 /*
7570 * The reference to the PD page that was acquired by
7571 * pmap_alloc_pde() ensures that it won't be freed.
7572 * However, if the PDE resulted from a promotion, and
7573 * the mapping is not from kernel_pmap, then
7574 * a reserved PT page could be freed.
7575 */
7576 (void)pmap_remove_pde(pmap, pde, va,
7577 pmap != kernel_pmap, &free, lockp);
7578 if ((oldpde & PG_G) == 0)
7579 pmap_invalidate_pde_page(pmap, va, oldpde);
7580 } else {
7581 if (va >= VM_MAXUSER_ADDRESS) {
7582 /*
7583 * Try to save the ptp in the trie
7584 * before any changes to mappings are
7585 * made. Abort on failure.
7586 */
7587 mt = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7588 if (pmap_insert_pt_page(pmap, mt, false, false)) {
7589 if (pdpg != NULL)
7590 pdpg->ref_count--;
7591 CTR1(KTR_PMAP,
7592 "pmap_enter_pde: cannot ins kern ptp va %#lx",
7593 va);
7594 return (KERN_RESOURCE_SHORTAGE);
7595 }
7596 /*
7597 * Both pmap_remove_pde() and
7598 * pmap_remove_ptes() will zero-fill
7599 * the kernel page table page.
7600 */
7601 }
7602 pmap_delayed_invl_start();
7603 if (pmap_remove_ptes(pmap, va, va + NBPDR, pde, &free,
7604 lockp))
7605 pmap_invalidate_all(pmap);
7606 pmap_delayed_invl_finish();
7607 }
7608 if (va < VM_MAXUSER_ADDRESS) {
7609 vm_page_free_pages_toq(&free, true);
7610 KASSERT(*pde == 0, ("pmap_enter_pde: non-zero pde %p",
7611 pde));
7612 } else {
7613 KASSERT(SLIST_EMPTY(&free),
7614 ("pmap_enter_pde: freed kernel page table page"));
7615 }
7616 }
7617
7618 /*
7619 * Allocate leaf ptpage for wired userspace pages.
7620 */
7621 uwptpg = NULL;
7622 if ((newpde & PG_W) != 0 && pmap != kernel_pmap) {
7623 uwptpg = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
7624 VM_ALLOC_WIRED);
7625 if (uwptpg == NULL) {
7626 pmap_abort_ptp(pmap, va, pdpg);
7627 return (KERN_RESOURCE_SHORTAGE);
7628 }
7629 if (pmap_insert_pt_page(pmap, uwptpg, true, false)) {
7630 pmap_free_pt_page(pmap, uwptpg, false);
7631 pmap_abort_ptp(pmap, va, pdpg);
7632 return (KERN_RESOURCE_SHORTAGE);
7633 }
7634
7635 uwptpg->ref_count = NPTEPG;
7636 }
7637 if ((newpde & PG_MANAGED) != 0) {
7638 /*
7639 * Abort this mapping if its PV entry could not be created.
7640 */
7641 if (!pmap_pv_insert_pde(pmap, va, newpde, flags, lockp)) {
7642 if (pdpg != NULL)
7643 pmap_abort_ptp(pmap, va, pdpg);
7644 if (uwptpg != NULL) {
7645 mt = pmap_remove_pt_page(pmap, va);
7646 KASSERT(mt == uwptpg,
7647 ("removed pt page %p, expected %p", mt,
7648 uwptpg));
7649 uwptpg->ref_count = 1;
7650 pmap_free_pt_page(pmap, uwptpg, false);
7651 }
7652 CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7653 " in pmap %p", va, pmap);
7654 return (KERN_RESOURCE_SHORTAGE);
7655 }
7656 if ((newpde & PG_RW) != 0) {
7657 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
7658 vm_page_aflag_set(mt, PGA_WRITEABLE);
7659 }
7660 }
7661
7662 /*
7663 * Increment counters.
7664 */
7665 if ((newpde & PG_W) != 0)
7666 pmap->pm_stats.wired_count += NBPDR / PAGE_SIZE;
7667 pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7668
7669 /*
7670 * Map the superpage. (This is not a promoted mapping; there will not
7671 * be any lingering 4KB page mappings in the TLB.)
7672 */
7673 pde_store(pde, newpde);
7674
7675 counter_u64_add(pmap_pde_mappings, 1);
7676 CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx in pmap %p",
7677 va, pmap);
7678 return (KERN_SUCCESS);
7679 }
7680
7681 /*
7682 * Maps a sequence of resident pages belonging to the same object.
7683 * The sequence begins with the given page m_start. This page is
7684 * mapped at the given virtual address start. Each subsequent page is
7685 * mapped at a virtual address that is offset from start by the same
7686 * amount as the page is offset from m_start within the object. The
7687 * last page in the sequence is the page with the largest offset from
7688 * m_start that can be mapped at a virtual address less than the given
7689 * virtual address end. Not every virtual page between start and end
7690 * is mapped; only those for which a resident page exists with the
7691 * corresponding offset from m_start are mapped.
7692 */
7693 void
pmap_enter_object(pmap_t pmap,vm_offset_t start,vm_offset_t end,vm_page_t m_start,vm_prot_t prot)7694 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
7695 vm_page_t m_start, vm_prot_t prot)
7696 {
7697 struct pctrie_iter pages;
7698 struct rwlock *lock;
7699 vm_offset_t va;
7700 vm_page_t m, mpte;
7701 int rv;
7702
7703 VM_OBJECT_ASSERT_LOCKED(m_start->object);
7704
7705 mpte = NULL;
7706 vm_page_iter_limit_init(&pages, m_start->object,
7707 m_start->pindex + atop(end - start));
7708 m = vm_radix_iter_lookup(&pages, m_start->pindex);
7709 lock = NULL;
7710 PMAP_LOCK(pmap);
7711 while (m != NULL) {
7712 va = start + ptoa(m->pindex - m_start->pindex);
7713 if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
7714 m->psind == 1 && pmap_ps_enabled(pmap) &&
7715 ((rv = pmap_enter_2mpage(pmap, va, m, prot, &lock)) ==
7716 KERN_SUCCESS || rv == KERN_NO_SPACE))
7717 m = vm_radix_iter_jump(&pages, NBPDR / PAGE_SIZE);
7718 else {
7719 mpte = pmap_enter_quick_locked(pmap, va, m, prot,
7720 mpte, &lock);
7721 m = vm_radix_iter_step(&pages);
7722 }
7723 }
7724 if (lock != NULL)
7725 rw_wunlock(lock);
7726 PMAP_UNLOCK(pmap);
7727 }
7728
7729 /*
7730 * this code makes some *MAJOR* assumptions:
7731 * 1. Current pmap & pmap exists.
7732 * 2. Not wired.
7733 * 3. Read access.
7734 * 4. No page table pages.
7735 * but is *MUCH* faster than pmap_enter...
7736 */
7737
7738 void
pmap_enter_quick(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot)7739 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
7740 {
7741 struct rwlock *lock;
7742
7743 lock = NULL;
7744 PMAP_LOCK(pmap);
7745 (void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
7746 if (lock != NULL)
7747 rw_wunlock(lock);
7748 PMAP_UNLOCK(pmap);
7749 }
7750
7751 static vm_page_t
pmap_enter_quick_locked(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,vm_page_t mpte,struct rwlock ** lockp)7752 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
7753 vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
7754 {
7755 pd_entry_t *pde;
7756 pt_entry_t newpte, *pte, PG_V;
7757
7758 KASSERT(!VA_IS_CLEANMAP(va) ||
7759 (m->oflags & VPO_UNMANAGED) != 0,
7760 ("pmap_enter_quick_locked: managed mapping within the clean submap"));
7761 PG_V = pmap_valid_bit(pmap);
7762 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7763 pde = NULL;
7764
7765 /*
7766 * In the case that a page table page is not
7767 * resident, we are creating it here.
7768 */
7769 if (va < VM_MAXUSER_ADDRESS) {
7770 pdp_entry_t *pdpe;
7771 vm_pindex_t ptepindex;
7772
7773 /*
7774 * Calculate pagetable page index
7775 */
7776 ptepindex = pmap_pde_pindex(va);
7777 if (mpte && (mpte->pindex == ptepindex)) {
7778 mpte->ref_count++;
7779 } else {
7780 /*
7781 * If the page table page is mapped, we just increment
7782 * the hold count, and activate it. Otherwise, we
7783 * attempt to allocate a page table page, passing NULL
7784 * instead of the PV list lock pointer because we don't
7785 * intend to sleep. If this attempt fails, we don't
7786 * retry. Instead, we give up.
7787 */
7788 pdpe = pmap_pdpe(pmap, va);
7789 if (pdpe != NULL && (*pdpe & PG_V) != 0) {
7790 if ((*pdpe & PG_PS) != 0)
7791 return (NULL);
7792 pde = pmap_pdpe_to_pde(pdpe, va);
7793 if ((*pde & PG_V) != 0) {
7794 if ((*pde & PG_PS) != 0)
7795 return (NULL);
7796 mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7797 mpte->ref_count++;
7798 } else {
7799 mpte = pmap_allocpte_alloc(pmap,
7800 ptepindex, NULL, va);
7801 if (mpte == NULL)
7802 return (NULL);
7803 }
7804 } else {
7805 mpte = pmap_allocpte_alloc(pmap, ptepindex,
7806 NULL, va);
7807 if (mpte == NULL)
7808 return (NULL);
7809 }
7810 }
7811 pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
7812 pte = &pte[pmap_pte_index(va)];
7813 } else {
7814 mpte = NULL;
7815 pte = vtopte(va);
7816 }
7817 if (*pte) {
7818 if (mpte != NULL)
7819 mpte->ref_count--;
7820 return (NULL);
7821 }
7822
7823 /*
7824 * Enter on the PV list if part of our managed memory.
7825 */
7826 if ((m->oflags & VPO_UNMANAGED) == 0 &&
7827 !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
7828 if (mpte != NULL)
7829 pmap_abort_ptp(pmap, va, mpte);
7830 return (NULL);
7831 }
7832
7833 /*
7834 * Increment counters
7835 */
7836 pmap_resident_count_adj(pmap, 1);
7837
7838 newpte = VM_PAGE_TO_PHYS(m) | PG_V |
7839 pmap_cache_bits(pmap, m->md.pat_mode, false);
7840 if ((m->oflags & VPO_UNMANAGED) == 0)
7841 newpte |= PG_MANAGED;
7842 if ((prot & VM_PROT_EXECUTE) == 0)
7843 newpte |= pg_nx;
7844 if (va < VM_MAXUSER_ADDRESS)
7845 newpte |= PG_U | pmap_pkru_get(pmap, va);
7846 pte_store(pte, newpte);
7847
7848 #if VM_NRESERVLEVEL > 0
7849 /*
7850 * If both the PTP and the reservation are fully populated, then
7851 * attempt promotion.
7852 */
7853 if ((prot & VM_PROT_NO_PROMOTE) == 0 &&
7854 (mpte == NULL || mpte->ref_count == NPTEPG) &&
7855 (m->flags & PG_FICTITIOUS) == 0 &&
7856 vm_reserv_level_iffullpop(m) == 0) {
7857 if (pde == NULL)
7858 pde = pmap_pde(pmap, va);
7859
7860 /*
7861 * If promotion succeeds, then the next call to this function
7862 * should not be given the unmapped PTP as a hint.
7863 */
7864 if (pmap_promote_pde(pmap, pde, va, mpte, lockp))
7865 mpte = NULL;
7866 }
7867 #endif
7868
7869 return (mpte);
7870 }
7871
7872 /*
7873 * Make a temporary mapping for a physical address. This is only intended
7874 * to be used for panic dumps.
7875 */
7876 void *
pmap_kenter_temporary(vm_paddr_t pa,int i)7877 pmap_kenter_temporary(vm_paddr_t pa, int i)
7878 {
7879 vm_offset_t va;
7880
7881 va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
7882 pmap_kenter(va, pa);
7883 pmap_invlpg(kernel_pmap, va);
7884 return ((void *)crashdumpmap);
7885 }
7886
7887 /*
7888 * This code maps large physical mmap regions into the
7889 * processor address space. Note that some shortcuts
7890 * are taken, but the code works.
7891 */
7892 void
pmap_object_init_pt(pmap_t pmap,vm_offset_t addr,vm_object_t object,vm_pindex_t pindex,vm_size_t size)7893 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
7894 vm_pindex_t pindex, vm_size_t size)
7895 {
7896 struct pctrie_iter pages;
7897 pd_entry_t *pde;
7898 pt_entry_t PG_A, PG_M, PG_RW, PG_V;
7899 vm_paddr_t pa, ptepa;
7900 vm_page_t p, pdpg;
7901 int pat_mode;
7902
7903 PG_A = pmap_accessed_bit(pmap);
7904 PG_M = pmap_modified_bit(pmap);
7905 PG_V = pmap_valid_bit(pmap);
7906 PG_RW = pmap_rw_bit(pmap);
7907
7908 VM_OBJECT_ASSERT_WLOCKED(object);
7909 KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
7910 ("pmap_object_init_pt: non-device object"));
7911 if ((addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
7912 if (!pmap_ps_enabled(pmap))
7913 return;
7914 if (!vm_object_populate(object, pindex, pindex + atop(size)))
7915 return;
7916 vm_page_iter_init(&pages, object);
7917 p = vm_radix_iter_lookup(&pages, pindex);
7918 KASSERT(vm_page_all_valid(p),
7919 ("pmap_object_init_pt: invalid page %p", p));
7920 pat_mode = p->md.pat_mode;
7921
7922 /*
7923 * Abort the mapping if the first page is not physically
7924 * aligned to a 2MB page boundary.
7925 */
7926 ptepa = VM_PAGE_TO_PHYS(p);
7927 if (ptepa & (NBPDR - 1))
7928 return;
7929
7930 /*
7931 * Skip the first page. Abort the mapping if the rest of
7932 * the pages are not physically contiguous or have differing
7933 * memory attributes.
7934 */
7935 for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
7936 pa += PAGE_SIZE) {
7937 p = vm_radix_iter_next(&pages);
7938 KASSERT(vm_page_all_valid(p),
7939 ("pmap_object_init_pt: invalid page %p", p));
7940 if (pa != VM_PAGE_TO_PHYS(p) ||
7941 pat_mode != p->md.pat_mode)
7942 return;
7943 }
7944
7945 /*
7946 * Map using 2MB pages. Since "ptepa" is 2M aligned and
7947 * "size" is a multiple of 2M, adding the PAT setting to "pa"
7948 * will not affect the termination of this loop.
7949 */
7950 PMAP_LOCK(pmap);
7951 for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, true);
7952 pa < ptepa + size; pa += NBPDR) {
7953 pde = pmap_alloc_pde(pmap, addr, &pdpg, NULL);
7954 if (pde == NULL) {
7955 /*
7956 * The creation of mappings below is only an
7957 * optimization. If a page directory page
7958 * cannot be allocated without blocking,
7959 * continue on to the next mapping rather than
7960 * blocking.
7961 */
7962 addr += NBPDR;
7963 continue;
7964 }
7965 if ((*pde & PG_V) == 0) {
7966 pde_store(pde, pa | PG_PS | PG_M | PG_A |
7967 PG_U | PG_RW | PG_V);
7968 pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7969 counter_u64_add(pmap_pde_mappings, 1);
7970 } else {
7971 /* Continue on if the PDE is already valid. */
7972 pdpg->ref_count--;
7973 KASSERT(pdpg->ref_count > 0,
7974 ("pmap_object_init_pt: missing reference "
7975 "to page directory page, va: 0x%lx", addr));
7976 }
7977 addr += NBPDR;
7978 }
7979 PMAP_UNLOCK(pmap);
7980 }
7981 }
7982
7983 /*
7984 * Clear the wired attribute from the mappings for the specified range of
7985 * addresses in the given pmap. Every valid mapping within that range
7986 * must have the wired attribute set. In contrast, invalid mappings
7987 * cannot have the wired attribute set, so they are ignored.
7988 *
7989 * The wired attribute of the page table entry is not a hardware
7990 * feature, so there is no need to invalidate any TLB entries.
7991 * Since pmap_demote_pde() for the wired entry must never fail,
7992 * pmap_delayed_invl_start()/finish() calls around the
7993 * function are not needed.
7994 */
7995 void
pmap_unwire(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)7996 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
7997 {
7998 vm_offset_t va_next;
7999 pml4_entry_t *pml4e;
8000 pdp_entry_t *pdpe;
8001 pd_entry_t *pde;
8002 pt_entry_t *pte, PG_V, PG_G __diagused;
8003
8004 PG_V = pmap_valid_bit(pmap);
8005 PG_G = pmap_global_bit(pmap);
8006 PMAP_LOCK(pmap);
8007 for (; sva < eva; sva = va_next) {
8008 pml4e = pmap_pml4e(pmap, sva);
8009 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
8010 va_next = (sva + NBPML4) & ~PML4MASK;
8011 if (va_next < sva)
8012 va_next = eva;
8013 continue;
8014 }
8015
8016 va_next = (sva + NBPDP) & ~PDPMASK;
8017 if (va_next < sva)
8018 va_next = eva;
8019 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
8020 if ((*pdpe & PG_V) == 0)
8021 continue;
8022 if ((*pdpe & PG_PS) != 0) {
8023 KASSERT(va_next <= eva,
8024 ("partial update of non-transparent 1G mapping "
8025 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8026 *pdpe, sva, eva, va_next));
8027 MPASS(pmap != kernel_pmap); /* XXXKIB */
8028 MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
8029 atomic_clear_long(pdpe, PG_W);
8030 pmap->pm_stats.wired_count -= NBPDP / PAGE_SIZE;
8031 continue;
8032 }
8033
8034 va_next = (sva + NBPDR) & ~PDRMASK;
8035 if (va_next < sva)
8036 va_next = eva;
8037 pde = pmap_pdpe_to_pde(pdpe, sva);
8038 if ((*pde & PG_V) == 0)
8039 continue;
8040 if ((*pde & PG_PS) != 0) {
8041 if ((*pde & PG_W) == 0)
8042 panic("pmap_unwire: pde %#jx is missing PG_W",
8043 (uintmax_t)*pde);
8044
8045 /*
8046 * Are we unwiring the entire large page? If not,
8047 * demote the mapping and fall through.
8048 */
8049 if (sva + NBPDR == va_next && eva >= va_next) {
8050 atomic_clear_long(pde, PG_W);
8051 pmap->pm_stats.wired_count -= NBPDR /
8052 PAGE_SIZE;
8053 continue;
8054 } else if (!pmap_demote_pde(pmap, pde, sva))
8055 panic("pmap_unwire: demotion failed");
8056 }
8057 if (va_next > eva)
8058 va_next = eva;
8059 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
8060 sva += PAGE_SIZE) {
8061 if ((*pte & PG_V) == 0)
8062 continue;
8063 if ((*pte & PG_W) == 0)
8064 panic("pmap_unwire: pte %#jx is missing PG_W",
8065 (uintmax_t)*pte);
8066
8067 /*
8068 * PG_W must be cleared atomically. Although the pmap
8069 * lock synchronizes access to PG_W, another processor
8070 * could be setting PG_M and/or PG_A concurrently.
8071 */
8072 atomic_clear_long(pte, PG_W);
8073 pmap->pm_stats.wired_count--;
8074 }
8075 }
8076 PMAP_UNLOCK(pmap);
8077 }
8078
8079 /*
8080 * Copy the range specified by src_addr/len
8081 * from the source map to the range dst_addr/len
8082 * in the destination map.
8083 *
8084 * This routine is only advisory and need not do anything.
8085 */
8086 void
pmap_copy(pmap_t dst_pmap,pmap_t src_pmap,vm_offset_t dst_addr,vm_size_t len,vm_offset_t src_addr)8087 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
8088 vm_offset_t src_addr)
8089 {
8090 struct rwlock *lock;
8091 pml4_entry_t *pml4e;
8092 pdp_entry_t *pdpe;
8093 pd_entry_t *pde, srcptepaddr;
8094 pt_entry_t *dst_pte, PG_A, PG_M, PG_V, ptetemp, *src_pte;
8095 vm_offset_t addr, end_addr, va_next;
8096 vm_page_t dst_pdpg, dstmpte, srcmpte;
8097
8098 if (dst_addr != src_addr)
8099 return;
8100
8101 if (dst_pmap->pm_type != src_pmap->pm_type)
8102 return;
8103
8104 /*
8105 * EPT page table entries that require emulation of A/D bits are
8106 * sensitive to clearing the PG_A bit (aka EPT_PG_READ). Although
8107 * we clear PG_M (aka EPT_PG_WRITE) concomitantly, the PG_U bit
8108 * (aka EPT_PG_EXECUTE) could still be set. Since some EPT
8109 * implementations flag an EPT misconfiguration for exec-only
8110 * mappings we skip this function entirely for emulated pmaps.
8111 */
8112 if (pmap_emulate_ad_bits(dst_pmap))
8113 return;
8114
8115 end_addr = src_addr + len;
8116 lock = NULL;
8117 if (dst_pmap < src_pmap) {
8118 PMAP_LOCK(dst_pmap);
8119 PMAP_LOCK(src_pmap);
8120 } else {
8121 PMAP_LOCK(src_pmap);
8122 PMAP_LOCK(dst_pmap);
8123 }
8124
8125 PG_A = pmap_accessed_bit(dst_pmap);
8126 PG_M = pmap_modified_bit(dst_pmap);
8127 PG_V = pmap_valid_bit(dst_pmap);
8128
8129 for (addr = src_addr; addr < end_addr; addr = va_next) {
8130 KASSERT(addr < UPT_MIN_ADDRESS,
8131 ("pmap_copy: invalid to pmap_copy page tables"));
8132
8133 pml4e = pmap_pml4e(src_pmap, addr);
8134 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
8135 va_next = (addr + NBPML4) & ~PML4MASK;
8136 if (va_next < addr)
8137 va_next = end_addr;
8138 continue;
8139 }
8140
8141 va_next = (addr + NBPDP) & ~PDPMASK;
8142 if (va_next < addr)
8143 va_next = end_addr;
8144 pdpe = pmap_pml4e_to_pdpe(pml4e, addr);
8145 if ((*pdpe & PG_V) == 0)
8146 continue;
8147 if ((*pdpe & PG_PS) != 0) {
8148 KASSERT(va_next <= end_addr,
8149 ("partial update of non-transparent 1G mapping "
8150 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8151 *pdpe, addr, end_addr, va_next));
8152 MPASS((addr & PDPMASK) == 0);
8153 MPASS((*pdpe & PG_MANAGED) == 0);
8154 srcptepaddr = *pdpe;
8155 pdpe = pmap_pdpe(dst_pmap, addr);
8156 if (pdpe == NULL) {
8157 if (pmap_allocpte_alloc(dst_pmap,
8158 pmap_pml4e_pindex(addr), NULL, addr) ==
8159 NULL)
8160 break;
8161 pdpe = pmap_pdpe(dst_pmap, addr);
8162 } else {
8163 pml4e = pmap_pml4e(dst_pmap, addr);
8164 dst_pdpg = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
8165 dst_pdpg->ref_count++;
8166 }
8167 KASSERT(*pdpe == 0,
8168 ("1G mapping present in dst pmap "
8169 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8170 *pdpe, addr, end_addr, va_next));
8171 *pdpe = srcptepaddr & ~PG_W;
8172 pmap_resident_count_adj(dst_pmap, NBPDP / PAGE_SIZE);
8173 continue;
8174 }
8175
8176 va_next = (addr + NBPDR) & ~PDRMASK;
8177 if (va_next < addr)
8178 va_next = end_addr;
8179
8180 pde = pmap_pdpe_to_pde(pdpe, addr);
8181 srcptepaddr = *pde;
8182 if (srcptepaddr == 0)
8183 continue;
8184
8185 if (srcptepaddr & PG_PS) {
8186 /*
8187 * We can only virtual copy whole superpages.
8188 */
8189 if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
8190 continue;
8191 pde = pmap_alloc_pde(dst_pmap, addr, &dst_pdpg, NULL);
8192 if (pde == NULL)
8193 break;
8194 if (*pde == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
8195 pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr,
8196 PMAP_ENTER_NORECLAIM, &lock))) {
8197 /*
8198 * We leave the dirty bit unchanged because
8199 * managed read/write superpage mappings are
8200 * required to be dirty. However, managed
8201 * superpage mappings are not required to
8202 * have their accessed bit set, so we clear
8203 * it because we don't know if this mapping
8204 * will be used.
8205 */
8206 srcptepaddr &= ~PG_W;
8207 if ((srcptepaddr & PG_MANAGED) != 0)
8208 srcptepaddr &= ~PG_A;
8209 *pde = srcptepaddr;
8210 pmap_resident_count_adj(dst_pmap, NBPDR /
8211 PAGE_SIZE);
8212 counter_u64_add(pmap_pde_mappings, 1);
8213 } else
8214 pmap_abort_ptp(dst_pmap, addr, dst_pdpg);
8215 continue;
8216 }
8217
8218 srcptepaddr &= PG_FRAME;
8219 srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
8220 KASSERT(srcmpte->ref_count > 0,
8221 ("pmap_copy: source page table page is unused"));
8222
8223 if (va_next > end_addr)
8224 va_next = end_addr;
8225
8226 src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
8227 src_pte = &src_pte[pmap_pte_index(addr)];
8228 dstmpte = NULL;
8229 for (; addr < va_next; addr += PAGE_SIZE, src_pte++) {
8230 ptetemp = *src_pte;
8231
8232 /*
8233 * We only virtual copy managed pages.
8234 */
8235 if ((ptetemp & PG_MANAGED) == 0)
8236 continue;
8237
8238 if (dstmpte != NULL) {
8239 KASSERT(dstmpte->pindex ==
8240 pmap_pde_pindex(addr),
8241 ("dstmpte pindex/addr mismatch"));
8242 dstmpte->ref_count++;
8243 } else if ((dstmpte = pmap_allocpte(dst_pmap, addr,
8244 NULL)) == NULL)
8245 goto out;
8246 dst_pte = (pt_entry_t *)
8247 PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
8248 dst_pte = &dst_pte[pmap_pte_index(addr)];
8249 if (*dst_pte == 0 &&
8250 pmap_try_insert_pv_entry(dst_pmap, addr,
8251 PHYS_TO_VM_PAGE(ptetemp & PG_FRAME), &lock)) {
8252 /*
8253 * Clear the wired, modified, and accessed
8254 * (referenced) bits during the copy.
8255 */
8256 *dst_pte = ptetemp & ~(PG_W | PG_M | PG_A);
8257 pmap_resident_count_adj(dst_pmap, 1);
8258 } else {
8259 pmap_abort_ptp(dst_pmap, addr, dstmpte);
8260 goto out;
8261 }
8262 /* Have we copied all of the valid mappings? */
8263 if (dstmpte->ref_count >= srcmpte->ref_count)
8264 break;
8265 }
8266 }
8267 out:
8268 if (lock != NULL)
8269 rw_wunlock(lock);
8270 PMAP_UNLOCK(src_pmap);
8271 PMAP_UNLOCK(dst_pmap);
8272 }
8273
8274 int
pmap_vmspace_copy(pmap_t dst_pmap,pmap_t src_pmap)8275 pmap_vmspace_copy(pmap_t dst_pmap, pmap_t src_pmap)
8276 {
8277 int error;
8278
8279 if (dst_pmap->pm_type != src_pmap->pm_type ||
8280 dst_pmap->pm_type != PT_X86 ||
8281 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
8282 return (0);
8283 for (;;) {
8284 if (dst_pmap < src_pmap) {
8285 PMAP_LOCK(dst_pmap);
8286 PMAP_LOCK(src_pmap);
8287 } else {
8288 PMAP_LOCK(src_pmap);
8289 PMAP_LOCK(dst_pmap);
8290 }
8291 error = pmap_pkru_copy(dst_pmap, src_pmap);
8292 /* Clean up partial copy on failure due to no memory. */
8293 if (error == ENOMEM)
8294 pmap_pkru_deassign_all(dst_pmap);
8295 PMAP_UNLOCK(src_pmap);
8296 PMAP_UNLOCK(dst_pmap);
8297 if (error != ENOMEM)
8298 break;
8299 vm_wait(NULL);
8300 }
8301 return (error);
8302 }
8303
8304 /*
8305 * Zero the specified hardware page.
8306 */
8307 void
pmap_zero_page(vm_page_t m)8308 pmap_zero_page(vm_page_t m)
8309 {
8310 vm_offset_t va;
8311
8312 #ifdef TSLOG_PAGEZERO
8313 TSENTER();
8314 #endif
8315 va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8316 pagezero((void *)va);
8317 #ifdef TSLOG_PAGEZERO
8318 TSEXIT();
8319 #endif
8320 }
8321
8322 /*
8323 * Zero an area within a single hardware page. off and size must not
8324 * cover an area beyond a single hardware page.
8325 */
8326 void
pmap_zero_page_area(vm_page_t m,int off,int size)8327 pmap_zero_page_area(vm_page_t m, int off, int size)
8328 {
8329 vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8330
8331 if (off == 0 && size == PAGE_SIZE)
8332 pagezero((void *)va);
8333 else
8334 bzero((char *)va + off, size);
8335 }
8336
8337 /*
8338 * Copy 1 specified hardware page to another.
8339 */
8340 void
pmap_copy_page(vm_page_t msrc,vm_page_t mdst)8341 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
8342 {
8343 vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
8344 vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
8345
8346 pagecopy((void *)src, (void *)dst);
8347 }
8348
8349 int unmapped_buf_allowed = 1;
8350
8351 void
pmap_copy_pages(vm_page_t ma[],vm_offset_t a_offset,vm_page_t mb[],vm_offset_t b_offset,int xfersize)8352 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
8353 vm_offset_t b_offset, int xfersize)
8354 {
8355 void *a_cp, *b_cp;
8356 vm_page_t pages[2];
8357 vm_offset_t vaddr[2], a_pg_offset, b_pg_offset;
8358 int cnt;
8359 bool mapped;
8360
8361 while (xfersize > 0) {
8362 a_pg_offset = a_offset & PAGE_MASK;
8363 pages[0] = ma[a_offset >> PAGE_SHIFT];
8364 b_pg_offset = b_offset & PAGE_MASK;
8365 pages[1] = mb[b_offset >> PAGE_SHIFT];
8366 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
8367 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
8368 mapped = pmap_map_io_transient(pages, vaddr, 2, false);
8369 a_cp = (char *)vaddr[0] + a_pg_offset;
8370 b_cp = (char *)vaddr[1] + b_pg_offset;
8371 bcopy(a_cp, b_cp, cnt);
8372 if (__predict_false(mapped))
8373 pmap_unmap_io_transient(pages, vaddr, 2, false);
8374 a_offset += cnt;
8375 b_offset += cnt;
8376 xfersize -= cnt;
8377 }
8378 }
8379
8380 /*
8381 * Returns true if the pmap's pv is one of the first
8382 * 16 pvs linked to from this page. This count may
8383 * be changed upwards or downwards in the future; it
8384 * is only necessary that true be returned for a small
8385 * subset of pmaps for proper page aging.
8386 */
8387 bool
pmap_page_exists_quick(pmap_t pmap,vm_page_t m)8388 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
8389 {
8390 struct md_page *pvh;
8391 struct rwlock *lock;
8392 pv_entry_t pv;
8393 int loops = 0;
8394 bool rv;
8395
8396 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8397 ("pmap_page_exists_quick: page %p is not managed", m));
8398 rv = false;
8399 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8400 rw_rlock(lock);
8401 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8402 if (PV_PMAP(pv) == pmap) {
8403 rv = true;
8404 break;
8405 }
8406 loops++;
8407 if (loops >= 16)
8408 break;
8409 }
8410 if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
8411 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8412 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8413 if (PV_PMAP(pv) == pmap) {
8414 rv = true;
8415 break;
8416 }
8417 loops++;
8418 if (loops >= 16)
8419 break;
8420 }
8421 }
8422 rw_runlock(lock);
8423 return (rv);
8424 }
8425
8426 /*
8427 * pmap_page_wired_mappings:
8428 *
8429 * Return the number of managed mappings to the given physical page
8430 * that are wired.
8431 */
8432 int
pmap_page_wired_mappings(vm_page_t m)8433 pmap_page_wired_mappings(vm_page_t m)
8434 {
8435 struct rwlock *lock;
8436 struct md_page *pvh;
8437 pmap_t pmap;
8438 pt_entry_t *pte;
8439 pv_entry_t pv;
8440 int count, md_gen, pvh_gen;
8441
8442 if ((m->oflags & VPO_UNMANAGED) != 0)
8443 return (0);
8444 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8445 rw_rlock(lock);
8446 restart:
8447 count = 0;
8448 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8449 pmap = PV_PMAP(pv);
8450 if (!PMAP_TRYLOCK(pmap)) {
8451 md_gen = m->md.pv_gen;
8452 rw_runlock(lock);
8453 PMAP_LOCK(pmap);
8454 rw_rlock(lock);
8455 if (md_gen != m->md.pv_gen) {
8456 PMAP_UNLOCK(pmap);
8457 goto restart;
8458 }
8459 }
8460 pte = pmap_pte(pmap, pv->pv_va);
8461 if ((*pte & PG_W) != 0)
8462 count++;
8463 PMAP_UNLOCK(pmap);
8464 }
8465 if ((m->flags & PG_FICTITIOUS) == 0) {
8466 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8467 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8468 pmap = PV_PMAP(pv);
8469 if (!PMAP_TRYLOCK(pmap)) {
8470 md_gen = m->md.pv_gen;
8471 pvh_gen = pvh->pv_gen;
8472 rw_runlock(lock);
8473 PMAP_LOCK(pmap);
8474 rw_rlock(lock);
8475 if (md_gen != m->md.pv_gen ||
8476 pvh_gen != pvh->pv_gen) {
8477 PMAP_UNLOCK(pmap);
8478 goto restart;
8479 }
8480 }
8481 pte = pmap_pde(pmap, pv->pv_va);
8482 if ((*pte & PG_W) != 0)
8483 count++;
8484 PMAP_UNLOCK(pmap);
8485 }
8486 }
8487 rw_runlock(lock);
8488 return (count);
8489 }
8490
8491 /*
8492 * Returns true if the given page is mapped individually or as part of
8493 * a 2mpage. Otherwise, returns false.
8494 */
8495 bool
pmap_page_is_mapped(vm_page_t m)8496 pmap_page_is_mapped(vm_page_t m)
8497 {
8498 struct rwlock *lock;
8499 bool rv;
8500
8501 if ((m->oflags & VPO_UNMANAGED) != 0)
8502 return (false);
8503 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8504 rw_rlock(lock);
8505 rv = !TAILQ_EMPTY(&m->md.pv_list) ||
8506 ((m->flags & PG_FICTITIOUS) == 0 &&
8507 !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
8508 rw_runlock(lock);
8509 return (rv);
8510 }
8511
8512 /*
8513 * Destroy all managed, non-wired mappings in the given user-space
8514 * pmap. This pmap cannot be active on any processor besides the
8515 * caller.
8516 *
8517 * This function cannot be applied to the kernel pmap. Moreover, it
8518 * is not intended for general use. It is only to be used during
8519 * process termination. Consequently, it can be implemented in ways
8520 * that make it faster than pmap_remove(). First, it can more quickly
8521 * destroy mappings by iterating over the pmap's collection of PV
8522 * entries, rather than searching the page table. Second, it doesn't
8523 * have to test and clear the page table entries atomically, because
8524 * no processor is currently accessing the user address space. In
8525 * particular, a page table entry's dirty bit won't change state once
8526 * this function starts.
8527 *
8528 * Although this function destroys all of the pmap's managed,
8529 * non-wired mappings, it can delay and batch the invalidation of TLB
8530 * entries without calling pmap_delayed_invl_start() and
8531 * pmap_delayed_invl_finish(). Because the pmap is not active on
8532 * any other processor, none of these TLB entries will ever be used
8533 * before their eventual invalidation. Consequently, there is no need
8534 * for either pmap_remove_all() or pmap_remove_write() to wait for
8535 * that eventual TLB invalidation.
8536 */
8537 void
pmap_remove_pages(pmap_t pmap)8538 pmap_remove_pages(pmap_t pmap)
8539 {
8540 pd_entry_t ptepde;
8541 pt_entry_t *pte, tpte;
8542 pt_entry_t PG_M, PG_RW, PG_V;
8543 struct spglist free;
8544 struct pv_chunklist free_chunks[PMAP_MEMDOM];
8545 vm_page_t m, mpte, mt;
8546 pv_entry_t pv;
8547 struct md_page *pvh;
8548 struct pv_chunk *pc, *npc;
8549 struct rwlock *lock;
8550 int64_t bit;
8551 uint64_t inuse, bitmask;
8552 int allfree, field, i, idx;
8553 #ifdef PV_STATS
8554 int freed;
8555 #endif
8556 bool superpage;
8557 vm_paddr_t pa;
8558
8559 /*
8560 * Assert that the given pmap is only active on the current
8561 * CPU. Unfortunately, we cannot block another CPU from
8562 * activating the pmap while this function is executing.
8563 */
8564 KASSERT(pmap == PCPU_GET(curpmap), ("non-current pmap %p", pmap));
8565 #ifdef INVARIANTS
8566 {
8567 cpuset_t other_cpus;
8568
8569 other_cpus = all_cpus;
8570 critical_enter();
8571 CPU_CLR(PCPU_GET(cpuid), &other_cpus);
8572 CPU_AND(&other_cpus, &other_cpus, &pmap->pm_active);
8573 critical_exit();
8574 KASSERT(CPU_EMPTY(&other_cpus), ("pmap active %p", pmap));
8575 }
8576 #endif
8577
8578 lock = NULL;
8579 PG_M = pmap_modified_bit(pmap);
8580 PG_V = pmap_valid_bit(pmap);
8581 PG_RW = pmap_rw_bit(pmap);
8582
8583 for (i = 0; i < PMAP_MEMDOM; i++)
8584 TAILQ_INIT(&free_chunks[i]);
8585 SLIST_INIT(&free);
8586 PMAP_LOCK(pmap);
8587 TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
8588 allfree = 1;
8589 #ifdef PV_STATS
8590 freed = 0;
8591 #endif
8592 for (field = 0; field < _NPCM; field++) {
8593 inuse = ~pc->pc_map[field] & pc_freemask[field];
8594 while (inuse != 0) {
8595 bit = bsfq(inuse);
8596 bitmask = 1UL << bit;
8597 idx = field * 64 + bit;
8598 pv = &pc->pc_pventry[idx];
8599 inuse &= ~bitmask;
8600
8601 pte = pmap_pdpe(pmap, pv->pv_va);
8602 ptepde = *pte;
8603 pte = pmap_pdpe_to_pde(pte, pv->pv_va);
8604 tpte = *pte;
8605 if ((tpte & (PG_PS | PG_V)) == PG_V) {
8606 superpage = false;
8607 ptepde = tpte;
8608 pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
8609 PG_FRAME);
8610 pte = &pte[pmap_pte_index(pv->pv_va)];
8611 tpte = *pte;
8612 } else {
8613 /*
8614 * Keep track whether 'tpte' is a
8615 * superpage explicitly instead of
8616 * relying on PG_PS being set.
8617 *
8618 * This is because PG_PS is numerically
8619 * identical to PG_PTE_PAT and thus a
8620 * regular page could be mistaken for
8621 * a superpage.
8622 */
8623 superpage = true;
8624 }
8625
8626 if ((tpte & PG_V) == 0) {
8627 panic("bad pte va %lx pte %lx",
8628 pv->pv_va, tpte);
8629 }
8630
8631 /*
8632 * We cannot remove wired pages from a process' mapping at this time
8633 */
8634 if (tpte & PG_W) {
8635 allfree = 0;
8636 continue;
8637 }
8638
8639 /* Mark free */
8640 pc->pc_map[field] |= bitmask;
8641
8642 /*
8643 * Because this pmap is not active on other
8644 * processors, the dirty bit cannot have
8645 * changed state since we last loaded pte.
8646 */
8647 pte_clear(pte);
8648
8649 if (superpage)
8650 pa = tpte & PG_PS_FRAME;
8651 else
8652 pa = tpte & PG_FRAME;
8653
8654 m = PHYS_TO_VM_PAGE(pa);
8655 KASSERT(m->phys_addr == pa,
8656 ("vm_page_t %p phys_addr mismatch %016jx %016jx",
8657 m, (uintmax_t)m->phys_addr,
8658 (uintmax_t)tpte));
8659
8660 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
8661 m < &vm_page_array[vm_page_array_size],
8662 ("pmap_remove_pages: bad tpte %#jx",
8663 (uintmax_t)tpte));
8664
8665 /*
8666 * Update the vm_page_t clean/reference bits.
8667 */
8668 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8669 if (superpage) {
8670 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8671 vm_page_dirty(mt);
8672 } else
8673 vm_page_dirty(m);
8674 }
8675
8676 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
8677
8678 if (superpage) {
8679 pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
8680 pvh = pa_to_pvh(tpte & PG_PS_FRAME);
8681 TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
8682 pvh->pv_gen++;
8683 if (TAILQ_EMPTY(&pvh->pv_list)) {
8684 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8685 if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
8686 TAILQ_EMPTY(&mt->md.pv_list))
8687 vm_page_aflag_clear(mt, PGA_WRITEABLE);
8688 }
8689 mpte = pmap_remove_pt_page(pmap, pv->pv_va);
8690 if (mpte != NULL) {
8691 KASSERT(vm_page_any_valid(mpte),
8692 ("pmap_remove_pages: pte page not promoted"));
8693 pmap_pt_page_count_adj(pmap, -1);
8694 KASSERT(mpte->ref_count == NPTEPG,
8695 ("pmap_remove_pages: pte page reference count error"));
8696 mpte->ref_count = 0;
8697 pmap_add_delayed_free_list(mpte, &free, false);
8698 }
8699 } else {
8700 pmap_resident_count_adj(pmap, -1);
8701 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
8702 m->md.pv_gen++;
8703 if ((m->a.flags & PGA_WRITEABLE) != 0 &&
8704 TAILQ_EMPTY(&m->md.pv_list) &&
8705 (m->flags & PG_FICTITIOUS) == 0) {
8706 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8707 if (TAILQ_EMPTY(&pvh->pv_list))
8708 vm_page_aflag_clear(m, PGA_WRITEABLE);
8709 }
8710 }
8711 pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
8712 #ifdef PV_STATS
8713 freed++;
8714 #endif
8715 }
8716 }
8717 PV_STAT(counter_u64_add(pv_entry_frees, freed));
8718 PV_STAT(counter_u64_add(pv_entry_spare, freed));
8719 PV_STAT(counter_u64_add(pv_entry_count, -freed));
8720 if (allfree) {
8721 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
8722 TAILQ_INSERT_TAIL(&free_chunks[pc_to_domain(pc)], pc, pc_list);
8723 }
8724 }
8725 if (lock != NULL)
8726 rw_wunlock(lock);
8727 pmap_invalidate_all(pmap);
8728 pmap_pkru_deassign_all(pmap);
8729 free_pv_chunk_batch((struct pv_chunklist *)&free_chunks);
8730 PMAP_UNLOCK(pmap);
8731 vm_page_free_pages_toq(&free, true);
8732 }
8733
8734 static bool
pmap_page_test_mappings(vm_page_t m,bool accessed,bool modified)8735 pmap_page_test_mappings(vm_page_t m, bool accessed, bool modified)
8736 {
8737 struct rwlock *lock;
8738 pv_entry_t pv;
8739 struct md_page *pvh;
8740 pt_entry_t *pte, mask;
8741 pt_entry_t PG_A, PG_M, PG_RW, PG_V;
8742 pmap_t pmap;
8743 int md_gen, pvh_gen;
8744 bool rv;
8745
8746 rv = false;
8747 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8748 rw_rlock(lock);
8749 restart:
8750 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8751 pmap = PV_PMAP(pv);
8752 if (!PMAP_TRYLOCK(pmap)) {
8753 md_gen = m->md.pv_gen;
8754 rw_runlock(lock);
8755 PMAP_LOCK(pmap);
8756 rw_rlock(lock);
8757 if (md_gen != m->md.pv_gen) {
8758 PMAP_UNLOCK(pmap);
8759 goto restart;
8760 }
8761 }
8762 pte = pmap_pte(pmap, pv->pv_va);
8763 mask = 0;
8764 if (modified) {
8765 PG_M = pmap_modified_bit(pmap);
8766 PG_RW = pmap_rw_bit(pmap);
8767 mask |= PG_RW | PG_M;
8768 }
8769 if (accessed) {
8770 PG_A = pmap_accessed_bit(pmap);
8771 PG_V = pmap_valid_bit(pmap);
8772 mask |= PG_V | PG_A;
8773 }
8774 rv = (*pte & mask) == mask;
8775 PMAP_UNLOCK(pmap);
8776 if (rv)
8777 goto out;
8778 }
8779 if ((m->flags & PG_FICTITIOUS) == 0) {
8780 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8781 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8782 pmap = PV_PMAP(pv);
8783 if (!PMAP_TRYLOCK(pmap)) {
8784 md_gen = m->md.pv_gen;
8785 pvh_gen = pvh->pv_gen;
8786 rw_runlock(lock);
8787 PMAP_LOCK(pmap);
8788 rw_rlock(lock);
8789 if (md_gen != m->md.pv_gen ||
8790 pvh_gen != pvh->pv_gen) {
8791 PMAP_UNLOCK(pmap);
8792 goto restart;
8793 }
8794 }
8795 pte = pmap_pde(pmap, pv->pv_va);
8796 mask = 0;
8797 if (modified) {
8798 PG_M = pmap_modified_bit(pmap);
8799 PG_RW = pmap_rw_bit(pmap);
8800 mask |= PG_RW | PG_M;
8801 }
8802 if (accessed) {
8803 PG_A = pmap_accessed_bit(pmap);
8804 PG_V = pmap_valid_bit(pmap);
8805 mask |= PG_V | PG_A;
8806 }
8807 rv = (*pte & mask) == mask;
8808 PMAP_UNLOCK(pmap);
8809 if (rv)
8810 goto out;
8811 }
8812 }
8813 out:
8814 rw_runlock(lock);
8815 return (rv);
8816 }
8817
8818 /*
8819 * pmap_is_modified:
8820 *
8821 * Return whether or not the specified physical page was modified
8822 * in any physical maps.
8823 */
8824 bool
pmap_is_modified(vm_page_t m)8825 pmap_is_modified(vm_page_t m)
8826 {
8827
8828 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8829 ("pmap_is_modified: page %p is not managed", m));
8830
8831 /*
8832 * If the page is not busied then this check is racy.
8833 */
8834 if (!pmap_page_is_write_mapped(m))
8835 return (false);
8836 return (pmap_page_test_mappings(m, false, true));
8837 }
8838
8839 /*
8840 * pmap_is_prefaultable:
8841 *
8842 * Return whether or not the specified virtual address is eligible
8843 * for prefault.
8844 */
8845 bool
pmap_is_prefaultable(pmap_t pmap,vm_offset_t addr)8846 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
8847 {
8848 pd_entry_t *pde;
8849 pt_entry_t *pte, PG_V;
8850 bool rv;
8851
8852 PG_V = pmap_valid_bit(pmap);
8853
8854 /*
8855 * Return true if and only if the PTE for the specified virtual
8856 * address is allocated but invalid.
8857 */
8858 rv = false;
8859 PMAP_LOCK(pmap);
8860 pde = pmap_pde(pmap, addr);
8861 if (pde != NULL && (*pde & (PG_PS | PG_V)) == PG_V) {
8862 pte = pmap_pde_to_pte(pde, addr);
8863 rv = (*pte & PG_V) == 0;
8864 }
8865 PMAP_UNLOCK(pmap);
8866 return (rv);
8867 }
8868
8869 /*
8870 * pmap_is_referenced:
8871 *
8872 * Return whether or not the specified physical page was referenced
8873 * in any physical maps.
8874 */
8875 bool
pmap_is_referenced(vm_page_t m)8876 pmap_is_referenced(vm_page_t m)
8877 {
8878
8879 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8880 ("pmap_is_referenced: page %p is not managed", m));
8881 return (pmap_page_test_mappings(m, true, false));
8882 }
8883
8884 /*
8885 * Clear the write and modified bits in each of the given page's mappings.
8886 */
8887 void
pmap_remove_write(vm_page_t m)8888 pmap_remove_write(vm_page_t m)
8889 {
8890 struct md_page *pvh;
8891 pmap_t pmap;
8892 struct rwlock *lock;
8893 pv_entry_t next_pv, pv;
8894 pd_entry_t *pde;
8895 pt_entry_t oldpte, *pte, PG_M, PG_RW;
8896 vm_offset_t va;
8897 int pvh_gen, md_gen;
8898
8899 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8900 ("pmap_remove_write: page %p is not managed", m));
8901
8902 vm_page_assert_busied(m);
8903 if (!pmap_page_is_write_mapped(m))
8904 return;
8905
8906 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8907 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
8908 pa_to_pvh(VM_PAGE_TO_PHYS(m));
8909 rw_wlock(lock);
8910 retry:
8911 TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
8912 pmap = PV_PMAP(pv);
8913 if (!PMAP_TRYLOCK(pmap)) {
8914 pvh_gen = pvh->pv_gen;
8915 rw_wunlock(lock);
8916 PMAP_LOCK(pmap);
8917 rw_wlock(lock);
8918 if (pvh_gen != pvh->pv_gen) {
8919 PMAP_UNLOCK(pmap);
8920 goto retry;
8921 }
8922 }
8923 PG_RW = pmap_rw_bit(pmap);
8924 va = pv->pv_va;
8925 pde = pmap_pde(pmap, va);
8926 if ((*pde & PG_RW) != 0)
8927 (void)pmap_demote_pde_locked(pmap, pde, va, &lock);
8928 KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
8929 ("inconsistent pv lock %p %p for page %p",
8930 lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
8931 PMAP_UNLOCK(pmap);
8932 }
8933 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8934 pmap = PV_PMAP(pv);
8935 if (!PMAP_TRYLOCK(pmap)) {
8936 pvh_gen = pvh->pv_gen;
8937 md_gen = m->md.pv_gen;
8938 rw_wunlock(lock);
8939 PMAP_LOCK(pmap);
8940 rw_wlock(lock);
8941 if (pvh_gen != pvh->pv_gen ||
8942 md_gen != m->md.pv_gen) {
8943 PMAP_UNLOCK(pmap);
8944 goto retry;
8945 }
8946 }
8947 PG_M = pmap_modified_bit(pmap);
8948 PG_RW = pmap_rw_bit(pmap);
8949 pde = pmap_pde(pmap, pv->pv_va);
8950 KASSERT((*pde & PG_PS) == 0,
8951 ("pmap_remove_write: found a 2mpage in page %p's pv list",
8952 m));
8953 pte = pmap_pde_to_pte(pde, pv->pv_va);
8954 oldpte = *pte;
8955 if (oldpte & PG_RW) {
8956 while (!atomic_fcmpset_long(pte, &oldpte, oldpte &
8957 ~(PG_RW | PG_M)))
8958 cpu_spinwait();
8959 if ((oldpte & PG_M) != 0)
8960 vm_page_dirty(m);
8961 pmap_invalidate_page(pmap, pv->pv_va);
8962 }
8963 PMAP_UNLOCK(pmap);
8964 }
8965 rw_wunlock(lock);
8966 vm_page_aflag_clear(m, PGA_WRITEABLE);
8967 pmap_delayed_invl_wait(m);
8968 }
8969
8970 /*
8971 * pmap_ts_referenced:
8972 *
8973 * Return a count of reference bits for a page, clearing those bits.
8974 * It is not necessary for every reference bit to be cleared, but it
8975 * is necessary that 0 only be returned when there are truly no
8976 * reference bits set.
8977 *
8978 * As an optimization, update the page's dirty field if a modified bit is
8979 * found while counting reference bits. This opportunistic update can be
8980 * performed at low cost and can eliminate the need for some future calls
8981 * to pmap_is_modified(). However, since this function stops after
8982 * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
8983 * dirty pages. Those dirty pages will only be detected by a future call
8984 * to pmap_is_modified().
8985 *
8986 * A DI block is not needed within this function, because
8987 * invalidations are performed before the PV list lock is
8988 * released.
8989 */
8990 int
pmap_ts_referenced(vm_page_t m)8991 pmap_ts_referenced(vm_page_t m)
8992 {
8993 struct md_page *pvh;
8994 pv_entry_t pv, pvf;
8995 pmap_t pmap;
8996 struct rwlock *lock;
8997 pd_entry_t oldpde, *pde;
8998 pt_entry_t *pte, PG_A, PG_M, PG_RW;
8999 vm_offset_t va;
9000 vm_paddr_t pa;
9001 int cleared, md_gen, not_cleared, pvh_gen;
9002 struct spglist free;
9003 bool demoted;
9004
9005 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
9006 ("pmap_ts_referenced: page %p is not managed", m));
9007 SLIST_INIT(&free);
9008 cleared = 0;
9009 pa = VM_PAGE_TO_PHYS(m);
9010 lock = PHYS_TO_PV_LIST_LOCK(pa);
9011 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
9012 rw_wlock(lock);
9013 retry:
9014 not_cleared = 0;
9015 if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
9016 goto small_mappings;
9017 pv = pvf;
9018 do {
9019 if (pvf == NULL)
9020 pvf = pv;
9021 pmap = PV_PMAP(pv);
9022 if (!PMAP_TRYLOCK(pmap)) {
9023 pvh_gen = pvh->pv_gen;
9024 rw_wunlock(lock);
9025 PMAP_LOCK(pmap);
9026 rw_wlock(lock);
9027 if (pvh_gen != pvh->pv_gen) {
9028 PMAP_UNLOCK(pmap);
9029 goto retry;
9030 }
9031 }
9032 PG_A = pmap_accessed_bit(pmap);
9033 PG_M = pmap_modified_bit(pmap);
9034 PG_RW = pmap_rw_bit(pmap);
9035 va = pv->pv_va;
9036 pde = pmap_pde(pmap, pv->pv_va);
9037 oldpde = *pde;
9038 if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9039 /*
9040 * Although "oldpde" is mapping a 2MB page, because
9041 * this function is called at a 4KB page granularity,
9042 * we only update the 4KB page under test.
9043 */
9044 vm_page_dirty(m);
9045 }
9046 if ((oldpde & PG_A) != 0) {
9047 /*
9048 * Since this reference bit is shared by 512 4KB
9049 * pages, it should not be cleared every time it is
9050 * tested. Apply a simple "hash" function on the
9051 * physical page number, the virtual superpage number,
9052 * and the pmap address to select one 4KB page out of
9053 * the 512 on which testing the reference bit will
9054 * result in clearing that reference bit. This
9055 * function is designed to avoid the selection of the
9056 * same 4KB page for every 2MB page mapping.
9057 *
9058 * On demotion, a mapping that hasn't been referenced
9059 * is simply destroyed. To avoid the possibility of a
9060 * subsequent page fault on a demoted wired mapping,
9061 * always leave its reference bit set. Moreover,
9062 * since the superpage is wired, the current state of
9063 * its reference bit won't affect page replacement.
9064 */
9065 if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
9066 (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
9067 (oldpde & PG_W) == 0) {
9068 if (safe_to_clear_referenced(pmap, oldpde)) {
9069 atomic_clear_long(pde, PG_A);
9070 pmap_invalidate_page(pmap, pv->pv_va);
9071 demoted = false;
9072 } else if (pmap_demote_pde_locked(pmap, pde,
9073 pv->pv_va, &lock)) {
9074 /*
9075 * Remove the mapping to a single page
9076 * so that a subsequent access may
9077 * repromote. Since the underlying
9078 * page table page is fully populated,
9079 * this removal never frees a page
9080 * table page.
9081 */
9082 demoted = true;
9083 va += VM_PAGE_TO_PHYS(m) - (oldpde &
9084 PG_PS_FRAME);
9085 pte = pmap_pde_to_pte(pde, va);
9086 pmap_remove_pte(pmap, pte, va, *pde,
9087 NULL, &lock);
9088 pmap_invalidate_page(pmap, va);
9089 } else
9090 demoted = true;
9091
9092 if (demoted) {
9093 /*
9094 * The superpage mapping was removed
9095 * entirely and therefore 'pv' is no
9096 * longer valid.
9097 */
9098 if (pvf == pv)
9099 pvf = NULL;
9100 pv = NULL;
9101 }
9102 cleared++;
9103 KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
9104 ("inconsistent pv lock %p %p for page %p",
9105 lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
9106 } else
9107 not_cleared++;
9108 }
9109 PMAP_UNLOCK(pmap);
9110 /* Rotate the PV list if it has more than one entry. */
9111 if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
9112 TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
9113 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
9114 pvh->pv_gen++;
9115 }
9116 if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
9117 goto out;
9118 } while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
9119 small_mappings:
9120 if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
9121 goto out;
9122 pv = pvf;
9123 do {
9124 if (pvf == NULL)
9125 pvf = pv;
9126 pmap = PV_PMAP(pv);
9127 if (!PMAP_TRYLOCK(pmap)) {
9128 pvh_gen = pvh->pv_gen;
9129 md_gen = m->md.pv_gen;
9130 rw_wunlock(lock);
9131 PMAP_LOCK(pmap);
9132 rw_wlock(lock);
9133 if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9134 PMAP_UNLOCK(pmap);
9135 goto retry;
9136 }
9137 }
9138 PG_A = pmap_accessed_bit(pmap);
9139 PG_M = pmap_modified_bit(pmap);
9140 PG_RW = pmap_rw_bit(pmap);
9141 pde = pmap_pde(pmap, pv->pv_va);
9142 KASSERT((*pde & PG_PS) == 0,
9143 ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
9144 m));
9145 pte = pmap_pde_to_pte(pde, pv->pv_va);
9146 if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
9147 vm_page_dirty(m);
9148 if ((*pte & PG_A) != 0) {
9149 if (safe_to_clear_referenced(pmap, *pte)) {
9150 atomic_clear_long(pte, PG_A);
9151 pmap_invalidate_page(pmap, pv->pv_va);
9152 cleared++;
9153 } else if ((*pte & PG_W) == 0) {
9154 /*
9155 * Wired pages cannot be paged out so
9156 * doing accessed bit emulation for
9157 * them is wasted effort. We do the
9158 * hard work for unwired pages only.
9159 */
9160 pmap_remove_pte(pmap, pte, pv->pv_va,
9161 *pde, &free, &lock);
9162 pmap_invalidate_page(pmap, pv->pv_va);
9163 cleared++;
9164 if (pvf == pv)
9165 pvf = NULL;
9166 pv = NULL;
9167 KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
9168 ("inconsistent pv lock %p %p for page %p",
9169 lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
9170 } else
9171 not_cleared++;
9172 }
9173 PMAP_UNLOCK(pmap);
9174 /* Rotate the PV list if it has more than one entry. */
9175 if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
9176 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
9177 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
9178 m->md.pv_gen++;
9179 }
9180 } while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
9181 not_cleared < PMAP_TS_REFERENCED_MAX);
9182 out:
9183 rw_wunlock(lock);
9184 vm_page_free_pages_toq(&free, true);
9185 return (cleared + not_cleared);
9186 }
9187
9188 /*
9189 * Apply the given advice to the specified range of addresses within the
9190 * given pmap. Depending on the advice, clear the referenced and/or
9191 * modified flags in each mapping and set the mapped page's dirty field.
9192 */
9193 void
pmap_advise(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,int advice)9194 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
9195 {
9196 struct rwlock *lock;
9197 pml4_entry_t *pml4e;
9198 pdp_entry_t *pdpe;
9199 pd_entry_t oldpde, *pde;
9200 pt_entry_t *pte, PG_A, PG_G, PG_M, PG_RW, PG_V;
9201 vm_offset_t va, va_next;
9202 vm_page_t m;
9203 bool anychanged;
9204
9205 if (advice != MADV_DONTNEED && advice != MADV_FREE)
9206 return;
9207
9208 /*
9209 * A/D bit emulation requires an alternate code path when clearing
9210 * the modified and accessed bits below. Since this function is
9211 * advisory in nature we skip it entirely for pmaps that require
9212 * A/D bit emulation.
9213 */
9214 if (pmap_emulate_ad_bits(pmap))
9215 return;
9216
9217 PG_A = pmap_accessed_bit(pmap);
9218 PG_G = pmap_global_bit(pmap);
9219 PG_M = pmap_modified_bit(pmap);
9220 PG_V = pmap_valid_bit(pmap);
9221 PG_RW = pmap_rw_bit(pmap);
9222 anychanged = false;
9223 pmap_delayed_invl_start();
9224 PMAP_LOCK(pmap);
9225 for (; sva < eva; sva = va_next) {
9226 pml4e = pmap_pml4e(pmap, sva);
9227 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
9228 va_next = (sva + NBPML4) & ~PML4MASK;
9229 if (va_next < sva)
9230 va_next = eva;
9231 continue;
9232 }
9233
9234 va_next = (sva + NBPDP) & ~PDPMASK;
9235 if (va_next < sva)
9236 va_next = eva;
9237 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
9238 if ((*pdpe & PG_V) == 0)
9239 continue;
9240 if ((*pdpe & PG_PS) != 0)
9241 continue;
9242
9243 va_next = (sva + NBPDR) & ~PDRMASK;
9244 if (va_next < sva)
9245 va_next = eva;
9246 pde = pmap_pdpe_to_pde(pdpe, sva);
9247 oldpde = *pde;
9248 if ((oldpde & PG_V) == 0)
9249 continue;
9250 else if ((oldpde & PG_PS) != 0) {
9251 if ((oldpde & PG_MANAGED) == 0)
9252 continue;
9253 lock = NULL;
9254 if (!pmap_demote_pde_locked(pmap, pde, sva, &lock)) {
9255 if (lock != NULL)
9256 rw_wunlock(lock);
9257
9258 /*
9259 * The large page mapping was destroyed.
9260 */
9261 continue;
9262 }
9263
9264 /*
9265 * Unless the page mappings are wired, remove the
9266 * mapping to a single page so that a subsequent
9267 * access may repromote. Choosing the last page
9268 * within the address range [sva, min(va_next, eva))
9269 * generally results in more repromotions. Since the
9270 * underlying page table page is fully populated, this
9271 * removal never frees a page table page.
9272 */
9273 if ((oldpde & PG_W) == 0) {
9274 va = eva;
9275 if (va > va_next)
9276 va = va_next;
9277 va -= PAGE_SIZE;
9278 KASSERT(va >= sva,
9279 ("pmap_advise: no address gap"));
9280 pte = pmap_pde_to_pte(pde, va);
9281 KASSERT((*pte & PG_V) != 0,
9282 ("pmap_advise: invalid PTE"));
9283 pmap_remove_pte(pmap, pte, va, *pde, NULL,
9284 &lock);
9285 anychanged = true;
9286 }
9287 if (lock != NULL)
9288 rw_wunlock(lock);
9289 }
9290 if (va_next > eva)
9291 va_next = eva;
9292 va = va_next;
9293 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
9294 sva += PAGE_SIZE) {
9295 if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
9296 goto maybe_invlrng;
9297 else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9298 if (advice == MADV_DONTNEED) {
9299 /*
9300 * Future calls to pmap_is_modified()
9301 * can be avoided by making the page
9302 * dirty now.
9303 */
9304 m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
9305 vm_page_dirty(m);
9306 }
9307 atomic_clear_long(pte, PG_M | PG_A);
9308 } else if ((*pte & PG_A) != 0)
9309 atomic_clear_long(pte, PG_A);
9310 else
9311 goto maybe_invlrng;
9312
9313 if ((*pte & PG_G) != 0) {
9314 if (va == va_next)
9315 va = sva;
9316 } else
9317 anychanged = true;
9318 continue;
9319 maybe_invlrng:
9320 if (va != va_next) {
9321 pmap_invalidate_range(pmap, va, sva);
9322 va = va_next;
9323 }
9324 }
9325 if (va != va_next)
9326 pmap_invalidate_range(pmap, va, sva);
9327 }
9328 if (anychanged)
9329 pmap_invalidate_all(pmap);
9330 PMAP_UNLOCK(pmap);
9331 pmap_delayed_invl_finish();
9332 }
9333
9334 /*
9335 * Clear the modify bits on the specified physical page.
9336 */
9337 void
pmap_clear_modify(vm_page_t m)9338 pmap_clear_modify(vm_page_t m)
9339 {
9340 struct md_page *pvh;
9341 pmap_t pmap;
9342 pv_entry_t next_pv, pv;
9343 pd_entry_t oldpde, *pde;
9344 pt_entry_t *pte, PG_M, PG_RW;
9345 struct rwlock *lock;
9346 vm_offset_t va;
9347 int md_gen, pvh_gen;
9348
9349 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
9350 ("pmap_clear_modify: page %p is not managed", m));
9351 vm_page_assert_busied(m);
9352
9353 if (!pmap_page_is_write_mapped(m))
9354 return;
9355 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
9356 pa_to_pvh(VM_PAGE_TO_PHYS(m));
9357 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
9358 rw_wlock(lock);
9359 restart:
9360 TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
9361 pmap = PV_PMAP(pv);
9362 if (!PMAP_TRYLOCK(pmap)) {
9363 pvh_gen = pvh->pv_gen;
9364 rw_wunlock(lock);
9365 PMAP_LOCK(pmap);
9366 rw_wlock(lock);
9367 if (pvh_gen != pvh->pv_gen) {
9368 PMAP_UNLOCK(pmap);
9369 goto restart;
9370 }
9371 }
9372 PG_M = pmap_modified_bit(pmap);
9373 PG_RW = pmap_rw_bit(pmap);
9374 va = pv->pv_va;
9375 pde = pmap_pde(pmap, va);
9376 oldpde = *pde;
9377 /* If oldpde has PG_RW set, then it also has PG_M set. */
9378 if ((oldpde & PG_RW) != 0 &&
9379 pmap_demote_pde_locked(pmap, pde, va, &lock) &&
9380 (oldpde & PG_W) == 0) {
9381 /*
9382 * Write protect the mapping to a single page so that
9383 * a subsequent write access may repromote.
9384 */
9385 va += VM_PAGE_TO_PHYS(m) - (oldpde & PG_PS_FRAME);
9386 pte = pmap_pde_to_pte(pde, va);
9387 atomic_clear_long(pte, PG_M | PG_RW);
9388 vm_page_dirty(m);
9389 pmap_invalidate_page(pmap, va);
9390 }
9391 PMAP_UNLOCK(pmap);
9392 }
9393 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
9394 pmap = PV_PMAP(pv);
9395 if (!PMAP_TRYLOCK(pmap)) {
9396 md_gen = m->md.pv_gen;
9397 pvh_gen = pvh->pv_gen;
9398 rw_wunlock(lock);
9399 PMAP_LOCK(pmap);
9400 rw_wlock(lock);
9401 if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9402 PMAP_UNLOCK(pmap);
9403 goto restart;
9404 }
9405 }
9406 PG_M = pmap_modified_bit(pmap);
9407 PG_RW = pmap_rw_bit(pmap);
9408 pde = pmap_pde(pmap, pv->pv_va);
9409 KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
9410 " a 2mpage in page %p's pv list", m));
9411 pte = pmap_pde_to_pte(pde, pv->pv_va);
9412 if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9413 atomic_clear_long(pte, PG_M);
9414 pmap_invalidate_page(pmap, pv->pv_va);
9415 }
9416 PMAP_UNLOCK(pmap);
9417 }
9418 rw_wunlock(lock);
9419 }
9420
9421 /*
9422 * Miscellaneous support routines follow
9423 */
9424
9425 /* Adjust the properties for a leaf page table entry. */
9426 static __inline void
pmap_pte_props(pt_entry_t * pte,u_long bits,u_long mask)9427 pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask)
9428 {
9429 u_long opte, npte;
9430
9431 opte = *(u_long *)pte;
9432 do {
9433 npte = opte & ~mask;
9434 npte |= bits;
9435 } while (npte != opte && !atomic_fcmpset_long((u_long *)pte, &opte,
9436 npte));
9437 }
9438
9439 /*
9440 * Map a set of physical memory pages into the kernel virtual
9441 * address space. Return a pointer to where it is mapped. This
9442 * routine is intended to be used for mapping device memory,
9443 * NOT real memory.
9444 */
9445 static void *
pmap_mapdev_internal(vm_paddr_t pa,vm_size_t size,int mode,int flags)9446 pmap_mapdev_internal(vm_paddr_t pa, vm_size_t size, int mode, int flags)
9447 {
9448 struct pmap_preinit_mapping *ppim;
9449 vm_offset_t va, offset;
9450 vm_size_t tmpsize;
9451 int i;
9452
9453 offset = pa & PAGE_MASK;
9454 size = round_page(offset + size);
9455 pa = trunc_page(pa);
9456
9457 if (!pmap_initialized) {
9458 va = 0;
9459 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9460 ppim = pmap_preinit_mapping + i;
9461 if (ppim->va == 0) {
9462 ppim->pa = pa;
9463 ppim->sz = size;
9464 ppim->mode = mode;
9465 ppim->va = virtual_avail;
9466 virtual_avail += size;
9467 va = ppim->va;
9468 break;
9469 }
9470 }
9471 if (va == 0)
9472 panic("%s: too many preinit mappings", __func__);
9473 } else {
9474 /*
9475 * If we have a preinit mapping, reuse it.
9476 */
9477 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9478 ppim = pmap_preinit_mapping + i;
9479 if (ppim->pa == pa && ppim->sz == size &&
9480 (ppim->mode == mode ||
9481 (flags & MAPDEV_SETATTR) == 0))
9482 return ((void *)(ppim->va + offset));
9483 }
9484 /*
9485 * If the specified range of physical addresses fits within
9486 * the direct map window, use the direct map.
9487 */
9488 if (pa < dmaplimit && pa + size <= dmaplimit) {
9489 va = PHYS_TO_DMAP(pa);
9490 if ((flags & MAPDEV_SETATTR) != 0) {
9491 PMAP_LOCK(kernel_pmap);
9492 i = pmap_change_props_locked(va, size,
9493 PROT_NONE, mode, flags);
9494 PMAP_UNLOCK(kernel_pmap);
9495 } else
9496 i = 0;
9497 if (!i)
9498 return ((void *)(va + offset));
9499 }
9500 va = kva_alloc(size);
9501 if (va == 0)
9502 panic("%s: Couldn't allocate KVA", __func__);
9503 }
9504 for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
9505 pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
9506 pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
9507 if ((flags & MAPDEV_FLUSHCACHE) != 0)
9508 pmap_invalidate_cache_range(va, va + tmpsize);
9509 return ((void *)(va + offset));
9510 }
9511
9512 void *
pmap_mapdev_attr(vm_paddr_t pa,vm_size_t size,int mode)9513 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
9514 {
9515
9516 return (pmap_mapdev_internal(pa, size, mode, MAPDEV_FLUSHCACHE |
9517 MAPDEV_SETATTR));
9518 }
9519
9520 void *
pmap_mapdev(vm_paddr_t pa,vm_size_t size)9521 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
9522 {
9523
9524 return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
9525 }
9526
9527 void *
pmap_mapdev_pciecfg(vm_paddr_t pa,vm_size_t size)9528 pmap_mapdev_pciecfg(vm_paddr_t pa, vm_size_t size)
9529 {
9530
9531 return (pmap_mapdev_internal(pa, size, PAT_UNCACHEABLE,
9532 MAPDEV_SETATTR));
9533 }
9534
9535 void *
pmap_mapbios(vm_paddr_t pa,vm_size_t size)9536 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
9537 {
9538
9539 return (pmap_mapdev_internal(pa, size, PAT_WRITE_BACK,
9540 MAPDEV_FLUSHCACHE));
9541 }
9542
9543 void
pmap_unmapdev(void * p,vm_size_t size)9544 pmap_unmapdev(void *p, vm_size_t size)
9545 {
9546 struct pmap_preinit_mapping *ppim;
9547 vm_offset_t offset, va;
9548 int i;
9549
9550 va = (vm_offset_t)p;
9551
9552 /* If we gave a direct map region in pmap_mapdev, do nothing */
9553 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
9554 return;
9555 offset = va & PAGE_MASK;
9556 size = round_page(offset + size);
9557 va = trunc_page(va);
9558 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9559 ppim = pmap_preinit_mapping + i;
9560 if (ppim->va == va && ppim->sz == size) {
9561 if (pmap_initialized)
9562 return;
9563 ppim->pa = 0;
9564 ppim->va = 0;
9565 ppim->sz = 0;
9566 ppim->mode = 0;
9567 if (va + size == virtual_avail)
9568 virtual_avail = va;
9569 return;
9570 }
9571 }
9572 if (pmap_initialized) {
9573 pmap_qremove(va, atop(size));
9574 kva_free(va, size);
9575 }
9576 }
9577
9578 /*
9579 * Tries to demote a 1GB page mapping.
9580 */
9581 static bool
pmap_demote_pdpe(pmap_t pmap,pdp_entry_t * pdpe,vm_offset_t va,vm_page_t m)9582 pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe, vm_offset_t va, vm_page_t m)
9583 {
9584 pdp_entry_t newpdpe, oldpdpe;
9585 pd_entry_t *firstpde, newpde, *pde;
9586 pt_entry_t PG_A, PG_M, PG_RW, PG_V;
9587 vm_paddr_t pdpgpa;
9588 vm_page_t pdpg;
9589
9590 PG_A = pmap_accessed_bit(pmap);
9591 PG_M = pmap_modified_bit(pmap);
9592 PG_V = pmap_valid_bit(pmap);
9593 PG_RW = pmap_rw_bit(pmap);
9594
9595 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9596 oldpdpe = *pdpe;
9597 KASSERT((oldpdpe & (PG_PS | PG_V)) == (PG_PS | PG_V),
9598 ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
9599 if (m == NULL) {
9600 pdpg = pmap_alloc_pt_page(pmap, va >> PDPSHIFT,
9601 VM_ALLOC_WIRED);
9602 if (pdpg == NULL) {
9603 CTR2(KTR_PMAP,
9604 "pmap_demote_pdpe: failure for va %#lx in pmap %p",
9605 va, pmap);
9606 return (false);
9607 }
9608 } else {
9609 pdpg = m;
9610 pdpg->pindex = va >> PDPSHIFT;
9611 pmap_pt_page_count_adj(pmap, 1);
9612 }
9613 pdpgpa = VM_PAGE_TO_PHYS(pdpg);
9614 firstpde = (pd_entry_t *)PHYS_TO_DMAP(pdpgpa);
9615 newpdpe = pdpgpa | PG_M | PG_A | (oldpdpe & PG_U) | PG_RW | PG_V;
9616 KASSERT((oldpdpe & PG_A) != 0,
9617 ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
9618 KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
9619 ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
9620 newpde = oldpdpe;
9621
9622 /*
9623 * Initialize the page directory page.
9624 */
9625 for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
9626 *pde = newpde;
9627 newpde += NBPDR;
9628 }
9629
9630 /*
9631 * Demote the mapping.
9632 */
9633 *pdpe = newpdpe;
9634
9635 /*
9636 * Invalidate a stale recursive mapping of the page directory page.
9637 */
9638 pmap_invalidate_page(pmap, (vm_offset_t)vtopde(va));
9639
9640 counter_u64_add(pmap_pdpe_demotions, 1);
9641 CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
9642 " in pmap %p", va, pmap);
9643 return (true);
9644 }
9645
9646 /*
9647 * Sets the memory attribute for the specified page.
9648 */
9649 void
pmap_page_set_memattr(vm_page_t m,vm_memattr_t ma)9650 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
9651 {
9652
9653 m->md.pat_mode = ma;
9654
9655 /*
9656 * If "m" is a normal page, update its direct mapping. This update
9657 * can be relied upon to perform any cache operations that are
9658 * required for data coherence.
9659 */
9660 if ((m->flags & PG_FICTITIOUS) == 0 &&
9661 pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
9662 m->md.pat_mode))
9663 panic("memory attribute change on the direct map failed");
9664 }
9665
9666 void
pmap_page_set_memattr_noflush(vm_page_t m,vm_memattr_t ma)9667 pmap_page_set_memattr_noflush(vm_page_t m, vm_memattr_t ma)
9668 {
9669 int error;
9670
9671 m->md.pat_mode = ma;
9672
9673 if ((m->flags & PG_FICTITIOUS) != 0)
9674 return;
9675 PMAP_LOCK(kernel_pmap);
9676 error = pmap_change_props_locked(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
9677 PAGE_SIZE, PROT_NONE, m->md.pat_mode, 0);
9678 PMAP_UNLOCK(kernel_pmap);
9679 if (error != 0)
9680 panic("memory attribute change on the direct map failed");
9681 }
9682
9683 /*
9684 * Changes the specified virtual address range's memory type to that given by
9685 * the parameter "mode". The specified virtual address range must be
9686 * completely contained within either the direct map or the kernel map. If
9687 * the virtual address range is contained within the kernel map, then the
9688 * memory type for each of the corresponding ranges of the direct map is also
9689 * changed. (The corresponding ranges of the direct map are those ranges that
9690 * map the same physical pages as the specified virtual address range.) These
9691 * changes to the direct map are necessary because Intel describes the
9692 * behavior of their processors as "undefined" if two or more mappings to the
9693 * same physical page have different memory types.
9694 *
9695 * Returns zero if the change completed successfully, and either EINVAL or
9696 * ENOMEM if the change failed. Specifically, EINVAL is returned if some part
9697 * of the virtual address range was not mapped, and ENOMEM is returned if
9698 * there was insufficient memory available to complete the change. In the
9699 * latter case, the memory type may have been changed on some part of the
9700 * virtual address range or the direct map.
9701 */
9702 int
pmap_change_attr(vm_offset_t va,vm_size_t size,int mode)9703 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
9704 {
9705 int error;
9706
9707 PMAP_LOCK(kernel_pmap);
9708 error = pmap_change_props_locked(va, size, PROT_NONE, mode,
9709 MAPDEV_FLUSHCACHE);
9710 PMAP_UNLOCK(kernel_pmap);
9711 return (error);
9712 }
9713
9714 /*
9715 * Changes the specified virtual address range's protections to those
9716 * specified by "prot". Like pmap_change_attr(), protections for aliases
9717 * in the direct map are updated as well. Protections on aliasing mappings may
9718 * be a subset of the requested protections; for example, mappings in the direct
9719 * map are never executable.
9720 */
9721 int
pmap_change_prot(vm_offset_t va,vm_size_t size,vm_prot_t prot)9722 pmap_change_prot(vm_offset_t va, vm_size_t size, vm_prot_t prot)
9723 {
9724 int error;
9725
9726 /* Only supported within the kernel map. */
9727 if (va < VM_MIN_KERNEL_ADDRESS)
9728 return (EINVAL);
9729
9730 PMAP_LOCK(kernel_pmap);
9731 error = pmap_change_props_locked(va, size, prot, -1,
9732 MAPDEV_ASSERTVALID);
9733 PMAP_UNLOCK(kernel_pmap);
9734 return (error);
9735 }
9736
9737 static int
pmap_change_props_locked(vm_offset_t va,vm_size_t size,vm_prot_t prot,int mode,int flags)9738 pmap_change_props_locked(vm_offset_t va, vm_size_t size, vm_prot_t prot,
9739 int mode, int flags)
9740 {
9741 vm_offset_t base, offset, tmpva;
9742 vm_paddr_t pa_start, pa_end, pa_end1;
9743 pdp_entry_t *pdpe;
9744 pd_entry_t *pde, pde_bits, pde_mask;
9745 pt_entry_t *pte, pte_bits, pte_mask;
9746 int error;
9747 bool changed;
9748
9749 PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
9750 base = trunc_page(va);
9751 offset = va & PAGE_MASK;
9752 size = round_page(offset + size);
9753
9754 /*
9755 * Only supported on kernel virtual addresses, including the direct
9756 * map but excluding the recursive map.
9757 */
9758 if (base < DMAP_MIN_ADDRESS)
9759 return (EINVAL);
9760
9761 /*
9762 * Construct our flag sets and masks. "bits" is the subset of
9763 * "mask" that will be set in each modified PTE.
9764 *
9765 * Mappings in the direct map are never allowed to be executable.
9766 */
9767 pde_bits = pte_bits = 0;
9768 pde_mask = pte_mask = 0;
9769 if (mode != -1) {
9770 pde_bits |= pmap_cache_bits(kernel_pmap, mode, true);
9771 pde_mask |= X86_PG_PDE_CACHE;
9772 pte_bits |= pmap_cache_bits(kernel_pmap, mode, false);
9773 pte_mask |= X86_PG_PTE_CACHE;
9774 }
9775 if (prot != VM_PROT_NONE) {
9776 if ((prot & VM_PROT_WRITE) != 0) {
9777 pde_bits |= X86_PG_RW;
9778 pte_bits |= X86_PG_RW;
9779 }
9780 if ((prot & VM_PROT_EXECUTE) == 0 ||
9781 va < VM_MIN_KERNEL_ADDRESS) {
9782 pde_bits |= pg_nx;
9783 pte_bits |= pg_nx;
9784 }
9785 pde_mask |= X86_PG_RW | pg_nx;
9786 pte_mask |= X86_PG_RW | pg_nx;
9787 }
9788
9789 /*
9790 * Pages that aren't mapped aren't supported. Also break down 2MB pages
9791 * into 4KB pages if required.
9792 */
9793 for (tmpva = base; tmpva < base + size; ) {
9794 pdpe = pmap_pdpe(kernel_pmap, tmpva);
9795 if (pdpe == NULL || *pdpe == 0) {
9796 KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9797 ("%s: addr %#lx is not mapped", __func__, tmpva));
9798 return (EINVAL);
9799 }
9800 if (*pdpe & PG_PS) {
9801 /*
9802 * If the current 1GB page already has the required
9803 * properties, then we need not demote this page. Just
9804 * increment tmpva to the next 1GB page frame.
9805 */
9806 if ((*pdpe & pde_mask) == pde_bits) {
9807 tmpva = trunc_1gpage(tmpva) + NBPDP;
9808 continue;
9809 }
9810
9811 /*
9812 * If the current offset aligns with a 1GB page frame
9813 * and there is at least 1GB left within the range, then
9814 * we need not break down this page into 2MB pages.
9815 */
9816 if ((tmpva & PDPMASK) == 0 &&
9817 tmpva + PDPMASK < base + size) {
9818 tmpva += NBPDP;
9819 continue;
9820 }
9821 if (!pmap_demote_pdpe(kernel_pmap, pdpe, tmpva, NULL))
9822 return (ENOMEM);
9823 }
9824 pde = pmap_pdpe_to_pde(pdpe, tmpva);
9825 if (*pde == 0) {
9826 KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9827 ("%s: addr %#lx is not mapped", __func__, tmpva));
9828 return (EINVAL);
9829 }
9830 if (*pde & PG_PS) {
9831 /*
9832 * If the current 2MB page already has the required
9833 * properties, then we need not demote this page. Just
9834 * increment tmpva to the next 2MB page frame.
9835 */
9836 if ((*pde & pde_mask) == pde_bits) {
9837 tmpva = trunc_2mpage(tmpva) + NBPDR;
9838 continue;
9839 }
9840
9841 /*
9842 * If the current offset aligns with a 2MB page frame
9843 * and there is at least 2MB left within the range, then
9844 * we need not break down this page into 4KB pages.
9845 */
9846 if ((tmpva & PDRMASK) == 0 &&
9847 tmpva + PDRMASK < base + size) {
9848 tmpva += NBPDR;
9849 continue;
9850 }
9851 if (!pmap_demote_pde(kernel_pmap, pde, tmpva))
9852 return (ENOMEM);
9853 }
9854 pte = pmap_pde_to_pte(pde, tmpva);
9855 if (*pte == 0) {
9856 KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9857 ("%s: addr %#lx is not mapped", __func__, tmpva));
9858 return (EINVAL);
9859 }
9860 tmpva += PAGE_SIZE;
9861 }
9862 error = 0;
9863
9864 /*
9865 * Ok, all the pages exist, so run through them updating their
9866 * properties if required.
9867 */
9868 changed = false;
9869 pa_start = pa_end = 0;
9870 for (tmpva = base; tmpva < base + size; ) {
9871 pdpe = pmap_pdpe(kernel_pmap, tmpva);
9872 if (*pdpe & PG_PS) {
9873 if ((*pdpe & pde_mask) != pde_bits) {
9874 pmap_pte_props(pdpe, pde_bits, pde_mask);
9875 changed = true;
9876 }
9877 if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9878 (*pdpe & PG_PS_FRAME) < dmaplimit) {
9879 if (pa_start == pa_end) {
9880 /* Start physical address run. */
9881 pa_start = *pdpe & PG_PS_FRAME;
9882 pa_end = pa_start + NBPDP;
9883 } else if (pa_end == (*pdpe & PG_PS_FRAME))
9884 pa_end += NBPDP;
9885 else {
9886 /* Run ended, update direct map. */
9887 error = pmap_change_props_locked(
9888 PHYS_TO_DMAP(pa_start),
9889 pa_end - pa_start, prot, mode,
9890 flags);
9891 if (error != 0)
9892 break;
9893 /* Start physical address run. */
9894 pa_start = *pdpe & PG_PS_FRAME;
9895 pa_end = pa_start + NBPDP;
9896 }
9897 }
9898 tmpva = trunc_1gpage(tmpva) + NBPDP;
9899 continue;
9900 }
9901 pde = pmap_pdpe_to_pde(pdpe, tmpva);
9902 if (*pde & PG_PS) {
9903 if ((*pde & pde_mask) != pde_bits) {
9904 pmap_pte_props(pde, pde_bits, pde_mask);
9905 changed = true;
9906 }
9907 if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9908 (*pde & PG_PS_FRAME) < dmaplimit) {
9909 if (pa_start == pa_end) {
9910 /* Start physical address run. */
9911 pa_start = *pde & PG_PS_FRAME;
9912 pa_end = pa_start + NBPDR;
9913 } else if (pa_end == (*pde & PG_PS_FRAME))
9914 pa_end += NBPDR;
9915 else {
9916 /* Run ended, update direct map. */
9917 error = pmap_change_props_locked(
9918 PHYS_TO_DMAP(pa_start),
9919 pa_end - pa_start, prot, mode,
9920 flags);
9921 if (error != 0)
9922 break;
9923 /* Start physical address run. */
9924 pa_start = *pde & PG_PS_FRAME;
9925 pa_end = pa_start + NBPDR;
9926 }
9927 }
9928 tmpva = trunc_2mpage(tmpva) + NBPDR;
9929 } else {
9930 pte = pmap_pde_to_pte(pde, tmpva);
9931 if ((*pte & pte_mask) != pte_bits) {
9932 pmap_pte_props(pte, pte_bits, pte_mask);
9933 changed = true;
9934 }
9935 if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9936 (*pte & PG_FRAME) < dmaplimit) {
9937 if (pa_start == pa_end) {
9938 /* Start physical address run. */
9939 pa_start = *pte & PG_FRAME;
9940 pa_end = pa_start + PAGE_SIZE;
9941 } else if (pa_end == (*pte & PG_FRAME))
9942 pa_end += PAGE_SIZE;
9943 else {
9944 /* Run ended, update direct map. */
9945 error = pmap_change_props_locked(
9946 PHYS_TO_DMAP(pa_start),
9947 pa_end - pa_start, prot, mode,
9948 flags);
9949 if (error != 0)
9950 break;
9951 /* Start physical address run. */
9952 pa_start = *pte & PG_FRAME;
9953 pa_end = pa_start + PAGE_SIZE;
9954 }
9955 }
9956 tmpva += PAGE_SIZE;
9957 }
9958 }
9959 if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
9960 pa_end1 = MIN(pa_end, dmaplimit);
9961 if (pa_start != pa_end1)
9962 error = pmap_change_props_locked(PHYS_TO_DMAP(pa_start),
9963 pa_end1 - pa_start, prot, mode, flags);
9964 }
9965
9966 /*
9967 * Flush CPU caches if required to make sure any data isn't cached that
9968 * shouldn't be, etc.
9969 */
9970 if (changed) {
9971 pmap_invalidate_range(kernel_pmap, base, tmpva);
9972 if ((flags & MAPDEV_FLUSHCACHE) != 0)
9973 pmap_invalidate_cache_range(base, tmpva);
9974 }
9975 return (error);
9976 }
9977
9978 /*
9979 * Demotes any mapping within the direct map region that covers more
9980 * than the specified range of physical addresses. This range's size
9981 * must be a power of two and its starting address must be a multiple
9982 * of its size, which means that any pdp from the mapping is fully
9983 * covered by the range if len > NBPDP. Since the demotion does not
9984 * change any attributes of the mapping, a TLB invalidation is not
9985 * mandatory. The caller may, however, request a TLB invalidation.
9986 */
9987 void
pmap_demote_DMAP(vm_paddr_t base,vm_size_t len,bool invalidate)9988 pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, bool invalidate)
9989 {
9990 pdp_entry_t *pdpe;
9991 pd_entry_t *pde;
9992 vm_offset_t va;
9993 vm_page_t m, mpte;
9994 bool changed, rv __diagused;
9995
9996 if (len == 0)
9997 return;
9998 KASSERT(powerof2(len), ("pmap_demote_DMAP: len is not a power of 2"));
9999 KASSERT((base & (len - 1)) == 0,
10000 ("pmap_demote_DMAP: base is not a multiple of len"));
10001 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "pmap_demote_DMAP");
10002
10003 if (len < NBPDP && base < dmaplimit) {
10004 va = PHYS_TO_DMAP(base);
10005 changed = false;
10006
10007 /*
10008 * Assume that it is fine to sleep there.
10009 * The only existing caller of pmap_demote_DMAP() is the
10010 * x86_mr_split_dmap() function.
10011 */
10012 m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
10013 if (len < NBPDR) {
10014 mpte = vm_page_alloc_noobj(VM_ALLOC_WIRED |
10015 VM_ALLOC_WAITOK);
10016 } else
10017 mpte = NULL;
10018
10019 PMAP_LOCK(kernel_pmap);
10020 pdpe = pmap_pdpe(kernel_pmap, va);
10021 if ((*pdpe & X86_PG_V) == 0)
10022 panic("pmap_demote_DMAP: invalid PDPE");
10023 if ((*pdpe & PG_PS) != 0) {
10024 rv = pmap_demote_pdpe(kernel_pmap, pdpe, va, m);
10025 KASSERT(rv, ("pmap_demote_DMAP: PDPE failed"));
10026 changed = true;
10027 m = NULL;
10028 }
10029 if (len < NBPDR) {
10030 pde = pmap_pdpe_to_pde(pdpe, va);
10031 if ((*pde & X86_PG_V) == 0)
10032 panic("pmap_demote_DMAP: invalid PDE");
10033 if ((*pde & PG_PS) != 0) {
10034 mpte->pindex = pmap_pde_pindex(va);
10035 pmap_pt_page_count_adj(kernel_pmap, 1);
10036 rv = pmap_demote_pde_mpte(kernel_pmap, pde, va,
10037 NULL, mpte);
10038 KASSERT(rv, ("pmap_demote_DMAP: PDE failed"));
10039 changed = true;
10040 mpte = NULL;
10041 }
10042 }
10043 if (changed && invalidate)
10044 pmap_invalidate_page(kernel_pmap, va);
10045 PMAP_UNLOCK(kernel_pmap);
10046 if (m != NULL) {
10047 vm_page_unwire_noq(m);
10048 vm_page_free(m);
10049 }
10050 if (mpte != NULL) {
10051 vm_page_unwire_noq(mpte);
10052 vm_page_free(mpte);
10053 }
10054 }
10055 }
10056
10057 /*
10058 * Perform the pmap work for mincore(2). If the page is not both referenced and
10059 * modified by this pmap, returns its physical address so that the caller can
10060 * find other mappings.
10061 */
10062 int
pmap_mincore(pmap_t pmap,vm_offset_t addr,vm_paddr_t * pap)10063 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
10064 {
10065 pdp_entry_t *pdpe;
10066 pd_entry_t *pdep;
10067 pt_entry_t pte, PG_A, PG_M, PG_RW, PG_V;
10068 vm_paddr_t pa;
10069 int val;
10070
10071 PG_A = pmap_accessed_bit(pmap);
10072 PG_M = pmap_modified_bit(pmap);
10073 PG_V = pmap_valid_bit(pmap);
10074 PG_RW = pmap_rw_bit(pmap);
10075
10076 PMAP_LOCK(pmap);
10077 pte = 0;
10078 pa = 0;
10079 val = 0;
10080 pdpe = pmap_pdpe(pmap, addr);
10081 if (pdpe == NULL)
10082 goto out;
10083 if ((*pdpe & PG_V) != 0) {
10084 if ((*pdpe & PG_PS) != 0) {
10085 pte = *pdpe;
10086 pa = ((pte & PG_PS_PDP_FRAME) | (addr & PDPMASK)) &
10087 PG_FRAME;
10088 val = MINCORE_PSIND(2);
10089 } else {
10090 pdep = pmap_pde(pmap, addr);
10091 if (pdep != NULL && (*pdep & PG_V) != 0) {
10092 if ((*pdep & PG_PS) != 0) {
10093 pte = *pdep;
10094 /* Compute the physical address of the 4KB page. */
10095 pa = ((pte & PG_PS_FRAME) | (addr &
10096 PDRMASK)) & PG_FRAME;
10097 val = MINCORE_PSIND(1);
10098 } else {
10099 pte = *pmap_pde_to_pte(pdep, addr);
10100 pa = pte & PG_FRAME;
10101 val = 0;
10102 }
10103 }
10104 }
10105 }
10106 if ((pte & PG_V) != 0) {
10107 val |= MINCORE_INCORE;
10108 if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
10109 val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
10110 if ((pte & PG_A) != 0)
10111 val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
10112 }
10113 if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
10114 (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
10115 (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
10116 *pap = pa;
10117 }
10118 out:
10119 PMAP_UNLOCK(pmap);
10120 return (val);
10121 }
10122
10123 static uint64_t
pmap_pcid_alloc(pmap_t pmap,struct pmap_pcid * pcidp)10124 pmap_pcid_alloc(pmap_t pmap, struct pmap_pcid *pcidp)
10125 {
10126 uint32_t gen, new_gen, pcid_next;
10127
10128 CRITICAL_ASSERT(curthread);
10129 gen = PCPU_GET(pcid_gen);
10130 if (pcidp->pm_pcid == PMAP_PCID_KERN)
10131 return (pti ? 0 : CR3_PCID_SAVE);
10132 if (pcidp->pm_gen == gen)
10133 return (CR3_PCID_SAVE);
10134 pcid_next = PCPU_GET(pcid_next);
10135 KASSERT((!pti && pcid_next <= PMAP_PCID_OVERMAX) ||
10136 (pti && pcid_next <= PMAP_PCID_OVERMAX_KERN),
10137 ("cpu %d pcid_next %#x", PCPU_GET(cpuid), pcid_next));
10138 if ((!pti && pcid_next == PMAP_PCID_OVERMAX) ||
10139 (pti && pcid_next == PMAP_PCID_OVERMAX_KERN)) {
10140 new_gen = gen + 1;
10141 if (new_gen == 0)
10142 new_gen = 1;
10143 PCPU_SET(pcid_gen, new_gen);
10144 pcid_next = PMAP_PCID_KERN + 1;
10145 } else {
10146 new_gen = gen;
10147 }
10148 pcidp->pm_pcid = pcid_next;
10149 pcidp->pm_gen = new_gen;
10150 PCPU_SET(pcid_next, pcid_next + 1);
10151 return (0);
10152 }
10153
10154 static uint64_t
pmap_pcid_alloc_checked(pmap_t pmap,struct pmap_pcid * pcidp)10155 pmap_pcid_alloc_checked(pmap_t pmap, struct pmap_pcid *pcidp)
10156 {
10157 uint64_t cached;
10158
10159 cached = pmap_pcid_alloc(pmap, pcidp);
10160 KASSERT(pcidp->pm_pcid < PMAP_PCID_OVERMAX,
10161 ("pmap %p cpu %d pcid %#x", pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
10162 KASSERT(pcidp->pm_pcid != PMAP_PCID_KERN || pmap == kernel_pmap,
10163 ("non-kernel pmap pmap %p cpu %d pcid %#x",
10164 pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
10165 return (cached);
10166 }
10167
10168 static void
pmap_activate_sw_pti_post(struct thread * td,pmap_t pmap)10169 pmap_activate_sw_pti_post(struct thread *td, pmap_t pmap)
10170 {
10171
10172 PCPU_GET(tssp)->tss_rsp0 = pmap->pm_ucr3 != PMAP_NO_CR3 ?
10173 PCPU_GET(pti_rsp0) : (uintptr_t)td->td_md.md_stack_base;
10174 }
10175
10176 static void
pmap_activate_sw_pcid_pti(struct thread * td,pmap_t pmap,u_int cpuid)10177 pmap_activate_sw_pcid_pti(struct thread *td, pmap_t pmap, u_int cpuid)
10178 {
10179 pmap_t old_pmap;
10180 struct pmap_pcid *pcidp, *old_pcidp;
10181 uint64_t cached, cr3, kcr3, ucr3;
10182
10183 KASSERT((read_rflags() & PSL_I) == 0,
10184 ("PCID needs interrupts disabled in pmap_activate_sw()"));
10185
10186 /* See the comment in pmap_invalidate_page_pcid(). */
10187 if (PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK) {
10188 PCPU_SET(ucr3_load_mask, PMAP_UCR3_NOMASK);
10189 old_pmap = PCPU_GET(curpmap);
10190 MPASS(old_pmap->pm_ucr3 != PMAP_NO_CR3);
10191 old_pcidp = zpcpu_get_cpu(old_pmap->pm_pcidp, cpuid);
10192 old_pcidp->pm_gen = 0;
10193 }
10194
10195 pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
10196 cached = pmap_pcid_alloc_checked(pmap, pcidp);
10197 cr3 = rcr3();
10198 if ((cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10199 load_cr3(pmap->pm_cr3 | pcidp->pm_pcid);
10200 PCPU_SET(curpmap, pmap);
10201 kcr3 = pmap->pm_cr3 | pcidp->pm_pcid;
10202 ucr3 = pmap->pm_ucr3 | pcidp->pm_pcid | PMAP_PCID_USER_PT;
10203
10204 if (!cached && pmap->pm_ucr3 != PMAP_NO_CR3)
10205 PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
10206
10207 PCPU_SET(kcr3, kcr3 | CR3_PCID_SAVE);
10208 PCPU_SET(ucr3, ucr3 | CR3_PCID_SAVE);
10209 if (cached)
10210 counter_u64_add(pcid_save_cnt, 1);
10211
10212 pmap_activate_sw_pti_post(td, pmap);
10213 }
10214
10215 static void
pmap_activate_sw_pcid_nopti(struct thread * td __unused,pmap_t pmap,u_int cpuid)10216 pmap_activate_sw_pcid_nopti(struct thread *td __unused, pmap_t pmap,
10217 u_int cpuid)
10218 {
10219 struct pmap_pcid *pcidp;
10220 uint64_t cached, cr3;
10221
10222 KASSERT((read_rflags() & PSL_I) == 0,
10223 ("PCID needs interrupts disabled in pmap_activate_sw()"));
10224
10225 pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
10226 cached = pmap_pcid_alloc_checked(pmap, pcidp);
10227 cr3 = rcr3();
10228 if (!cached || (cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10229 load_cr3(pmap->pm_cr3 | pcidp->pm_pcid | cached);
10230 PCPU_SET(curpmap, pmap);
10231 if (cached)
10232 counter_u64_add(pcid_save_cnt, 1);
10233 }
10234
10235 static void
pmap_activate_sw_nopcid_nopti(struct thread * td __unused,pmap_t pmap,u_int cpuid __unused)10236 pmap_activate_sw_nopcid_nopti(struct thread *td __unused, pmap_t pmap,
10237 u_int cpuid __unused)
10238 {
10239
10240 load_cr3(pmap->pm_cr3);
10241 PCPU_SET(curpmap, pmap);
10242 }
10243
10244 static void
pmap_activate_sw_nopcid_pti(struct thread * td,pmap_t pmap,u_int cpuid __unused)10245 pmap_activate_sw_nopcid_pti(struct thread *td, pmap_t pmap,
10246 u_int cpuid __unused)
10247 {
10248
10249 pmap_activate_sw_nopcid_nopti(td, pmap, cpuid);
10250 PCPU_SET(kcr3, pmap->pm_cr3);
10251 PCPU_SET(ucr3, pmap->pm_ucr3);
10252 pmap_activate_sw_pti_post(td, pmap);
10253 }
10254
10255 DEFINE_IFUNC(static, void, pmap_activate_sw_mode, (struct thread *, pmap_t,
10256 u_int))
10257 {
10258
10259 if (pmap_pcid_enabled && pti)
10260 return (pmap_activate_sw_pcid_pti);
10261 else if (pmap_pcid_enabled && !pti)
10262 return (pmap_activate_sw_pcid_nopti);
10263 else if (!pmap_pcid_enabled && pti)
10264 return (pmap_activate_sw_nopcid_pti);
10265 else /* if (!pmap_pcid_enabled && !pti) */
10266 return (pmap_activate_sw_nopcid_nopti);
10267 }
10268
10269 void
pmap_activate_sw(struct thread * td)10270 pmap_activate_sw(struct thread *td)
10271 {
10272 pmap_t oldpmap, pmap;
10273 u_int cpuid;
10274
10275 oldpmap = PCPU_GET(curpmap);
10276 pmap = vmspace_pmap(td->td_proc->p_vmspace);
10277 if (oldpmap == pmap) {
10278 if (cpu_vendor_id != CPU_VENDOR_INTEL)
10279 mfence();
10280 return;
10281 }
10282 cpuid = PCPU_GET(cpuid);
10283 #ifdef SMP
10284 CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10285 #else
10286 CPU_SET(cpuid, &pmap->pm_active);
10287 #endif
10288 pmap_activate_sw_mode(td, pmap, cpuid);
10289 #ifdef SMP
10290 CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
10291 #else
10292 CPU_CLR(cpuid, &oldpmap->pm_active);
10293 #endif
10294 }
10295
10296 void
pmap_activate(struct thread * td)10297 pmap_activate(struct thread *td)
10298 {
10299 /*
10300 * invltlb_{invpcid,}_pcid_handler() is used to handle an
10301 * invalidate_all IPI, which checks for curpmap ==
10302 * smp_tlb_pmap. The below sequence of operations has a
10303 * window where %CR3 is loaded with the new pmap's PML4
10304 * address, but the curpmap value has not yet been updated.
10305 * This causes the invltlb IPI handler, which is called
10306 * between the updates, to execute as a NOP, which leaves
10307 * stale TLB entries.
10308 *
10309 * Note that the most common use of pmap_activate_sw(), from
10310 * a context switch, is immune to this race, because
10311 * interrupts are disabled (while the thread lock is owned),
10312 * so the IPI is delayed until after curpmap is updated. Protect
10313 * other callers in a similar way, by disabling interrupts
10314 * around the %cr3 register reload and curpmap assignment.
10315 */
10316 spinlock_enter();
10317 pmap_activate_sw(td);
10318 spinlock_exit();
10319 }
10320
10321 void
pmap_activate_boot(pmap_t pmap)10322 pmap_activate_boot(pmap_t pmap)
10323 {
10324 uint64_t kcr3;
10325 u_int cpuid;
10326
10327 /*
10328 * kernel_pmap must be never deactivated, and we ensure that
10329 * by never activating it at all.
10330 */
10331 MPASS(pmap != kernel_pmap);
10332
10333 cpuid = PCPU_GET(cpuid);
10334 #ifdef SMP
10335 CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10336 #else
10337 CPU_SET(cpuid, &pmap->pm_active);
10338 #endif
10339 PCPU_SET(curpmap, pmap);
10340 if (pti) {
10341 kcr3 = pmap->pm_cr3;
10342 if (pmap_pcid_enabled)
10343 kcr3 |= pmap_get_pcid(pmap) | CR3_PCID_SAVE;
10344 } else {
10345 kcr3 = PMAP_NO_CR3;
10346 }
10347 PCPU_SET(kcr3, kcr3);
10348 PCPU_SET(ucr3, PMAP_NO_CR3);
10349 }
10350
10351 void
pmap_active_cpus(pmap_t pmap,cpuset_t * res)10352 pmap_active_cpus(pmap_t pmap, cpuset_t *res)
10353 {
10354 *res = pmap->pm_active;
10355 }
10356
10357 void
pmap_sync_icache(pmap_t pm,vm_offset_t va,vm_size_t sz)10358 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
10359 {
10360 }
10361
10362 /*
10363 * Increase the starting virtual address of the given mapping if a
10364 * different alignment might result in more superpage mappings.
10365 */
10366 void
pmap_align_superpage(vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t size)10367 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
10368 vm_offset_t *addr, vm_size_t size)
10369 {
10370 vm_offset_t superpage_offset;
10371
10372 if (size < NBPDR)
10373 return;
10374 if (object != NULL && (object->flags & OBJ_COLORED) != 0)
10375 offset += ptoa(object->pg_color);
10376 superpage_offset = offset & PDRMASK;
10377 if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
10378 (*addr & PDRMASK) == superpage_offset)
10379 return;
10380 if ((*addr & PDRMASK) < superpage_offset)
10381 *addr = (*addr & ~PDRMASK) + superpage_offset;
10382 else
10383 *addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
10384 }
10385
10386 #ifdef INVARIANTS
10387 static unsigned long num_dirty_emulations;
10388 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_dirty_emulations, CTLFLAG_RW,
10389 &num_dirty_emulations, 0, NULL);
10390
10391 static unsigned long num_accessed_emulations;
10392 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_accessed_emulations, CTLFLAG_RW,
10393 &num_accessed_emulations, 0, NULL);
10394
10395 static unsigned long num_superpage_accessed_emulations;
10396 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_superpage_accessed_emulations, CTLFLAG_RW,
10397 &num_superpage_accessed_emulations, 0, NULL);
10398
10399 static unsigned long ad_emulation_superpage_promotions;
10400 SYSCTL_ULONG(_vm_pmap, OID_AUTO, ad_emulation_superpage_promotions, CTLFLAG_RW,
10401 &ad_emulation_superpage_promotions, 0, NULL);
10402 #endif /* INVARIANTS */
10403
10404 int
pmap_emulate_accessed_dirty(pmap_t pmap,vm_offset_t va,int ftype)10405 pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype)
10406 {
10407 int rv;
10408 struct rwlock *lock;
10409 #if VM_NRESERVLEVEL > 0
10410 vm_page_t m, mpte;
10411 #endif
10412 pd_entry_t *pde;
10413 pt_entry_t *pte, PG_A, PG_M, PG_RW, PG_V;
10414
10415 KASSERT(ftype == VM_PROT_READ || ftype == VM_PROT_WRITE,
10416 ("pmap_emulate_accessed_dirty: invalid fault type %d", ftype));
10417
10418 if (!pmap_emulate_ad_bits(pmap))
10419 return (-1);
10420
10421 PG_A = pmap_accessed_bit(pmap);
10422 PG_M = pmap_modified_bit(pmap);
10423 PG_V = pmap_valid_bit(pmap);
10424 PG_RW = pmap_rw_bit(pmap);
10425
10426 rv = -1;
10427 lock = NULL;
10428 PMAP_LOCK(pmap);
10429
10430 pde = pmap_pde(pmap, va);
10431 if (pde == NULL || (*pde & PG_V) == 0)
10432 goto done;
10433
10434 if ((*pde & PG_PS) != 0) {
10435 if (ftype == VM_PROT_READ) {
10436 #ifdef INVARIANTS
10437 atomic_add_long(&num_superpage_accessed_emulations, 1);
10438 #endif
10439 *pde |= PG_A;
10440 rv = 0;
10441 }
10442 goto done;
10443 }
10444
10445 pte = pmap_pde_to_pte(pde, va);
10446 if ((*pte & PG_V) == 0)
10447 goto done;
10448
10449 if (ftype == VM_PROT_WRITE) {
10450 if ((*pte & PG_RW) == 0)
10451 goto done;
10452 /*
10453 * Set the modified and accessed bits simultaneously.
10454 *
10455 * Intel EPT PTEs that do software emulation of A/D bits map
10456 * PG_A and PG_M to EPT_PG_READ and EPT_PG_WRITE respectively.
10457 * An EPT misconfiguration is triggered if the PTE is writable
10458 * but not readable (WR=10). This is avoided by setting PG_A
10459 * and PG_M simultaneously.
10460 */
10461 *pte |= PG_M | PG_A;
10462 } else {
10463 *pte |= PG_A;
10464 }
10465
10466 #if VM_NRESERVLEVEL > 0
10467 /* try to promote the mapping */
10468 if (va < VM_MAXUSER_ADDRESS)
10469 mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
10470 else
10471 mpte = NULL;
10472
10473 m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
10474
10475 if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
10476 (m->flags & PG_FICTITIOUS) == 0 &&
10477 vm_reserv_level_iffullpop(m) == 0 &&
10478 pmap_promote_pde(pmap, pde, va, mpte, &lock)) {
10479 #ifdef INVARIANTS
10480 atomic_add_long(&ad_emulation_superpage_promotions, 1);
10481 #endif
10482 }
10483 #endif
10484
10485 #ifdef INVARIANTS
10486 if (ftype == VM_PROT_WRITE)
10487 atomic_add_long(&num_dirty_emulations, 1);
10488 else
10489 atomic_add_long(&num_accessed_emulations, 1);
10490 #endif
10491 rv = 0; /* success */
10492 done:
10493 if (lock != NULL)
10494 rw_wunlock(lock);
10495 PMAP_UNLOCK(pmap);
10496 return (rv);
10497 }
10498
10499 void
pmap_get_mapping(pmap_t pmap,vm_offset_t va,uint64_t * ptr,int * num)10500 pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num)
10501 {
10502 pml4_entry_t *pml4;
10503 pdp_entry_t *pdp;
10504 pd_entry_t *pde;
10505 pt_entry_t *pte, PG_V;
10506 int idx;
10507
10508 idx = 0;
10509 PG_V = pmap_valid_bit(pmap);
10510 PMAP_LOCK(pmap);
10511
10512 pml4 = pmap_pml4e(pmap, va);
10513 if (pml4 == NULL)
10514 goto done;
10515 ptr[idx++] = *pml4;
10516 if ((*pml4 & PG_V) == 0)
10517 goto done;
10518
10519 pdp = pmap_pml4e_to_pdpe(pml4, va);
10520 ptr[idx++] = *pdp;
10521 if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0)
10522 goto done;
10523
10524 pde = pmap_pdpe_to_pde(pdp, va);
10525 ptr[idx++] = *pde;
10526 if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0)
10527 goto done;
10528
10529 pte = pmap_pde_to_pte(pde, va);
10530 ptr[idx++] = *pte;
10531
10532 done:
10533 PMAP_UNLOCK(pmap);
10534 *num = idx;
10535 }
10536
10537 /**
10538 * Get the kernel virtual address of a set of physical pages. If there are
10539 * physical addresses not covered by the DMAP perform a transient mapping
10540 * that will be removed when calling pmap_unmap_io_transient.
10541 *
10542 * \param page The pages the caller wishes to obtain the virtual
10543 * address on the kernel memory map.
10544 * \param vaddr On return contains the kernel virtual memory address
10545 * of the pages passed in the page parameter.
10546 * \param count Number of pages passed in.
10547 * \param can_fault true if the thread using the mapped pages can take
10548 * page faults, false otherwise.
10549 *
10550 * \returns true if the caller must call pmap_unmap_io_transient when
10551 * finished or false otherwise.
10552 *
10553 */
10554 bool
pmap_map_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)10555 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10556 bool can_fault)
10557 {
10558 vm_paddr_t paddr;
10559 bool needs_mapping;
10560 int error __unused, i;
10561
10562 /*
10563 * Allocate any KVA space that we need, this is done in a separate
10564 * loop to prevent calling vmem_alloc while pinned.
10565 */
10566 needs_mapping = false;
10567 for (i = 0; i < count; i++) {
10568 paddr = VM_PAGE_TO_PHYS(page[i]);
10569 if (__predict_false(paddr >= dmaplimit)) {
10570 error = vmem_alloc(kernel_arena, PAGE_SIZE,
10571 M_BESTFIT | M_WAITOK, &vaddr[i]);
10572 KASSERT(error == 0, ("vmem_alloc failed: %d", error));
10573 needs_mapping = true;
10574 } else {
10575 vaddr[i] = PHYS_TO_DMAP(paddr);
10576 }
10577 }
10578
10579 /* Exit early if everything is covered by the DMAP */
10580 if (!needs_mapping)
10581 return (false);
10582
10583 /*
10584 * NB: The sequence of updating a page table followed by accesses
10585 * to the corresponding pages used in the !DMAP case is subject to
10586 * the situation described in the "AMD64 Architecture Programmer's
10587 * Manual Volume 2: System Programming" rev. 3.23, "7.3.1 Special
10588 * Coherency Considerations". Therefore, issuing the INVLPG right
10589 * after modifying the PTE bits is crucial.
10590 */
10591 if (!can_fault)
10592 sched_pin();
10593 for (i = 0; i < count; i++) {
10594 paddr = VM_PAGE_TO_PHYS(page[i]);
10595 if (paddr >= dmaplimit) {
10596 if (can_fault) {
10597 /*
10598 * Slow path, since we can get page faults
10599 * while mappings are active don't pin the
10600 * thread to the CPU and instead add a global
10601 * mapping visible to all CPUs.
10602 */
10603 pmap_qenter(vaddr[i], &page[i], 1);
10604 } else {
10605 pmap_kenter_attr(vaddr[i], paddr,
10606 page[i]->md.pat_mode);
10607 pmap_invlpg(kernel_pmap, vaddr[i]);
10608 }
10609 }
10610 }
10611
10612 return (needs_mapping);
10613 }
10614
10615 void
pmap_unmap_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)10616 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10617 bool can_fault)
10618 {
10619 vm_paddr_t paddr;
10620 int i;
10621
10622 if (!can_fault)
10623 sched_unpin();
10624 for (i = 0; i < count; i++) {
10625 paddr = VM_PAGE_TO_PHYS(page[i]);
10626 if (paddr >= dmaplimit) {
10627 if (can_fault)
10628 pmap_qremove(vaddr[i], 1);
10629 vmem_free(kernel_arena, vaddr[i], PAGE_SIZE);
10630 }
10631 }
10632 }
10633
10634 vm_offset_t
pmap_quick_enter_page(vm_page_t m)10635 pmap_quick_enter_page(vm_page_t m)
10636 {
10637 vm_paddr_t paddr;
10638
10639 paddr = VM_PAGE_TO_PHYS(m);
10640 if (paddr < dmaplimit)
10641 return (PHYS_TO_DMAP(paddr));
10642 mtx_lock_spin(&qframe_mtx);
10643 KASSERT(*vtopte(qframe) == 0, ("qframe busy"));
10644
10645 /*
10646 * Since qframe is exclusively mapped by us, and we do not set
10647 * PG_G, we can use INVLPG here.
10648 */
10649 invlpg(qframe);
10650
10651 pte_store(vtopte(qframe), paddr | X86_PG_RW | X86_PG_V | X86_PG_A |
10652 X86_PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode, false));
10653 return (qframe);
10654 }
10655
10656 void
pmap_quick_remove_page(vm_offset_t addr)10657 pmap_quick_remove_page(vm_offset_t addr)
10658 {
10659
10660 if (addr != qframe)
10661 return;
10662 pte_store(vtopte(qframe), 0);
10663 mtx_unlock_spin(&qframe_mtx);
10664 }
10665
10666 /*
10667 * Pdp pages from the large map are managed differently from either
10668 * kernel or user page table pages. They are permanently allocated at
10669 * initialization time, and their reference count is permanently set to
10670 * zero. The pml4 entries pointing to those pages are copied into
10671 * each allocated pmap.
10672 *
10673 * In contrast, pd and pt pages are managed like user page table
10674 * pages. They are dynamically allocated, and their reference count
10675 * represents the number of valid entries within the page.
10676 */
10677 static vm_page_t
pmap_large_map_getptp_unlocked(void)10678 pmap_large_map_getptp_unlocked(void)
10679 {
10680 return (pmap_alloc_pt_page(kernel_pmap, 0, VM_ALLOC_ZERO));
10681 }
10682
10683 static vm_page_t
pmap_large_map_getptp(void)10684 pmap_large_map_getptp(void)
10685 {
10686 vm_page_t m;
10687
10688 PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
10689 m = pmap_large_map_getptp_unlocked();
10690 if (m == NULL) {
10691 PMAP_UNLOCK(kernel_pmap);
10692 vm_wait(NULL);
10693 PMAP_LOCK(kernel_pmap);
10694 /* Callers retry. */
10695 }
10696 return (m);
10697 }
10698
10699 static pdp_entry_t *
pmap_large_map_pdpe(vm_offset_t va)10700 pmap_large_map_pdpe(vm_offset_t va)
10701 {
10702 vm_pindex_t pml4_idx;
10703 vm_paddr_t mphys;
10704
10705 pml4_idx = pmap_pml4e_index(va);
10706 KASSERT(LMSPML4I <= pml4_idx && pml4_idx < LMSPML4I + lm_ents,
10707 ("pmap_large_map_pdpe: va %#jx out of range idx %#jx LMSPML4I "
10708 "%#jx lm_ents %d",
10709 (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10710 KASSERT((kernel_pml4[pml4_idx] & X86_PG_V) != 0,
10711 ("pmap_large_map_pdpe: invalid pml4 for va %#jx idx %#jx "
10712 "LMSPML4I %#jx lm_ents %d",
10713 (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10714 mphys = kernel_pml4[pml4_idx] & PG_FRAME;
10715 return ((pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va));
10716 }
10717
10718 static pd_entry_t *
pmap_large_map_pde(vm_offset_t va)10719 pmap_large_map_pde(vm_offset_t va)
10720 {
10721 pdp_entry_t *pdpe;
10722 vm_page_t m;
10723 vm_paddr_t mphys;
10724
10725 retry:
10726 pdpe = pmap_large_map_pdpe(va);
10727 if (*pdpe == 0) {
10728 m = pmap_large_map_getptp();
10729 if (m == NULL)
10730 goto retry;
10731 mphys = VM_PAGE_TO_PHYS(m);
10732 *pdpe = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10733 } else {
10734 MPASS((*pdpe & X86_PG_PS) == 0);
10735 mphys = *pdpe & PG_FRAME;
10736 }
10737 return ((pd_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pde_index(va));
10738 }
10739
10740 static pt_entry_t *
pmap_large_map_pte(vm_offset_t va)10741 pmap_large_map_pte(vm_offset_t va)
10742 {
10743 pd_entry_t *pde;
10744 vm_page_t m;
10745 vm_paddr_t mphys;
10746
10747 retry:
10748 pde = pmap_large_map_pde(va);
10749 if (*pde == 0) {
10750 m = pmap_large_map_getptp();
10751 if (m == NULL)
10752 goto retry;
10753 mphys = VM_PAGE_TO_PHYS(m);
10754 *pde = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10755 PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->ref_count++;
10756 } else {
10757 MPASS((*pde & X86_PG_PS) == 0);
10758 mphys = *pde & PG_FRAME;
10759 }
10760 return ((pt_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pte_index(va));
10761 }
10762
10763 static vm_paddr_t
pmap_large_map_kextract(vm_offset_t va)10764 pmap_large_map_kextract(vm_offset_t va)
10765 {
10766 pdp_entry_t *pdpe, pdp;
10767 pd_entry_t *pde, pd;
10768 pt_entry_t *pte, pt;
10769
10770 KASSERT(PMAP_ADDRESS_IN_LARGEMAP(va),
10771 ("not largemap range %#lx", (u_long)va));
10772 pdpe = pmap_large_map_pdpe(va);
10773 pdp = *pdpe;
10774 KASSERT((pdp & X86_PG_V) != 0,
10775 ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10776 (u_long)pdpe, pdp));
10777 if ((pdp & X86_PG_PS) != 0) {
10778 KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10779 ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10780 (u_long)pdpe, pdp));
10781 return ((pdp & PG_PS_PDP_FRAME) | (va & PDPMASK));
10782 }
10783 pde = pmap_pdpe_to_pde(pdpe, va);
10784 pd = *pde;
10785 KASSERT((pd & X86_PG_V) != 0,
10786 ("invalid pd va %#lx pde %#lx pd %#lx", va, (u_long)pde, pd));
10787 if ((pd & X86_PG_PS) != 0)
10788 return ((pd & PG_PS_FRAME) | (va & PDRMASK));
10789 pte = pmap_pde_to_pte(pde, va);
10790 pt = *pte;
10791 KASSERT((pt & X86_PG_V) != 0,
10792 ("invalid pte va %#lx pte %#lx pt %#lx", va, (u_long)pte, pt));
10793 return ((pt & PG_FRAME) | (va & PAGE_MASK));
10794 }
10795
10796 static int
pmap_large_map_getva(vm_size_t len,vm_offset_t align,vm_offset_t phase,vmem_addr_t * vmem_res)10797 pmap_large_map_getva(vm_size_t len, vm_offset_t align, vm_offset_t phase,
10798 vmem_addr_t *vmem_res)
10799 {
10800
10801 /*
10802 * Large mappings are all but static. Consequently, there
10803 * is no point in waiting for an earlier allocation to be
10804 * freed.
10805 */
10806 return (vmem_xalloc(large_vmem, len, align, phase, 0, VMEM_ADDR_MIN,
10807 VMEM_ADDR_MAX, M_NOWAIT | M_BESTFIT, vmem_res));
10808 }
10809
10810 int
pmap_large_map(vm_paddr_t spa,vm_size_t len,void ** addr,vm_memattr_t mattr)10811 pmap_large_map(vm_paddr_t spa, vm_size_t len, void **addr,
10812 vm_memattr_t mattr)
10813 {
10814 pdp_entry_t *pdpe;
10815 pd_entry_t *pde;
10816 pt_entry_t *pte;
10817 vm_offset_t va, inc;
10818 vmem_addr_t vmem_res;
10819 vm_paddr_t pa;
10820 int error;
10821
10822 if (len == 0 || spa + len < spa)
10823 return (EINVAL);
10824
10825 /* See if DMAP can serve. */
10826 if (spa + len <= dmaplimit) {
10827 va = PHYS_TO_DMAP(spa);
10828 *addr = (void *)va;
10829 return (pmap_change_attr(va, len, mattr));
10830 }
10831
10832 /*
10833 * No, allocate KVA. Fit the address with best possible
10834 * alignment for superpages. Fall back to worse align if
10835 * failed.
10836 */
10837 error = ENOMEM;
10838 if ((amd_feature & AMDID_PAGE1GB) != 0 && rounddown2(spa + len,
10839 NBPDP) >= roundup2(spa, NBPDP) + NBPDP)
10840 error = pmap_large_map_getva(len, NBPDP, spa & PDPMASK,
10841 &vmem_res);
10842 if (error != 0 && rounddown2(spa + len, NBPDR) >= roundup2(spa,
10843 NBPDR) + NBPDR)
10844 error = pmap_large_map_getva(len, NBPDR, spa & PDRMASK,
10845 &vmem_res);
10846 if (error != 0)
10847 error = pmap_large_map_getva(len, PAGE_SIZE, 0, &vmem_res);
10848 if (error != 0)
10849 return (error);
10850
10851 /*
10852 * Fill pagetable. PG_M is not pre-set, we scan modified bits
10853 * in the pagetable to minimize flushing. No need to
10854 * invalidate TLB, since we only update invalid entries.
10855 */
10856 PMAP_LOCK(kernel_pmap);
10857 for (pa = spa, va = vmem_res; len > 0; pa += inc, va += inc,
10858 len -= inc) {
10859 if ((amd_feature & AMDID_PAGE1GB) != 0 && len >= NBPDP &&
10860 (pa & PDPMASK) == 0 && (va & PDPMASK) == 0) {
10861 pdpe = pmap_large_map_pdpe(va);
10862 MPASS(*pdpe == 0);
10863 *pdpe = pa | pg_g | X86_PG_PS | X86_PG_RW |
10864 X86_PG_V | X86_PG_A | pg_nx |
10865 pmap_cache_bits(kernel_pmap, mattr, true);
10866 inc = NBPDP;
10867 } else if (len >= NBPDR && (pa & PDRMASK) == 0 &&
10868 (va & PDRMASK) == 0) {
10869 pde = pmap_large_map_pde(va);
10870 MPASS(*pde == 0);
10871 *pde = pa | pg_g | X86_PG_PS | X86_PG_RW |
10872 X86_PG_V | X86_PG_A | pg_nx |
10873 pmap_cache_bits(kernel_pmap, mattr, true);
10874 PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->
10875 ref_count++;
10876 inc = NBPDR;
10877 } else {
10878 pte = pmap_large_map_pte(va);
10879 MPASS(*pte == 0);
10880 *pte = pa | pg_g | X86_PG_RW | X86_PG_V |
10881 X86_PG_A | pg_nx | pmap_cache_bits(kernel_pmap,
10882 mattr, false);
10883 PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte))->
10884 ref_count++;
10885 inc = PAGE_SIZE;
10886 }
10887 }
10888 PMAP_UNLOCK(kernel_pmap);
10889 MPASS(len == 0);
10890
10891 *addr = (void *)vmem_res;
10892 return (0);
10893 }
10894
10895 void
pmap_large_unmap(void * svaa,vm_size_t len)10896 pmap_large_unmap(void *svaa, vm_size_t len)
10897 {
10898 vm_offset_t sva, va;
10899 vm_size_t inc;
10900 pdp_entry_t *pdpe, pdp;
10901 pd_entry_t *pde, pd;
10902 pt_entry_t *pte;
10903 vm_page_t m;
10904 struct spglist spgf;
10905
10906 sva = (vm_offset_t)svaa;
10907 if (len == 0 || sva + len < sva || (sva >= DMAP_MIN_ADDRESS &&
10908 sva + len <= DMAP_MIN_ADDRESS + dmaplimit))
10909 return;
10910
10911 SLIST_INIT(&spgf);
10912 KASSERT(PMAP_ADDRESS_IN_LARGEMAP(sva) &&
10913 PMAP_ADDRESS_IN_LARGEMAP(sva + len - 1),
10914 ("not largemap range %#lx %#lx", (u_long)svaa, (u_long)svaa + len));
10915 PMAP_LOCK(kernel_pmap);
10916 for (va = sva; va < sva + len; va += inc) {
10917 pdpe = pmap_large_map_pdpe(va);
10918 pdp = *pdpe;
10919 KASSERT((pdp & X86_PG_V) != 0,
10920 ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10921 (u_long)pdpe, pdp));
10922 if ((pdp & X86_PG_PS) != 0) {
10923 KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10924 ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10925 (u_long)pdpe, pdp));
10926 KASSERT((va & PDPMASK) == 0,
10927 ("PDPMASK bit set, va %#lx pdpe %#lx pdp %#lx", va,
10928 (u_long)pdpe, pdp));
10929 KASSERT(va + NBPDP <= sva + len,
10930 ("unmap covers partial 1GB page, sva %#lx va %#lx "
10931 "pdpe %#lx pdp %#lx len %#lx", sva, va,
10932 (u_long)pdpe, pdp, len));
10933 *pdpe = 0;
10934 inc = NBPDP;
10935 continue;
10936 }
10937 pde = pmap_pdpe_to_pde(pdpe, va);
10938 pd = *pde;
10939 KASSERT((pd & X86_PG_V) != 0,
10940 ("invalid pd va %#lx pde %#lx pd %#lx", va,
10941 (u_long)pde, pd));
10942 if ((pd & X86_PG_PS) != 0) {
10943 KASSERT((va & PDRMASK) == 0,
10944 ("PDRMASK bit set, va %#lx pde %#lx pd %#lx", va,
10945 (u_long)pde, pd));
10946 KASSERT(va + NBPDR <= sva + len,
10947 ("unmap covers partial 2MB page, sva %#lx va %#lx "
10948 "pde %#lx pd %#lx len %#lx", sva, va, (u_long)pde,
10949 pd, len));
10950 pde_store(pde, 0);
10951 inc = NBPDR;
10952 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10953 m->ref_count--;
10954 if (m->ref_count == 0) {
10955 *pdpe = 0;
10956 SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10957 }
10958 continue;
10959 }
10960 pte = pmap_pde_to_pte(pde, va);
10961 KASSERT((*pte & X86_PG_V) != 0,
10962 ("invalid pte va %#lx pte %#lx pt %#lx", va,
10963 (u_long)pte, *pte));
10964 pte_clear(pte);
10965 inc = PAGE_SIZE;
10966 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pte));
10967 m->ref_count--;
10968 if (m->ref_count == 0) {
10969 *pde = 0;
10970 SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10971 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10972 m->ref_count--;
10973 if (m->ref_count == 0) {
10974 *pdpe = 0;
10975 SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10976 }
10977 }
10978 }
10979 pmap_invalidate_range(kernel_pmap, sva, sva + len);
10980 PMAP_UNLOCK(kernel_pmap);
10981 vm_page_free_pages_toq(&spgf, false);
10982 vmem_free(large_vmem, sva, len);
10983 }
10984
10985 static void
pmap_large_map_wb_fence_mfence(void)10986 pmap_large_map_wb_fence_mfence(void)
10987 {
10988
10989 mfence();
10990 }
10991
10992 static void
pmap_large_map_wb_fence_atomic(void)10993 pmap_large_map_wb_fence_atomic(void)
10994 {
10995
10996 atomic_thread_fence_seq_cst();
10997 }
10998
10999 static void
pmap_large_map_wb_fence_nop(void)11000 pmap_large_map_wb_fence_nop(void)
11001 {
11002 }
11003
11004 DEFINE_IFUNC(static, void, pmap_large_map_wb_fence, (void))
11005 {
11006
11007 if (cpu_vendor_id != CPU_VENDOR_INTEL)
11008 return (pmap_large_map_wb_fence_mfence);
11009 else if ((cpu_stdext_feature & (CPUID_STDEXT_CLWB |
11010 CPUID_STDEXT_CLFLUSHOPT)) == 0)
11011 return (pmap_large_map_wb_fence_atomic);
11012 else
11013 /* clflush is strongly enough ordered */
11014 return (pmap_large_map_wb_fence_nop);
11015 }
11016
11017 static void
pmap_large_map_flush_range_clwb(vm_offset_t va,vm_size_t len)11018 pmap_large_map_flush_range_clwb(vm_offset_t va, vm_size_t len)
11019 {
11020
11021 for (; len > 0; len -= cpu_clflush_line_size,
11022 va += cpu_clflush_line_size)
11023 clwb(va);
11024 }
11025
11026 static void
pmap_large_map_flush_range_clflushopt(vm_offset_t va,vm_size_t len)11027 pmap_large_map_flush_range_clflushopt(vm_offset_t va, vm_size_t len)
11028 {
11029
11030 for (; len > 0; len -= cpu_clflush_line_size,
11031 va += cpu_clflush_line_size)
11032 clflushopt(va);
11033 }
11034
11035 static void
pmap_large_map_flush_range_clflush(vm_offset_t va,vm_size_t len)11036 pmap_large_map_flush_range_clflush(vm_offset_t va, vm_size_t len)
11037 {
11038
11039 for (; len > 0; len -= cpu_clflush_line_size,
11040 va += cpu_clflush_line_size)
11041 clflush(va);
11042 }
11043
11044 static void
pmap_large_map_flush_range_nop(vm_offset_t sva __unused,vm_size_t len __unused)11045 pmap_large_map_flush_range_nop(vm_offset_t sva __unused, vm_size_t len __unused)
11046 {
11047 }
11048
11049 DEFINE_IFUNC(static, void, pmap_large_map_flush_range, (vm_offset_t, vm_size_t))
11050 {
11051
11052 if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) != 0)
11053 return (pmap_large_map_flush_range_clwb);
11054 else if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0)
11055 return (pmap_large_map_flush_range_clflushopt);
11056 else if ((cpu_feature & CPUID_CLFSH) != 0)
11057 return (pmap_large_map_flush_range_clflush);
11058 else
11059 return (pmap_large_map_flush_range_nop);
11060 }
11061
11062 static void
pmap_large_map_wb_large(vm_offset_t sva,vm_offset_t eva)11063 pmap_large_map_wb_large(vm_offset_t sva, vm_offset_t eva)
11064 {
11065 volatile u_long *pe;
11066 u_long p;
11067 vm_offset_t va;
11068 vm_size_t inc;
11069 bool seen_other;
11070
11071 for (va = sva; va < eva; va += inc) {
11072 inc = 0;
11073 if ((amd_feature & AMDID_PAGE1GB) != 0) {
11074 pe = (volatile u_long *)pmap_large_map_pdpe(va);
11075 p = *pe;
11076 if ((p & X86_PG_PS) != 0)
11077 inc = NBPDP;
11078 }
11079 if (inc == 0) {
11080 pe = (volatile u_long *)pmap_large_map_pde(va);
11081 p = *pe;
11082 if ((p & X86_PG_PS) != 0)
11083 inc = NBPDR;
11084 }
11085 if (inc == 0) {
11086 pe = (volatile u_long *)pmap_large_map_pte(va);
11087 p = *pe;
11088 inc = PAGE_SIZE;
11089 }
11090 seen_other = false;
11091 for (;;) {
11092 if ((p & X86_PG_AVAIL1) != 0) {
11093 /*
11094 * Spin-wait for the end of a parallel
11095 * write-back.
11096 */
11097 cpu_spinwait();
11098 p = *pe;
11099
11100 /*
11101 * If we saw other write-back
11102 * occurring, we cannot rely on PG_M to
11103 * indicate state of the cache. The
11104 * PG_M bit is cleared before the
11105 * flush to avoid ignoring new writes,
11106 * and writes which are relevant for
11107 * us might happen after.
11108 */
11109 seen_other = true;
11110 continue;
11111 }
11112
11113 if ((p & X86_PG_M) != 0 || seen_other) {
11114 if (!atomic_fcmpset_long(pe, &p,
11115 (p & ~X86_PG_M) | X86_PG_AVAIL1))
11116 /*
11117 * If we saw PG_M without
11118 * PG_AVAIL1, and then on the
11119 * next attempt we do not
11120 * observe either PG_M or
11121 * PG_AVAIL1, the other
11122 * write-back started after us
11123 * and finished before us. We
11124 * can rely on it doing our
11125 * work.
11126 */
11127 continue;
11128 pmap_large_map_flush_range(va, inc);
11129 atomic_clear_long(pe, X86_PG_AVAIL1);
11130 }
11131 break;
11132 }
11133 maybe_yield();
11134 }
11135 }
11136
11137 /*
11138 * Write-back cache lines for the given address range.
11139 *
11140 * Must be called only on the range or sub-range returned from
11141 * pmap_large_map(). Must not be called on the coalesced ranges.
11142 *
11143 * Does nothing on CPUs without CLWB, CLFLUSHOPT, or CLFLUSH
11144 * instructions support.
11145 */
11146 void
pmap_large_map_wb(void * svap,vm_size_t len)11147 pmap_large_map_wb(void *svap, vm_size_t len)
11148 {
11149 vm_offset_t eva, sva;
11150
11151 sva = (vm_offset_t)svap;
11152 eva = sva + len;
11153 pmap_large_map_wb_fence();
11154 if (sva >= DMAP_MIN_ADDRESS && eva <= DMAP_MIN_ADDRESS + dmaplimit) {
11155 pmap_large_map_flush_range(sva, len);
11156 } else {
11157 KASSERT(sva >= LARGEMAP_MIN_ADDRESS &&
11158 eva <= LARGEMAP_MIN_ADDRESS + lm_ents * NBPML4,
11159 ("pmap_large_map_wb: not largemap %#lx %#lx", sva, len));
11160 pmap_large_map_wb_large(sva, eva);
11161 }
11162 pmap_large_map_wb_fence();
11163 }
11164
11165 static vm_page_t
pmap_pti_alloc_page(void)11166 pmap_pti_alloc_page(void)
11167 {
11168 vm_page_t m;
11169
11170 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11171 m = vm_page_grab(pti_obj, pti_pg_idx++, VM_ALLOC_WIRED | VM_ALLOC_ZERO);
11172 return (m);
11173 }
11174
11175 static bool
pmap_pti_free_page(vm_page_t m)11176 pmap_pti_free_page(vm_page_t m)
11177 {
11178 if (!vm_page_unwire_noq(m))
11179 return (false);
11180 vm_page_xbusy_claim(m);
11181 vm_page_free_zero(m);
11182 return (true);
11183 }
11184
11185 static void
pmap_pti_init(void)11186 pmap_pti_init(void)
11187 {
11188 vm_page_t pml4_pg;
11189 pdp_entry_t *pdpe;
11190 vm_offset_t va;
11191 int i;
11192
11193 if (!pti)
11194 return;
11195 pti_obj = vm_pager_allocate(OBJT_PHYS, NULL, 0, VM_PROT_ALL, 0, NULL);
11196 VM_OBJECT_WLOCK(pti_obj);
11197 pml4_pg = pmap_pti_alloc_page();
11198 pti_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4_pg));
11199 for (va = VM_MIN_KERNEL_ADDRESS; va <= VM_MAX_KERNEL_ADDRESS &&
11200 va >= VM_MIN_KERNEL_ADDRESS && va > NBPML4; va += NBPML4) {
11201 pdpe = pmap_pti_pdpe(va);
11202 pmap_pti_wire_pte(pdpe);
11203 }
11204 pmap_pti_add_kva_locked((vm_offset_t)&__pcpu[0],
11205 (vm_offset_t)&__pcpu[0] + sizeof(__pcpu[0]) * MAXCPU, false);
11206 pmap_pti_add_kva_locked((vm_offset_t)idt, (vm_offset_t)idt +
11207 sizeof(struct gate_descriptor) * NIDT, false);
11208 CPU_FOREACH(i) {
11209 /* Doublefault stack IST 1 */
11210 va = __pcpu[i].pc_common_tss.tss_ist1 + sizeof(struct nmi_pcpu);
11211 pmap_pti_add_kva_locked(va - DBLFAULT_STACK_SIZE, va, false);
11212 /* NMI stack IST 2 */
11213 va = __pcpu[i].pc_common_tss.tss_ist2 + sizeof(struct nmi_pcpu);
11214 pmap_pti_add_kva_locked(va - NMI_STACK_SIZE, va, false);
11215 /* MC# stack IST 3 */
11216 va = __pcpu[i].pc_common_tss.tss_ist3 +
11217 sizeof(struct nmi_pcpu);
11218 pmap_pti_add_kva_locked(va - MCE_STACK_SIZE, va, false);
11219 /* DB# stack IST 4 */
11220 va = __pcpu[i].pc_common_tss.tss_ist4 + sizeof(struct nmi_pcpu);
11221 pmap_pti_add_kva_locked(va - DBG_STACK_SIZE, va, false);
11222 }
11223 pmap_pti_add_kva_locked((vm_offset_t)KERNSTART, (vm_offset_t)etext,
11224 true);
11225 pti_finalized = true;
11226 VM_OBJECT_WUNLOCK(pti_obj);
11227 }
11228
11229 static void
pmap_cpu_init(void * arg __unused)11230 pmap_cpu_init(void *arg __unused)
11231 {
11232 CPU_COPY(&all_cpus, &kernel_pmap->pm_active);
11233 pmap_pti_init();
11234 }
11235 SYSINIT(pmap_cpu, SI_SUB_CPU + 1, SI_ORDER_ANY, pmap_cpu_init, NULL);
11236
11237 static pdp_entry_t *
pmap_pti_pdpe(vm_offset_t va)11238 pmap_pti_pdpe(vm_offset_t va)
11239 {
11240 pml4_entry_t *pml4e;
11241 pdp_entry_t *pdpe;
11242 vm_page_t m;
11243 vm_pindex_t pml4_idx;
11244 vm_paddr_t mphys;
11245
11246 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11247
11248 pml4_idx = pmap_pml4e_index(va);
11249 pml4e = &pti_pml4[pml4_idx];
11250 m = NULL;
11251 if (*pml4e == 0) {
11252 if (pti_finalized)
11253 panic("pml4 alloc after finalization\n");
11254 m = pmap_pti_alloc_page();
11255 if (*pml4e != 0) {
11256 pmap_pti_free_page(m);
11257 mphys = *pml4e & ~PAGE_MASK;
11258 } else {
11259 mphys = VM_PAGE_TO_PHYS(m);
11260 *pml4e = mphys | X86_PG_RW | X86_PG_V;
11261 }
11262 } else {
11263 mphys = *pml4e & ~PAGE_MASK;
11264 }
11265 pdpe = (pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va);
11266 return (pdpe);
11267 }
11268
11269 static void
pmap_pti_wire_pte(void * pte)11270 pmap_pti_wire_pte(void *pte)
11271 {
11272 vm_page_t m;
11273
11274 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11275 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11276 m->ref_count++;
11277 }
11278
11279 static void
pmap_pti_unwire_pde(void * pde,bool only_ref)11280 pmap_pti_unwire_pde(void *pde, bool only_ref)
11281 {
11282 vm_page_t m;
11283
11284 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11285 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde));
11286 MPASS(only_ref || m->ref_count > 1);
11287 pmap_pti_free_page(m);
11288 }
11289
11290 static void
pmap_pti_unwire_pte(void * pte,vm_offset_t va)11291 pmap_pti_unwire_pte(void *pte, vm_offset_t va)
11292 {
11293 vm_page_t m;
11294 pd_entry_t *pde;
11295
11296 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11297 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11298 if (pmap_pti_free_page(m)) {
11299 pde = pmap_pti_pde(va);
11300 MPASS((*pde & (X86_PG_PS | X86_PG_V)) == X86_PG_V);
11301 *pde = 0;
11302 pmap_pti_unwire_pde(pde, false);
11303 }
11304 }
11305
11306 static pd_entry_t *
pmap_pti_pde(vm_offset_t va)11307 pmap_pti_pde(vm_offset_t va)
11308 {
11309 pdp_entry_t *pdpe;
11310 pd_entry_t *pde;
11311 vm_page_t m;
11312 vm_pindex_t pd_idx;
11313 vm_paddr_t mphys;
11314
11315 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11316
11317 pdpe = pmap_pti_pdpe(va);
11318 if (*pdpe == 0) {
11319 m = pmap_pti_alloc_page();
11320 if (*pdpe != 0) {
11321 pmap_pti_free_page(m);
11322 MPASS((*pdpe & X86_PG_PS) == 0);
11323 mphys = *pdpe & ~PAGE_MASK;
11324 } else {
11325 mphys = VM_PAGE_TO_PHYS(m);
11326 *pdpe = mphys | X86_PG_RW | X86_PG_V;
11327 }
11328 } else {
11329 MPASS((*pdpe & X86_PG_PS) == 0);
11330 mphys = *pdpe & ~PAGE_MASK;
11331 }
11332
11333 pde = (pd_entry_t *)PHYS_TO_DMAP(mphys);
11334 pd_idx = pmap_pde_index(va);
11335 pde += pd_idx;
11336 return (pde);
11337 }
11338
11339 static pt_entry_t *
pmap_pti_pte(vm_offset_t va,bool * unwire_pde)11340 pmap_pti_pte(vm_offset_t va, bool *unwire_pde)
11341 {
11342 pd_entry_t *pde;
11343 pt_entry_t *pte;
11344 vm_page_t m;
11345 vm_paddr_t mphys;
11346
11347 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11348
11349 pde = pmap_pti_pde(va);
11350 if (unwire_pde != NULL) {
11351 *unwire_pde = true;
11352 pmap_pti_wire_pte(pde);
11353 }
11354 if (*pde == 0) {
11355 m = pmap_pti_alloc_page();
11356 if (*pde != 0) {
11357 pmap_pti_free_page(m);
11358 MPASS((*pde & X86_PG_PS) == 0);
11359 mphys = *pde & ~(PAGE_MASK | pg_nx);
11360 } else {
11361 mphys = VM_PAGE_TO_PHYS(m);
11362 *pde = mphys | X86_PG_RW | X86_PG_V;
11363 if (unwire_pde != NULL)
11364 *unwire_pde = false;
11365 }
11366 } else {
11367 MPASS((*pde & X86_PG_PS) == 0);
11368 mphys = *pde & ~(PAGE_MASK | pg_nx);
11369 }
11370
11371 pte = (pt_entry_t *)PHYS_TO_DMAP(mphys);
11372 pte += pmap_pte_index(va);
11373
11374 return (pte);
11375 }
11376
11377 static void
pmap_pti_add_kva_locked(vm_offset_t sva,vm_offset_t eva,bool exec)11378 pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva, bool exec)
11379 {
11380 vm_paddr_t pa;
11381 pd_entry_t *pde;
11382 pt_entry_t *pte, ptev;
11383 bool unwire_pde;
11384
11385 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11386
11387 sva = trunc_page(sva);
11388 MPASS(sva > VM_MAXUSER_ADDRESS);
11389 eva = round_page(eva);
11390 MPASS(sva < eva);
11391 for (; sva < eva; sva += PAGE_SIZE) {
11392 pte = pmap_pti_pte(sva, &unwire_pde);
11393 pa = pmap_kextract(sva);
11394 ptev = pa | X86_PG_RW | X86_PG_V | X86_PG_A | X86_PG_G |
11395 (exec ? 0 : pg_nx) | pmap_cache_bits(kernel_pmap,
11396 VM_MEMATTR_DEFAULT, false);
11397 if (*pte == 0) {
11398 pte_store(pte, ptev);
11399 pmap_pti_wire_pte(pte);
11400 } else {
11401 KASSERT(!pti_finalized,
11402 ("pti overlap after fin %#lx %#lx %#lx",
11403 sva, *pte, ptev));
11404 KASSERT(*pte == ptev,
11405 ("pti non-identical pte after fin %#lx %#lx %#lx",
11406 sva, *pte, ptev));
11407 }
11408 if (unwire_pde) {
11409 pde = pmap_pti_pde(sva);
11410 pmap_pti_unwire_pde(pde, true);
11411 }
11412 }
11413 }
11414
11415 void
pmap_pti_add_kva(vm_offset_t sva,vm_offset_t eva,bool exec)11416 pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec)
11417 {
11418
11419 if (!pti)
11420 return;
11421 VM_OBJECT_WLOCK(pti_obj);
11422 pmap_pti_add_kva_locked(sva, eva, exec);
11423 VM_OBJECT_WUNLOCK(pti_obj);
11424 }
11425
11426 void
pmap_pti_remove_kva(vm_offset_t sva,vm_offset_t eva)11427 pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva)
11428 {
11429 pt_entry_t *pte;
11430 vm_offset_t va;
11431
11432 if (!pti)
11433 return;
11434 sva = rounddown2(sva, PAGE_SIZE);
11435 MPASS(sva > VM_MAXUSER_ADDRESS);
11436 eva = roundup2(eva, PAGE_SIZE);
11437 MPASS(sva < eva);
11438 VM_OBJECT_WLOCK(pti_obj);
11439 for (va = sva; va < eva; va += PAGE_SIZE) {
11440 pte = pmap_pti_pte(va, NULL);
11441 KASSERT((*pte & X86_PG_V) != 0,
11442 ("invalid pte va %#lx pte %#lx pt %#lx", va,
11443 (u_long)pte, *pte));
11444 pte_clear(pte);
11445 pmap_pti_unwire_pte(pte, va);
11446 }
11447 pmap_invalidate_range(kernel_pmap, sva, eva);
11448 VM_OBJECT_WUNLOCK(pti_obj);
11449 }
11450
11451 static void *
pkru_dup_range(void * ctx __unused,void * data)11452 pkru_dup_range(void *ctx __unused, void *data)
11453 {
11454 struct pmap_pkru_range *node, *new_node;
11455
11456 new_node = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11457 if (new_node == NULL)
11458 return (NULL);
11459 node = data;
11460 memcpy(new_node, node, sizeof(*node));
11461 return (new_node);
11462 }
11463
11464 static void
pkru_free_range(void * ctx __unused,void * node)11465 pkru_free_range(void *ctx __unused, void *node)
11466 {
11467
11468 uma_zfree(pmap_pkru_ranges_zone, node);
11469 }
11470
11471 static int
pmap_pkru_assign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11472 pmap_pkru_assign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11473 int flags)
11474 {
11475 struct pmap_pkru_range *ppr;
11476 int error;
11477
11478 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11479 MPASS(pmap->pm_type == PT_X86);
11480 MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11481 if ((flags & AMD64_PKRU_EXCL) != 0 &&
11482 !rangeset_check_empty(&pmap->pm_pkru, sva, eva))
11483 return (EBUSY);
11484 ppr = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11485 if (ppr == NULL)
11486 return (ENOMEM);
11487 ppr->pkru_keyidx = keyidx;
11488 ppr->pkru_flags = flags & AMD64_PKRU_PERSIST;
11489 error = rangeset_insert(&pmap->pm_pkru, sva, eva, ppr);
11490 if (error != 0)
11491 uma_zfree(pmap_pkru_ranges_zone, ppr);
11492 return (error);
11493 }
11494
11495 static int
pmap_pkru_deassign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11496 pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11497 {
11498
11499 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11500 MPASS(pmap->pm_type == PT_X86);
11501 MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11502 return (rangeset_remove(&pmap->pm_pkru, sva, eva));
11503 }
11504
11505 static void
pmap_pkru_deassign_all(pmap_t pmap)11506 pmap_pkru_deassign_all(pmap_t pmap)
11507 {
11508
11509 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11510 if (pmap->pm_type == PT_X86 &&
11511 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
11512 rangeset_remove_all(&pmap->pm_pkru);
11513 }
11514
11515 /*
11516 * Returns true if the PKU setting is the same across the specified address
11517 * range, and false otherwise. When returning true, updates the referenced PTE
11518 * to reflect the PKU setting.
11519 */
11520 static bool
pmap_pkru_same(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pt_entry_t * pte)11521 pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, pt_entry_t *pte)
11522 {
11523 struct pmap_pkru_range *ppr;
11524 vm_offset_t va;
11525 u_int keyidx;
11526
11527 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11528 KASSERT(pmap->pm_type != PT_X86 || (*pte & X86_PG_PKU_MASK) == 0,
11529 ("pte %p has unexpected PKU %ld", pte, *pte & X86_PG_PKU_MASK));
11530 if (pmap->pm_type != PT_X86 ||
11531 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11532 sva >= VM_MAXUSER_ADDRESS)
11533 return (true);
11534 MPASS(eva <= VM_MAXUSER_ADDRESS);
11535 ppr = rangeset_containing(&pmap->pm_pkru, sva);
11536 if (ppr == NULL)
11537 return (rangeset_empty(&pmap->pm_pkru, sva, eva));
11538 keyidx = ppr->pkru_keyidx;
11539 while ((va = ppr->pkru_rs_el.re_end) < eva) {
11540 if ((ppr = rangeset_beginning(&pmap->pm_pkru, va)) == NULL ||
11541 keyidx != ppr->pkru_keyidx)
11542 return (false);
11543 }
11544 *pte |= X86_PG_PKU(keyidx);
11545 return (true);
11546 }
11547
11548 static pt_entry_t
pmap_pkru_get(pmap_t pmap,vm_offset_t va)11549 pmap_pkru_get(pmap_t pmap, vm_offset_t va)
11550 {
11551 struct pmap_pkru_range *ppr;
11552
11553 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11554 if (pmap->pm_type != PT_X86 ||
11555 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11556 va >= VM_MAXUSER_ADDRESS)
11557 return (0);
11558 ppr = rangeset_containing(&pmap->pm_pkru, va);
11559 if (ppr != NULL)
11560 return (X86_PG_PKU(ppr->pkru_keyidx));
11561 return (0);
11562 }
11563
11564 static bool
pred_pkru_on_remove(void * ctx __unused,void * r)11565 pred_pkru_on_remove(void *ctx __unused, void *r)
11566 {
11567 struct pmap_pkru_range *ppr;
11568
11569 ppr = r;
11570 return ((ppr->pkru_flags & AMD64_PKRU_PERSIST) == 0);
11571 }
11572
11573 static void
pmap_pkru_on_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11574 pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11575 {
11576
11577 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11578 if (pmap->pm_type == PT_X86 &&
11579 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
11580 rangeset_remove_pred(&pmap->pm_pkru, sva, eva,
11581 pred_pkru_on_remove);
11582 }
11583 }
11584
11585 static int
pmap_pkru_copy(pmap_t dst_pmap,pmap_t src_pmap)11586 pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap)
11587 {
11588
11589 PMAP_LOCK_ASSERT(dst_pmap, MA_OWNED);
11590 PMAP_LOCK_ASSERT(src_pmap, MA_OWNED);
11591 MPASS(dst_pmap->pm_type == PT_X86);
11592 MPASS(src_pmap->pm_type == PT_X86);
11593 MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11594 if (src_pmap->pm_pkru.rs_data_ctx == NULL)
11595 return (0);
11596 return (rangeset_copy(&dst_pmap->pm_pkru, &src_pmap->pm_pkru));
11597 }
11598
11599 static void
pmap_pkru_update_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx)11600 pmap_pkru_update_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11601 u_int keyidx)
11602 {
11603 pml4_entry_t *pml4e;
11604 pdp_entry_t *pdpe;
11605 pd_entry_t newpde, ptpaddr, *pde;
11606 pt_entry_t newpte, *ptep, pte;
11607 vm_offset_t va, va_next;
11608 bool changed;
11609
11610 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11611 MPASS(pmap->pm_type == PT_X86);
11612 MPASS(keyidx <= PMAP_MAX_PKRU_IDX);
11613
11614 for (changed = false, va = sva; va < eva; va = va_next) {
11615 pml4e = pmap_pml4e(pmap, va);
11616 if (pml4e == NULL || (*pml4e & X86_PG_V) == 0) {
11617 va_next = (va + NBPML4) & ~PML4MASK;
11618 if (va_next < va)
11619 va_next = eva;
11620 continue;
11621 }
11622
11623 pdpe = pmap_pml4e_to_pdpe(pml4e, va);
11624 if ((*pdpe & X86_PG_V) == 0) {
11625 va_next = (va + NBPDP) & ~PDPMASK;
11626 if (va_next < va)
11627 va_next = eva;
11628 continue;
11629 }
11630
11631 va_next = (va + NBPDR) & ~PDRMASK;
11632 if (va_next < va)
11633 va_next = eva;
11634
11635 pde = pmap_pdpe_to_pde(pdpe, va);
11636 ptpaddr = *pde;
11637 if (ptpaddr == 0)
11638 continue;
11639
11640 MPASS((ptpaddr & X86_PG_V) != 0);
11641 if ((ptpaddr & PG_PS) != 0) {
11642 if (va + NBPDR == va_next && eva >= va_next) {
11643 newpde = (ptpaddr & ~X86_PG_PKU_MASK) |
11644 X86_PG_PKU(keyidx);
11645 if (newpde != ptpaddr) {
11646 *pde = newpde;
11647 changed = true;
11648 }
11649 continue;
11650 } else if (!pmap_demote_pde(pmap, pde, va)) {
11651 continue;
11652 }
11653 }
11654
11655 if (va_next > eva)
11656 va_next = eva;
11657
11658 for (ptep = pmap_pde_to_pte(pde, va); va != va_next;
11659 ptep++, va += PAGE_SIZE) {
11660 pte = *ptep;
11661 if ((pte & X86_PG_V) == 0)
11662 continue;
11663 newpte = (pte & ~X86_PG_PKU_MASK) | X86_PG_PKU(keyidx);
11664 if (newpte != pte) {
11665 *ptep = newpte;
11666 changed = true;
11667 }
11668 }
11669 }
11670 if (changed)
11671 pmap_invalidate_range(pmap, sva, eva);
11672 }
11673
11674 static int
pmap_pkru_check_uargs(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11675 pmap_pkru_check_uargs(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11676 u_int keyidx, int flags)
11677 {
11678
11679 if (pmap->pm_type != PT_X86 || keyidx > PMAP_MAX_PKRU_IDX ||
11680 (flags & ~(AMD64_PKRU_PERSIST | AMD64_PKRU_EXCL)) != 0)
11681 return (EINVAL);
11682 if (eva <= sva || eva > VM_MAXUSER_ADDRESS)
11683 return (EFAULT);
11684 if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
11685 return (ENOTSUP);
11686 return (0);
11687 }
11688
11689 int
pmap_pkru_set(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11690 pmap_pkru_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11691 int flags)
11692 {
11693 int error;
11694
11695 sva = trunc_page(sva);
11696 eva = round_page(eva);
11697 error = pmap_pkru_check_uargs(pmap, sva, eva, keyidx, flags);
11698 if (error != 0)
11699 return (error);
11700 for (;;) {
11701 PMAP_LOCK(pmap);
11702 error = pmap_pkru_assign(pmap, sva, eva, keyidx, flags);
11703 if (error == 0)
11704 pmap_pkru_update_range(pmap, sva, eva, keyidx);
11705 PMAP_UNLOCK(pmap);
11706 if (error != ENOMEM)
11707 break;
11708 vm_wait(NULL);
11709 }
11710 return (error);
11711 }
11712
11713 int
pmap_pkru_clear(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11714 pmap_pkru_clear(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11715 {
11716 int error;
11717
11718 sva = trunc_page(sva);
11719 eva = round_page(eva);
11720 error = pmap_pkru_check_uargs(pmap, sva, eva, 0, 0);
11721 if (error != 0)
11722 return (error);
11723 for (;;) {
11724 PMAP_LOCK(pmap);
11725 error = pmap_pkru_deassign(pmap, sva, eva);
11726 if (error == 0)
11727 pmap_pkru_update_range(pmap, sva, eva, 0);
11728 PMAP_UNLOCK(pmap);
11729 if (error != ENOMEM)
11730 break;
11731 vm_wait(NULL);
11732 }
11733 return (error);
11734 }
11735
11736 #if defined(KASAN) || defined(KMSAN)
11737
11738 /*
11739 * Reserve enough memory to:
11740 * 1) allocate PDP pages for the shadow map(s),
11741 * 2) shadow the boot stack of KSTACK_PAGES pages,
11742 * 3) assuming that the kernel stack does not cross a 1GB boundary,
11743 * so we need one or two PD pages, one or two PT pages, and KSTACK_PAGES shadow
11744 * pages per shadow map.
11745 */
11746 #ifdef KASAN
11747 #define SAN_EARLY_PAGES \
11748 (NKASANPML4E + 2 + 2 + howmany(KSTACK_PAGES, KASAN_SHADOW_SCALE))
11749 #else
11750 #define SAN_EARLY_PAGES \
11751 (NKMSANSHADPML4E + NKMSANORIGPML4E + 2 * (2 + 2 + KSTACK_PAGES))
11752 #endif
11753
11754 static uint64_t __nosanitizeaddress __nosanitizememory
pmap_san_enter_early_alloc_4k(uint64_t pabase)11755 pmap_san_enter_early_alloc_4k(uint64_t pabase)
11756 {
11757 static uint8_t data[PAGE_SIZE * SAN_EARLY_PAGES] __aligned(PAGE_SIZE);
11758 static size_t offset = 0;
11759 uint64_t pa;
11760
11761 if (offset == sizeof(data)) {
11762 panic("%s: ran out of memory for the bootstrap shadow map",
11763 __func__);
11764 }
11765
11766 pa = pabase + ((vm_offset_t)&data[offset] - KERNSTART);
11767 offset += PAGE_SIZE;
11768 return (pa);
11769 }
11770
11771 /*
11772 * Map a shadow page, before the kernel has bootstrapped its page tables. This
11773 * is currently only used to shadow the temporary boot stack set up by locore.
11774 */
11775 static void __nosanitizeaddress __nosanitizememory
pmap_san_enter_early(vm_offset_t va)11776 pmap_san_enter_early(vm_offset_t va)
11777 {
11778 static bool first = true;
11779 pml4_entry_t *pml4e;
11780 pdp_entry_t *pdpe;
11781 pd_entry_t *pde;
11782 pt_entry_t *pte;
11783 uint64_t cr3, pa, base;
11784 int i;
11785
11786 base = amd64_loadaddr();
11787 cr3 = rcr3();
11788
11789 if (first) {
11790 /*
11791 * If this the first call, we need to allocate new PML4Es for
11792 * the bootstrap shadow map(s). We don't know how the PML4 page
11793 * was initialized by the boot loader, so we can't simply test
11794 * whether the shadow map's PML4Es are zero.
11795 */
11796 first = false;
11797 #ifdef KASAN
11798 for (i = 0; i < NKASANPML4E; i++) {
11799 pa = pmap_san_enter_early_alloc_4k(base);
11800
11801 pml4e = (pml4_entry_t *)cr3 +
11802 pmap_pml4e_index(KASAN_MIN_ADDRESS + i * NBPML4);
11803 *pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11804 }
11805 #else
11806 for (i = 0; i < NKMSANORIGPML4E; i++) {
11807 pa = pmap_san_enter_early_alloc_4k(base);
11808
11809 pml4e = (pml4_entry_t *)cr3 +
11810 pmap_pml4e_index(KMSAN_ORIG_MIN_ADDRESS +
11811 i * NBPML4);
11812 *pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11813 }
11814 for (i = 0; i < NKMSANSHADPML4E; i++) {
11815 pa = pmap_san_enter_early_alloc_4k(base);
11816
11817 pml4e = (pml4_entry_t *)cr3 +
11818 pmap_pml4e_index(KMSAN_SHAD_MIN_ADDRESS +
11819 i * NBPML4);
11820 *pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11821 }
11822 #endif
11823 }
11824 pml4e = (pml4_entry_t *)cr3 + pmap_pml4e_index(va);
11825 pdpe = (pdp_entry_t *)(*pml4e & PG_FRAME) + pmap_pdpe_index(va);
11826 if (*pdpe == 0) {
11827 pa = pmap_san_enter_early_alloc_4k(base);
11828 *pdpe = (pdp_entry_t)(pa | X86_PG_RW | X86_PG_V);
11829 }
11830 pde = (pd_entry_t *)(*pdpe & PG_FRAME) + pmap_pde_index(va);
11831 if (*pde == 0) {
11832 pa = pmap_san_enter_early_alloc_4k(base);
11833 *pde = (pd_entry_t)(pa | X86_PG_RW | X86_PG_V);
11834 }
11835 pte = (pt_entry_t *)(*pde & PG_FRAME) + pmap_pte_index(va);
11836 if (*pte != 0)
11837 panic("%s: PTE for %#lx is already initialized", __func__, va);
11838 pa = pmap_san_enter_early_alloc_4k(base);
11839 *pte = (pt_entry_t)(pa | X86_PG_A | X86_PG_M | X86_PG_RW | X86_PG_V);
11840 }
11841
11842 static vm_page_t
pmap_san_enter_alloc_4k(void)11843 pmap_san_enter_alloc_4k(void)
11844 {
11845 vm_page_t m;
11846
11847 m = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED |
11848 VM_ALLOC_ZERO);
11849 if (m == NULL)
11850 panic("%s: no memory to grow shadow map", __func__);
11851 return (m);
11852 }
11853
11854 static vm_page_t
pmap_san_enter_alloc_2m(void)11855 pmap_san_enter_alloc_2m(void)
11856 {
11857 return (vm_page_alloc_noobj_contig(VM_ALLOC_WIRED | VM_ALLOC_ZERO,
11858 NPTEPG, 0, ~0ul, NBPDR, 0, VM_MEMATTR_DEFAULT));
11859 }
11860
11861 /*
11862 * Grow a shadow map by at least one 4KB page at the specified address. Use 2MB
11863 * pages when possible.
11864 */
11865 void __nosanitizeaddress __nosanitizememory
pmap_san_enter(vm_offset_t va)11866 pmap_san_enter(vm_offset_t va)
11867 {
11868 pdp_entry_t *pdpe;
11869 pd_entry_t *pde;
11870 pt_entry_t *pte;
11871 vm_page_t m;
11872
11873 if (kernphys == 0) {
11874 /*
11875 * We're creating a temporary shadow map for the boot stack.
11876 */
11877 pmap_san_enter_early(va);
11878 return;
11879 }
11880
11881 mtx_assert(&kernel_map->system_mtx, MA_OWNED);
11882
11883 pdpe = pmap_pdpe(kernel_pmap, va);
11884 if ((*pdpe & X86_PG_V) == 0) {
11885 m = pmap_san_enter_alloc_4k();
11886 *pdpe = (pdp_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11887 X86_PG_V | pg_nx);
11888 }
11889 pde = pmap_pdpe_to_pde(pdpe, va);
11890 if ((*pde & X86_PG_V) == 0) {
11891 m = pmap_san_enter_alloc_2m();
11892 if (m != NULL) {
11893 *pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11894 X86_PG_PS | X86_PG_V | X86_PG_A | X86_PG_M | pg_nx);
11895 } else {
11896 m = pmap_san_enter_alloc_4k();
11897 *pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11898 X86_PG_V | pg_nx);
11899 }
11900 }
11901 if ((*pde & X86_PG_PS) != 0)
11902 return;
11903 pte = pmap_pde_to_pte(pde, va);
11904 if ((*pte & X86_PG_V) != 0)
11905 return;
11906 m = pmap_san_enter_alloc_4k();
11907 *pte = (pt_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW | X86_PG_V |
11908 X86_PG_M | X86_PG_A | pg_nx);
11909 }
11910 #endif
11911
11912 /*
11913 * Track a range of the kernel's virtual address space that is contiguous
11914 * in various mapping attributes.
11915 */
11916 struct pmap_kernel_map_range {
11917 vm_offset_t sva;
11918 pt_entry_t attrs;
11919 int ptes;
11920 int pdes;
11921 int pdpes;
11922 };
11923
11924 static void
sysctl_kmaps_dump(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t eva)11925 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
11926 vm_offset_t eva)
11927 {
11928 const char *mode;
11929 int i, pat_idx;
11930
11931 if (eva <= range->sva)
11932 return;
11933
11934 pat_idx = pmap_pat_index(kernel_pmap, range->attrs, true);
11935 for (i = 0; i < PAT_INDEX_SIZE; i++)
11936 if (pat_index[i] == pat_idx)
11937 break;
11938
11939 switch (i) {
11940 case PAT_WRITE_BACK:
11941 mode = "WB";
11942 break;
11943 case PAT_WRITE_THROUGH:
11944 mode = "WT";
11945 break;
11946 case PAT_UNCACHEABLE:
11947 mode = "UC";
11948 break;
11949 case PAT_UNCACHED:
11950 mode = "U-";
11951 break;
11952 case PAT_WRITE_PROTECTED:
11953 mode = "WP";
11954 break;
11955 case PAT_WRITE_COMBINING:
11956 mode = "WC";
11957 break;
11958 default:
11959 printf("%s: unknown PAT mode %#x for range 0x%016lx-0x%016lx\n",
11960 __func__, pat_idx, range->sva, eva);
11961 mode = "??";
11962 break;
11963 }
11964
11965 sbuf_printf(sb, "0x%016lx-0x%016lx r%c%c%c%c %s %d %d %d\n",
11966 range->sva, eva,
11967 (range->attrs & X86_PG_RW) != 0 ? 'w' : '-',
11968 (range->attrs & pg_nx) != 0 ? '-' : 'x',
11969 (range->attrs & X86_PG_U) != 0 ? 'u' : 's',
11970 (range->attrs & X86_PG_G) != 0 ? 'g' : '-',
11971 mode, range->pdpes, range->pdes, range->ptes);
11972
11973 /* Reset to sentinel value. */
11974 range->sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
11975 NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
11976 NPDEPG - 1, NPTEPG - 1);
11977 }
11978
11979 /*
11980 * Determine whether the attributes specified by a page table entry match those
11981 * being tracked by the current range. This is not quite as simple as a direct
11982 * flag comparison since some PAT modes have multiple representations.
11983 */
11984 static bool
sysctl_kmaps_match(struct pmap_kernel_map_range * range,pt_entry_t attrs)11985 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
11986 {
11987 pt_entry_t diff, mask;
11988
11989 mask = X86_PG_G | X86_PG_RW | X86_PG_U | X86_PG_PDE_CACHE | pg_nx;
11990 diff = (range->attrs ^ attrs) & mask;
11991 if (diff == 0)
11992 return (true);
11993 if ((diff & ~X86_PG_PDE_PAT) == 0 &&
11994 pmap_pat_index(kernel_pmap, range->attrs, true) ==
11995 pmap_pat_index(kernel_pmap, attrs, true))
11996 return (true);
11997 return (false);
11998 }
11999
12000 static void
sysctl_kmaps_reinit(struct pmap_kernel_map_range * range,vm_offset_t va,pt_entry_t attrs)12001 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
12002 pt_entry_t attrs)
12003 {
12004
12005 memset(range, 0, sizeof(*range));
12006 range->sva = va;
12007 range->attrs = attrs;
12008 }
12009
12010 /*
12011 * Given a leaf PTE, derive the mapping's attributes. If they do not match
12012 * those of the current run, dump the address range and its attributes, and
12013 * begin a new run.
12014 */
12015 static void
sysctl_kmaps_check(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t va,pml4_entry_t pml4e,pdp_entry_t pdpe,pd_entry_t pde,pt_entry_t pte)12016 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
12017 vm_offset_t va, pml4_entry_t pml4e, pdp_entry_t pdpe, pd_entry_t pde,
12018 pt_entry_t pte)
12019 {
12020 pt_entry_t attrs;
12021
12022 attrs = pml4e & (X86_PG_RW | X86_PG_U | pg_nx);
12023
12024 attrs |= pdpe & pg_nx;
12025 attrs &= pg_nx | (pdpe & (X86_PG_RW | X86_PG_U));
12026 if ((pdpe & PG_PS) != 0) {
12027 attrs |= pdpe & (X86_PG_G | X86_PG_PDE_CACHE);
12028 } else if (pde != 0) {
12029 attrs |= pde & pg_nx;
12030 attrs &= pg_nx | (pde & (X86_PG_RW | X86_PG_U));
12031 }
12032 if ((pde & PG_PS) != 0) {
12033 attrs |= pde & (X86_PG_G | X86_PG_PDE_CACHE);
12034 } else if (pte != 0) {
12035 attrs |= pte & pg_nx;
12036 attrs &= pg_nx | (pte & (X86_PG_RW | X86_PG_U));
12037 attrs |= pte & (X86_PG_G | X86_PG_PTE_CACHE);
12038
12039 /* Canonicalize by always using the PDE PAT bit. */
12040 if ((attrs & X86_PG_PTE_PAT) != 0)
12041 attrs ^= X86_PG_PDE_PAT | X86_PG_PTE_PAT;
12042 }
12043
12044 if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
12045 sysctl_kmaps_dump(sb, range, va);
12046 sysctl_kmaps_reinit(range, va, attrs);
12047 }
12048 }
12049
12050 static int
sysctl_kmaps(SYSCTL_HANDLER_ARGS)12051 sysctl_kmaps(SYSCTL_HANDLER_ARGS)
12052 {
12053 struct pmap_kernel_map_range range;
12054 struct sbuf sbuf, *sb;
12055 pml4_entry_t pml4e;
12056 pdp_entry_t *pdp, pdpe;
12057 pd_entry_t *pd, pde;
12058 pt_entry_t *pt, pte;
12059 vm_offset_t sva;
12060 vm_paddr_t pa;
12061 int error, i, j, k, l;
12062
12063 error = sysctl_wire_old_buffer(req, 0);
12064 if (error != 0)
12065 return (error);
12066 sb = &sbuf;
12067 sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
12068
12069 /* Sentinel value. */
12070 range.sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
12071 NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
12072 NPDEPG - 1, NPTEPG - 1);
12073
12074 /*
12075 * Iterate over the kernel page tables without holding the kernel pmap
12076 * lock. Outside of the large map, kernel page table pages are never
12077 * freed, so at worst we will observe inconsistencies in the output.
12078 * Within the large map, ensure that PDP and PD page addresses are
12079 * valid before descending.
12080 */
12081 for (sva = 0, i = pmap_pml4e_index(sva); i < NPML4EPG; i++) {
12082 switch (i) {
12083 case PML4PML4I:
12084 sbuf_printf(sb, "\nRecursive map:\n");
12085 break;
12086 case DMPML4I:
12087 sbuf_printf(sb, "\nDirect map:\n");
12088 break;
12089 #ifdef KASAN
12090 case KASANPML4I:
12091 sbuf_printf(sb, "\nKASAN shadow map:\n");
12092 break;
12093 #endif
12094 #ifdef KMSAN
12095 case KMSANSHADPML4I:
12096 sbuf_printf(sb, "\nKMSAN shadow map:\n");
12097 break;
12098 case KMSANORIGPML4I:
12099 sbuf_printf(sb, "\nKMSAN origin map:\n");
12100 break;
12101 #endif
12102 case KPML4BASE:
12103 sbuf_printf(sb, "\nKernel map:\n");
12104 break;
12105 case LMSPML4I:
12106 sbuf_printf(sb, "\nLarge map:\n");
12107 break;
12108 }
12109
12110 /* Convert to canonical form. */
12111 if (sva == 1ul << 47)
12112 sva |= -1ul << 48;
12113
12114 restart:
12115 pml4e = kernel_pml4[i];
12116 if ((pml4e & X86_PG_V) == 0) {
12117 sva = rounddown2(sva, NBPML4);
12118 sysctl_kmaps_dump(sb, &range, sva);
12119 sva += NBPML4;
12120 continue;
12121 }
12122 pa = pml4e & PG_FRAME;
12123 pdp = (pdp_entry_t *)PHYS_TO_DMAP(pa);
12124
12125 for (j = pmap_pdpe_index(sva); j < NPDPEPG; j++) {
12126 pdpe = pdp[j];
12127 if ((pdpe & X86_PG_V) == 0) {
12128 sva = rounddown2(sva, NBPDP);
12129 sysctl_kmaps_dump(sb, &range, sva);
12130 sva += NBPDP;
12131 continue;
12132 }
12133 pa = pdpe & PG_FRAME;
12134 if ((pdpe & PG_PS) != 0) {
12135 sva = rounddown2(sva, NBPDP);
12136 sysctl_kmaps_check(sb, &range, sva, pml4e, pdpe,
12137 0, 0);
12138 range.pdpes++;
12139 sva += NBPDP;
12140 continue;
12141 }
12142 if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
12143 vm_phys_paddr_to_vm_page(pa) == NULL) {
12144 /*
12145 * Page table pages for the large map may be
12146 * freed. Validate the next-level address
12147 * before descending.
12148 */
12149 goto restart;
12150 }
12151 pd = (pd_entry_t *)PHYS_TO_DMAP(pa);
12152
12153 for (k = pmap_pde_index(sva); k < NPDEPG; k++) {
12154 pde = pd[k];
12155 if ((pde & X86_PG_V) == 0) {
12156 sva = rounddown2(sva, NBPDR);
12157 sysctl_kmaps_dump(sb, &range, sva);
12158 sva += NBPDR;
12159 continue;
12160 }
12161 pa = pde & PG_FRAME;
12162 if ((pde & PG_PS) != 0) {
12163 sva = rounddown2(sva, NBPDR);
12164 sysctl_kmaps_check(sb, &range, sva,
12165 pml4e, pdpe, pde, 0);
12166 range.pdes++;
12167 sva += NBPDR;
12168 continue;
12169 }
12170 if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
12171 vm_phys_paddr_to_vm_page(pa) == NULL) {
12172 /*
12173 * Page table pages for the large map
12174 * may be freed. Validate the
12175 * next-level address before descending.
12176 */
12177 goto restart;
12178 }
12179 pt = (pt_entry_t *)PHYS_TO_DMAP(pa);
12180
12181 for (l = pmap_pte_index(sva); l < NPTEPG; l++,
12182 sva += PAGE_SIZE) {
12183 pte = pt[l];
12184 if ((pte & X86_PG_V) == 0) {
12185 sysctl_kmaps_dump(sb, &range,
12186 sva);
12187 continue;
12188 }
12189 sysctl_kmaps_check(sb, &range, sva,
12190 pml4e, pdpe, pde, pte);
12191 range.ptes++;
12192 }
12193 }
12194 }
12195 }
12196
12197 error = sbuf_finish(sb);
12198 sbuf_delete(sb);
12199 return (error);
12200 }
12201 SYSCTL_OID(_vm_pmap, OID_AUTO, kernel_maps,
12202 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
12203 NULL, 0, sysctl_kmaps, "A",
12204 "Dump kernel address layout");
12205
12206 #ifdef DDB
DB_SHOW_COMMAND(pte,pmap_print_pte)12207 DB_SHOW_COMMAND(pte, pmap_print_pte)
12208 {
12209 pmap_t pmap;
12210 pml5_entry_t *pml5;
12211 pml4_entry_t *pml4;
12212 pdp_entry_t *pdp;
12213 pd_entry_t *pde;
12214 pt_entry_t *pte, PG_V;
12215 vm_offset_t va;
12216
12217 if (!have_addr) {
12218 db_printf("show pte addr\n");
12219 return;
12220 }
12221 va = (vm_offset_t)addr;
12222
12223 if (kdb_thread != NULL)
12224 pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
12225 else
12226 pmap = PCPU_GET(curpmap);
12227
12228 PG_V = pmap_valid_bit(pmap);
12229 db_printf("VA 0x%016lx", va);
12230
12231 if (pmap_is_la57(pmap)) {
12232 pml5 = pmap_pml5e(pmap, va);
12233 db_printf(" pml5e@0x%016lx 0x%016lx", (uint64_t)pml5, *pml5);
12234 if ((*pml5 & PG_V) == 0) {
12235 db_printf("\n");
12236 return;
12237 }
12238 pml4 = pmap_pml5e_to_pml4e(pml5, va);
12239 } else {
12240 pml4 = pmap_pml4e(pmap, va);
12241 }
12242 db_printf(" pml4e@0x%016lx 0x%016lx", (uint64_t)pml4, *pml4);
12243 if ((*pml4 & PG_V) == 0) {
12244 db_printf("\n");
12245 return;
12246 }
12247 pdp = pmap_pml4e_to_pdpe(pml4, va);
12248 db_printf(" pdpe@0x%016lx 0x%016lx", (uint64_t)pdp, *pdp);
12249 if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0) {
12250 db_printf("\n");
12251 return;
12252 }
12253 pde = pmap_pdpe_to_pde(pdp, va);
12254 db_printf(" pde@0x%016lx 0x%016lx", (uint64_t)pde, *pde);
12255 if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0) {
12256 db_printf("\n");
12257 return;
12258 }
12259 pte = pmap_pde_to_pte(pde, va);
12260 db_printf(" pte@0x%016lx 0x%016lx\n", (uint64_t)pte, *pte);
12261 }
12262
DB_SHOW_COMMAND(phys2dmap,pmap_phys2dmap)12263 DB_SHOW_COMMAND(phys2dmap, pmap_phys2dmap)
12264 {
12265 vm_paddr_t a;
12266
12267 if (have_addr) {
12268 a = (vm_paddr_t)addr;
12269 db_printf("0x%jx\n", (uintmax_t)PHYS_TO_DMAP(a));
12270 } else {
12271 db_printf("show phys2dmap addr\n");
12272 }
12273 }
12274
12275 static void
ptpages_show_page(int level,int idx,vm_page_t pg)12276 ptpages_show_page(int level, int idx, vm_page_t pg)
12277 {
12278 db_printf("l %d i %d pg %p phys %#lx ref %x\n",
12279 level, idx, pg, VM_PAGE_TO_PHYS(pg), pg->ref_count);
12280 }
12281
12282 static void
ptpages_show_complain(int level,int idx,uint64_t pte)12283 ptpages_show_complain(int level, int idx, uint64_t pte)
12284 {
12285 db_printf("l %d i %d pte %#lx\n", level, idx, pte);
12286 }
12287
12288 static void
ptpages_show_pml4(vm_page_t pg4,int num_entries,uint64_t PG_V)12289 ptpages_show_pml4(vm_page_t pg4, int num_entries, uint64_t PG_V)
12290 {
12291 vm_page_t pg3, pg2, pg1;
12292 pml4_entry_t *pml4;
12293 pdp_entry_t *pdp;
12294 pd_entry_t *pd;
12295 int i4, i3, i2;
12296
12297 pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg4));
12298 for (i4 = 0; i4 < num_entries; i4++) {
12299 if ((pml4[i4] & PG_V) == 0)
12300 continue;
12301 pg3 = PHYS_TO_VM_PAGE(pml4[i4] & PG_FRAME);
12302 if (pg3 == NULL) {
12303 ptpages_show_complain(3, i4, pml4[i4]);
12304 continue;
12305 }
12306 ptpages_show_page(3, i4, pg3);
12307 pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg3));
12308 for (i3 = 0; i3 < NPDPEPG; i3++) {
12309 if ((pdp[i3] & PG_V) == 0)
12310 continue;
12311 pg2 = PHYS_TO_VM_PAGE(pdp[i3] & PG_FRAME);
12312 if (pg3 == NULL) {
12313 ptpages_show_complain(2, i3, pdp[i3]);
12314 continue;
12315 }
12316 ptpages_show_page(2, i3, pg2);
12317 pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg2));
12318 for (i2 = 0; i2 < NPDEPG; i2++) {
12319 if ((pd[i2] & PG_V) == 0)
12320 continue;
12321 pg1 = PHYS_TO_VM_PAGE(pd[i2] & PG_FRAME);
12322 if (pg1 == NULL) {
12323 ptpages_show_complain(1, i2, pd[i2]);
12324 continue;
12325 }
12326 ptpages_show_page(1, i2, pg1);
12327 }
12328 }
12329 }
12330 }
12331
DB_SHOW_COMMAND(ptpages,pmap_ptpages)12332 DB_SHOW_COMMAND(ptpages, pmap_ptpages)
12333 {
12334 pmap_t pmap;
12335 vm_page_t pg;
12336 pml5_entry_t *pml5;
12337 uint64_t PG_V;
12338 int i5;
12339
12340 if (have_addr)
12341 pmap = (pmap_t)addr;
12342 else
12343 pmap = PCPU_GET(curpmap);
12344
12345 PG_V = pmap_valid_bit(pmap);
12346
12347 if (pmap_is_la57(pmap)) {
12348 pml5 = pmap->pm_pmltop;
12349 for (i5 = 0; i5 < NUPML5E; i5++) {
12350 if ((pml5[i5] & PG_V) == 0)
12351 continue;
12352 pg = PHYS_TO_VM_PAGE(pml5[i5] & PG_FRAME);
12353 if (pg == NULL) {
12354 ptpages_show_complain(4, i5, pml5[i5]);
12355 continue;
12356 }
12357 ptpages_show_page(4, i5, pg);
12358 ptpages_show_pml4(pg, NPML4EPG, PG_V);
12359 }
12360 } else {
12361 ptpages_show_pml4(PHYS_TO_VM_PAGE(DMAP_TO_PHYS(
12362 (vm_offset_t)pmap->pm_pmltop)), NUP4ML4E, PG_V);
12363 }
12364 }
12365 #endif
12366