xref: /freebsd/sys/amd64/amd64/pmap.c (revision f3754afd5901857787271e73f9c34d3b9069a03f)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2003 Peter Wemm
11  * All rights reserved.
12  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
13  * All rights reserved.
14  *
15  * This code is derived from software contributed to Berkeley by
16  * the Systems Programming Group of the University of Utah Computer
17  * Science Department and William Jolitz of UUNET Technologies Inc.
18  *
19  * Redistribution and use in source and binary forms, with or without
20  * modification, are permitted provided that the following conditions
21  * are met:
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  * 3. All advertising materials mentioning features or use of this software
28  *    must display the following acknowledgement:
29  *	This product includes software developed by the University of
30  *	California, Berkeley and its contributors.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  */
47 /*-
48  * Copyright (c) 2003 Networks Associates Technology, Inc.
49  * Copyright (c) 2014-2020 The FreeBSD Foundation
50  * All rights reserved.
51  *
52  * This software was developed for the FreeBSD Project by Jake Burkholder,
53  * Safeport Network Services, and Network Associates Laboratories, the
54  * Security Research Division of Network Associates, Inc. under
55  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
56  * CHATS research program.
57  *
58  * Portions of this software were developed by
59  * Konstantin Belousov <kib@FreeBSD.org> under sponsorship from
60  * the FreeBSD Foundation.
61  *
62  * Redistribution and use in source and binary forms, with or without
63  * modification, are permitted provided that the following conditions
64  * are met:
65  * 1. Redistributions of source code must retain the above copyright
66  *    notice, this list of conditions and the following disclaimer.
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in the
69  *    documentation and/or other materials provided with the distribution.
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
72  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
75  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81  * SUCH DAMAGE.
82  */
83 
84 #define	AMD64_NPT_AWARE
85 
86 #include <sys/cdefs.h>
87 /*
88  *	Manages physical address maps.
89  *
90  *	Since the information managed by this module is
91  *	also stored by the logical address mapping module,
92  *	this module may throw away valid virtual-to-physical
93  *	mappings at almost any time.  However, invalidations
94  *	of virtual-to-physical mappings must be done as
95  *	requested.
96  *
97  *	In order to cope with hardware architectures which
98  *	make virtual-to-physical map invalidates expensive,
99  *	this module may delay invalidate or reduced protection
100  *	operations until such time as they are actually
101  *	necessary.  This module is given full information as
102  *	to which processors are currently using which maps,
103  *	and to when physical maps must be made correct.
104  */
105 
106 #include "opt_ddb.h"
107 #include "opt_pmap.h"
108 #include "opt_vm.h"
109 
110 #include <sys/param.h>
111 #include <sys/asan.h>
112 #include <sys/bitstring.h>
113 #include <sys/bus.h>
114 #include <sys/systm.h>
115 #include <sys/counter.h>
116 #include <sys/kernel.h>
117 #include <sys/ktr.h>
118 #include <sys/lock.h>
119 #include <sys/malloc.h>
120 #include <sys/mman.h>
121 #include <sys/msan.h>
122 #include <sys/mutex.h>
123 #include <sys/proc.h>
124 #include <sys/rangeset.h>
125 #include <sys/rwlock.h>
126 #include <sys/sbuf.h>
127 #include <sys/smr.h>
128 #include <sys/sx.h>
129 #include <sys/turnstile.h>
130 #include <sys/vmem.h>
131 #include <sys/vmmeter.h>
132 #include <sys/sched.h>
133 #include <sys/sysctl.h>
134 #include <sys/smp.h>
135 #ifdef DDB
136 #include <sys/kdb.h>
137 #include <ddb/ddb.h>
138 #endif
139 
140 #include <vm/vm.h>
141 #include <vm/vm_param.h>
142 #include <vm/vm_kern.h>
143 #include <vm/vm_page.h>
144 #include <vm/vm_map.h>
145 #include <vm/vm_object.h>
146 #include <vm/vm_extern.h>
147 #include <vm/vm_pageout.h>
148 #include <vm/vm_pager.h>
149 #include <vm/vm_phys.h>
150 #include <vm/vm_radix.h>
151 #include <vm/vm_reserv.h>
152 #include <vm/vm_dumpset.h>
153 #include <vm/uma.h>
154 
155 #include <machine/asan.h>
156 #include <machine/intr_machdep.h>
157 #include <x86/apicvar.h>
158 #include <x86/ifunc.h>
159 #include <machine/cpu.h>
160 #include <machine/cputypes.h>
161 #include <machine/md_var.h>
162 #include <machine/msan.h>
163 #include <machine/pcb.h>
164 #include <machine/specialreg.h>
165 #ifdef SMP
166 #include <machine/smp.h>
167 #endif
168 #include <machine/sysarch.h>
169 #include <machine/tss.h>
170 
171 #ifdef NUMA
172 #define	PMAP_MEMDOM	MAXMEMDOM
173 #else
174 #define	PMAP_MEMDOM	1
175 #endif
176 
177 static __inline bool
pmap_type_guest(pmap_t pmap)178 pmap_type_guest(pmap_t pmap)
179 {
180 
181 	return ((pmap->pm_type == PT_EPT) || (pmap->pm_type == PT_RVI));
182 }
183 
184 static __inline bool
pmap_emulate_ad_bits(pmap_t pmap)185 pmap_emulate_ad_bits(pmap_t pmap)
186 {
187 
188 	return ((pmap->pm_flags & PMAP_EMULATE_AD_BITS) != 0);
189 }
190 
191 static __inline pt_entry_t
pmap_valid_bit(pmap_t pmap)192 pmap_valid_bit(pmap_t pmap)
193 {
194 	pt_entry_t mask;
195 
196 	switch (pmap->pm_type) {
197 	case PT_X86:
198 	case PT_RVI:
199 		mask = X86_PG_V;
200 		break;
201 	case PT_EPT:
202 		if (pmap_emulate_ad_bits(pmap))
203 			mask = EPT_PG_EMUL_V;
204 		else
205 			mask = EPT_PG_READ;
206 		break;
207 	default:
208 		panic("pmap_valid_bit: invalid pm_type %d", pmap->pm_type);
209 	}
210 
211 	return (mask);
212 }
213 
214 static __inline pt_entry_t
pmap_rw_bit(pmap_t pmap)215 pmap_rw_bit(pmap_t pmap)
216 {
217 	pt_entry_t mask;
218 
219 	switch (pmap->pm_type) {
220 	case PT_X86:
221 	case PT_RVI:
222 		mask = X86_PG_RW;
223 		break;
224 	case PT_EPT:
225 		if (pmap_emulate_ad_bits(pmap))
226 			mask = EPT_PG_EMUL_RW;
227 		else
228 			mask = EPT_PG_WRITE;
229 		break;
230 	default:
231 		panic("pmap_rw_bit: invalid pm_type %d", pmap->pm_type);
232 	}
233 
234 	return (mask);
235 }
236 
237 static pt_entry_t pg_g;
238 
239 static __inline pt_entry_t
pmap_global_bit(pmap_t pmap)240 pmap_global_bit(pmap_t pmap)
241 {
242 	pt_entry_t mask;
243 
244 	switch (pmap->pm_type) {
245 	case PT_X86:
246 		mask = pg_g;
247 		break;
248 	case PT_RVI:
249 	case PT_EPT:
250 		mask = 0;
251 		break;
252 	default:
253 		panic("pmap_global_bit: invalid pm_type %d", pmap->pm_type);
254 	}
255 
256 	return (mask);
257 }
258 
259 static __inline pt_entry_t
pmap_accessed_bit(pmap_t pmap)260 pmap_accessed_bit(pmap_t pmap)
261 {
262 	pt_entry_t mask;
263 
264 	switch (pmap->pm_type) {
265 	case PT_X86:
266 	case PT_RVI:
267 		mask = X86_PG_A;
268 		break;
269 	case PT_EPT:
270 		if (pmap_emulate_ad_bits(pmap))
271 			mask = EPT_PG_READ;
272 		else
273 			mask = EPT_PG_A;
274 		break;
275 	default:
276 		panic("pmap_accessed_bit: invalid pm_type %d", pmap->pm_type);
277 	}
278 
279 	return (mask);
280 }
281 
282 static __inline pt_entry_t
pmap_modified_bit(pmap_t pmap)283 pmap_modified_bit(pmap_t pmap)
284 {
285 	pt_entry_t mask;
286 
287 	switch (pmap->pm_type) {
288 	case PT_X86:
289 	case PT_RVI:
290 		mask = X86_PG_M;
291 		break;
292 	case PT_EPT:
293 		if (pmap_emulate_ad_bits(pmap))
294 			mask = EPT_PG_WRITE;
295 		else
296 			mask = EPT_PG_M;
297 		break;
298 	default:
299 		panic("pmap_modified_bit: invalid pm_type %d", pmap->pm_type);
300 	}
301 
302 	return (mask);
303 }
304 
305 static __inline pt_entry_t
pmap_pku_mask_bit(pmap_t pmap)306 pmap_pku_mask_bit(pmap_t pmap)
307 {
308 
309 	return (pmap->pm_type == PT_X86 ? X86_PG_PKU_MASK : 0);
310 }
311 
312 static __inline bool
safe_to_clear_referenced(pmap_t pmap,pt_entry_t pte)313 safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
314 {
315 
316 	if (!pmap_emulate_ad_bits(pmap))
317 		return (true);
318 
319 	KASSERT(pmap->pm_type == PT_EPT, ("invalid pm_type %d", pmap->pm_type));
320 
321 	/*
322 	 * XWR = 010 or 110 will cause an unconditional EPT misconfiguration
323 	 * so we don't let the referenced (aka EPT_PG_READ) bit to be cleared
324 	 * if the EPT_PG_WRITE bit is set.
325 	 */
326 	if ((pte & EPT_PG_WRITE) != 0)
327 		return (false);
328 
329 	/*
330 	 * XWR = 100 is allowed only if the PMAP_SUPPORTS_EXEC_ONLY is set.
331 	 */
332 	if ((pte & EPT_PG_EXECUTE) == 0 ||
333 	    ((pmap->pm_flags & PMAP_SUPPORTS_EXEC_ONLY) != 0))
334 		return (true);
335 	else
336 		return (false);
337 }
338 
339 #ifdef PV_STATS
340 #define PV_STAT(x)	do { x ; } while (0)
341 #else
342 #define PV_STAT(x)	do { } while (0)
343 #endif
344 
345 #undef pa_index
346 #ifdef NUMA
347 #define	pa_index(pa)	({					\
348 	KASSERT((pa) <= vm_phys_segs[vm_phys_nsegs - 1].end,	\
349 	    ("address %lx beyond the last segment", (pa)));	\
350 	(pa) >> PDRSHIFT;					\
351 })
352 #define	pa_to_pmdp(pa)	(&pv_table[pa_index(pa)])
353 #define	pa_to_pvh(pa)	(&(pa_to_pmdp(pa)->pv_page))
354 #define	PHYS_TO_PV_LIST_LOCK(pa)	({			\
355 	struct rwlock *_lock;					\
356 	if (__predict_false((pa) > pmap_last_pa))		\
357 		_lock = &pv_dummy_large.pv_lock;		\
358 	else							\
359 		_lock = &(pa_to_pmdp(pa)->pv_lock);		\
360 	_lock;							\
361 })
362 #else
363 #define	pa_index(pa)	((pa) >> PDRSHIFT)
364 #define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
365 
366 #define	NPV_LIST_LOCKS	MAXCPU
367 
368 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
369 			(&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
370 #endif
371 
372 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
373 	struct rwlock **_lockp = (lockp);		\
374 	struct rwlock *_new_lock;			\
375 							\
376 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
377 	if (_new_lock != *_lockp) {			\
378 		if (*_lockp != NULL)			\
379 			rw_wunlock(*_lockp);		\
380 		*_lockp = _new_lock;			\
381 		rw_wlock(*_lockp);			\
382 	}						\
383 } while (0)
384 
385 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
386 			CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
387 
388 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
389 	struct rwlock **_lockp = (lockp);		\
390 							\
391 	if (*_lockp != NULL) {				\
392 		rw_wunlock(*_lockp);			\
393 		*_lockp = NULL;				\
394 	}						\
395 } while (0)
396 
397 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
398 			PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
399 
400 /*
401  * Statically allocate kernel pmap memory.  However, memory for
402  * pm_pcids is obtained after the dynamic allocator is operational.
403  * Initialize it with a non-canonical pointer to catch early accesses
404  * regardless of the active mapping.
405  */
406 struct pmap kernel_pmap_store = {
407 	.pm_pcidp = (void *)0xdeadbeefdeadbeef,
408 };
409 
410 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
411 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
412 
413 int nkpt;
414 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
415     "Number of kernel page table pages allocated on bootup");
416 
417 static int ndmpdp;
418 vm_paddr_t dmaplimit;
419 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
420 pt_entry_t pg_nx;
421 
422 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
423     "VM/pmap parameters");
424 
425 static int __read_frequently pg_ps_enabled = 1;
426 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
427     &pg_ps_enabled, 0, "Are large page mappings enabled?");
428 
429 int __read_frequently la57 = 0;
430 SYSCTL_INT(_vm_pmap, OID_AUTO, la57, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
431     &la57, 0,
432     "5-level paging for host is enabled");
433 
434 static bool
pmap_is_la57(pmap_t pmap)435 pmap_is_la57(pmap_t pmap)
436 {
437 	if (pmap->pm_type == PT_X86)
438 		return (la57);
439 	return (false);		/* XXXKIB handle EPT */
440 }
441 
442 #define	PAT_INDEX_SIZE	8
443 static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
444 
445 static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
446 static u_int64_t	KPDphys;	/* phys addr of kernel level 2 */
447 static u_int64_t	KPDPphys;	/* phys addr of kernel level 3 */
448 u_int64_t		KPML4phys;	/* phys addr of kernel level 4 */
449 u_int64_t		KPML5phys;	/* phys addr of kernel level 5,
450 					   if supported */
451 
452 #ifdef KASAN
453 static uint64_t		KASANPDPphys;
454 #endif
455 #ifdef KMSAN
456 static uint64_t		KMSANSHADPDPphys;
457 static uint64_t		KMSANORIGPDPphys;
458 
459 /*
460  * To support systems with large amounts of memory, it is necessary to extend
461  * the maximum size of the direct map.  This could eat into the space reserved
462  * for the shadow map.
463  */
464 _Static_assert(DMPML4I + NDMPML4E <= KMSANSHADPML4I, "direct map overflow");
465 #endif
466 
467 static pml4_entry_t	*kernel_pml4;
468 static u_int64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
469 static u_int64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
470 static int		ndmpdpphys;	/* number of DMPDPphys pages */
471 
472 vm_paddr_t		kernphys;	/* phys addr of start of bootstrap data */
473 vm_paddr_t		KERNend;	/* and the end */
474 
475 /*
476  * pmap_mapdev support pre initialization (i.e. console)
477  */
478 #define	PMAP_PREINIT_MAPPING_COUNT	8
479 static struct pmap_preinit_mapping {
480 	vm_paddr_t	pa;
481 	vm_offset_t	va;
482 	vm_size_t	sz;
483 	int		mode;
484 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
485 static int pmap_initialized;
486 
487 /*
488  * Data for the pv entry allocation mechanism.
489  * Updates to pv_invl_gen are protected by the pv list lock but reads are not.
490  */
491 #ifdef NUMA
492 static __inline int
pc_to_domain(struct pv_chunk * pc)493 pc_to_domain(struct pv_chunk *pc)
494 {
495 
496 	return (vm_phys_domain(DMAP_TO_PHYS((vm_offset_t)pc)));
497 }
498 #else
499 static __inline int
pc_to_domain(struct pv_chunk * pc __unused)500 pc_to_domain(struct pv_chunk *pc __unused)
501 {
502 
503 	return (0);
504 }
505 #endif
506 
507 struct pv_chunks_list {
508 	struct mtx pvc_lock;
509 	TAILQ_HEAD(pch, pv_chunk) pvc_list;
510 	int active_reclaims;
511 } __aligned(CACHE_LINE_SIZE);
512 
513 struct pv_chunks_list __exclusive_cache_line pv_chunks[PMAP_MEMDOM];
514 
515 #ifdef	NUMA
516 struct pmap_large_md_page {
517 	struct rwlock   pv_lock;
518 	struct md_page  pv_page;
519 	u_long pv_invl_gen;
520 };
521 __exclusive_cache_line static struct pmap_large_md_page pv_dummy_large;
522 #define pv_dummy pv_dummy_large.pv_page
523 __read_mostly static struct pmap_large_md_page *pv_table;
524 __read_mostly vm_paddr_t pmap_last_pa;
525 #else
526 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
527 static u_long pv_invl_gen[NPV_LIST_LOCKS];
528 static struct md_page *pv_table;
529 static struct md_page pv_dummy;
530 #endif
531 
532 /*
533  * All those kernel PT submaps that BSD is so fond of
534  */
535 pt_entry_t *CMAP1 = NULL;
536 caddr_t CADDR1 = 0;
537 static vm_offset_t qframe = 0;
538 static struct mtx qframe_mtx;
539 
540 static int pmap_flags = PMAP_PDE_SUPERPAGE;	/* flags for x86 pmaps */
541 
542 static vmem_t *large_vmem;
543 static u_int lm_ents;
544 #define	PMAP_ADDRESS_IN_LARGEMAP(va)	((va) >= LARGEMAP_MIN_ADDRESS && \
545 	(va) < LARGEMAP_MIN_ADDRESS + NBPML4 * (u_long)lm_ents)
546 
547 int pmap_pcid_enabled = 1;
548 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
549     &pmap_pcid_enabled, 0, "Is TLB Context ID enabled ?");
550 int invpcid_works = 0;
551 SYSCTL_INT(_vm_pmap, OID_AUTO, invpcid_works, CTLFLAG_RD, &invpcid_works, 0,
552     "Is the invpcid instruction available ?");
553 int invlpgb_works;
554 SYSCTL_INT(_vm_pmap, OID_AUTO, invlpgb_works, CTLFLAG_RD, &invlpgb_works, 0,
555     "Is the invlpgb instruction available?");
556 int invlpgb_maxcnt;
557 int pmap_pcid_invlpg_workaround = 0;
558 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_invlpg_workaround,
559     CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
560     &pmap_pcid_invlpg_workaround, 0,
561     "Enable small core PCID/INVLPG workaround");
562 int pmap_pcid_invlpg_workaround_uena = 1;
563 
564 int __read_frequently pti = 0;
565 SYSCTL_INT(_vm_pmap, OID_AUTO, pti, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
566     &pti, 0,
567     "Page Table Isolation enabled");
568 static vm_object_t pti_obj;
569 static pml4_entry_t *pti_pml4;
570 static vm_pindex_t pti_pg_idx;
571 static bool pti_finalized;
572 
573 struct pmap_pkru_range {
574 	struct rs_el	pkru_rs_el;
575 	u_int		pkru_keyidx;
576 	int		pkru_flags;
577 };
578 
579 static uma_zone_t pmap_pkru_ranges_zone;
580 static bool pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
581     pt_entry_t *pte);
582 static pt_entry_t pmap_pkru_get(pmap_t pmap, vm_offset_t va);
583 static void pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
584 static void *pkru_dup_range(void *ctx, void *data);
585 static void pkru_free_range(void *ctx, void *node);
586 static int pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap);
587 static int pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
588 static void pmap_pkru_deassign_all(pmap_t pmap);
589 
590 static COUNTER_U64_DEFINE_EARLY(pcid_save_cnt);
591 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pcid_save_cnt, CTLFLAG_RD,
592     &pcid_save_cnt, "Count of saved TLB context on switch");
593 
594 static LIST_HEAD(, pmap_invl_gen) pmap_invl_gen_tracker =
595     LIST_HEAD_INITIALIZER(&pmap_invl_gen_tracker);
596 static struct mtx invl_gen_mtx;
597 /* Fake lock object to satisfy turnstiles interface. */
598 static struct lock_object invl_gen_ts = {
599 	.lo_name = "invlts",
600 };
601 static struct pmap_invl_gen pmap_invl_gen_head = {
602 	.gen = 1,
603 	.next = NULL,
604 };
605 static u_long pmap_invl_gen = 1;
606 static int pmap_invl_waiters;
607 static struct callout pmap_invl_callout;
608 static bool pmap_invl_callout_inited;
609 
610 #define	PMAP_ASSERT_NOT_IN_DI() \
611     KASSERT(pmap_not_in_di(), ("DI already started"))
612 
613 static bool
pmap_di_locked(void)614 pmap_di_locked(void)
615 {
616 	int tun;
617 
618 	if ((cpu_feature2 & CPUID2_CX16) == 0)
619 		return (true);
620 	tun = 0;
621 	TUNABLE_INT_FETCH("vm.pmap.di_locked", &tun);
622 	return (tun != 0);
623 }
624 
625 static int
sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)626 sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)
627 {
628 	int locked;
629 
630 	locked = pmap_di_locked();
631 	return (sysctl_handle_int(oidp, &locked, 0, req));
632 }
633 SYSCTL_PROC(_vm_pmap, OID_AUTO, di_locked, CTLTYPE_INT | CTLFLAG_RDTUN |
634     CTLFLAG_MPSAFE, 0, 0, sysctl_pmap_di_locked, "",
635     "Locked delayed invalidation");
636 
637 static bool pmap_not_in_di_l(void);
638 static bool pmap_not_in_di_u(void);
639 DEFINE_IFUNC(, bool, pmap_not_in_di, (void))
640 {
641 
642 	return (pmap_di_locked() ? pmap_not_in_di_l : pmap_not_in_di_u);
643 }
644 
645 static bool
pmap_not_in_di_l(void)646 pmap_not_in_di_l(void)
647 {
648 	struct pmap_invl_gen *invl_gen;
649 
650 	invl_gen = &curthread->td_md.md_invl_gen;
651 	return (invl_gen->gen == 0);
652 }
653 
654 static void
pmap_thread_init_invl_gen_l(struct thread * td)655 pmap_thread_init_invl_gen_l(struct thread *td)
656 {
657 	struct pmap_invl_gen *invl_gen;
658 
659 	invl_gen = &td->td_md.md_invl_gen;
660 	invl_gen->gen = 0;
661 }
662 
663 static void
pmap_delayed_invl_wait_block(u_long * m_gen,u_long * invl_gen)664 pmap_delayed_invl_wait_block(u_long *m_gen, u_long *invl_gen)
665 {
666 	struct turnstile *ts;
667 
668 	ts = turnstile_trywait(&invl_gen_ts);
669 	if (*m_gen > atomic_load_long(invl_gen))
670 		turnstile_wait(ts, NULL, TS_SHARED_QUEUE);
671 	else
672 		turnstile_cancel(ts);
673 }
674 
675 static void
pmap_delayed_invl_finish_unblock(u_long new_gen)676 pmap_delayed_invl_finish_unblock(u_long new_gen)
677 {
678 	struct turnstile *ts;
679 
680 	turnstile_chain_lock(&invl_gen_ts);
681 	ts = turnstile_lookup(&invl_gen_ts);
682 	if (new_gen != 0)
683 		pmap_invl_gen = new_gen;
684 	if (ts != NULL) {
685 		turnstile_broadcast(ts, TS_SHARED_QUEUE);
686 		turnstile_unpend(ts);
687 	}
688 	turnstile_chain_unlock(&invl_gen_ts);
689 }
690 
691 /*
692  * Start a new Delayed Invalidation (DI) block of code, executed by
693  * the current thread.  Within a DI block, the current thread may
694  * destroy both the page table and PV list entries for a mapping and
695  * then release the corresponding PV list lock before ensuring that
696  * the mapping is flushed from the TLBs of any processors with the
697  * pmap active.
698  */
699 static void
pmap_delayed_invl_start_l(void)700 pmap_delayed_invl_start_l(void)
701 {
702 	struct pmap_invl_gen *invl_gen;
703 	u_long currgen;
704 
705 	invl_gen = &curthread->td_md.md_invl_gen;
706 	PMAP_ASSERT_NOT_IN_DI();
707 	mtx_lock(&invl_gen_mtx);
708 	if (LIST_EMPTY(&pmap_invl_gen_tracker))
709 		currgen = pmap_invl_gen;
710 	else
711 		currgen = LIST_FIRST(&pmap_invl_gen_tracker)->gen;
712 	invl_gen->gen = currgen + 1;
713 	LIST_INSERT_HEAD(&pmap_invl_gen_tracker, invl_gen, link);
714 	mtx_unlock(&invl_gen_mtx);
715 }
716 
717 /*
718  * Finish the DI block, previously started by the current thread.  All
719  * required TLB flushes for the pages marked by
720  * pmap_delayed_invl_page() must be finished before this function is
721  * called.
722  *
723  * This function works by bumping the global DI generation number to
724  * the generation number of the current thread's DI, unless there is a
725  * pending DI that started earlier.  In the latter case, bumping the
726  * global DI generation number would incorrectly signal that the
727  * earlier DI had finished.  Instead, this function bumps the earlier
728  * DI's generation number to match the generation number of the
729  * current thread's DI.
730  */
731 static void
pmap_delayed_invl_finish_l(void)732 pmap_delayed_invl_finish_l(void)
733 {
734 	struct pmap_invl_gen *invl_gen, *next;
735 
736 	invl_gen = &curthread->td_md.md_invl_gen;
737 	KASSERT(invl_gen->gen != 0, ("missed invl_start"));
738 	mtx_lock(&invl_gen_mtx);
739 	next = LIST_NEXT(invl_gen, link);
740 	if (next == NULL)
741 		pmap_delayed_invl_finish_unblock(invl_gen->gen);
742 	else
743 		next->gen = invl_gen->gen;
744 	LIST_REMOVE(invl_gen, link);
745 	mtx_unlock(&invl_gen_mtx);
746 	invl_gen->gen = 0;
747 }
748 
749 static bool
pmap_not_in_di_u(void)750 pmap_not_in_di_u(void)
751 {
752 	struct pmap_invl_gen *invl_gen;
753 
754 	invl_gen = &curthread->td_md.md_invl_gen;
755 	return (((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) != 0);
756 }
757 
758 static void
pmap_thread_init_invl_gen_u(struct thread * td)759 pmap_thread_init_invl_gen_u(struct thread *td)
760 {
761 	struct pmap_invl_gen *invl_gen;
762 
763 	invl_gen = &td->td_md.md_invl_gen;
764 	invl_gen->gen = 0;
765 	invl_gen->next = (void *)PMAP_INVL_GEN_NEXT_INVALID;
766 }
767 
768 static bool
pmap_di_load_invl(struct pmap_invl_gen * ptr,struct pmap_invl_gen * out)769 pmap_di_load_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *out)
770 {
771 	uint64_t new_high, new_low, old_high, old_low;
772 	char res;
773 
774 	old_low = new_low = 0;
775 	old_high = new_high = (uintptr_t)0;
776 
777 	__asm volatile("lock;cmpxchg16b\t%1"
778 	    : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
779 	    : "b"(new_low), "c" (new_high)
780 	    : "memory", "cc");
781 	if (res == 0) {
782 		if ((old_high & PMAP_INVL_GEN_NEXT_INVALID) != 0)
783 			return (false);
784 		out->gen = old_low;
785 		out->next = (void *)old_high;
786 	} else {
787 		out->gen = new_low;
788 		out->next = (void *)new_high;
789 	}
790 	return (true);
791 }
792 
793 static bool
pmap_di_store_invl(struct pmap_invl_gen * ptr,struct pmap_invl_gen * old_val,struct pmap_invl_gen * new_val)794 pmap_di_store_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *old_val,
795     struct pmap_invl_gen *new_val)
796 {
797 	uint64_t new_high, new_low, old_high, old_low;
798 	char res;
799 
800 	new_low = new_val->gen;
801 	new_high = (uintptr_t)new_val->next;
802 	old_low = old_val->gen;
803 	old_high = (uintptr_t)old_val->next;
804 
805 	__asm volatile("lock;cmpxchg16b\t%1"
806 	    : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
807 	    : "b"(new_low), "c" (new_high)
808 	    : "memory", "cc");
809 	return (res);
810 }
811 
812 static COUNTER_U64_DEFINE_EARLY(pv_page_count);
813 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_page_count, CTLFLAG_RD,
814     &pv_page_count, "Current number of allocated pv pages");
815 
816 static COUNTER_U64_DEFINE_EARLY(user_pt_page_count);
817 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, user_pt_page_count, CTLFLAG_RD,
818     &user_pt_page_count,
819     "Current number of allocated page table pages for userspace");
820 
821 static COUNTER_U64_DEFINE_EARLY(kernel_pt_page_count);
822 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, kernel_pt_page_count, CTLFLAG_RD,
823     &kernel_pt_page_count,
824     "Current number of allocated page table pages for the kernel");
825 
826 #ifdef PV_STATS
827 
828 static COUNTER_U64_DEFINE_EARLY(invl_start_restart);
829 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_start_restart,
830     CTLFLAG_RD, &invl_start_restart,
831     "Number of delayed TLB invalidation request restarts");
832 
833 static COUNTER_U64_DEFINE_EARLY(invl_finish_restart);
834 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_finish_restart, CTLFLAG_RD,
835     &invl_finish_restart,
836     "Number of delayed TLB invalidation completion restarts");
837 
838 static int invl_max_qlen;
839 SYSCTL_INT(_vm_pmap, OID_AUTO, invl_max_qlen, CTLFLAG_RD,
840     &invl_max_qlen, 0,
841     "Maximum delayed TLB invalidation request queue length");
842 #endif
843 
844 #define di_delay	locks_delay
845 
846 static void
pmap_delayed_invl_start_u(void)847 pmap_delayed_invl_start_u(void)
848 {
849 	struct pmap_invl_gen *invl_gen, *p, prev, new_prev;
850 	struct thread *td;
851 	struct lock_delay_arg lda;
852 	uintptr_t prevl;
853 	u_char pri;
854 #ifdef PV_STATS
855 	int i, ii;
856 #endif
857 
858 	td = curthread;
859 	invl_gen = &td->td_md.md_invl_gen;
860 	PMAP_ASSERT_NOT_IN_DI();
861 	lock_delay_arg_init(&lda, &di_delay);
862 	invl_gen->saved_pri = 0;
863 	pri = td->td_base_pri;
864 	if (pri > PVM) {
865 		thread_lock(td);
866 		pri = td->td_base_pri;
867 		if (pri > PVM) {
868 			invl_gen->saved_pri = pri;
869 			sched_prio(td, PVM);
870 		}
871 		thread_unlock(td);
872 	}
873 again:
874 	PV_STAT(i = 0);
875 	for (p = &pmap_invl_gen_head;; p = prev.next) {
876 		PV_STAT(i++);
877 		prevl = (uintptr_t)atomic_load_ptr(&p->next);
878 		if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
879 			PV_STAT(counter_u64_add(invl_start_restart, 1));
880 			lock_delay(&lda);
881 			goto again;
882 		}
883 		if (prevl == 0)
884 			break;
885 		prev.next = (void *)prevl;
886 	}
887 #ifdef PV_STATS
888 	if ((ii = invl_max_qlen) < i)
889 		atomic_cmpset_int(&invl_max_qlen, ii, i);
890 #endif
891 
892 	if (!pmap_di_load_invl(p, &prev) || prev.next != NULL) {
893 		PV_STAT(counter_u64_add(invl_start_restart, 1));
894 		lock_delay(&lda);
895 		goto again;
896 	}
897 
898 	new_prev.gen = prev.gen;
899 	new_prev.next = invl_gen;
900 	invl_gen->gen = prev.gen + 1;
901 
902 	/* Formal fence between store to invl->gen and updating *p. */
903 	atomic_thread_fence_rel();
904 
905 	/*
906 	 * After inserting an invl_gen element with invalid bit set,
907 	 * this thread blocks any other thread trying to enter the
908 	 * delayed invalidation block.  Do not allow to remove us from
909 	 * the CPU, because it causes starvation for other threads.
910 	 */
911 	critical_enter();
912 
913 	/*
914 	 * ABA for *p is not possible there, since p->gen can only
915 	 * increase.  So if the *p thread finished its di, then
916 	 * started a new one and got inserted into the list at the
917 	 * same place, its gen will appear greater than the previously
918 	 * read gen.
919 	 */
920 	if (!pmap_di_store_invl(p, &prev, &new_prev)) {
921 		critical_exit();
922 		PV_STAT(counter_u64_add(invl_start_restart, 1));
923 		lock_delay(&lda);
924 		goto again;
925 	}
926 
927 	/*
928 	 * There we clear PMAP_INVL_GEN_NEXT_INVALID in
929 	 * invl_gen->next, allowing other threads to iterate past us.
930 	 * pmap_di_store_invl() provides fence between the generation
931 	 * write and the update of next.
932 	 */
933 	invl_gen->next = NULL;
934 	critical_exit();
935 }
936 
937 static bool
pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen * invl_gen,struct pmap_invl_gen * p)938 pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen *invl_gen,
939     struct pmap_invl_gen *p)
940 {
941 	struct pmap_invl_gen prev, new_prev;
942 	u_long mygen;
943 
944 	/*
945 	 * Load invl_gen->gen after setting invl_gen->next
946 	 * PMAP_INVL_GEN_NEXT_INVALID.  This prevents larger
947 	 * generations to propagate to our invl_gen->gen.  Lock prefix
948 	 * in atomic_set_ptr() worked as seq_cst fence.
949 	 */
950 	mygen = atomic_load_long(&invl_gen->gen);
951 
952 	if (!pmap_di_load_invl(p, &prev) || prev.next != invl_gen)
953 		return (false);
954 
955 	KASSERT(prev.gen < mygen,
956 	    ("invalid di gen sequence %lu %lu", prev.gen, mygen));
957 	new_prev.gen = mygen;
958 	new_prev.next = (void *)((uintptr_t)invl_gen->next &
959 	    ~PMAP_INVL_GEN_NEXT_INVALID);
960 
961 	/* Formal fence between load of prev and storing update to it. */
962 	atomic_thread_fence_rel();
963 
964 	return (pmap_di_store_invl(p, &prev, &new_prev));
965 }
966 
967 static void
pmap_delayed_invl_finish_u(void)968 pmap_delayed_invl_finish_u(void)
969 {
970 	struct pmap_invl_gen *invl_gen, *p;
971 	struct thread *td;
972 	struct lock_delay_arg lda;
973 	uintptr_t prevl;
974 
975 	td = curthread;
976 	invl_gen = &td->td_md.md_invl_gen;
977 	KASSERT(invl_gen->gen != 0, ("missed invl_start: gen 0"));
978 	KASSERT(((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) == 0,
979 	    ("missed invl_start: INVALID"));
980 	lock_delay_arg_init(&lda, &di_delay);
981 
982 again:
983 	for (p = &pmap_invl_gen_head; p != NULL; p = (void *)prevl) {
984 		prevl = (uintptr_t)atomic_load_ptr(&p->next);
985 		if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
986 			PV_STAT(counter_u64_add(invl_finish_restart, 1));
987 			lock_delay(&lda);
988 			goto again;
989 		}
990 		if ((void *)prevl == invl_gen)
991 			break;
992 	}
993 
994 	/*
995 	 * It is legitimate to not find ourself on the list if a
996 	 * thread before us finished its DI and started it again.
997 	 */
998 	if (__predict_false(p == NULL)) {
999 		PV_STAT(counter_u64_add(invl_finish_restart, 1));
1000 		lock_delay(&lda);
1001 		goto again;
1002 	}
1003 
1004 	critical_enter();
1005 	atomic_set_ptr((uintptr_t *)&invl_gen->next,
1006 	    PMAP_INVL_GEN_NEXT_INVALID);
1007 	if (!pmap_delayed_invl_finish_u_crit(invl_gen, p)) {
1008 		atomic_clear_ptr((uintptr_t *)&invl_gen->next,
1009 		    PMAP_INVL_GEN_NEXT_INVALID);
1010 		critical_exit();
1011 		PV_STAT(counter_u64_add(invl_finish_restart, 1));
1012 		lock_delay(&lda);
1013 		goto again;
1014 	}
1015 	critical_exit();
1016 	if (atomic_load_int(&pmap_invl_waiters) > 0)
1017 		pmap_delayed_invl_finish_unblock(0);
1018 	if (invl_gen->saved_pri != 0) {
1019 		thread_lock(td);
1020 		sched_prio(td, invl_gen->saved_pri);
1021 		thread_unlock(td);
1022 	}
1023 }
1024 
1025 #ifdef DDB
DB_SHOW_COMMAND(di_queue,pmap_di_queue)1026 DB_SHOW_COMMAND(di_queue, pmap_di_queue)
1027 {
1028 	struct pmap_invl_gen *p, *pn;
1029 	struct thread *td;
1030 	uintptr_t nextl;
1031 	bool first;
1032 
1033 	for (p = &pmap_invl_gen_head, first = true; p != NULL; p = pn,
1034 	    first = false) {
1035 		nextl = (uintptr_t)atomic_load_ptr(&p->next);
1036 		pn = (void *)(nextl & ~PMAP_INVL_GEN_NEXT_INVALID);
1037 		td = first ? NULL : __containerof(p, struct thread,
1038 		    td_md.md_invl_gen);
1039 		db_printf("gen %lu inv %d td %p tid %d\n", p->gen,
1040 		    (nextl & PMAP_INVL_GEN_NEXT_INVALID) != 0, td,
1041 		    td != NULL ? td->td_tid : -1);
1042 	}
1043 }
1044 #endif
1045 
1046 #ifdef PV_STATS
1047 static COUNTER_U64_DEFINE_EARLY(invl_wait);
1048 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait,
1049     CTLFLAG_RD, &invl_wait,
1050     "Number of times DI invalidation blocked pmap_remove_all/write");
1051 
1052 static COUNTER_U64_DEFINE_EARLY(invl_wait_slow);
1053 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait_slow, CTLFLAG_RD,
1054      &invl_wait_slow, "Number of slow invalidation waits for lockless DI");
1055 
1056 #endif
1057 
1058 #ifdef NUMA
1059 static u_long *
pmap_delayed_invl_genp(vm_page_t m)1060 pmap_delayed_invl_genp(vm_page_t m)
1061 {
1062 	vm_paddr_t pa;
1063 	u_long *gen;
1064 
1065 	pa = VM_PAGE_TO_PHYS(m);
1066 	if (__predict_false((pa) > pmap_last_pa))
1067 		gen = &pv_dummy_large.pv_invl_gen;
1068 	else
1069 		gen = &(pa_to_pmdp(pa)->pv_invl_gen);
1070 
1071 	return (gen);
1072 }
1073 #else
1074 static u_long *
pmap_delayed_invl_genp(vm_page_t m)1075 pmap_delayed_invl_genp(vm_page_t m)
1076 {
1077 
1078 	return (&pv_invl_gen[pa_index(VM_PAGE_TO_PHYS(m)) % NPV_LIST_LOCKS]);
1079 }
1080 #endif
1081 
1082 static void
pmap_delayed_invl_callout_func(void * arg __unused)1083 pmap_delayed_invl_callout_func(void *arg __unused)
1084 {
1085 
1086 	if (atomic_load_int(&pmap_invl_waiters) == 0)
1087 		return;
1088 	pmap_delayed_invl_finish_unblock(0);
1089 }
1090 
1091 static void
pmap_delayed_invl_callout_init(void * arg __unused)1092 pmap_delayed_invl_callout_init(void *arg __unused)
1093 {
1094 
1095 	if (pmap_di_locked())
1096 		return;
1097 	callout_init(&pmap_invl_callout, 1);
1098 	pmap_invl_callout_inited = true;
1099 }
1100 SYSINIT(pmap_di_callout, SI_SUB_CPU + 1, SI_ORDER_ANY,
1101     pmap_delayed_invl_callout_init, NULL);
1102 
1103 /*
1104  * Ensure that all currently executing DI blocks, that need to flush
1105  * TLB for the given page m, actually flushed the TLB at the time the
1106  * function returned.  If the page m has an empty PV list and we call
1107  * pmap_delayed_invl_wait(), upon its return we know that no CPU has a
1108  * valid mapping for the page m in either its page table or TLB.
1109  *
1110  * This function works by blocking until the global DI generation
1111  * number catches up with the generation number associated with the
1112  * given page m and its PV list.  Since this function's callers
1113  * typically own an object lock and sometimes own a page lock, it
1114  * cannot sleep.  Instead, it blocks on a turnstile to relinquish the
1115  * processor.
1116  */
1117 static void
pmap_delayed_invl_wait_l(vm_page_t m)1118 pmap_delayed_invl_wait_l(vm_page_t m)
1119 {
1120 	u_long *m_gen;
1121 #ifdef PV_STATS
1122 	bool accounted = false;
1123 #endif
1124 
1125 	m_gen = pmap_delayed_invl_genp(m);
1126 	while (*m_gen > pmap_invl_gen) {
1127 #ifdef PV_STATS
1128 		if (!accounted) {
1129 			counter_u64_add(invl_wait, 1);
1130 			accounted = true;
1131 		}
1132 #endif
1133 		pmap_delayed_invl_wait_block(m_gen, &pmap_invl_gen);
1134 	}
1135 }
1136 
1137 static void
pmap_delayed_invl_wait_u(vm_page_t m)1138 pmap_delayed_invl_wait_u(vm_page_t m)
1139 {
1140 	u_long *m_gen;
1141 	struct lock_delay_arg lda;
1142 	bool fast;
1143 
1144 	fast = true;
1145 	m_gen = pmap_delayed_invl_genp(m);
1146 	lock_delay_arg_init(&lda, &di_delay);
1147 	while (*m_gen > atomic_load_long(&pmap_invl_gen_head.gen)) {
1148 		if (fast || !pmap_invl_callout_inited) {
1149 			PV_STAT(counter_u64_add(invl_wait, 1));
1150 			lock_delay(&lda);
1151 			fast = false;
1152 		} else {
1153 			/*
1154 			 * The page's invalidation generation number
1155 			 * is still below the current thread's number.
1156 			 * Prepare to block so that we do not waste
1157 			 * CPU cycles or worse, suffer livelock.
1158 			 *
1159 			 * Since it is impossible to block without
1160 			 * racing with pmap_delayed_invl_finish_u(),
1161 			 * prepare for the race by incrementing
1162 			 * pmap_invl_waiters and arming a 1-tick
1163 			 * callout which will unblock us if we lose
1164 			 * the race.
1165 			 */
1166 			atomic_add_int(&pmap_invl_waiters, 1);
1167 
1168 			/*
1169 			 * Re-check the current thread's invalidation
1170 			 * generation after incrementing
1171 			 * pmap_invl_waiters, so that there is no race
1172 			 * with pmap_delayed_invl_finish_u() setting
1173 			 * the page generation and checking
1174 			 * pmap_invl_waiters.  The only race allowed
1175 			 * is for a missed unblock, which is handled
1176 			 * by the callout.
1177 			 */
1178 			if (*m_gen >
1179 			    atomic_load_long(&pmap_invl_gen_head.gen)) {
1180 				callout_reset(&pmap_invl_callout, 1,
1181 				    pmap_delayed_invl_callout_func, NULL);
1182 				PV_STAT(counter_u64_add(invl_wait_slow, 1));
1183 				pmap_delayed_invl_wait_block(m_gen,
1184 				    &pmap_invl_gen_head.gen);
1185 			}
1186 			atomic_add_int(&pmap_invl_waiters, -1);
1187 		}
1188 	}
1189 }
1190 
1191 DEFINE_IFUNC(, void, pmap_thread_init_invl_gen, (struct thread *))
1192 {
1193 
1194 	return (pmap_di_locked() ? pmap_thread_init_invl_gen_l :
1195 	    pmap_thread_init_invl_gen_u);
1196 }
1197 
1198 DEFINE_IFUNC(static, void, pmap_delayed_invl_start, (void))
1199 {
1200 
1201 	return (pmap_di_locked() ? pmap_delayed_invl_start_l :
1202 	    pmap_delayed_invl_start_u);
1203 }
1204 
1205 DEFINE_IFUNC(static, void, pmap_delayed_invl_finish, (void))
1206 {
1207 
1208 	return (pmap_di_locked() ? pmap_delayed_invl_finish_l :
1209 	    pmap_delayed_invl_finish_u);
1210 }
1211 
1212 DEFINE_IFUNC(static, void, pmap_delayed_invl_wait, (vm_page_t))
1213 {
1214 
1215 	return (pmap_di_locked() ? pmap_delayed_invl_wait_l :
1216 	    pmap_delayed_invl_wait_u);
1217 }
1218 
1219 /*
1220  * Mark the page m's PV list as participating in the current thread's
1221  * DI block.  Any threads concurrently using m's PV list to remove or
1222  * restrict all mappings to m will wait for the current thread's DI
1223  * block to complete before proceeding.
1224  *
1225  * The function works by setting the DI generation number for m's PV
1226  * list to at least the DI generation number of the current thread.
1227  * This forces a caller of pmap_delayed_invl_wait() to block until
1228  * current thread calls pmap_delayed_invl_finish().
1229  */
1230 static void
pmap_delayed_invl_page(vm_page_t m)1231 pmap_delayed_invl_page(vm_page_t m)
1232 {
1233 	u_long gen, *m_gen;
1234 
1235 	rw_assert(VM_PAGE_TO_PV_LIST_LOCK(m), RA_WLOCKED);
1236 	gen = curthread->td_md.md_invl_gen.gen;
1237 	if (gen == 0)
1238 		return;
1239 	m_gen = pmap_delayed_invl_genp(m);
1240 	if (*m_gen < gen)
1241 		*m_gen = gen;
1242 }
1243 
1244 /*
1245  * Crashdump maps.
1246  */
1247 static caddr_t crashdumpmap;
1248 
1249 /*
1250  * Internal flags for pmap_enter()'s helper functions.
1251  */
1252 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
1253 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
1254 
1255 /*
1256  * Internal flags for pmap_mapdev_internal() and
1257  * pmap_change_props_locked().
1258  */
1259 #define	MAPDEV_FLUSHCACHE	0x00000001	/* Flush cache after mapping. */
1260 #define	MAPDEV_SETATTR		0x00000002	/* Modify existing attrs. */
1261 #define	MAPDEV_ASSERTVALID	0x00000004	/* Assert mapping validity. */
1262 
1263 TAILQ_HEAD(pv_chunklist, pv_chunk);
1264 
1265 static void	free_pv_chunk(struct pv_chunk *pc);
1266 static void	free_pv_chunk_batch(struct pv_chunklist *batch);
1267 static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
1268 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
1269 static int	popcnt_pc_map_pq(uint64_t *map);
1270 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
1271 static void	reserve_pv_entries(pmap_t pmap, int needed,
1272 		    struct rwlock **lockp);
1273 static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1274 		    struct rwlock **lockp);
1275 static bool	pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde,
1276 		    u_int flags, struct rwlock **lockp);
1277 #if VM_NRESERVLEVEL > 0
1278 static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1279 		    struct rwlock **lockp);
1280 #endif
1281 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
1282 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
1283 		    vm_offset_t va);
1284 
1285 static void	pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
1286 static int pmap_change_props_locked(vm_offset_t va, vm_size_t size,
1287     vm_prot_t prot, int mode, int flags);
1288 static bool	pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
1289 static bool	pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde,
1290     vm_offset_t va, struct rwlock **lockp);
1291 static bool	pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe,
1292     vm_offset_t va);
1293 static int	pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
1294 		    vm_prot_t prot, struct rwlock **lockp);
1295 static int	pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde,
1296 		    u_int flags, vm_page_t m, struct rwlock **lockp);
1297 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
1298     vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
1299 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
1300 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
1301     bool allpte_PG_A_set);
1302 static void pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,
1303     vm_offset_t eva);
1304 static void pmap_invalidate_cache_range_all(vm_offset_t sva,
1305     vm_offset_t eva);
1306 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
1307 		    pd_entry_t pde);
1308 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
1309 static vm_page_t pmap_large_map_getptp_unlocked(void);
1310 static vm_paddr_t pmap_large_map_kextract(vm_offset_t va);
1311 #if VM_NRESERVLEVEL > 0
1312 static bool pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
1313     vm_page_t mpte, struct rwlock **lockp);
1314 #endif
1315 static bool pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
1316     vm_prot_t prot);
1317 static void pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask);
1318 static void pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva,
1319     bool exec);
1320 static pdp_entry_t *pmap_pti_pdpe(vm_offset_t va);
1321 static pd_entry_t *pmap_pti_pde(vm_offset_t va);
1322 static void pmap_pti_wire_pte(void *pte);
1323 static int pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
1324     struct spglist *free, struct rwlock **lockp);
1325 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
1326     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
1327 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
1328 static void pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1329     struct spglist *free);
1330 static bool pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1331 		    pd_entry_t *pde, struct spglist *free,
1332 		    struct rwlock **lockp);
1333 static bool pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
1334     vm_page_t m, struct rwlock **lockp);
1335 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1336     pd_entry_t newpde);
1337 static void pmap_update_pde_invalidate(pmap_t, vm_offset_t va, pd_entry_t pde);
1338 
1339 static pd_entry_t *pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
1340 		struct rwlock **lockp);
1341 static vm_page_t pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex,
1342 		struct rwlock **lockp, vm_offset_t va);
1343 static vm_page_t pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex,
1344 		struct rwlock **lockp, vm_offset_t va);
1345 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
1346 		struct rwlock **lockp);
1347 
1348 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
1349     struct spglist *free);
1350 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
1351 
1352 static vm_page_t pmap_alloc_pt_page(pmap_t, vm_pindex_t, int);
1353 static void pmap_free_pt_page(pmap_t, vm_page_t, bool);
1354 
1355 /********************/
1356 /* Inline functions */
1357 /********************/
1358 
1359 /*
1360  * Return a non-clipped indexes for a given VA, which are page table
1361  * pages indexes at the corresponding level.
1362  */
1363 static __inline vm_pindex_t
pmap_pde_pindex(vm_offset_t va)1364 pmap_pde_pindex(vm_offset_t va)
1365 {
1366 	return (va >> PDRSHIFT);
1367 }
1368 
1369 static __inline vm_pindex_t
pmap_pdpe_pindex(vm_offset_t va)1370 pmap_pdpe_pindex(vm_offset_t va)
1371 {
1372 	return (NUPDE + (va >> PDPSHIFT));
1373 }
1374 
1375 static __inline vm_pindex_t
pmap_pml4e_pindex(vm_offset_t va)1376 pmap_pml4e_pindex(vm_offset_t va)
1377 {
1378 	return (NUPDE + NUPDPE + (va >> PML4SHIFT));
1379 }
1380 
1381 static __inline vm_pindex_t
pmap_pml5e_pindex(vm_offset_t va)1382 pmap_pml5e_pindex(vm_offset_t va)
1383 {
1384 	return (NUPDE + NUPDPE + NUPML4E + (va >> PML5SHIFT));
1385 }
1386 
1387 static __inline pml4_entry_t *
pmap_pml5e(pmap_t pmap,vm_offset_t va)1388 pmap_pml5e(pmap_t pmap, vm_offset_t va)
1389 {
1390 
1391 	MPASS(pmap_is_la57(pmap));
1392 	return (&pmap->pm_pmltop[pmap_pml5e_index(va)]);
1393 }
1394 
1395 static __inline pml4_entry_t *
pmap_pml5e_u(pmap_t pmap,vm_offset_t va)1396 pmap_pml5e_u(pmap_t pmap, vm_offset_t va)
1397 {
1398 
1399 	MPASS(pmap_is_la57(pmap));
1400 	return (&pmap->pm_pmltopu[pmap_pml5e_index(va)]);
1401 }
1402 
1403 static __inline pml4_entry_t *
pmap_pml5e_to_pml4e(pml5_entry_t * pml5e,vm_offset_t va)1404 pmap_pml5e_to_pml4e(pml5_entry_t *pml5e, vm_offset_t va)
1405 {
1406 	pml4_entry_t *pml4e;
1407 
1408 	/* XXX MPASS(pmap_is_la57(pmap); */
1409 	pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1410 	return (&pml4e[pmap_pml4e_index(va)]);
1411 }
1412 
1413 /* Return a pointer to the PML4 slot that corresponds to a VA */
1414 static __inline pml4_entry_t *
pmap_pml4e(pmap_t pmap,vm_offset_t va)1415 pmap_pml4e(pmap_t pmap, vm_offset_t va)
1416 {
1417 	pml5_entry_t *pml5e;
1418 	pml4_entry_t *pml4e;
1419 	pt_entry_t PG_V;
1420 
1421 	if (pmap_is_la57(pmap)) {
1422 		pml5e = pmap_pml5e(pmap, va);
1423 		PG_V = pmap_valid_bit(pmap);
1424 		if ((*pml5e & PG_V) == 0)
1425 			return (NULL);
1426 		pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1427 	} else {
1428 		pml4e = pmap->pm_pmltop;
1429 	}
1430 	return (&pml4e[pmap_pml4e_index(va)]);
1431 }
1432 
1433 static __inline pml4_entry_t *
pmap_pml4e_u(pmap_t pmap,vm_offset_t va)1434 pmap_pml4e_u(pmap_t pmap, vm_offset_t va)
1435 {
1436 	MPASS(!pmap_is_la57(pmap));
1437 	return (&pmap->pm_pmltopu[pmap_pml4e_index(va)]);
1438 }
1439 
1440 /* Return a pointer to the PDP slot that corresponds to a VA */
1441 static __inline pdp_entry_t *
pmap_pml4e_to_pdpe(pml4_entry_t * pml4e,vm_offset_t va)1442 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
1443 {
1444 	pdp_entry_t *pdpe;
1445 
1446 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
1447 	return (&pdpe[pmap_pdpe_index(va)]);
1448 }
1449 
1450 /* Return a pointer to the PDP slot that corresponds to a VA */
1451 static __inline pdp_entry_t *
pmap_pdpe(pmap_t pmap,vm_offset_t va)1452 pmap_pdpe(pmap_t pmap, vm_offset_t va)
1453 {
1454 	pml4_entry_t *pml4e;
1455 	pt_entry_t PG_V;
1456 
1457 	PG_V = pmap_valid_bit(pmap);
1458 	pml4e = pmap_pml4e(pmap, va);
1459 	if (pml4e == NULL || (*pml4e & PG_V) == 0)
1460 		return (NULL);
1461 	return (pmap_pml4e_to_pdpe(pml4e, va));
1462 }
1463 
1464 /* Return a pointer to the PD slot that corresponds to a VA */
1465 static __inline pd_entry_t *
pmap_pdpe_to_pde(pdp_entry_t * pdpe,vm_offset_t va)1466 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
1467 {
1468 	pd_entry_t *pde;
1469 
1470 	KASSERT((*pdpe & PG_PS) == 0,
1471 	    ("%s: pdpe %#lx is a leaf", __func__, *pdpe));
1472 	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
1473 	return (&pde[pmap_pde_index(va)]);
1474 }
1475 
1476 /* Return a pointer to the PD slot that corresponds to a VA */
1477 static __inline pd_entry_t *
pmap_pde(pmap_t pmap,vm_offset_t va)1478 pmap_pde(pmap_t pmap, vm_offset_t va)
1479 {
1480 	pdp_entry_t *pdpe;
1481 	pt_entry_t PG_V;
1482 
1483 	PG_V = pmap_valid_bit(pmap);
1484 	pdpe = pmap_pdpe(pmap, va);
1485 	if (pdpe == NULL || (*pdpe & PG_V) == 0)
1486 		return (NULL);
1487 	KASSERT((*pdpe & PG_PS) == 0,
1488 	    ("pmap_pde for 1G page, pmap %p va %#lx", pmap, va));
1489 	return (pmap_pdpe_to_pde(pdpe, va));
1490 }
1491 
1492 /* Return a pointer to the PT slot that corresponds to a VA */
1493 static __inline pt_entry_t *
pmap_pde_to_pte(pd_entry_t * pde,vm_offset_t va)1494 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
1495 {
1496 	pt_entry_t *pte;
1497 
1498 	KASSERT((*pde & PG_PS) == 0,
1499 	    ("%s: pde %#lx is a leaf", __func__, *pde));
1500 	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
1501 	return (&pte[pmap_pte_index(va)]);
1502 }
1503 
1504 /* Return a pointer to the PT slot that corresponds to a VA */
1505 static __inline pt_entry_t *
pmap_pte(pmap_t pmap,vm_offset_t va)1506 pmap_pte(pmap_t pmap, vm_offset_t va)
1507 {
1508 	pd_entry_t *pde;
1509 	pt_entry_t PG_V;
1510 
1511 	PG_V = pmap_valid_bit(pmap);
1512 	pde = pmap_pde(pmap, va);
1513 	if (pde == NULL || (*pde & PG_V) == 0)
1514 		return (NULL);
1515 	if ((*pde & PG_PS) != 0)	/* compat with i386 pmap_pte() */
1516 		return ((pt_entry_t *)pde);
1517 	return (pmap_pde_to_pte(pde, va));
1518 }
1519 
1520 static __inline void
pmap_resident_count_adj(pmap_t pmap,int count)1521 pmap_resident_count_adj(pmap_t pmap, int count)
1522 {
1523 
1524 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1525 	KASSERT(pmap->pm_stats.resident_count + count >= 0,
1526 	    ("pmap %p resident count underflow %ld %d", pmap,
1527 	    pmap->pm_stats.resident_count, count));
1528 	pmap->pm_stats.resident_count += count;
1529 }
1530 
1531 static __inline void
pmap_pt_page_count_pinit(pmap_t pmap,int count)1532 pmap_pt_page_count_pinit(pmap_t pmap, int count)
1533 {
1534 	KASSERT(pmap->pm_stats.resident_count + count >= 0,
1535 	    ("pmap %p resident count underflow %ld %d", pmap,
1536 	    pmap->pm_stats.resident_count, count));
1537 	pmap->pm_stats.resident_count += count;
1538 }
1539 
1540 static __inline void
pmap_pt_page_count_adj(pmap_t pmap,int count)1541 pmap_pt_page_count_adj(pmap_t pmap, int count)
1542 {
1543 	if (pmap == kernel_pmap)
1544 		counter_u64_add(kernel_pt_page_count, count);
1545 	else {
1546 		if (pmap != NULL)
1547 			pmap_resident_count_adj(pmap, count);
1548 		counter_u64_add(user_pt_page_count, count);
1549 	}
1550 }
1551 
1552 pt_entry_t vtoptem __read_mostly = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
1553     NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1) << 3;
1554 vm_offset_t PTmap __read_mostly = (vm_offset_t)P4Tmap;
1555 
1556 pt_entry_t *
vtopte(vm_offset_t va)1557 vtopte(vm_offset_t va)
1558 {
1559 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopte on a uva/gpa 0x%0lx", va));
1560 
1561 	return ((pt_entry_t *)(PTmap + ((va >> (PAGE_SHIFT - 3)) & vtoptem)));
1562 }
1563 
1564 pd_entry_t vtopdem __read_mostly = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
1565     NPML4EPGSHIFT)) - 1) << 3;
1566 vm_offset_t PDmap __read_mostly = (vm_offset_t)P4Dmap;
1567 
1568 static __inline pd_entry_t *
vtopde(vm_offset_t va)1569 vtopde(vm_offset_t va)
1570 {
1571 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopde on a uva/gpa 0x%0lx", va));
1572 
1573 	return ((pt_entry_t *)(PDmap + ((va >> (PDRSHIFT - 3)) & vtopdem)));
1574 }
1575 
1576 static u_int64_t
allocpages(vm_paddr_t * firstaddr,int n)1577 allocpages(vm_paddr_t *firstaddr, int n)
1578 {
1579 	u_int64_t ret;
1580 
1581 	ret = *firstaddr;
1582 	bzero((void *)ret, n * PAGE_SIZE);
1583 	*firstaddr += n * PAGE_SIZE;
1584 	return (ret);
1585 }
1586 
1587 CTASSERT(powerof2(NDMPML4E));
1588 
1589 /* number of kernel PDP slots */
1590 #define	NKPDPE(ptpgs)		howmany(ptpgs, NPDEPG)
1591 
1592 static void
nkpt_init(vm_paddr_t addr)1593 nkpt_init(vm_paddr_t addr)
1594 {
1595 	int pt_pages;
1596 
1597 #ifdef NKPT
1598 	pt_pages = NKPT;
1599 #else
1600 	pt_pages = howmany(addr - kernphys, NBPDR) + 1; /* +1 for 2M hole @0 */
1601 	pt_pages += NKPDPE(pt_pages);
1602 
1603 	/*
1604 	 * Add some slop beyond the bare minimum required for bootstrapping
1605 	 * the kernel.
1606 	 *
1607 	 * This is quite important when allocating KVA for kernel modules.
1608 	 * The modules are required to be linked in the negative 2GB of
1609 	 * the address space.  If we run out of KVA in this region then
1610 	 * pmap_growkernel() will need to allocate page table pages to map
1611 	 * the entire 512GB of KVA space which is an unnecessary tax on
1612 	 * physical memory.
1613 	 *
1614 	 * Secondly, device memory mapped as part of setting up the low-
1615 	 * level console(s) is taken from KVA, starting at virtual_avail.
1616 	 * This is because cninit() is called after pmap_bootstrap() but
1617 	 * before vm_mem_init() and pmap_init(). 20MB for a frame buffer
1618 	 * is not uncommon.
1619 	 */
1620 	pt_pages += 32;		/* 64MB additional slop. */
1621 #endif
1622 	nkpt = pt_pages;
1623 }
1624 
1625 /*
1626  * Returns the proper write/execute permission for a physical page that is
1627  * part of the initial boot allocations.
1628  *
1629  * If the page has kernel text, it is marked as read-only. If the page has
1630  * kernel read-only data, it is marked as read-only/not-executable. If the
1631  * page has only read-write data, it is marked as read-write/not-executable.
1632  * If the page is below/above the kernel range, it is marked as read-write.
1633  *
1634  * This function operates on 2M pages, since we map the kernel space that
1635  * way.
1636  */
1637 static inline pt_entry_t
bootaddr_rwx(vm_paddr_t pa)1638 bootaddr_rwx(vm_paddr_t pa)
1639 {
1640 	/*
1641 	 * The kernel is loaded at a 2MB-aligned address, and memory below that
1642 	 * need not be executable.  The .bss section is padded to a 2MB
1643 	 * boundary, so memory following the kernel need not be executable
1644 	 * either.  Preloaded kernel modules have their mapping permissions
1645 	 * fixed up by the linker.
1646 	 */
1647 	if (pa < trunc_2mpage(kernphys + btext - KERNSTART) ||
1648 	    pa >= trunc_2mpage(kernphys + _end - KERNSTART))
1649 		return (X86_PG_RW | pg_nx);
1650 
1651 	/*
1652 	 * The linker should ensure that the read-only and read-write
1653 	 * portions don't share the same 2M page, so this shouldn't
1654 	 * impact read-only data. However, in any case, any page with
1655 	 * read-write data needs to be read-write.
1656 	 */
1657 	if (pa >= trunc_2mpage(kernphys + brwsection - KERNSTART))
1658 		return (X86_PG_RW | pg_nx);
1659 
1660 	/*
1661 	 * Mark any 2M page containing kernel text as read-only. Mark
1662 	 * other pages with read-only data as read-only and not executable.
1663 	 * (It is likely a small portion of the read-only data section will
1664 	 * be marked as read-only, but executable. This should be acceptable
1665 	 * since the read-only protection will keep the data from changing.)
1666 	 * Note that fixups to the .text section will still work until we
1667 	 * set CR0.WP.
1668 	 */
1669 	if (pa < round_2mpage(kernphys + etext - KERNSTART))
1670 		return (0);
1671 	return (pg_nx);
1672 }
1673 
1674 static void
create_pagetables(vm_paddr_t * firstaddr)1675 create_pagetables(vm_paddr_t *firstaddr)
1676 {
1677 	pd_entry_t *pd_p;
1678 	pdp_entry_t *pdp_p;
1679 	pml4_entry_t *p4_p;
1680 	uint64_t DMPDkernphys;
1681 	vm_paddr_t pax;
1682 #ifdef KASAN
1683 	pt_entry_t *pt_p;
1684 	uint64_t KASANPDphys, KASANPTphys, KASANphys;
1685 	vm_offset_t kasankernbase;
1686 	int kasankpdpi, kasankpdi, nkasanpte;
1687 #endif
1688 	int i, j, ndm1g, nkpdpe, nkdmpde;
1689 
1690 	TSENTER();
1691 	/* Allocate page table pages for the direct map */
1692 	ndmpdp = howmany(ptoa(Maxmem), NBPDP);
1693 	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
1694 		ndmpdp = 4;
1695 	ndmpdpphys = howmany(ndmpdp, NPDPEPG);
1696 	if (ndmpdpphys > NDMPML4E) {
1697 		/*
1698 		 * Each NDMPML4E allows 512 GB, so limit to that,
1699 		 * and then readjust ndmpdp and ndmpdpphys.
1700 		 */
1701 		printf("NDMPML4E limits system to %d GB\n", NDMPML4E * 512);
1702 		Maxmem = atop(NDMPML4E * NBPML4);
1703 		ndmpdpphys = NDMPML4E;
1704 		ndmpdp = NDMPML4E * NPDEPG;
1705 	}
1706 	DMPDPphys = allocpages(firstaddr, ndmpdpphys);
1707 	ndm1g = 0;
1708 	if ((amd_feature & AMDID_PAGE1GB) != 0) {
1709 		/*
1710 		 * Calculate the number of 1G pages that will fully fit in
1711 		 * Maxmem.
1712 		 */
1713 		ndm1g = ptoa(Maxmem) >> PDPSHIFT;
1714 
1715 		/*
1716 		 * Allocate 2M pages for the kernel. These will be used in
1717 		 * place of the one or more 1G pages from ndm1g that maps
1718 		 * kernel memory into DMAP.
1719 		 */
1720 		nkdmpde = howmany((vm_offset_t)brwsection - KERNSTART +
1721 		    kernphys - rounddown2(kernphys, NBPDP), NBPDP);
1722 		DMPDkernphys = allocpages(firstaddr, nkdmpde);
1723 	}
1724 	if (ndm1g < ndmpdp)
1725 		DMPDphys = allocpages(firstaddr, ndmpdp - ndm1g);
1726 	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
1727 
1728 	/* Allocate pages. */
1729 	KPML4phys = allocpages(firstaddr, 1);
1730 	KPDPphys = allocpages(firstaddr, NKPML4E);
1731 #ifdef KASAN
1732 	KASANPDPphys = allocpages(firstaddr, NKASANPML4E);
1733 	KASANPDphys = allocpages(firstaddr, 1);
1734 #endif
1735 #ifdef KMSAN
1736 	/*
1737 	 * The KMSAN shadow maps are initially left unpopulated, since there is
1738 	 * no need to shadow memory above KERNBASE.
1739 	 */
1740 	KMSANSHADPDPphys = allocpages(firstaddr, NKMSANSHADPML4E);
1741 	KMSANORIGPDPphys = allocpages(firstaddr, NKMSANORIGPML4E);
1742 #endif
1743 
1744 	/*
1745 	 * Allocate the initial number of kernel page table pages required to
1746 	 * bootstrap.  We defer this until after all memory-size dependent
1747 	 * allocations are done (e.g. direct map), so that we don't have to
1748 	 * build in too much slop in our estimate.
1749 	 *
1750 	 * Note that when NKPML4E > 1, we have an empty page underneath
1751 	 * all but the KPML4I'th one, so we need NKPML4E-1 extra (zeroed)
1752 	 * pages.  (pmap_enter requires a PD page to exist for each KPML4E.)
1753 	 */
1754 	nkpt_init(*firstaddr);
1755 	nkpdpe = NKPDPE(nkpt);
1756 
1757 	KPTphys = allocpages(firstaddr, nkpt);
1758 	KPDphys = allocpages(firstaddr, nkpdpe);
1759 
1760 #ifdef KASAN
1761 	nkasanpte = howmany(nkpt, KASAN_SHADOW_SCALE);
1762 	KASANPTphys = allocpages(firstaddr, nkasanpte);
1763 	KASANphys = allocpages(firstaddr, nkasanpte * NPTEPG);
1764 #endif
1765 
1766 	/*
1767 	 * Connect the zero-filled PT pages to their PD entries.  This
1768 	 * implicitly maps the PT pages at their correct locations within
1769 	 * the PTmap.
1770 	 */
1771 	pd_p = (pd_entry_t *)KPDphys;
1772 	for (i = 0; i < nkpt; i++)
1773 		pd_p[i] = (KPTphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1774 
1775 	/*
1776 	 * Map from start of the kernel in physical memory (staging
1777 	 * area) to the end of loader preallocated memory using 2MB
1778 	 * pages.  This replaces some of the PD entries created above.
1779 	 * For compatibility, identity map 2M at the start.
1780 	 */
1781 	pd_p[0] = X86_PG_V | PG_PS | pg_g | X86_PG_M | X86_PG_A |
1782 	    X86_PG_RW | pg_nx;
1783 	for (i = 1, pax = kernphys; pax < KERNend; i++, pax += NBPDR) {
1784 		/* Preset PG_M and PG_A because demotion expects it. */
1785 		pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1786 		    X86_PG_A | bootaddr_rwx(pax);
1787 	}
1788 
1789 	/*
1790 	 * Because we map the physical blocks in 2M pages, adjust firstaddr
1791 	 * to record the physical blocks we've actually mapped into kernel
1792 	 * virtual address space.
1793 	 */
1794 	if (*firstaddr < round_2mpage(KERNend))
1795 		*firstaddr = round_2mpage(KERNend);
1796 
1797 	/* And connect up the PD to the PDP (leaving room for L4 pages) */
1798 	pdp_p = (pdp_entry_t *)(KPDPphys + ptoa(KPML4I - KPML4BASE));
1799 	for (i = 0; i < nkpdpe; i++)
1800 		pdp_p[i + KPDPI] = (KPDphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1801 
1802 #ifdef KASAN
1803 	kasankernbase = kasan_md_addr_to_shad(KERNBASE);
1804 	kasankpdpi = pmap_pdpe_index(kasankernbase);
1805 	kasankpdi = pmap_pde_index(kasankernbase);
1806 
1807 	pdp_p = (pdp_entry_t *)KASANPDPphys;
1808 	pdp_p[kasankpdpi] = (KASANPDphys | X86_PG_RW | X86_PG_V | pg_nx);
1809 
1810 	pd_p = (pd_entry_t *)KASANPDphys;
1811 	for (i = 0; i < nkasanpte; i++)
1812 		pd_p[i + kasankpdi] = (KASANPTphys + ptoa(i)) | X86_PG_RW |
1813 		    X86_PG_V | pg_nx;
1814 
1815 	pt_p = (pt_entry_t *)KASANPTphys;
1816 	for (i = 0; i < nkasanpte * NPTEPG; i++)
1817 		pt_p[i] = (KASANphys + ptoa(i)) | X86_PG_RW | X86_PG_V |
1818 		    X86_PG_M | X86_PG_A | pg_nx;
1819 #endif
1820 
1821 	/*
1822 	 * Now, set up the direct map region using 2MB and/or 1GB pages.  If
1823 	 * the end of physical memory is not aligned to a 1GB page boundary,
1824 	 * then the residual physical memory is mapped with 2MB pages.  Later,
1825 	 * if pmap_mapdev{_attr}() uses the direct map for non-write-back
1826 	 * memory, pmap_change_attr() will demote any 2MB or 1GB page mappings
1827 	 * that are partially used.
1828 	 */
1829 	pd_p = (pd_entry_t *)DMPDphys;
1830 	for (i = NPDEPG * ndm1g, j = 0; i < NPDEPG * ndmpdp; i++, j++) {
1831 		pd_p[j] = (vm_paddr_t)i << PDRSHIFT;
1832 		/* Preset PG_M and PG_A because demotion expects it. */
1833 		pd_p[j] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1834 		    X86_PG_M | X86_PG_A | pg_nx;
1835 	}
1836 	pdp_p = (pdp_entry_t *)DMPDPphys;
1837 	for (i = 0; i < ndm1g; i++) {
1838 		pdp_p[i] = (vm_paddr_t)i << PDPSHIFT;
1839 		/* Preset PG_M and PG_A because demotion expects it. */
1840 		pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1841 		    X86_PG_M | X86_PG_A | pg_nx;
1842 	}
1843 	for (j = 0; i < ndmpdp; i++, j++) {
1844 		pdp_p[i] = DMPDphys + ptoa(j);
1845 		pdp_p[i] |= X86_PG_RW | X86_PG_V | pg_nx;
1846 	}
1847 
1848 	/*
1849 	 * Instead of using a 1G page for the memory containing the kernel,
1850 	 * use 2M pages with read-only and no-execute permissions.  (If using 1G
1851 	 * pages, this will partially overwrite the PDPEs above.)
1852 	 */
1853 	if (ndm1g > 0) {
1854 		pd_p = (pd_entry_t *)DMPDkernphys;
1855 		for (i = 0, pax = rounddown2(kernphys, NBPDP);
1856 		    i < NPDEPG * nkdmpde; i++, pax += NBPDR) {
1857 			pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1858 			    X86_PG_A | pg_nx | bootaddr_rwx(pax);
1859 		}
1860 		j = rounddown2(kernphys, NBPDP) >> PDPSHIFT;
1861 		for (i = 0; i < nkdmpde; i++) {
1862 			pdp_p[i + j] = (DMPDkernphys + ptoa(i)) |
1863 			    X86_PG_RW | X86_PG_V | pg_nx;
1864 		}
1865 	}
1866 
1867 	/* And recursively map PML4 to itself in order to get PTmap */
1868 	p4_p = (pml4_entry_t *)KPML4phys;
1869 	p4_p[PML4PML4I] = KPML4phys;
1870 	p4_p[PML4PML4I] |= X86_PG_RW | X86_PG_V | pg_nx;
1871 
1872 #ifdef KASAN
1873 	/* Connect the KASAN shadow map slots up to the PML4. */
1874 	for (i = 0; i < NKASANPML4E; i++) {
1875 		p4_p[KASANPML4I + i] = KASANPDPphys + ptoa(i);
1876 		p4_p[KASANPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1877 	}
1878 #endif
1879 
1880 #ifdef KMSAN
1881 	/* Connect the KMSAN shadow map slots up to the PML4. */
1882 	for (i = 0; i < NKMSANSHADPML4E; i++) {
1883 		p4_p[KMSANSHADPML4I + i] = KMSANSHADPDPphys + ptoa(i);
1884 		p4_p[KMSANSHADPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1885 	}
1886 
1887 	/* Connect the KMSAN origin map slots up to the PML4. */
1888 	for (i = 0; i < NKMSANORIGPML4E; i++) {
1889 		p4_p[KMSANORIGPML4I + i] = KMSANORIGPDPphys + ptoa(i);
1890 		p4_p[KMSANORIGPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1891 	}
1892 #endif
1893 
1894 	/* Connect the Direct Map slots up to the PML4. */
1895 	for (i = 0; i < ndmpdpphys; i++) {
1896 		p4_p[DMPML4I + i] = DMPDPphys + ptoa(i);
1897 		p4_p[DMPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1898 	}
1899 
1900 	/* Connect the KVA slots up to the PML4 */
1901 	for (i = 0; i < NKPML4E; i++) {
1902 		p4_p[KPML4BASE + i] = KPDPphys + ptoa(i);
1903 		p4_p[KPML4BASE + i] |= X86_PG_RW | X86_PG_V;
1904 	}
1905 
1906 	kernel_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
1907 	TSEXIT();
1908 }
1909 
1910 /*
1911  *	Bootstrap the system enough to run with virtual memory.
1912  *
1913  *	On amd64 this is called after mapping has already been enabled
1914  *	and just syncs the pmap module with what has already been done.
1915  *	[We can't call it easily with mapping off since the kernel is not
1916  *	mapped with PA == VA, hence we would have to relocate every address
1917  *	from the linked base (virtual) address "KERNBASE" to the actual
1918  *	(physical) address starting relative to 0]
1919  */
1920 void
pmap_bootstrap(vm_paddr_t * firstaddr)1921 pmap_bootstrap(vm_paddr_t *firstaddr)
1922 {
1923 	vm_offset_t va;
1924 	pt_entry_t *pte, *pcpu_pte;
1925 	struct region_descriptor r_gdt;
1926 	uint64_t cr4, pcpu0_phys;
1927 	u_long res;
1928 	int i;
1929 
1930 	TSENTER();
1931 	KERNend = *firstaddr;
1932 	res = atop(KERNend - (vm_paddr_t)kernphys);
1933 
1934 	if (!pti)
1935 		pg_g = X86_PG_G;
1936 
1937 	/*
1938 	 * Create an initial set of page tables to run the kernel in.
1939 	 */
1940 	create_pagetables(firstaddr);
1941 
1942 	pcpu0_phys = allocpages(firstaddr, 1);
1943 
1944 	/*
1945 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
1946 	 * preallocated kernel page table pages so that vm_page structures
1947 	 * representing these pages will be created.  The vm_page structures
1948 	 * are required for promotion of the corresponding kernel virtual
1949 	 * addresses to superpage mappings.
1950 	 */
1951 	vm_phys_early_add_seg(KPTphys, KPTphys + ptoa(nkpt));
1952 
1953 	/*
1954 	 * Account for the virtual addresses mapped by create_pagetables().
1955 	 */
1956 	virtual_avail = (vm_offset_t)KERNSTART + round_2mpage(KERNend -
1957 	    (vm_paddr_t)kernphys);
1958 	virtual_end = VM_MAX_KERNEL_ADDRESS;
1959 
1960 	/*
1961 	 * Enable PG_G global pages, then switch to the kernel page
1962 	 * table from the bootstrap page table.  After the switch, it
1963 	 * is possible to enable SMEP and SMAP since PG_U bits are
1964 	 * correct now.
1965 	 */
1966 	cr4 = rcr4();
1967 	cr4 |= CR4_PGE;
1968 	load_cr4(cr4);
1969 	load_cr3(KPML4phys);
1970 	if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
1971 		cr4 |= CR4_SMEP;
1972 	if (cpu_stdext_feature & CPUID_STDEXT_SMAP)
1973 		cr4 |= CR4_SMAP;
1974 	load_cr4(cr4);
1975 
1976 	/*
1977 	 * Initialize the kernel pmap (which is statically allocated).
1978 	 * Count bootstrap data as being resident in case any of this data is
1979 	 * later unmapped (using pmap_remove()) and freed.
1980 	 */
1981 	PMAP_LOCK_INIT(kernel_pmap);
1982 	kernel_pmap->pm_pmltop = kernel_pml4;
1983 	kernel_pmap->pm_cr3 = KPML4phys;
1984 	kernel_pmap->pm_ucr3 = PMAP_NO_CR3;
1985 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
1986 	kernel_pmap->pm_stats.resident_count = res;
1987 	vm_radix_init(&kernel_pmap->pm_root);
1988 	kernel_pmap->pm_flags = pmap_flags;
1989 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
1990 		rangeset_init(&kernel_pmap->pm_pkru, pkru_dup_range,
1991 		    pkru_free_range, kernel_pmap, M_NOWAIT);
1992 	}
1993 
1994 	/*
1995 	 * The kernel pmap is always active on all CPUs.  Once CPUs are
1996 	 * enumerated, the mask will be set equal to all_cpus.
1997 	 */
1998 	CPU_FILL(&kernel_pmap->pm_active);
1999 
2000  	/*
2001 	 * Initialize the TLB invalidations generation number lock.
2002 	 */
2003 	mtx_init(&invl_gen_mtx, "invlgn", NULL, MTX_DEF);
2004 
2005 	/*
2006 	 * Reserve some special page table entries/VA space for temporary
2007 	 * mapping of pages.
2008 	 */
2009 #define	SYSMAP(c, p, v, n)	\
2010 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
2011 
2012 	va = virtual_avail;
2013 	pte = vtopte(va);
2014 
2015 	/*
2016 	 * Crashdump maps.  The first page is reused as CMAP1 for the
2017 	 * memory test.
2018 	 */
2019 	SYSMAP(caddr_t, CMAP1, crashdumpmap, MAXDUMPPGS)
2020 	CADDR1 = crashdumpmap;
2021 
2022 	SYSMAP(struct pcpu *, pcpu_pte, __pcpu, MAXCPU);
2023 	virtual_avail = va;
2024 
2025 	/*
2026 	 * Map the BSP PCPU now, the rest of the PCPUs are mapped by
2027 	 * amd64_mp_alloc_pcpu()/start_all_aps() when we know the
2028 	 * number of CPUs and NUMA affinity.
2029 	 */
2030 	pcpu_pte[0] = pcpu0_phys | X86_PG_V | X86_PG_RW | pg_g | pg_nx |
2031 	    X86_PG_M | X86_PG_A;
2032 	for (i = 1; i < MAXCPU; i++)
2033 		pcpu_pte[i] = 0;
2034 
2035 	/*
2036 	 * Re-initialize PCPU area for BSP after switching.
2037 	 * Make hardware use gdt and common_tss from the new PCPU.
2038 	 */
2039 	STAILQ_INIT(&cpuhead);
2040 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2041 	pcpu_init(&__pcpu[0], 0, sizeof(struct pcpu));
2042 	amd64_bsp_pcpu_init1(&__pcpu[0]);
2043 	amd64_bsp_ist_init(&__pcpu[0]);
2044 	__pcpu[0].pc_common_tss.tss_iobase = sizeof(struct amd64tss) +
2045 	    IOPERM_BITMAP_SIZE;
2046 	memcpy(__pcpu[0].pc_gdt, temp_bsp_pcpu.pc_gdt, NGDT *
2047 	    sizeof(struct user_segment_descriptor));
2048 	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&__pcpu[0].pc_common_tss;
2049 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2050 	    (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
2051 	r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
2052 	r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
2053 	lgdt(&r_gdt);
2054 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2055 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
2056 	__pcpu[0].pc_dynamic = temp_bsp_pcpu.pc_dynamic;
2057 	__pcpu[0].pc_acpi_id = temp_bsp_pcpu.pc_acpi_id;
2058 
2059 	/*
2060 	 * Initialize the PAT MSR.
2061 	 * pmap_init_pat() clears and sets CR4_PGE, which, as a
2062 	 * side-effect, invalidates stale PG_G TLB entries that might
2063 	 * have been created in our pre-boot environment.
2064 	 */
2065 	pmap_init_pat();
2066 
2067 	/* Initialize TLB Context Id. */
2068 	if (pmap_pcid_enabled) {
2069 		kernel_pmap->pm_pcidp = (void *)(uintptr_t)
2070 		    offsetof(struct pcpu, pc_kpmap_store);
2071 
2072 		PCPU_SET(kpmap_store.pm_pcid, PMAP_PCID_KERN);
2073 		PCPU_SET(kpmap_store.pm_gen, 1);
2074 
2075 		/*
2076 		 * PMAP_PCID_KERN + 1 is used for initialization of
2077 		 * proc0 pmap.  The pmap' pcid state might be used by
2078 		 * EFIRT entry before first context switch, so it
2079 		 * needs to be valid.
2080 		 */
2081 		PCPU_SET(pcid_next, PMAP_PCID_KERN + 2);
2082 		PCPU_SET(pcid_gen, 1);
2083 
2084 		/*
2085 		 * pcpu area for APs is zeroed during AP startup.
2086 		 * pc_pcid_next and pc_pcid_gen are initialized by AP
2087 		 * during pcpu setup.
2088 		 */
2089 		load_cr4(rcr4() | CR4_PCIDE);
2090 	}
2091 	TSEXIT();
2092 }
2093 
2094 /*
2095  * Setup the PAT MSR.
2096  */
2097 void
pmap_init_pat(void)2098 pmap_init_pat(void)
2099 {
2100 	uint64_t pat_msr;
2101 	u_long cr0, cr4;
2102 	int i;
2103 
2104 	/* Bail if this CPU doesn't implement PAT. */
2105 	if ((cpu_feature & CPUID_PAT) == 0)
2106 		panic("no PAT??");
2107 
2108 	/* Set default PAT index table. */
2109 	for (i = 0; i < PAT_INDEX_SIZE; i++)
2110 		pat_index[i] = -1;
2111 	pat_index[PAT_WRITE_BACK] = 0;
2112 	pat_index[PAT_WRITE_THROUGH] = 1;
2113 	pat_index[PAT_UNCACHEABLE] = 3;
2114 	pat_index[PAT_WRITE_COMBINING] = 6;
2115 	pat_index[PAT_WRITE_PROTECTED] = 5;
2116 	pat_index[PAT_UNCACHED] = 2;
2117 
2118 	/*
2119 	 * Initialize default PAT entries.
2120 	 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
2121 	 * Program 5 and 6 as WP and WC.
2122 	 *
2123 	 * Leave 4 and 7 as WB and UC.  Note that a recursive page table
2124 	 * mapping for a 2M page uses a PAT value with the bit 3 set due
2125 	 * to its overload with PG_PS.
2126 	 */
2127 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
2128 	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
2129 	    PAT_VALUE(2, PAT_UNCACHED) |
2130 	    PAT_VALUE(3, PAT_UNCACHEABLE) |
2131 	    PAT_VALUE(4, PAT_WRITE_BACK) |
2132 	    PAT_VALUE(5, PAT_WRITE_PROTECTED) |
2133 	    PAT_VALUE(6, PAT_WRITE_COMBINING) |
2134 	    PAT_VALUE(7, PAT_UNCACHEABLE);
2135 
2136 	/* Disable PGE. */
2137 	cr4 = rcr4();
2138 	load_cr4(cr4 & ~CR4_PGE);
2139 
2140 	/* Disable caches (CD = 1, NW = 0). */
2141 	cr0 = rcr0();
2142 	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
2143 
2144 	/* Flushes caches and TLBs. */
2145 	wbinvd();
2146 	invltlb();
2147 
2148 	/* Update PAT and index table. */
2149 	wrmsr(MSR_PAT, pat_msr);
2150 
2151 	/* Flush caches and TLBs again. */
2152 	wbinvd();
2153 	invltlb();
2154 
2155 	/* Restore caches and PGE. */
2156 	load_cr0(cr0);
2157 	load_cr4(cr4);
2158 }
2159 
2160 vm_page_t
pmap_page_alloc_below_4g(bool zeroed)2161 pmap_page_alloc_below_4g(bool zeroed)
2162 {
2163 	return (vm_page_alloc_noobj_contig((zeroed ? VM_ALLOC_ZERO : 0),
2164 	    1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT));
2165 }
2166 
2167 extern const char la57_trampoline[], la57_trampoline_gdt_desc[],
2168     la57_trampoline_gdt[], la57_trampoline_end[];
2169 
2170 static void
pmap_bootstrap_la57(void * arg __unused)2171 pmap_bootstrap_la57(void *arg __unused)
2172 {
2173 	char *v_code;
2174 	pml5_entry_t *v_pml5;
2175 	pml4_entry_t *v_pml4;
2176 	pdp_entry_t *v_pdp;
2177 	pd_entry_t *v_pd;
2178 	pt_entry_t *v_pt;
2179 	vm_page_t m_code, m_pml4, m_pdp, m_pd, m_pt, m_pml5;
2180 	void (*la57_tramp)(uint64_t pml5);
2181 	struct region_descriptor r_gdt;
2182 
2183 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_LA57) == 0)
2184 		return;
2185 	TUNABLE_INT_FETCH("vm.pmap.la57", &la57);
2186 	if (!la57)
2187 		return;
2188 
2189 	r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
2190 	r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
2191 
2192 	m_code = pmap_page_alloc_below_4g(true);
2193 	v_code = (char *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_code));
2194 	m_pml5 = pmap_page_alloc_below_4g(true);
2195 	KPML5phys = VM_PAGE_TO_PHYS(m_pml5);
2196 	v_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(KPML5phys);
2197 	m_pml4 = pmap_page_alloc_below_4g(true);
2198 	v_pml4 = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pml4));
2199 	m_pdp = pmap_page_alloc_below_4g(true);
2200 	v_pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pdp));
2201 	m_pd = pmap_page_alloc_below_4g(true);
2202 	v_pd = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pd));
2203 	m_pt = pmap_page_alloc_below_4g(true);
2204 	v_pt = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pt));
2205 
2206 	/*
2207 	 * Map m_code 1:1, it appears below 4G in KVA due to physical
2208 	 * address being below 4G.  Since kernel KVA is in upper half,
2209 	 * the pml4e should be zero and free for temporary use.
2210 	 */
2211 	kernel_pmap->pm_pmltop[pmap_pml4e_index(VM_PAGE_TO_PHYS(m_code))] =
2212 	    VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V | X86_PG_RW | X86_PG_A |
2213 	    X86_PG_M;
2214 	v_pdp[pmap_pdpe_index(VM_PAGE_TO_PHYS(m_code))] =
2215 	    VM_PAGE_TO_PHYS(m_pd) | X86_PG_V | X86_PG_RW | X86_PG_A |
2216 	    X86_PG_M;
2217 	v_pd[pmap_pde_index(VM_PAGE_TO_PHYS(m_code))] =
2218 	    VM_PAGE_TO_PHYS(m_pt) | X86_PG_V | X86_PG_RW | X86_PG_A |
2219 	    X86_PG_M;
2220 	v_pt[pmap_pte_index(VM_PAGE_TO_PHYS(m_code))] =
2221 	    VM_PAGE_TO_PHYS(m_code) | X86_PG_V | X86_PG_RW | X86_PG_A |
2222 	    X86_PG_M;
2223 
2224 	/*
2225 	 * Add pml5 entry at top of KVA pointing to existing pml4 table,
2226 	 * entering all existing kernel mappings into level 5 table.
2227 	 */
2228 	v_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
2229 	    X86_PG_RW | X86_PG_A | X86_PG_M;
2230 
2231 	/*
2232 	 * Add pml5 entry for 1:1 trampoline mapping after LA57 is turned on.
2233 	 */
2234 	v_pml5[pmap_pml5e_index(VM_PAGE_TO_PHYS(m_code))] =
2235 	    VM_PAGE_TO_PHYS(m_pml4) | X86_PG_V | X86_PG_RW | X86_PG_A |
2236 	    X86_PG_M;
2237 	v_pml4[pmap_pml4e_index(VM_PAGE_TO_PHYS(m_code))] =
2238 	    VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V | X86_PG_RW | X86_PG_A |
2239 	    X86_PG_M;
2240 
2241 	/*
2242 	 * Copy and call the 48->57 trampoline, hope we return there, alive.
2243 	 */
2244 	bcopy(la57_trampoline, v_code, la57_trampoline_end - la57_trampoline);
2245 	*(u_long *)(v_code + 2 + (la57_trampoline_gdt_desc - la57_trampoline)) =
2246 	    la57_trampoline_gdt - la57_trampoline + VM_PAGE_TO_PHYS(m_code);
2247 	la57_tramp = (void (*)(uint64_t))VM_PAGE_TO_PHYS(m_code);
2248 	pmap_invalidate_all(kernel_pmap);
2249 	if (bootverbose) {
2250 		printf("entering LA57 trampoline at %#lx\n",
2251 		    (vm_offset_t)la57_tramp);
2252 	}
2253 	la57_tramp(KPML5phys);
2254 
2255 	/*
2256 	 * gdt was necessary reset, switch back to our gdt.
2257 	 */
2258 	lgdt(&r_gdt);
2259 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2260 	load_ds(_udatasel);
2261 	load_es(_udatasel);
2262 	load_fs(_ufssel);
2263 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2264 	    (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
2265 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
2266 	lidt(&r_idt);
2267 
2268 	if (bootverbose)
2269 		printf("LA57 trampoline returned, CR4 %#lx\n", rcr4());
2270 
2271 	/*
2272 	 * Now unmap the trampoline, and free the pages.
2273 	 * Clear pml5 entry used for 1:1 trampoline mapping.
2274 	 */
2275 	pte_clear(&v_pml5[pmap_pml5e_index(VM_PAGE_TO_PHYS(m_code))]);
2276 	invlpg((vm_offset_t)v_code);
2277 	vm_page_free(m_code);
2278 	vm_page_free(m_pdp);
2279 	vm_page_free(m_pd);
2280 	vm_page_free(m_pt);
2281 
2282 	/*
2283 	 * Recursively map PML5 to itself in order to get PTmap and
2284 	 * PDmap.
2285 	 */
2286 	v_pml5[PML5PML5I] = KPML5phys | X86_PG_RW | X86_PG_V | pg_nx;
2287 
2288 	vtoptem = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT +
2289 	    NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2290 	PTmap = (vm_offset_t)P5Tmap;
2291 	vtopdem = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
2292 	    NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2293 	PDmap = (vm_offset_t)P5Dmap;
2294 
2295 	kernel_pmap->pm_cr3 = KPML5phys;
2296 	kernel_pmap->pm_pmltop = v_pml5;
2297 	pmap_pt_page_count_adj(kernel_pmap, 1);
2298 }
2299 SYSINIT(la57, SI_SUB_KMEM, SI_ORDER_ANY, pmap_bootstrap_la57, NULL);
2300 
2301 /*
2302  *	Initialize a vm_page's machine-dependent fields.
2303  */
2304 void
pmap_page_init(vm_page_t m)2305 pmap_page_init(vm_page_t m)
2306 {
2307 
2308 	TAILQ_INIT(&m->md.pv_list);
2309 	m->md.pat_mode = PAT_WRITE_BACK;
2310 }
2311 
2312 static int pmap_allow_2m_x_ept;
2313 SYSCTL_INT(_vm_pmap, OID_AUTO, allow_2m_x_ept, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
2314     &pmap_allow_2m_x_ept, 0,
2315     "Allow executable superpage mappings in EPT");
2316 
2317 void
pmap_allow_2m_x_ept_recalculate(void)2318 pmap_allow_2m_x_ept_recalculate(void)
2319 {
2320 	/*
2321 	 * SKL002, SKL012S.  Since the EPT format is only used by
2322 	 * Intel CPUs, the vendor check is merely a formality.
2323 	 */
2324 	if (!(cpu_vendor_id != CPU_VENDOR_INTEL ||
2325 	    (cpu_ia32_arch_caps & IA32_ARCH_CAP_IF_PSCHANGE_MC_NO) != 0 ||
2326 	    (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
2327 	    (CPUID_TO_MODEL(cpu_id) == 0x26 ||	/* Atoms */
2328 	    CPUID_TO_MODEL(cpu_id) == 0x27 ||
2329 	    CPUID_TO_MODEL(cpu_id) == 0x35 ||
2330 	    CPUID_TO_MODEL(cpu_id) == 0x36 ||
2331 	    CPUID_TO_MODEL(cpu_id) == 0x37 ||
2332 	    CPUID_TO_MODEL(cpu_id) == 0x86 ||
2333 	    CPUID_TO_MODEL(cpu_id) == 0x1c ||
2334 	    CPUID_TO_MODEL(cpu_id) == 0x4a ||
2335 	    CPUID_TO_MODEL(cpu_id) == 0x4c ||
2336 	    CPUID_TO_MODEL(cpu_id) == 0x4d ||
2337 	    CPUID_TO_MODEL(cpu_id) == 0x5a ||
2338 	    CPUID_TO_MODEL(cpu_id) == 0x5c ||
2339 	    CPUID_TO_MODEL(cpu_id) == 0x5d ||
2340 	    CPUID_TO_MODEL(cpu_id) == 0x5f ||
2341 	    CPUID_TO_MODEL(cpu_id) == 0x6e ||
2342 	    CPUID_TO_MODEL(cpu_id) == 0x7a ||
2343 	    CPUID_TO_MODEL(cpu_id) == 0x57 ||	/* Knights */
2344 	    CPUID_TO_MODEL(cpu_id) == 0x85))))
2345 		pmap_allow_2m_x_ept = 1;
2346 #ifndef BURN_BRIDGES
2347 	TUNABLE_INT_FETCH("hw.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2348 #endif
2349 	TUNABLE_INT_FETCH("vm.pmap.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2350 }
2351 
2352 static bool
pmap_allow_2m_x_page(pmap_t pmap,bool executable)2353 pmap_allow_2m_x_page(pmap_t pmap, bool executable)
2354 {
2355 
2356 	return (pmap->pm_type != PT_EPT || !executable ||
2357 	    !pmap_allow_2m_x_ept);
2358 }
2359 
2360 #ifdef NUMA
2361 static void
pmap_init_pv_table(void)2362 pmap_init_pv_table(void)
2363 {
2364 	struct pmap_large_md_page *pvd;
2365 	vm_size_t s;
2366 	long start, end, highest, pv_npg;
2367 	int domain, i, j, pages;
2368 
2369 	/*
2370 	 * For correctness we depend on the size being evenly divisible into a
2371 	 * page. As a tradeoff between performance and total memory use, the
2372 	 * entry is 64 bytes (aka one cacheline) in size. Not being smaller
2373 	 * avoids false-sharing, but not being 128 bytes potentially allows for
2374 	 * avoidable traffic due to adjacent cacheline prefetcher.
2375 	 *
2376 	 * Assert the size so that accidental changes fail to compile.
2377 	 */
2378 	CTASSERT((sizeof(*pvd) == 64));
2379 
2380 	/*
2381 	 * Calculate the size of the array.
2382 	 */
2383 	pmap_last_pa = vm_phys_segs[vm_phys_nsegs - 1].end;
2384 	pv_npg = howmany(pmap_last_pa, NBPDR);
2385 	s = (vm_size_t)pv_npg * sizeof(struct pmap_large_md_page);
2386 	s = round_page(s);
2387 	pv_table = (struct pmap_large_md_page *)kva_alloc(s);
2388 	if (pv_table == NULL)
2389 		panic("%s: kva_alloc failed\n", __func__);
2390 
2391 	/*
2392 	 * Iterate physical segments to allocate space for respective pages.
2393 	 */
2394 	highest = -1;
2395 	s = 0;
2396 	for (i = 0; i < vm_phys_nsegs; i++) {
2397 		end = vm_phys_segs[i].end / NBPDR;
2398 		domain = vm_phys_segs[i].domain;
2399 
2400 		if (highest >= end)
2401 			continue;
2402 
2403 		start = highest + 1;
2404 		pvd = &pv_table[start];
2405 
2406 		pages = end - start + 1;
2407 		s = round_page(pages * sizeof(*pvd));
2408 		highest = start + (s / sizeof(*pvd)) - 1;
2409 
2410 		for (j = 0; j < s; j += PAGE_SIZE) {
2411 			vm_page_t m = vm_page_alloc_noobj_domain(domain, 0);
2412 			if (m == NULL)
2413 				panic("failed to allocate PV table page");
2414 			pmap_qenter((vm_offset_t)pvd + j, &m, 1);
2415 		}
2416 
2417 		for (j = 0; j < s / sizeof(*pvd); j++) {
2418 			rw_init_flags(&pvd->pv_lock, "pmap pv list", RW_NEW);
2419 			TAILQ_INIT(&pvd->pv_page.pv_list);
2420 			pvd->pv_page.pv_gen = 0;
2421 			pvd->pv_page.pat_mode = 0;
2422 			pvd->pv_invl_gen = 0;
2423 			pvd++;
2424 		}
2425 	}
2426 	pvd = &pv_dummy_large;
2427 	rw_init_flags(&pvd->pv_lock, "pmap pv list dummy", RW_NEW);
2428 	TAILQ_INIT(&pvd->pv_page.pv_list);
2429 	pvd->pv_page.pv_gen = 0;
2430 	pvd->pv_page.pat_mode = 0;
2431 	pvd->pv_invl_gen = 0;
2432 }
2433 #else
2434 static void
pmap_init_pv_table(void)2435 pmap_init_pv_table(void)
2436 {
2437 	vm_size_t s;
2438 	long i, pv_npg;
2439 
2440 	/*
2441 	 * Initialize the pool of pv list locks.
2442 	 */
2443 	for (i = 0; i < NPV_LIST_LOCKS; i++)
2444 		rw_init(&pv_list_locks[i], "pmap pv list");
2445 
2446 	/*
2447 	 * Calculate the size of the pv head table for superpages.
2448 	 */
2449 	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, NBPDR);
2450 
2451 	/*
2452 	 * Allocate memory for the pv head table for superpages.
2453 	 */
2454 	s = (vm_size_t)pv_npg * sizeof(struct md_page);
2455 	s = round_page(s);
2456 	pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
2457 	for (i = 0; i < pv_npg; i++)
2458 		TAILQ_INIT(&pv_table[i].pv_list);
2459 	TAILQ_INIT(&pv_dummy.pv_list);
2460 }
2461 #endif
2462 
2463 /*
2464  *	Initialize the pmap module.
2465  *
2466  *	Called by vm_mem_init(), to initialize any structures that the pmap
2467  *	system needs to map virtual memory.
2468  */
2469 void
pmap_init(void)2470 pmap_init(void)
2471 {
2472 	struct pmap_preinit_mapping *ppim;
2473 	vm_page_t m, mpte;
2474 	int error, i, ret, skz63;
2475 
2476 	/* L1TF, reserve page @0 unconditionally */
2477 	vm_page_blacklist_add(0, bootverbose);
2478 
2479 	/* Detect bare-metal Skylake Server and Skylake-X. */
2480 	if (vm_guest == VM_GUEST_NO && cpu_vendor_id == CPU_VENDOR_INTEL &&
2481 	    CPUID_TO_FAMILY(cpu_id) == 0x6 && CPUID_TO_MODEL(cpu_id) == 0x55) {
2482 		/*
2483 		 * Skylake-X errata SKZ63. Processor May Hang When
2484 		 * Executing Code In an HLE Transaction Region between
2485 		 * 40000000H and 403FFFFFH.
2486 		 *
2487 		 * Mark the pages in the range as preallocated.  It
2488 		 * seems to be impossible to distinguish between
2489 		 * Skylake Server and Skylake X.
2490 		 */
2491 		skz63 = 1;
2492 		TUNABLE_INT_FETCH("hw.skz63_enable", &skz63);
2493 		if (skz63 != 0) {
2494 			if (bootverbose)
2495 				printf("SKZ63: skipping 4M RAM starting "
2496 				    "at physical 1G\n");
2497 			for (i = 0; i < atop(0x400000); i++) {
2498 				ret = vm_page_blacklist_add(0x40000000 +
2499 				    ptoa(i), false);
2500 				if (!ret && bootverbose)
2501 					printf("page at %#lx already used\n",
2502 					    0x40000000 + ptoa(i));
2503 			}
2504 		}
2505 	}
2506 
2507 	/* IFU */
2508 	pmap_allow_2m_x_ept_recalculate();
2509 
2510 	/*
2511 	 * Initialize the vm page array entries for the kernel pmap's
2512 	 * page table pages.
2513 	 */
2514 	PMAP_LOCK(kernel_pmap);
2515 	for (i = 0; i < nkpt; i++) {
2516 		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
2517 		KASSERT(mpte >= vm_page_array &&
2518 		    mpte < &vm_page_array[vm_page_array_size],
2519 		    ("pmap_init: page table page is out of range"));
2520 		mpte->pindex = pmap_pde_pindex(KERNBASE) + i;
2521 		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
2522 		mpte->ref_count = 1;
2523 
2524 		/*
2525 		 * Collect the page table pages that were replaced by a 2MB
2526 		 * page in create_pagetables().  They are zero filled.
2527 		 */
2528 		if ((i == 0 ||
2529 		    kernphys + ((vm_paddr_t)(i - 1) << PDRSHIFT) < KERNend) &&
2530 		    pmap_insert_pt_page(kernel_pmap, mpte, false, false))
2531 			panic("pmap_init: pmap_insert_pt_page failed");
2532 	}
2533 	PMAP_UNLOCK(kernel_pmap);
2534 	vm_wire_add(nkpt);
2535 
2536 	/*
2537 	 * If the kernel is running on a virtual machine, then it must assume
2538 	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
2539 	 * be prepared for the hypervisor changing the vendor and family that
2540 	 * are reported by CPUID.  Consequently, the workaround for AMD Family
2541 	 * 10h Erratum 383 is enabled if the processor's feature set does not
2542 	 * include at least one feature that is only supported by older Intel
2543 	 * or newer AMD processors.
2544 	 */
2545 	if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
2546 	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
2547 	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
2548 	    AMDID2_FMA4)) == 0)
2549 		workaround_erratum383 = 1;
2550 
2551 	/*
2552 	 * Are large page mappings enabled?
2553 	 */
2554 	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
2555 	if (pg_ps_enabled) {
2556 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
2557 		    ("pmap_init: can't assign to pagesizes[1]"));
2558 		pagesizes[1] = NBPDR;
2559 		if ((amd_feature & AMDID_PAGE1GB) != 0) {
2560 			KASSERT(MAXPAGESIZES > 2 && pagesizes[2] == 0,
2561 			    ("pmap_init: can't assign to pagesizes[2]"));
2562 			pagesizes[2] = NBPDP;
2563 		}
2564 	}
2565 
2566 	/*
2567 	 * Initialize pv chunk lists.
2568 	 */
2569 	for (i = 0; i < PMAP_MEMDOM; i++) {
2570 		mtx_init(&pv_chunks[i].pvc_lock, "pmap pv chunk list", NULL, MTX_DEF);
2571 		TAILQ_INIT(&pv_chunks[i].pvc_list);
2572 	}
2573 	pmap_init_pv_table();
2574 
2575 	pmap_initialized = 1;
2576 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
2577 		ppim = pmap_preinit_mapping + i;
2578 		if (ppim->va == 0)
2579 			continue;
2580 		/* Make the direct map consistent */
2581 		if (ppim->pa < dmaplimit && ppim->pa + ppim->sz <= dmaplimit) {
2582 			(void)pmap_change_attr(PHYS_TO_DMAP(ppim->pa),
2583 			    ppim->sz, ppim->mode);
2584 		}
2585 		if (!bootverbose)
2586 			continue;
2587 		printf("PPIM %u: PA=%#lx, VA=%#lx, size=%#lx, mode=%#x\n", i,
2588 		    ppim->pa, ppim->va, ppim->sz, ppim->mode);
2589 	}
2590 
2591 	mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
2592 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
2593 	    (vmem_addr_t *)&qframe);
2594 	if (error != 0)
2595 		panic("qframe allocation failed");
2596 
2597 	lm_ents = 8;
2598 	TUNABLE_INT_FETCH("vm.pmap.large_map_pml4_entries", &lm_ents);
2599 	if (lm_ents > LMEPML4I - LMSPML4I + 1)
2600 		lm_ents = LMEPML4I - LMSPML4I + 1;
2601 #ifdef KMSAN
2602 	if (lm_ents > KMSANORIGPML4I - LMSPML4I) {
2603 		printf(
2604 	    "pmap: shrinking large map for KMSAN (%d slots to %ld slots)\n",
2605 		    lm_ents, KMSANORIGPML4I - LMSPML4I);
2606 		lm_ents = KMSANORIGPML4I - LMSPML4I;
2607 	}
2608 #endif
2609 	if (bootverbose)
2610 		printf("pmap: large map %u PML4 slots (%lu GB)\n",
2611 		    lm_ents, (u_long)lm_ents * (NBPML4 / 1024 / 1024 / 1024));
2612 	if (lm_ents != 0) {
2613 		large_vmem = vmem_create("large", LARGEMAP_MIN_ADDRESS,
2614 		    (vmem_size_t)lm_ents * NBPML4, PAGE_SIZE, 0, M_WAITOK);
2615 		if (large_vmem == NULL) {
2616 			printf("pmap: cannot create large map\n");
2617 			lm_ents = 0;
2618 		}
2619 		for (i = 0; i < lm_ents; i++) {
2620 			m = pmap_large_map_getptp_unlocked();
2621 			/* XXXKIB la57 */
2622 			kernel_pml4[LMSPML4I + i] = X86_PG_V |
2623 			    X86_PG_RW | X86_PG_A | X86_PG_M | pg_nx |
2624 			    VM_PAGE_TO_PHYS(m);
2625 		}
2626 	}
2627 }
2628 
2629 SYSCTL_UINT(_vm_pmap, OID_AUTO, large_map_pml4_entries,
2630     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &lm_ents, 0,
2631     "Maximum number of PML4 entries for use by large map (tunable).  "
2632     "Each entry corresponds to 512GB of address space.");
2633 
2634 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2635     "2MB page mapping counters");
2636 
2637 static COUNTER_U64_DEFINE_EARLY(pmap_pde_demotions);
2638 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, demotions,
2639     CTLFLAG_RD, &pmap_pde_demotions, "2MB page demotions");
2640 
2641 static COUNTER_U64_DEFINE_EARLY(pmap_pde_mappings);
2642 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
2643     &pmap_pde_mappings, "2MB page mappings");
2644 
2645 static COUNTER_U64_DEFINE_EARLY(pmap_pde_p_failures);
2646 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
2647     &pmap_pde_p_failures, "2MB page promotion failures");
2648 
2649 static COUNTER_U64_DEFINE_EARLY(pmap_pde_promotions);
2650 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
2651     &pmap_pde_promotions, "2MB page promotions");
2652 
2653 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pdpe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2654     "1GB page mapping counters");
2655 
2656 static COUNTER_U64_DEFINE_EARLY(pmap_pdpe_demotions);
2657 SYSCTL_COUNTER_U64(_vm_pmap_pdpe, OID_AUTO, demotions, CTLFLAG_RD,
2658     &pmap_pdpe_demotions, "1GB page demotions");
2659 
2660 /***************************************************
2661  * Low level helper routines.....
2662  ***************************************************/
2663 
2664 static pt_entry_t
pmap_swap_pat(pmap_t pmap,pt_entry_t entry)2665 pmap_swap_pat(pmap_t pmap, pt_entry_t entry)
2666 {
2667 	int x86_pat_bits = X86_PG_PTE_PAT | X86_PG_PDE_PAT;
2668 
2669 	switch (pmap->pm_type) {
2670 	case PT_X86:
2671 	case PT_RVI:
2672 		/* Verify that both PAT bits are not set at the same time */
2673 		KASSERT((entry & x86_pat_bits) != x86_pat_bits,
2674 		    ("Invalid PAT bits in entry %#lx", entry));
2675 
2676 		/* Swap the PAT bits if one of them is set */
2677 		if ((entry & x86_pat_bits) != 0)
2678 			entry ^= x86_pat_bits;
2679 		break;
2680 	case PT_EPT:
2681 		/*
2682 		 * Nothing to do - the memory attributes are represented
2683 		 * the same way for regular pages and superpages.
2684 		 */
2685 		break;
2686 	default:
2687 		panic("pmap_switch_pat_bits: bad pm_type %d", pmap->pm_type);
2688 	}
2689 
2690 	return (entry);
2691 }
2692 
2693 bool
pmap_is_valid_memattr(pmap_t pmap __unused,vm_memattr_t mode)2694 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
2695 {
2696 
2697 	return (mode >= 0 && mode < PAT_INDEX_SIZE &&
2698 	    pat_index[(int)mode] >= 0);
2699 }
2700 
2701 /*
2702  * Determine the appropriate bits to set in a PTE or PDE for a specified
2703  * caching mode.
2704  */
2705 int
pmap_cache_bits(pmap_t pmap,int mode,bool is_pde)2706 pmap_cache_bits(pmap_t pmap, int mode, bool is_pde)
2707 {
2708 	int cache_bits, pat_flag, pat_idx;
2709 
2710 	if (!pmap_is_valid_memattr(pmap, mode))
2711 		panic("Unknown caching mode %d\n", mode);
2712 
2713 	switch (pmap->pm_type) {
2714 	case PT_X86:
2715 	case PT_RVI:
2716 		/* The PAT bit is different for PTE's and PDE's. */
2717 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2718 
2719 		/* Map the caching mode to a PAT index. */
2720 		pat_idx = pat_index[mode];
2721 
2722 		/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
2723 		cache_bits = 0;
2724 		if (pat_idx & 0x4)
2725 			cache_bits |= pat_flag;
2726 		if (pat_idx & 0x2)
2727 			cache_bits |= PG_NC_PCD;
2728 		if (pat_idx & 0x1)
2729 			cache_bits |= PG_NC_PWT;
2730 		break;
2731 
2732 	case PT_EPT:
2733 		cache_bits = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(mode);
2734 		break;
2735 
2736 	default:
2737 		panic("unsupported pmap type %d", pmap->pm_type);
2738 	}
2739 
2740 	return (cache_bits);
2741 }
2742 
2743 static int
pmap_cache_mask(pmap_t pmap,bool is_pde)2744 pmap_cache_mask(pmap_t pmap, bool is_pde)
2745 {
2746 	int mask;
2747 
2748 	switch (pmap->pm_type) {
2749 	case PT_X86:
2750 	case PT_RVI:
2751 		mask = is_pde ? X86_PG_PDE_CACHE : X86_PG_PTE_CACHE;
2752 		break;
2753 	case PT_EPT:
2754 		mask = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(0x7);
2755 		break;
2756 	default:
2757 		panic("pmap_cache_mask: invalid pm_type %d", pmap->pm_type);
2758 	}
2759 
2760 	return (mask);
2761 }
2762 
2763 static int
pmap_pat_index(pmap_t pmap,pt_entry_t pte,bool is_pde)2764 pmap_pat_index(pmap_t pmap, pt_entry_t pte, bool is_pde)
2765 {
2766 	int pat_flag, pat_idx;
2767 
2768 	pat_idx = 0;
2769 	switch (pmap->pm_type) {
2770 	case PT_X86:
2771 	case PT_RVI:
2772 		/* The PAT bit is different for PTE's and PDE's. */
2773 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2774 
2775 		if ((pte & pat_flag) != 0)
2776 			pat_idx |= 0x4;
2777 		if ((pte & PG_NC_PCD) != 0)
2778 			pat_idx |= 0x2;
2779 		if ((pte & PG_NC_PWT) != 0)
2780 			pat_idx |= 0x1;
2781 		break;
2782 	case PT_EPT:
2783 		if ((pte & EPT_PG_IGNORE_PAT) != 0)
2784 			panic("EPT PTE %#lx has no PAT memory type", pte);
2785 		pat_idx = (pte & EPT_PG_MEMORY_TYPE(0x7)) >> 3;
2786 		break;
2787 	}
2788 
2789 	/* See pmap_init_pat(). */
2790 	if (pat_idx == 4)
2791 		pat_idx = 0;
2792 	if (pat_idx == 7)
2793 		pat_idx = 3;
2794 
2795 	return (pat_idx);
2796 }
2797 
2798 bool
pmap_ps_enabled(pmap_t pmap)2799 pmap_ps_enabled(pmap_t pmap)
2800 {
2801 
2802 	return (pg_ps_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
2803 }
2804 
2805 static void
pmap_update_pde_store(pmap_t pmap,pd_entry_t * pde,pd_entry_t newpde)2806 pmap_update_pde_store(pmap_t pmap, pd_entry_t *pde, pd_entry_t newpde)
2807 {
2808 
2809 	switch (pmap->pm_type) {
2810 	case PT_X86:
2811 		break;
2812 	case PT_RVI:
2813 	case PT_EPT:
2814 		/*
2815 		 * XXX
2816 		 * This is a little bogus since the generation number is
2817 		 * supposed to be bumped up when a region of the address
2818 		 * space is invalidated in the page tables.
2819 		 *
2820 		 * In this case the old PDE entry is valid but yet we want
2821 		 * to make sure that any mappings using the old entry are
2822 		 * invalidated in the TLB.
2823 		 *
2824 		 * The reason this works as expected is because we rendezvous
2825 		 * "all" host cpus and force any vcpu context to exit as a
2826 		 * side-effect.
2827 		 */
2828 		atomic_add_long(&pmap->pm_eptgen, 1);
2829 		break;
2830 	default:
2831 		panic("pmap_update_pde_store: bad pm_type %d", pmap->pm_type);
2832 	}
2833 	pde_store(pde, newpde);
2834 }
2835 
2836 /*
2837  * After changing the page size for the specified virtual address in the page
2838  * table, flush the corresponding entries from the processor's TLB.  Only the
2839  * calling processor's TLB is affected.
2840  *
2841  * The calling thread must be pinned to a processor.
2842  */
2843 static void
pmap_update_pde_invalidate(pmap_t pmap,vm_offset_t va,pd_entry_t newpde)2844 pmap_update_pde_invalidate(pmap_t pmap, vm_offset_t va, pd_entry_t newpde)
2845 {
2846 	pt_entry_t PG_G;
2847 
2848 	if (pmap_type_guest(pmap))
2849 		return;
2850 
2851 	KASSERT(pmap->pm_type == PT_X86,
2852 	    ("pmap_update_pde_invalidate: invalid type %d", pmap->pm_type));
2853 
2854 	PG_G = pmap_global_bit(pmap);
2855 
2856 	if ((newpde & PG_PS) == 0)
2857 		/* Demotion: flush a specific 2MB page mapping. */
2858 		pmap_invlpg(pmap, va);
2859 	else if ((newpde & PG_G) == 0)
2860 		/*
2861 		 * Promotion: flush every 4KB page mapping from the TLB
2862 		 * because there are too many to flush individually.
2863 		 */
2864 		invltlb();
2865 	else {
2866 		/*
2867 		 * Promotion: flush every 4KB page mapping from the TLB,
2868 		 * including any global (PG_G) mappings.
2869 		 */
2870 		invltlb_glob();
2871 	}
2872 }
2873 
2874 /*
2875  * The amd64 pmap uses different approaches to TLB invalidation
2876  * depending on the kernel configuration, available hardware features,
2877  * and known hardware errata.  The kernel configuration option that
2878  * has the greatest operational impact on TLB invalidation is PTI,
2879  * which is enabled automatically on affected Intel CPUs.  The most
2880  * impactful hardware features are first PCID, and then INVPCID
2881  * instruction presence.  PCID usage is quite different for PTI
2882  * vs. non-PTI.
2883  *
2884  * * Kernel Page Table Isolation (PTI or KPTI) is used to mitigate
2885  *   the Meltdown bug in some Intel CPUs.  Under PTI, each user address
2886  *   space is served by two page tables, user and kernel.  The user
2887  *   page table only maps user space and a kernel trampoline.  The
2888  *   kernel trampoline includes the entirety of the kernel text but
2889  *   only the kernel data that is needed to switch from user to kernel
2890  *   mode.  The kernel page table maps the user and kernel address
2891  *   spaces in their entirety.  It is identical to the per-process
2892  *   page table used in non-PTI mode.
2893  *
2894  *   User page tables are only used when the CPU is in user mode.
2895  *   Consequently, some TLB invalidations can be postponed until the
2896  *   switch from kernel to user mode.  In contrast, the user
2897  *   space part of the kernel page table is used for copyout(9), so
2898  *   TLB invalidations on this page table cannot be similarly postponed.
2899  *
2900  *   The existence of a user mode page table for the given pmap is
2901  *   indicated by a pm_ucr3 value that differs from PMAP_NO_CR3, in
2902  *   which case pm_ucr3 contains the %cr3 register value for the user
2903  *   mode page table's root.
2904  *
2905  * * The pm_active bitmask indicates which CPUs currently have the
2906  *   pmap active.  A CPU's bit is set on context switch to the pmap, and
2907  *   cleared on switching off this CPU.  For the kernel page table,
2908  *   the pm_active field is immutable and contains all CPUs.  The
2909  *   kernel page table is always logically active on every processor,
2910  *   but not necessarily in use by the hardware, e.g., in PTI mode.
2911  *
2912  *   When requesting invalidation of virtual addresses with
2913  *   pmap_invalidate_XXX() functions, the pmap sends shootdown IPIs to
2914  *   all CPUs recorded as active in pm_active.  Updates to and reads
2915  *   from pm_active are not synchronized, and so they may race with
2916  *   each other.  Shootdown handlers are prepared to handle the race.
2917  *
2918  * * PCID is an optional feature of the long mode x86 MMU where TLB
2919  *   entries are tagged with the 'Process ID' of the address space
2920  *   they belong to.  This feature provides a limited namespace for
2921  *   process identifiers, 12 bits, supporting 4095 simultaneous IDs
2922  *   total.
2923  *
2924  *   Allocation of a PCID to a pmap is done by an algorithm described
2925  *   in section 15.12, "Other TLB Consistency Algorithms", of
2926  *   Vahalia's book "Unix Internals".  A PCID cannot be allocated for
2927  *   the whole lifetime of a pmap in pmap_pinit() due to the limited
2928  *   namespace.  Instead, a per-CPU, per-pmap PCID is assigned when
2929  *   the CPU is about to start caching TLB entries from a pmap,
2930  *   i.e., on the context switch that activates the pmap on the CPU.
2931  *
2932  *   The PCID allocator maintains a per-CPU, per-pmap generation
2933  *   count, pm_gen, which is incremented each time a new PCID is
2934  *   allocated.  On TLB invalidation, the generation counters for the
2935  *   pmap are zeroed, which signals the context switch code that the
2936  *   previously allocated PCID is no longer valid.  Effectively,
2937  *   zeroing any of these counters triggers a TLB shootdown for the
2938  *   given CPU/address space, due to the allocation of a new PCID.
2939  *
2940  *   Zeroing can be performed remotely.  Consequently, if a pmap is
2941  *   inactive on a CPU, then a TLB shootdown for that pmap and CPU can
2942  *   be initiated by an ordinary memory access to reset the target
2943  *   CPU's generation count within the pmap.  The CPU initiating the
2944  *   TLB shootdown does not need to send an IPI to the target CPU.
2945  *
2946  * * PTI + PCID.  The available PCIDs are divided into two sets: PCIDs
2947  *   for complete (kernel) page tables, and PCIDs for user mode page
2948  *   tables.  A user PCID value is obtained from the kernel PCID value
2949  *   by setting the highest bit, 11, to 1 (0x800 == PMAP_PCID_USER_PT).
2950  *
2951  *   User space page tables are activated on return to user mode, by
2952  *   loading pm_ucr3 into %cr3.  If the PCPU(ucr3_load_mask) requests
2953  *   clearing bit 63 of the loaded ucr3, this effectively causes
2954  *   complete invalidation of the user mode TLB entries for the
2955  *   current pmap.  In which case, local invalidations of individual
2956  *   pages in the user page table are skipped.
2957  *
2958  * * Local invalidation, all modes.  If the requested invalidation is
2959  *   for a specific address or the total invalidation of a currently
2960  *   active pmap, then the TLB is flushed using INVLPG for a kernel
2961  *   page table, and INVPCID(INVPCID_CTXGLOB)/invltlb_glob() for a
2962  *   user space page table(s).
2963  *
2964  *   If the INVPCID instruction is available, it is used to flush user
2965  *   entries from the kernel page table.
2966  *
2967  *   When PCID is enabled, the INVLPG instruction invalidates all TLB
2968  *   entries for the given page that either match the current PCID or
2969  *   are global. Since TLB entries for the same page under different
2970  *   PCIDs are unaffected, kernel pages which reside in all address
2971  *   spaces could be problematic.  We avoid the problem by creating
2972  *   all kernel PTEs with the global flag (PG_G) set, when PTI is
2973  *   disabled.
2974  *
2975  * * mode: PTI disabled, PCID present.  The kernel reserves PCID 0 for its
2976  *   address space, all other 4095 PCIDs are used for user mode spaces
2977  *   as described above.  A context switch allocates a new PCID if
2978  *   the recorded PCID is zero or the recorded generation does not match
2979  *   the CPU's generation, effectively flushing the TLB for this address space.
2980  *   Total remote invalidation is performed by zeroing pm_gen for all CPUs.
2981  *	local user page: INVLPG
2982  *	local kernel page: INVLPG
2983  *	local user total: INVPCID(CTX)
2984  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
2985  *	remote user page, inactive pmap: zero pm_gen
2986  *	remote user page, active pmap: zero pm_gen + IPI:INVLPG
2987  *	(Both actions are required to handle the aforementioned pm_active races.)
2988  *	remote kernel page: IPI:INVLPG
2989  *	remote user total, inactive pmap: zero pm_gen
2990  *	remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) or
2991  *          reload %cr3)
2992  *	(See note above about pm_active races.)
2993  *	remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
2994  *
2995  * PTI enabled, PCID present.
2996  *	local user page: INVLPG for kpt, INVPCID(ADDR) or (INVLPG for ucr3)
2997  *          for upt
2998  *	local kernel page: INVLPG
2999  *	local user total: INVPCID(CTX) or reload %cr3 for kpt, clear PCID_SAVE
3000  *          on loading UCR3 into %cr3 for upt
3001  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
3002  *	remote user page, inactive pmap: zero pm_gen
3003  *	remote user page, active pmap: zero pm_gen + IPI:(INVLPG for kpt,
3004  *          INVPCID(ADDR) for upt)
3005  *	remote kernel page: IPI:INVLPG
3006  *	remote user total, inactive pmap: zero pm_gen
3007  *	remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) for kpt,
3008  *          clear PCID_SAVE on loading UCR3 into $cr3 for upt)
3009  *	remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
3010  *
3011  *  No PCID.
3012  *	local user page: INVLPG
3013  *	local kernel page: INVLPG
3014  *	local user total: reload %cr3
3015  *	local kernel total: invltlb_glob()
3016  *	remote user page, inactive pmap: -
3017  *	remote user page, active pmap: IPI:INVLPG
3018  *	remote kernel page: IPI:INVLPG
3019  *	remote user total, inactive pmap: -
3020  *	remote user total, active pmap: IPI:(reload %cr3)
3021  *	remote kernel total: IPI:invltlb_glob()
3022  *  Since on return to user mode, the reload of %cr3 with ucr3 causes
3023  *  TLB invalidation, no specific action is required for user page table.
3024  *
3025  * EPT.  EPT pmaps do not map KVA, all mappings are userspace.
3026  * XXX TODO
3027  */
3028 
3029 #ifdef SMP
3030 /*
3031  * Interrupt the cpus that are executing in the guest context.
3032  * This will force the vcpu to exit and the cached EPT mappings
3033  * will be invalidated by the host before the next vmresume.
3034  */
3035 static __inline void
pmap_invalidate_ept(pmap_t pmap)3036 pmap_invalidate_ept(pmap_t pmap)
3037 {
3038 	smr_seq_t goal;
3039 	int ipinum;
3040 
3041 	sched_pin();
3042 	KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
3043 	    ("pmap_invalidate_ept: absurd pm_active"));
3044 
3045 	/*
3046 	 * The TLB mappings associated with a vcpu context are not
3047 	 * flushed each time a different vcpu is chosen to execute.
3048 	 *
3049 	 * This is in contrast with a process's vtop mappings that
3050 	 * are flushed from the TLB on each context switch.
3051 	 *
3052 	 * Therefore we need to do more than just a TLB shootdown on
3053 	 * the active cpus in 'pmap->pm_active'. To do this we keep
3054 	 * track of the number of invalidations performed on this pmap.
3055 	 *
3056 	 * Each vcpu keeps a cache of this counter and compares it
3057 	 * just before a vmresume. If the counter is out-of-date an
3058 	 * invept will be done to flush stale mappings from the TLB.
3059 	 *
3060 	 * To ensure that all vCPU threads have observed the new counter
3061 	 * value before returning, we use SMR.  Ordering is important here:
3062 	 * the VMM enters an SMR read section before loading the counter
3063 	 * and after updating the pm_active bit set.  Thus, pm_active is
3064 	 * a superset of active readers, and any reader that has observed
3065 	 * the goal has observed the new counter value.
3066 	 */
3067 	atomic_add_long(&pmap->pm_eptgen, 1);
3068 
3069 	goal = smr_advance(pmap->pm_eptsmr);
3070 
3071 	/*
3072 	 * Force the vcpu to exit and trap back into the hypervisor.
3073 	 */
3074 	ipinum = pmap->pm_flags & PMAP_NESTED_IPIMASK;
3075 	ipi_selected(pmap->pm_active, ipinum);
3076 	sched_unpin();
3077 
3078 	/*
3079 	 * Ensure that all active vCPUs will observe the new generation counter
3080 	 * value before executing any more guest instructions.
3081 	 */
3082 	smr_wait(pmap->pm_eptsmr, goal);
3083 }
3084 
3085 static inline void
pmap_invalidate_preipi_pcid(pmap_t pmap)3086 pmap_invalidate_preipi_pcid(pmap_t pmap)
3087 {
3088 	struct pmap_pcid *pcidp;
3089 	u_int cpuid, i;
3090 
3091 	sched_pin();
3092 
3093 	cpuid = PCPU_GET(cpuid);
3094 	if (pmap != PCPU_GET(curpmap))
3095 		cpuid = 0xffffffff;	/* An impossible value */
3096 
3097 	CPU_FOREACH(i) {
3098 		if (cpuid != i) {
3099 			pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
3100 			pcidp->pm_gen = 0;
3101 		}
3102 	}
3103 
3104 	/*
3105 	 * The fence is between stores to pm_gen and the read of the
3106 	 * pm_active mask.  We need to ensure that it is impossible
3107 	 * for us to miss the bit update in pm_active and
3108 	 * simultaneously observe a non-zero pm_gen in
3109 	 * pmap_activate_sw(), otherwise TLB update is missed.
3110 	 * Without the fence, IA32 allows such an outcome.  Note that
3111 	 * pm_active is updated by a locked operation, which provides
3112 	 * the reciprocal fence.
3113 	 */
3114 	atomic_thread_fence_seq_cst();
3115 }
3116 
3117 static void
pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)3118 pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)
3119 {
3120 	sched_pin();
3121 }
3122 
3123 DEFINE_IFUNC(static, void, pmap_invalidate_preipi, (pmap_t))
3124 {
3125 	return (pmap_pcid_enabled ? pmap_invalidate_preipi_pcid :
3126 	    pmap_invalidate_preipi_nopcid);
3127 }
3128 
3129 static inline void
pmap_invalidate_page_pcid_cb(pmap_t pmap,vm_offset_t va,const bool invpcid_works1)3130 pmap_invalidate_page_pcid_cb(pmap_t pmap, vm_offset_t va,
3131     const bool invpcid_works1)
3132 {
3133 	struct invpcid_descr d;
3134 	uint64_t kcr3, ucr3;
3135 	uint32_t pcid;
3136 
3137 	/*
3138 	 * Because pm_pcid is recalculated on a context switch, we
3139 	 * must ensure there is no preemption, not just pinning.
3140 	 * Otherwise, we might use a stale value below.
3141 	 */
3142 	CRITICAL_ASSERT(curthread);
3143 
3144 	/*
3145 	 * No need to do anything with user page tables invalidation
3146 	 * if there is no user page table, or invalidation is deferred
3147 	 * until the return to userspace.  ucr3_load_mask is stable
3148 	 * because we have preemption disabled.
3149 	 */
3150 	if (pmap->pm_ucr3 == PMAP_NO_CR3 ||
3151 	    PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3152 		return;
3153 
3154 	pcid = pmap_get_pcid(pmap);
3155 	if (invpcid_works1) {
3156 		d.pcid = pcid | PMAP_PCID_USER_PT;
3157 		d.pad = 0;
3158 		d.addr = va;
3159 		invpcid(&d, INVPCID_ADDR);
3160 	} else {
3161 		kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3162 		ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3163 		pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3164 	}
3165 }
3166 
3167 static void
pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap,vm_offset_t va)3168 pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap, vm_offset_t va)
3169 {
3170 	pmap_invalidate_page_pcid_cb(pmap, va, true);
3171 }
3172 
3173 static void
pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t va)3174 pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t va)
3175 {
3176 	pmap_invalidate_page_pcid_cb(pmap, va, false);
3177 }
3178 
3179 static void
pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused,vm_offset_t va __unused)3180 pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused, vm_offset_t va __unused)
3181 {
3182 }
3183 
3184 DEFINE_IFUNC(static, void, pmap_invalidate_page_cb, (pmap_t, vm_offset_t))
3185 {
3186 	if (pmap_pcid_enabled)
3187 		return (invpcid_works ? pmap_invalidate_page_pcid_invpcid_cb :
3188 		    pmap_invalidate_page_pcid_noinvpcid_cb);
3189 	return (pmap_invalidate_page_nopcid_cb);
3190 }
3191 
3192 static void
pmap_invalidate_page_curcpu_cb(pmap_t pmap,vm_offset_t va,vm_offset_t addr2 __unused)3193 pmap_invalidate_page_curcpu_cb(pmap_t pmap, vm_offset_t va,
3194     vm_offset_t addr2 __unused)
3195 {
3196 	if (pmap == kernel_pmap) {
3197 		pmap_invlpg(kernel_pmap, va);
3198 	} else if (pmap == PCPU_GET(curpmap)) {
3199 		invlpg(va);
3200 		pmap_invalidate_page_cb(pmap, va);
3201 	}
3202 }
3203 
3204 void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va)3205 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3206 {
3207 	if (pmap_type_guest(pmap)) {
3208 		pmap_invalidate_ept(pmap);
3209 		return;
3210 	}
3211 
3212 	KASSERT(pmap->pm_type == PT_X86,
3213 	    ("pmap_invalidate_page: invalid type %d", pmap->pm_type));
3214 
3215 	pmap_invalidate_preipi(pmap);
3216 	smp_masked_invlpg(va, pmap, pmap_invalidate_page_curcpu_cb);
3217 }
3218 
3219 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
3220 #define	PMAP_INVLPG_THRESHOLD	(4 * 1024 * PAGE_SIZE)
3221 
3222 static void
pmap_invalidate_range_pcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,const bool invpcid_works1)3223 pmap_invalidate_range_pcid_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3224     const bool invpcid_works1)
3225 {
3226 	struct invpcid_descr d;
3227 	uint64_t kcr3, ucr3;
3228 	uint32_t pcid;
3229 
3230 	CRITICAL_ASSERT(curthread);
3231 
3232 	if (pmap != PCPU_GET(curpmap) ||
3233 	    pmap->pm_ucr3 == PMAP_NO_CR3 ||
3234 	    PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3235 		return;
3236 
3237 	pcid = pmap_get_pcid(pmap);
3238 	if (invpcid_works1) {
3239 		d.pcid = pcid | PMAP_PCID_USER_PT;
3240 		d.pad = 0;
3241 		for (d.addr = sva; d.addr < eva; d.addr += PAGE_SIZE)
3242 			invpcid(&d, INVPCID_ADDR);
3243 	} else {
3244 		kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3245 		ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3246 		pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3247 	}
3248 }
3249 
3250 static void
pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3251 pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap, vm_offset_t sva,
3252     vm_offset_t eva)
3253 {
3254 	pmap_invalidate_range_pcid_cb(pmap, sva, eva, true);
3255 }
3256 
3257 static void
pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3258 pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t sva,
3259     vm_offset_t eva)
3260 {
3261 	pmap_invalidate_range_pcid_cb(pmap, sva, eva, false);
3262 }
3263 
3264 static void
pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused,vm_offset_t sva __unused,vm_offset_t eva __unused)3265 pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused, vm_offset_t sva __unused,
3266     vm_offset_t eva __unused)
3267 {
3268 }
3269 
3270 DEFINE_IFUNC(static, void, pmap_invalidate_range_cb, (pmap_t, vm_offset_t,
3271     vm_offset_t))
3272 {
3273 	if (pmap_pcid_enabled)
3274 		return (invpcid_works ? pmap_invalidate_range_pcid_invpcid_cb :
3275 		    pmap_invalidate_range_pcid_noinvpcid_cb);
3276 	return (pmap_invalidate_range_nopcid_cb);
3277 }
3278 
3279 static void
pmap_invalidate_range_curcpu_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3280 pmap_invalidate_range_curcpu_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3281 {
3282 	vm_offset_t addr;
3283 
3284 	if (pmap == kernel_pmap) {
3285 		if (PCPU_GET(pcid_invlpg_workaround)) {
3286 			struct invpcid_descr d = { 0 };
3287 
3288 			invpcid(&d, INVPCID_CTXGLOB);
3289 		} else {
3290 			for (addr = sva; addr < eva; addr += PAGE_SIZE)
3291 				invlpg(addr);
3292 		}
3293 	} else if (pmap == PCPU_GET(curpmap)) {
3294 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
3295 			invlpg(addr);
3296 		pmap_invalidate_range_cb(pmap, sva, eva);
3297 	}
3298 }
3299 
3300 void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3301 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3302 {
3303 	if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
3304 		pmap_invalidate_all(pmap);
3305 		return;
3306 	}
3307 
3308 	if (pmap_type_guest(pmap)) {
3309 		pmap_invalidate_ept(pmap);
3310 		return;
3311 	}
3312 
3313 	KASSERT(pmap->pm_type == PT_X86,
3314 	    ("pmap_invalidate_range: invalid type %d", pmap->pm_type));
3315 
3316 	pmap_invalidate_preipi(pmap);
3317 	smp_masked_invlpg_range(sva, eva, pmap,
3318 	    pmap_invalidate_range_curcpu_cb);
3319 }
3320 
3321 static inline void
pmap_invalidate_all_pcid_cb(pmap_t pmap,bool invpcid_works1)3322 pmap_invalidate_all_pcid_cb(pmap_t pmap, bool invpcid_works1)
3323 {
3324 	struct invpcid_descr d;
3325 	uint64_t kcr3;
3326 	uint32_t pcid;
3327 
3328 	if (pmap == kernel_pmap) {
3329 		if (invpcid_works1) {
3330 			bzero(&d, sizeof(d));
3331 			invpcid(&d, INVPCID_CTXGLOB);
3332 		} else {
3333 			invltlb_glob();
3334 		}
3335 	} else if (pmap == PCPU_GET(curpmap)) {
3336 		CRITICAL_ASSERT(curthread);
3337 
3338 		pcid = pmap_get_pcid(pmap);
3339 		if (invpcid_works1) {
3340 			d.pcid = pcid;
3341 			d.pad = 0;
3342 			d.addr = 0;
3343 			invpcid(&d, INVPCID_CTX);
3344 		} else {
3345 			kcr3 = pmap->pm_cr3 | pcid;
3346 			load_cr3(kcr3);
3347 		}
3348 		if (pmap->pm_ucr3 != PMAP_NO_CR3)
3349 			PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
3350 	}
3351 }
3352 
3353 static void
pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap)3354 pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap)
3355 {
3356 	pmap_invalidate_all_pcid_cb(pmap, true);
3357 }
3358 
3359 static void
pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap)3360 pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap)
3361 {
3362 	pmap_invalidate_all_pcid_cb(pmap, false);
3363 }
3364 
3365 static void
pmap_invalidate_all_nopcid_cb(pmap_t pmap)3366 pmap_invalidate_all_nopcid_cb(pmap_t pmap)
3367 {
3368 	if (pmap == kernel_pmap)
3369 		invltlb_glob();
3370 	else if (pmap == PCPU_GET(curpmap))
3371 		invltlb();
3372 }
3373 
3374 DEFINE_IFUNC(static, void, pmap_invalidate_all_cb, (pmap_t))
3375 {
3376 	if (pmap_pcid_enabled)
3377 		return (invpcid_works ? pmap_invalidate_all_pcid_invpcid_cb :
3378 		    pmap_invalidate_all_pcid_noinvpcid_cb);
3379 	return (pmap_invalidate_all_nopcid_cb);
3380 }
3381 
3382 static void
pmap_invalidate_all_curcpu_cb(pmap_t pmap,vm_offset_t addr1 __unused,vm_offset_t addr2 __unused)3383 pmap_invalidate_all_curcpu_cb(pmap_t pmap, vm_offset_t addr1 __unused,
3384     vm_offset_t addr2 __unused)
3385 {
3386 	pmap_invalidate_all_cb(pmap);
3387 }
3388 
3389 void
pmap_invalidate_all(pmap_t pmap)3390 pmap_invalidate_all(pmap_t pmap)
3391 {
3392 	if (pmap_type_guest(pmap)) {
3393 		pmap_invalidate_ept(pmap);
3394 		return;
3395 	}
3396 
3397 	KASSERT(pmap->pm_type == PT_X86,
3398 	    ("pmap_invalidate_all: invalid type %d", pmap->pm_type));
3399 
3400 	pmap_invalidate_preipi(pmap);
3401 	smp_masked_invltlb(pmap, pmap_invalidate_all_curcpu_cb);
3402 }
3403 
3404 static void
pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused,vm_offset_t va __unused,vm_offset_t addr2 __unused)3405 pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused, vm_offset_t va __unused,
3406     vm_offset_t addr2 __unused)
3407 {
3408 	wbinvd();
3409 }
3410 
3411 void
pmap_invalidate_cache(void)3412 pmap_invalidate_cache(void)
3413 {
3414 	sched_pin();
3415 	smp_cache_flush(pmap_invalidate_cache_curcpu_cb);
3416 }
3417 
3418 struct pde_action {
3419 	cpuset_t invalidate;	/* processors that invalidate their TLB */
3420 	pmap_t pmap;
3421 	vm_offset_t va;
3422 	pd_entry_t *pde;
3423 	pd_entry_t newpde;
3424 	u_int store;		/* processor that updates the PDE */
3425 };
3426 
3427 static void
pmap_update_pde_action(void * arg)3428 pmap_update_pde_action(void *arg)
3429 {
3430 	struct pde_action *act = arg;
3431 
3432 	if (act->store == PCPU_GET(cpuid))
3433 		pmap_update_pde_store(act->pmap, act->pde, act->newpde);
3434 }
3435 
3436 static void
pmap_update_pde_teardown(void * arg)3437 pmap_update_pde_teardown(void *arg)
3438 {
3439 	struct pde_action *act = arg;
3440 
3441 	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
3442 		pmap_update_pde_invalidate(act->pmap, act->va, act->newpde);
3443 }
3444 
3445 /*
3446  * Change the page size for the specified virtual address in a way that
3447  * prevents any possibility of the TLB ever having two entries that map the
3448  * same virtual address using different page sizes.  This is the recommended
3449  * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
3450  * machine check exception for a TLB state that is improperly diagnosed as a
3451  * hardware error.
3452  */
3453 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)3454 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3455 {
3456 	struct pde_action act;
3457 	cpuset_t active, other_cpus;
3458 	u_int cpuid;
3459 
3460 	sched_pin();
3461 	cpuid = PCPU_GET(cpuid);
3462 	other_cpus = all_cpus;
3463 	CPU_CLR(cpuid, &other_cpus);
3464 	if (pmap == kernel_pmap || pmap_type_guest(pmap))
3465 		active = all_cpus;
3466 	else {
3467 		active = pmap->pm_active;
3468 	}
3469 	if (CPU_OVERLAP(&active, &other_cpus)) {
3470 		act.store = cpuid;
3471 		act.invalidate = active;
3472 		act.va = va;
3473 		act.pmap = pmap;
3474 		act.pde = pde;
3475 		act.newpde = newpde;
3476 		CPU_SET(cpuid, &active);
3477 		smp_rendezvous_cpus(active,
3478 		    smp_no_rendezvous_barrier, pmap_update_pde_action,
3479 		    pmap_update_pde_teardown, &act);
3480 	} else {
3481 		pmap_update_pde_store(pmap, pde, newpde);
3482 		if (CPU_ISSET(cpuid, &active))
3483 			pmap_update_pde_invalidate(pmap, va, newpde);
3484 	}
3485 	sched_unpin();
3486 }
3487 #else /* !SMP */
3488 /*
3489  * Normal, non-SMP, invalidation functions.
3490  */
3491 void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va)3492 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3493 {
3494 	struct invpcid_descr d;
3495 	struct pmap_pcid *pcidp;
3496 	uint64_t kcr3, ucr3;
3497 	uint32_t pcid;
3498 
3499 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3500 		pmap->pm_eptgen++;
3501 		return;
3502 	}
3503 	KASSERT(pmap->pm_type == PT_X86,
3504 	    ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3505 
3506 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3507 		invlpg(va);
3508 		if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3509 		    pmap->pm_ucr3 != PMAP_NO_CR3) {
3510 			critical_enter();
3511 			pcid = pmap_get_pcid(pmap);
3512 			if (invpcid_works) {
3513 				d.pcid = pcid | PMAP_PCID_USER_PT;
3514 				d.pad = 0;
3515 				d.addr = va;
3516 				invpcid(&d, INVPCID_ADDR);
3517 			} else {
3518 				kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3519 				ucr3 = pmap->pm_ucr3 | pcid |
3520 				    PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3521 				pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3522 			}
3523 			critical_exit();
3524 		}
3525 	} else if (pmap_pcid_enabled) {
3526 		pcidp = zpcpu_get(pmap->pm_pcidp);
3527 		pcidp->pm_gen = 0;
3528 	}
3529 }
3530 
3531 void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3532 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3533 {
3534 	struct invpcid_descr d;
3535 	struct pmap_pcid *pcidp;
3536 	vm_offset_t addr;
3537 	uint64_t kcr3, ucr3;
3538 	uint32_t pcid;
3539 
3540 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3541 		pmap->pm_eptgen++;
3542 		return;
3543 	}
3544 	KASSERT(pmap->pm_type == PT_X86,
3545 	    ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3546 
3547 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3548 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
3549 			invlpg(addr);
3550 		if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3551 		    pmap->pm_ucr3 != PMAP_NO_CR3) {
3552 			critical_enter();
3553 			pcid = pmap_get_pcid(pmap);
3554 			if (invpcid_works) {
3555 				d.pcid = pcid | PMAP_PCID_USER_PT;
3556 				d.pad = 0;
3557 				d.addr = sva;
3558 				for (; d.addr < eva; d.addr += PAGE_SIZE)
3559 					invpcid(&d, INVPCID_ADDR);
3560 			} else {
3561 				kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3562 				ucr3 = pmap->pm_ucr3 | pcid |
3563 				    PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3564 				pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3565 			}
3566 			critical_exit();
3567 		}
3568 	} else if (pmap_pcid_enabled) {
3569 		pcidp = zpcpu_get(pmap->pm_pcidp);
3570 		pcidp->pm_gen = 0;
3571 	}
3572 }
3573 
3574 void
pmap_invalidate_all(pmap_t pmap)3575 pmap_invalidate_all(pmap_t pmap)
3576 {
3577 	struct invpcid_descr d;
3578 	struct pmap_pcid *pcidp;
3579 	uint64_t kcr3, ucr3;
3580 	uint32_t pcid;
3581 
3582 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3583 		pmap->pm_eptgen++;
3584 		return;
3585 	}
3586 	KASSERT(pmap->pm_type == PT_X86,
3587 	    ("pmap_invalidate_all: unknown type %d", pmap->pm_type));
3588 
3589 	if (pmap == kernel_pmap) {
3590 		if (pmap_pcid_enabled && invpcid_works) {
3591 			bzero(&d, sizeof(d));
3592 			invpcid(&d, INVPCID_CTXGLOB);
3593 		} else {
3594 			invltlb_glob();
3595 		}
3596 	} else if (pmap == PCPU_GET(curpmap)) {
3597 		if (pmap_pcid_enabled) {
3598 			critical_enter();
3599 			pcid = pmap_get_pcid(pmap);
3600 			if (invpcid_works) {
3601 				d.pcid = pcid;
3602 				d.pad = 0;
3603 				d.addr = 0;
3604 				invpcid(&d, INVPCID_CTX);
3605 				if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3606 					d.pcid |= PMAP_PCID_USER_PT;
3607 					invpcid(&d, INVPCID_CTX);
3608 				}
3609 			} else {
3610 				kcr3 = pmap->pm_cr3 | pcid;
3611 				if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3612 					ucr3 = pmap->pm_ucr3 | pcid |
3613 					    PMAP_PCID_USER_PT;
3614 					pmap_pti_pcid_invalidate(ucr3, kcr3);
3615 				} else
3616 					load_cr3(kcr3);
3617 			}
3618 			critical_exit();
3619 		} else {
3620 			invltlb();
3621 		}
3622 	} else if (pmap_pcid_enabled) {
3623 		pcidp = zpcpu_get(pmap->pm_pcidp);
3624 		pcidp->pm_gen = 0;
3625 	}
3626 }
3627 
3628 void
pmap_invalidate_cache(void)3629 pmap_invalidate_cache(void)
3630 {
3631 
3632 	wbinvd();
3633 }
3634 
3635 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)3636 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3637 {
3638 	struct pmap_pcid *pcidp;
3639 
3640 	pmap_update_pde_store(pmap, pde, newpde);
3641 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap))
3642 		pmap_update_pde_invalidate(pmap, va, newpde);
3643 	else {
3644 		pcidp = zpcpu_get(pmap->pm_pcidp);
3645 		pcidp->pm_gen = 0;
3646 	}
3647 }
3648 #endif /* !SMP */
3649 
3650 static void
pmap_invalidate_pde_page(pmap_t pmap,vm_offset_t va,pd_entry_t pde)3651 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
3652 {
3653 
3654 	/*
3655 	 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
3656 	 * by a promotion that did not invalidate the 512 4KB page mappings
3657 	 * that might exist in the TLB.  Consequently, at this point, the TLB
3658 	 * may hold both 4KB and 2MB page mappings for the address range [va,
3659 	 * va + NBPDR).  Therefore, the entire range must be invalidated here.
3660 	 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
3661 	 * 4KB page mappings for the address range [va, va + NBPDR), and so a
3662 	 * single INVLPG suffices to invalidate the 2MB page mapping from the
3663 	 * TLB.
3664 	 */
3665 	if ((pde & PG_PROMOTED) != 0)
3666 		pmap_invalidate_range(pmap, va, va + NBPDR - 1);
3667 	else
3668 		pmap_invalidate_page(pmap, va);
3669 }
3670 
3671 DEFINE_IFUNC(, void, pmap_invalidate_cache_range,
3672     (vm_offset_t sva, vm_offset_t eva))
3673 {
3674 
3675 	if ((cpu_feature & CPUID_SS) != 0)
3676 		return (pmap_invalidate_cache_range_selfsnoop);
3677 	if ((cpu_feature & CPUID_CLFSH) != 0)
3678 		return (pmap_force_invalidate_cache_range);
3679 	return (pmap_invalidate_cache_range_all);
3680 }
3681 
3682 #define PMAP_CLFLUSH_THRESHOLD   (2 * 1024 * 1024)
3683 
3684 static void
pmap_invalidate_cache_range_check_align(vm_offset_t sva,vm_offset_t eva)3685 pmap_invalidate_cache_range_check_align(vm_offset_t sva, vm_offset_t eva)
3686 {
3687 
3688 	KASSERT((sva & PAGE_MASK) == 0,
3689 	    ("pmap_invalidate_cache_range: sva not page-aligned"));
3690 	KASSERT((eva & PAGE_MASK) == 0,
3691 	    ("pmap_invalidate_cache_range: eva not page-aligned"));
3692 }
3693 
3694 static void
pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,vm_offset_t eva)3695 pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva, vm_offset_t eva)
3696 {
3697 
3698 	pmap_invalidate_cache_range_check_align(sva, eva);
3699 }
3700 
3701 void
pmap_force_invalidate_cache_range(vm_offset_t sva,vm_offset_t eva)3702 pmap_force_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
3703 {
3704 
3705 	sva &= ~(vm_offset_t)(cpu_clflush_line_size - 1);
3706 
3707 	/*
3708 	 * XXX: Some CPUs fault, hang, or trash the local APIC
3709 	 * registers if we use CLFLUSH on the local APIC range.  The
3710 	 * local APIC is always uncached, so we don't need to flush
3711 	 * for that range anyway.
3712 	 */
3713 	if (pmap_kextract(sva) == lapic_paddr)
3714 		return;
3715 
3716 	if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0) {
3717 		/*
3718 		 * Do per-cache line flush.  Use a locked
3719 		 * instruction to insure that previous stores are
3720 		 * included in the write-back.  The processor
3721 		 * propagates flush to other processors in the cache
3722 		 * coherence domain.
3723 		 */
3724 		atomic_thread_fence_seq_cst();
3725 		for (; sva < eva; sva += cpu_clflush_line_size)
3726 			clflushopt(sva);
3727 		atomic_thread_fence_seq_cst();
3728 	} else {
3729 		/*
3730 		 * Writes are ordered by CLFLUSH on Intel CPUs.
3731 		 */
3732 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
3733 			mfence();
3734 		for (; sva < eva; sva += cpu_clflush_line_size)
3735 			clflush(sva);
3736 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
3737 			mfence();
3738 	}
3739 }
3740 
3741 static void
pmap_invalidate_cache_range_all(vm_offset_t sva,vm_offset_t eva)3742 pmap_invalidate_cache_range_all(vm_offset_t sva, vm_offset_t eva)
3743 {
3744 
3745 	pmap_invalidate_cache_range_check_align(sva, eva);
3746 	pmap_invalidate_cache();
3747 }
3748 
3749 /*
3750  * Remove the specified set of pages from the data and instruction caches.
3751  *
3752  * In contrast to pmap_invalidate_cache_range(), this function does not
3753  * rely on the CPU's self-snoop feature, because it is intended for use
3754  * when moving pages into a different cache domain.
3755  */
3756 void
pmap_invalidate_cache_pages(vm_page_t * pages,int count)3757 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
3758 {
3759 	vm_offset_t daddr, eva;
3760 	int i;
3761 	bool useclflushopt;
3762 
3763 	useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
3764 	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
3765 	    ((cpu_feature & CPUID_CLFSH) == 0 && !useclflushopt))
3766 		pmap_invalidate_cache();
3767 	else {
3768 		if (useclflushopt)
3769 			atomic_thread_fence_seq_cst();
3770 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3771 			mfence();
3772 		for (i = 0; i < count; i++) {
3773 			daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
3774 			eva = daddr + PAGE_SIZE;
3775 			for (; daddr < eva; daddr += cpu_clflush_line_size) {
3776 				if (useclflushopt)
3777 					clflushopt(daddr);
3778 				else
3779 					clflush(daddr);
3780 			}
3781 		}
3782 		if (useclflushopt)
3783 			atomic_thread_fence_seq_cst();
3784 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3785 			mfence();
3786 	}
3787 }
3788 
3789 void
pmap_flush_cache_range(vm_offset_t sva,vm_offset_t eva)3790 pmap_flush_cache_range(vm_offset_t sva, vm_offset_t eva)
3791 {
3792 
3793 	pmap_invalidate_cache_range_check_align(sva, eva);
3794 
3795 	if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) == 0) {
3796 		pmap_force_invalidate_cache_range(sva, eva);
3797 		return;
3798 	}
3799 
3800 	/* See comment in pmap_force_invalidate_cache_range(). */
3801 	if (pmap_kextract(sva) == lapic_paddr)
3802 		return;
3803 
3804 	atomic_thread_fence_seq_cst();
3805 	for (; sva < eva; sva += cpu_clflush_line_size)
3806 		clwb(sva);
3807 	atomic_thread_fence_seq_cst();
3808 }
3809 
3810 void
pmap_flush_cache_phys_range(vm_paddr_t spa,vm_paddr_t epa,vm_memattr_t mattr)3811 pmap_flush_cache_phys_range(vm_paddr_t spa, vm_paddr_t epa, vm_memattr_t mattr)
3812 {
3813 	pt_entry_t *pte;
3814 	vm_offset_t vaddr;
3815 	int error __diagused;
3816 	int pte_bits;
3817 
3818 	KASSERT((spa & PAGE_MASK) == 0,
3819 	    ("pmap_flush_cache_phys_range: spa not page-aligned"));
3820 	KASSERT((epa & PAGE_MASK) == 0,
3821 	    ("pmap_flush_cache_phys_range: epa not page-aligned"));
3822 
3823 	if (spa < dmaplimit) {
3824 		pmap_flush_cache_range(PHYS_TO_DMAP(spa), PHYS_TO_DMAP(MIN(
3825 		    dmaplimit, epa)));
3826 		if (dmaplimit >= epa)
3827 			return;
3828 		spa = dmaplimit;
3829 	}
3830 
3831 	pte_bits = pmap_cache_bits(kernel_pmap, mattr, false) | X86_PG_RW |
3832 	    X86_PG_V;
3833 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3834 	    &vaddr);
3835 	KASSERT(error == 0, ("vmem_alloc failed: %d", error));
3836 	pte = vtopte(vaddr);
3837 	for (; spa < epa; spa += PAGE_SIZE) {
3838 		sched_pin();
3839 		pte_store(pte, spa | pte_bits);
3840 		pmap_invlpg(kernel_pmap, vaddr);
3841 		/* XXXKIB atomic inside flush_cache_range are excessive */
3842 		pmap_flush_cache_range(vaddr, vaddr + PAGE_SIZE);
3843 		sched_unpin();
3844 	}
3845 	vmem_free(kernel_arena, vaddr, PAGE_SIZE);
3846 }
3847 
3848 /*
3849  *	Routine:	pmap_extract
3850  *	Function:
3851  *		Extract the physical page address associated
3852  *		with the given map/virtual_address pair.
3853  */
3854 vm_paddr_t
pmap_extract(pmap_t pmap,vm_offset_t va)3855 pmap_extract(pmap_t pmap, vm_offset_t va)
3856 {
3857 	pdp_entry_t *pdpe;
3858 	pd_entry_t *pde;
3859 	pt_entry_t *pte, PG_V;
3860 	vm_paddr_t pa;
3861 
3862 	pa = 0;
3863 	PG_V = pmap_valid_bit(pmap);
3864 	PMAP_LOCK(pmap);
3865 	pdpe = pmap_pdpe(pmap, va);
3866 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
3867 		if ((*pdpe & PG_PS) != 0)
3868 			pa = (*pdpe & PG_PS_FRAME) | (va & PDPMASK);
3869 		else {
3870 			pde = pmap_pdpe_to_pde(pdpe, va);
3871 			if ((*pde & PG_V) != 0) {
3872 				if ((*pde & PG_PS) != 0) {
3873 					pa = (*pde & PG_PS_FRAME) |
3874 					    (va & PDRMASK);
3875 				} else {
3876 					pte = pmap_pde_to_pte(pde, va);
3877 					pa = (*pte & PG_FRAME) |
3878 					    (va & PAGE_MASK);
3879 				}
3880 			}
3881 		}
3882 	}
3883 	PMAP_UNLOCK(pmap);
3884 	return (pa);
3885 }
3886 
3887 /*
3888  *	Routine:	pmap_extract_and_hold
3889  *	Function:
3890  *		Atomically extract and hold the physical page
3891  *		with the given pmap and virtual address pair
3892  *		if that mapping permits the given protection.
3893  */
3894 vm_page_t
pmap_extract_and_hold(pmap_t pmap,vm_offset_t va,vm_prot_t prot)3895 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3896 {
3897 	pdp_entry_t pdpe, *pdpep;
3898 	pd_entry_t pde, *pdep;
3899 	pt_entry_t pte, PG_RW, PG_V;
3900 	vm_page_t m;
3901 
3902 	m = NULL;
3903 	PG_RW = pmap_rw_bit(pmap);
3904 	PG_V = pmap_valid_bit(pmap);
3905 	PMAP_LOCK(pmap);
3906 
3907 	pdpep = pmap_pdpe(pmap, va);
3908 	if (pdpep == NULL || ((pdpe = *pdpep) & PG_V) == 0)
3909 		goto out;
3910 	if ((pdpe & PG_PS) != 0) {
3911 		if ((pdpe & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3912 			goto out;
3913 		m = PHYS_TO_VM_PAGE((pdpe & PG_PS_FRAME) | (va & PDPMASK));
3914 		goto check_page;
3915 	}
3916 
3917 	pdep = pmap_pdpe_to_pde(pdpep, va);
3918 	if (pdep == NULL || ((pde = *pdep) & PG_V) == 0)
3919 		goto out;
3920 	if ((pde & PG_PS) != 0) {
3921 		if ((pde & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3922 			goto out;
3923 		m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) | (va & PDRMASK));
3924 		goto check_page;
3925 	}
3926 
3927 	pte = *pmap_pde_to_pte(pdep, va);
3928 	if ((pte & PG_V) == 0 ||
3929 	    ((pte & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0))
3930 		goto out;
3931 	m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3932 
3933 check_page:
3934 	if (m != NULL && !vm_page_wire_mapped(m))
3935 		m = NULL;
3936 out:
3937 	PMAP_UNLOCK(pmap);
3938 	return (m);
3939 }
3940 
3941 /*
3942  *	Routine:	pmap_kextract
3943  *	Function:
3944  *		Extract the physical page address associated with the given kernel
3945  *		virtual address.
3946  */
3947 vm_paddr_t
pmap_kextract(vm_offset_t va)3948 pmap_kextract(vm_offset_t va)
3949 {
3950 	pd_entry_t pde;
3951 	vm_paddr_t pa;
3952 
3953 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
3954 		pa = DMAP_TO_PHYS(va);
3955 	} else if (PMAP_ADDRESS_IN_LARGEMAP(va)) {
3956 		pa = pmap_large_map_kextract(va);
3957 	} else {
3958 		pde = *vtopde(va);
3959 		if (pde & PG_PS) {
3960 			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
3961 		} else {
3962 			/*
3963 			 * Beware of a concurrent promotion that changes the
3964 			 * PDE at this point!  For example, vtopte() must not
3965 			 * be used to access the PTE because it would use the
3966 			 * new PDE.  It is, however, safe to use the old PDE
3967 			 * because the page table page is preserved by the
3968 			 * promotion.
3969 			 */
3970 			pa = *pmap_pde_to_pte(&pde, va);
3971 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3972 		}
3973 	}
3974 	return (pa);
3975 }
3976 
3977 /***************************************************
3978  * Low level mapping routines.....
3979  ***************************************************/
3980 
3981 /*
3982  * Add a wired page to the kva.
3983  * Note: not SMP coherent.
3984  */
3985 void
pmap_kenter(vm_offset_t va,vm_paddr_t pa)3986 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
3987 {
3988 	pt_entry_t *pte;
3989 
3990 	pte = vtopte(va);
3991 	pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
3992 	    X86_PG_RW | X86_PG_V);
3993 }
3994 
3995 static __inline void
pmap_kenter_attr(vm_offset_t va,vm_paddr_t pa,int mode)3996 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
3997 {
3998 	pt_entry_t *pte;
3999 	int cache_bits;
4000 
4001 	pte = vtopte(va);
4002 	cache_bits = pmap_cache_bits(kernel_pmap, mode, false);
4003 	pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
4004 	    X86_PG_RW | X86_PG_V | cache_bits);
4005 }
4006 
4007 /*
4008  * Remove a page from the kernel pagetables.
4009  * Note: not SMP coherent.
4010  */
4011 void
pmap_kremove(vm_offset_t va)4012 pmap_kremove(vm_offset_t va)
4013 {
4014 	pt_entry_t *pte;
4015 
4016 	pte = vtopte(va);
4017 	pte_clear(pte);
4018 }
4019 
4020 /*
4021  *	Used to map a range of physical addresses into kernel
4022  *	virtual address space.
4023  *
4024  *	The value passed in '*virt' is a suggested virtual address for
4025  *	the mapping. Architectures which can support a direct-mapped
4026  *	physical to virtual region can return the appropriate address
4027  *	within that region, leaving '*virt' unchanged. Other
4028  *	architectures should map the pages starting at '*virt' and
4029  *	update '*virt' with the first usable address after the mapped
4030  *	region.
4031  */
4032 vm_offset_t
pmap_map(vm_offset_t * virt,vm_paddr_t start,vm_paddr_t end,int prot)4033 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
4034 {
4035 	return PHYS_TO_DMAP(start);
4036 }
4037 
4038 /*
4039  * Add a list of wired pages to the kva
4040  * this routine is only used for temporary
4041  * kernel mappings that do not need to have
4042  * page modification or references recorded.
4043  * Note that old mappings are simply written
4044  * over.  The page *must* be wired.
4045  * Note: SMP coherent.  Uses a ranged shootdown IPI.
4046  */
4047 void
pmap_qenter(vm_offset_t sva,vm_page_t * ma,int count)4048 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
4049 {
4050 	pt_entry_t *endpte, oldpte, pa, *pte;
4051 	vm_page_t m;
4052 	int cache_bits;
4053 
4054 	oldpte = 0;
4055 	pte = vtopte(sva);
4056 	endpte = pte + count;
4057 	while (pte < endpte) {
4058 		m = *ma++;
4059 		cache_bits = pmap_cache_bits(kernel_pmap, m->md.pat_mode, false);
4060 		pa = VM_PAGE_TO_PHYS(m) | cache_bits;
4061 		if ((*pte & (PG_FRAME | X86_PG_PTE_CACHE)) != pa) {
4062 			oldpte |= *pte;
4063 			pte_store(pte, pa | pg_g | pg_nx | X86_PG_A |
4064 			    X86_PG_M | X86_PG_RW | X86_PG_V);
4065 		}
4066 		pte++;
4067 	}
4068 	if (__predict_false((oldpte & X86_PG_V) != 0))
4069 		pmap_invalidate_range(kernel_pmap, sva, sva + count *
4070 		    PAGE_SIZE);
4071 }
4072 
4073 /*
4074  * This routine tears out page mappings from the
4075  * kernel -- it is meant only for temporary mappings.
4076  * Note: SMP coherent.  Uses a ranged shootdown IPI.
4077  */
4078 void
pmap_qremove(vm_offset_t sva,int count)4079 pmap_qremove(vm_offset_t sva, int count)
4080 {
4081 	vm_offset_t va;
4082 
4083 	va = sva;
4084 	while (count-- > 0) {
4085 		KASSERT(va >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", va));
4086 		pmap_kremove(va);
4087 		va += PAGE_SIZE;
4088 	}
4089 	pmap_invalidate_range(kernel_pmap, sva, va);
4090 }
4091 
4092 /***************************************************
4093  * Page table page management routines.....
4094  ***************************************************/
4095 /*
4096  * Schedule the specified unused page table page to be freed.  Specifically,
4097  * add the page to the specified list of pages that will be released to the
4098  * physical memory manager after the TLB has been updated.
4099  */
4100 static __inline void
pmap_add_delayed_free_list(vm_page_t m,struct spglist * free,bool set_PG_ZERO)4101 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free, bool set_PG_ZERO)
4102 {
4103 
4104 	if (set_PG_ZERO)
4105 		m->flags |= PG_ZERO;
4106 	else
4107 		m->flags &= ~PG_ZERO;
4108 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
4109 }
4110 
4111 /*
4112  * Inserts the specified page table page into the specified pmap's collection
4113  * of idle page table pages.  Each of a pmap's page table pages is responsible
4114  * for mapping a distinct range of virtual addresses.  The pmap's collection is
4115  * ordered by this virtual address range.
4116  *
4117  * If "promoted" is false, then the page table page "mpte" must be zero filled;
4118  * "mpte"'s valid field will be set to 0.
4119  *
4120  * If "promoted" is true and "allpte_PG_A_set" is false, then "mpte" must
4121  * contain valid mappings with identical attributes except for PG_A; "mpte"'s
4122  * valid field will be set to 1.
4123  *
4124  * If "promoted" and "allpte_PG_A_set" are both true, then "mpte" must contain
4125  * valid mappings with identical attributes including PG_A; "mpte"'s valid
4126  * field will be set to VM_PAGE_BITS_ALL.
4127  */
4128 static __inline int
pmap_insert_pt_page(pmap_t pmap,vm_page_t mpte,bool promoted,bool allpte_PG_A_set)4129 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
4130     bool allpte_PG_A_set)
4131 {
4132 
4133 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4134 	KASSERT(promoted || !allpte_PG_A_set,
4135 	    ("a zero-filled PTP can't have PG_A set in every PTE"));
4136 	mpte->valid = promoted ? (allpte_PG_A_set ? VM_PAGE_BITS_ALL : 1) : 0;
4137 	return (vm_radix_insert(&pmap->pm_root, mpte));
4138 }
4139 
4140 /*
4141  * Removes the page table page mapping the specified virtual address from the
4142  * specified pmap's collection of idle page table pages, and returns it.
4143  * Otherwise, returns NULL if there is no page table page corresponding to the
4144  * specified virtual address.
4145  */
4146 static __inline vm_page_t
pmap_remove_pt_page(pmap_t pmap,vm_offset_t va)4147 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4148 {
4149 
4150 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4151 	return (vm_radix_remove(&pmap->pm_root, pmap_pde_pindex(va)));
4152 }
4153 
4154 /*
4155  * Decrements a page table page's reference count, which is used to record the
4156  * number of valid page table entries within the page.  If the reference count
4157  * drops to zero, then the page table page is unmapped.  Returns true if the
4158  * page table page was unmapped and false otherwise.
4159  */
4160 static inline bool
pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)4161 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4162 {
4163 
4164 	--m->ref_count;
4165 	if (m->ref_count == 0) {
4166 		_pmap_unwire_ptp(pmap, va, m, free);
4167 		return (true);
4168 	} else
4169 		return (false);
4170 }
4171 
4172 static void
_pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)4173 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4174 {
4175 	pml5_entry_t *pml5;
4176 	pml4_entry_t *pml4;
4177 	pdp_entry_t *pdp;
4178 	pd_entry_t *pd;
4179 	vm_page_t pdpg, pdppg, pml4pg;
4180 
4181 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4182 
4183 	/*
4184 	 * unmap the page table page
4185 	 */
4186 	if (m->pindex >= NUPDE + NUPDPE + NUPML4E) {
4187 		/* PML4 page */
4188 		MPASS(pmap_is_la57(pmap));
4189 		pml5 = pmap_pml5e(pmap, va);
4190 		*pml5 = 0;
4191 		if (pmap->pm_pmltopu != NULL && va <= VM_MAXUSER_ADDRESS) {
4192 			pml5 = pmap_pml5e_u(pmap, va);
4193 			*pml5 = 0;
4194 		}
4195 	} else if (m->pindex >= NUPDE + NUPDPE) {
4196 		/* PDP page */
4197 		pml4 = pmap_pml4e(pmap, va);
4198 		*pml4 = 0;
4199 		if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4200 		    va <= VM_MAXUSER_ADDRESS) {
4201 			pml4 = pmap_pml4e_u(pmap, va);
4202 			*pml4 = 0;
4203 		}
4204 	} else if (m->pindex >= NUPDE) {
4205 		/* PD page */
4206 		pdp = pmap_pdpe(pmap, va);
4207 		*pdp = 0;
4208 	} else {
4209 		/* PTE page */
4210 		pd = pmap_pde(pmap, va);
4211 		*pd = 0;
4212 	}
4213 	if (m->pindex < NUPDE) {
4214 		/* We just released a PT, unhold the matching PD */
4215 		pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
4216 		pmap_unwire_ptp(pmap, va, pdpg, free);
4217 	} else if (m->pindex < NUPDE + NUPDPE) {
4218 		/* We just released a PD, unhold the matching PDP */
4219 		pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
4220 		pmap_unwire_ptp(pmap, va, pdppg, free);
4221 	} else if (m->pindex < NUPDE + NUPDPE + NUPML4E && pmap_is_la57(pmap)) {
4222 		/* We just released a PDP, unhold the matching PML4 */
4223 		pml4pg = PHYS_TO_VM_PAGE(*pmap_pml5e(pmap, va) & PG_FRAME);
4224 		pmap_unwire_ptp(pmap, va, pml4pg, free);
4225 	}
4226 
4227 	pmap_pt_page_count_adj(pmap, -1);
4228 
4229 	/*
4230 	 * Put page on a list so that it is released after
4231 	 * *ALL* TLB shootdown is done
4232 	 */
4233 	pmap_add_delayed_free_list(m, free, true);
4234 }
4235 
4236 /*
4237  * After removing a page table entry, this routine is used to
4238  * conditionally free the page, and manage the reference count.
4239  */
4240 static int
pmap_unuse_pt(pmap_t pmap,vm_offset_t va,pd_entry_t ptepde,struct spglist * free)4241 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
4242     struct spglist *free)
4243 {
4244 	vm_page_t mpte;
4245 
4246 	if (va >= VM_MAXUSER_ADDRESS)
4247 		return (0);
4248 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4249 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4250 	return (pmap_unwire_ptp(pmap, va, mpte, free));
4251 }
4252 
4253 /*
4254  * Release a page table page reference after a failed attempt to create a
4255  * mapping.
4256  */
4257 static void
pmap_abort_ptp(pmap_t pmap,vm_offset_t va,vm_page_t mpte)4258 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
4259 {
4260 	struct spglist free;
4261 
4262 	SLIST_INIT(&free);
4263 	if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
4264 		/*
4265 		 * Although "va" was never mapped, paging-structure caches
4266 		 * could nonetheless have entries that refer to the freed
4267 		 * page table pages.  Invalidate those entries.
4268 		 */
4269 		pmap_invalidate_page(pmap, va);
4270 		vm_page_free_pages_toq(&free, true);
4271 	}
4272 }
4273 
4274 static void
pmap_pinit_pcids(pmap_t pmap,uint32_t pcid,int gen)4275 pmap_pinit_pcids(pmap_t pmap, uint32_t pcid, int gen)
4276 {
4277 	struct pmap_pcid *pcidp;
4278 	int i;
4279 
4280 	CPU_FOREACH(i) {
4281 		pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
4282 		pcidp->pm_pcid = pcid;
4283 		pcidp->pm_gen = gen;
4284 	}
4285 }
4286 
4287 void
pmap_pinit0(pmap_t pmap)4288 pmap_pinit0(pmap_t pmap)
4289 {
4290 	struct proc *p;
4291 	struct thread *td;
4292 
4293 	PMAP_LOCK_INIT(pmap);
4294 	pmap->pm_pmltop = kernel_pmap->pm_pmltop;
4295 	pmap->pm_pmltopu = NULL;
4296 	pmap->pm_cr3 = kernel_pmap->pm_cr3;
4297 	/* hack to keep pmap_pti_pcid_invalidate() alive */
4298 	pmap->pm_ucr3 = PMAP_NO_CR3;
4299 	vm_radix_init(&pmap->pm_root);
4300 	CPU_ZERO(&pmap->pm_active);
4301 	TAILQ_INIT(&pmap->pm_pvchunk);
4302 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4303 	pmap->pm_flags = pmap_flags;
4304 	pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8, M_WAITOK);
4305 	pmap_pinit_pcids(pmap, PMAP_PCID_KERN + 1, 1);
4306 	pmap_activate_boot(pmap);
4307 	td = curthread;
4308 	if (pti) {
4309 		p = td->td_proc;
4310 		PROC_LOCK(p);
4311 		p->p_md.md_flags |= P_MD_KPTI;
4312 		PROC_UNLOCK(p);
4313 	}
4314 	pmap_thread_init_invl_gen(td);
4315 
4316 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4317 		pmap_pkru_ranges_zone = uma_zcreate("pkru ranges",
4318 		    sizeof(struct pmap_pkru_range), NULL, NULL, NULL, NULL,
4319 		    UMA_ALIGN_PTR, 0);
4320 	}
4321 }
4322 
4323 void
pmap_pinit_pml4(vm_page_t pml4pg)4324 pmap_pinit_pml4(vm_page_t pml4pg)
4325 {
4326 	pml4_entry_t *pm_pml4;
4327 	int i;
4328 
4329 	pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
4330 
4331 	/* Wire in kernel global address entries. */
4332 	for (i = 0; i < NKPML4E; i++) {
4333 		pm_pml4[KPML4BASE + i] = (KPDPphys + ptoa(i)) | X86_PG_RW |
4334 		    X86_PG_V;
4335 	}
4336 #ifdef KASAN
4337 	for (i = 0; i < NKASANPML4E; i++) {
4338 		pm_pml4[KASANPML4I + i] = (KASANPDPphys + ptoa(i)) | X86_PG_RW |
4339 		    X86_PG_V | pg_nx;
4340 	}
4341 #endif
4342 #ifdef KMSAN
4343 	for (i = 0; i < NKMSANSHADPML4E; i++) {
4344 		pm_pml4[KMSANSHADPML4I + i] = (KMSANSHADPDPphys + ptoa(i)) |
4345 		    X86_PG_RW | X86_PG_V | pg_nx;
4346 	}
4347 	for (i = 0; i < NKMSANORIGPML4E; i++) {
4348 		pm_pml4[KMSANORIGPML4I + i] = (KMSANORIGPDPphys + ptoa(i)) |
4349 		    X86_PG_RW | X86_PG_V | pg_nx;
4350 	}
4351 #endif
4352 	for (i = 0; i < ndmpdpphys; i++) {
4353 		pm_pml4[DMPML4I + i] = (DMPDPphys + ptoa(i)) | X86_PG_RW |
4354 		    X86_PG_V;
4355 	}
4356 
4357 	/* install self-referential address mapping entry(s) */
4358 	pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | X86_PG_V | X86_PG_RW |
4359 	    X86_PG_A | X86_PG_M;
4360 
4361 	/* install large map entries if configured */
4362 	for (i = 0; i < lm_ents; i++)
4363 		pm_pml4[LMSPML4I + i] = kernel_pmap->pm_pmltop[LMSPML4I + i];
4364 }
4365 
4366 void
pmap_pinit_pml5(vm_page_t pml5pg)4367 pmap_pinit_pml5(vm_page_t pml5pg)
4368 {
4369 	pml5_entry_t *pm_pml5;
4370 
4371 	pm_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pg));
4372 
4373 	/*
4374 	 * Add pml5 entry at top of KVA pointing to existing pml4 table,
4375 	 * entering all existing kernel mappings into level 5 table.
4376 	 */
4377 	pm_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
4378 	    X86_PG_RW | X86_PG_A | X86_PG_M;
4379 
4380 	/*
4381 	 * Install self-referential address mapping entry.
4382 	 */
4383 	pm_pml5[PML5PML5I] = VM_PAGE_TO_PHYS(pml5pg) |
4384 	    X86_PG_RW | X86_PG_V | X86_PG_M | X86_PG_A;
4385 }
4386 
4387 static void
pmap_pinit_pml4_pti(vm_page_t pml4pgu)4388 pmap_pinit_pml4_pti(vm_page_t pml4pgu)
4389 {
4390 	pml4_entry_t *pm_pml4u;
4391 	int i;
4392 
4393 	pm_pml4u = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pgu));
4394 	for (i = 0; i < NPML4EPG; i++)
4395 		pm_pml4u[i] = pti_pml4[i];
4396 }
4397 
4398 static void
pmap_pinit_pml5_pti(vm_page_t pml5pgu)4399 pmap_pinit_pml5_pti(vm_page_t pml5pgu)
4400 {
4401 	pml5_entry_t *pm_pml5u;
4402 
4403 	pm_pml5u = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pgu));
4404 	pagezero(pm_pml5u);
4405 
4406 	/*
4407 	 * Add pml5 entry at top of KVA pointing to existing pml4 pti
4408 	 * table, entering all kernel mappings needed for usermode
4409 	 * into level 5 table.
4410 	 */
4411 	pm_pml5u[pmap_pml5e_index(UPT_MAX_ADDRESS)] =
4412 	    pmap_kextract((vm_offset_t)pti_pml4) |
4413 	    X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
4414 }
4415 
4416 /* Allocate a page table page and do related bookkeeping */
4417 static vm_page_t
pmap_alloc_pt_page(pmap_t pmap,vm_pindex_t pindex,int flags)4418 pmap_alloc_pt_page(pmap_t pmap, vm_pindex_t pindex, int flags)
4419 {
4420 	vm_page_t m;
4421 
4422 	m = vm_page_alloc_noobj(flags);
4423 	if (__predict_false(m == NULL))
4424 		return (NULL);
4425 	m->pindex = pindex;
4426 	pmap_pt_page_count_adj(pmap, 1);
4427 	return (m);
4428 }
4429 
4430 static void
pmap_free_pt_page(pmap_t pmap,vm_page_t m,bool zerofilled)4431 pmap_free_pt_page(pmap_t pmap, vm_page_t m, bool zerofilled)
4432 {
4433 	/*
4434 	 * This function assumes the page will need to be unwired,
4435 	 * even though the counterpart allocation in pmap_alloc_pt_page()
4436 	 * doesn't enforce VM_ALLOC_WIRED.  However, all current uses
4437 	 * of pmap_free_pt_page() require unwiring.  The case in which
4438 	 * a PT page doesn't require unwiring because its ref_count has
4439 	 * naturally reached 0 is handled through _pmap_unwire_ptp().
4440 	 */
4441 	vm_page_unwire_noq(m);
4442 	if (zerofilled)
4443 		vm_page_free_zero(m);
4444 	else
4445 		vm_page_free(m);
4446 
4447 	pmap_pt_page_count_adj(pmap, -1);
4448 }
4449 
4450 _Static_assert(sizeof(struct pmap_pcid) == 8, "Fix pcpu zone for pm_pcidp");
4451 
4452 /*
4453  * Initialize a preallocated and zeroed pmap structure,
4454  * such as one in a vmspace structure.
4455  */
4456 int
pmap_pinit_type(pmap_t pmap,enum pmap_type pm_type,int flags)4457 pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags)
4458 {
4459 	vm_page_t pmltop_pg, pmltop_pgu;
4460 	vm_paddr_t pmltop_phys;
4461 
4462 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4463 
4464 	/*
4465 	 * Allocate the page directory page.  Pass NULL instead of a
4466 	 * pointer to the pmap here to avoid calling
4467 	 * pmap_resident_count_adj() through pmap_pt_page_count_adj(),
4468 	 * since that requires pmap lock.  Instead do the accounting
4469 	 * manually.
4470 	 *
4471 	 * Note that final call to pmap_remove() optimization that
4472 	 * checks for zero resident_count is basically disabled by
4473 	 * accounting for top-level page.  But the optimization was
4474 	 * not effective since we started using non-managed mapping of
4475 	 * the shared page.
4476 	 */
4477 	pmltop_pg = pmap_alloc_pt_page(NULL, 0, VM_ALLOC_WIRED | VM_ALLOC_ZERO |
4478 	    VM_ALLOC_WAITOK);
4479 	pmap_pt_page_count_pinit(pmap, 1);
4480 
4481 	pmltop_phys = VM_PAGE_TO_PHYS(pmltop_pg);
4482 	pmap->pm_pmltop = (pml5_entry_t *)PHYS_TO_DMAP(pmltop_phys);
4483 
4484 	if (pmap_pcid_enabled) {
4485 		if (pmap->pm_pcidp == NULL)
4486 			pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8,
4487 			    M_WAITOK);
4488 		pmap_pinit_pcids(pmap, PMAP_PCID_NONE, 0);
4489 	}
4490 	pmap->pm_cr3 = PMAP_NO_CR3;	/* initialize to an invalid value */
4491 	pmap->pm_ucr3 = PMAP_NO_CR3;
4492 	pmap->pm_pmltopu = NULL;
4493 
4494 	pmap->pm_type = pm_type;
4495 
4496 	/*
4497 	 * Do not install the host kernel mappings in the nested page
4498 	 * tables. These mappings are meaningless in the guest physical
4499 	 * address space.
4500 	 * Install minimal kernel mappings in PTI case.
4501 	 */
4502 	switch (pm_type) {
4503 	case PT_X86:
4504 		pmap->pm_cr3 = pmltop_phys;
4505 		if (pmap_is_la57(pmap))
4506 			pmap_pinit_pml5(pmltop_pg);
4507 		else
4508 			pmap_pinit_pml4(pmltop_pg);
4509 		if ((curproc->p_md.md_flags & P_MD_KPTI) != 0) {
4510 			/*
4511 			 * As with pmltop_pg, pass NULL instead of a
4512 			 * pointer to the pmap to ensure that the PTI
4513 			 * page counted explicitly.
4514 			 */
4515 			pmltop_pgu = pmap_alloc_pt_page(NULL, 0,
4516 			    VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
4517 			pmap_pt_page_count_pinit(pmap, 1);
4518 			pmap->pm_pmltopu = (pml4_entry_t *)PHYS_TO_DMAP(
4519 			    VM_PAGE_TO_PHYS(pmltop_pgu));
4520 			if (pmap_is_la57(pmap))
4521 				pmap_pinit_pml5_pti(pmltop_pgu);
4522 			else
4523 				pmap_pinit_pml4_pti(pmltop_pgu);
4524 			pmap->pm_ucr3 = VM_PAGE_TO_PHYS(pmltop_pgu);
4525 		}
4526 		if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4527 			rangeset_init(&pmap->pm_pkru, pkru_dup_range,
4528 			    pkru_free_range, pmap, M_NOWAIT);
4529 		}
4530 		break;
4531 	case PT_EPT:
4532 	case PT_RVI:
4533 		pmap->pm_eptsmr = smr_create("pmap", 0, 0);
4534 		break;
4535 	}
4536 
4537 	vm_radix_init(&pmap->pm_root);
4538 	CPU_ZERO(&pmap->pm_active);
4539 	TAILQ_INIT(&pmap->pm_pvchunk);
4540 	pmap->pm_flags = flags;
4541 	pmap->pm_eptgen = 0;
4542 
4543 	return (1);
4544 }
4545 
4546 int
pmap_pinit(pmap_t pmap)4547 pmap_pinit(pmap_t pmap)
4548 {
4549 
4550 	return (pmap_pinit_type(pmap, PT_X86, pmap_flags));
4551 }
4552 
4553 static void
pmap_allocpte_free_unref(pmap_t pmap,vm_offset_t va,pt_entry_t * pte)4554 pmap_allocpte_free_unref(pmap_t pmap, vm_offset_t va, pt_entry_t *pte)
4555 {
4556 	vm_page_t mpg;
4557 	struct spglist free;
4558 
4559 	mpg = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
4560 	if (mpg->ref_count != 0)
4561 		return;
4562 	SLIST_INIT(&free);
4563 	_pmap_unwire_ptp(pmap, va, mpg, &free);
4564 	pmap_invalidate_page(pmap, va);
4565 	vm_page_free_pages_toq(&free, true);
4566 }
4567 
4568 static pml4_entry_t *
pmap_allocpte_getpml4(pmap_t pmap,struct rwlock ** lockp,vm_offset_t va,bool addref)4569 pmap_allocpte_getpml4(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4570     bool addref)
4571 {
4572 	vm_pindex_t pml5index;
4573 	pml5_entry_t *pml5;
4574 	pml4_entry_t *pml4;
4575 	vm_page_t pml4pg;
4576 	pt_entry_t PG_V;
4577 	bool allocated;
4578 
4579 	if (!pmap_is_la57(pmap))
4580 		return (&pmap->pm_pmltop[pmap_pml4e_index(va)]);
4581 
4582 	PG_V = pmap_valid_bit(pmap);
4583 	pml5index = pmap_pml5e_index(va);
4584 	pml5 = &pmap->pm_pmltop[pml5index];
4585 	if ((*pml5 & PG_V) == 0) {
4586 		if (pmap_allocpte_nosleep(pmap, pmap_pml5e_pindex(va), lockp,
4587 		    va) == NULL)
4588 			return (NULL);
4589 		allocated = true;
4590 	} else {
4591 		allocated = false;
4592 	}
4593 	pml4 = (pml4_entry_t *)PHYS_TO_DMAP(*pml5 & PG_FRAME);
4594 	pml4 = &pml4[pmap_pml4e_index(va)];
4595 	if ((*pml4 & PG_V) == 0) {
4596 		pml4pg = PHYS_TO_VM_PAGE(*pml5 & PG_FRAME);
4597 		if (allocated && !addref)
4598 			pml4pg->ref_count--;
4599 		else if (!allocated && addref)
4600 			pml4pg->ref_count++;
4601 	}
4602 	return (pml4);
4603 }
4604 
4605 static pdp_entry_t *
pmap_allocpte_getpdp(pmap_t pmap,struct rwlock ** lockp,vm_offset_t va,bool addref)4606 pmap_allocpte_getpdp(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4607     bool addref)
4608 {
4609 	vm_page_t pdppg;
4610 	pml4_entry_t *pml4;
4611 	pdp_entry_t *pdp;
4612 	pt_entry_t PG_V;
4613 	bool allocated;
4614 
4615 	PG_V = pmap_valid_bit(pmap);
4616 
4617 	pml4 = pmap_allocpte_getpml4(pmap, lockp, va, false);
4618 	if (pml4 == NULL)
4619 		return (NULL);
4620 
4621 	if ((*pml4 & PG_V) == 0) {
4622 		/* Have to allocate a new pdp, recurse */
4623 		if (pmap_allocpte_nosleep(pmap, pmap_pml4e_pindex(va), lockp,
4624 		    va) == NULL) {
4625 			if (pmap_is_la57(pmap))
4626 				pmap_allocpte_free_unref(pmap, va,
4627 				    pmap_pml5e(pmap, va));
4628 			return (NULL);
4629 		}
4630 		allocated = true;
4631 	} else {
4632 		allocated = false;
4633 	}
4634 	pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
4635 	pdp = &pdp[pmap_pdpe_index(va)];
4636 	if ((*pdp & PG_V) == 0) {
4637 		pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
4638 		if (allocated && !addref)
4639 			pdppg->ref_count--;
4640 		else if (!allocated && addref)
4641 			pdppg->ref_count++;
4642 	}
4643 	return (pdp);
4644 }
4645 
4646 /*
4647  * The ptepindexes, i.e. page indices, of the page table pages encountered
4648  * while translating virtual address va are defined as follows:
4649  * - for the page table page (last level),
4650  *      ptepindex = pmap_pde_pindex(va) = va >> PDRSHIFT,
4651  *   in other words, it is just the index of the PDE that maps the page
4652  *   table page.
4653  * - for the page directory page,
4654  *      ptepindex = NUPDE (number of userland PD entries) +
4655  *          (pmap_pde_index(va) >> NPDEPGSHIFT)
4656  *   i.e. index of PDPE is put after the last index of PDE,
4657  * - for the page directory pointer page,
4658  *      ptepindex = NUPDE + NUPDPE + (pmap_pde_index(va) >> (NPDEPGSHIFT +
4659  *          NPML4EPGSHIFT),
4660  *   i.e. index of pml4e is put after the last index of PDPE,
4661  * - for the PML4 page (if LA57 mode is enabled),
4662  *      ptepindex = NUPDE + NUPDPE + NUPML4E + (pmap_pde_index(va) >>
4663  *          (NPDEPGSHIFT + NPML4EPGSHIFT + NPML5EPGSHIFT),
4664  *   i.e. index of pml5e is put after the last index of PML4E.
4665  *
4666  * Define an order on the paging entries, where all entries of the
4667  * same height are put together, then heights are put from deepest to
4668  * root.  Then ptexpindex is the sequential number of the
4669  * corresponding paging entry in this order.
4670  *
4671  * The values of NUPDE, NUPDPE, and NUPML4E are determined by the size of
4672  * LA57 paging structures even in LA48 paging mode. Moreover, the
4673  * ptepindexes are calculated as if the paging structures were 5-level
4674  * regardless of the actual mode of operation.
4675  *
4676  * The root page at PML4/PML5 does not participate in this indexing scheme,
4677  * since it is statically allocated by pmap_pinit() and not by pmap_allocpte().
4678  */
4679 static vm_page_t
pmap_allocpte_nosleep(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp,vm_offset_t va)4680 pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4681     vm_offset_t va)
4682 {
4683 	vm_pindex_t pml5index, pml4index;
4684 	pml5_entry_t *pml5, *pml5u;
4685 	pml4_entry_t *pml4, *pml4u;
4686 	pdp_entry_t *pdp;
4687 	pd_entry_t *pd;
4688 	vm_page_t m, pdpg;
4689 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
4690 
4691 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4692 
4693 	PG_A = pmap_accessed_bit(pmap);
4694 	PG_M = pmap_modified_bit(pmap);
4695 	PG_V = pmap_valid_bit(pmap);
4696 	PG_RW = pmap_rw_bit(pmap);
4697 
4698 	/*
4699 	 * Allocate a page table page.
4700 	 */
4701 	m = pmap_alloc_pt_page(pmap, ptepindex,
4702 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
4703 	if (m == NULL)
4704 		return (NULL);
4705 
4706 	/*
4707 	 * Map the pagetable page into the process address space, if
4708 	 * it isn't already there.
4709 	 */
4710 	if (ptepindex >= NUPDE + NUPDPE + NUPML4E) {
4711 		MPASS(pmap_is_la57(pmap));
4712 
4713 		pml5index = pmap_pml5e_index(va);
4714 		pml5 = &pmap->pm_pmltop[pml5index];
4715 		KASSERT((*pml5 & PG_V) == 0,
4716 		    ("pmap %p va %#lx pml5 %#lx", pmap, va, *pml5));
4717 		*pml5 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4718 
4719 		if (pmap->pm_pmltopu != NULL && pml5index < NUPML5E) {
4720 			MPASS(pmap->pm_ucr3 != PMAP_NO_CR3);
4721 			*pml5 |= pg_nx;
4722 
4723 			pml5u = &pmap->pm_pmltopu[pml5index];
4724 			*pml5u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4725 			    PG_A | PG_M;
4726 		}
4727 	} else if (ptepindex >= NUPDE + NUPDPE) {
4728 		pml4index = pmap_pml4e_index(va);
4729 		/* Wire up a new PDPE page */
4730 		pml4 = pmap_allocpte_getpml4(pmap, lockp, va, true);
4731 		if (pml4 == NULL) {
4732 			pmap_free_pt_page(pmap, m, true);
4733 			return (NULL);
4734 		}
4735 		KASSERT((*pml4 & PG_V) == 0,
4736 		    ("pmap %p va %#lx pml4 %#lx", pmap, va, *pml4));
4737 		*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4738 
4739 		if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4740 		    pml4index < NUPML4E) {
4741 			MPASS(pmap->pm_ucr3 != PMAP_NO_CR3);
4742 
4743 			/*
4744 			 * PTI: Make all user-space mappings in the
4745 			 * kernel-mode page table no-execute so that
4746 			 * we detect any programming errors that leave
4747 			 * the kernel-mode page table active on return
4748 			 * to user space.
4749 			 */
4750 			*pml4 |= pg_nx;
4751 
4752 			pml4u = &pmap->pm_pmltopu[pml4index];
4753 			*pml4u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4754 			    PG_A | PG_M;
4755 		}
4756 	} else if (ptepindex >= NUPDE) {
4757 		/* Wire up a new PDE page */
4758 		pdp = pmap_allocpte_getpdp(pmap, lockp, va, true);
4759 		if (pdp == NULL) {
4760 			pmap_free_pt_page(pmap, m, true);
4761 			return (NULL);
4762 		}
4763 		KASSERT((*pdp & PG_V) == 0,
4764 		    ("pmap %p va %#lx pdp %#lx", pmap, va, *pdp));
4765 		*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4766 	} else {
4767 		/* Wire up a new PTE page */
4768 		pdp = pmap_allocpte_getpdp(pmap, lockp, va, false);
4769 		if (pdp == NULL) {
4770 			pmap_free_pt_page(pmap, m, true);
4771 			return (NULL);
4772 		}
4773 		if ((*pdp & PG_V) == 0) {
4774 			/* Have to allocate a new pd, recurse */
4775 			if (pmap_allocpte_nosleep(pmap, pmap_pdpe_pindex(va),
4776 			    lockp, va) == NULL) {
4777 				pmap_allocpte_free_unref(pmap, va,
4778 				    pmap_pml4e(pmap, va));
4779 				pmap_free_pt_page(pmap, m, true);
4780 				return (NULL);
4781 			}
4782 		} else {
4783 			/* Add reference to the pd page */
4784 			pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
4785 			pdpg->ref_count++;
4786 		}
4787 		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
4788 
4789 		/* Now we know where the page directory page is */
4790 		pd = &pd[pmap_pde_index(va)];
4791 		KASSERT((*pd & PG_V) == 0,
4792 		    ("pmap %p va %#lx pd %#lx", pmap, va, *pd));
4793 		*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4794 	}
4795 
4796 	return (m);
4797 }
4798 
4799 /*
4800  * This routine is called if the desired page table page does not exist.
4801  *
4802  * If page table page allocation fails, this routine may sleep before
4803  * returning NULL.  It sleeps only if a lock pointer was given.  Sleep
4804  * occurs right before returning to the caller. This way, we never
4805  * drop pmap lock to sleep while a page table page has ref_count == 0,
4806  * which prevents the page from being freed under us.
4807  */
4808 static vm_page_t
pmap_allocpte_alloc(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp,vm_offset_t va)4809 pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4810     vm_offset_t va)
4811 {
4812 	vm_page_t m;
4813 
4814 	m = pmap_allocpte_nosleep(pmap, ptepindex, lockp, va);
4815 	if (m == NULL && lockp != NULL) {
4816 		RELEASE_PV_LIST_LOCK(lockp);
4817 		PMAP_UNLOCK(pmap);
4818 		PMAP_ASSERT_NOT_IN_DI();
4819 		vm_wait(NULL);
4820 		PMAP_LOCK(pmap);
4821 	}
4822 	return (m);
4823 }
4824 
4825 static pd_entry_t *
pmap_alloc_pde(pmap_t pmap,vm_offset_t va,vm_page_t * pdpgp,struct rwlock ** lockp)4826 pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
4827     struct rwlock **lockp)
4828 {
4829 	pdp_entry_t *pdpe, PG_V;
4830 	pd_entry_t *pde;
4831 	vm_page_t pdpg;
4832 	vm_pindex_t pdpindex;
4833 
4834 	PG_V = pmap_valid_bit(pmap);
4835 
4836 retry:
4837 	pdpe = pmap_pdpe(pmap, va);
4838 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
4839 		pde = pmap_pdpe_to_pde(pdpe, va);
4840 		if (va < VM_MAXUSER_ADDRESS) {
4841 			/* Add a reference to the pd page. */
4842 			pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
4843 			pdpg->ref_count++;
4844 		} else
4845 			pdpg = NULL;
4846 	} else if (va < VM_MAXUSER_ADDRESS) {
4847 		/* Allocate a pd page. */
4848 		pdpindex = pmap_pde_pindex(va) >> NPDPEPGSHIFT;
4849 		pdpg = pmap_allocpte_alloc(pmap, NUPDE + pdpindex, lockp, va);
4850 		if (pdpg == NULL) {
4851 			if (lockp != NULL)
4852 				goto retry;
4853 			else
4854 				return (NULL);
4855 		}
4856 		pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4857 		pde = &pde[pmap_pde_index(va)];
4858 	} else
4859 		panic("pmap_alloc_pde: missing page table page for va %#lx",
4860 		    va);
4861 	*pdpgp = pdpg;
4862 	return (pde);
4863 }
4864 
4865 static vm_page_t
pmap_allocpte(pmap_t pmap,vm_offset_t va,struct rwlock ** lockp)4866 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4867 {
4868 	vm_pindex_t ptepindex;
4869 	pd_entry_t *pd, PG_V;
4870 	vm_page_t m;
4871 
4872 	PG_V = pmap_valid_bit(pmap);
4873 
4874 	/*
4875 	 * Calculate pagetable page index
4876 	 */
4877 	ptepindex = pmap_pde_pindex(va);
4878 retry:
4879 	/*
4880 	 * Get the page directory entry
4881 	 */
4882 	pd = pmap_pde(pmap, va);
4883 
4884 	/*
4885 	 * This supports switching from a 2MB page to a
4886 	 * normal 4K page.
4887 	 */
4888 	if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
4889 		if (!pmap_demote_pde_locked(pmap, pd, va, lockp)) {
4890 			/*
4891 			 * Invalidation of the 2MB page mapping may have caused
4892 			 * the deallocation of the underlying PD page.
4893 			 */
4894 			pd = NULL;
4895 		}
4896 	}
4897 
4898 	/*
4899 	 * If the page table page is mapped, we just increment the
4900 	 * hold count, and activate it.
4901 	 */
4902 	if (pd != NULL && (*pd & PG_V) != 0) {
4903 		m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
4904 		m->ref_count++;
4905 	} else {
4906 		/*
4907 		 * Here if the pte page isn't mapped, or if it has been
4908 		 * deallocated.
4909 		 */
4910 		m = pmap_allocpte_alloc(pmap, ptepindex, lockp, va);
4911 		if (m == NULL && lockp != NULL)
4912 			goto retry;
4913 	}
4914 	return (m);
4915 }
4916 
4917 /***************************************************
4918  * Pmap allocation/deallocation routines.
4919  ***************************************************/
4920 
4921 /*
4922  * Release any resources held by the given physical map.
4923  * Called when a pmap initialized by pmap_pinit is being released.
4924  * Should only be called if the map contains no valid mappings.
4925  */
4926 void
pmap_release(pmap_t pmap)4927 pmap_release(pmap_t pmap)
4928 {
4929 	vm_page_t m;
4930 	int i;
4931 
4932 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
4933 	    ("pmap_release: pmap %p has reserved page table page(s)",
4934 	    pmap));
4935 	KASSERT(CPU_EMPTY(&pmap->pm_active),
4936 	    ("releasing active pmap %p", pmap));
4937 
4938 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_pmltop));
4939 
4940 	if (pmap_is_la57(pmap)) {
4941 		pmap->pm_pmltop[pmap_pml5e_index(UPT_MAX_ADDRESS)] = 0;
4942 		pmap->pm_pmltop[PML5PML5I] = 0;
4943 	} else {
4944 		for (i = 0; i < NKPML4E; i++)	/* KVA */
4945 			pmap->pm_pmltop[KPML4BASE + i] = 0;
4946 #ifdef KASAN
4947 		for (i = 0; i < NKASANPML4E; i++) /* KASAN shadow map */
4948 			pmap->pm_pmltop[KASANPML4I + i] = 0;
4949 #endif
4950 #ifdef KMSAN
4951 		for (i = 0; i < NKMSANSHADPML4E; i++) /* KMSAN shadow map */
4952 			pmap->pm_pmltop[KMSANSHADPML4I + i] = 0;
4953 		for (i = 0; i < NKMSANORIGPML4E; i++) /* KMSAN shadow map */
4954 			pmap->pm_pmltop[KMSANORIGPML4I + i] = 0;
4955 #endif
4956 		for (i = 0; i < ndmpdpphys; i++)/* Direct Map */
4957 			pmap->pm_pmltop[DMPML4I + i] = 0;
4958 		pmap->pm_pmltop[PML4PML4I] = 0;	/* Recursive Mapping */
4959 		for (i = 0; i < lm_ents; i++)	/* Large Map */
4960 			pmap->pm_pmltop[LMSPML4I + i] = 0;
4961 	}
4962 
4963 	pmap_free_pt_page(NULL, m, true);
4964 	pmap_pt_page_count_pinit(pmap, -1);
4965 
4966 	if (pmap->pm_pmltopu != NULL) {
4967 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->
4968 		    pm_pmltopu));
4969 		pmap_free_pt_page(NULL, m, false);
4970 		pmap_pt_page_count_pinit(pmap, -1);
4971 	}
4972 	if (pmap->pm_type == PT_X86 &&
4973 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
4974 		rangeset_fini(&pmap->pm_pkru);
4975 
4976 	KASSERT(pmap->pm_stats.resident_count == 0,
4977 	    ("pmap_release: pmap %p resident count %ld != 0",
4978 	    pmap, pmap->pm_stats.resident_count));
4979 }
4980 
4981 static int
kvm_size(SYSCTL_HANDLER_ARGS)4982 kvm_size(SYSCTL_HANDLER_ARGS)
4983 {
4984 	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
4985 
4986 	return sysctl_handle_long(oidp, &ksize, 0, req);
4987 }
4988 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4989     0, 0, kvm_size, "LU",
4990     "Size of KVM");
4991 
4992 static int
kvm_free(SYSCTL_HANDLER_ARGS)4993 kvm_free(SYSCTL_HANDLER_ARGS)
4994 {
4995 	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
4996 
4997 	return sysctl_handle_long(oidp, &kfree, 0, req);
4998 }
4999 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
5000     0, 0, kvm_free, "LU",
5001     "Amount of KVM free");
5002 
5003 #ifdef KMSAN
5004 static void
pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa,vm_size_t size)5005 pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa, vm_size_t size)
5006 {
5007 	pdp_entry_t *pdpe;
5008 	pd_entry_t *pde;
5009 	pt_entry_t *pte;
5010 	vm_paddr_t dummypa, dummypd, dummypt;
5011 	int i, npde, npdpg;
5012 
5013 	npdpg = howmany(size, NBPDP);
5014 	npde = size / NBPDR;
5015 
5016 	dummypa = vm_phys_early_alloc(-1, PAGE_SIZE);
5017 	pagezero((void *)PHYS_TO_DMAP(dummypa));
5018 
5019 	dummypt = vm_phys_early_alloc(-1, PAGE_SIZE);
5020 	pagezero((void *)PHYS_TO_DMAP(dummypt));
5021 	dummypd = vm_phys_early_alloc(-1, PAGE_SIZE * npdpg);
5022 	for (i = 0; i < npdpg; i++)
5023 		pagezero((void *)PHYS_TO_DMAP(dummypd + ptoa(i)));
5024 
5025 	pte = (pt_entry_t *)PHYS_TO_DMAP(dummypt);
5026 	for (i = 0; i < NPTEPG; i++)
5027 		pte[i] = (pt_entry_t)(dummypa | X86_PG_V | X86_PG_RW |
5028 		    X86_PG_A | X86_PG_M | pg_nx);
5029 
5030 	pde = (pd_entry_t *)PHYS_TO_DMAP(dummypd);
5031 	for (i = 0; i < npde; i++)
5032 		pde[i] = (pd_entry_t)(dummypt | X86_PG_V | X86_PG_RW | pg_nx);
5033 
5034 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(pdppa);
5035 	for (i = 0; i < npdpg; i++)
5036 		pdpe[i] = (pdp_entry_t)(dummypd + ptoa(i) | X86_PG_V |
5037 		    X86_PG_RW | pg_nx);
5038 }
5039 
5040 static void
pmap_kmsan_page_array_startup(vm_offset_t start,vm_offset_t end)5041 pmap_kmsan_page_array_startup(vm_offset_t start, vm_offset_t end)
5042 {
5043 	vm_size_t size;
5044 
5045 	KASSERT(start % NBPDP == 0, ("unaligned page array start address"));
5046 
5047 	/*
5048 	 * The end of the page array's KVA region is 2MB aligned, see
5049 	 * kmem_init().
5050 	 */
5051 	size = round_2mpage(end) - start;
5052 	pmap_kmsan_shadow_map_page_array(KMSANSHADPDPphys, size);
5053 	pmap_kmsan_shadow_map_page_array(KMSANORIGPDPphys, size);
5054 }
5055 #endif
5056 
5057 /*
5058  * Allocate physical memory for the vm_page array and map it into KVA,
5059  * attempting to back the vm_pages with domain-local memory.
5060  */
5061 void
pmap_page_array_startup(long pages)5062 pmap_page_array_startup(long pages)
5063 {
5064 	pdp_entry_t *pdpe;
5065 	pd_entry_t *pde, newpdir;
5066 	vm_offset_t va, start, end;
5067 	vm_paddr_t pa;
5068 	long pfn;
5069 	int domain, i;
5070 
5071 	vm_page_array_size = pages;
5072 
5073 	start = VM_MIN_KERNEL_ADDRESS;
5074 	end = start + pages * sizeof(struct vm_page);
5075 	for (va = start; va < end; va += NBPDR) {
5076 		pfn = first_page + (va - start) / sizeof(struct vm_page);
5077 		domain = vm_phys_domain(ptoa(pfn));
5078 		pdpe = pmap_pdpe(kernel_pmap, va);
5079 		if ((*pdpe & X86_PG_V) == 0) {
5080 			pa = vm_phys_early_alloc(domain, PAGE_SIZE);
5081 			dump_add_page(pa);
5082 			pagezero((void *)PHYS_TO_DMAP(pa));
5083 			*pdpe = (pdp_entry_t)(pa | X86_PG_V | X86_PG_RW |
5084 			    X86_PG_A | X86_PG_M);
5085 		}
5086 		pde = pmap_pdpe_to_pde(pdpe, va);
5087 		if ((*pde & X86_PG_V) != 0)
5088 			panic("Unexpected pde");
5089 		pa = vm_phys_early_alloc(domain, NBPDR);
5090 		for (i = 0; i < NPDEPG; i++)
5091 			dump_add_page(pa + i * PAGE_SIZE);
5092 		newpdir = (pd_entry_t)(pa | X86_PG_V | X86_PG_RW | X86_PG_A |
5093 		    X86_PG_M | PG_PS | pg_g | pg_nx);
5094 		pde_store(pde, newpdir);
5095 	}
5096 	vm_page_array = (vm_page_t)start;
5097 
5098 #ifdef KMSAN
5099 	pmap_kmsan_page_array_startup(start, end);
5100 #endif
5101 }
5102 
5103 /*
5104  * grow the number of kernel page table entries, if needed
5105  */
5106 void
pmap_growkernel(vm_offset_t addr)5107 pmap_growkernel(vm_offset_t addr)
5108 {
5109 	vm_paddr_t paddr;
5110 	vm_page_t nkpg;
5111 	pd_entry_t *pde, newpdir;
5112 	pdp_entry_t *pdpe;
5113 	vm_offset_t end;
5114 
5115 	TSENTER();
5116 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
5117 
5118 	/*
5119 	 * The kernel map covers two distinct regions of KVA: that used
5120 	 * for dynamic kernel memory allocations, and the uppermost 2GB
5121 	 * of the virtual address space.  The latter is used to map the
5122 	 * kernel and loadable kernel modules.  This scheme enables the
5123 	 * use of a special code generation model for kernel code which
5124 	 * takes advantage of compact addressing modes in machine code.
5125 	 *
5126 	 * Both regions grow upwards; to avoid wasting memory, the gap
5127 	 * in between is unmapped.  If "addr" is above "KERNBASE", the
5128 	 * kernel's region is grown, otherwise the kmem region is grown.
5129 	 *
5130 	 * The correctness of this action is based on the following
5131 	 * argument: vm_map_insert() allocates contiguous ranges of the
5132 	 * kernel virtual address space.  It calls this function if a range
5133 	 * ends after "kernel_vm_end".  If the kernel is mapped between
5134 	 * "kernel_vm_end" and "addr", then the range cannot begin at
5135 	 * "kernel_vm_end".  In fact, its beginning address cannot be less
5136 	 * than the kernel.  Thus, there is no immediate need to allocate
5137 	 * any new kernel page table pages between "kernel_vm_end" and
5138 	 * "KERNBASE".
5139 	 */
5140 	if (KERNBASE < addr) {
5141 		end = KERNBASE + nkpt * NBPDR;
5142 		if (end == 0) {
5143 			TSEXIT();
5144 			return;
5145 		}
5146 	} else {
5147 		end = kernel_vm_end;
5148 	}
5149 
5150 	addr = roundup2(addr, NBPDR);
5151 	if (addr - 1 >= vm_map_max(kernel_map))
5152 		addr = vm_map_max(kernel_map);
5153 	if (addr <= end) {
5154 		/*
5155 		 * The grown region is already mapped, so there is
5156 		 * nothing to do.
5157 		 */
5158 		TSEXIT();
5159 		return;
5160 	}
5161 
5162 	kasan_shadow_map(end, addr - end);
5163 	kmsan_shadow_map(end, addr - end);
5164 	while (end < addr) {
5165 		pdpe = pmap_pdpe(kernel_pmap, end);
5166 		if ((*pdpe & X86_PG_V) == 0) {
5167 			nkpg = pmap_alloc_pt_page(kernel_pmap,
5168 			    pmap_pdpe_pindex(end), VM_ALLOC_INTERRUPT |
5169 			        VM_ALLOC_NOFREE | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
5170 			if (nkpg == NULL)
5171 				panic("pmap_growkernel: no memory to grow kernel");
5172 			paddr = VM_PAGE_TO_PHYS(nkpg);
5173 			*pdpe = (pdp_entry_t)(paddr | X86_PG_V | X86_PG_RW |
5174 			    X86_PG_A | X86_PG_M);
5175 			continue; /* try again */
5176 		}
5177 		pde = pmap_pdpe_to_pde(pdpe, end);
5178 		if ((*pde & X86_PG_V) != 0) {
5179 			end = (end + NBPDR) & ~PDRMASK;
5180 			if (end - 1 >= vm_map_max(kernel_map)) {
5181 				end = vm_map_max(kernel_map);
5182 				break;
5183 			}
5184 			continue;
5185 		}
5186 
5187 		nkpg = pmap_alloc_pt_page(kernel_pmap, pmap_pde_pindex(end),
5188 		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOFREE | VM_ALLOC_WIRED |
5189 			VM_ALLOC_ZERO);
5190 		if (nkpg == NULL)
5191 			panic("pmap_growkernel: no memory to grow kernel");
5192 		paddr = VM_PAGE_TO_PHYS(nkpg);
5193 		newpdir = paddr | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
5194 		pde_store(pde, newpdir);
5195 
5196 		end = (end + NBPDR) & ~PDRMASK;
5197 		if (end - 1 >= vm_map_max(kernel_map)) {
5198 			end = vm_map_max(kernel_map);
5199 			break;
5200 		}
5201 	}
5202 
5203 	if (end <= KERNBASE)
5204 		kernel_vm_end = end;
5205 	else
5206 		nkpt = howmany(end - KERNBASE, NBPDR);
5207 	TSEXIT();
5208 }
5209 
5210 /***************************************************
5211  * page management routines.
5212  ***************************************************/
5213 
5214 static const uint64_t pc_freemask[_NPCM] = {
5215 	[0 ... _NPCM - 2] = PC_FREEN,
5216 	[_NPCM - 1] = PC_FREEL
5217 };
5218 
5219 #ifdef PV_STATS
5220 
5221 static COUNTER_U64_DEFINE_EARLY(pc_chunk_count);
5222 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD,
5223     &pc_chunk_count, "Current number of pv entry cnunks");
5224 
5225 static COUNTER_U64_DEFINE_EARLY(pc_chunk_allocs);
5226 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD,
5227     &pc_chunk_allocs, "Total number of pv entry chunks allocated");
5228 
5229 static COUNTER_U64_DEFINE_EARLY(pc_chunk_frees);
5230 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD,
5231     &pc_chunk_frees, "Total number of pv entry chunks freed");
5232 
5233 static COUNTER_U64_DEFINE_EARLY(pc_chunk_tryfail);
5234 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD,
5235     &pc_chunk_tryfail,
5236     "Number of failed attempts to get a pv entry chunk page");
5237 
5238 static COUNTER_U64_DEFINE_EARLY(pv_entry_frees);
5239 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD,
5240     &pv_entry_frees, "Total number of pv entries freed");
5241 
5242 static COUNTER_U64_DEFINE_EARLY(pv_entry_allocs);
5243 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD,
5244     &pv_entry_allocs, "Total number of pv entries allocated");
5245 
5246 static COUNTER_U64_DEFINE_EARLY(pv_entry_count);
5247 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD,
5248     &pv_entry_count, "Current number of pv entries");
5249 
5250 static COUNTER_U64_DEFINE_EARLY(pv_entry_spare);
5251 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD,
5252     &pv_entry_spare, "Current number of spare pv entries");
5253 #endif
5254 
5255 static void
reclaim_pv_chunk_leave_pmap(pmap_t pmap,pmap_t locked_pmap,bool start_di)5256 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap, bool start_di)
5257 {
5258 
5259 	if (pmap == NULL)
5260 		return;
5261 	pmap_invalidate_all(pmap);
5262 	if (pmap != locked_pmap)
5263 		PMAP_UNLOCK(pmap);
5264 	if (start_di)
5265 		pmap_delayed_invl_finish();
5266 }
5267 
5268 /*
5269  * We are in a serious low memory condition.  Resort to
5270  * drastic measures to free some pages so we can allocate
5271  * another pv entry chunk.
5272  *
5273  * Returns NULL if PV entries were reclaimed from the specified pmap.
5274  *
5275  * We do not, however, unmap 2mpages because subsequent accesses will
5276  * allocate per-page pv entries until repromotion occurs, thereby
5277  * exacerbating the shortage of free pv entries.
5278  */
5279 static vm_page_t
reclaim_pv_chunk_domain(pmap_t locked_pmap,struct rwlock ** lockp,int domain)5280 reclaim_pv_chunk_domain(pmap_t locked_pmap, struct rwlock **lockp, int domain)
5281 {
5282 	struct pv_chunks_list *pvc;
5283 	struct pv_chunk *pc, *pc_marker, *pc_marker_end;
5284 	struct pv_chunk_header pc_marker_b, pc_marker_end_b;
5285 	struct md_page *pvh;
5286 	pd_entry_t *pde;
5287 	pmap_t next_pmap, pmap;
5288 	pt_entry_t *pte, tpte;
5289 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
5290 	pv_entry_t pv;
5291 	vm_offset_t va;
5292 	vm_page_t m, m_pc;
5293 	struct spglist free;
5294 	uint64_t inuse;
5295 	int bit, field, freed;
5296 	bool start_di, restart;
5297 
5298 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
5299 	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
5300 	pmap = NULL;
5301 	m_pc = NULL;
5302 	PG_G = PG_A = PG_M = PG_RW = 0;
5303 	SLIST_INIT(&free);
5304 	bzero(&pc_marker_b, sizeof(pc_marker_b));
5305 	bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
5306 	pc_marker = (struct pv_chunk *)&pc_marker_b;
5307 	pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
5308 
5309 	/*
5310 	 * A delayed invalidation block should already be active if
5311 	 * pmap_advise() or pmap_remove() called this function by way
5312 	 * of pmap_demote_pde_locked().
5313 	 */
5314 	start_di = pmap_not_in_di();
5315 
5316 	pvc = &pv_chunks[domain];
5317 	mtx_lock(&pvc->pvc_lock);
5318 	pvc->active_reclaims++;
5319 	TAILQ_INSERT_HEAD(&pvc->pvc_list, pc_marker, pc_lru);
5320 	TAILQ_INSERT_TAIL(&pvc->pvc_list, pc_marker_end, pc_lru);
5321 	while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
5322 	    SLIST_EMPTY(&free)) {
5323 		next_pmap = pc->pc_pmap;
5324 		if (next_pmap == NULL) {
5325 			/*
5326 			 * The next chunk is a marker.  However, it is
5327 			 * not our marker, so active_reclaims must be
5328 			 * > 1.  Consequently, the next_chunk code
5329 			 * will not rotate the pv_chunks list.
5330 			 */
5331 			goto next_chunk;
5332 		}
5333 		mtx_unlock(&pvc->pvc_lock);
5334 
5335 		/*
5336 		 * A pv_chunk can only be removed from the pc_lru list
5337 		 * when both pc_chunks_mutex is owned and the
5338 		 * corresponding pmap is locked.
5339 		 */
5340 		if (pmap != next_pmap) {
5341 			restart = false;
5342 			reclaim_pv_chunk_leave_pmap(pmap, locked_pmap,
5343 			    start_di);
5344 			pmap = next_pmap;
5345 			/* Avoid deadlock and lock recursion. */
5346 			if (pmap > locked_pmap) {
5347 				RELEASE_PV_LIST_LOCK(lockp);
5348 				PMAP_LOCK(pmap);
5349 				if (start_di)
5350 					pmap_delayed_invl_start();
5351 				mtx_lock(&pvc->pvc_lock);
5352 				restart = true;
5353 			} else if (pmap != locked_pmap) {
5354 				if (PMAP_TRYLOCK(pmap)) {
5355 					if (start_di)
5356 						pmap_delayed_invl_start();
5357 					mtx_lock(&pvc->pvc_lock);
5358 					restart = true;
5359 				} else {
5360 					pmap = NULL; /* pmap is not locked */
5361 					mtx_lock(&pvc->pvc_lock);
5362 					pc = TAILQ_NEXT(pc_marker, pc_lru);
5363 					if (pc == NULL ||
5364 					    pc->pc_pmap != next_pmap)
5365 						continue;
5366 					goto next_chunk;
5367 				}
5368 			} else if (start_di)
5369 				pmap_delayed_invl_start();
5370 			PG_G = pmap_global_bit(pmap);
5371 			PG_A = pmap_accessed_bit(pmap);
5372 			PG_M = pmap_modified_bit(pmap);
5373 			PG_RW = pmap_rw_bit(pmap);
5374 			if (restart)
5375 				continue;
5376 		}
5377 
5378 		/*
5379 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
5380 		 */
5381 		freed = 0;
5382 		for (field = 0; field < _NPCM; field++) {
5383 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
5384 			    inuse != 0; inuse &= ~(1UL << bit)) {
5385 				bit = bsfq(inuse);
5386 				pv = &pc->pc_pventry[field * 64 + bit];
5387 				va = pv->pv_va;
5388 				pde = pmap_pde(pmap, va);
5389 				if ((*pde & PG_PS) != 0)
5390 					continue;
5391 				pte = pmap_pde_to_pte(pde, va);
5392 				if ((*pte & PG_W) != 0)
5393 					continue;
5394 				tpte = pte_load_clear(pte);
5395 				if ((tpte & PG_G) != 0)
5396 					pmap_invalidate_page(pmap, va);
5397 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
5398 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5399 					vm_page_dirty(m);
5400 				if ((tpte & PG_A) != 0)
5401 					vm_page_aflag_set(m, PGA_REFERENCED);
5402 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5403 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5404 				m->md.pv_gen++;
5405 				if (TAILQ_EMPTY(&m->md.pv_list) &&
5406 				    (m->flags & PG_FICTITIOUS) == 0) {
5407 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5408 					if (TAILQ_EMPTY(&pvh->pv_list)) {
5409 						vm_page_aflag_clear(m,
5410 						    PGA_WRITEABLE);
5411 					}
5412 				}
5413 				pmap_delayed_invl_page(m);
5414 				pc->pc_map[field] |= 1UL << bit;
5415 				pmap_unuse_pt(pmap, va, *pde, &free);
5416 				freed++;
5417 			}
5418 		}
5419 		if (freed == 0) {
5420 			mtx_lock(&pvc->pvc_lock);
5421 			goto next_chunk;
5422 		}
5423 		/* Every freed mapping is for a 4 KB page. */
5424 		pmap_resident_count_adj(pmap, -freed);
5425 		PV_STAT(counter_u64_add(pv_entry_frees, freed));
5426 		PV_STAT(counter_u64_add(pv_entry_spare, freed));
5427 		PV_STAT(counter_u64_add(pv_entry_count, -freed));
5428 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5429 		if (pc_is_free(pc)) {
5430 			PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5431 			PV_STAT(counter_u64_add(pc_chunk_count, -1));
5432 			PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5433 			/* Entire chunk is free; return it. */
5434 			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5435 			dump_drop_page(m_pc->phys_addr);
5436 			mtx_lock(&pvc->pvc_lock);
5437 			TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5438 			break;
5439 		}
5440 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5441 		mtx_lock(&pvc->pvc_lock);
5442 		/* One freed pv entry in locked_pmap is sufficient. */
5443 		if (pmap == locked_pmap)
5444 			break;
5445 next_chunk:
5446 		TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5447 		TAILQ_INSERT_AFTER(&pvc->pvc_list, pc, pc_marker, pc_lru);
5448 		if (pvc->active_reclaims == 1 && pmap != NULL) {
5449 			/*
5450 			 * Rotate the pv chunks list so that we do not
5451 			 * scan the same pv chunks that could not be
5452 			 * freed (because they contained a wired
5453 			 * and/or superpage mapping) on every
5454 			 * invocation of reclaim_pv_chunk().
5455 			 */
5456 			while ((pc = TAILQ_FIRST(&pvc->pvc_list)) != pc_marker) {
5457 				MPASS(pc->pc_pmap != NULL);
5458 				TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5459 				TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5460 			}
5461 		}
5462 	}
5463 	TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5464 	TAILQ_REMOVE(&pvc->pvc_list, pc_marker_end, pc_lru);
5465 	pvc->active_reclaims--;
5466 	mtx_unlock(&pvc->pvc_lock);
5467 	reclaim_pv_chunk_leave_pmap(pmap, locked_pmap, start_di);
5468 	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
5469 		m_pc = SLIST_FIRST(&free);
5470 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
5471 		/* Recycle a freed page table page. */
5472 		m_pc->ref_count = 1;
5473 	}
5474 	vm_page_free_pages_toq(&free, true);
5475 	return (m_pc);
5476 }
5477 
5478 static vm_page_t
reclaim_pv_chunk(pmap_t locked_pmap,struct rwlock ** lockp)5479 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
5480 {
5481 	vm_page_t m;
5482 	int i, domain;
5483 
5484 	domain = PCPU_GET(domain);
5485 	for (i = 0; i < vm_ndomains; i++) {
5486 		m = reclaim_pv_chunk_domain(locked_pmap, lockp, domain);
5487 		if (m != NULL)
5488 			break;
5489 		domain = (domain + 1) % vm_ndomains;
5490 	}
5491 
5492 	return (m);
5493 }
5494 
5495 /*
5496  * free the pv_entry back to the free list
5497  */
5498 static void
free_pv_entry(pmap_t pmap,pv_entry_t pv)5499 free_pv_entry(pmap_t pmap, pv_entry_t pv)
5500 {
5501 	struct pv_chunk *pc;
5502 	int idx, field, bit;
5503 
5504 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5505 	PV_STAT(counter_u64_add(pv_entry_frees, 1));
5506 	PV_STAT(counter_u64_add(pv_entry_spare, 1));
5507 	PV_STAT(counter_u64_add(pv_entry_count, -1));
5508 	pc = pv_to_chunk(pv);
5509 	idx = pv - &pc->pc_pventry[0];
5510 	field = idx / 64;
5511 	bit = idx % 64;
5512 	pc->pc_map[field] |= 1ul << bit;
5513 	if (!pc_is_free(pc)) {
5514 		/* 98% of the time, pc is already at the head of the list. */
5515 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
5516 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5517 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5518 		}
5519 		return;
5520 	}
5521 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5522 	free_pv_chunk(pc);
5523 }
5524 
5525 static void
free_pv_chunk_dequeued(struct pv_chunk * pc)5526 free_pv_chunk_dequeued(struct pv_chunk *pc)
5527 {
5528 	vm_page_t m;
5529 
5530 	PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5531 	PV_STAT(counter_u64_add(pc_chunk_count, -1));
5532 	PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5533 	counter_u64_add(pv_page_count, -1);
5534 	/* entire chunk is free, return it */
5535 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5536 	dump_drop_page(m->phys_addr);
5537 	vm_page_unwire_noq(m);
5538 	vm_page_free(m);
5539 }
5540 
5541 static void
free_pv_chunk(struct pv_chunk * pc)5542 free_pv_chunk(struct pv_chunk *pc)
5543 {
5544 	struct pv_chunks_list *pvc;
5545 
5546 	pvc = &pv_chunks[pc_to_domain(pc)];
5547 	mtx_lock(&pvc->pvc_lock);
5548 	TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5549 	mtx_unlock(&pvc->pvc_lock);
5550 	free_pv_chunk_dequeued(pc);
5551 }
5552 
5553 static void
free_pv_chunk_batch(struct pv_chunklist * batch)5554 free_pv_chunk_batch(struct pv_chunklist *batch)
5555 {
5556 	struct pv_chunks_list *pvc;
5557 	struct pv_chunk *pc, *npc;
5558 	int i;
5559 
5560 	for (i = 0; i < vm_ndomains; i++) {
5561 		if (TAILQ_EMPTY(&batch[i]))
5562 			continue;
5563 		pvc = &pv_chunks[i];
5564 		mtx_lock(&pvc->pvc_lock);
5565 		TAILQ_FOREACH(pc, &batch[i], pc_list) {
5566 			TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5567 		}
5568 		mtx_unlock(&pvc->pvc_lock);
5569 	}
5570 
5571 	for (i = 0; i < vm_ndomains; i++) {
5572 		TAILQ_FOREACH_SAFE(pc, &batch[i], pc_list, npc) {
5573 			free_pv_chunk_dequeued(pc);
5574 		}
5575 	}
5576 }
5577 
5578 /*
5579  * Returns a new PV entry, allocating a new PV chunk from the system when
5580  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
5581  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
5582  * returned.
5583  *
5584  * The given PV list lock may be released.
5585  */
5586 static pv_entry_t
get_pv_entry(pmap_t pmap,struct rwlock ** lockp)5587 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
5588 {
5589 	struct pv_chunks_list *pvc;
5590 	int bit, field;
5591 	pv_entry_t pv;
5592 	struct pv_chunk *pc;
5593 	vm_page_t m;
5594 
5595 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5596 	PV_STAT(counter_u64_add(pv_entry_allocs, 1));
5597 retry:
5598 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5599 	if (pc != NULL) {
5600 		for (field = 0; field < _NPCM; field++) {
5601 			if (pc->pc_map[field]) {
5602 				bit = bsfq(pc->pc_map[field]);
5603 				break;
5604 			}
5605 		}
5606 		if (field < _NPCM) {
5607 			pv = &pc->pc_pventry[field * 64 + bit];
5608 			pc->pc_map[field] &= ~(1ul << bit);
5609 			/* If this was the last item, move it to tail */
5610 			if (pc_is_full(pc)) {
5611 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5612 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
5613 				    pc_list);
5614 			}
5615 			PV_STAT(counter_u64_add(pv_entry_count, 1));
5616 			PV_STAT(counter_u64_add(pv_entry_spare, -1));
5617 			return (pv);
5618 		}
5619 	}
5620 	/* No free items, allocate another chunk */
5621 	m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5622 	if (m == NULL) {
5623 		if (lockp == NULL) {
5624 			PV_STAT(counter_u64_add(pc_chunk_tryfail, 1));
5625 			return (NULL);
5626 		}
5627 		m = reclaim_pv_chunk(pmap, lockp);
5628 		if (m == NULL)
5629 			goto retry;
5630 	} else
5631 		counter_u64_add(pv_page_count, 1);
5632 	PV_STAT(counter_u64_add(pc_chunk_count, 1));
5633 	PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5634 	dump_add_page(m->phys_addr);
5635 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5636 	pc->pc_pmap = pmap;
5637 	pc->pc_map[0] = PC_FREEN & ~1ul;	/* preallocated bit 0 */
5638 	pc->pc_map[1] = PC_FREEN;
5639 	pc->pc_map[2] = PC_FREEL;
5640 	pvc = &pv_chunks[vm_page_domain(m)];
5641 	mtx_lock(&pvc->pvc_lock);
5642 	TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5643 	mtx_unlock(&pvc->pvc_lock);
5644 	pv = &pc->pc_pventry[0];
5645 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5646 	PV_STAT(counter_u64_add(pv_entry_count, 1));
5647 	PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV - 1));
5648 	return (pv);
5649 }
5650 
5651 /*
5652  * Returns the number of one bits within the given PV chunk map.
5653  *
5654  * The erratas for Intel processors state that "POPCNT Instruction May
5655  * Take Longer to Execute Than Expected".  It is believed that the
5656  * issue is the spurious dependency on the destination register.
5657  * Provide a hint to the register rename logic that the destination
5658  * value is overwritten, by clearing it, as suggested in the
5659  * optimization manual.  It should be cheap for unaffected processors
5660  * as well.
5661  *
5662  * Reference numbers for erratas are
5663  * 4th Gen Core: HSD146
5664  * 5th Gen Core: BDM85
5665  * 6th Gen Core: SKL029
5666  */
5667 static int
popcnt_pc_map_pq(uint64_t * map)5668 popcnt_pc_map_pq(uint64_t *map)
5669 {
5670 	u_long result, tmp;
5671 
5672 	__asm __volatile("xorl %k0,%k0;popcntq %2,%0;"
5673 	    "xorl %k1,%k1;popcntq %3,%1;addl %k1,%k0;"
5674 	    "xorl %k1,%k1;popcntq %4,%1;addl %k1,%k0"
5675 	    : "=&r" (result), "=&r" (tmp)
5676 	    : "m" (map[0]), "m" (map[1]), "m" (map[2]));
5677 	return (result);
5678 }
5679 
5680 /*
5681  * Ensure that the number of spare PV entries in the specified pmap meets or
5682  * exceeds the given count, "needed".
5683  *
5684  * The given PV list lock may be released.
5685  */
5686 static void
reserve_pv_entries(pmap_t pmap,int needed,struct rwlock ** lockp)5687 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
5688 {
5689 	struct pv_chunks_list *pvc;
5690 	struct pch new_tail[PMAP_MEMDOM];
5691 	struct pv_chunk *pc;
5692 	vm_page_t m;
5693 	int avail, free, i;
5694 	bool reclaimed;
5695 
5696 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5697 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
5698 
5699 	/*
5700 	 * Newly allocated PV chunks must be stored in a private list until
5701 	 * the required number of PV chunks have been allocated.  Otherwise,
5702 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
5703 	 * contrast, these chunks must be added to the pmap upon allocation.
5704 	 */
5705 	for (i = 0; i < PMAP_MEMDOM; i++)
5706 		TAILQ_INIT(&new_tail[i]);
5707 retry:
5708 	avail = 0;
5709 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
5710 #ifndef __POPCNT__
5711 		if ((cpu_feature2 & CPUID2_POPCNT) == 0)
5712 			bit_count((bitstr_t *)pc->pc_map, 0,
5713 			    sizeof(pc->pc_map) * NBBY, &free);
5714 		else
5715 #endif
5716 		free = popcnt_pc_map_pq(pc->pc_map);
5717 		if (free == 0)
5718 			break;
5719 		avail += free;
5720 		if (avail >= needed)
5721 			break;
5722 	}
5723 	for (reclaimed = false; avail < needed; avail += _NPCPV) {
5724 		m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5725 		if (m == NULL) {
5726 			m = reclaim_pv_chunk(pmap, lockp);
5727 			if (m == NULL)
5728 				goto retry;
5729 			reclaimed = true;
5730 		} else
5731 			counter_u64_add(pv_page_count, 1);
5732 		PV_STAT(counter_u64_add(pc_chunk_count, 1));
5733 		PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5734 		dump_add_page(m->phys_addr);
5735 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5736 		pc->pc_pmap = pmap;
5737 		pc->pc_map[0] = PC_FREEN;
5738 		pc->pc_map[1] = PC_FREEN;
5739 		pc->pc_map[2] = PC_FREEL;
5740 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5741 		TAILQ_INSERT_TAIL(&new_tail[vm_page_domain(m)], pc, pc_lru);
5742 		PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV));
5743 
5744 		/*
5745 		 * The reclaim might have freed a chunk from the current pmap.
5746 		 * If that chunk contained available entries, we need to
5747 		 * re-count the number of available entries.
5748 		 */
5749 		if (reclaimed)
5750 			goto retry;
5751 	}
5752 	for (i = 0; i < vm_ndomains; i++) {
5753 		if (TAILQ_EMPTY(&new_tail[i]))
5754 			continue;
5755 		pvc = &pv_chunks[i];
5756 		mtx_lock(&pvc->pvc_lock);
5757 		TAILQ_CONCAT(&pvc->pvc_list, &new_tail[i], pc_lru);
5758 		mtx_unlock(&pvc->pvc_lock);
5759 	}
5760 }
5761 
5762 /*
5763  * First find and then remove the pv entry for the specified pmap and virtual
5764  * address from the specified pv list.  Returns the pv entry if found and NULL
5765  * otherwise.  This operation can be performed on pv lists for either 4KB or
5766  * 2MB page mappings.
5767  */
5768 static __inline pv_entry_t
pmap_pvh_remove(struct md_page * pvh,pmap_t pmap,vm_offset_t va)5769 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5770 {
5771 	pv_entry_t pv;
5772 
5773 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5774 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
5775 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5776 			pvh->pv_gen++;
5777 			break;
5778 		}
5779 	}
5780 	return (pv);
5781 }
5782 
5783 /*
5784  * After demotion from a 2MB page mapping to 512 4KB page mappings,
5785  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
5786  * entries for each of the 4KB page mappings.
5787  */
5788 static void
pmap_pv_demote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)5789 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5790     struct rwlock **lockp)
5791 {
5792 	struct md_page *pvh;
5793 	struct pv_chunk *pc;
5794 	pv_entry_t pv;
5795 	vm_offset_t va_last;
5796 	vm_page_t m;
5797 	int bit, field;
5798 
5799 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5800 	KASSERT((pa & PDRMASK) == 0,
5801 	    ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
5802 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5803 
5804 	/*
5805 	 * Transfer the 2mpage's pv entry for this mapping to the first
5806 	 * page's pv list.  Once this transfer begins, the pv list lock
5807 	 * must not be released until the last pv entry is reinstantiated.
5808 	 */
5809 	pvh = pa_to_pvh(pa);
5810 	va = trunc_2mpage(va);
5811 	pv = pmap_pvh_remove(pvh, pmap, va);
5812 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
5813 	m = PHYS_TO_VM_PAGE(pa);
5814 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5815 	m->md.pv_gen++;
5816 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
5817 	PV_STAT(counter_u64_add(pv_entry_allocs, NPTEPG - 1));
5818 	va_last = va + NBPDR - PAGE_SIZE;
5819 	for (;;) {
5820 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5821 		KASSERT(!pc_is_full(pc), ("pmap_pv_demote_pde: missing spare"));
5822 		for (field = 0; field < _NPCM; field++) {
5823 			while (pc->pc_map[field]) {
5824 				bit = bsfq(pc->pc_map[field]);
5825 				pc->pc_map[field] &= ~(1ul << bit);
5826 				pv = &pc->pc_pventry[field * 64 + bit];
5827 				va += PAGE_SIZE;
5828 				pv->pv_va = va;
5829 				m++;
5830 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5831 			    ("pmap_pv_demote_pde: page %p is not managed", m));
5832 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5833 				m->md.pv_gen++;
5834 				if (va == va_last)
5835 					goto out;
5836 			}
5837 		}
5838 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5839 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5840 	}
5841 out:
5842 	if (pc_is_full(pc)) {
5843 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5844 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5845 	}
5846 	PV_STAT(counter_u64_add(pv_entry_count, NPTEPG - 1));
5847 	PV_STAT(counter_u64_add(pv_entry_spare, -(NPTEPG - 1)));
5848 }
5849 
5850 #if VM_NRESERVLEVEL > 0
5851 /*
5852  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
5853  * replace the many pv entries for the 4KB page mappings by a single pv entry
5854  * for the 2MB page mapping.
5855  */
5856 static void
pmap_pv_promote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)5857 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5858     struct rwlock **lockp)
5859 {
5860 	struct md_page *pvh;
5861 	pv_entry_t pv;
5862 	vm_offset_t va_last;
5863 	vm_page_t m;
5864 
5865 	KASSERT((pa & PDRMASK) == 0,
5866 	    ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
5867 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5868 
5869 	/*
5870 	 * Transfer the first page's pv entry for this mapping to the 2mpage's
5871 	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
5872 	 * a transfer avoids the possibility that get_pv_entry() calls
5873 	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
5874 	 * mappings that is being promoted.
5875 	 */
5876 	m = PHYS_TO_VM_PAGE(pa);
5877 	va = trunc_2mpage(va);
5878 	pv = pmap_pvh_remove(&m->md, pmap, va);
5879 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
5880 	pvh = pa_to_pvh(pa);
5881 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5882 	pvh->pv_gen++;
5883 	/* Free the remaining NPTEPG - 1 pv entries. */
5884 	va_last = va + NBPDR - PAGE_SIZE;
5885 	do {
5886 		m++;
5887 		va += PAGE_SIZE;
5888 		pmap_pvh_free(&m->md, pmap, va);
5889 	} while (va < va_last);
5890 }
5891 #endif /* VM_NRESERVLEVEL > 0 */
5892 
5893 /*
5894  * First find and then destroy the pv entry for the specified pmap and virtual
5895  * address.  This operation can be performed on pv lists for either 4KB or 2MB
5896  * page mappings.
5897  */
5898 static void
pmap_pvh_free(struct md_page * pvh,pmap_t pmap,vm_offset_t va)5899 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5900 {
5901 	pv_entry_t pv;
5902 
5903 	pv = pmap_pvh_remove(pvh, pmap, va);
5904 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
5905 	free_pv_entry(pmap, pv);
5906 }
5907 
5908 /*
5909  * Conditionally create the PV entry for a 4KB page mapping if the required
5910  * memory can be allocated without resorting to reclamation.
5911  */
5912 static bool
pmap_try_insert_pv_entry(pmap_t pmap,vm_offset_t va,vm_page_t m,struct rwlock ** lockp)5913 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
5914     struct rwlock **lockp)
5915 {
5916 	pv_entry_t pv;
5917 
5918 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5919 	/* Pass NULL instead of the lock pointer to disable reclamation. */
5920 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
5921 		pv->pv_va = va;
5922 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5923 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5924 		m->md.pv_gen++;
5925 		return (true);
5926 	} else
5927 		return (false);
5928 }
5929 
5930 /*
5931  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
5932  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
5933  * false if the PV entry cannot be allocated without resorting to reclamation.
5934  */
5935 static bool
pmap_pv_insert_pde(pmap_t pmap,vm_offset_t va,pd_entry_t pde,u_int flags,struct rwlock ** lockp)5936 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde, u_int flags,
5937     struct rwlock **lockp)
5938 {
5939 	struct md_page *pvh;
5940 	pv_entry_t pv;
5941 	vm_paddr_t pa;
5942 
5943 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5944 	/* Pass NULL instead of the lock pointer to disable reclamation. */
5945 	if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
5946 	    NULL : lockp)) == NULL)
5947 		return (false);
5948 	pv->pv_va = va;
5949 	pa = pde & PG_PS_FRAME;
5950 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5951 	pvh = pa_to_pvh(pa);
5952 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5953 	pvh->pv_gen++;
5954 	return (true);
5955 }
5956 
5957 /*
5958  * Fills a page table page with mappings to consecutive physical pages.
5959  */
5960 static void
pmap_fill_ptp(pt_entry_t * firstpte,pt_entry_t newpte)5961 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
5962 {
5963 	pt_entry_t *pte;
5964 
5965 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
5966 		*pte = newpte;
5967 		newpte += PAGE_SIZE;
5968 	}
5969 }
5970 
5971 /*
5972  * Tries to demote a 2MB page mapping.  If demotion fails, the 2MB page
5973  * mapping is invalidated.
5974  */
5975 static bool
pmap_demote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)5976 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
5977 {
5978 	struct rwlock *lock;
5979 	bool rv;
5980 
5981 	lock = NULL;
5982 	rv = pmap_demote_pde_locked(pmap, pde, va, &lock);
5983 	if (lock != NULL)
5984 		rw_wunlock(lock);
5985 	return (rv);
5986 }
5987 
5988 static void
pmap_demote_pde_check(pt_entry_t * firstpte __unused,pt_entry_t newpte __unused)5989 pmap_demote_pde_check(pt_entry_t *firstpte __unused, pt_entry_t newpte __unused)
5990 {
5991 #ifdef INVARIANTS
5992 #ifdef DIAGNOSTIC
5993 	pt_entry_t *xpte, *ypte;
5994 
5995 	for (xpte = firstpte; xpte < firstpte + NPTEPG;
5996 	    xpte++, newpte += PAGE_SIZE) {
5997 		if ((*xpte & PG_FRAME) != (newpte & PG_FRAME)) {
5998 			printf("pmap_demote_pde: xpte %zd and newpte map "
5999 			    "different pages: found %#lx, expected %#lx\n",
6000 			    xpte - firstpte, *xpte, newpte);
6001 			printf("page table dump\n");
6002 			for (ypte = firstpte; ypte < firstpte + NPTEPG; ypte++)
6003 				printf("%zd %#lx\n", ypte - firstpte, *ypte);
6004 			panic("firstpte");
6005 		}
6006 	}
6007 #else
6008 	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
6009 	    ("pmap_demote_pde: firstpte and newpte map different physical"
6010 	    " addresses"));
6011 #endif
6012 #endif
6013 }
6014 
6015 static void
pmap_demote_pde_abort(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t oldpde,struct rwlock ** lockp)6016 pmap_demote_pde_abort(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
6017     pd_entry_t oldpde, struct rwlock **lockp)
6018 {
6019 	struct spglist free;
6020 	vm_offset_t sva;
6021 
6022 	SLIST_INIT(&free);
6023 	sva = trunc_2mpage(va);
6024 	pmap_remove_pde(pmap, pde, sva, &free, lockp);
6025 	if ((oldpde & pmap_global_bit(pmap)) == 0)
6026 		pmap_invalidate_pde_page(pmap, sva, oldpde);
6027 	vm_page_free_pages_toq(&free, true);
6028 	CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#lx in pmap %p",
6029 	    va, pmap);
6030 }
6031 
6032 static bool
pmap_demote_pde_locked(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,struct rwlock ** lockp)6033 pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
6034     struct rwlock **lockp)
6035 {
6036 	pd_entry_t newpde, oldpde;
6037 	pt_entry_t *firstpte, newpte;
6038 	pt_entry_t PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
6039 	vm_paddr_t mptepa;
6040 	vm_page_t mpte;
6041 	int PG_PTE_CACHE;
6042 	bool in_kernel;
6043 
6044 	PG_A = pmap_accessed_bit(pmap);
6045 	PG_G = pmap_global_bit(pmap);
6046 	PG_M = pmap_modified_bit(pmap);
6047 	PG_RW = pmap_rw_bit(pmap);
6048 	PG_V = pmap_valid_bit(pmap);
6049 	PG_PTE_CACHE = pmap_cache_mask(pmap, false);
6050 	PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6051 
6052 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6053 	in_kernel = va >= VM_MAXUSER_ADDRESS;
6054 	oldpde = *pde;
6055 	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
6056 	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
6057 
6058 	/*
6059 	 * Invalidate the 2MB page mapping and return "failure" if the
6060 	 * mapping was never accessed.
6061 	 */
6062 	if ((oldpde & PG_A) == 0) {
6063 		KASSERT((oldpde & PG_W) == 0,
6064 		    ("pmap_demote_pde: a wired mapping is missing PG_A"));
6065 		pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
6066 		return (false);
6067 	}
6068 
6069 	mpte = pmap_remove_pt_page(pmap, va);
6070 	if (mpte == NULL) {
6071 		KASSERT((oldpde & PG_W) == 0,
6072 		    ("pmap_demote_pde: page table page for a wired mapping"
6073 		    " is missing"));
6074 
6075 		/*
6076 		 * If the page table page is missing and the mapping
6077 		 * is for a kernel address, the mapping must belong to
6078 		 * the direct map.  Page table pages are preallocated
6079 		 * for every other part of the kernel address space,
6080 		 * so the direct map region is the only part of the
6081 		 * kernel address space that must be handled here.
6082 		 */
6083 		KASSERT(!in_kernel || (va >= DMAP_MIN_ADDRESS &&
6084 		    va < DMAP_MAX_ADDRESS),
6085 		    ("pmap_demote_pde: No saved mpte for va %#lx", va));
6086 
6087 		/*
6088 		 * If the 2MB page mapping belongs to the direct map
6089 		 * region of the kernel's address space, then the page
6090 		 * allocation request specifies the highest possible
6091 		 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the
6092 		 * priority is normal.
6093 		 */
6094 		mpte = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
6095 		    (in_kernel ? VM_ALLOC_INTERRUPT : 0) | VM_ALLOC_WIRED);
6096 
6097 		/*
6098 		 * If the allocation of the new page table page fails,
6099 		 * invalidate the 2MB page mapping and return "failure".
6100 		 */
6101 		if (mpte == NULL) {
6102 			pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
6103 			return (false);
6104 		}
6105 
6106 		if (!in_kernel)
6107 			mpte->ref_count = NPTEPG;
6108 	}
6109 	mptepa = VM_PAGE_TO_PHYS(mpte);
6110 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
6111 	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
6112 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
6113 	    ("pmap_demote_pde: oldpde is missing PG_M"));
6114 	newpte = oldpde & ~PG_PS;
6115 	newpte = pmap_swap_pat(pmap, newpte);
6116 
6117 	/*
6118 	 * If the PTP is not leftover from an earlier promotion or it does not
6119 	 * have PG_A set in every PTE, then fill it.  The new PTEs will all
6120 	 * have PG_A set.
6121 	 */
6122 	if (!vm_page_all_valid(mpte))
6123 		pmap_fill_ptp(firstpte, newpte);
6124 
6125 	pmap_demote_pde_check(firstpte, newpte);
6126 
6127 	/*
6128 	 * If the mapping has changed attributes, update the PTEs.
6129 	 */
6130 	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
6131 		pmap_fill_ptp(firstpte, newpte);
6132 
6133 	/*
6134 	 * The spare PV entries must be reserved prior to demoting the
6135 	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
6136 	 * of the PDE and the PV lists will be inconsistent, which can result
6137 	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
6138 	 * wrong PV list and pmap_pv_demote_pde() failing to find the expected
6139 	 * PV entry for the 2MB page mapping that is being demoted.
6140 	 */
6141 	if ((oldpde & PG_MANAGED) != 0)
6142 		reserve_pv_entries(pmap, NPTEPG - 1, lockp);
6143 
6144 	/*
6145 	 * Demote the mapping.  This pmap is locked.  The old PDE has
6146 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
6147 	 * set.  Thus, there is no danger of a race with another
6148 	 * processor changing the setting of PG_A and/or PG_M between
6149 	 * the read above and the store below.
6150 	 */
6151 	if (workaround_erratum383)
6152 		pmap_update_pde(pmap, va, pde, newpde);
6153 	else
6154 		pde_store(pde, newpde);
6155 
6156 	/*
6157 	 * Invalidate a stale recursive mapping of the page table page.
6158 	 */
6159 	if (in_kernel)
6160 		pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6161 
6162 	/*
6163 	 * Demote the PV entry.
6164 	 */
6165 	if ((oldpde & PG_MANAGED) != 0)
6166 		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME, lockp);
6167 
6168 	counter_u64_add(pmap_pde_demotions, 1);
6169 	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#lx in pmap %p",
6170 	    va, pmap);
6171 	return (true);
6172 }
6173 
6174 /*
6175  * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
6176  */
6177 static void
pmap_remove_kernel_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)6178 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
6179 {
6180 	pd_entry_t newpde;
6181 	vm_paddr_t mptepa;
6182 	vm_page_t mpte;
6183 
6184 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
6185 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6186 	mpte = pmap_remove_pt_page(pmap, va);
6187 	if (mpte == NULL)
6188 		panic("pmap_remove_kernel_pde: Missing pt page.");
6189 
6190 	mptepa = VM_PAGE_TO_PHYS(mpte);
6191 	newpde = mptepa | X86_PG_M | X86_PG_A | X86_PG_RW | X86_PG_V;
6192 
6193 	/*
6194 	 * If this page table page was unmapped by a promotion, then it
6195 	 * contains valid mappings.  Zero it to invalidate those mappings.
6196 	 */
6197 	if (vm_page_any_valid(mpte))
6198 		pagezero((void *)PHYS_TO_DMAP(mptepa));
6199 
6200 	/*
6201 	 * Demote the mapping.
6202 	 */
6203 	if (workaround_erratum383)
6204 		pmap_update_pde(pmap, va, pde, newpde);
6205 	else
6206 		pde_store(pde, newpde);
6207 
6208 	/*
6209 	 * Invalidate a stale recursive mapping of the page table page.
6210 	 */
6211 	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6212 }
6213 
6214 /*
6215  * pmap_remove_pde: do the things to unmap a superpage in a process
6216  */
6217 static int
pmap_remove_pde(pmap_t pmap,pd_entry_t * pdq,vm_offset_t sva,struct spglist * free,struct rwlock ** lockp)6218 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
6219     struct spglist *free, struct rwlock **lockp)
6220 {
6221 	struct md_page *pvh;
6222 	pd_entry_t oldpde;
6223 	vm_offset_t eva, va;
6224 	vm_page_t m, mpte;
6225 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
6226 
6227 	PG_G = pmap_global_bit(pmap);
6228 	PG_A = pmap_accessed_bit(pmap);
6229 	PG_M = pmap_modified_bit(pmap);
6230 	PG_RW = pmap_rw_bit(pmap);
6231 
6232 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6233 	KASSERT((sva & PDRMASK) == 0,
6234 	    ("pmap_remove_pde: sva is not 2mpage aligned"));
6235 	oldpde = pte_load_clear(pdq);
6236 	if (oldpde & PG_W)
6237 		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
6238 	if ((oldpde & PG_G) != 0)
6239 		pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6240 	pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
6241 	if (oldpde & PG_MANAGED) {
6242 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
6243 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
6244 		pmap_pvh_free(pvh, pmap, sva);
6245 		eva = sva + NBPDR;
6246 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6247 		    va < eva; va += PAGE_SIZE, m++) {
6248 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
6249 				vm_page_dirty(m);
6250 			if (oldpde & PG_A)
6251 				vm_page_aflag_set(m, PGA_REFERENCED);
6252 			if (TAILQ_EMPTY(&m->md.pv_list) &&
6253 			    TAILQ_EMPTY(&pvh->pv_list))
6254 				vm_page_aflag_clear(m, PGA_WRITEABLE);
6255 			pmap_delayed_invl_page(m);
6256 		}
6257 	}
6258 	if (pmap == kernel_pmap) {
6259 		pmap_remove_kernel_pde(pmap, pdq, sva);
6260 	} else {
6261 		mpte = pmap_remove_pt_page(pmap, sva);
6262 		if (mpte != NULL) {
6263 			KASSERT(vm_page_any_valid(mpte),
6264 			    ("pmap_remove_pde: pte page not promoted"));
6265 			pmap_pt_page_count_adj(pmap, -1);
6266 			KASSERT(mpte->ref_count == NPTEPG,
6267 			    ("pmap_remove_pde: pte page ref count error"));
6268 			mpte->ref_count = 0;
6269 			pmap_add_delayed_free_list(mpte, free, false);
6270 		}
6271 	}
6272 	return (pmap_unuse_pt(pmap, sva, *pmap_pdpe(pmap, sva), free));
6273 }
6274 
6275 /*
6276  * pmap_remove_pte: do the things to unmap a page in a process
6277  */
6278 static int
pmap_remove_pte(pmap_t pmap,pt_entry_t * ptq,vm_offset_t va,pd_entry_t ptepde,struct spglist * free,struct rwlock ** lockp)6279 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
6280     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
6281 {
6282 	struct md_page *pvh;
6283 	pt_entry_t oldpte, PG_A, PG_M, PG_RW;
6284 	vm_page_t m;
6285 
6286 	PG_A = pmap_accessed_bit(pmap);
6287 	PG_M = pmap_modified_bit(pmap);
6288 	PG_RW = pmap_rw_bit(pmap);
6289 
6290 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6291 	oldpte = pte_load_clear(ptq);
6292 	if (oldpte & PG_W)
6293 		pmap->pm_stats.wired_count -= 1;
6294 	pmap_resident_count_adj(pmap, -1);
6295 	if (oldpte & PG_MANAGED) {
6296 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
6297 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6298 			vm_page_dirty(m);
6299 		if (oldpte & PG_A)
6300 			vm_page_aflag_set(m, PGA_REFERENCED);
6301 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
6302 		pmap_pvh_free(&m->md, pmap, va);
6303 		if (TAILQ_EMPTY(&m->md.pv_list) &&
6304 		    (m->flags & PG_FICTITIOUS) == 0) {
6305 			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
6306 			if (TAILQ_EMPTY(&pvh->pv_list))
6307 				vm_page_aflag_clear(m, PGA_WRITEABLE);
6308 		}
6309 		pmap_delayed_invl_page(m);
6310 	}
6311 	return (pmap_unuse_pt(pmap, va, ptepde, free));
6312 }
6313 
6314 /*
6315  * Remove a single page from a process address space
6316  */
6317 static void
pmap_remove_page(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,struct spglist * free)6318 pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
6319     struct spglist *free)
6320 {
6321 	struct rwlock *lock;
6322 	pt_entry_t *pte, PG_V;
6323 
6324 	PG_V = pmap_valid_bit(pmap);
6325 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6326 	if ((*pde & PG_V) == 0)
6327 		return;
6328 	pte = pmap_pde_to_pte(pde, va);
6329 	if ((*pte & PG_V) == 0)
6330 		return;
6331 	lock = NULL;
6332 	pmap_remove_pte(pmap, pte, va, *pde, free, &lock);
6333 	if (lock != NULL)
6334 		rw_wunlock(lock);
6335 	pmap_invalidate_page(pmap, va);
6336 }
6337 
6338 /*
6339  * Removes the specified range of addresses from the page table page.
6340  */
6341 static bool
pmap_remove_ptes(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pd_entry_t * pde,struct spglist * free,struct rwlock ** lockp)6342 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
6343     pd_entry_t *pde, struct spglist *free, struct rwlock **lockp)
6344 {
6345 	pt_entry_t PG_G, *pte;
6346 	vm_offset_t va;
6347 	bool anyvalid;
6348 
6349 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6350 	PG_G = pmap_global_bit(pmap);
6351 	anyvalid = false;
6352 	va = eva;
6353 	for (pte = pmap_pde_to_pte(pde, sva); sva != eva; pte++,
6354 	    sva += PAGE_SIZE) {
6355 		if (*pte == 0) {
6356 			if (va != eva) {
6357 				pmap_invalidate_range(pmap, va, sva);
6358 				va = eva;
6359 			}
6360 			continue;
6361 		}
6362 		if ((*pte & PG_G) == 0)
6363 			anyvalid = true;
6364 		else if (va == eva)
6365 			va = sva;
6366 		if (pmap_remove_pte(pmap, pte, sva, *pde, free, lockp)) {
6367 			sva += PAGE_SIZE;
6368 			break;
6369 		}
6370 	}
6371 	if (va != eva)
6372 		pmap_invalidate_range(pmap, va, sva);
6373 	return (anyvalid);
6374 }
6375 
6376 static void
pmap_remove1(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,bool map_delete)6377 pmap_remove1(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, bool map_delete)
6378 {
6379 	struct rwlock *lock;
6380 	vm_page_t mt;
6381 	vm_offset_t va_next;
6382 	pml5_entry_t *pml5e;
6383 	pml4_entry_t *pml4e;
6384 	pdp_entry_t *pdpe;
6385 	pd_entry_t ptpaddr, *pde;
6386 	pt_entry_t PG_G, PG_V;
6387 	struct spglist free;
6388 	int anyvalid;
6389 
6390 	PG_G = pmap_global_bit(pmap);
6391 	PG_V = pmap_valid_bit(pmap);
6392 
6393 	/*
6394 	 * If there are no resident pages besides the top level page
6395 	 * table page(s), there is nothing to do.  Kernel pmap always
6396 	 * accounts whole preloaded area as resident, which makes its
6397 	 * resident count > 2.
6398 	 * Perform an unsynchronized read.  This is, however, safe.
6399 	 */
6400 	if (pmap->pm_stats.resident_count <= 1 + (pmap->pm_pmltopu != NULL ?
6401 	    1 : 0))
6402 		return;
6403 
6404 	anyvalid = 0;
6405 	SLIST_INIT(&free);
6406 
6407 	pmap_delayed_invl_start();
6408 	PMAP_LOCK(pmap);
6409 	if (map_delete)
6410 		pmap_pkru_on_remove(pmap, sva, eva);
6411 
6412 	/*
6413 	 * special handling of removing one page.  a very
6414 	 * common operation and easy to short circuit some
6415 	 * code.
6416 	 */
6417 	if (sva + PAGE_SIZE == eva) {
6418 		pde = pmap_pde(pmap, sva);
6419 		if (pde && (*pde & PG_PS) == 0) {
6420 			pmap_remove_page(pmap, sva, pde, &free);
6421 			goto out;
6422 		}
6423 	}
6424 
6425 	lock = NULL;
6426 	for (; sva < eva; sva = va_next) {
6427 		if (pmap->pm_stats.resident_count == 0)
6428 			break;
6429 
6430 		if (pmap_is_la57(pmap)) {
6431 			pml5e = pmap_pml5e(pmap, sva);
6432 			if ((*pml5e & PG_V) == 0) {
6433 				va_next = (sva + NBPML5) & ~PML5MASK;
6434 				if (va_next < sva)
6435 					va_next = eva;
6436 				continue;
6437 			}
6438 			pml4e = pmap_pml5e_to_pml4e(pml5e, sva);
6439 		} else {
6440 			pml4e = pmap_pml4e(pmap, sva);
6441 		}
6442 		if ((*pml4e & PG_V) == 0) {
6443 			va_next = (sva + NBPML4) & ~PML4MASK;
6444 			if (va_next < sva)
6445 				va_next = eva;
6446 			continue;
6447 		}
6448 
6449 		va_next = (sva + NBPDP) & ~PDPMASK;
6450 		if (va_next < sva)
6451 			va_next = eva;
6452 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6453 		if ((*pdpe & PG_V) == 0)
6454 			continue;
6455 		if ((*pdpe & PG_PS) != 0) {
6456 			KASSERT(va_next <= eva,
6457 			    ("partial update of non-transparent 1G mapping "
6458 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6459 			    *pdpe, sva, eva, va_next));
6460 			MPASS(pmap != kernel_pmap); /* XXXKIB */
6461 			MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
6462 			anyvalid = 1;
6463 			*pdpe = 0;
6464 			pmap_resident_count_adj(pmap, -NBPDP / PAGE_SIZE);
6465 			mt = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, sva) & PG_FRAME);
6466 			pmap_unwire_ptp(pmap, sva, mt, &free);
6467 			continue;
6468 		}
6469 
6470 		/*
6471 		 * Calculate index for next page table.
6472 		 */
6473 		va_next = (sva + NBPDR) & ~PDRMASK;
6474 		if (va_next < sva)
6475 			va_next = eva;
6476 
6477 		pde = pmap_pdpe_to_pde(pdpe, sva);
6478 		ptpaddr = *pde;
6479 
6480 		/*
6481 		 * Weed out invalid mappings.
6482 		 */
6483 		if (ptpaddr == 0)
6484 			continue;
6485 
6486 		/*
6487 		 * Check for large page.
6488 		 */
6489 		if ((ptpaddr & PG_PS) != 0) {
6490 			/*
6491 			 * Are we removing the entire large page?  If not,
6492 			 * demote the mapping and fall through.
6493 			 */
6494 			if (sva + NBPDR == va_next && eva >= va_next) {
6495 				/*
6496 				 * The TLB entry for a PG_G mapping is
6497 				 * invalidated by pmap_remove_pde().
6498 				 */
6499 				if ((ptpaddr & PG_G) == 0)
6500 					anyvalid = 1;
6501 				pmap_remove_pde(pmap, pde, sva, &free, &lock);
6502 				continue;
6503 			} else if (!pmap_demote_pde_locked(pmap, pde, sva,
6504 			    &lock)) {
6505 				/* The large page mapping was destroyed. */
6506 				continue;
6507 			} else
6508 				ptpaddr = *pde;
6509 		}
6510 
6511 		/*
6512 		 * Limit our scan to either the end of the va represented
6513 		 * by the current page table page, or to the end of the
6514 		 * range being removed.
6515 		 */
6516 		if (va_next > eva)
6517 			va_next = eva;
6518 
6519 		if (pmap_remove_ptes(pmap, sva, va_next, pde, &free, &lock))
6520 			anyvalid = 1;
6521 	}
6522 	if (lock != NULL)
6523 		rw_wunlock(lock);
6524 out:
6525 	if (anyvalid)
6526 		pmap_invalidate_all(pmap);
6527 	PMAP_UNLOCK(pmap);
6528 	pmap_delayed_invl_finish();
6529 	vm_page_free_pages_toq(&free, true);
6530 }
6531 
6532 /*
6533  *	Remove the given range of addresses from the specified map.
6534  *
6535  *	It is assumed that the start and end are properly
6536  *	rounded to the page size.
6537  */
6538 void
pmap_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)6539 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6540 {
6541 	pmap_remove1(pmap, sva, eva, false);
6542 }
6543 
6544 /*
6545  *	Remove the given range of addresses as part of a logical unmap
6546  *	operation. This has the effect of calling pmap_remove(), but
6547  *	also clears any metadata that should persist for the lifetime
6548  *	of a logical mapping.
6549  */
6550 void
pmap_map_delete(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)6551 pmap_map_delete(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6552 {
6553 	pmap_remove1(pmap, sva, eva, true);
6554 }
6555 
6556 /*
6557  *	Routine:	pmap_remove_all
6558  *	Function:
6559  *		Removes this physical page from
6560  *		all physical maps in which it resides.
6561  *		Reflects back modify bits to the pager.
6562  *
6563  *	Notes:
6564  *		Original versions of this routine were very
6565  *		inefficient because they iteratively called
6566  *		pmap_remove (slow...)
6567  */
6568 
6569 void
pmap_remove_all(vm_page_t m)6570 pmap_remove_all(vm_page_t m)
6571 {
6572 	struct md_page *pvh;
6573 	pv_entry_t pv;
6574 	pmap_t pmap;
6575 	struct rwlock *lock;
6576 	pt_entry_t *pte, tpte, PG_A, PG_M, PG_RW;
6577 	pd_entry_t *pde;
6578 	vm_offset_t va;
6579 	struct spglist free;
6580 	int pvh_gen, md_gen;
6581 
6582 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
6583 	    ("pmap_remove_all: page %p is not managed", m));
6584 	SLIST_INIT(&free);
6585 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
6586 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
6587 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
6588 	rw_wlock(lock);
6589 retry:
6590 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
6591 		pmap = PV_PMAP(pv);
6592 		if (!PMAP_TRYLOCK(pmap)) {
6593 			pvh_gen = pvh->pv_gen;
6594 			rw_wunlock(lock);
6595 			PMAP_LOCK(pmap);
6596 			rw_wlock(lock);
6597 			if (pvh_gen != pvh->pv_gen) {
6598 				PMAP_UNLOCK(pmap);
6599 				goto retry;
6600 			}
6601 		}
6602 		va = pv->pv_va;
6603 		pde = pmap_pde(pmap, va);
6604 		(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
6605 		PMAP_UNLOCK(pmap);
6606 	}
6607 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
6608 		pmap = PV_PMAP(pv);
6609 		if (!PMAP_TRYLOCK(pmap)) {
6610 			pvh_gen = pvh->pv_gen;
6611 			md_gen = m->md.pv_gen;
6612 			rw_wunlock(lock);
6613 			PMAP_LOCK(pmap);
6614 			rw_wlock(lock);
6615 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
6616 				PMAP_UNLOCK(pmap);
6617 				goto retry;
6618 			}
6619 		}
6620 		PG_A = pmap_accessed_bit(pmap);
6621 		PG_M = pmap_modified_bit(pmap);
6622 		PG_RW = pmap_rw_bit(pmap);
6623 		pmap_resident_count_adj(pmap, -1);
6624 		pde = pmap_pde(pmap, pv->pv_va);
6625 		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
6626 		    " a 2mpage in page %p's pv list", m));
6627 		pte = pmap_pde_to_pte(pde, pv->pv_va);
6628 		tpte = pte_load_clear(pte);
6629 		if (tpte & PG_W)
6630 			pmap->pm_stats.wired_count--;
6631 		if (tpte & PG_A)
6632 			vm_page_aflag_set(m, PGA_REFERENCED);
6633 
6634 		/*
6635 		 * Update the vm_page_t clean and reference bits.
6636 		 */
6637 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6638 			vm_page_dirty(m);
6639 		pmap_unuse_pt(pmap, pv->pv_va, *pde, &free);
6640 		pmap_invalidate_page(pmap, pv->pv_va);
6641 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
6642 		m->md.pv_gen++;
6643 		free_pv_entry(pmap, pv);
6644 		PMAP_UNLOCK(pmap);
6645 	}
6646 	vm_page_aflag_clear(m, PGA_WRITEABLE);
6647 	rw_wunlock(lock);
6648 	pmap_delayed_invl_wait(m);
6649 	vm_page_free_pages_toq(&free, true);
6650 }
6651 
6652 /*
6653  * pmap_protect_pde: do the things to protect a 2mpage in a process
6654  */
6655 static bool
pmap_protect_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t sva,vm_prot_t prot)6656 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
6657 {
6658 	pd_entry_t newpde, oldpde;
6659 	vm_page_t m, mt;
6660 	bool anychanged;
6661 	pt_entry_t PG_G, PG_M, PG_RW;
6662 
6663 	PG_G = pmap_global_bit(pmap);
6664 	PG_M = pmap_modified_bit(pmap);
6665 	PG_RW = pmap_rw_bit(pmap);
6666 
6667 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6668 	KASSERT((sva & PDRMASK) == 0,
6669 	    ("pmap_protect_pde: sva is not 2mpage aligned"));
6670 	anychanged = false;
6671 retry:
6672 	oldpde = newpde = *pde;
6673 	if ((prot & VM_PROT_WRITE) == 0) {
6674 		if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
6675 		    (PG_MANAGED | PG_M | PG_RW)) {
6676 			m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6677 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
6678 				vm_page_dirty(mt);
6679 		}
6680 		newpde &= ~(PG_RW | PG_M);
6681 	}
6682 	if ((prot & VM_PROT_EXECUTE) == 0)
6683 		newpde |= pg_nx;
6684 	if (newpde != oldpde) {
6685 		/*
6686 		 * As an optimization to future operations on this PDE, clear
6687 		 * PG_PROMOTED.  The impending invalidation will remove any
6688 		 * lingering 4KB page mappings from the TLB.
6689 		 */
6690 		if (!atomic_cmpset_long(pde, oldpde, newpde & ~PG_PROMOTED))
6691 			goto retry;
6692 		if ((oldpde & PG_G) != 0)
6693 			pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6694 		else
6695 			anychanged = true;
6696 	}
6697 	return (anychanged);
6698 }
6699 
6700 /*
6701  *	Set the physical protection on the
6702  *	specified range of this map as requested.
6703  */
6704 void
pmap_protect(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,vm_prot_t prot)6705 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
6706 {
6707 	vm_page_t m;
6708 	vm_offset_t va_next;
6709 	pml4_entry_t *pml4e;
6710 	pdp_entry_t *pdpe;
6711 	pd_entry_t ptpaddr, *pde;
6712 	pt_entry_t *pte, PG_G, PG_M, PG_RW, PG_V;
6713 	pt_entry_t obits, pbits;
6714 	bool anychanged;
6715 
6716 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
6717 	if (prot == VM_PROT_NONE) {
6718 		pmap_remove(pmap, sva, eva);
6719 		return;
6720 	}
6721 
6722 	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
6723 	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
6724 		return;
6725 
6726 	PG_G = pmap_global_bit(pmap);
6727 	PG_M = pmap_modified_bit(pmap);
6728 	PG_V = pmap_valid_bit(pmap);
6729 	PG_RW = pmap_rw_bit(pmap);
6730 	anychanged = false;
6731 
6732 	/*
6733 	 * Although this function delays and batches the invalidation
6734 	 * of stale TLB entries, it does not need to call
6735 	 * pmap_delayed_invl_start() and
6736 	 * pmap_delayed_invl_finish(), because it does not
6737 	 * ordinarily destroy mappings.  Stale TLB entries from
6738 	 * protection-only changes need only be invalidated before the
6739 	 * pmap lock is released, because protection-only changes do
6740 	 * not destroy PV entries.  Even operations that iterate over
6741 	 * a physical page's PV list of mappings, like
6742 	 * pmap_remove_write(), acquire the pmap lock for each
6743 	 * mapping.  Consequently, for protection-only changes, the
6744 	 * pmap lock suffices to synchronize both page table and TLB
6745 	 * updates.
6746 	 *
6747 	 * This function only destroys a mapping if pmap_demote_pde()
6748 	 * fails.  In that case, stale TLB entries are immediately
6749 	 * invalidated.
6750 	 */
6751 
6752 	PMAP_LOCK(pmap);
6753 	for (; sva < eva; sva = va_next) {
6754 		pml4e = pmap_pml4e(pmap, sva);
6755 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
6756 			va_next = (sva + NBPML4) & ~PML4MASK;
6757 			if (va_next < sva)
6758 				va_next = eva;
6759 			continue;
6760 		}
6761 
6762 		va_next = (sva + NBPDP) & ~PDPMASK;
6763 		if (va_next < sva)
6764 			va_next = eva;
6765 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6766 		if ((*pdpe & PG_V) == 0)
6767 			continue;
6768 		if ((*pdpe & PG_PS) != 0) {
6769 			KASSERT(va_next <= eva,
6770 			    ("partial update of non-transparent 1G mapping "
6771 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6772 			    *pdpe, sva, eva, va_next));
6773 retry_pdpe:
6774 			obits = pbits = *pdpe;
6775 			MPASS((pbits & (PG_MANAGED | PG_G)) == 0);
6776 			MPASS(pmap != kernel_pmap); /* XXXKIB */
6777 			if ((prot & VM_PROT_WRITE) == 0)
6778 				pbits &= ~(PG_RW | PG_M);
6779 			if ((prot & VM_PROT_EXECUTE) == 0)
6780 				pbits |= pg_nx;
6781 
6782 			if (pbits != obits) {
6783 				if (!atomic_cmpset_long(pdpe, obits, pbits))
6784 					/* PG_PS cannot be cleared under us, */
6785 					goto retry_pdpe;
6786 				anychanged = true;
6787 			}
6788 			continue;
6789 		}
6790 
6791 		va_next = (sva + NBPDR) & ~PDRMASK;
6792 		if (va_next < sva)
6793 			va_next = eva;
6794 
6795 		pde = pmap_pdpe_to_pde(pdpe, sva);
6796 		ptpaddr = *pde;
6797 
6798 		/*
6799 		 * Weed out invalid mappings.
6800 		 */
6801 		if (ptpaddr == 0)
6802 			continue;
6803 
6804 		/*
6805 		 * Check for large page.
6806 		 */
6807 		if ((ptpaddr & PG_PS) != 0) {
6808 			/*
6809 			 * Are we protecting the entire large page?
6810 			 */
6811 			if (sva + NBPDR == va_next && eva >= va_next) {
6812 				/*
6813 				 * The TLB entry for a PG_G mapping is
6814 				 * invalidated by pmap_protect_pde().
6815 				 */
6816 				if (pmap_protect_pde(pmap, pde, sva, prot))
6817 					anychanged = true;
6818 				continue;
6819 			}
6820 
6821 			/*
6822 			 * Does the large page mapping need to change?  If so,
6823 			 * demote it and fall through.
6824 			 */
6825 			pbits = ptpaddr;
6826 			if ((prot & VM_PROT_WRITE) == 0)
6827 				pbits &= ~(PG_RW | PG_M);
6828 			if ((prot & VM_PROT_EXECUTE) == 0)
6829 				pbits |= pg_nx;
6830 			if (ptpaddr == pbits || !pmap_demote_pde(pmap, pde,
6831 			    sva)) {
6832 				/*
6833 				 * Either the large page mapping doesn't need
6834 				 * to change, or it was destroyed during
6835 				 * demotion.
6836 				 */
6837 				continue;
6838 			}
6839 		}
6840 
6841 		if (va_next > eva)
6842 			va_next = eva;
6843 
6844 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
6845 		    sva += PAGE_SIZE) {
6846 retry:
6847 			obits = pbits = *pte;
6848 			if ((pbits & PG_V) == 0)
6849 				continue;
6850 
6851 			if ((prot & VM_PROT_WRITE) == 0) {
6852 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
6853 				    (PG_MANAGED | PG_M | PG_RW)) {
6854 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
6855 					vm_page_dirty(m);
6856 				}
6857 				pbits &= ~(PG_RW | PG_M);
6858 			}
6859 			if ((prot & VM_PROT_EXECUTE) == 0)
6860 				pbits |= pg_nx;
6861 
6862 			if (pbits != obits) {
6863 				if (!atomic_cmpset_long(pte, obits, pbits))
6864 					goto retry;
6865 				if (obits & PG_G)
6866 					pmap_invalidate_page(pmap, sva);
6867 				else
6868 					anychanged = true;
6869 			}
6870 		}
6871 	}
6872 	if (anychanged)
6873 		pmap_invalidate_all(pmap);
6874 	PMAP_UNLOCK(pmap);
6875 }
6876 
6877 static bool
pmap_pde_ept_executable(pmap_t pmap,pd_entry_t pde)6878 pmap_pde_ept_executable(pmap_t pmap, pd_entry_t pde)
6879 {
6880 
6881 	if (pmap->pm_type != PT_EPT)
6882 		return (false);
6883 	return ((pde & EPT_PG_EXECUTE) != 0);
6884 }
6885 
6886 #if VM_NRESERVLEVEL > 0
6887 /*
6888  * Tries to promote the 512, contiguous 4KB page mappings that are within a
6889  * single page table page (PTP) to a single 2MB page mapping.  For promotion
6890  * to occur, two conditions must be met: (1) the 4KB page mappings must map
6891  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
6892  * identical characteristics.
6893  */
6894 static bool
pmap_promote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,vm_page_t mpte,struct rwlock ** lockp)6895 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va, vm_page_t mpte,
6896     struct rwlock **lockp)
6897 {
6898 	pd_entry_t newpde;
6899 	pt_entry_t *firstpte, oldpte, pa, *pte;
6900 	pt_entry_t allpte_PG_A, PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
6901 	int PG_PTE_CACHE;
6902 
6903 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6904 	if (!pmap_ps_enabled(pmap))
6905 		return (false);
6906 
6907 	PG_A = pmap_accessed_bit(pmap);
6908 	PG_G = pmap_global_bit(pmap);
6909 	PG_M = pmap_modified_bit(pmap);
6910 	PG_V = pmap_valid_bit(pmap);
6911 	PG_RW = pmap_rw_bit(pmap);
6912 	PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6913 	PG_PTE_CACHE = pmap_cache_mask(pmap, false);
6914 
6915 	/*
6916 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
6917 	 * ineligible for promotion due to hardware errata, invalid, or does
6918 	 * not map the first 4KB physical page within a 2MB page.
6919 	 */
6920 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
6921 	newpde = *firstpte;
6922 	if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap, newpde)))
6923 		return (false);
6924 	if ((newpde & ((PG_FRAME & PDRMASK) | PG_V)) != PG_V) {
6925 		counter_u64_add(pmap_pde_p_failures, 1);
6926 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6927 		    " in pmap %p", va, pmap);
6928 		return (false);
6929 	}
6930 
6931 	/*
6932 	 * Both here and in the below "for" loop, to allow for repromotion
6933 	 * after MADV_FREE, conditionally write protect a clean PTE before
6934 	 * possibly aborting the promotion due to other PTE attributes.  Why?
6935 	 * Suppose that MADV_FREE is applied to a part of a superpage, the
6936 	 * address range [S, E).  pmap_advise() will demote the superpage
6937 	 * mapping, destroy the 4KB page mapping at the end of [S, E), and
6938 	 * clear PG_M and PG_A in the PTEs for the rest of [S, E).  Later,
6939 	 * imagine that the memory in [S, E) is recycled, but the last 4KB
6940 	 * page in [S, E) is not the last to be rewritten, or simply accessed.
6941 	 * In other words, there is still a 4KB page in [S, E), call it P,
6942 	 * that is writeable but PG_M and PG_A are clear in P's PTE.  Unless
6943 	 * we write protect P before aborting the promotion, if and when P is
6944 	 * finally rewritten, there won't be a page fault to trigger
6945 	 * repromotion.
6946 	 */
6947 setpde:
6948 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
6949 		/*
6950 		 * When PG_M is already clear, PG_RW can be cleared without
6951 		 * a TLB invalidation.
6952 		 */
6953 		if (!atomic_fcmpset_long(firstpte, &newpde, newpde & ~PG_RW))
6954 			goto setpde;
6955 		newpde &= ~PG_RW;
6956 		CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6957 		    " in pmap %p", va & ~PDRMASK, pmap);
6958 	}
6959 
6960 	/*
6961 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
6962 	 * PTE maps an unexpected 4KB physical page or does not have identical
6963 	 * characteristics to the first PTE.
6964 	 */
6965 	allpte_PG_A = newpde & PG_A;
6966 	pa = (newpde & (PG_PS_FRAME | PG_V)) + NBPDR - PAGE_SIZE;
6967 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
6968 		oldpte = *pte;
6969 		if ((oldpte & (PG_FRAME | PG_V)) != pa) {
6970 			counter_u64_add(pmap_pde_p_failures, 1);
6971 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6972 			    " in pmap %p", va, pmap);
6973 			return (false);
6974 		}
6975 setpte:
6976 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
6977 			/*
6978 			 * When PG_M is already clear, PG_RW can be cleared
6979 			 * without a TLB invalidation.
6980 			 */
6981 			if (!atomic_fcmpset_long(pte, &oldpte, oldpte & ~PG_RW))
6982 				goto setpte;
6983 			oldpte &= ~PG_RW;
6984 			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6985 			    " in pmap %p", (oldpte & PG_FRAME & PDRMASK) |
6986 			    (va & ~PDRMASK), pmap);
6987 		}
6988 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
6989 			counter_u64_add(pmap_pde_p_failures, 1);
6990 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6991 			    " in pmap %p", va, pmap);
6992 			return (false);
6993 		}
6994 		allpte_PG_A &= oldpte;
6995 		pa -= PAGE_SIZE;
6996 	}
6997 
6998 	/*
6999 	 * Unless all PTEs have PG_A set, clear it from the superpage mapping,
7000 	 * so that promotions triggered by speculative mappings, such as
7001 	 * pmap_enter_quick(), don't automatically mark the underlying pages
7002 	 * as referenced.
7003 	 */
7004 	newpde &= ~PG_A | allpte_PG_A;
7005 
7006 	/*
7007 	 * EPT PTEs with PG_M set and PG_A clear are not supported by early
7008 	 * MMUs supporting EPT.
7009 	 */
7010 	KASSERT((newpde & PG_A) != 0 || safe_to_clear_referenced(pmap, newpde),
7011 	    ("unsupported EPT PTE"));
7012 
7013 	/*
7014 	 * Save the PTP in its current state until the PDE mapping the
7015 	 * superpage is demoted by pmap_demote_pde() or destroyed by
7016 	 * pmap_remove_pde().  If PG_A is not set in every PTE, then request
7017 	 * that the PTP be refilled on demotion.
7018 	 */
7019 	if (mpte == NULL)
7020 		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7021 	KASSERT(mpte >= vm_page_array &&
7022 	    mpte < &vm_page_array[vm_page_array_size],
7023 	    ("pmap_promote_pde: page table page is out of range"));
7024 	KASSERT(mpte->pindex == pmap_pde_pindex(va),
7025 	    ("pmap_promote_pde: page table page's pindex is wrong "
7026 	    "mpte %p pidx %#lx va %#lx va pde pidx %#lx",
7027 	    mpte, mpte->pindex, va, pmap_pde_pindex(va)));
7028 	if (pmap_insert_pt_page(pmap, mpte, true, allpte_PG_A != 0)) {
7029 		counter_u64_add(pmap_pde_p_failures, 1);
7030 		CTR2(KTR_PMAP,
7031 		    "pmap_promote_pde: failure for va %#lx in pmap %p", va,
7032 		    pmap);
7033 		return (false);
7034 	}
7035 
7036 	/*
7037 	 * Promote the pv entries.
7038 	 */
7039 	if ((newpde & PG_MANAGED) != 0)
7040 		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME, lockp);
7041 
7042 	/*
7043 	 * Propagate the PAT index to its proper position.
7044 	 */
7045 	newpde = pmap_swap_pat(pmap, newpde);
7046 
7047 	/*
7048 	 * Map the superpage.
7049 	 */
7050 	if (workaround_erratum383)
7051 		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
7052 	else
7053 		pde_store(pde, PG_PROMOTED | PG_PS | newpde);
7054 
7055 	counter_u64_add(pmap_pde_promotions, 1);
7056 	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#lx"
7057 	    " in pmap %p", va, pmap);
7058 	return (true);
7059 }
7060 #endif /* VM_NRESERVLEVEL > 0 */
7061 
7062 static int
pmap_enter_largepage(pmap_t pmap,vm_offset_t va,pt_entry_t newpte,int flags,int psind)7063 pmap_enter_largepage(pmap_t pmap, vm_offset_t va, pt_entry_t newpte, int flags,
7064     int psind)
7065 {
7066 	vm_page_t mp;
7067 	pt_entry_t origpte, *pml4e, *pdpe, *pde, pten, PG_V;
7068 
7069 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7070 	KASSERT(psind > 0 && psind < MAXPAGESIZES && pagesizes[psind] != 0,
7071 	    ("psind %d unexpected", psind));
7072 	KASSERT(((newpte & PG_FRAME) & (pagesizes[psind] - 1)) == 0,
7073 	    ("unaligned phys address %#lx newpte %#lx psind %d",
7074 	    newpte & PG_FRAME, newpte, psind));
7075 	KASSERT((va & (pagesizes[psind] - 1)) == 0,
7076 	    ("unaligned va %#lx psind %d", va, psind));
7077 	KASSERT(va < VM_MAXUSER_ADDRESS,
7078 	    ("kernel mode non-transparent superpage")); /* XXXKIB */
7079 	KASSERT(va + pagesizes[psind] < VM_MAXUSER_ADDRESS,
7080 	    ("overflowing user map va %#lx psind %d", va, psind)); /* XXXKIB */
7081 
7082 	PG_V = pmap_valid_bit(pmap);
7083 
7084 restart:
7085 	pten = newpte;
7086 	if (!pmap_pkru_same(pmap, va, va + pagesizes[psind], &pten))
7087 		return (KERN_PROTECTION_FAILURE);
7088 
7089 	if (psind == 2) {	/* 1G */
7090 		pml4e = pmap_pml4e(pmap, va);
7091 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7092 			mp = pmap_allocpte_alloc(pmap, pmap_pml4e_pindex(va),
7093 			    NULL, va);
7094 			if (mp == NULL)
7095 				goto allocf;
7096 			pdpe = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
7097 			pdpe = &pdpe[pmap_pdpe_index(va)];
7098 			origpte = *pdpe;
7099 			MPASS(origpte == 0);
7100 		} else {
7101 			pdpe = pmap_pml4e_to_pdpe(pml4e, va);
7102 			KASSERT(pdpe != NULL, ("va %#lx lost pdpe", va));
7103 			origpte = *pdpe;
7104 			if ((origpte & PG_V) == 0) {
7105 				mp = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
7106 				mp->ref_count++;
7107 			}
7108 		}
7109 		*pdpe = pten;
7110 	} else /* (psind == 1) */ {	/* 2M */
7111 		pde = pmap_pde(pmap, va);
7112 		if (pde == NULL) {
7113 			mp = pmap_allocpte_alloc(pmap, pmap_pdpe_pindex(va),
7114 			    NULL, va);
7115 			if (mp == NULL)
7116 				goto allocf;
7117 			pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
7118 			pde = &pde[pmap_pde_index(va)];
7119 			origpte = *pde;
7120 			MPASS(origpte == 0);
7121 		} else {
7122 			origpte = *pde;
7123 			if ((origpte & PG_V) == 0) {
7124 				pdpe = pmap_pdpe(pmap, va);
7125 				MPASS(pdpe != NULL && (*pdpe & PG_V) != 0);
7126 				mp = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
7127 				mp->ref_count++;
7128 			}
7129 		}
7130 		*pde = pten;
7131 	}
7132 	KASSERT((origpte & PG_V) == 0 || ((origpte & PG_PS) != 0 &&
7133 	    (origpte & PG_PS_FRAME) == (pten & PG_PS_FRAME)),
7134 	    ("va %#lx changing %s phys page origpte %#lx pten %#lx",
7135 	    va, psind == 2 ? "1G" : "2M", origpte, pten));
7136 	if ((pten & PG_W) != 0 && (origpte & PG_W) == 0)
7137 		pmap->pm_stats.wired_count += pagesizes[psind] / PAGE_SIZE;
7138 	else if ((pten & PG_W) == 0 && (origpte & PG_W) != 0)
7139 		pmap->pm_stats.wired_count -= pagesizes[psind] / PAGE_SIZE;
7140 	if ((origpte & PG_V) == 0)
7141 		pmap_resident_count_adj(pmap, pagesizes[psind] / PAGE_SIZE);
7142 
7143 	return (KERN_SUCCESS);
7144 
7145 allocf:
7146 	if ((flags & PMAP_ENTER_NOSLEEP) != 0)
7147 		return (KERN_RESOURCE_SHORTAGE);
7148 	PMAP_UNLOCK(pmap);
7149 	vm_wait(NULL);
7150 	PMAP_LOCK(pmap);
7151 	goto restart;
7152 }
7153 
7154 /*
7155  *	Insert the given physical page (p) at
7156  *	the specified virtual address (v) in the
7157  *	target physical map with the protection requested.
7158  *
7159  *	If specified, the page will be wired down, meaning
7160  *	that the related pte can not be reclaimed.
7161  *
7162  *	NB:  This is the only routine which MAY NOT lazy-evaluate
7163  *	or lose information.  That is, this routine must actually
7164  *	insert this page into the given map NOW.
7165  *
7166  *	When destroying both a page table and PV entry, this function
7167  *	performs the TLB invalidation before releasing the PV list
7168  *	lock, so we do not need pmap_delayed_invl_page() calls here.
7169  */
7170 int
pmap_enter(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind)7171 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7172     u_int flags, int8_t psind)
7173 {
7174 	struct rwlock *lock;
7175 	pd_entry_t *pde;
7176 	pt_entry_t *pte, PG_G, PG_A, PG_M, PG_RW, PG_V;
7177 	pt_entry_t newpte, origpte;
7178 	pv_entry_t pv;
7179 	vm_paddr_t opa, pa;
7180 	vm_page_t mpte, om;
7181 	int rv;
7182 	bool nosleep;
7183 
7184 	PG_A = pmap_accessed_bit(pmap);
7185 	PG_G = pmap_global_bit(pmap);
7186 	PG_M = pmap_modified_bit(pmap);
7187 	PG_V = pmap_valid_bit(pmap);
7188 	PG_RW = pmap_rw_bit(pmap);
7189 
7190 	va = trunc_page(va);
7191 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
7192 	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
7193 	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)",
7194 	    va));
7195 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || !VA_IS_CLEANMAP(va),
7196 	    ("pmap_enter: managed mapping within the clean submap"));
7197 	if ((m->oflags & VPO_UNMANAGED) == 0)
7198 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
7199 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
7200 	    ("pmap_enter: flags %u has reserved bits set", flags));
7201 	pa = VM_PAGE_TO_PHYS(m);
7202 	newpte = (pt_entry_t)(pa | PG_A | PG_V);
7203 	if ((flags & VM_PROT_WRITE) != 0)
7204 		newpte |= PG_M;
7205 	if ((prot & VM_PROT_WRITE) != 0)
7206 		newpte |= PG_RW;
7207 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
7208 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
7209 	if ((prot & VM_PROT_EXECUTE) == 0)
7210 		newpte |= pg_nx;
7211 	if ((flags & PMAP_ENTER_WIRED) != 0)
7212 		newpte |= PG_W;
7213 	if (va < VM_MAXUSER_ADDRESS)
7214 		newpte |= PG_U;
7215 	if (pmap == kernel_pmap)
7216 		newpte |= PG_G;
7217 	newpte |= pmap_cache_bits(pmap, m->md.pat_mode, psind > 0);
7218 
7219 	/*
7220 	 * Set modified bit gratuitously for writeable mappings if
7221 	 * the page is unmanaged. We do not want to take a fault
7222 	 * to do the dirty bit accounting for these mappings.
7223 	 */
7224 	if ((m->oflags & VPO_UNMANAGED) != 0) {
7225 		if ((newpte & PG_RW) != 0)
7226 			newpte |= PG_M;
7227 	} else
7228 		newpte |= PG_MANAGED;
7229 
7230 	lock = NULL;
7231 	PMAP_LOCK(pmap);
7232 	if ((flags & PMAP_ENTER_LARGEPAGE) != 0) {
7233 		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
7234 		    ("managed largepage va %#lx flags %#x", va, flags));
7235 		rv = pmap_enter_largepage(pmap, va, newpte | PG_PS, flags,
7236 		    psind);
7237 		goto out;
7238 	}
7239 	if (psind == 1) {
7240 		/* Assert the required virtual and physical alignment. */
7241 		KASSERT((va & PDRMASK) == 0, ("pmap_enter: va unaligned"));
7242 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
7243 		rv = pmap_enter_pde(pmap, va, newpte | PG_PS, flags, m, &lock);
7244 		goto out;
7245 	}
7246 	mpte = NULL;
7247 
7248 	/*
7249 	 * In the case that a page table page is not
7250 	 * resident, we are creating it here.
7251 	 */
7252 retry:
7253 	pde = pmap_pde(pmap, va);
7254 	if (pde != NULL && (*pde & PG_V) != 0 && ((*pde & PG_PS) == 0 ||
7255 	    pmap_demote_pde_locked(pmap, pde, va, &lock))) {
7256 		pte = pmap_pde_to_pte(pde, va);
7257 		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
7258 			mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7259 			mpte->ref_count++;
7260 		}
7261 	} else if (va < VM_MAXUSER_ADDRESS) {
7262 		/*
7263 		 * Here if the pte page isn't mapped, or if it has been
7264 		 * deallocated.
7265 		 */
7266 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
7267 		mpte = pmap_allocpte_alloc(pmap, pmap_pde_pindex(va),
7268 		    nosleep ? NULL : &lock, va);
7269 		if (mpte == NULL && nosleep) {
7270 			rv = KERN_RESOURCE_SHORTAGE;
7271 			goto out;
7272 		}
7273 		goto retry;
7274 	} else
7275 		panic("pmap_enter: invalid page directory va=%#lx", va);
7276 
7277 	origpte = *pte;
7278 	pv = NULL;
7279 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86)
7280 		newpte |= pmap_pkru_get(pmap, va);
7281 
7282 	/*
7283 	 * Is the specified virtual address already mapped?
7284 	 */
7285 	if ((origpte & PG_V) != 0) {
7286 		/*
7287 		 * Wiring change, just update stats. We don't worry about
7288 		 * wiring PT pages as they remain resident as long as there
7289 		 * are valid mappings in them. Hence, if a user page is wired,
7290 		 * the PT page will be also.
7291 		 */
7292 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
7293 			pmap->pm_stats.wired_count++;
7294 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
7295 			pmap->pm_stats.wired_count--;
7296 
7297 		/*
7298 		 * Remove the extra PT page reference.
7299 		 */
7300 		if (mpte != NULL) {
7301 			mpte->ref_count--;
7302 			KASSERT(mpte->ref_count > 0,
7303 			    ("pmap_enter: missing reference to page table page,"
7304 			     " va: 0x%lx", va));
7305 		}
7306 
7307 		/*
7308 		 * Has the physical page changed?
7309 		 */
7310 		opa = origpte & PG_FRAME;
7311 		if (opa == pa) {
7312 			/*
7313 			 * No, might be a protection or wiring change.
7314 			 */
7315 			if ((origpte & PG_MANAGED) != 0 &&
7316 			    (newpte & PG_RW) != 0)
7317 				vm_page_aflag_set(m, PGA_WRITEABLE);
7318 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
7319 				goto unchanged;
7320 			goto validate;
7321 		}
7322 
7323 		/*
7324 		 * The physical page has changed.  Temporarily invalidate
7325 		 * the mapping.  This ensures that all threads sharing the
7326 		 * pmap keep a consistent view of the mapping, which is
7327 		 * necessary for the correct handling of COW faults.  It
7328 		 * also permits reuse of the old mapping's PV entry,
7329 		 * avoiding an allocation.
7330 		 *
7331 		 * For consistency, handle unmanaged mappings the same way.
7332 		 */
7333 		origpte = pte_load_clear(pte);
7334 		KASSERT((origpte & PG_FRAME) == opa,
7335 		    ("pmap_enter: unexpected pa update for %#lx", va));
7336 		if ((origpte & PG_MANAGED) != 0) {
7337 			om = PHYS_TO_VM_PAGE(opa);
7338 
7339 			/*
7340 			 * The pmap lock is sufficient to synchronize with
7341 			 * concurrent calls to pmap_page_test_mappings() and
7342 			 * pmap_ts_referenced().
7343 			 */
7344 			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
7345 				vm_page_dirty(om);
7346 			if ((origpte & PG_A) != 0) {
7347 				pmap_invalidate_page(pmap, va);
7348 				vm_page_aflag_set(om, PGA_REFERENCED);
7349 			}
7350 			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
7351 			pv = pmap_pvh_remove(&om->md, pmap, va);
7352 			KASSERT(pv != NULL,
7353 			    ("pmap_enter: no PV entry for %#lx", va));
7354 			if ((newpte & PG_MANAGED) == 0)
7355 				free_pv_entry(pmap, pv);
7356 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
7357 			    TAILQ_EMPTY(&om->md.pv_list) &&
7358 			    ((om->flags & PG_FICTITIOUS) != 0 ||
7359 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
7360 				vm_page_aflag_clear(om, PGA_WRITEABLE);
7361 		} else {
7362 			/*
7363 			 * Since this mapping is unmanaged, assume that PG_A
7364 			 * is set.
7365 			 */
7366 			pmap_invalidate_page(pmap, va);
7367 		}
7368 		origpte = 0;
7369 	} else {
7370 		/*
7371 		 * Increment the counters.
7372 		 */
7373 		if ((newpte & PG_W) != 0)
7374 			pmap->pm_stats.wired_count++;
7375 		pmap_resident_count_adj(pmap, 1);
7376 	}
7377 
7378 	/*
7379 	 * Enter on the PV list if part of our managed memory.
7380 	 */
7381 	if ((newpte & PG_MANAGED) != 0) {
7382 		if (pv == NULL) {
7383 			pv = get_pv_entry(pmap, &lock);
7384 			pv->pv_va = va;
7385 		}
7386 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
7387 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
7388 		m->md.pv_gen++;
7389 		if ((newpte & PG_RW) != 0)
7390 			vm_page_aflag_set(m, PGA_WRITEABLE);
7391 	}
7392 
7393 	/*
7394 	 * Update the PTE.
7395 	 */
7396 	if ((origpte & PG_V) != 0) {
7397 validate:
7398 		origpte = pte_load_store(pte, newpte);
7399 		KASSERT((origpte & PG_FRAME) == pa,
7400 		    ("pmap_enter: unexpected pa update for %#lx", va));
7401 		if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
7402 		    (PG_M | PG_RW)) {
7403 			if ((origpte & PG_MANAGED) != 0)
7404 				vm_page_dirty(m);
7405 
7406 			/*
7407 			 * Although the PTE may still have PG_RW set, TLB
7408 			 * invalidation may nonetheless be required because
7409 			 * the PTE no longer has PG_M set.
7410 			 */
7411 		} else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
7412 			/*
7413 			 * This PTE change does not require TLB invalidation.
7414 			 */
7415 			goto unchanged;
7416 		}
7417 		if ((origpte & PG_A) != 0)
7418 			pmap_invalidate_page(pmap, va);
7419 	} else
7420 		pte_store(pte, newpte);
7421 
7422 unchanged:
7423 
7424 #if VM_NRESERVLEVEL > 0
7425 	/*
7426 	 * If both the page table page and the reservation are fully
7427 	 * populated, then attempt promotion.
7428 	 */
7429 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
7430 	    (m->flags & PG_FICTITIOUS) == 0 &&
7431 	    vm_reserv_level_iffullpop(m) == 0)
7432 		(void)pmap_promote_pde(pmap, pde, va, mpte, &lock);
7433 #endif
7434 
7435 	rv = KERN_SUCCESS;
7436 out:
7437 	if (lock != NULL)
7438 		rw_wunlock(lock);
7439 	PMAP_UNLOCK(pmap);
7440 	return (rv);
7441 }
7442 
7443 /*
7444  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns
7445  * KERN_SUCCESS if the mapping was created.  Otherwise, returns an error
7446  * value.  See pmap_enter_pde() for the possible error values when "no sleep",
7447  * "no replace", and "no reclaim" are specified.
7448  */
7449 static int
pmap_enter_2mpage(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,struct rwlock ** lockp)7450 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7451     struct rwlock **lockp)
7452 {
7453 	pd_entry_t newpde;
7454 	pt_entry_t PG_V;
7455 
7456 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7457 	PG_V = pmap_valid_bit(pmap);
7458 	newpde = VM_PAGE_TO_PHYS(m) |
7459 	    pmap_cache_bits(pmap, m->md.pat_mode, true) | PG_PS | PG_V;
7460 	if ((m->oflags & VPO_UNMANAGED) == 0)
7461 		newpde |= PG_MANAGED;
7462 	if ((prot & VM_PROT_EXECUTE) == 0)
7463 		newpde |= pg_nx;
7464 	if (va < VM_MAXUSER_ADDRESS)
7465 		newpde |= PG_U;
7466 	return (pmap_enter_pde(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
7467 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp));
7468 }
7469 
7470 /*
7471  * Returns true if every page table entry in the specified page table page is
7472  * zero.
7473  */
7474 static bool
pmap_every_pte_zero(vm_paddr_t pa)7475 pmap_every_pte_zero(vm_paddr_t pa)
7476 {
7477 	pt_entry_t *pt_end, *pte;
7478 
7479 	KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
7480 	pte = (pt_entry_t *)PHYS_TO_DMAP(pa);
7481 	for (pt_end = pte + NPTEPG; pte < pt_end; pte++) {
7482 		if (*pte != 0)
7483 			return (false);
7484 	}
7485 	return (true);
7486 }
7487 
7488 /*
7489  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
7490  * the mapping was created, and one of KERN_FAILURE, KERN_NO_SPACE,
7491  * KERN_PROTECTION_FAILURE, or KERN_RESOURCE_SHORTAGE otherwise.  Returns
7492  * KERN_FAILURE if either (1) PMAP_ENTER_NOREPLACE was specified and a 4KB
7493  * page mapping already exists within the 2MB virtual address range starting
7494  * at the specified virtual address or (2) the requested 2MB page mapping is
7495  * not supported due to hardware errata.  Returns KERN_NO_SPACE if
7496  * PMAP_ENTER_NOREPLACE was specified and a 2MB page mapping already exists at
7497  * the specified virtual address.  Returns KERN_PROTECTION_FAILURE if the PKRU
7498  * settings are not the same across the 2MB virtual address range starting at
7499  * the specified virtual address.  Returns KERN_RESOURCE_SHORTAGE if either
7500  * (1) PMAP_ENTER_NOSLEEP was specified and a page table page allocation
7501  * failed or (2) PMAP_ENTER_NORECLAIM was specified and a PV entry allocation
7502  * failed.
7503  *
7504  * The parameter "m" is only used when creating a managed, writeable mapping.
7505  */
7506 static int
pmap_enter_pde(pmap_t pmap,vm_offset_t va,pd_entry_t newpde,u_int flags,vm_page_t m,struct rwlock ** lockp)7507 pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde, u_int flags,
7508     vm_page_t m, struct rwlock **lockp)
7509 {
7510 	struct spglist free;
7511 	pd_entry_t oldpde, *pde;
7512 	pt_entry_t PG_G, PG_RW, PG_V;
7513 	vm_page_t mt, pdpg;
7514 	vm_page_t uwptpg;
7515 
7516 	PG_G = pmap_global_bit(pmap);
7517 	PG_RW = pmap_rw_bit(pmap);
7518 	KASSERT((newpde & (pmap_modified_bit(pmap) | PG_RW)) != PG_RW,
7519 	    ("pmap_enter_pde: newpde is missing PG_M"));
7520 	PG_V = pmap_valid_bit(pmap);
7521 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7522 
7523 	if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap,
7524 	    newpde))) {
7525 		CTR2(KTR_PMAP, "pmap_enter_pde: 2m x blocked for va %#lx"
7526 		    " in pmap %p", va, pmap);
7527 		return (KERN_FAILURE);
7528 	}
7529 	if ((pde = pmap_alloc_pde(pmap, va, &pdpg, (flags &
7530 	    PMAP_ENTER_NOSLEEP) != 0 ? NULL : lockp)) == NULL) {
7531 		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7532 		    " in pmap %p", va, pmap);
7533 		return (KERN_RESOURCE_SHORTAGE);
7534 	}
7535 
7536 	/*
7537 	 * If pkru is not same for the whole pde range, return failure
7538 	 * and let vm_fault() cope.  Check after pde allocation, since
7539 	 * it could sleep.
7540 	 */
7541 	if (!pmap_pkru_same(pmap, va, va + NBPDR, &newpde)) {
7542 		pmap_abort_ptp(pmap, va, pdpg);
7543 		return (KERN_PROTECTION_FAILURE);
7544 	}
7545 
7546 	/*
7547 	 * If there are existing mappings, either abort or remove them.
7548 	 */
7549 	oldpde = *pde;
7550 	if ((oldpde & PG_V) != 0) {
7551 		KASSERT(pdpg == NULL || pdpg->ref_count > 1,
7552 		    ("pmap_enter_pde: pdpg's reference count is too low"));
7553 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
7554 			if ((oldpde & PG_PS) != 0) {
7555 				if (pdpg != NULL)
7556 					pdpg->ref_count--;
7557 				CTR2(KTR_PMAP,
7558 				    "pmap_enter_pde: no space for va %#lx"
7559 				    " in pmap %p", va, pmap);
7560 				return (KERN_NO_SPACE);
7561 			} else if (va < VM_MAXUSER_ADDRESS ||
7562 			    !pmap_every_pte_zero(oldpde & PG_FRAME)) {
7563 				if (pdpg != NULL)
7564 					pdpg->ref_count--;
7565 				CTR2(KTR_PMAP,
7566 				    "pmap_enter_pde: failure for va %#lx"
7567 				    " in pmap %p", va, pmap);
7568 				return (KERN_FAILURE);
7569 			}
7570 		}
7571 		/* Break the existing mapping(s). */
7572 		SLIST_INIT(&free);
7573 		if ((oldpde & PG_PS) != 0) {
7574 			/*
7575 			 * The reference to the PD page that was acquired by
7576 			 * pmap_alloc_pde() ensures that it won't be freed.
7577 			 * However, if the PDE resulted from a promotion, then
7578 			 * a reserved PT page could be freed.
7579 			 */
7580 			(void)pmap_remove_pde(pmap, pde, va, &free, lockp);
7581 			if ((oldpde & PG_G) == 0)
7582 				pmap_invalidate_pde_page(pmap, va, oldpde);
7583 		} else {
7584 			pmap_delayed_invl_start();
7585 			if (pmap_remove_ptes(pmap, va, va + NBPDR, pde, &free,
7586 			    lockp))
7587 		               pmap_invalidate_all(pmap);
7588 			pmap_delayed_invl_finish();
7589 		}
7590 		if (va < VM_MAXUSER_ADDRESS) {
7591 			vm_page_free_pages_toq(&free, true);
7592 			KASSERT(*pde == 0, ("pmap_enter_pde: non-zero pde %p",
7593 			    pde));
7594 		} else {
7595 			KASSERT(SLIST_EMPTY(&free),
7596 			    ("pmap_enter_pde: freed kernel page table page"));
7597 
7598 			/*
7599 			 * Both pmap_remove_pde() and pmap_remove_ptes() will
7600 			 * leave the kernel page table page zero filled.
7601 			 */
7602 			mt = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7603 			if (pmap_insert_pt_page(pmap, mt, false, false))
7604 				panic("pmap_enter_pde: trie insert failed");
7605 		}
7606 	}
7607 
7608 	/*
7609 	 * Allocate leaf ptpage for wired userspace pages.
7610 	 */
7611 	uwptpg = NULL;
7612 	if ((newpde & PG_W) != 0 && pmap != kernel_pmap) {
7613 		uwptpg = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
7614 		    VM_ALLOC_WIRED);
7615 		if (uwptpg == NULL) {
7616 			pmap_abort_ptp(pmap, va, pdpg);
7617 			return (KERN_RESOURCE_SHORTAGE);
7618 		}
7619 		if (pmap_insert_pt_page(pmap, uwptpg, true, false)) {
7620 			pmap_free_pt_page(pmap, uwptpg, false);
7621 			pmap_abort_ptp(pmap, va, pdpg);
7622 			return (KERN_RESOURCE_SHORTAGE);
7623 		}
7624 
7625 		uwptpg->ref_count = NPTEPG;
7626 	}
7627 	if ((newpde & PG_MANAGED) != 0) {
7628 		/*
7629 		 * Abort this mapping if its PV entry could not be created.
7630 		 */
7631 		if (!pmap_pv_insert_pde(pmap, va, newpde, flags, lockp)) {
7632 			if (pdpg != NULL)
7633 				pmap_abort_ptp(pmap, va, pdpg);
7634 			if (uwptpg != NULL) {
7635 				mt = pmap_remove_pt_page(pmap, va);
7636 				KASSERT(mt == uwptpg,
7637 				    ("removed pt page %p, expected %p", mt,
7638 				    uwptpg));
7639 				uwptpg->ref_count = 1;
7640 				pmap_free_pt_page(pmap, uwptpg, false);
7641 			}
7642 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7643 			    " in pmap %p", va, pmap);
7644 			return (KERN_RESOURCE_SHORTAGE);
7645 		}
7646 		if ((newpde & PG_RW) != 0) {
7647 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
7648 				vm_page_aflag_set(mt, PGA_WRITEABLE);
7649 		}
7650 	}
7651 
7652 	/*
7653 	 * Increment counters.
7654 	 */
7655 	if ((newpde & PG_W) != 0)
7656 		pmap->pm_stats.wired_count += NBPDR / PAGE_SIZE;
7657 	pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7658 
7659 	/*
7660 	 * Map the superpage.  (This is not a promoted mapping; there will not
7661 	 * be any lingering 4KB page mappings in the TLB.)
7662 	 */
7663 	pde_store(pde, newpde);
7664 
7665 	counter_u64_add(pmap_pde_mappings, 1);
7666 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx in pmap %p",
7667 	    va, pmap);
7668 	return (KERN_SUCCESS);
7669 }
7670 
7671 /*
7672  * Maps a sequence of resident pages belonging to the same object.
7673  * The sequence begins with the given page m_start.  This page is
7674  * mapped at the given virtual address start.  Each subsequent page is
7675  * mapped at a virtual address that is offset from start by the same
7676  * amount as the page is offset from m_start within the object.  The
7677  * last page in the sequence is the page with the largest offset from
7678  * m_start that can be mapped at a virtual address less than the given
7679  * virtual address end.  Not every virtual page between start and end
7680  * is mapped; only those for which a resident page exists with the
7681  * corresponding offset from m_start are mapped.
7682  */
7683 void
pmap_enter_object(pmap_t pmap,vm_offset_t start,vm_offset_t end,vm_page_t m_start,vm_prot_t prot)7684 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
7685     vm_page_t m_start, vm_prot_t prot)
7686 {
7687 	struct rwlock *lock;
7688 	vm_offset_t va;
7689 	vm_page_t m, mpte;
7690 	vm_pindex_t diff, psize;
7691 	int rv;
7692 
7693 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
7694 
7695 	psize = atop(end - start);
7696 	mpte = NULL;
7697 	m = m_start;
7698 	lock = NULL;
7699 	PMAP_LOCK(pmap);
7700 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
7701 		va = start + ptoa(diff);
7702 		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
7703 		    m->psind == 1 && pmap_ps_enabled(pmap) &&
7704 		    ((rv = pmap_enter_2mpage(pmap, va, m, prot, &lock)) ==
7705 		    KERN_SUCCESS || rv == KERN_NO_SPACE))
7706 			m = &m[NBPDR / PAGE_SIZE - 1];
7707 		else
7708 			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
7709 			    mpte, &lock);
7710 		m = TAILQ_NEXT(m, listq);
7711 	}
7712 	if (lock != NULL)
7713 		rw_wunlock(lock);
7714 	PMAP_UNLOCK(pmap);
7715 }
7716 
7717 /*
7718  * this code makes some *MAJOR* assumptions:
7719  * 1. Current pmap & pmap exists.
7720  * 2. Not wired.
7721  * 3. Read access.
7722  * 4. No page table pages.
7723  * but is *MUCH* faster than pmap_enter...
7724  */
7725 
7726 void
pmap_enter_quick(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot)7727 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
7728 {
7729 	struct rwlock *lock;
7730 
7731 	lock = NULL;
7732 	PMAP_LOCK(pmap);
7733 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
7734 	if (lock != NULL)
7735 		rw_wunlock(lock);
7736 	PMAP_UNLOCK(pmap);
7737 }
7738 
7739 static vm_page_t
pmap_enter_quick_locked(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,vm_page_t mpte,struct rwlock ** lockp)7740 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
7741     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
7742 {
7743 	pd_entry_t *pde;
7744 	pt_entry_t newpte, *pte, PG_V;
7745 
7746 	KASSERT(!VA_IS_CLEANMAP(va) ||
7747 	    (m->oflags & VPO_UNMANAGED) != 0,
7748 	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
7749 	PG_V = pmap_valid_bit(pmap);
7750 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7751 	pde = NULL;
7752 
7753 	/*
7754 	 * In the case that a page table page is not
7755 	 * resident, we are creating it here.
7756 	 */
7757 	if (va < VM_MAXUSER_ADDRESS) {
7758 		pdp_entry_t *pdpe;
7759 		vm_pindex_t ptepindex;
7760 
7761 		/*
7762 		 * Calculate pagetable page index
7763 		 */
7764 		ptepindex = pmap_pde_pindex(va);
7765 		if (mpte && (mpte->pindex == ptepindex)) {
7766 			mpte->ref_count++;
7767 		} else {
7768 			/*
7769 			 * If the page table page is mapped, we just increment
7770 			 * the hold count, and activate it.  Otherwise, we
7771 			 * attempt to allocate a page table page, passing NULL
7772 			 * instead of the PV list lock pointer because we don't
7773 			 * intend to sleep.  If this attempt fails, we don't
7774 			 * retry.  Instead, we give up.
7775 			 */
7776 			pdpe = pmap_pdpe(pmap, va);
7777 			if (pdpe != NULL && (*pdpe & PG_V) != 0) {
7778 				if ((*pdpe & PG_PS) != 0)
7779 					return (NULL);
7780 				pde = pmap_pdpe_to_pde(pdpe, va);
7781 				if ((*pde & PG_V) != 0) {
7782 					if ((*pde & PG_PS) != 0)
7783 						return (NULL);
7784 					mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7785 					mpte->ref_count++;
7786 				} else {
7787 					mpte = pmap_allocpte_alloc(pmap,
7788 					    ptepindex, NULL, va);
7789 					if (mpte == NULL)
7790 						return (NULL);
7791 				}
7792 			} else {
7793 				mpte = pmap_allocpte_alloc(pmap, ptepindex,
7794 				    NULL, va);
7795 				if (mpte == NULL)
7796 					return (NULL);
7797 			}
7798 		}
7799 		pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
7800 		pte = &pte[pmap_pte_index(va)];
7801 	} else {
7802 		mpte = NULL;
7803 		pte = vtopte(va);
7804 	}
7805 	if (*pte) {
7806 		if (mpte != NULL)
7807 			mpte->ref_count--;
7808 		return (NULL);
7809 	}
7810 
7811 	/*
7812 	 * Enter on the PV list if part of our managed memory.
7813 	 */
7814 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
7815 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
7816 		if (mpte != NULL)
7817 			pmap_abort_ptp(pmap, va, mpte);
7818 		return (NULL);
7819 	}
7820 
7821 	/*
7822 	 * Increment counters
7823 	 */
7824 	pmap_resident_count_adj(pmap, 1);
7825 
7826 	newpte = VM_PAGE_TO_PHYS(m) | PG_V |
7827 	    pmap_cache_bits(pmap, m->md.pat_mode, false);
7828 	if ((m->oflags & VPO_UNMANAGED) == 0)
7829 		newpte |= PG_MANAGED;
7830 	if ((prot & VM_PROT_EXECUTE) == 0)
7831 		newpte |= pg_nx;
7832 	if (va < VM_MAXUSER_ADDRESS)
7833 		newpte |= PG_U | pmap_pkru_get(pmap, va);
7834 	pte_store(pte, newpte);
7835 
7836 #if VM_NRESERVLEVEL > 0
7837 	/*
7838 	 * If both the PTP and the reservation are fully populated, then
7839 	 * attempt promotion.
7840 	 */
7841 	if ((prot & VM_PROT_NO_PROMOTE) == 0 &&
7842 	    (mpte == NULL || mpte->ref_count == NPTEPG) &&
7843 	    (m->flags & PG_FICTITIOUS) == 0 &&
7844 	    vm_reserv_level_iffullpop(m) == 0) {
7845 		if (pde == NULL)
7846 			pde = pmap_pde(pmap, va);
7847 
7848 		/*
7849 		 * If promotion succeeds, then the next call to this function
7850 		 * should not be given the unmapped PTP as a hint.
7851 		 */
7852 		if (pmap_promote_pde(pmap, pde, va, mpte, lockp))
7853 			mpte = NULL;
7854 	}
7855 #endif
7856 
7857 	return (mpte);
7858 }
7859 
7860 /*
7861  * Make a temporary mapping for a physical address.  This is only intended
7862  * to be used for panic dumps.
7863  */
7864 void *
pmap_kenter_temporary(vm_paddr_t pa,int i)7865 pmap_kenter_temporary(vm_paddr_t pa, int i)
7866 {
7867 	vm_offset_t va;
7868 
7869 	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
7870 	pmap_kenter(va, pa);
7871 	pmap_invlpg(kernel_pmap, va);
7872 	return ((void *)crashdumpmap);
7873 }
7874 
7875 /*
7876  * This code maps large physical mmap regions into the
7877  * processor address space.  Note that some shortcuts
7878  * are taken, but the code works.
7879  */
7880 void
pmap_object_init_pt(pmap_t pmap,vm_offset_t addr,vm_object_t object,vm_pindex_t pindex,vm_size_t size)7881 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
7882     vm_pindex_t pindex, vm_size_t size)
7883 {
7884 	pd_entry_t *pde;
7885 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
7886 	vm_paddr_t pa, ptepa;
7887 	vm_page_t p, pdpg;
7888 	int pat_mode;
7889 
7890 	PG_A = pmap_accessed_bit(pmap);
7891 	PG_M = pmap_modified_bit(pmap);
7892 	PG_V = pmap_valid_bit(pmap);
7893 	PG_RW = pmap_rw_bit(pmap);
7894 
7895 	VM_OBJECT_ASSERT_WLOCKED(object);
7896 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
7897 	    ("pmap_object_init_pt: non-device object"));
7898 	if ((addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
7899 		if (!pmap_ps_enabled(pmap))
7900 			return;
7901 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
7902 			return;
7903 		p = vm_page_lookup(object, pindex);
7904 		KASSERT(vm_page_all_valid(p),
7905 		    ("pmap_object_init_pt: invalid page %p", p));
7906 		pat_mode = p->md.pat_mode;
7907 
7908 		/*
7909 		 * Abort the mapping if the first page is not physically
7910 		 * aligned to a 2MB page boundary.
7911 		 */
7912 		ptepa = VM_PAGE_TO_PHYS(p);
7913 		if (ptepa & (NBPDR - 1))
7914 			return;
7915 
7916 		/*
7917 		 * Skip the first page.  Abort the mapping if the rest of
7918 		 * the pages are not physically contiguous or have differing
7919 		 * memory attributes.
7920 		 */
7921 		p = TAILQ_NEXT(p, listq);
7922 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
7923 		    pa += PAGE_SIZE) {
7924 			KASSERT(vm_page_all_valid(p),
7925 			    ("pmap_object_init_pt: invalid page %p", p));
7926 			if (pa != VM_PAGE_TO_PHYS(p) ||
7927 			    pat_mode != p->md.pat_mode)
7928 				return;
7929 			p = TAILQ_NEXT(p, listq);
7930 		}
7931 
7932 		/*
7933 		 * Map using 2MB pages.  Since "ptepa" is 2M aligned and
7934 		 * "size" is a multiple of 2M, adding the PAT setting to "pa"
7935 		 * will not affect the termination of this loop.
7936 		 */
7937 		PMAP_LOCK(pmap);
7938 		for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, true);
7939 		    pa < ptepa + size; pa += NBPDR) {
7940 			pde = pmap_alloc_pde(pmap, addr, &pdpg, NULL);
7941 			if (pde == NULL) {
7942 				/*
7943 				 * The creation of mappings below is only an
7944 				 * optimization.  If a page directory page
7945 				 * cannot be allocated without blocking,
7946 				 * continue on to the next mapping rather than
7947 				 * blocking.
7948 				 */
7949 				addr += NBPDR;
7950 				continue;
7951 			}
7952 			if ((*pde & PG_V) == 0) {
7953 				pde_store(pde, pa | PG_PS | PG_M | PG_A |
7954 				    PG_U | PG_RW | PG_V);
7955 				pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7956 				counter_u64_add(pmap_pde_mappings, 1);
7957 			} else {
7958 				/* Continue on if the PDE is already valid. */
7959 				pdpg->ref_count--;
7960 				KASSERT(pdpg->ref_count > 0,
7961 				    ("pmap_object_init_pt: missing reference "
7962 				    "to page directory page, va: 0x%lx", addr));
7963 			}
7964 			addr += NBPDR;
7965 		}
7966 		PMAP_UNLOCK(pmap);
7967 	}
7968 }
7969 
7970 /*
7971  *	Clear the wired attribute from the mappings for the specified range of
7972  *	addresses in the given pmap.  Every valid mapping within that range
7973  *	must have the wired attribute set.  In contrast, invalid mappings
7974  *	cannot have the wired attribute set, so they are ignored.
7975  *
7976  *	The wired attribute of the page table entry is not a hardware
7977  *	feature, so there is no need to invalidate any TLB entries.
7978  *	Since pmap_demote_pde() for the wired entry must never fail,
7979  *	pmap_delayed_invl_start()/finish() calls around the
7980  *	function are not needed.
7981  */
7982 void
pmap_unwire(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)7983 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
7984 {
7985 	vm_offset_t va_next;
7986 	pml4_entry_t *pml4e;
7987 	pdp_entry_t *pdpe;
7988 	pd_entry_t *pde;
7989 	pt_entry_t *pte, PG_V, PG_G __diagused;
7990 
7991 	PG_V = pmap_valid_bit(pmap);
7992 	PG_G = pmap_global_bit(pmap);
7993 	PMAP_LOCK(pmap);
7994 	for (; sva < eva; sva = va_next) {
7995 		pml4e = pmap_pml4e(pmap, sva);
7996 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7997 			va_next = (sva + NBPML4) & ~PML4MASK;
7998 			if (va_next < sva)
7999 				va_next = eva;
8000 			continue;
8001 		}
8002 
8003 		va_next = (sva + NBPDP) & ~PDPMASK;
8004 		if (va_next < sva)
8005 			va_next = eva;
8006 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
8007 		if ((*pdpe & PG_V) == 0)
8008 			continue;
8009 		if ((*pdpe & PG_PS) != 0) {
8010 			KASSERT(va_next <= eva,
8011 			    ("partial update of non-transparent 1G mapping "
8012 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8013 			    *pdpe, sva, eva, va_next));
8014 			MPASS(pmap != kernel_pmap); /* XXXKIB */
8015 			MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
8016 			atomic_clear_long(pdpe, PG_W);
8017 			pmap->pm_stats.wired_count -= NBPDP / PAGE_SIZE;
8018 			continue;
8019 		}
8020 
8021 		va_next = (sva + NBPDR) & ~PDRMASK;
8022 		if (va_next < sva)
8023 			va_next = eva;
8024 		pde = pmap_pdpe_to_pde(pdpe, sva);
8025 		if ((*pde & PG_V) == 0)
8026 			continue;
8027 		if ((*pde & PG_PS) != 0) {
8028 			if ((*pde & PG_W) == 0)
8029 				panic("pmap_unwire: pde %#jx is missing PG_W",
8030 				    (uintmax_t)*pde);
8031 
8032 			/*
8033 			 * Are we unwiring the entire large page?  If not,
8034 			 * demote the mapping and fall through.
8035 			 */
8036 			if (sva + NBPDR == va_next && eva >= va_next) {
8037 				atomic_clear_long(pde, PG_W);
8038 				pmap->pm_stats.wired_count -= NBPDR /
8039 				    PAGE_SIZE;
8040 				continue;
8041 			} else if (!pmap_demote_pde(pmap, pde, sva))
8042 				panic("pmap_unwire: demotion failed");
8043 		}
8044 		if (va_next > eva)
8045 			va_next = eva;
8046 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
8047 		    sva += PAGE_SIZE) {
8048 			if ((*pte & PG_V) == 0)
8049 				continue;
8050 			if ((*pte & PG_W) == 0)
8051 				panic("pmap_unwire: pte %#jx is missing PG_W",
8052 				    (uintmax_t)*pte);
8053 
8054 			/*
8055 			 * PG_W must be cleared atomically.  Although the pmap
8056 			 * lock synchronizes access to PG_W, another processor
8057 			 * could be setting PG_M and/or PG_A concurrently.
8058 			 */
8059 			atomic_clear_long(pte, PG_W);
8060 			pmap->pm_stats.wired_count--;
8061 		}
8062 	}
8063 	PMAP_UNLOCK(pmap);
8064 }
8065 
8066 /*
8067  *	Copy the range specified by src_addr/len
8068  *	from the source map to the range dst_addr/len
8069  *	in the destination map.
8070  *
8071  *	This routine is only advisory and need not do anything.
8072  */
8073 void
pmap_copy(pmap_t dst_pmap,pmap_t src_pmap,vm_offset_t dst_addr,vm_size_t len,vm_offset_t src_addr)8074 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
8075     vm_offset_t src_addr)
8076 {
8077 	struct rwlock *lock;
8078 	pml4_entry_t *pml4e;
8079 	pdp_entry_t *pdpe;
8080 	pd_entry_t *pde, srcptepaddr;
8081 	pt_entry_t *dst_pte, PG_A, PG_M, PG_V, ptetemp, *src_pte;
8082 	vm_offset_t addr, end_addr, va_next;
8083 	vm_page_t dst_pdpg, dstmpte, srcmpte;
8084 
8085 	if (dst_addr != src_addr)
8086 		return;
8087 
8088 	if (dst_pmap->pm_type != src_pmap->pm_type)
8089 		return;
8090 
8091 	/*
8092 	 * EPT page table entries that require emulation of A/D bits are
8093 	 * sensitive to clearing the PG_A bit (aka EPT_PG_READ). Although
8094 	 * we clear PG_M (aka EPT_PG_WRITE) concomitantly, the PG_U bit
8095 	 * (aka EPT_PG_EXECUTE) could still be set. Since some EPT
8096 	 * implementations flag an EPT misconfiguration for exec-only
8097 	 * mappings we skip this function entirely for emulated pmaps.
8098 	 */
8099 	if (pmap_emulate_ad_bits(dst_pmap))
8100 		return;
8101 
8102 	end_addr = src_addr + len;
8103 	lock = NULL;
8104 	if (dst_pmap < src_pmap) {
8105 		PMAP_LOCK(dst_pmap);
8106 		PMAP_LOCK(src_pmap);
8107 	} else {
8108 		PMAP_LOCK(src_pmap);
8109 		PMAP_LOCK(dst_pmap);
8110 	}
8111 
8112 	PG_A = pmap_accessed_bit(dst_pmap);
8113 	PG_M = pmap_modified_bit(dst_pmap);
8114 	PG_V = pmap_valid_bit(dst_pmap);
8115 
8116 	for (addr = src_addr; addr < end_addr; addr = va_next) {
8117 		KASSERT(addr < UPT_MIN_ADDRESS,
8118 		    ("pmap_copy: invalid to pmap_copy page tables"));
8119 
8120 		pml4e = pmap_pml4e(src_pmap, addr);
8121 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
8122 			va_next = (addr + NBPML4) & ~PML4MASK;
8123 			if (va_next < addr)
8124 				va_next = end_addr;
8125 			continue;
8126 		}
8127 
8128 		va_next = (addr + NBPDP) & ~PDPMASK;
8129 		if (va_next < addr)
8130 			va_next = end_addr;
8131 		pdpe = pmap_pml4e_to_pdpe(pml4e, addr);
8132 		if ((*pdpe & PG_V) == 0)
8133 			continue;
8134 		if ((*pdpe & PG_PS) != 0) {
8135 			KASSERT(va_next <= end_addr,
8136 			    ("partial update of non-transparent 1G mapping "
8137 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8138 			    *pdpe, addr, end_addr, va_next));
8139 			MPASS((addr & PDPMASK) == 0);
8140 			MPASS((*pdpe & PG_MANAGED) == 0);
8141 			srcptepaddr = *pdpe;
8142 			pdpe = pmap_pdpe(dst_pmap, addr);
8143 			if (pdpe == NULL) {
8144 				if (pmap_allocpte_alloc(dst_pmap,
8145 				    pmap_pml4e_pindex(addr), NULL, addr) ==
8146 				    NULL)
8147 					break;
8148 				pdpe = pmap_pdpe(dst_pmap, addr);
8149 			} else {
8150 				pml4e = pmap_pml4e(dst_pmap, addr);
8151 				dst_pdpg = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
8152 				dst_pdpg->ref_count++;
8153 			}
8154 			KASSERT(*pdpe == 0,
8155 			    ("1G mapping present in dst pmap "
8156 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8157 			    *pdpe, addr, end_addr, va_next));
8158 			*pdpe = srcptepaddr & ~PG_W;
8159 			pmap_resident_count_adj(dst_pmap, NBPDP / PAGE_SIZE);
8160 			continue;
8161 		}
8162 
8163 		va_next = (addr + NBPDR) & ~PDRMASK;
8164 		if (va_next < addr)
8165 			va_next = end_addr;
8166 
8167 		pde = pmap_pdpe_to_pde(pdpe, addr);
8168 		srcptepaddr = *pde;
8169 		if (srcptepaddr == 0)
8170 			continue;
8171 
8172 		if (srcptepaddr & PG_PS) {
8173 			/*
8174 			 * We can only virtual copy whole superpages.
8175 			 */
8176 			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
8177 				continue;
8178 			pde = pmap_alloc_pde(dst_pmap, addr, &dst_pdpg, NULL);
8179 			if (pde == NULL)
8180 				break;
8181 			if (*pde == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
8182 			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr,
8183 			    PMAP_ENTER_NORECLAIM, &lock))) {
8184 				/*
8185 				 * We leave the dirty bit unchanged because
8186 				 * managed read/write superpage mappings are
8187 				 * required to be dirty.  However, managed
8188 				 * superpage mappings are not required to
8189 				 * have their accessed bit set, so we clear
8190 				 * it because we don't know if this mapping
8191 				 * will be used.
8192 				 */
8193 				srcptepaddr &= ~PG_W;
8194 				if ((srcptepaddr & PG_MANAGED) != 0)
8195 					srcptepaddr &= ~PG_A;
8196 				*pde = srcptepaddr;
8197 				pmap_resident_count_adj(dst_pmap, NBPDR /
8198 				    PAGE_SIZE);
8199 				counter_u64_add(pmap_pde_mappings, 1);
8200 			} else
8201 				pmap_abort_ptp(dst_pmap, addr, dst_pdpg);
8202 			continue;
8203 		}
8204 
8205 		srcptepaddr &= PG_FRAME;
8206 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
8207 		KASSERT(srcmpte->ref_count > 0,
8208 		    ("pmap_copy: source page table page is unused"));
8209 
8210 		if (va_next > end_addr)
8211 			va_next = end_addr;
8212 
8213 		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
8214 		src_pte = &src_pte[pmap_pte_index(addr)];
8215 		dstmpte = NULL;
8216 		for (; addr < va_next; addr += PAGE_SIZE, src_pte++) {
8217 			ptetemp = *src_pte;
8218 
8219 			/*
8220 			 * We only virtual copy managed pages.
8221 			 */
8222 			if ((ptetemp & PG_MANAGED) == 0)
8223 				continue;
8224 
8225 			if (dstmpte != NULL) {
8226 				KASSERT(dstmpte->pindex ==
8227 				    pmap_pde_pindex(addr),
8228 				    ("dstmpte pindex/addr mismatch"));
8229 				dstmpte->ref_count++;
8230 			} else if ((dstmpte = pmap_allocpte(dst_pmap, addr,
8231 			    NULL)) == NULL)
8232 				goto out;
8233 			dst_pte = (pt_entry_t *)
8234 			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
8235 			dst_pte = &dst_pte[pmap_pte_index(addr)];
8236 			if (*dst_pte == 0 &&
8237 			    pmap_try_insert_pv_entry(dst_pmap, addr,
8238 			    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME), &lock)) {
8239 				/*
8240 				 * Clear the wired, modified, and accessed
8241 				 * (referenced) bits during the copy.
8242 				 */
8243 				*dst_pte = ptetemp & ~(PG_W | PG_M | PG_A);
8244 				pmap_resident_count_adj(dst_pmap, 1);
8245 			} else {
8246 				pmap_abort_ptp(dst_pmap, addr, dstmpte);
8247 				goto out;
8248 			}
8249 			/* Have we copied all of the valid mappings? */
8250 			if (dstmpte->ref_count >= srcmpte->ref_count)
8251 				break;
8252 		}
8253 	}
8254 out:
8255 	if (lock != NULL)
8256 		rw_wunlock(lock);
8257 	PMAP_UNLOCK(src_pmap);
8258 	PMAP_UNLOCK(dst_pmap);
8259 }
8260 
8261 int
pmap_vmspace_copy(pmap_t dst_pmap,pmap_t src_pmap)8262 pmap_vmspace_copy(pmap_t dst_pmap, pmap_t src_pmap)
8263 {
8264 	int error;
8265 
8266 	if (dst_pmap->pm_type != src_pmap->pm_type ||
8267 	    dst_pmap->pm_type != PT_X86 ||
8268 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
8269 		return (0);
8270 	for (;;) {
8271 		if (dst_pmap < src_pmap) {
8272 			PMAP_LOCK(dst_pmap);
8273 			PMAP_LOCK(src_pmap);
8274 		} else {
8275 			PMAP_LOCK(src_pmap);
8276 			PMAP_LOCK(dst_pmap);
8277 		}
8278 		error = pmap_pkru_copy(dst_pmap, src_pmap);
8279 		/* Clean up partial copy on failure due to no memory. */
8280 		if (error == ENOMEM)
8281 			pmap_pkru_deassign_all(dst_pmap);
8282 		PMAP_UNLOCK(src_pmap);
8283 		PMAP_UNLOCK(dst_pmap);
8284 		if (error != ENOMEM)
8285 			break;
8286 		vm_wait(NULL);
8287 	}
8288 	return (error);
8289 }
8290 
8291 /*
8292  * Zero the specified hardware page.
8293  */
8294 void
pmap_zero_page(vm_page_t m)8295 pmap_zero_page(vm_page_t m)
8296 {
8297 	vm_offset_t va;
8298 
8299 #ifdef TSLOG_PAGEZERO
8300 	TSENTER();
8301 #endif
8302 	va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8303 	pagezero((void *)va);
8304 #ifdef TSLOG_PAGEZERO
8305 	TSEXIT();
8306 #endif
8307 }
8308 
8309 /*
8310  * Zero an area within a single hardware page.  off and size must not
8311  * cover an area beyond a single hardware page.
8312  */
8313 void
pmap_zero_page_area(vm_page_t m,int off,int size)8314 pmap_zero_page_area(vm_page_t m, int off, int size)
8315 {
8316 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8317 
8318 	if (off == 0 && size == PAGE_SIZE)
8319 		pagezero((void *)va);
8320 	else
8321 		bzero((char *)va + off, size);
8322 }
8323 
8324 /*
8325  * Copy 1 specified hardware page to another.
8326  */
8327 void
pmap_copy_page(vm_page_t msrc,vm_page_t mdst)8328 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
8329 {
8330 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
8331 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
8332 
8333 	pagecopy((void *)src, (void *)dst);
8334 }
8335 
8336 int unmapped_buf_allowed = 1;
8337 
8338 void
pmap_copy_pages(vm_page_t ma[],vm_offset_t a_offset,vm_page_t mb[],vm_offset_t b_offset,int xfersize)8339 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
8340     vm_offset_t b_offset, int xfersize)
8341 {
8342 	void *a_cp, *b_cp;
8343 	vm_page_t pages[2];
8344 	vm_offset_t vaddr[2], a_pg_offset, b_pg_offset;
8345 	int cnt;
8346 	bool mapped;
8347 
8348 	while (xfersize > 0) {
8349 		a_pg_offset = a_offset & PAGE_MASK;
8350 		pages[0] = ma[a_offset >> PAGE_SHIFT];
8351 		b_pg_offset = b_offset & PAGE_MASK;
8352 		pages[1] = mb[b_offset >> PAGE_SHIFT];
8353 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
8354 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
8355 		mapped = pmap_map_io_transient(pages, vaddr, 2, false);
8356 		a_cp = (char *)vaddr[0] + a_pg_offset;
8357 		b_cp = (char *)vaddr[1] + b_pg_offset;
8358 		bcopy(a_cp, b_cp, cnt);
8359 		if (__predict_false(mapped))
8360 			pmap_unmap_io_transient(pages, vaddr, 2, false);
8361 		a_offset += cnt;
8362 		b_offset += cnt;
8363 		xfersize -= cnt;
8364 	}
8365 }
8366 
8367 /*
8368  * Returns true if the pmap's pv is one of the first
8369  * 16 pvs linked to from this page.  This count may
8370  * be changed upwards or downwards in the future; it
8371  * is only necessary that true be returned for a small
8372  * subset of pmaps for proper page aging.
8373  */
8374 bool
pmap_page_exists_quick(pmap_t pmap,vm_page_t m)8375 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
8376 {
8377 	struct md_page *pvh;
8378 	struct rwlock *lock;
8379 	pv_entry_t pv;
8380 	int loops = 0;
8381 	bool rv;
8382 
8383 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8384 	    ("pmap_page_exists_quick: page %p is not managed", m));
8385 	rv = false;
8386 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8387 	rw_rlock(lock);
8388 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8389 		if (PV_PMAP(pv) == pmap) {
8390 			rv = true;
8391 			break;
8392 		}
8393 		loops++;
8394 		if (loops >= 16)
8395 			break;
8396 	}
8397 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
8398 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8399 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8400 			if (PV_PMAP(pv) == pmap) {
8401 				rv = true;
8402 				break;
8403 			}
8404 			loops++;
8405 			if (loops >= 16)
8406 				break;
8407 		}
8408 	}
8409 	rw_runlock(lock);
8410 	return (rv);
8411 }
8412 
8413 /*
8414  *	pmap_page_wired_mappings:
8415  *
8416  *	Return the number of managed mappings to the given physical page
8417  *	that are wired.
8418  */
8419 int
pmap_page_wired_mappings(vm_page_t m)8420 pmap_page_wired_mappings(vm_page_t m)
8421 {
8422 	struct rwlock *lock;
8423 	struct md_page *pvh;
8424 	pmap_t pmap;
8425 	pt_entry_t *pte;
8426 	pv_entry_t pv;
8427 	int count, md_gen, pvh_gen;
8428 
8429 	if ((m->oflags & VPO_UNMANAGED) != 0)
8430 		return (0);
8431 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8432 	rw_rlock(lock);
8433 restart:
8434 	count = 0;
8435 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8436 		pmap = PV_PMAP(pv);
8437 		if (!PMAP_TRYLOCK(pmap)) {
8438 			md_gen = m->md.pv_gen;
8439 			rw_runlock(lock);
8440 			PMAP_LOCK(pmap);
8441 			rw_rlock(lock);
8442 			if (md_gen != m->md.pv_gen) {
8443 				PMAP_UNLOCK(pmap);
8444 				goto restart;
8445 			}
8446 		}
8447 		pte = pmap_pte(pmap, pv->pv_va);
8448 		if ((*pte & PG_W) != 0)
8449 			count++;
8450 		PMAP_UNLOCK(pmap);
8451 	}
8452 	if ((m->flags & PG_FICTITIOUS) == 0) {
8453 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8454 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8455 			pmap = PV_PMAP(pv);
8456 			if (!PMAP_TRYLOCK(pmap)) {
8457 				md_gen = m->md.pv_gen;
8458 				pvh_gen = pvh->pv_gen;
8459 				rw_runlock(lock);
8460 				PMAP_LOCK(pmap);
8461 				rw_rlock(lock);
8462 				if (md_gen != m->md.pv_gen ||
8463 				    pvh_gen != pvh->pv_gen) {
8464 					PMAP_UNLOCK(pmap);
8465 					goto restart;
8466 				}
8467 			}
8468 			pte = pmap_pde(pmap, pv->pv_va);
8469 			if ((*pte & PG_W) != 0)
8470 				count++;
8471 			PMAP_UNLOCK(pmap);
8472 		}
8473 	}
8474 	rw_runlock(lock);
8475 	return (count);
8476 }
8477 
8478 /*
8479  * Returns true if the given page is mapped individually or as part of
8480  * a 2mpage.  Otherwise, returns false.
8481  */
8482 bool
pmap_page_is_mapped(vm_page_t m)8483 pmap_page_is_mapped(vm_page_t m)
8484 {
8485 	struct rwlock *lock;
8486 	bool rv;
8487 
8488 	if ((m->oflags & VPO_UNMANAGED) != 0)
8489 		return (false);
8490 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8491 	rw_rlock(lock);
8492 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
8493 	    ((m->flags & PG_FICTITIOUS) == 0 &&
8494 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
8495 	rw_runlock(lock);
8496 	return (rv);
8497 }
8498 
8499 /*
8500  * Destroy all managed, non-wired mappings in the given user-space
8501  * pmap.  This pmap cannot be active on any processor besides the
8502  * caller.
8503  *
8504  * This function cannot be applied to the kernel pmap.  Moreover, it
8505  * is not intended for general use.  It is only to be used during
8506  * process termination.  Consequently, it can be implemented in ways
8507  * that make it faster than pmap_remove().  First, it can more quickly
8508  * destroy mappings by iterating over the pmap's collection of PV
8509  * entries, rather than searching the page table.  Second, it doesn't
8510  * have to test and clear the page table entries atomically, because
8511  * no processor is currently accessing the user address space.  In
8512  * particular, a page table entry's dirty bit won't change state once
8513  * this function starts.
8514  *
8515  * Although this function destroys all of the pmap's managed,
8516  * non-wired mappings, it can delay and batch the invalidation of TLB
8517  * entries without calling pmap_delayed_invl_start() and
8518  * pmap_delayed_invl_finish().  Because the pmap is not active on
8519  * any other processor, none of these TLB entries will ever be used
8520  * before their eventual invalidation.  Consequently, there is no need
8521  * for either pmap_remove_all() or pmap_remove_write() to wait for
8522  * that eventual TLB invalidation.
8523  */
8524 void
pmap_remove_pages(pmap_t pmap)8525 pmap_remove_pages(pmap_t pmap)
8526 {
8527 	pd_entry_t ptepde;
8528 	pt_entry_t *pte, tpte;
8529 	pt_entry_t PG_M, PG_RW, PG_V;
8530 	struct spglist free;
8531 	struct pv_chunklist free_chunks[PMAP_MEMDOM];
8532 	vm_page_t m, mpte, mt;
8533 	pv_entry_t pv;
8534 	struct md_page *pvh;
8535 	struct pv_chunk *pc, *npc;
8536 	struct rwlock *lock;
8537 	int64_t bit;
8538 	uint64_t inuse, bitmask;
8539 	int allfree, field, i, idx;
8540 #ifdef PV_STATS
8541 	int freed;
8542 #endif
8543 	bool superpage;
8544 	vm_paddr_t pa;
8545 
8546 	/*
8547 	 * Assert that the given pmap is only active on the current
8548 	 * CPU.  Unfortunately, we cannot block another CPU from
8549 	 * activating the pmap while this function is executing.
8550 	 */
8551 	KASSERT(pmap == PCPU_GET(curpmap), ("non-current pmap %p", pmap));
8552 #ifdef INVARIANTS
8553 	{
8554 		cpuset_t other_cpus;
8555 
8556 		other_cpus = all_cpus;
8557 		critical_enter();
8558 		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
8559 		CPU_AND(&other_cpus, &other_cpus, &pmap->pm_active);
8560 		critical_exit();
8561 		KASSERT(CPU_EMPTY(&other_cpus), ("pmap active %p", pmap));
8562 	}
8563 #endif
8564 
8565 	lock = NULL;
8566 	PG_M = pmap_modified_bit(pmap);
8567 	PG_V = pmap_valid_bit(pmap);
8568 	PG_RW = pmap_rw_bit(pmap);
8569 
8570 	for (i = 0; i < PMAP_MEMDOM; i++)
8571 		TAILQ_INIT(&free_chunks[i]);
8572 	SLIST_INIT(&free);
8573 	PMAP_LOCK(pmap);
8574 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
8575 		allfree = 1;
8576 #ifdef PV_STATS
8577 		freed = 0;
8578 #endif
8579 		for (field = 0; field < _NPCM; field++) {
8580 			inuse = ~pc->pc_map[field] & pc_freemask[field];
8581 			while (inuse != 0) {
8582 				bit = bsfq(inuse);
8583 				bitmask = 1UL << bit;
8584 				idx = field * 64 + bit;
8585 				pv = &pc->pc_pventry[idx];
8586 				inuse &= ~bitmask;
8587 
8588 				pte = pmap_pdpe(pmap, pv->pv_va);
8589 				ptepde = *pte;
8590 				pte = pmap_pdpe_to_pde(pte, pv->pv_va);
8591 				tpte = *pte;
8592 				if ((tpte & (PG_PS | PG_V)) == PG_V) {
8593 					superpage = false;
8594 					ptepde = tpte;
8595 					pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
8596 					    PG_FRAME);
8597 					pte = &pte[pmap_pte_index(pv->pv_va)];
8598 					tpte = *pte;
8599 				} else {
8600 					/*
8601 					 * Keep track whether 'tpte' is a
8602 					 * superpage explicitly instead of
8603 					 * relying on PG_PS being set.
8604 					 *
8605 					 * This is because PG_PS is numerically
8606 					 * identical to PG_PTE_PAT and thus a
8607 					 * regular page could be mistaken for
8608 					 * a superpage.
8609 					 */
8610 					superpage = true;
8611 				}
8612 
8613 				if ((tpte & PG_V) == 0) {
8614 					panic("bad pte va %lx pte %lx",
8615 					    pv->pv_va, tpte);
8616 				}
8617 
8618 /*
8619  * We cannot remove wired pages from a process' mapping at this time
8620  */
8621 				if (tpte & PG_W) {
8622 					allfree = 0;
8623 					continue;
8624 				}
8625 
8626 				/* Mark free */
8627 				pc->pc_map[field] |= bitmask;
8628 
8629 				/*
8630 				 * Because this pmap is not active on other
8631 				 * processors, the dirty bit cannot have
8632 				 * changed state since we last loaded pte.
8633 				 */
8634 				pte_clear(pte);
8635 
8636 				if (superpage)
8637 					pa = tpte & PG_PS_FRAME;
8638 				else
8639 					pa = tpte & PG_FRAME;
8640 
8641 				m = PHYS_TO_VM_PAGE(pa);
8642 				KASSERT(m->phys_addr == pa,
8643 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
8644 				    m, (uintmax_t)m->phys_addr,
8645 				    (uintmax_t)tpte));
8646 
8647 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
8648 				    m < &vm_page_array[vm_page_array_size],
8649 				    ("pmap_remove_pages: bad tpte %#jx",
8650 				    (uintmax_t)tpte));
8651 
8652 				/*
8653 				 * Update the vm_page_t clean/reference bits.
8654 				 */
8655 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8656 					if (superpage) {
8657 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8658 							vm_page_dirty(mt);
8659 					} else
8660 						vm_page_dirty(m);
8661 				}
8662 
8663 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
8664 
8665 				if (superpage) {
8666 					pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
8667 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
8668 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
8669 					pvh->pv_gen++;
8670 					if (TAILQ_EMPTY(&pvh->pv_list)) {
8671 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8672 							if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
8673 							    TAILQ_EMPTY(&mt->md.pv_list))
8674 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
8675 					}
8676 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
8677 					if (mpte != NULL) {
8678 						KASSERT(vm_page_any_valid(mpte),
8679 						    ("pmap_remove_pages: pte page not promoted"));
8680 						pmap_pt_page_count_adj(pmap, -1);
8681 						KASSERT(mpte->ref_count == NPTEPG,
8682 						    ("pmap_remove_pages: pte page reference count error"));
8683 						mpte->ref_count = 0;
8684 						pmap_add_delayed_free_list(mpte, &free, false);
8685 					}
8686 				} else {
8687 					pmap_resident_count_adj(pmap, -1);
8688 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
8689 					m->md.pv_gen++;
8690 					if ((m->a.flags & PGA_WRITEABLE) != 0 &&
8691 					    TAILQ_EMPTY(&m->md.pv_list) &&
8692 					    (m->flags & PG_FICTITIOUS) == 0) {
8693 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8694 						if (TAILQ_EMPTY(&pvh->pv_list))
8695 							vm_page_aflag_clear(m, PGA_WRITEABLE);
8696 					}
8697 				}
8698 				pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
8699 #ifdef PV_STATS
8700 				freed++;
8701 #endif
8702 			}
8703 		}
8704 		PV_STAT(counter_u64_add(pv_entry_frees, freed));
8705 		PV_STAT(counter_u64_add(pv_entry_spare, freed));
8706 		PV_STAT(counter_u64_add(pv_entry_count, -freed));
8707 		if (allfree) {
8708 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
8709 			TAILQ_INSERT_TAIL(&free_chunks[pc_to_domain(pc)], pc, pc_list);
8710 		}
8711 	}
8712 	if (lock != NULL)
8713 		rw_wunlock(lock);
8714 	pmap_invalidate_all(pmap);
8715 	pmap_pkru_deassign_all(pmap);
8716 	free_pv_chunk_batch((struct pv_chunklist *)&free_chunks);
8717 	PMAP_UNLOCK(pmap);
8718 	vm_page_free_pages_toq(&free, true);
8719 }
8720 
8721 static bool
pmap_page_test_mappings(vm_page_t m,bool accessed,bool modified)8722 pmap_page_test_mappings(vm_page_t m, bool accessed, bool modified)
8723 {
8724 	struct rwlock *lock;
8725 	pv_entry_t pv;
8726 	struct md_page *pvh;
8727 	pt_entry_t *pte, mask;
8728 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
8729 	pmap_t pmap;
8730 	int md_gen, pvh_gen;
8731 	bool rv;
8732 
8733 	rv = false;
8734 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8735 	rw_rlock(lock);
8736 restart:
8737 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8738 		pmap = PV_PMAP(pv);
8739 		if (!PMAP_TRYLOCK(pmap)) {
8740 			md_gen = m->md.pv_gen;
8741 			rw_runlock(lock);
8742 			PMAP_LOCK(pmap);
8743 			rw_rlock(lock);
8744 			if (md_gen != m->md.pv_gen) {
8745 				PMAP_UNLOCK(pmap);
8746 				goto restart;
8747 			}
8748 		}
8749 		pte = pmap_pte(pmap, pv->pv_va);
8750 		mask = 0;
8751 		if (modified) {
8752 			PG_M = pmap_modified_bit(pmap);
8753 			PG_RW = pmap_rw_bit(pmap);
8754 			mask |= PG_RW | PG_M;
8755 		}
8756 		if (accessed) {
8757 			PG_A = pmap_accessed_bit(pmap);
8758 			PG_V = pmap_valid_bit(pmap);
8759 			mask |= PG_V | PG_A;
8760 		}
8761 		rv = (*pte & mask) == mask;
8762 		PMAP_UNLOCK(pmap);
8763 		if (rv)
8764 			goto out;
8765 	}
8766 	if ((m->flags & PG_FICTITIOUS) == 0) {
8767 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8768 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8769 			pmap = PV_PMAP(pv);
8770 			if (!PMAP_TRYLOCK(pmap)) {
8771 				md_gen = m->md.pv_gen;
8772 				pvh_gen = pvh->pv_gen;
8773 				rw_runlock(lock);
8774 				PMAP_LOCK(pmap);
8775 				rw_rlock(lock);
8776 				if (md_gen != m->md.pv_gen ||
8777 				    pvh_gen != pvh->pv_gen) {
8778 					PMAP_UNLOCK(pmap);
8779 					goto restart;
8780 				}
8781 			}
8782 			pte = pmap_pde(pmap, pv->pv_va);
8783 			mask = 0;
8784 			if (modified) {
8785 				PG_M = pmap_modified_bit(pmap);
8786 				PG_RW = pmap_rw_bit(pmap);
8787 				mask |= PG_RW | PG_M;
8788 			}
8789 			if (accessed) {
8790 				PG_A = pmap_accessed_bit(pmap);
8791 				PG_V = pmap_valid_bit(pmap);
8792 				mask |= PG_V | PG_A;
8793 			}
8794 			rv = (*pte & mask) == mask;
8795 			PMAP_UNLOCK(pmap);
8796 			if (rv)
8797 				goto out;
8798 		}
8799 	}
8800 out:
8801 	rw_runlock(lock);
8802 	return (rv);
8803 }
8804 
8805 /*
8806  *	pmap_is_modified:
8807  *
8808  *	Return whether or not the specified physical page was modified
8809  *	in any physical maps.
8810  */
8811 bool
pmap_is_modified(vm_page_t m)8812 pmap_is_modified(vm_page_t m)
8813 {
8814 
8815 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8816 	    ("pmap_is_modified: page %p is not managed", m));
8817 
8818 	/*
8819 	 * If the page is not busied then this check is racy.
8820 	 */
8821 	if (!pmap_page_is_write_mapped(m))
8822 		return (false);
8823 	return (pmap_page_test_mappings(m, false, true));
8824 }
8825 
8826 /*
8827  *	pmap_is_prefaultable:
8828  *
8829  *	Return whether or not the specified virtual address is eligible
8830  *	for prefault.
8831  */
8832 bool
pmap_is_prefaultable(pmap_t pmap,vm_offset_t addr)8833 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
8834 {
8835 	pd_entry_t *pde;
8836 	pt_entry_t *pte, PG_V;
8837 	bool rv;
8838 
8839 	PG_V = pmap_valid_bit(pmap);
8840 
8841 	/*
8842 	 * Return true if and only if the PTE for the specified virtual
8843 	 * address is allocated but invalid.
8844 	 */
8845 	rv = false;
8846 	PMAP_LOCK(pmap);
8847 	pde = pmap_pde(pmap, addr);
8848 	if (pde != NULL && (*pde & (PG_PS | PG_V)) == PG_V) {
8849 		pte = pmap_pde_to_pte(pde, addr);
8850 		rv = (*pte & PG_V) == 0;
8851 	}
8852 	PMAP_UNLOCK(pmap);
8853 	return (rv);
8854 }
8855 
8856 /*
8857  *	pmap_is_referenced:
8858  *
8859  *	Return whether or not the specified physical page was referenced
8860  *	in any physical maps.
8861  */
8862 bool
pmap_is_referenced(vm_page_t m)8863 pmap_is_referenced(vm_page_t m)
8864 {
8865 
8866 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8867 	    ("pmap_is_referenced: page %p is not managed", m));
8868 	return (pmap_page_test_mappings(m, true, false));
8869 }
8870 
8871 /*
8872  * Clear the write and modified bits in each of the given page's mappings.
8873  */
8874 void
pmap_remove_write(vm_page_t m)8875 pmap_remove_write(vm_page_t m)
8876 {
8877 	struct md_page *pvh;
8878 	pmap_t pmap;
8879 	struct rwlock *lock;
8880 	pv_entry_t next_pv, pv;
8881 	pd_entry_t *pde;
8882 	pt_entry_t oldpte, *pte, PG_M, PG_RW;
8883 	vm_offset_t va;
8884 	int pvh_gen, md_gen;
8885 
8886 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8887 	    ("pmap_remove_write: page %p is not managed", m));
8888 
8889 	vm_page_assert_busied(m);
8890 	if (!pmap_page_is_write_mapped(m))
8891 		return;
8892 
8893 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8894 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
8895 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
8896 	rw_wlock(lock);
8897 retry:
8898 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
8899 		pmap = PV_PMAP(pv);
8900 		if (!PMAP_TRYLOCK(pmap)) {
8901 			pvh_gen = pvh->pv_gen;
8902 			rw_wunlock(lock);
8903 			PMAP_LOCK(pmap);
8904 			rw_wlock(lock);
8905 			if (pvh_gen != pvh->pv_gen) {
8906 				PMAP_UNLOCK(pmap);
8907 				goto retry;
8908 			}
8909 		}
8910 		PG_RW = pmap_rw_bit(pmap);
8911 		va = pv->pv_va;
8912 		pde = pmap_pde(pmap, va);
8913 		if ((*pde & PG_RW) != 0)
8914 			(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
8915 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
8916 		    ("inconsistent pv lock %p %p for page %p",
8917 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
8918 		PMAP_UNLOCK(pmap);
8919 	}
8920 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8921 		pmap = PV_PMAP(pv);
8922 		if (!PMAP_TRYLOCK(pmap)) {
8923 			pvh_gen = pvh->pv_gen;
8924 			md_gen = m->md.pv_gen;
8925 			rw_wunlock(lock);
8926 			PMAP_LOCK(pmap);
8927 			rw_wlock(lock);
8928 			if (pvh_gen != pvh->pv_gen ||
8929 			    md_gen != m->md.pv_gen) {
8930 				PMAP_UNLOCK(pmap);
8931 				goto retry;
8932 			}
8933 		}
8934 		PG_M = pmap_modified_bit(pmap);
8935 		PG_RW = pmap_rw_bit(pmap);
8936 		pde = pmap_pde(pmap, pv->pv_va);
8937 		KASSERT((*pde & PG_PS) == 0,
8938 		    ("pmap_remove_write: found a 2mpage in page %p's pv list",
8939 		    m));
8940 		pte = pmap_pde_to_pte(pde, pv->pv_va);
8941 		oldpte = *pte;
8942 		if (oldpte & PG_RW) {
8943 			while (!atomic_fcmpset_long(pte, &oldpte, oldpte &
8944 			    ~(PG_RW | PG_M)))
8945 				cpu_spinwait();
8946 			if ((oldpte & PG_M) != 0)
8947 				vm_page_dirty(m);
8948 			pmap_invalidate_page(pmap, pv->pv_va);
8949 		}
8950 		PMAP_UNLOCK(pmap);
8951 	}
8952 	rw_wunlock(lock);
8953 	vm_page_aflag_clear(m, PGA_WRITEABLE);
8954 	pmap_delayed_invl_wait(m);
8955 }
8956 
8957 /*
8958  *	pmap_ts_referenced:
8959  *
8960  *	Return a count of reference bits for a page, clearing those bits.
8961  *	It is not necessary for every reference bit to be cleared, but it
8962  *	is necessary that 0 only be returned when there are truly no
8963  *	reference bits set.
8964  *
8965  *	As an optimization, update the page's dirty field if a modified bit is
8966  *	found while counting reference bits.  This opportunistic update can be
8967  *	performed at low cost and can eliminate the need for some future calls
8968  *	to pmap_is_modified().  However, since this function stops after
8969  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
8970  *	dirty pages.  Those dirty pages will only be detected by a future call
8971  *	to pmap_is_modified().
8972  *
8973  *	A DI block is not needed within this function, because
8974  *	invalidations are performed before the PV list lock is
8975  *	released.
8976  */
8977 int
pmap_ts_referenced(vm_page_t m)8978 pmap_ts_referenced(vm_page_t m)
8979 {
8980 	struct md_page *pvh;
8981 	pv_entry_t pv, pvf;
8982 	pmap_t pmap;
8983 	struct rwlock *lock;
8984 	pd_entry_t oldpde, *pde;
8985 	pt_entry_t *pte, PG_A, PG_M, PG_RW;
8986 	vm_offset_t va;
8987 	vm_paddr_t pa;
8988 	int cleared, md_gen, not_cleared, pvh_gen;
8989 	struct spglist free;
8990 	bool demoted;
8991 
8992 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8993 	    ("pmap_ts_referenced: page %p is not managed", m));
8994 	SLIST_INIT(&free);
8995 	cleared = 0;
8996 	pa = VM_PAGE_TO_PHYS(m);
8997 	lock = PHYS_TO_PV_LIST_LOCK(pa);
8998 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
8999 	rw_wlock(lock);
9000 retry:
9001 	not_cleared = 0;
9002 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
9003 		goto small_mappings;
9004 	pv = pvf;
9005 	do {
9006 		if (pvf == NULL)
9007 			pvf = pv;
9008 		pmap = PV_PMAP(pv);
9009 		if (!PMAP_TRYLOCK(pmap)) {
9010 			pvh_gen = pvh->pv_gen;
9011 			rw_wunlock(lock);
9012 			PMAP_LOCK(pmap);
9013 			rw_wlock(lock);
9014 			if (pvh_gen != pvh->pv_gen) {
9015 				PMAP_UNLOCK(pmap);
9016 				goto retry;
9017 			}
9018 		}
9019 		PG_A = pmap_accessed_bit(pmap);
9020 		PG_M = pmap_modified_bit(pmap);
9021 		PG_RW = pmap_rw_bit(pmap);
9022 		va = pv->pv_va;
9023 		pde = pmap_pde(pmap, pv->pv_va);
9024 		oldpde = *pde;
9025 		if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9026 			/*
9027 			 * Although "oldpde" is mapping a 2MB page, because
9028 			 * this function is called at a 4KB page granularity,
9029 			 * we only update the 4KB page under test.
9030 			 */
9031 			vm_page_dirty(m);
9032 		}
9033 		if ((oldpde & PG_A) != 0) {
9034 			/*
9035 			 * Since this reference bit is shared by 512 4KB
9036 			 * pages, it should not be cleared every time it is
9037 			 * tested.  Apply a simple "hash" function on the
9038 			 * physical page number, the virtual superpage number,
9039 			 * and the pmap address to select one 4KB page out of
9040 			 * the 512 on which testing the reference bit will
9041 			 * result in clearing that reference bit.  This
9042 			 * function is designed to avoid the selection of the
9043 			 * same 4KB page for every 2MB page mapping.
9044 			 *
9045 			 * On demotion, a mapping that hasn't been referenced
9046 			 * is simply destroyed.  To avoid the possibility of a
9047 			 * subsequent page fault on a demoted wired mapping,
9048 			 * always leave its reference bit set.  Moreover,
9049 			 * since the superpage is wired, the current state of
9050 			 * its reference bit won't affect page replacement.
9051 			 */
9052 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
9053 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
9054 			    (oldpde & PG_W) == 0) {
9055 				if (safe_to_clear_referenced(pmap, oldpde)) {
9056 					atomic_clear_long(pde, PG_A);
9057 					pmap_invalidate_page(pmap, pv->pv_va);
9058 					demoted = false;
9059 				} else if (pmap_demote_pde_locked(pmap, pde,
9060 				    pv->pv_va, &lock)) {
9061 					/*
9062 					 * Remove the mapping to a single page
9063 					 * so that a subsequent access may
9064 					 * repromote.  Since the underlying
9065 					 * page table page is fully populated,
9066 					 * this removal never frees a page
9067 					 * table page.
9068 					 */
9069 					demoted = true;
9070 					va += VM_PAGE_TO_PHYS(m) - (oldpde &
9071 					    PG_PS_FRAME);
9072 					pte = pmap_pde_to_pte(pde, va);
9073 					pmap_remove_pte(pmap, pte, va, *pde,
9074 					    NULL, &lock);
9075 					pmap_invalidate_page(pmap, va);
9076 				} else
9077 					demoted = true;
9078 
9079 				if (demoted) {
9080 					/*
9081 					 * The superpage mapping was removed
9082 					 * entirely and therefore 'pv' is no
9083 					 * longer valid.
9084 					 */
9085 					if (pvf == pv)
9086 						pvf = NULL;
9087 					pv = NULL;
9088 				}
9089 				cleared++;
9090 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
9091 				    ("inconsistent pv lock %p %p for page %p",
9092 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
9093 			} else
9094 				not_cleared++;
9095 		}
9096 		PMAP_UNLOCK(pmap);
9097 		/* Rotate the PV list if it has more than one entry. */
9098 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
9099 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
9100 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
9101 			pvh->pv_gen++;
9102 		}
9103 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
9104 			goto out;
9105 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
9106 small_mappings:
9107 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
9108 		goto out;
9109 	pv = pvf;
9110 	do {
9111 		if (pvf == NULL)
9112 			pvf = pv;
9113 		pmap = PV_PMAP(pv);
9114 		if (!PMAP_TRYLOCK(pmap)) {
9115 			pvh_gen = pvh->pv_gen;
9116 			md_gen = m->md.pv_gen;
9117 			rw_wunlock(lock);
9118 			PMAP_LOCK(pmap);
9119 			rw_wlock(lock);
9120 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9121 				PMAP_UNLOCK(pmap);
9122 				goto retry;
9123 			}
9124 		}
9125 		PG_A = pmap_accessed_bit(pmap);
9126 		PG_M = pmap_modified_bit(pmap);
9127 		PG_RW = pmap_rw_bit(pmap);
9128 		pde = pmap_pde(pmap, pv->pv_va);
9129 		KASSERT((*pde & PG_PS) == 0,
9130 		    ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
9131 		    m));
9132 		pte = pmap_pde_to_pte(pde, pv->pv_va);
9133 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
9134 			vm_page_dirty(m);
9135 		if ((*pte & PG_A) != 0) {
9136 			if (safe_to_clear_referenced(pmap, *pte)) {
9137 				atomic_clear_long(pte, PG_A);
9138 				pmap_invalidate_page(pmap, pv->pv_va);
9139 				cleared++;
9140 			} else if ((*pte & PG_W) == 0) {
9141 				/*
9142 				 * Wired pages cannot be paged out so
9143 				 * doing accessed bit emulation for
9144 				 * them is wasted effort. We do the
9145 				 * hard work for unwired pages only.
9146 				 */
9147 				pmap_remove_pte(pmap, pte, pv->pv_va,
9148 				    *pde, &free, &lock);
9149 				pmap_invalidate_page(pmap, pv->pv_va);
9150 				cleared++;
9151 				if (pvf == pv)
9152 					pvf = NULL;
9153 				pv = NULL;
9154 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
9155 				    ("inconsistent pv lock %p %p for page %p",
9156 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
9157 			} else
9158 				not_cleared++;
9159 		}
9160 		PMAP_UNLOCK(pmap);
9161 		/* Rotate the PV list if it has more than one entry. */
9162 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
9163 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
9164 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
9165 			m->md.pv_gen++;
9166 		}
9167 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
9168 	    not_cleared < PMAP_TS_REFERENCED_MAX);
9169 out:
9170 	rw_wunlock(lock);
9171 	vm_page_free_pages_toq(&free, true);
9172 	return (cleared + not_cleared);
9173 }
9174 
9175 /*
9176  *	Apply the given advice to the specified range of addresses within the
9177  *	given pmap.  Depending on the advice, clear the referenced and/or
9178  *	modified flags in each mapping and set the mapped page's dirty field.
9179  */
9180 void
pmap_advise(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,int advice)9181 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
9182 {
9183 	struct rwlock *lock;
9184 	pml4_entry_t *pml4e;
9185 	pdp_entry_t *pdpe;
9186 	pd_entry_t oldpde, *pde;
9187 	pt_entry_t *pte, PG_A, PG_G, PG_M, PG_RW, PG_V;
9188 	vm_offset_t va, va_next;
9189 	vm_page_t m;
9190 	bool anychanged;
9191 
9192 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
9193 		return;
9194 
9195 	/*
9196 	 * A/D bit emulation requires an alternate code path when clearing
9197 	 * the modified and accessed bits below. Since this function is
9198 	 * advisory in nature we skip it entirely for pmaps that require
9199 	 * A/D bit emulation.
9200 	 */
9201 	if (pmap_emulate_ad_bits(pmap))
9202 		return;
9203 
9204 	PG_A = pmap_accessed_bit(pmap);
9205 	PG_G = pmap_global_bit(pmap);
9206 	PG_M = pmap_modified_bit(pmap);
9207 	PG_V = pmap_valid_bit(pmap);
9208 	PG_RW = pmap_rw_bit(pmap);
9209 	anychanged = false;
9210 	pmap_delayed_invl_start();
9211 	PMAP_LOCK(pmap);
9212 	for (; sva < eva; sva = va_next) {
9213 		pml4e = pmap_pml4e(pmap, sva);
9214 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
9215 			va_next = (sva + NBPML4) & ~PML4MASK;
9216 			if (va_next < sva)
9217 				va_next = eva;
9218 			continue;
9219 		}
9220 
9221 		va_next = (sva + NBPDP) & ~PDPMASK;
9222 		if (va_next < sva)
9223 			va_next = eva;
9224 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
9225 		if ((*pdpe & PG_V) == 0)
9226 			continue;
9227 		if ((*pdpe & PG_PS) != 0)
9228 			continue;
9229 
9230 		va_next = (sva + NBPDR) & ~PDRMASK;
9231 		if (va_next < sva)
9232 			va_next = eva;
9233 		pde = pmap_pdpe_to_pde(pdpe, sva);
9234 		oldpde = *pde;
9235 		if ((oldpde & PG_V) == 0)
9236 			continue;
9237 		else if ((oldpde & PG_PS) != 0) {
9238 			if ((oldpde & PG_MANAGED) == 0)
9239 				continue;
9240 			lock = NULL;
9241 			if (!pmap_demote_pde_locked(pmap, pde, sva, &lock)) {
9242 				if (lock != NULL)
9243 					rw_wunlock(lock);
9244 
9245 				/*
9246 				 * The large page mapping was destroyed.
9247 				 */
9248 				continue;
9249 			}
9250 
9251 			/*
9252 			 * Unless the page mappings are wired, remove the
9253 			 * mapping to a single page so that a subsequent
9254 			 * access may repromote.  Choosing the last page
9255 			 * within the address range [sva, min(va_next, eva))
9256 			 * generally results in more repromotions.  Since the
9257 			 * underlying page table page is fully populated, this
9258 			 * removal never frees a page table page.
9259 			 */
9260 			if ((oldpde & PG_W) == 0) {
9261 				va = eva;
9262 				if (va > va_next)
9263 					va = va_next;
9264 				va -= PAGE_SIZE;
9265 				KASSERT(va >= sva,
9266 				    ("pmap_advise: no address gap"));
9267 				pte = pmap_pde_to_pte(pde, va);
9268 				KASSERT((*pte & PG_V) != 0,
9269 				    ("pmap_advise: invalid PTE"));
9270 				pmap_remove_pte(pmap, pte, va, *pde, NULL,
9271 				    &lock);
9272 				anychanged = true;
9273 			}
9274 			if (lock != NULL)
9275 				rw_wunlock(lock);
9276 		}
9277 		if (va_next > eva)
9278 			va_next = eva;
9279 		va = va_next;
9280 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
9281 		    sva += PAGE_SIZE) {
9282 			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
9283 				goto maybe_invlrng;
9284 			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9285 				if (advice == MADV_DONTNEED) {
9286 					/*
9287 					 * Future calls to pmap_is_modified()
9288 					 * can be avoided by making the page
9289 					 * dirty now.
9290 					 */
9291 					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
9292 					vm_page_dirty(m);
9293 				}
9294 				atomic_clear_long(pte, PG_M | PG_A);
9295 			} else if ((*pte & PG_A) != 0)
9296 				atomic_clear_long(pte, PG_A);
9297 			else
9298 				goto maybe_invlrng;
9299 
9300 			if ((*pte & PG_G) != 0) {
9301 				if (va == va_next)
9302 					va = sva;
9303 			} else
9304 				anychanged = true;
9305 			continue;
9306 maybe_invlrng:
9307 			if (va != va_next) {
9308 				pmap_invalidate_range(pmap, va, sva);
9309 				va = va_next;
9310 			}
9311 		}
9312 		if (va != va_next)
9313 			pmap_invalidate_range(pmap, va, sva);
9314 	}
9315 	if (anychanged)
9316 		pmap_invalidate_all(pmap);
9317 	PMAP_UNLOCK(pmap);
9318 	pmap_delayed_invl_finish();
9319 }
9320 
9321 /*
9322  *	Clear the modify bits on the specified physical page.
9323  */
9324 void
pmap_clear_modify(vm_page_t m)9325 pmap_clear_modify(vm_page_t m)
9326 {
9327 	struct md_page *pvh;
9328 	pmap_t pmap;
9329 	pv_entry_t next_pv, pv;
9330 	pd_entry_t oldpde, *pde;
9331 	pt_entry_t *pte, PG_M, PG_RW;
9332 	struct rwlock *lock;
9333 	vm_offset_t va;
9334 	int md_gen, pvh_gen;
9335 
9336 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
9337 	    ("pmap_clear_modify: page %p is not managed", m));
9338 	vm_page_assert_busied(m);
9339 
9340 	if (!pmap_page_is_write_mapped(m))
9341 		return;
9342 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
9343 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
9344 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
9345 	rw_wlock(lock);
9346 restart:
9347 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
9348 		pmap = PV_PMAP(pv);
9349 		if (!PMAP_TRYLOCK(pmap)) {
9350 			pvh_gen = pvh->pv_gen;
9351 			rw_wunlock(lock);
9352 			PMAP_LOCK(pmap);
9353 			rw_wlock(lock);
9354 			if (pvh_gen != pvh->pv_gen) {
9355 				PMAP_UNLOCK(pmap);
9356 				goto restart;
9357 			}
9358 		}
9359 		PG_M = pmap_modified_bit(pmap);
9360 		PG_RW = pmap_rw_bit(pmap);
9361 		va = pv->pv_va;
9362 		pde = pmap_pde(pmap, va);
9363 		oldpde = *pde;
9364 		/* If oldpde has PG_RW set, then it also has PG_M set. */
9365 		if ((oldpde & PG_RW) != 0 &&
9366 		    pmap_demote_pde_locked(pmap, pde, va, &lock) &&
9367 		    (oldpde & PG_W) == 0) {
9368 			/*
9369 			 * Write protect the mapping to a single page so that
9370 			 * a subsequent write access may repromote.
9371 			 */
9372 			va += VM_PAGE_TO_PHYS(m) - (oldpde & PG_PS_FRAME);
9373 			pte = pmap_pde_to_pte(pde, va);
9374 			atomic_clear_long(pte, PG_M | PG_RW);
9375 			vm_page_dirty(m);
9376 			pmap_invalidate_page(pmap, va);
9377 		}
9378 		PMAP_UNLOCK(pmap);
9379 	}
9380 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
9381 		pmap = PV_PMAP(pv);
9382 		if (!PMAP_TRYLOCK(pmap)) {
9383 			md_gen = m->md.pv_gen;
9384 			pvh_gen = pvh->pv_gen;
9385 			rw_wunlock(lock);
9386 			PMAP_LOCK(pmap);
9387 			rw_wlock(lock);
9388 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9389 				PMAP_UNLOCK(pmap);
9390 				goto restart;
9391 			}
9392 		}
9393 		PG_M = pmap_modified_bit(pmap);
9394 		PG_RW = pmap_rw_bit(pmap);
9395 		pde = pmap_pde(pmap, pv->pv_va);
9396 		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
9397 		    " a 2mpage in page %p's pv list", m));
9398 		pte = pmap_pde_to_pte(pde, pv->pv_va);
9399 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9400 			atomic_clear_long(pte, PG_M);
9401 			pmap_invalidate_page(pmap, pv->pv_va);
9402 		}
9403 		PMAP_UNLOCK(pmap);
9404 	}
9405 	rw_wunlock(lock);
9406 }
9407 
9408 /*
9409  * Miscellaneous support routines follow
9410  */
9411 
9412 /* Adjust the properties for a leaf page table entry. */
9413 static __inline void
pmap_pte_props(pt_entry_t * pte,u_long bits,u_long mask)9414 pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask)
9415 {
9416 	u_long opte, npte;
9417 
9418 	opte = *(u_long *)pte;
9419 	do {
9420 		npte = opte & ~mask;
9421 		npte |= bits;
9422 	} while (npte != opte && !atomic_fcmpset_long((u_long *)pte, &opte,
9423 	    npte));
9424 }
9425 
9426 /*
9427  * Map a set of physical memory pages into the kernel virtual
9428  * address space. Return a pointer to where it is mapped. This
9429  * routine is intended to be used for mapping device memory,
9430  * NOT real memory.
9431  */
9432 static void *
pmap_mapdev_internal(vm_paddr_t pa,vm_size_t size,int mode,int flags)9433 pmap_mapdev_internal(vm_paddr_t pa, vm_size_t size, int mode, int flags)
9434 {
9435 	struct pmap_preinit_mapping *ppim;
9436 	vm_offset_t va, offset;
9437 	vm_size_t tmpsize;
9438 	int i;
9439 
9440 	offset = pa & PAGE_MASK;
9441 	size = round_page(offset + size);
9442 	pa = trunc_page(pa);
9443 
9444 	if (!pmap_initialized) {
9445 		va = 0;
9446 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9447 			ppim = pmap_preinit_mapping + i;
9448 			if (ppim->va == 0) {
9449 				ppim->pa = pa;
9450 				ppim->sz = size;
9451 				ppim->mode = mode;
9452 				ppim->va = virtual_avail;
9453 				virtual_avail += size;
9454 				va = ppim->va;
9455 				break;
9456 			}
9457 		}
9458 		if (va == 0)
9459 			panic("%s: too many preinit mappings", __func__);
9460 	} else {
9461 		/*
9462 		 * If we have a preinit mapping, reuse it.
9463 		 */
9464 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9465 			ppim = pmap_preinit_mapping + i;
9466 			if (ppim->pa == pa && ppim->sz == size &&
9467 			    (ppim->mode == mode ||
9468 			    (flags & MAPDEV_SETATTR) == 0))
9469 				return ((void *)(ppim->va + offset));
9470 		}
9471 		/*
9472 		 * If the specified range of physical addresses fits within
9473 		 * the direct map window, use the direct map.
9474 		 */
9475 		if (pa < dmaplimit && pa + size <= dmaplimit) {
9476 			va = PHYS_TO_DMAP(pa);
9477 			if ((flags & MAPDEV_SETATTR) != 0) {
9478 				PMAP_LOCK(kernel_pmap);
9479 				i = pmap_change_props_locked(va, size,
9480 				    PROT_NONE, mode, flags);
9481 				PMAP_UNLOCK(kernel_pmap);
9482 			} else
9483 				i = 0;
9484 			if (!i)
9485 				return ((void *)(va + offset));
9486 		}
9487 		va = kva_alloc(size);
9488 		if (va == 0)
9489 			panic("%s: Couldn't allocate KVA", __func__);
9490 	}
9491 	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
9492 		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
9493 	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
9494 	if ((flags & MAPDEV_FLUSHCACHE) != 0)
9495 		pmap_invalidate_cache_range(va, va + tmpsize);
9496 	return ((void *)(va + offset));
9497 }
9498 
9499 void *
pmap_mapdev_attr(vm_paddr_t pa,vm_size_t size,int mode)9500 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
9501 {
9502 
9503 	return (pmap_mapdev_internal(pa, size, mode, MAPDEV_FLUSHCACHE |
9504 	    MAPDEV_SETATTR));
9505 }
9506 
9507 void *
pmap_mapdev(vm_paddr_t pa,vm_size_t size)9508 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
9509 {
9510 
9511 	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
9512 }
9513 
9514 void *
pmap_mapdev_pciecfg(vm_paddr_t pa,vm_size_t size)9515 pmap_mapdev_pciecfg(vm_paddr_t pa, vm_size_t size)
9516 {
9517 
9518 	return (pmap_mapdev_internal(pa, size, PAT_UNCACHEABLE,
9519 	    MAPDEV_SETATTR));
9520 }
9521 
9522 void *
pmap_mapbios(vm_paddr_t pa,vm_size_t size)9523 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
9524 {
9525 
9526 	return (pmap_mapdev_internal(pa, size, PAT_WRITE_BACK,
9527 	    MAPDEV_FLUSHCACHE));
9528 }
9529 
9530 void
pmap_unmapdev(void * p,vm_size_t size)9531 pmap_unmapdev(void *p, vm_size_t size)
9532 {
9533 	struct pmap_preinit_mapping *ppim;
9534 	vm_offset_t offset, va;
9535 	int i;
9536 
9537 	va = (vm_offset_t)p;
9538 
9539 	/* If we gave a direct map region in pmap_mapdev, do nothing */
9540 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
9541 		return;
9542 	offset = va & PAGE_MASK;
9543 	size = round_page(offset + size);
9544 	va = trunc_page(va);
9545 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9546 		ppim = pmap_preinit_mapping + i;
9547 		if (ppim->va == va && ppim->sz == size) {
9548 			if (pmap_initialized)
9549 				return;
9550 			ppim->pa = 0;
9551 			ppim->va = 0;
9552 			ppim->sz = 0;
9553 			ppim->mode = 0;
9554 			if (va + size == virtual_avail)
9555 				virtual_avail = va;
9556 			return;
9557 		}
9558 	}
9559 	if (pmap_initialized) {
9560 		pmap_qremove(va, atop(size));
9561 		kva_free(va, size);
9562 	}
9563 }
9564 
9565 /*
9566  * Tries to demote a 1GB page mapping.
9567  */
9568 static bool
pmap_demote_pdpe(pmap_t pmap,pdp_entry_t * pdpe,vm_offset_t va)9569 pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe, vm_offset_t va)
9570 {
9571 	pdp_entry_t newpdpe, oldpdpe;
9572 	pd_entry_t *firstpde, newpde, *pde;
9573 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
9574 	vm_paddr_t pdpgpa;
9575 	vm_page_t pdpg;
9576 
9577 	PG_A = pmap_accessed_bit(pmap);
9578 	PG_M = pmap_modified_bit(pmap);
9579 	PG_V = pmap_valid_bit(pmap);
9580 	PG_RW = pmap_rw_bit(pmap);
9581 
9582 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9583 	oldpdpe = *pdpe;
9584 	KASSERT((oldpdpe & (PG_PS | PG_V)) == (PG_PS | PG_V),
9585 	    ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
9586 	pdpg = pmap_alloc_pt_page(pmap, va >> PDPSHIFT,
9587 	    VM_ALLOC_WIRED | VM_ALLOC_INTERRUPT);
9588 	if (pdpg  == NULL) {
9589 		CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
9590 		    " in pmap %p", va, pmap);
9591 		return (false);
9592 	}
9593 	pdpgpa = VM_PAGE_TO_PHYS(pdpg);
9594 	firstpde = (pd_entry_t *)PHYS_TO_DMAP(pdpgpa);
9595 	newpdpe = pdpgpa | PG_M | PG_A | (oldpdpe & PG_U) | PG_RW | PG_V;
9596 	KASSERT((oldpdpe & PG_A) != 0,
9597 	    ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
9598 	KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
9599 	    ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
9600 	newpde = oldpdpe;
9601 
9602 	/*
9603 	 * Initialize the page directory page.
9604 	 */
9605 	for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
9606 		*pde = newpde;
9607 		newpde += NBPDR;
9608 	}
9609 
9610 	/*
9611 	 * Demote the mapping.
9612 	 */
9613 	*pdpe = newpdpe;
9614 
9615 	/*
9616 	 * Invalidate a stale recursive mapping of the page directory page.
9617 	 */
9618 	pmap_invalidate_page(pmap, (vm_offset_t)vtopde(va));
9619 
9620 	counter_u64_add(pmap_pdpe_demotions, 1);
9621 	CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
9622 	    " in pmap %p", va, pmap);
9623 	return (true);
9624 }
9625 
9626 /*
9627  * Sets the memory attribute for the specified page.
9628  */
9629 void
pmap_page_set_memattr(vm_page_t m,vm_memattr_t ma)9630 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
9631 {
9632 
9633 	m->md.pat_mode = ma;
9634 
9635 	/*
9636 	 * If "m" is a normal page, update its direct mapping.  This update
9637 	 * can be relied upon to perform any cache operations that are
9638 	 * required for data coherence.
9639 	 */
9640 	if ((m->flags & PG_FICTITIOUS) == 0 &&
9641 	    pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
9642 	    m->md.pat_mode))
9643 		panic("memory attribute change on the direct map failed");
9644 }
9645 
9646 void
pmap_page_set_memattr_noflush(vm_page_t m,vm_memattr_t ma)9647 pmap_page_set_memattr_noflush(vm_page_t m, vm_memattr_t ma)
9648 {
9649 	int error;
9650 
9651 	m->md.pat_mode = ma;
9652 
9653 	if ((m->flags & PG_FICTITIOUS) != 0)
9654 		return;
9655 	PMAP_LOCK(kernel_pmap);
9656 	error = pmap_change_props_locked(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
9657 	    PAGE_SIZE, PROT_NONE, m->md.pat_mode, 0);
9658 	PMAP_UNLOCK(kernel_pmap);
9659 	if (error != 0)
9660 		panic("memory attribute change on the direct map failed");
9661 }
9662 
9663 /*
9664  * Changes the specified virtual address range's memory type to that given by
9665  * the parameter "mode".  The specified virtual address range must be
9666  * completely contained within either the direct map or the kernel map.  If
9667  * the virtual address range is contained within the kernel map, then the
9668  * memory type for each of the corresponding ranges of the direct map is also
9669  * changed.  (The corresponding ranges of the direct map are those ranges that
9670  * map the same physical pages as the specified virtual address range.)  These
9671  * changes to the direct map are necessary because Intel describes the
9672  * behavior of their processors as "undefined" if two or more mappings to the
9673  * same physical page have different memory types.
9674  *
9675  * Returns zero if the change completed successfully, and either EINVAL or
9676  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
9677  * of the virtual address range was not mapped, and ENOMEM is returned if
9678  * there was insufficient memory available to complete the change.  In the
9679  * latter case, the memory type may have been changed on some part of the
9680  * virtual address range or the direct map.
9681  */
9682 int
pmap_change_attr(vm_offset_t va,vm_size_t size,int mode)9683 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
9684 {
9685 	int error;
9686 
9687 	PMAP_LOCK(kernel_pmap);
9688 	error = pmap_change_props_locked(va, size, PROT_NONE, mode,
9689 	    MAPDEV_FLUSHCACHE);
9690 	PMAP_UNLOCK(kernel_pmap);
9691 	return (error);
9692 }
9693 
9694 /*
9695  * Changes the specified virtual address range's protections to those
9696  * specified by "prot".  Like pmap_change_attr(), protections for aliases
9697  * in the direct map are updated as well.  Protections on aliasing mappings may
9698  * be a subset of the requested protections; for example, mappings in the direct
9699  * map are never executable.
9700  */
9701 int
pmap_change_prot(vm_offset_t va,vm_size_t size,vm_prot_t prot)9702 pmap_change_prot(vm_offset_t va, vm_size_t size, vm_prot_t prot)
9703 {
9704 	int error;
9705 
9706 	/* Only supported within the kernel map. */
9707 	if (va < VM_MIN_KERNEL_ADDRESS)
9708 		return (EINVAL);
9709 
9710 	PMAP_LOCK(kernel_pmap);
9711 	error = pmap_change_props_locked(va, size, prot, -1,
9712 	    MAPDEV_ASSERTVALID);
9713 	PMAP_UNLOCK(kernel_pmap);
9714 	return (error);
9715 }
9716 
9717 static int
pmap_change_props_locked(vm_offset_t va,vm_size_t size,vm_prot_t prot,int mode,int flags)9718 pmap_change_props_locked(vm_offset_t va, vm_size_t size, vm_prot_t prot,
9719     int mode, int flags)
9720 {
9721 	vm_offset_t base, offset, tmpva;
9722 	vm_paddr_t pa_start, pa_end, pa_end1;
9723 	pdp_entry_t *pdpe;
9724 	pd_entry_t *pde, pde_bits, pde_mask;
9725 	pt_entry_t *pte, pte_bits, pte_mask;
9726 	int error;
9727 	bool changed;
9728 
9729 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
9730 	base = trunc_page(va);
9731 	offset = va & PAGE_MASK;
9732 	size = round_page(offset + size);
9733 
9734 	/*
9735 	 * Only supported on kernel virtual addresses, including the direct
9736 	 * map but excluding the recursive map.
9737 	 */
9738 	if (base < DMAP_MIN_ADDRESS)
9739 		return (EINVAL);
9740 
9741 	/*
9742 	 * Construct our flag sets and masks.  "bits" is the subset of
9743 	 * "mask" that will be set in each modified PTE.
9744 	 *
9745 	 * Mappings in the direct map are never allowed to be executable.
9746 	 */
9747 	pde_bits = pte_bits = 0;
9748 	pde_mask = pte_mask = 0;
9749 	if (mode != -1) {
9750 		pde_bits |= pmap_cache_bits(kernel_pmap, mode, true);
9751 		pde_mask |= X86_PG_PDE_CACHE;
9752 		pte_bits |= pmap_cache_bits(kernel_pmap, mode, false);
9753 		pte_mask |= X86_PG_PTE_CACHE;
9754 	}
9755 	if (prot != VM_PROT_NONE) {
9756 		if ((prot & VM_PROT_WRITE) != 0) {
9757 			pde_bits |= X86_PG_RW;
9758 			pte_bits |= X86_PG_RW;
9759 		}
9760 		if ((prot & VM_PROT_EXECUTE) == 0 ||
9761 		    va < VM_MIN_KERNEL_ADDRESS) {
9762 			pde_bits |= pg_nx;
9763 			pte_bits |= pg_nx;
9764 		}
9765 		pde_mask |= X86_PG_RW | pg_nx;
9766 		pte_mask |= X86_PG_RW | pg_nx;
9767 	}
9768 
9769 	/*
9770 	 * Pages that aren't mapped aren't supported.  Also break down 2MB pages
9771 	 * into 4KB pages if required.
9772 	 */
9773 	for (tmpva = base; tmpva < base + size; ) {
9774 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
9775 		if (pdpe == NULL || *pdpe == 0) {
9776 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9777 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9778 			return (EINVAL);
9779 		}
9780 		if (*pdpe & PG_PS) {
9781 			/*
9782 			 * If the current 1GB page already has the required
9783 			 * properties, then we need not demote this page.  Just
9784 			 * increment tmpva to the next 1GB page frame.
9785 			 */
9786 			if ((*pdpe & pde_mask) == pde_bits) {
9787 				tmpva = trunc_1gpage(tmpva) + NBPDP;
9788 				continue;
9789 			}
9790 
9791 			/*
9792 			 * If the current offset aligns with a 1GB page frame
9793 			 * and there is at least 1GB left within the range, then
9794 			 * we need not break down this page into 2MB pages.
9795 			 */
9796 			if ((tmpva & PDPMASK) == 0 &&
9797 			    tmpva + PDPMASK < base + size) {
9798 				tmpva += NBPDP;
9799 				continue;
9800 			}
9801 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, tmpva))
9802 				return (ENOMEM);
9803 		}
9804 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
9805 		if (*pde == 0) {
9806 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9807 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9808 			return (EINVAL);
9809 		}
9810 		if (*pde & PG_PS) {
9811 			/*
9812 			 * If the current 2MB page already has the required
9813 			 * properties, then we need not demote this page.  Just
9814 			 * increment tmpva to the next 2MB page frame.
9815 			 */
9816 			if ((*pde & pde_mask) == pde_bits) {
9817 				tmpva = trunc_2mpage(tmpva) + NBPDR;
9818 				continue;
9819 			}
9820 
9821 			/*
9822 			 * If the current offset aligns with a 2MB page frame
9823 			 * and there is at least 2MB left within the range, then
9824 			 * we need not break down this page into 4KB pages.
9825 			 */
9826 			if ((tmpva & PDRMASK) == 0 &&
9827 			    tmpva + PDRMASK < base + size) {
9828 				tmpva += NBPDR;
9829 				continue;
9830 			}
9831 			if (!pmap_demote_pde(kernel_pmap, pde, tmpva))
9832 				return (ENOMEM);
9833 		}
9834 		pte = pmap_pde_to_pte(pde, tmpva);
9835 		if (*pte == 0) {
9836 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9837 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9838 			return (EINVAL);
9839 		}
9840 		tmpva += PAGE_SIZE;
9841 	}
9842 	error = 0;
9843 
9844 	/*
9845 	 * Ok, all the pages exist, so run through them updating their
9846 	 * properties if required.
9847 	 */
9848 	changed = false;
9849 	pa_start = pa_end = 0;
9850 	for (tmpva = base; tmpva < base + size; ) {
9851 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
9852 		if (*pdpe & PG_PS) {
9853 			if ((*pdpe & pde_mask) != pde_bits) {
9854 				pmap_pte_props(pdpe, pde_bits, pde_mask);
9855 				changed = true;
9856 			}
9857 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9858 			    (*pdpe & PG_PS_FRAME) < dmaplimit) {
9859 				if (pa_start == pa_end) {
9860 					/* Start physical address run. */
9861 					pa_start = *pdpe & PG_PS_FRAME;
9862 					pa_end = pa_start + NBPDP;
9863 				} else if (pa_end == (*pdpe & PG_PS_FRAME))
9864 					pa_end += NBPDP;
9865 				else {
9866 					/* Run ended, update direct map. */
9867 					error = pmap_change_props_locked(
9868 					    PHYS_TO_DMAP(pa_start),
9869 					    pa_end - pa_start, prot, mode,
9870 					    flags);
9871 					if (error != 0)
9872 						break;
9873 					/* Start physical address run. */
9874 					pa_start = *pdpe & PG_PS_FRAME;
9875 					pa_end = pa_start + NBPDP;
9876 				}
9877 			}
9878 			tmpva = trunc_1gpage(tmpva) + NBPDP;
9879 			continue;
9880 		}
9881 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
9882 		if (*pde & PG_PS) {
9883 			if ((*pde & pde_mask) != pde_bits) {
9884 				pmap_pte_props(pde, pde_bits, pde_mask);
9885 				changed = true;
9886 			}
9887 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9888 			    (*pde & PG_PS_FRAME) < dmaplimit) {
9889 				if (pa_start == pa_end) {
9890 					/* Start physical address run. */
9891 					pa_start = *pde & PG_PS_FRAME;
9892 					pa_end = pa_start + NBPDR;
9893 				} else if (pa_end == (*pde & PG_PS_FRAME))
9894 					pa_end += NBPDR;
9895 				else {
9896 					/* Run ended, update direct map. */
9897 					error = pmap_change_props_locked(
9898 					    PHYS_TO_DMAP(pa_start),
9899 					    pa_end - pa_start, prot, mode,
9900 					    flags);
9901 					if (error != 0)
9902 						break;
9903 					/* Start physical address run. */
9904 					pa_start = *pde & PG_PS_FRAME;
9905 					pa_end = pa_start + NBPDR;
9906 				}
9907 			}
9908 			tmpva = trunc_2mpage(tmpva) + NBPDR;
9909 		} else {
9910 			pte = pmap_pde_to_pte(pde, tmpva);
9911 			if ((*pte & pte_mask) != pte_bits) {
9912 				pmap_pte_props(pte, pte_bits, pte_mask);
9913 				changed = true;
9914 			}
9915 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9916 			    (*pte & PG_FRAME) < dmaplimit) {
9917 				if (pa_start == pa_end) {
9918 					/* Start physical address run. */
9919 					pa_start = *pte & PG_FRAME;
9920 					pa_end = pa_start + PAGE_SIZE;
9921 				} else if (pa_end == (*pte & PG_FRAME))
9922 					pa_end += PAGE_SIZE;
9923 				else {
9924 					/* Run ended, update direct map. */
9925 					error = pmap_change_props_locked(
9926 					    PHYS_TO_DMAP(pa_start),
9927 					    pa_end - pa_start, prot, mode,
9928 					    flags);
9929 					if (error != 0)
9930 						break;
9931 					/* Start physical address run. */
9932 					pa_start = *pte & PG_FRAME;
9933 					pa_end = pa_start + PAGE_SIZE;
9934 				}
9935 			}
9936 			tmpva += PAGE_SIZE;
9937 		}
9938 	}
9939 	if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
9940 		pa_end1 = MIN(pa_end, dmaplimit);
9941 		if (pa_start != pa_end1)
9942 			error = pmap_change_props_locked(PHYS_TO_DMAP(pa_start),
9943 			    pa_end1 - pa_start, prot, mode, flags);
9944 	}
9945 
9946 	/*
9947 	 * Flush CPU caches if required to make sure any data isn't cached that
9948 	 * shouldn't be, etc.
9949 	 */
9950 	if (changed) {
9951 		pmap_invalidate_range(kernel_pmap, base, tmpva);
9952 		if ((flags & MAPDEV_FLUSHCACHE) != 0)
9953 			pmap_invalidate_cache_range(base, tmpva);
9954 	}
9955 	return (error);
9956 }
9957 
9958 /*
9959  * Demotes any mapping within the direct map region that covers more than the
9960  * specified range of physical addresses.  This range's size must be a power
9961  * of two and its starting address must be a multiple of its size.  Since the
9962  * demotion does not change any attributes of the mapping, a TLB invalidation
9963  * is not mandatory.  The caller may, however, request a TLB invalidation.
9964  */
9965 void
pmap_demote_DMAP(vm_paddr_t base,vm_size_t len,bool invalidate)9966 pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, bool invalidate)
9967 {
9968 	pdp_entry_t *pdpe;
9969 	pd_entry_t *pde;
9970 	vm_offset_t va;
9971 	bool changed;
9972 
9973 	if (len == 0)
9974 		return;
9975 	KASSERT(powerof2(len), ("pmap_demote_DMAP: len is not a power of 2"));
9976 	KASSERT((base & (len - 1)) == 0,
9977 	    ("pmap_demote_DMAP: base is not a multiple of len"));
9978 	if (len < NBPDP && base < dmaplimit) {
9979 		va = PHYS_TO_DMAP(base);
9980 		changed = false;
9981 		PMAP_LOCK(kernel_pmap);
9982 		pdpe = pmap_pdpe(kernel_pmap, va);
9983 		if ((*pdpe & X86_PG_V) == 0)
9984 			panic("pmap_demote_DMAP: invalid PDPE");
9985 		if ((*pdpe & PG_PS) != 0) {
9986 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, va))
9987 				panic("pmap_demote_DMAP: PDPE failed");
9988 			changed = true;
9989 		}
9990 		if (len < NBPDR) {
9991 			pde = pmap_pdpe_to_pde(pdpe, va);
9992 			if ((*pde & X86_PG_V) == 0)
9993 				panic("pmap_demote_DMAP: invalid PDE");
9994 			if ((*pde & PG_PS) != 0) {
9995 				if (!pmap_demote_pde(kernel_pmap, pde, va))
9996 					panic("pmap_demote_DMAP: PDE failed");
9997 				changed = true;
9998 			}
9999 		}
10000 		if (changed && invalidate)
10001 			pmap_invalidate_page(kernel_pmap, va);
10002 		PMAP_UNLOCK(kernel_pmap);
10003 	}
10004 }
10005 
10006 /*
10007  * Perform the pmap work for mincore(2).  If the page is not both referenced and
10008  * modified by this pmap, returns its physical address so that the caller can
10009  * find other mappings.
10010  */
10011 int
pmap_mincore(pmap_t pmap,vm_offset_t addr,vm_paddr_t * pap)10012 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
10013 {
10014 	pdp_entry_t *pdpe;
10015 	pd_entry_t *pdep;
10016 	pt_entry_t pte, PG_A, PG_M, PG_RW, PG_V;
10017 	vm_paddr_t pa;
10018 	int val;
10019 
10020 	PG_A = pmap_accessed_bit(pmap);
10021 	PG_M = pmap_modified_bit(pmap);
10022 	PG_V = pmap_valid_bit(pmap);
10023 	PG_RW = pmap_rw_bit(pmap);
10024 
10025 	PMAP_LOCK(pmap);
10026 	pte = 0;
10027 	pa = 0;
10028 	val = 0;
10029 	pdpe = pmap_pdpe(pmap, addr);
10030 	if (pdpe == NULL)
10031 		goto out;
10032 	if ((*pdpe & PG_V) != 0) {
10033 		if ((*pdpe & PG_PS) != 0) {
10034 			pte = *pdpe;
10035 			pa = ((pte & PG_PS_PDP_FRAME) | (addr & PDPMASK)) &
10036 			    PG_FRAME;
10037 			val = MINCORE_PSIND(2);
10038 		} else {
10039 			pdep = pmap_pde(pmap, addr);
10040 			if (pdep != NULL && (*pdep & PG_V) != 0) {
10041 				if ((*pdep & PG_PS) != 0) {
10042 					pte = *pdep;
10043 			/* Compute the physical address of the 4KB page. */
10044 					pa = ((pte & PG_PS_FRAME) | (addr &
10045 					    PDRMASK)) & PG_FRAME;
10046 					val = MINCORE_PSIND(1);
10047 				} else {
10048 					pte = *pmap_pde_to_pte(pdep, addr);
10049 					pa = pte & PG_FRAME;
10050 					val = 0;
10051 				}
10052 			}
10053 		}
10054 	}
10055 	if ((pte & PG_V) != 0) {
10056 		val |= MINCORE_INCORE;
10057 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
10058 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
10059 		if ((pte & PG_A) != 0)
10060 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
10061 	}
10062 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
10063 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
10064 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
10065 		*pap = pa;
10066 	}
10067 out:
10068 	PMAP_UNLOCK(pmap);
10069 	return (val);
10070 }
10071 
10072 static uint64_t
pmap_pcid_alloc(pmap_t pmap,struct pmap_pcid * pcidp)10073 pmap_pcid_alloc(pmap_t pmap, struct pmap_pcid *pcidp)
10074 {
10075 	uint32_t gen, new_gen, pcid_next;
10076 
10077 	CRITICAL_ASSERT(curthread);
10078 	gen = PCPU_GET(pcid_gen);
10079 	if (pcidp->pm_pcid == PMAP_PCID_KERN)
10080 		return (pti ? 0 : CR3_PCID_SAVE);
10081 	if (pcidp->pm_gen == gen)
10082 		return (CR3_PCID_SAVE);
10083 	pcid_next = PCPU_GET(pcid_next);
10084 	KASSERT((!pti && pcid_next <= PMAP_PCID_OVERMAX) ||
10085 	    (pti && pcid_next <= PMAP_PCID_OVERMAX_KERN),
10086 	    ("cpu %d pcid_next %#x", PCPU_GET(cpuid), pcid_next));
10087 	if ((!pti && pcid_next == PMAP_PCID_OVERMAX) ||
10088 	    (pti && pcid_next == PMAP_PCID_OVERMAX_KERN)) {
10089 		new_gen = gen + 1;
10090 		if (new_gen == 0)
10091 			new_gen = 1;
10092 		PCPU_SET(pcid_gen, new_gen);
10093 		pcid_next = PMAP_PCID_KERN + 1;
10094 	} else {
10095 		new_gen = gen;
10096 	}
10097 	pcidp->pm_pcid = pcid_next;
10098 	pcidp->pm_gen = new_gen;
10099 	PCPU_SET(pcid_next, pcid_next + 1);
10100 	return (0);
10101 }
10102 
10103 static uint64_t
pmap_pcid_alloc_checked(pmap_t pmap,struct pmap_pcid * pcidp)10104 pmap_pcid_alloc_checked(pmap_t pmap, struct pmap_pcid *pcidp)
10105 {
10106 	uint64_t cached;
10107 
10108 	cached = pmap_pcid_alloc(pmap, pcidp);
10109 	KASSERT(pcidp->pm_pcid < PMAP_PCID_OVERMAX,
10110 	    ("pmap %p cpu %d pcid %#x", pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
10111 	KASSERT(pcidp->pm_pcid != PMAP_PCID_KERN || pmap == kernel_pmap,
10112 	    ("non-kernel pmap pmap %p cpu %d pcid %#x",
10113 	    pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
10114 	return (cached);
10115 }
10116 
10117 static void
pmap_activate_sw_pti_post(struct thread * td,pmap_t pmap)10118 pmap_activate_sw_pti_post(struct thread *td, pmap_t pmap)
10119 {
10120 
10121 	PCPU_GET(tssp)->tss_rsp0 = pmap->pm_ucr3 != PMAP_NO_CR3 ?
10122 	    PCPU_GET(pti_rsp0) : (uintptr_t)td->td_md.md_stack_base;
10123 }
10124 
10125 static void
pmap_activate_sw_pcid_pti(struct thread * td,pmap_t pmap,u_int cpuid)10126 pmap_activate_sw_pcid_pti(struct thread *td, pmap_t pmap, u_int cpuid)
10127 {
10128 	pmap_t old_pmap;
10129 	struct pmap_pcid *pcidp, *old_pcidp;
10130 	uint64_t cached, cr3, kcr3, ucr3;
10131 
10132 	KASSERT((read_rflags() & PSL_I) == 0,
10133 	    ("PCID needs interrupts disabled in pmap_activate_sw()"));
10134 
10135 	/* See the comment in pmap_invalidate_page_pcid(). */
10136 	if (PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK) {
10137 		PCPU_SET(ucr3_load_mask, PMAP_UCR3_NOMASK);
10138 		old_pmap = PCPU_GET(curpmap);
10139 		MPASS(old_pmap->pm_ucr3 != PMAP_NO_CR3);
10140 		old_pcidp = zpcpu_get_cpu(old_pmap->pm_pcidp, cpuid);
10141 		old_pcidp->pm_gen = 0;
10142 	}
10143 
10144 	pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
10145 	cached = pmap_pcid_alloc_checked(pmap, pcidp);
10146 	cr3 = rcr3();
10147 	if ((cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10148 		load_cr3(pmap->pm_cr3 | pcidp->pm_pcid);
10149 	PCPU_SET(curpmap, pmap);
10150 	kcr3 = pmap->pm_cr3 | pcidp->pm_pcid;
10151 	ucr3 = pmap->pm_ucr3 | pcidp->pm_pcid | PMAP_PCID_USER_PT;
10152 
10153 	if (!cached && pmap->pm_ucr3 != PMAP_NO_CR3)
10154 		PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
10155 
10156 	PCPU_SET(kcr3, kcr3 | CR3_PCID_SAVE);
10157 	PCPU_SET(ucr3, ucr3 | CR3_PCID_SAVE);
10158 	if (cached)
10159 		counter_u64_add(pcid_save_cnt, 1);
10160 
10161 	pmap_activate_sw_pti_post(td, pmap);
10162 }
10163 
10164 static void
pmap_activate_sw_pcid_nopti(struct thread * td __unused,pmap_t pmap,u_int cpuid)10165 pmap_activate_sw_pcid_nopti(struct thread *td __unused, pmap_t pmap,
10166     u_int cpuid)
10167 {
10168 	struct pmap_pcid *pcidp;
10169 	uint64_t cached, cr3;
10170 
10171 	KASSERT((read_rflags() & PSL_I) == 0,
10172 	    ("PCID needs interrupts disabled in pmap_activate_sw()"));
10173 
10174 	pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
10175 	cached = pmap_pcid_alloc_checked(pmap, pcidp);
10176 	cr3 = rcr3();
10177 	if (!cached || (cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10178 		load_cr3(pmap->pm_cr3 | pcidp->pm_pcid | cached);
10179 	PCPU_SET(curpmap, pmap);
10180 	if (cached)
10181 		counter_u64_add(pcid_save_cnt, 1);
10182 }
10183 
10184 static void
pmap_activate_sw_nopcid_nopti(struct thread * td __unused,pmap_t pmap,u_int cpuid __unused)10185 pmap_activate_sw_nopcid_nopti(struct thread *td __unused, pmap_t pmap,
10186     u_int cpuid __unused)
10187 {
10188 
10189 	load_cr3(pmap->pm_cr3);
10190 	PCPU_SET(curpmap, pmap);
10191 }
10192 
10193 static void
pmap_activate_sw_nopcid_pti(struct thread * td,pmap_t pmap,u_int cpuid __unused)10194 pmap_activate_sw_nopcid_pti(struct thread *td, pmap_t pmap,
10195     u_int cpuid __unused)
10196 {
10197 
10198 	pmap_activate_sw_nopcid_nopti(td, pmap, cpuid);
10199 	PCPU_SET(kcr3, pmap->pm_cr3);
10200 	PCPU_SET(ucr3, pmap->pm_ucr3);
10201 	pmap_activate_sw_pti_post(td, pmap);
10202 }
10203 
10204 DEFINE_IFUNC(static, void, pmap_activate_sw_mode, (struct thread *, pmap_t,
10205     u_int))
10206 {
10207 
10208 	if (pmap_pcid_enabled && pti)
10209 		return (pmap_activate_sw_pcid_pti);
10210 	else if (pmap_pcid_enabled && !pti)
10211 		return (pmap_activate_sw_pcid_nopti);
10212 	else if (!pmap_pcid_enabled && pti)
10213 		return (pmap_activate_sw_nopcid_pti);
10214 	else /* if (!pmap_pcid_enabled && !pti) */
10215 		return (pmap_activate_sw_nopcid_nopti);
10216 }
10217 
10218 void
pmap_activate_sw(struct thread * td)10219 pmap_activate_sw(struct thread *td)
10220 {
10221 	pmap_t oldpmap, pmap;
10222 	u_int cpuid;
10223 
10224 	oldpmap = PCPU_GET(curpmap);
10225 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
10226 	if (oldpmap == pmap) {
10227 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
10228 			mfence();
10229 		return;
10230 	}
10231 	cpuid = PCPU_GET(cpuid);
10232 #ifdef SMP
10233 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10234 #else
10235 	CPU_SET(cpuid, &pmap->pm_active);
10236 #endif
10237 	pmap_activate_sw_mode(td, pmap, cpuid);
10238 #ifdef SMP
10239 	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
10240 #else
10241 	CPU_CLR(cpuid, &oldpmap->pm_active);
10242 #endif
10243 }
10244 
10245 void
pmap_activate(struct thread * td)10246 pmap_activate(struct thread *td)
10247 {
10248 	/*
10249 	 * invltlb_{invpcid,}_pcid_handler() is used to handle an
10250 	 * invalidate_all IPI, which checks for curpmap ==
10251 	 * smp_tlb_pmap.  The below sequence of operations has a
10252 	 * window where %CR3 is loaded with the new pmap's PML4
10253 	 * address, but the curpmap value has not yet been updated.
10254 	 * This causes the invltlb IPI handler, which is called
10255 	 * between the updates, to execute as a NOP, which leaves
10256 	 * stale TLB entries.
10257 	 *
10258 	 * Note that the most common use of pmap_activate_sw(), from
10259 	 * a context switch, is immune to this race, because
10260 	 * interrupts are disabled (while the thread lock is owned),
10261 	 * so the IPI is delayed until after curpmap is updated.  Protect
10262 	 * other callers in a similar way, by disabling interrupts
10263 	 * around the %cr3 register reload and curpmap assignment.
10264 	 */
10265 	spinlock_enter();
10266 	pmap_activate_sw(td);
10267 	spinlock_exit();
10268 }
10269 
10270 void
pmap_activate_boot(pmap_t pmap)10271 pmap_activate_boot(pmap_t pmap)
10272 {
10273 	uint64_t kcr3;
10274 	u_int cpuid;
10275 
10276 	/*
10277 	 * kernel_pmap must be never deactivated, and we ensure that
10278 	 * by never activating it at all.
10279 	 */
10280 	MPASS(pmap != kernel_pmap);
10281 
10282 	cpuid = PCPU_GET(cpuid);
10283 #ifdef SMP
10284 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10285 #else
10286 	CPU_SET(cpuid, &pmap->pm_active);
10287 #endif
10288 	PCPU_SET(curpmap, pmap);
10289 	if (pti) {
10290 		kcr3 = pmap->pm_cr3;
10291 		if (pmap_pcid_enabled)
10292 			kcr3 |= pmap_get_pcid(pmap) | CR3_PCID_SAVE;
10293 	} else {
10294 		kcr3 = PMAP_NO_CR3;
10295 	}
10296 	PCPU_SET(kcr3, kcr3);
10297 	PCPU_SET(ucr3, PMAP_NO_CR3);
10298 }
10299 
10300 void
pmap_active_cpus(pmap_t pmap,cpuset_t * res)10301 pmap_active_cpus(pmap_t pmap, cpuset_t *res)
10302 {
10303 	*res = pmap->pm_active;
10304 }
10305 
10306 void
pmap_sync_icache(pmap_t pm,vm_offset_t va,vm_size_t sz)10307 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
10308 {
10309 }
10310 
10311 /*
10312  *	Increase the starting virtual address of the given mapping if a
10313  *	different alignment might result in more superpage mappings.
10314  */
10315 void
pmap_align_superpage(vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t size)10316 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
10317     vm_offset_t *addr, vm_size_t size)
10318 {
10319 	vm_offset_t superpage_offset;
10320 
10321 	if (size < NBPDR)
10322 		return;
10323 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
10324 		offset += ptoa(object->pg_color);
10325 	superpage_offset = offset & PDRMASK;
10326 	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
10327 	    (*addr & PDRMASK) == superpage_offset)
10328 		return;
10329 	if ((*addr & PDRMASK) < superpage_offset)
10330 		*addr = (*addr & ~PDRMASK) + superpage_offset;
10331 	else
10332 		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
10333 }
10334 
10335 #ifdef INVARIANTS
10336 static unsigned long num_dirty_emulations;
10337 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_dirty_emulations, CTLFLAG_RW,
10338 	     &num_dirty_emulations, 0, NULL);
10339 
10340 static unsigned long num_accessed_emulations;
10341 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_accessed_emulations, CTLFLAG_RW,
10342 	     &num_accessed_emulations, 0, NULL);
10343 
10344 static unsigned long num_superpage_accessed_emulations;
10345 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_superpage_accessed_emulations, CTLFLAG_RW,
10346 	     &num_superpage_accessed_emulations, 0, NULL);
10347 
10348 static unsigned long ad_emulation_superpage_promotions;
10349 SYSCTL_ULONG(_vm_pmap, OID_AUTO, ad_emulation_superpage_promotions, CTLFLAG_RW,
10350 	     &ad_emulation_superpage_promotions, 0, NULL);
10351 #endif	/* INVARIANTS */
10352 
10353 int
pmap_emulate_accessed_dirty(pmap_t pmap,vm_offset_t va,int ftype)10354 pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype)
10355 {
10356 	int rv;
10357 	struct rwlock *lock;
10358 #if VM_NRESERVLEVEL > 0
10359 	vm_page_t m, mpte;
10360 #endif
10361 	pd_entry_t *pde;
10362 	pt_entry_t *pte, PG_A, PG_M, PG_RW, PG_V;
10363 
10364 	KASSERT(ftype == VM_PROT_READ || ftype == VM_PROT_WRITE,
10365 	    ("pmap_emulate_accessed_dirty: invalid fault type %d", ftype));
10366 
10367 	if (!pmap_emulate_ad_bits(pmap))
10368 		return (-1);
10369 
10370 	PG_A = pmap_accessed_bit(pmap);
10371 	PG_M = pmap_modified_bit(pmap);
10372 	PG_V = pmap_valid_bit(pmap);
10373 	PG_RW = pmap_rw_bit(pmap);
10374 
10375 	rv = -1;
10376 	lock = NULL;
10377 	PMAP_LOCK(pmap);
10378 
10379 	pde = pmap_pde(pmap, va);
10380 	if (pde == NULL || (*pde & PG_V) == 0)
10381 		goto done;
10382 
10383 	if ((*pde & PG_PS) != 0) {
10384 		if (ftype == VM_PROT_READ) {
10385 #ifdef INVARIANTS
10386 			atomic_add_long(&num_superpage_accessed_emulations, 1);
10387 #endif
10388 			*pde |= PG_A;
10389 			rv = 0;
10390 		}
10391 		goto done;
10392 	}
10393 
10394 	pte = pmap_pde_to_pte(pde, va);
10395 	if ((*pte & PG_V) == 0)
10396 		goto done;
10397 
10398 	if (ftype == VM_PROT_WRITE) {
10399 		if ((*pte & PG_RW) == 0)
10400 			goto done;
10401 		/*
10402 		 * Set the modified and accessed bits simultaneously.
10403 		 *
10404 		 * Intel EPT PTEs that do software emulation of A/D bits map
10405 		 * PG_A and PG_M to EPT_PG_READ and EPT_PG_WRITE respectively.
10406 		 * An EPT misconfiguration is triggered if the PTE is writable
10407 		 * but not readable (WR=10). This is avoided by setting PG_A
10408 		 * and PG_M simultaneously.
10409 		 */
10410 		*pte |= PG_M | PG_A;
10411 	} else {
10412 		*pte |= PG_A;
10413 	}
10414 
10415 #if VM_NRESERVLEVEL > 0
10416 	/* try to promote the mapping */
10417 	if (va < VM_MAXUSER_ADDRESS)
10418 		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
10419 	else
10420 		mpte = NULL;
10421 
10422 	m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
10423 
10424 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
10425 	    (m->flags & PG_FICTITIOUS) == 0 &&
10426 	    vm_reserv_level_iffullpop(m) == 0 &&
10427 	    pmap_promote_pde(pmap, pde, va, mpte, &lock)) {
10428 #ifdef INVARIANTS
10429 		atomic_add_long(&ad_emulation_superpage_promotions, 1);
10430 #endif
10431 	}
10432 #endif
10433 
10434 #ifdef INVARIANTS
10435 	if (ftype == VM_PROT_WRITE)
10436 		atomic_add_long(&num_dirty_emulations, 1);
10437 	else
10438 		atomic_add_long(&num_accessed_emulations, 1);
10439 #endif
10440 	rv = 0;		/* success */
10441 done:
10442 	if (lock != NULL)
10443 		rw_wunlock(lock);
10444 	PMAP_UNLOCK(pmap);
10445 	return (rv);
10446 }
10447 
10448 void
pmap_get_mapping(pmap_t pmap,vm_offset_t va,uint64_t * ptr,int * num)10449 pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num)
10450 {
10451 	pml4_entry_t *pml4;
10452 	pdp_entry_t *pdp;
10453 	pd_entry_t *pde;
10454 	pt_entry_t *pte, PG_V;
10455 	int idx;
10456 
10457 	idx = 0;
10458 	PG_V = pmap_valid_bit(pmap);
10459 	PMAP_LOCK(pmap);
10460 
10461 	pml4 = pmap_pml4e(pmap, va);
10462 	if (pml4 == NULL)
10463 		goto done;
10464 	ptr[idx++] = *pml4;
10465 	if ((*pml4 & PG_V) == 0)
10466 		goto done;
10467 
10468 	pdp = pmap_pml4e_to_pdpe(pml4, va);
10469 	ptr[idx++] = *pdp;
10470 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0)
10471 		goto done;
10472 
10473 	pde = pmap_pdpe_to_pde(pdp, va);
10474 	ptr[idx++] = *pde;
10475 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0)
10476 		goto done;
10477 
10478 	pte = pmap_pde_to_pte(pde, va);
10479 	ptr[idx++] = *pte;
10480 
10481 done:
10482 	PMAP_UNLOCK(pmap);
10483 	*num = idx;
10484 }
10485 
10486 /**
10487  * Get the kernel virtual address of a set of physical pages. If there are
10488  * physical addresses not covered by the DMAP perform a transient mapping
10489  * that will be removed when calling pmap_unmap_io_transient.
10490  *
10491  * \param page        The pages the caller wishes to obtain the virtual
10492  *                    address on the kernel memory map.
10493  * \param vaddr       On return contains the kernel virtual memory address
10494  *                    of the pages passed in the page parameter.
10495  * \param count       Number of pages passed in.
10496  * \param can_fault   true if the thread using the mapped pages can take
10497  *                    page faults, false otherwise.
10498  *
10499  * \returns true if the caller must call pmap_unmap_io_transient when
10500  *          finished or false otherwise.
10501  *
10502  */
10503 bool
pmap_map_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)10504 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10505     bool can_fault)
10506 {
10507 	vm_paddr_t paddr;
10508 	bool needs_mapping;
10509 	pt_entry_t *pte;
10510 	int cache_bits, error __unused, i;
10511 
10512 	/*
10513 	 * Allocate any KVA space that we need, this is done in a separate
10514 	 * loop to prevent calling vmem_alloc while pinned.
10515 	 */
10516 	needs_mapping = false;
10517 	for (i = 0; i < count; i++) {
10518 		paddr = VM_PAGE_TO_PHYS(page[i]);
10519 		if (__predict_false(paddr >= dmaplimit)) {
10520 			error = vmem_alloc(kernel_arena, PAGE_SIZE,
10521 			    M_BESTFIT | M_WAITOK, &vaddr[i]);
10522 			KASSERT(error == 0, ("vmem_alloc failed: %d", error));
10523 			needs_mapping = true;
10524 		} else {
10525 			vaddr[i] = PHYS_TO_DMAP(paddr);
10526 		}
10527 	}
10528 
10529 	/* Exit early if everything is covered by the DMAP */
10530 	if (!needs_mapping)
10531 		return (false);
10532 
10533 	/*
10534 	 * NB:  The sequence of updating a page table followed by accesses
10535 	 * to the corresponding pages used in the !DMAP case is subject to
10536 	 * the situation described in the "AMD64 Architecture Programmer's
10537 	 * Manual Volume 2: System Programming" rev. 3.23, "7.3.1 Special
10538 	 * Coherency Considerations".  Therefore, issuing the INVLPG right
10539 	 * after modifying the PTE bits is crucial.
10540 	 */
10541 	if (!can_fault)
10542 		sched_pin();
10543 	for (i = 0; i < count; i++) {
10544 		paddr = VM_PAGE_TO_PHYS(page[i]);
10545 		if (paddr >= dmaplimit) {
10546 			if (can_fault) {
10547 				/*
10548 				 * Slow path, since we can get page faults
10549 				 * while mappings are active don't pin the
10550 				 * thread to the CPU and instead add a global
10551 				 * mapping visible to all CPUs.
10552 				 */
10553 				pmap_qenter(vaddr[i], &page[i], 1);
10554 			} else {
10555 				pte = vtopte(vaddr[i]);
10556 				cache_bits = pmap_cache_bits(kernel_pmap,
10557 				    page[i]->md.pat_mode, false);
10558 				pte_store(pte, paddr | X86_PG_RW | X86_PG_V |
10559 				    cache_bits);
10560 				pmap_invlpg(kernel_pmap, vaddr[i]);
10561 			}
10562 		}
10563 	}
10564 
10565 	return (needs_mapping);
10566 }
10567 
10568 void
pmap_unmap_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)10569 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10570     bool can_fault)
10571 {
10572 	vm_paddr_t paddr;
10573 	int i;
10574 
10575 	if (!can_fault)
10576 		sched_unpin();
10577 	for (i = 0; i < count; i++) {
10578 		paddr = VM_PAGE_TO_PHYS(page[i]);
10579 		if (paddr >= dmaplimit) {
10580 			if (can_fault)
10581 				pmap_qremove(vaddr[i], 1);
10582 			vmem_free(kernel_arena, vaddr[i], PAGE_SIZE);
10583 		}
10584 	}
10585 }
10586 
10587 vm_offset_t
pmap_quick_enter_page(vm_page_t m)10588 pmap_quick_enter_page(vm_page_t m)
10589 {
10590 	vm_paddr_t paddr;
10591 
10592 	paddr = VM_PAGE_TO_PHYS(m);
10593 	if (paddr < dmaplimit)
10594 		return (PHYS_TO_DMAP(paddr));
10595 	mtx_lock_spin(&qframe_mtx);
10596 	KASSERT(*vtopte(qframe) == 0, ("qframe busy"));
10597 
10598 	/*
10599 	 * Since qframe is exclusively mapped by us, and we do not set
10600 	 * PG_G, we can use INVLPG here.
10601 	 */
10602 	invlpg(qframe);
10603 
10604 	pte_store(vtopte(qframe), paddr | X86_PG_RW | X86_PG_V | X86_PG_A |
10605 	    X86_PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode, false));
10606 	return (qframe);
10607 }
10608 
10609 void
pmap_quick_remove_page(vm_offset_t addr)10610 pmap_quick_remove_page(vm_offset_t addr)
10611 {
10612 
10613 	if (addr != qframe)
10614 		return;
10615 	pte_store(vtopte(qframe), 0);
10616 	mtx_unlock_spin(&qframe_mtx);
10617 }
10618 
10619 /*
10620  * Pdp pages from the large map are managed differently from either
10621  * kernel or user page table pages.  They are permanently allocated at
10622  * initialization time, and their reference count is permanently set to
10623  * zero.  The pml4 entries pointing to those pages are copied into
10624  * each allocated pmap.
10625  *
10626  * In contrast, pd and pt pages are managed like user page table
10627  * pages.  They are dynamically allocated, and their reference count
10628  * represents the number of valid entries within the page.
10629  */
10630 static vm_page_t
pmap_large_map_getptp_unlocked(void)10631 pmap_large_map_getptp_unlocked(void)
10632 {
10633 	return (pmap_alloc_pt_page(kernel_pmap, 0, VM_ALLOC_ZERO));
10634 }
10635 
10636 static vm_page_t
pmap_large_map_getptp(void)10637 pmap_large_map_getptp(void)
10638 {
10639 	vm_page_t m;
10640 
10641 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
10642 	m = pmap_large_map_getptp_unlocked();
10643 	if (m == NULL) {
10644 		PMAP_UNLOCK(kernel_pmap);
10645 		vm_wait(NULL);
10646 		PMAP_LOCK(kernel_pmap);
10647 		/* Callers retry. */
10648 	}
10649 	return (m);
10650 }
10651 
10652 static pdp_entry_t *
pmap_large_map_pdpe(vm_offset_t va)10653 pmap_large_map_pdpe(vm_offset_t va)
10654 {
10655 	vm_pindex_t pml4_idx;
10656 	vm_paddr_t mphys;
10657 
10658 	pml4_idx = pmap_pml4e_index(va);
10659 	KASSERT(LMSPML4I <= pml4_idx && pml4_idx < LMSPML4I + lm_ents,
10660 	    ("pmap_large_map_pdpe: va %#jx out of range idx %#jx LMSPML4I "
10661 	    "%#jx lm_ents %d",
10662 	    (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10663 	KASSERT((kernel_pml4[pml4_idx] & X86_PG_V) != 0,
10664 	    ("pmap_large_map_pdpe: invalid pml4 for va %#jx idx %#jx "
10665 	    "LMSPML4I %#jx lm_ents %d",
10666 	    (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10667 	mphys = kernel_pml4[pml4_idx] & PG_FRAME;
10668 	return ((pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va));
10669 }
10670 
10671 static pd_entry_t *
pmap_large_map_pde(vm_offset_t va)10672 pmap_large_map_pde(vm_offset_t va)
10673 {
10674 	pdp_entry_t *pdpe;
10675 	vm_page_t m;
10676 	vm_paddr_t mphys;
10677 
10678 retry:
10679 	pdpe = pmap_large_map_pdpe(va);
10680 	if (*pdpe == 0) {
10681 		m = pmap_large_map_getptp();
10682 		if (m == NULL)
10683 			goto retry;
10684 		mphys = VM_PAGE_TO_PHYS(m);
10685 		*pdpe = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10686 	} else {
10687 		MPASS((*pdpe & X86_PG_PS) == 0);
10688 		mphys = *pdpe & PG_FRAME;
10689 	}
10690 	return ((pd_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pde_index(va));
10691 }
10692 
10693 static pt_entry_t *
pmap_large_map_pte(vm_offset_t va)10694 pmap_large_map_pte(vm_offset_t va)
10695 {
10696 	pd_entry_t *pde;
10697 	vm_page_t m;
10698 	vm_paddr_t mphys;
10699 
10700 retry:
10701 	pde = pmap_large_map_pde(va);
10702 	if (*pde == 0) {
10703 		m = pmap_large_map_getptp();
10704 		if (m == NULL)
10705 			goto retry;
10706 		mphys = VM_PAGE_TO_PHYS(m);
10707 		*pde = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10708 		PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->ref_count++;
10709 	} else {
10710 		MPASS((*pde & X86_PG_PS) == 0);
10711 		mphys = *pde & PG_FRAME;
10712 	}
10713 	return ((pt_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pte_index(va));
10714 }
10715 
10716 static vm_paddr_t
pmap_large_map_kextract(vm_offset_t va)10717 pmap_large_map_kextract(vm_offset_t va)
10718 {
10719 	pdp_entry_t *pdpe, pdp;
10720 	pd_entry_t *pde, pd;
10721 	pt_entry_t *pte, pt;
10722 
10723 	KASSERT(PMAP_ADDRESS_IN_LARGEMAP(va),
10724 	    ("not largemap range %#lx", (u_long)va));
10725 	pdpe = pmap_large_map_pdpe(va);
10726 	pdp = *pdpe;
10727 	KASSERT((pdp & X86_PG_V) != 0,
10728 	    ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10729 	    (u_long)pdpe, pdp));
10730 	if ((pdp & X86_PG_PS) != 0) {
10731 		KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10732 		    ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10733 		    (u_long)pdpe, pdp));
10734 		return ((pdp & PG_PS_PDP_FRAME) | (va & PDPMASK));
10735 	}
10736 	pde = pmap_pdpe_to_pde(pdpe, va);
10737 	pd = *pde;
10738 	KASSERT((pd & X86_PG_V) != 0,
10739 	    ("invalid pd va %#lx pde %#lx pd %#lx", va, (u_long)pde, pd));
10740 	if ((pd & X86_PG_PS) != 0)
10741 		return ((pd & PG_PS_FRAME) | (va & PDRMASK));
10742 	pte = pmap_pde_to_pte(pde, va);
10743 	pt = *pte;
10744 	KASSERT((pt & X86_PG_V) != 0,
10745 	    ("invalid pte va %#lx pte %#lx pt %#lx", va, (u_long)pte, pt));
10746 	return ((pt & PG_FRAME) | (va & PAGE_MASK));
10747 }
10748 
10749 static int
pmap_large_map_getva(vm_size_t len,vm_offset_t align,vm_offset_t phase,vmem_addr_t * vmem_res)10750 pmap_large_map_getva(vm_size_t len, vm_offset_t align, vm_offset_t phase,
10751     vmem_addr_t *vmem_res)
10752 {
10753 
10754 	/*
10755 	 * Large mappings are all but static.  Consequently, there
10756 	 * is no point in waiting for an earlier allocation to be
10757 	 * freed.
10758 	 */
10759 	return (vmem_xalloc(large_vmem, len, align, phase, 0, VMEM_ADDR_MIN,
10760 	    VMEM_ADDR_MAX, M_NOWAIT | M_BESTFIT, vmem_res));
10761 }
10762 
10763 int
pmap_large_map(vm_paddr_t spa,vm_size_t len,void ** addr,vm_memattr_t mattr)10764 pmap_large_map(vm_paddr_t spa, vm_size_t len, void **addr,
10765     vm_memattr_t mattr)
10766 {
10767 	pdp_entry_t *pdpe;
10768 	pd_entry_t *pde;
10769 	pt_entry_t *pte;
10770 	vm_offset_t va, inc;
10771 	vmem_addr_t vmem_res;
10772 	vm_paddr_t pa;
10773 	int error;
10774 
10775 	if (len == 0 || spa + len < spa)
10776 		return (EINVAL);
10777 
10778 	/* See if DMAP can serve. */
10779 	if (spa + len <= dmaplimit) {
10780 		va = PHYS_TO_DMAP(spa);
10781 		*addr = (void *)va;
10782 		return (pmap_change_attr(va, len, mattr));
10783 	}
10784 
10785 	/*
10786 	 * No, allocate KVA.  Fit the address with best possible
10787 	 * alignment for superpages.  Fall back to worse align if
10788 	 * failed.
10789 	 */
10790 	error = ENOMEM;
10791 	if ((amd_feature & AMDID_PAGE1GB) != 0 && rounddown2(spa + len,
10792 	    NBPDP) >= roundup2(spa, NBPDP) + NBPDP)
10793 		error = pmap_large_map_getva(len, NBPDP, spa & PDPMASK,
10794 		    &vmem_res);
10795 	if (error != 0 && rounddown2(spa + len, NBPDR) >= roundup2(spa,
10796 	    NBPDR) + NBPDR)
10797 		error = pmap_large_map_getva(len, NBPDR, spa & PDRMASK,
10798 		    &vmem_res);
10799 	if (error != 0)
10800 		error = pmap_large_map_getva(len, PAGE_SIZE, 0, &vmem_res);
10801 	if (error != 0)
10802 		return (error);
10803 
10804 	/*
10805 	 * Fill pagetable.  PG_M is not pre-set, we scan modified bits
10806 	 * in the pagetable to minimize flushing.  No need to
10807 	 * invalidate TLB, since we only update invalid entries.
10808 	 */
10809 	PMAP_LOCK(kernel_pmap);
10810 	for (pa = spa, va = vmem_res; len > 0; pa += inc, va += inc,
10811 	    len -= inc) {
10812 		if ((amd_feature & AMDID_PAGE1GB) != 0 && len >= NBPDP &&
10813 		    (pa & PDPMASK) == 0 && (va & PDPMASK) == 0) {
10814 			pdpe = pmap_large_map_pdpe(va);
10815 			MPASS(*pdpe == 0);
10816 			*pdpe = pa | pg_g | X86_PG_PS | X86_PG_RW |
10817 			    X86_PG_V | X86_PG_A | pg_nx |
10818 			    pmap_cache_bits(kernel_pmap, mattr, true);
10819 			inc = NBPDP;
10820 		} else if (len >= NBPDR && (pa & PDRMASK) == 0 &&
10821 		    (va & PDRMASK) == 0) {
10822 			pde = pmap_large_map_pde(va);
10823 			MPASS(*pde == 0);
10824 			*pde = pa | pg_g | X86_PG_PS | X86_PG_RW |
10825 			    X86_PG_V | X86_PG_A | pg_nx |
10826 			    pmap_cache_bits(kernel_pmap, mattr, true);
10827 			PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->
10828 			    ref_count++;
10829 			inc = NBPDR;
10830 		} else {
10831 			pte = pmap_large_map_pte(va);
10832 			MPASS(*pte == 0);
10833 			*pte = pa | pg_g | X86_PG_RW | X86_PG_V |
10834 			    X86_PG_A | pg_nx | pmap_cache_bits(kernel_pmap,
10835 			    mattr, false);
10836 			PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte))->
10837 			    ref_count++;
10838 			inc = PAGE_SIZE;
10839 		}
10840 	}
10841 	PMAP_UNLOCK(kernel_pmap);
10842 	MPASS(len == 0);
10843 
10844 	*addr = (void *)vmem_res;
10845 	return (0);
10846 }
10847 
10848 void
pmap_large_unmap(void * svaa,vm_size_t len)10849 pmap_large_unmap(void *svaa, vm_size_t len)
10850 {
10851 	vm_offset_t sva, va;
10852 	vm_size_t inc;
10853 	pdp_entry_t *pdpe, pdp;
10854 	pd_entry_t *pde, pd;
10855 	pt_entry_t *pte;
10856 	vm_page_t m;
10857 	struct spglist spgf;
10858 
10859 	sva = (vm_offset_t)svaa;
10860 	if (len == 0 || sva + len < sva || (sva >= DMAP_MIN_ADDRESS &&
10861 	    sva + len <= DMAP_MIN_ADDRESS + dmaplimit))
10862 		return;
10863 
10864 	SLIST_INIT(&spgf);
10865 	KASSERT(PMAP_ADDRESS_IN_LARGEMAP(sva) &&
10866 	    PMAP_ADDRESS_IN_LARGEMAP(sva + len - 1),
10867 	    ("not largemap range %#lx %#lx", (u_long)svaa, (u_long)svaa + len));
10868 	PMAP_LOCK(kernel_pmap);
10869 	for (va = sva; va < sva + len; va += inc) {
10870 		pdpe = pmap_large_map_pdpe(va);
10871 		pdp = *pdpe;
10872 		KASSERT((pdp & X86_PG_V) != 0,
10873 		    ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10874 		    (u_long)pdpe, pdp));
10875 		if ((pdp & X86_PG_PS) != 0) {
10876 			KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10877 			    ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10878 			    (u_long)pdpe, pdp));
10879 			KASSERT((va & PDPMASK) == 0,
10880 			    ("PDPMASK bit set, va %#lx pdpe %#lx pdp %#lx", va,
10881 			    (u_long)pdpe, pdp));
10882 			KASSERT(va + NBPDP <= sva + len,
10883 			    ("unmap covers partial 1GB page, sva %#lx va %#lx "
10884 			    "pdpe %#lx pdp %#lx len %#lx", sva, va,
10885 			    (u_long)pdpe, pdp, len));
10886 			*pdpe = 0;
10887 			inc = NBPDP;
10888 			continue;
10889 		}
10890 		pde = pmap_pdpe_to_pde(pdpe, va);
10891 		pd = *pde;
10892 		KASSERT((pd & X86_PG_V) != 0,
10893 		    ("invalid pd va %#lx pde %#lx pd %#lx", va,
10894 		    (u_long)pde, pd));
10895 		if ((pd & X86_PG_PS) != 0) {
10896 			KASSERT((va & PDRMASK) == 0,
10897 			    ("PDRMASK bit set, va %#lx pde %#lx pd %#lx", va,
10898 			    (u_long)pde, pd));
10899 			KASSERT(va + NBPDR <= sva + len,
10900 			    ("unmap covers partial 2MB page, sva %#lx va %#lx "
10901 			    "pde %#lx pd %#lx len %#lx", sva, va, (u_long)pde,
10902 			    pd, len));
10903 			pde_store(pde, 0);
10904 			inc = NBPDR;
10905 			m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10906 			m->ref_count--;
10907 			if (m->ref_count == 0) {
10908 				*pdpe = 0;
10909 				SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10910 			}
10911 			continue;
10912 		}
10913 		pte = pmap_pde_to_pte(pde, va);
10914 		KASSERT((*pte & X86_PG_V) != 0,
10915 		    ("invalid pte va %#lx pte %#lx pt %#lx", va,
10916 		    (u_long)pte, *pte));
10917 		pte_clear(pte);
10918 		inc = PAGE_SIZE;
10919 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pte));
10920 		m->ref_count--;
10921 		if (m->ref_count == 0) {
10922 			*pde = 0;
10923 			SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10924 			m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10925 			m->ref_count--;
10926 			if (m->ref_count == 0) {
10927 				*pdpe = 0;
10928 				SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10929 			}
10930 		}
10931 	}
10932 	pmap_invalidate_range(kernel_pmap, sva, sva + len);
10933 	PMAP_UNLOCK(kernel_pmap);
10934 	vm_page_free_pages_toq(&spgf, false);
10935 	vmem_free(large_vmem, sva, len);
10936 }
10937 
10938 static void
pmap_large_map_wb_fence_mfence(void)10939 pmap_large_map_wb_fence_mfence(void)
10940 {
10941 
10942 	mfence();
10943 }
10944 
10945 static void
pmap_large_map_wb_fence_atomic(void)10946 pmap_large_map_wb_fence_atomic(void)
10947 {
10948 
10949 	atomic_thread_fence_seq_cst();
10950 }
10951 
10952 static void
pmap_large_map_wb_fence_nop(void)10953 pmap_large_map_wb_fence_nop(void)
10954 {
10955 }
10956 
10957 DEFINE_IFUNC(static, void, pmap_large_map_wb_fence, (void))
10958 {
10959 
10960 	if (cpu_vendor_id != CPU_VENDOR_INTEL)
10961 		return (pmap_large_map_wb_fence_mfence);
10962 	else if ((cpu_stdext_feature & (CPUID_STDEXT_CLWB |
10963 	    CPUID_STDEXT_CLFLUSHOPT)) == 0)
10964 		return (pmap_large_map_wb_fence_atomic);
10965 	else
10966 		/* clflush is strongly enough ordered */
10967 		return (pmap_large_map_wb_fence_nop);
10968 }
10969 
10970 static void
pmap_large_map_flush_range_clwb(vm_offset_t va,vm_size_t len)10971 pmap_large_map_flush_range_clwb(vm_offset_t va, vm_size_t len)
10972 {
10973 
10974 	for (; len > 0; len -= cpu_clflush_line_size,
10975 	    va += cpu_clflush_line_size)
10976 		clwb(va);
10977 }
10978 
10979 static void
pmap_large_map_flush_range_clflushopt(vm_offset_t va,vm_size_t len)10980 pmap_large_map_flush_range_clflushopt(vm_offset_t va, vm_size_t len)
10981 {
10982 
10983 	for (; len > 0; len -= cpu_clflush_line_size,
10984 	    va += cpu_clflush_line_size)
10985 		clflushopt(va);
10986 }
10987 
10988 static void
pmap_large_map_flush_range_clflush(vm_offset_t va,vm_size_t len)10989 pmap_large_map_flush_range_clflush(vm_offset_t va, vm_size_t len)
10990 {
10991 
10992 	for (; len > 0; len -= cpu_clflush_line_size,
10993 	    va += cpu_clflush_line_size)
10994 		clflush(va);
10995 }
10996 
10997 static void
pmap_large_map_flush_range_nop(vm_offset_t sva __unused,vm_size_t len __unused)10998 pmap_large_map_flush_range_nop(vm_offset_t sva __unused, vm_size_t len __unused)
10999 {
11000 }
11001 
11002 DEFINE_IFUNC(static, void, pmap_large_map_flush_range, (vm_offset_t, vm_size_t))
11003 {
11004 
11005 	if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) != 0)
11006 		return (pmap_large_map_flush_range_clwb);
11007 	else if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0)
11008 		return (pmap_large_map_flush_range_clflushopt);
11009 	else if ((cpu_feature & CPUID_CLFSH) != 0)
11010 		return (pmap_large_map_flush_range_clflush);
11011 	else
11012 		return (pmap_large_map_flush_range_nop);
11013 }
11014 
11015 static void
pmap_large_map_wb_large(vm_offset_t sva,vm_offset_t eva)11016 pmap_large_map_wb_large(vm_offset_t sva, vm_offset_t eva)
11017 {
11018 	volatile u_long *pe;
11019 	u_long p;
11020 	vm_offset_t va;
11021 	vm_size_t inc;
11022 	bool seen_other;
11023 
11024 	for (va = sva; va < eva; va += inc) {
11025 		inc = 0;
11026 		if ((amd_feature & AMDID_PAGE1GB) != 0) {
11027 			pe = (volatile u_long *)pmap_large_map_pdpe(va);
11028 			p = *pe;
11029 			if ((p & X86_PG_PS) != 0)
11030 				inc = NBPDP;
11031 		}
11032 		if (inc == 0) {
11033 			pe = (volatile u_long *)pmap_large_map_pde(va);
11034 			p = *pe;
11035 			if ((p & X86_PG_PS) != 0)
11036 				inc = NBPDR;
11037 		}
11038 		if (inc == 0) {
11039 			pe = (volatile u_long *)pmap_large_map_pte(va);
11040 			p = *pe;
11041 			inc = PAGE_SIZE;
11042 		}
11043 		seen_other = false;
11044 		for (;;) {
11045 			if ((p & X86_PG_AVAIL1) != 0) {
11046 				/*
11047 				 * Spin-wait for the end of a parallel
11048 				 * write-back.
11049 				 */
11050 				cpu_spinwait();
11051 				p = *pe;
11052 
11053 				/*
11054 				 * If we saw other write-back
11055 				 * occurring, we cannot rely on PG_M to
11056 				 * indicate state of the cache.  The
11057 				 * PG_M bit is cleared before the
11058 				 * flush to avoid ignoring new writes,
11059 				 * and writes which are relevant for
11060 				 * us might happen after.
11061 				 */
11062 				seen_other = true;
11063 				continue;
11064 			}
11065 
11066 			if ((p & X86_PG_M) != 0 || seen_other) {
11067 				if (!atomic_fcmpset_long(pe, &p,
11068 				    (p & ~X86_PG_M) | X86_PG_AVAIL1))
11069 					/*
11070 					 * If we saw PG_M without
11071 					 * PG_AVAIL1, and then on the
11072 					 * next attempt we do not
11073 					 * observe either PG_M or
11074 					 * PG_AVAIL1, the other
11075 					 * write-back started after us
11076 					 * and finished before us.  We
11077 					 * can rely on it doing our
11078 					 * work.
11079 					 */
11080 					continue;
11081 				pmap_large_map_flush_range(va, inc);
11082 				atomic_clear_long(pe, X86_PG_AVAIL1);
11083 			}
11084 			break;
11085 		}
11086 		maybe_yield();
11087 	}
11088 }
11089 
11090 /*
11091  * Write-back cache lines for the given address range.
11092  *
11093  * Must be called only on the range or sub-range returned from
11094  * pmap_large_map().  Must not be called on the coalesced ranges.
11095  *
11096  * Does nothing on CPUs without CLWB, CLFLUSHOPT, or CLFLUSH
11097  * instructions support.
11098  */
11099 void
pmap_large_map_wb(void * svap,vm_size_t len)11100 pmap_large_map_wb(void *svap, vm_size_t len)
11101 {
11102 	vm_offset_t eva, sva;
11103 
11104 	sva = (vm_offset_t)svap;
11105 	eva = sva + len;
11106 	pmap_large_map_wb_fence();
11107 	if (sva >= DMAP_MIN_ADDRESS && eva <= DMAP_MIN_ADDRESS + dmaplimit) {
11108 		pmap_large_map_flush_range(sva, len);
11109 	} else {
11110 		KASSERT(sva >= LARGEMAP_MIN_ADDRESS &&
11111 		    eva <= LARGEMAP_MIN_ADDRESS + lm_ents * NBPML4,
11112 		    ("pmap_large_map_wb: not largemap %#lx %#lx", sva, len));
11113 		pmap_large_map_wb_large(sva, eva);
11114 	}
11115 	pmap_large_map_wb_fence();
11116 }
11117 
11118 static vm_page_t
pmap_pti_alloc_page(void)11119 pmap_pti_alloc_page(void)
11120 {
11121 	vm_page_t m;
11122 
11123 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11124 	m = vm_page_grab(pti_obj, pti_pg_idx++, VM_ALLOC_WIRED | VM_ALLOC_ZERO);
11125 	return (m);
11126 }
11127 
11128 static bool
pmap_pti_free_page(vm_page_t m)11129 pmap_pti_free_page(vm_page_t m)
11130 {
11131 	if (!vm_page_unwire_noq(m))
11132 		return (false);
11133 	vm_page_xbusy_claim(m);
11134 	vm_page_free_zero(m);
11135 	return (true);
11136 }
11137 
11138 static void
pmap_pti_init(void)11139 pmap_pti_init(void)
11140 {
11141 	vm_page_t pml4_pg;
11142 	pdp_entry_t *pdpe;
11143 	vm_offset_t va;
11144 	int i;
11145 
11146 	if (!pti)
11147 		return;
11148 	pti_obj = vm_pager_allocate(OBJT_PHYS, NULL, 0, VM_PROT_ALL, 0, NULL);
11149 	VM_OBJECT_WLOCK(pti_obj);
11150 	pml4_pg = pmap_pti_alloc_page();
11151 	pti_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4_pg));
11152 	for (va = VM_MIN_KERNEL_ADDRESS; va <= VM_MAX_KERNEL_ADDRESS &&
11153 	    va >= VM_MIN_KERNEL_ADDRESS && va > NBPML4; va += NBPML4) {
11154 		pdpe = pmap_pti_pdpe(va);
11155 		pmap_pti_wire_pte(pdpe);
11156 	}
11157 	pmap_pti_add_kva_locked((vm_offset_t)&__pcpu[0],
11158 	    (vm_offset_t)&__pcpu[0] + sizeof(__pcpu[0]) * MAXCPU, false);
11159 	pmap_pti_add_kva_locked((vm_offset_t)idt, (vm_offset_t)idt +
11160 	    sizeof(struct gate_descriptor) * NIDT, false);
11161 	CPU_FOREACH(i) {
11162 		/* Doublefault stack IST 1 */
11163 		va = __pcpu[i].pc_common_tss.tss_ist1 + sizeof(struct nmi_pcpu);
11164 		pmap_pti_add_kva_locked(va - DBLFAULT_STACK_SIZE, va, false);
11165 		/* NMI stack IST 2 */
11166 		va = __pcpu[i].pc_common_tss.tss_ist2 + sizeof(struct nmi_pcpu);
11167 		pmap_pti_add_kva_locked(va - NMI_STACK_SIZE, va, false);
11168 		/* MC# stack IST 3 */
11169 		va = __pcpu[i].pc_common_tss.tss_ist3 +
11170 		    sizeof(struct nmi_pcpu);
11171 		pmap_pti_add_kva_locked(va - MCE_STACK_SIZE, va, false);
11172 		/* DB# stack IST 4 */
11173 		va = __pcpu[i].pc_common_tss.tss_ist4 + sizeof(struct nmi_pcpu);
11174 		pmap_pti_add_kva_locked(va - DBG_STACK_SIZE, va, false);
11175 	}
11176 	pmap_pti_add_kva_locked((vm_offset_t)KERNSTART, (vm_offset_t)etext,
11177 	    true);
11178 	pti_finalized = true;
11179 	VM_OBJECT_WUNLOCK(pti_obj);
11180 }
11181 
11182 static void
pmap_cpu_init(void * arg __unused)11183 pmap_cpu_init(void *arg __unused)
11184 {
11185 	CPU_COPY(&all_cpus, &kernel_pmap->pm_active);
11186 	pmap_pti_init();
11187 }
11188 SYSINIT(pmap_cpu, SI_SUB_CPU + 1, SI_ORDER_ANY, pmap_cpu_init, NULL);
11189 
11190 static pdp_entry_t *
pmap_pti_pdpe(vm_offset_t va)11191 pmap_pti_pdpe(vm_offset_t va)
11192 {
11193 	pml4_entry_t *pml4e;
11194 	pdp_entry_t *pdpe;
11195 	vm_page_t m;
11196 	vm_pindex_t pml4_idx;
11197 	vm_paddr_t mphys;
11198 
11199 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11200 
11201 	pml4_idx = pmap_pml4e_index(va);
11202 	pml4e = &pti_pml4[pml4_idx];
11203 	m = NULL;
11204 	if (*pml4e == 0) {
11205 		if (pti_finalized)
11206 			panic("pml4 alloc after finalization\n");
11207 		m = pmap_pti_alloc_page();
11208 		if (*pml4e != 0) {
11209 			pmap_pti_free_page(m);
11210 			mphys = *pml4e & ~PAGE_MASK;
11211 		} else {
11212 			mphys = VM_PAGE_TO_PHYS(m);
11213 			*pml4e = mphys | X86_PG_RW | X86_PG_V;
11214 		}
11215 	} else {
11216 		mphys = *pml4e & ~PAGE_MASK;
11217 	}
11218 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va);
11219 	return (pdpe);
11220 }
11221 
11222 static void
pmap_pti_wire_pte(void * pte)11223 pmap_pti_wire_pte(void *pte)
11224 {
11225 	vm_page_t m;
11226 
11227 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11228 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11229 	m->ref_count++;
11230 }
11231 
11232 static void
pmap_pti_unwire_pde(void * pde,bool only_ref)11233 pmap_pti_unwire_pde(void *pde, bool only_ref)
11234 {
11235 	vm_page_t m;
11236 
11237 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11238 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde));
11239 	MPASS(only_ref || m->ref_count > 1);
11240 	pmap_pti_free_page(m);
11241 }
11242 
11243 static void
pmap_pti_unwire_pte(void * pte,vm_offset_t va)11244 pmap_pti_unwire_pte(void *pte, vm_offset_t va)
11245 {
11246 	vm_page_t m;
11247 	pd_entry_t *pde;
11248 
11249 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11250 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11251 	if (pmap_pti_free_page(m)) {
11252 		pde = pmap_pti_pde(va);
11253 		MPASS((*pde & (X86_PG_PS | X86_PG_V)) == X86_PG_V);
11254 		*pde = 0;
11255 		pmap_pti_unwire_pde(pde, false);
11256 	}
11257 }
11258 
11259 static pd_entry_t *
pmap_pti_pde(vm_offset_t va)11260 pmap_pti_pde(vm_offset_t va)
11261 {
11262 	pdp_entry_t *pdpe;
11263 	pd_entry_t *pde;
11264 	vm_page_t m;
11265 	vm_pindex_t pd_idx;
11266 	vm_paddr_t mphys;
11267 
11268 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11269 
11270 	pdpe = pmap_pti_pdpe(va);
11271 	if (*pdpe == 0) {
11272 		m = pmap_pti_alloc_page();
11273 		if (*pdpe != 0) {
11274 			pmap_pti_free_page(m);
11275 			MPASS((*pdpe & X86_PG_PS) == 0);
11276 			mphys = *pdpe & ~PAGE_MASK;
11277 		} else {
11278 			mphys =  VM_PAGE_TO_PHYS(m);
11279 			*pdpe = mphys | X86_PG_RW | X86_PG_V;
11280 		}
11281 	} else {
11282 		MPASS((*pdpe & X86_PG_PS) == 0);
11283 		mphys = *pdpe & ~PAGE_MASK;
11284 	}
11285 
11286 	pde = (pd_entry_t *)PHYS_TO_DMAP(mphys);
11287 	pd_idx = pmap_pde_index(va);
11288 	pde += pd_idx;
11289 	return (pde);
11290 }
11291 
11292 static pt_entry_t *
pmap_pti_pte(vm_offset_t va,bool * unwire_pde)11293 pmap_pti_pte(vm_offset_t va, bool *unwire_pde)
11294 {
11295 	pd_entry_t *pde;
11296 	pt_entry_t *pte;
11297 	vm_page_t m;
11298 	vm_paddr_t mphys;
11299 
11300 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11301 
11302 	pde = pmap_pti_pde(va);
11303 	if (unwire_pde != NULL) {
11304 		*unwire_pde = true;
11305 		pmap_pti_wire_pte(pde);
11306 	}
11307 	if (*pde == 0) {
11308 		m = pmap_pti_alloc_page();
11309 		if (*pde != 0) {
11310 			pmap_pti_free_page(m);
11311 			MPASS((*pde & X86_PG_PS) == 0);
11312 			mphys = *pde & ~(PAGE_MASK | pg_nx);
11313 		} else {
11314 			mphys = VM_PAGE_TO_PHYS(m);
11315 			*pde = mphys | X86_PG_RW | X86_PG_V;
11316 			if (unwire_pde != NULL)
11317 				*unwire_pde = false;
11318 		}
11319 	} else {
11320 		MPASS((*pde & X86_PG_PS) == 0);
11321 		mphys = *pde & ~(PAGE_MASK | pg_nx);
11322 	}
11323 
11324 	pte = (pt_entry_t *)PHYS_TO_DMAP(mphys);
11325 	pte += pmap_pte_index(va);
11326 
11327 	return (pte);
11328 }
11329 
11330 static void
pmap_pti_add_kva_locked(vm_offset_t sva,vm_offset_t eva,bool exec)11331 pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva, bool exec)
11332 {
11333 	vm_paddr_t pa;
11334 	pd_entry_t *pde;
11335 	pt_entry_t *pte, ptev;
11336 	bool unwire_pde;
11337 
11338 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11339 
11340 	sva = trunc_page(sva);
11341 	MPASS(sva > VM_MAXUSER_ADDRESS);
11342 	eva = round_page(eva);
11343 	MPASS(sva < eva);
11344 	for (; sva < eva; sva += PAGE_SIZE) {
11345 		pte = pmap_pti_pte(sva, &unwire_pde);
11346 		pa = pmap_kextract(sva);
11347 		ptev = pa | X86_PG_RW | X86_PG_V | X86_PG_A | X86_PG_G |
11348 		    (exec ? 0 : pg_nx) | pmap_cache_bits(kernel_pmap,
11349 		    VM_MEMATTR_DEFAULT, false);
11350 		if (*pte == 0) {
11351 			pte_store(pte, ptev);
11352 			pmap_pti_wire_pte(pte);
11353 		} else {
11354 			KASSERT(!pti_finalized,
11355 			    ("pti overlap after fin %#lx %#lx %#lx",
11356 			    sva, *pte, ptev));
11357 			KASSERT(*pte == ptev,
11358 			    ("pti non-identical pte after fin %#lx %#lx %#lx",
11359 			    sva, *pte, ptev));
11360 		}
11361 		if (unwire_pde) {
11362 			pde = pmap_pti_pde(sva);
11363 			pmap_pti_unwire_pde(pde, true);
11364 		}
11365 	}
11366 }
11367 
11368 void
pmap_pti_add_kva(vm_offset_t sva,vm_offset_t eva,bool exec)11369 pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec)
11370 {
11371 
11372 	if (!pti)
11373 		return;
11374 	VM_OBJECT_WLOCK(pti_obj);
11375 	pmap_pti_add_kva_locked(sva, eva, exec);
11376 	VM_OBJECT_WUNLOCK(pti_obj);
11377 }
11378 
11379 void
pmap_pti_remove_kva(vm_offset_t sva,vm_offset_t eva)11380 pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva)
11381 {
11382 	pt_entry_t *pte;
11383 	vm_offset_t va;
11384 
11385 	if (!pti)
11386 		return;
11387 	sva = rounddown2(sva, PAGE_SIZE);
11388 	MPASS(sva > VM_MAXUSER_ADDRESS);
11389 	eva = roundup2(eva, PAGE_SIZE);
11390 	MPASS(sva < eva);
11391 	VM_OBJECT_WLOCK(pti_obj);
11392 	for (va = sva; va < eva; va += PAGE_SIZE) {
11393 		pte = pmap_pti_pte(va, NULL);
11394 		KASSERT((*pte & X86_PG_V) != 0,
11395 		    ("invalid pte va %#lx pte %#lx pt %#lx", va,
11396 		    (u_long)pte, *pte));
11397 		pte_clear(pte);
11398 		pmap_pti_unwire_pte(pte, va);
11399 	}
11400 	pmap_invalidate_range(kernel_pmap, sva, eva);
11401 	VM_OBJECT_WUNLOCK(pti_obj);
11402 }
11403 
11404 static void *
pkru_dup_range(void * ctx __unused,void * data)11405 pkru_dup_range(void *ctx __unused, void *data)
11406 {
11407 	struct pmap_pkru_range *node, *new_node;
11408 
11409 	new_node = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11410 	if (new_node == NULL)
11411 		return (NULL);
11412 	node = data;
11413 	memcpy(new_node, node, sizeof(*node));
11414 	return (new_node);
11415 }
11416 
11417 static void
pkru_free_range(void * ctx __unused,void * node)11418 pkru_free_range(void *ctx __unused, void *node)
11419 {
11420 
11421 	uma_zfree(pmap_pkru_ranges_zone, node);
11422 }
11423 
11424 static int
pmap_pkru_assign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11425 pmap_pkru_assign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11426     int flags)
11427 {
11428 	struct pmap_pkru_range *ppr;
11429 	int error;
11430 
11431 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11432 	MPASS(pmap->pm_type == PT_X86);
11433 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11434 	if ((flags & AMD64_PKRU_EXCL) != 0 &&
11435 	    !rangeset_check_empty(&pmap->pm_pkru, sva, eva))
11436 		return (EBUSY);
11437 	ppr = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11438 	if (ppr == NULL)
11439 		return (ENOMEM);
11440 	ppr->pkru_keyidx = keyidx;
11441 	ppr->pkru_flags = flags & AMD64_PKRU_PERSIST;
11442 	error = rangeset_insert(&pmap->pm_pkru, sva, eva, ppr);
11443 	if (error != 0)
11444 		uma_zfree(pmap_pkru_ranges_zone, ppr);
11445 	return (error);
11446 }
11447 
11448 static int
pmap_pkru_deassign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11449 pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11450 {
11451 
11452 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11453 	MPASS(pmap->pm_type == PT_X86);
11454 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11455 	return (rangeset_remove(&pmap->pm_pkru, sva, eva));
11456 }
11457 
11458 static void
pmap_pkru_deassign_all(pmap_t pmap)11459 pmap_pkru_deassign_all(pmap_t pmap)
11460 {
11461 
11462 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11463 	if (pmap->pm_type == PT_X86 &&
11464 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
11465 		rangeset_remove_all(&pmap->pm_pkru);
11466 }
11467 
11468 /*
11469  * Returns true if the PKU setting is the same across the specified address
11470  * range, and false otherwise.  When returning true, updates the referenced PTE
11471  * to reflect the PKU setting.
11472  */
11473 static bool
pmap_pkru_same(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pt_entry_t * pte)11474 pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, pt_entry_t *pte)
11475 {
11476 	struct pmap_pkru_range *ppr;
11477 	vm_offset_t va;
11478 	u_int keyidx;
11479 
11480 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11481 	KASSERT(pmap->pm_type != PT_X86 || (*pte & X86_PG_PKU_MASK) == 0,
11482 	    ("pte %p has unexpected PKU %ld", pte, *pte & X86_PG_PKU_MASK));
11483 	if (pmap->pm_type != PT_X86 ||
11484 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11485 	    sva >= VM_MAXUSER_ADDRESS)
11486 		return (true);
11487 	MPASS(eva <= VM_MAXUSER_ADDRESS);
11488 	ppr = rangeset_containing(&pmap->pm_pkru, sva);
11489 	if (ppr == NULL)
11490 		return (rangeset_empty(&pmap->pm_pkru, sva, eva));
11491 	keyidx = ppr->pkru_keyidx;
11492 	while ((va = ppr->pkru_rs_el.re_end) < eva) {
11493 		if ((ppr = rangeset_beginning(&pmap->pm_pkru, va)) == NULL ||
11494 		    keyidx != ppr->pkru_keyidx)
11495 			return (false);
11496 	}
11497 	*pte |= X86_PG_PKU(keyidx);
11498 	return (true);
11499 }
11500 
11501 static pt_entry_t
pmap_pkru_get(pmap_t pmap,vm_offset_t va)11502 pmap_pkru_get(pmap_t pmap, vm_offset_t va)
11503 {
11504 	struct pmap_pkru_range *ppr;
11505 
11506 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11507 	if (pmap->pm_type != PT_X86 ||
11508 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11509 	    va >= VM_MAXUSER_ADDRESS)
11510 		return (0);
11511 	ppr = rangeset_containing(&pmap->pm_pkru, va);
11512 	if (ppr != NULL)
11513 		return (X86_PG_PKU(ppr->pkru_keyidx));
11514 	return (0);
11515 }
11516 
11517 static bool
pred_pkru_on_remove(void * ctx __unused,void * r)11518 pred_pkru_on_remove(void *ctx __unused, void *r)
11519 {
11520 	struct pmap_pkru_range *ppr;
11521 
11522 	ppr = r;
11523 	return ((ppr->pkru_flags & AMD64_PKRU_PERSIST) == 0);
11524 }
11525 
11526 static void
pmap_pkru_on_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11527 pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11528 {
11529 
11530 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11531 	if (pmap->pm_type == PT_X86 &&
11532 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
11533 		rangeset_remove_pred(&pmap->pm_pkru, sva, eva,
11534 		    pred_pkru_on_remove);
11535 	}
11536 }
11537 
11538 static int
pmap_pkru_copy(pmap_t dst_pmap,pmap_t src_pmap)11539 pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap)
11540 {
11541 
11542 	PMAP_LOCK_ASSERT(dst_pmap, MA_OWNED);
11543 	PMAP_LOCK_ASSERT(src_pmap, MA_OWNED);
11544 	MPASS(dst_pmap->pm_type == PT_X86);
11545 	MPASS(src_pmap->pm_type == PT_X86);
11546 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11547 	if (src_pmap->pm_pkru.rs_data_ctx == NULL)
11548 		return (0);
11549 	return (rangeset_copy(&dst_pmap->pm_pkru, &src_pmap->pm_pkru));
11550 }
11551 
11552 static void
pmap_pkru_update_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx)11553 pmap_pkru_update_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11554     u_int keyidx)
11555 {
11556 	pml4_entry_t *pml4e;
11557 	pdp_entry_t *pdpe;
11558 	pd_entry_t newpde, ptpaddr, *pde;
11559 	pt_entry_t newpte, *ptep, pte;
11560 	vm_offset_t va, va_next;
11561 	bool changed;
11562 
11563 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11564 	MPASS(pmap->pm_type == PT_X86);
11565 	MPASS(keyidx <= PMAP_MAX_PKRU_IDX);
11566 
11567 	for (changed = false, va = sva; va < eva; va = va_next) {
11568 		pml4e = pmap_pml4e(pmap, va);
11569 		if (pml4e == NULL || (*pml4e & X86_PG_V) == 0) {
11570 			va_next = (va + NBPML4) & ~PML4MASK;
11571 			if (va_next < va)
11572 				va_next = eva;
11573 			continue;
11574 		}
11575 
11576 		pdpe = pmap_pml4e_to_pdpe(pml4e, va);
11577 		if ((*pdpe & X86_PG_V) == 0) {
11578 			va_next = (va + NBPDP) & ~PDPMASK;
11579 			if (va_next < va)
11580 				va_next = eva;
11581 			continue;
11582 		}
11583 
11584 		va_next = (va + NBPDR) & ~PDRMASK;
11585 		if (va_next < va)
11586 			va_next = eva;
11587 
11588 		pde = pmap_pdpe_to_pde(pdpe, va);
11589 		ptpaddr = *pde;
11590 		if (ptpaddr == 0)
11591 			continue;
11592 
11593 		MPASS((ptpaddr & X86_PG_V) != 0);
11594 		if ((ptpaddr & PG_PS) != 0) {
11595 			if (va + NBPDR == va_next && eva >= va_next) {
11596 				newpde = (ptpaddr & ~X86_PG_PKU_MASK) |
11597 				    X86_PG_PKU(keyidx);
11598 				if (newpde != ptpaddr) {
11599 					*pde = newpde;
11600 					changed = true;
11601 				}
11602 				continue;
11603 			} else if (!pmap_demote_pde(pmap, pde, va)) {
11604 				continue;
11605 			}
11606 		}
11607 
11608 		if (va_next > eva)
11609 			va_next = eva;
11610 
11611 		for (ptep = pmap_pde_to_pte(pde, va); va != va_next;
11612 		    ptep++, va += PAGE_SIZE) {
11613 			pte = *ptep;
11614 			if ((pte & X86_PG_V) == 0)
11615 				continue;
11616 			newpte = (pte & ~X86_PG_PKU_MASK) | X86_PG_PKU(keyidx);
11617 			if (newpte != pte) {
11618 				*ptep = newpte;
11619 				changed = true;
11620 			}
11621 		}
11622 	}
11623 	if (changed)
11624 		pmap_invalidate_range(pmap, sva, eva);
11625 }
11626 
11627 static int
pmap_pkru_check_uargs(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11628 pmap_pkru_check_uargs(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11629     u_int keyidx, int flags)
11630 {
11631 
11632 	if (pmap->pm_type != PT_X86 || keyidx > PMAP_MAX_PKRU_IDX ||
11633 	    (flags & ~(AMD64_PKRU_PERSIST | AMD64_PKRU_EXCL)) != 0)
11634 		return (EINVAL);
11635 	if (eva <= sva || eva > VM_MAXUSER_ADDRESS)
11636 		return (EFAULT);
11637 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
11638 		return (ENOTSUP);
11639 	return (0);
11640 }
11641 
11642 int
pmap_pkru_set(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11643 pmap_pkru_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11644     int flags)
11645 {
11646 	int error;
11647 
11648 	sva = trunc_page(sva);
11649 	eva = round_page(eva);
11650 	error = pmap_pkru_check_uargs(pmap, sva, eva, keyidx, flags);
11651 	if (error != 0)
11652 		return (error);
11653 	for (;;) {
11654 		PMAP_LOCK(pmap);
11655 		error = pmap_pkru_assign(pmap, sva, eva, keyidx, flags);
11656 		if (error == 0)
11657 			pmap_pkru_update_range(pmap, sva, eva, keyidx);
11658 		PMAP_UNLOCK(pmap);
11659 		if (error != ENOMEM)
11660 			break;
11661 		vm_wait(NULL);
11662 	}
11663 	return (error);
11664 }
11665 
11666 int
pmap_pkru_clear(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11667 pmap_pkru_clear(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11668 {
11669 	int error;
11670 
11671 	sva = trunc_page(sva);
11672 	eva = round_page(eva);
11673 	error = pmap_pkru_check_uargs(pmap, sva, eva, 0, 0);
11674 	if (error != 0)
11675 		return (error);
11676 	for (;;) {
11677 		PMAP_LOCK(pmap);
11678 		error = pmap_pkru_deassign(pmap, sva, eva);
11679 		if (error == 0)
11680 			pmap_pkru_update_range(pmap, sva, eva, 0);
11681 		PMAP_UNLOCK(pmap);
11682 		if (error != ENOMEM)
11683 			break;
11684 		vm_wait(NULL);
11685 	}
11686 	return (error);
11687 }
11688 
11689 #if defined(KASAN) || defined(KMSAN)
11690 
11691 /*
11692  * Reserve enough memory to:
11693  * 1) allocate PDP pages for the shadow map(s),
11694  * 2) shadow the boot stack of KSTACK_PAGES pages,
11695  * 3) assuming that the kernel stack does not cross a 1GB boundary,
11696  * so we need one or two PD pages, one or two PT pages, and KSTACK_PAGES shadow
11697  * pages per shadow map.
11698  */
11699 #ifdef KASAN
11700 #define	SAN_EARLY_PAGES	\
11701 	(NKASANPML4E + 2 + 2 + howmany(KSTACK_PAGES, KASAN_SHADOW_SCALE))
11702 #else
11703 #define	SAN_EARLY_PAGES	\
11704 	(NKMSANSHADPML4E + NKMSANORIGPML4E + 2 * (2 + 2 + KSTACK_PAGES))
11705 #endif
11706 
11707 static uint64_t __nosanitizeaddress __nosanitizememory
pmap_san_enter_early_alloc_4k(uint64_t pabase)11708 pmap_san_enter_early_alloc_4k(uint64_t pabase)
11709 {
11710 	static uint8_t data[PAGE_SIZE * SAN_EARLY_PAGES] __aligned(PAGE_SIZE);
11711 	static size_t offset = 0;
11712 	uint64_t pa;
11713 
11714 	if (offset == sizeof(data)) {
11715 		panic("%s: ran out of memory for the bootstrap shadow map",
11716 		    __func__);
11717 	}
11718 
11719 	pa = pabase + ((vm_offset_t)&data[offset] - KERNSTART);
11720 	offset += PAGE_SIZE;
11721 	return (pa);
11722 }
11723 
11724 /*
11725  * Map a shadow page, before the kernel has bootstrapped its page tables.  This
11726  * is currently only used to shadow the temporary boot stack set up by locore.
11727  */
11728 static void __nosanitizeaddress __nosanitizememory
pmap_san_enter_early(vm_offset_t va)11729 pmap_san_enter_early(vm_offset_t va)
11730 {
11731 	static bool first = true;
11732 	pml4_entry_t *pml4e;
11733 	pdp_entry_t *pdpe;
11734 	pd_entry_t *pde;
11735 	pt_entry_t *pte;
11736 	uint64_t cr3, pa, base;
11737 	int i;
11738 
11739 	base = amd64_loadaddr();
11740 	cr3 = rcr3();
11741 
11742 	if (first) {
11743 		/*
11744 		 * If this the first call, we need to allocate new PML4Es for
11745 		 * the bootstrap shadow map(s).  We don't know how the PML4 page
11746 		 * was initialized by the boot loader, so we can't simply test
11747 		 * whether the shadow map's PML4Es are zero.
11748 		 */
11749 		first = false;
11750 #ifdef KASAN
11751 		for (i = 0; i < NKASANPML4E; i++) {
11752 			pa = pmap_san_enter_early_alloc_4k(base);
11753 
11754 			pml4e = (pml4_entry_t *)cr3 +
11755 			    pmap_pml4e_index(KASAN_MIN_ADDRESS + i * NBPML4);
11756 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11757 		}
11758 #else
11759 		for (i = 0; i < NKMSANORIGPML4E; i++) {
11760 			pa = pmap_san_enter_early_alloc_4k(base);
11761 
11762 			pml4e = (pml4_entry_t *)cr3 +
11763 			    pmap_pml4e_index(KMSAN_ORIG_MIN_ADDRESS +
11764 			    i * NBPML4);
11765 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11766 		}
11767 		for (i = 0; i < NKMSANSHADPML4E; i++) {
11768 			pa = pmap_san_enter_early_alloc_4k(base);
11769 
11770 			pml4e = (pml4_entry_t *)cr3 +
11771 			    pmap_pml4e_index(KMSAN_SHAD_MIN_ADDRESS +
11772 			    i * NBPML4);
11773 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11774 		}
11775 #endif
11776 	}
11777 	pml4e = (pml4_entry_t *)cr3 + pmap_pml4e_index(va);
11778 	pdpe = (pdp_entry_t *)(*pml4e & PG_FRAME) + pmap_pdpe_index(va);
11779 	if (*pdpe == 0) {
11780 		pa = pmap_san_enter_early_alloc_4k(base);
11781 		*pdpe = (pdp_entry_t)(pa | X86_PG_RW | X86_PG_V);
11782 	}
11783 	pde = (pd_entry_t *)(*pdpe & PG_FRAME) + pmap_pde_index(va);
11784 	if (*pde == 0) {
11785 		pa = pmap_san_enter_early_alloc_4k(base);
11786 		*pde = (pd_entry_t)(pa | X86_PG_RW | X86_PG_V);
11787 	}
11788 	pte = (pt_entry_t *)(*pde & PG_FRAME) + pmap_pte_index(va);
11789 	if (*pte != 0)
11790 		panic("%s: PTE for %#lx is already initialized", __func__, va);
11791 	pa = pmap_san_enter_early_alloc_4k(base);
11792 	*pte = (pt_entry_t)(pa | X86_PG_A | X86_PG_M | X86_PG_RW | X86_PG_V);
11793 }
11794 
11795 static vm_page_t
pmap_san_enter_alloc_4k(void)11796 pmap_san_enter_alloc_4k(void)
11797 {
11798 	vm_page_t m;
11799 
11800 	m = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED |
11801 	    VM_ALLOC_ZERO);
11802 	if (m == NULL)
11803 		panic("%s: no memory to grow shadow map", __func__);
11804 	return (m);
11805 }
11806 
11807 static vm_page_t
pmap_san_enter_alloc_2m(void)11808 pmap_san_enter_alloc_2m(void)
11809 {
11810 	return (vm_page_alloc_noobj_contig(VM_ALLOC_WIRED | VM_ALLOC_ZERO,
11811 	    NPTEPG, 0, ~0ul, NBPDR, 0, VM_MEMATTR_DEFAULT));
11812 }
11813 
11814 /*
11815  * Grow a shadow map by at least one 4KB page at the specified address.  Use 2MB
11816  * pages when possible.
11817  */
11818 void __nosanitizeaddress __nosanitizememory
pmap_san_enter(vm_offset_t va)11819 pmap_san_enter(vm_offset_t va)
11820 {
11821 	pdp_entry_t *pdpe;
11822 	pd_entry_t *pde;
11823 	pt_entry_t *pte;
11824 	vm_page_t m;
11825 
11826 	if (kernphys == 0) {
11827 		/*
11828 		 * We're creating a temporary shadow map for the boot stack.
11829 		 */
11830 		pmap_san_enter_early(va);
11831 		return;
11832 	}
11833 
11834 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
11835 
11836 	pdpe = pmap_pdpe(kernel_pmap, va);
11837 	if ((*pdpe & X86_PG_V) == 0) {
11838 		m = pmap_san_enter_alloc_4k();
11839 		*pdpe = (pdp_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11840 		    X86_PG_V | pg_nx);
11841 	}
11842 	pde = pmap_pdpe_to_pde(pdpe, va);
11843 	if ((*pde & X86_PG_V) == 0) {
11844 		m = pmap_san_enter_alloc_2m();
11845 		if (m != NULL) {
11846 			*pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11847 			    X86_PG_PS | X86_PG_V | X86_PG_A | X86_PG_M | pg_nx);
11848 		} else {
11849 			m = pmap_san_enter_alloc_4k();
11850 			*pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11851 			    X86_PG_V | pg_nx);
11852 		}
11853 	}
11854 	if ((*pde & X86_PG_PS) != 0)
11855 		return;
11856 	pte = pmap_pde_to_pte(pde, va);
11857 	if ((*pte & X86_PG_V) != 0)
11858 		return;
11859 	m = pmap_san_enter_alloc_4k();
11860 	*pte = (pt_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW | X86_PG_V |
11861 	    X86_PG_M | X86_PG_A | pg_nx);
11862 }
11863 #endif
11864 
11865 /*
11866  * Track a range of the kernel's virtual address space that is contiguous
11867  * in various mapping attributes.
11868  */
11869 struct pmap_kernel_map_range {
11870 	vm_offset_t sva;
11871 	pt_entry_t attrs;
11872 	int ptes;
11873 	int pdes;
11874 	int pdpes;
11875 };
11876 
11877 static void
sysctl_kmaps_dump(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t eva)11878 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
11879     vm_offset_t eva)
11880 {
11881 	const char *mode;
11882 	int i, pat_idx;
11883 
11884 	if (eva <= range->sva)
11885 		return;
11886 
11887 	pat_idx = pmap_pat_index(kernel_pmap, range->attrs, true);
11888 	for (i = 0; i < PAT_INDEX_SIZE; i++)
11889 		if (pat_index[i] == pat_idx)
11890 			break;
11891 
11892 	switch (i) {
11893 	case PAT_WRITE_BACK:
11894 		mode = "WB";
11895 		break;
11896 	case PAT_WRITE_THROUGH:
11897 		mode = "WT";
11898 		break;
11899 	case PAT_UNCACHEABLE:
11900 		mode = "UC";
11901 		break;
11902 	case PAT_UNCACHED:
11903 		mode = "U-";
11904 		break;
11905 	case PAT_WRITE_PROTECTED:
11906 		mode = "WP";
11907 		break;
11908 	case PAT_WRITE_COMBINING:
11909 		mode = "WC";
11910 		break;
11911 	default:
11912 		printf("%s: unknown PAT mode %#x for range 0x%016lx-0x%016lx\n",
11913 		    __func__, pat_idx, range->sva, eva);
11914 		mode = "??";
11915 		break;
11916 	}
11917 
11918 	sbuf_printf(sb, "0x%016lx-0x%016lx r%c%c%c%c %s %d %d %d\n",
11919 	    range->sva, eva,
11920 	    (range->attrs & X86_PG_RW) != 0 ? 'w' : '-',
11921 	    (range->attrs & pg_nx) != 0 ? '-' : 'x',
11922 	    (range->attrs & X86_PG_U) != 0 ? 'u' : 's',
11923 	    (range->attrs & X86_PG_G) != 0 ? 'g' : '-',
11924 	    mode, range->pdpes, range->pdes, range->ptes);
11925 
11926 	/* Reset to sentinel value. */
11927 	range->sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
11928 	    NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
11929 	    NPDEPG - 1, NPTEPG - 1);
11930 }
11931 
11932 /*
11933  * Determine whether the attributes specified by a page table entry match those
11934  * being tracked by the current range.  This is not quite as simple as a direct
11935  * flag comparison since some PAT modes have multiple representations.
11936  */
11937 static bool
sysctl_kmaps_match(struct pmap_kernel_map_range * range,pt_entry_t attrs)11938 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
11939 {
11940 	pt_entry_t diff, mask;
11941 
11942 	mask = X86_PG_G | X86_PG_RW | X86_PG_U | X86_PG_PDE_CACHE | pg_nx;
11943 	diff = (range->attrs ^ attrs) & mask;
11944 	if (diff == 0)
11945 		return (true);
11946 	if ((diff & ~X86_PG_PDE_PAT) == 0 &&
11947 	    pmap_pat_index(kernel_pmap, range->attrs, true) ==
11948 	    pmap_pat_index(kernel_pmap, attrs, true))
11949 		return (true);
11950 	return (false);
11951 }
11952 
11953 static void
sysctl_kmaps_reinit(struct pmap_kernel_map_range * range,vm_offset_t va,pt_entry_t attrs)11954 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
11955     pt_entry_t attrs)
11956 {
11957 
11958 	memset(range, 0, sizeof(*range));
11959 	range->sva = va;
11960 	range->attrs = attrs;
11961 }
11962 
11963 /*
11964  * Given a leaf PTE, derive the mapping's attributes.  If they do not match
11965  * those of the current run, dump the address range and its attributes, and
11966  * begin a new run.
11967  */
11968 static void
sysctl_kmaps_check(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t va,pml4_entry_t pml4e,pdp_entry_t pdpe,pd_entry_t pde,pt_entry_t pte)11969 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
11970     vm_offset_t va, pml4_entry_t pml4e, pdp_entry_t pdpe, pd_entry_t pde,
11971     pt_entry_t pte)
11972 {
11973 	pt_entry_t attrs;
11974 
11975 	attrs = pml4e & (X86_PG_RW | X86_PG_U | pg_nx);
11976 
11977 	attrs |= pdpe & pg_nx;
11978 	attrs &= pg_nx | (pdpe & (X86_PG_RW | X86_PG_U));
11979 	if ((pdpe & PG_PS) != 0) {
11980 		attrs |= pdpe & (X86_PG_G | X86_PG_PDE_CACHE);
11981 	} else if (pde != 0) {
11982 		attrs |= pde & pg_nx;
11983 		attrs &= pg_nx | (pde & (X86_PG_RW | X86_PG_U));
11984 	}
11985 	if ((pde & PG_PS) != 0) {
11986 		attrs |= pde & (X86_PG_G | X86_PG_PDE_CACHE);
11987 	} else if (pte != 0) {
11988 		attrs |= pte & pg_nx;
11989 		attrs &= pg_nx | (pte & (X86_PG_RW | X86_PG_U));
11990 		attrs |= pte & (X86_PG_G | X86_PG_PTE_CACHE);
11991 
11992 		/* Canonicalize by always using the PDE PAT bit. */
11993 		if ((attrs & X86_PG_PTE_PAT) != 0)
11994 			attrs ^= X86_PG_PDE_PAT | X86_PG_PTE_PAT;
11995 	}
11996 
11997 	if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
11998 		sysctl_kmaps_dump(sb, range, va);
11999 		sysctl_kmaps_reinit(range, va, attrs);
12000 	}
12001 }
12002 
12003 static int
sysctl_kmaps(SYSCTL_HANDLER_ARGS)12004 sysctl_kmaps(SYSCTL_HANDLER_ARGS)
12005 {
12006 	struct pmap_kernel_map_range range;
12007 	struct sbuf sbuf, *sb;
12008 	pml4_entry_t pml4e;
12009 	pdp_entry_t *pdp, pdpe;
12010 	pd_entry_t *pd, pde;
12011 	pt_entry_t *pt, pte;
12012 	vm_offset_t sva;
12013 	vm_paddr_t pa;
12014 	int error, i, j, k, l;
12015 
12016 	error = sysctl_wire_old_buffer(req, 0);
12017 	if (error != 0)
12018 		return (error);
12019 	sb = &sbuf;
12020 	sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
12021 
12022 	/* Sentinel value. */
12023 	range.sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
12024 	    NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
12025 	    NPDEPG - 1, NPTEPG - 1);
12026 
12027 	/*
12028 	 * Iterate over the kernel page tables without holding the kernel pmap
12029 	 * lock.  Outside of the large map, kernel page table pages are never
12030 	 * freed, so at worst we will observe inconsistencies in the output.
12031 	 * Within the large map, ensure that PDP and PD page addresses are
12032 	 * valid before descending.
12033 	 */
12034 	for (sva = 0, i = pmap_pml4e_index(sva); i < NPML4EPG; i++) {
12035 		switch (i) {
12036 		case PML4PML4I:
12037 			sbuf_printf(sb, "\nRecursive map:\n");
12038 			break;
12039 		case DMPML4I:
12040 			sbuf_printf(sb, "\nDirect map:\n");
12041 			break;
12042 #ifdef KASAN
12043 		case KASANPML4I:
12044 			sbuf_printf(sb, "\nKASAN shadow map:\n");
12045 			break;
12046 #endif
12047 #ifdef KMSAN
12048 		case KMSANSHADPML4I:
12049 			sbuf_printf(sb, "\nKMSAN shadow map:\n");
12050 			break;
12051 		case KMSANORIGPML4I:
12052 			sbuf_printf(sb, "\nKMSAN origin map:\n");
12053 			break;
12054 #endif
12055 		case KPML4BASE:
12056 			sbuf_printf(sb, "\nKernel map:\n");
12057 			break;
12058 		case LMSPML4I:
12059 			sbuf_printf(sb, "\nLarge map:\n");
12060 			break;
12061 		}
12062 
12063 		/* Convert to canonical form. */
12064 		if (sva == 1ul << 47)
12065 			sva |= -1ul << 48;
12066 
12067 restart:
12068 		pml4e = kernel_pml4[i];
12069 		if ((pml4e & X86_PG_V) == 0) {
12070 			sva = rounddown2(sva, NBPML4);
12071 			sysctl_kmaps_dump(sb, &range, sva);
12072 			sva += NBPML4;
12073 			continue;
12074 		}
12075 		pa = pml4e & PG_FRAME;
12076 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(pa);
12077 
12078 		for (j = pmap_pdpe_index(sva); j < NPDPEPG; j++) {
12079 			pdpe = pdp[j];
12080 			if ((pdpe & X86_PG_V) == 0) {
12081 				sva = rounddown2(sva, NBPDP);
12082 				sysctl_kmaps_dump(sb, &range, sva);
12083 				sva += NBPDP;
12084 				continue;
12085 			}
12086 			pa = pdpe & PG_FRAME;
12087 			if ((pdpe & PG_PS) != 0) {
12088 				sva = rounddown2(sva, NBPDP);
12089 				sysctl_kmaps_check(sb, &range, sva, pml4e, pdpe,
12090 				    0, 0);
12091 				range.pdpes++;
12092 				sva += NBPDP;
12093 				continue;
12094 			}
12095 			if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
12096 			    vm_phys_paddr_to_vm_page(pa) == NULL) {
12097 				/*
12098 				 * Page table pages for the large map may be
12099 				 * freed.  Validate the next-level address
12100 				 * before descending.
12101 				 */
12102 				goto restart;
12103 			}
12104 			pd = (pd_entry_t *)PHYS_TO_DMAP(pa);
12105 
12106 			for (k = pmap_pde_index(sva); k < NPDEPG; k++) {
12107 				pde = pd[k];
12108 				if ((pde & X86_PG_V) == 0) {
12109 					sva = rounddown2(sva, NBPDR);
12110 					sysctl_kmaps_dump(sb, &range, sva);
12111 					sva += NBPDR;
12112 					continue;
12113 				}
12114 				pa = pde & PG_FRAME;
12115 				if ((pde & PG_PS) != 0) {
12116 					sva = rounddown2(sva, NBPDR);
12117 					sysctl_kmaps_check(sb, &range, sva,
12118 					    pml4e, pdpe, pde, 0);
12119 					range.pdes++;
12120 					sva += NBPDR;
12121 					continue;
12122 				}
12123 				if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
12124 				    vm_phys_paddr_to_vm_page(pa) == NULL) {
12125 					/*
12126 					 * Page table pages for the large map
12127 					 * may be freed.  Validate the
12128 					 * next-level address before descending.
12129 					 */
12130 					goto restart;
12131 				}
12132 				pt = (pt_entry_t *)PHYS_TO_DMAP(pa);
12133 
12134 				for (l = pmap_pte_index(sva); l < NPTEPG; l++,
12135 				    sva += PAGE_SIZE) {
12136 					pte = pt[l];
12137 					if ((pte & X86_PG_V) == 0) {
12138 						sysctl_kmaps_dump(sb, &range,
12139 						    sva);
12140 						continue;
12141 					}
12142 					sysctl_kmaps_check(sb, &range, sva,
12143 					    pml4e, pdpe, pde, pte);
12144 					range.ptes++;
12145 				}
12146 			}
12147 		}
12148 	}
12149 
12150 	error = sbuf_finish(sb);
12151 	sbuf_delete(sb);
12152 	return (error);
12153 }
12154 SYSCTL_OID(_vm_pmap, OID_AUTO, kernel_maps,
12155     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
12156     NULL, 0, sysctl_kmaps, "A",
12157     "Dump kernel address layout");
12158 
12159 #ifdef DDB
DB_SHOW_COMMAND(pte,pmap_print_pte)12160 DB_SHOW_COMMAND(pte, pmap_print_pte)
12161 {
12162 	pmap_t pmap;
12163 	pml5_entry_t *pml5;
12164 	pml4_entry_t *pml4;
12165 	pdp_entry_t *pdp;
12166 	pd_entry_t *pde;
12167 	pt_entry_t *pte, PG_V;
12168 	vm_offset_t va;
12169 
12170 	if (!have_addr) {
12171 		db_printf("show pte addr\n");
12172 		return;
12173 	}
12174 	va = (vm_offset_t)addr;
12175 
12176 	if (kdb_thread != NULL)
12177 		pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
12178 	else
12179 		pmap = PCPU_GET(curpmap);
12180 
12181 	PG_V = pmap_valid_bit(pmap);
12182 	db_printf("VA 0x%016lx", va);
12183 
12184 	if (pmap_is_la57(pmap)) {
12185 		pml5 = pmap_pml5e(pmap, va);
12186 		db_printf(" pml5e 0x%016lx", *pml5);
12187 		if ((*pml5 & PG_V) == 0) {
12188 			db_printf("\n");
12189 			return;
12190 		}
12191 		pml4 = pmap_pml5e_to_pml4e(pml5, va);
12192 	} else {
12193 		pml4 = pmap_pml4e(pmap, va);
12194 	}
12195 	db_printf(" pml4e 0x%016lx", *pml4);
12196 	if ((*pml4 & PG_V) == 0) {
12197 		db_printf("\n");
12198 		return;
12199 	}
12200 	pdp = pmap_pml4e_to_pdpe(pml4, va);
12201 	db_printf(" pdpe 0x%016lx", *pdp);
12202 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0) {
12203 		db_printf("\n");
12204 		return;
12205 	}
12206 	pde = pmap_pdpe_to_pde(pdp, va);
12207 	db_printf(" pde 0x%016lx", *pde);
12208 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0) {
12209 		db_printf("\n");
12210 		return;
12211 	}
12212 	pte = pmap_pde_to_pte(pde, va);
12213 	db_printf(" pte 0x%016lx\n", *pte);
12214 }
12215 
DB_SHOW_COMMAND(phys2dmap,pmap_phys2dmap)12216 DB_SHOW_COMMAND(phys2dmap, pmap_phys2dmap)
12217 {
12218 	vm_paddr_t a;
12219 
12220 	if (have_addr) {
12221 		a = (vm_paddr_t)addr;
12222 		db_printf("0x%jx\n", (uintmax_t)PHYS_TO_DMAP(a));
12223 	} else {
12224 		db_printf("show phys2dmap addr\n");
12225 	}
12226 }
12227 
12228 static void
ptpages_show_page(int level,int idx,vm_page_t pg)12229 ptpages_show_page(int level, int idx, vm_page_t pg)
12230 {
12231 	db_printf("l %d i %d pg %p phys %#lx ref %x\n",
12232 	    level, idx, pg, VM_PAGE_TO_PHYS(pg), pg->ref_count);
12233 }
12234 
12235 static void
ptpages_show_complain(int level,int idx,uint64_t pte)12236 ptpages_show_complain(int level, int idx, uint64_t pte)
12237 {
12238 	db_printf("l %d i %d pte %#lx\n", level, idx, pte);
12239 }
12240 
12241 static void
ptpages_show_pml4(vm_page_t pg4,int num_entries,uint64_t PG_V)12242 ptpages_show_pml4(vm_page_t pg4, int num_entries, uint64_t PG_V)
12243 {
12244 	vm_page_t pg3, pg2, pg1;
12245 	pml4_entry_t *pml4;
12246 	pdp_entry_t *pdp;
12247 	pd_entry_t *pd;
12248 	int i4, i3, i2;
12249 
12250 	pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg4));
12251 	for (i4 = 0; i4 < num_entries; i4++) {
12252 		if ((pml4[i4] & PG_V) == 0)
12253 			continue;
12254 		pg3 = PHYS_TO_VM_PAGE(pml4[i4] & PG_FRAME);
12255 		if (pg3 == NULL) {
12256 			ptpages_show_complain(3, i4, pml4[i4]);
12257 			continue;
12258 		}
12259 		ptpages_show_page(3, i4, pg3);
12260 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg3));
12261 		for (i3 = 0; i3 < NPDPEPG; i3++) {
12262 			if ((pdp[i3] & PG_V) == 0)
12263 				continue;
12264 			pg2 = PHYS_TO_VM_PAGE(pdp[i3] & PG_FRAME);
12265 			if (pg3 == NULL) {
12266 				ptpages_show_complain(2, i3, pdp[i3]);
12267 				continue;
12268 			}
12269 			ptpages_show_page(2, i3, pg2);
12270 			pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg2));
12271 			for (i2 = 0; i2 < NPDEPG; i2++) {
12272 				if ((pd[i2] & PG_V) == 0)
12273 					continue;
12274 				pg1 = PHYS_TO_VM_PAGE(pd[i2] & PG_FRAME);
12275 				if (pg1 == NULL) {
12276 					ptpages_show_complain(1, i2, pd[i2]);
12277 					continue;
12278 				}
12279 				ptpages_show_page(1, i2, pg1);
12280 			}
12281 		}
12282 	}
12283 }
12284 
DB_SHOW_COMMAND(ptpages,pmap_ptpages)12285 DB_SHOW_COMMAND(ptpages, pmap_ptpages)
12286 {
12287 	pmap_t pmap;
12288 	vm_page_t pg;
12289 	pml5_entry_t *pml5;
12290 	uint64_t PG_V;
12291 	int i5;
12292 
12293 	if (have_addr)
12294 		pmap = (pmap_t)addr;
12295 	else
12296 		pmap = PCPU_GET(curpmap);
12297 
12298 	PG_V = pmap_valid_bit(pmap);
12299 
12300 	if (pmap_is_la57(pmap)) {
12301 		pml5 = pmap->pm_pmltop;
12302 		for (i5 = 0; i5 < NUPML5E; i5++) {
12303 			if ((pml5[i5] & PG_V) == 0)
12304 				continue;
12305 			pg = PHYS_TO_VM_PAGE(pml5[i5] & PG_FRAME);
12306 			if (pg == NULL) {
12307 				ptpages_show_complain(4, i5, pml5[i5]);
12308 				continue;
12309 			}
12310 			ptpages_show_page(4, i5, pg);
12311 			ptpages_show_pml4(pg, NPML4EPG, PG_V);
12312 		}
12313 	} else {
12314 		ptpages_show_pml4(PHYS_TO_VM_PAGE(DMAP_TO_PHYS(
12315 		    (vm_offset_t)pmap->pm_pmltop)), NUP4ML4E, PG_V);
12316 	}
12317 }
12318 #endif
12319