1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2011 NetApp, Inc.
5 * All rights reserved.
6 * Copyright (c) 2018 Joyent, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29 /*
30 * This file and its contents are supplied under the terms of the
31 * Common Development and Distribution License ("CDDL"), version 1.0.
32 * You may only use this file in accordance with the terms of version
33 * 1.0 of the CDDL.
34 *
35 * A full copy of the text of the CDDL should have accompanied this
36 * source. A copy of the CDDL is also available via the Internet at
37 * http://www.illumos.org/license/CDDL.
38 */
39 /* This file is dual-licensed; see usr/src/contrib/bhyve/LICENSE */
40
41 /*
42 * Copyright 2015 Pluribus Networks Inc.
43 * Copyright 2018 Joyent, Inc.
44 * Copyright 2022 Oxide Computer Company
45 * Copyright 2022 MNX Cloud, Inc.
46 */
47
48 #include <sys/cdefs.h>
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/kernel.h>
53 #include <sys/kmem.h>
54 #include <sys/pcpu.h>
55 #include <sys/proc.h>
56 #include <sys/sysctl.h>
57
58 #include <sys/x86_archext.h>
59 #include <sys/smp_impldefs.h>
60 #include <sys/smt.h>
61 #include <sys/hma.h>
62 #include <sys/trap.h>
63 #include <sys/archsystm.h>
64
65 #include <machine/psl.h>
66 #include <machine/cpufunc.h>
67 #include <machine/md_var.h>
68 #include <machine/reg.h>
69 #include <machine/segments.h>
70 #include <machine/specialreg.h>
71 #include <machine/vmparam.h>
72 #include <sys/vmm_vm.h>
73 #include <sys/vmm_kernel.h>
74
75 #include <machine/vmm.h>
76 #include <machine/vmm_dev.h>
77 #include <sys/vmm_instruction_emul.h>
78 #include "vmm_lapic.h"
79 #include "vmm_host.h"
80 #include "vmm_ioport.h"
81 #include "vmm_stat.h"
82 #include "vatpic.h"
83 #include "vlapic.h"
84 #include "vlapic_priv.h"
85
86 #include "vmcs.h"
87 #include "vmx.h"
88 #include "vmx_msr.h"
89 #include "vmx_controls.h"
90
91 #define PINBASED_CTLS_ONE_SETTING \
92 (PINBASED_EXTINT_EXITING | \
93 PINBASED_NMI_EXITING | \
94 PINBASED_VIRTUAL_NMI)
95 #define PINBASED_CTLS_ZERO_SETTING 0
96
97 #define PROCBASED_CTLS_WINDOW_SETTING \
98 (PROCBASED_INT_WINDOW_EXITING | \
99 PROCBASED_NMI_WINDOW_EXITING)
100
101 /*
102 * Distinct from FreeBSD bhyve, we consider several additional proc-based
103 * controls necessary:
104 * - TSC offsetting
105 * - HLT exiting
106 */
107 #define PROCBASED_CTLS_ONE_SETTING \
108 (PROCBASED_SECONDARY_CONTROLS | \
109 PROCBASED_TSC_OFFSET | \
110 PROCBASED_HLT_EXITING | \
111 PROCBASED_MWAIT_EXITING | \
112 PROCBASED_MONITOR_EXITING | \
113 PROCBASED_IO_EXITING | \
114 PROCBASED_MSR_BITMAPS | \
115 PROCBASED_CTLS_WINDOW_SETTING | \
116 PROCBASED_CR8_LOAD_EXITING | \
117 PROCBASED_CR8_STORE_EXITING)
118
119 #define PROCBASED_CTLS_ZERO_SETTING \
120 (PROCBASED_CR3_LOAD_EXITING | \
121 PROCBASED_CR3_STORE_EXITING | \
122 PROCBASED_IO_BITMAPS)
123
124 /*
125 * EPT and Unrestricted Guest are considered necessities. The latter is not a
126 * requirement on FreeBSD, where grub2-bhyve is used to load guests directly
127 * without a bootrom starting in real mode.
128 */
129 #define PROCBASED_CTLS2_ONE_SETTING \
130 (PROCBASED2_ENABLE_EPT | \
131 PROCBASED2_UNRESTRICTED_GUEST)
132 #define PROCBASED_CTLS2_ZERO_SETTING 0
133
134 #define VM_EXIT_CTLS_ONE_SETTING \
135 (VM_EXIT_SAVE_DEBUG_CONTROLS | \
136 VM_EXIT_HOST_LMA | \
137 VM_EXIT_LOAD_PAT | \
138 VM_EXIT_SAVE_EFER | \
139 VM_EXIT_LOAD_EFER | \
140 VM_EXIT_ACKNOWLEDGE_INTERRUPT)
141
142 #define VM_EXIT_CTLS_ZERO_SETTING 0
143
144 #define VM_ENTRY_CTLS_ONE_SETTING \
145 (VM_ENTRY_LOAD_DEBUG_CONTROLS | \
146 VM_ENTRY_LOAD_EFER)
147
148 #define VM_ENTRY_CTLS_ZERO_SETTING \
149 (VM_ENTRY_INTO_SMM | \
150 VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
151
152 /*
153 * Cover the EPT capabilities used by bhyve at present:
154 * - 4-level page walks
155 * - write-back memory type
156 * - INVEPT operations (all types)
157 * - INVVPID operations (single-context only)
158 */
159 #define EPT_CAPS_REQUIRED \
160 (IA32_VMX_EPT_VPID_PWL4 | \
161 IA32_VMX_EPT_VPID_TYPE_WB | \
162 IA32_VMX_EPT_VPID_INVEPT | \
163 IA32_VMX_EPT_VPID_INVEPT_SINGLE | \
164 IA32_VMX_EPT_VPID_INVEPT_ALL | \
165 IA32_VMX_EPT_VPID_INVVPID | \
166 IA32_VMX_EPT_VPID_INVVPID_SINGLE)
167
168 #define HANDLED 1
169 #define UNHANDLED 0
170
171 SYSCTL_DECL(_hw_vmm);
172 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
173 NULL);
174
175 /*
176 * TSC scaling related constants
177 */
178 #define INTEL_TSCM_INT_SIZE 16
179 #define INTEL_TSCM_FRAC_SIZE 48
180
181 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
182 static uint32_t exit_ctls, entry_ctls;
183
184 static uint64_t cr0_ones_mask, cr0_zeros_mask;
185
186 static uint64_t cr4_ones_mask, cr4_zeros_mask;
187
188 /*
189 * Optional capabilities
190 */
191
192 /* PAUSE triggers a VM-exit */
193 static int cap_pause_exit;
194
195 /* WBINVD triggers a VM-exit */
196 static int cap_wbinvd_exit;
197
198 /* Monitor trap flag */
199 static int cap_monitor_trap;
200
201 /* Guests are allowed to use INVPCID */
202 static int cap_invpcid;
203
204 /* Extra capabilities (VMX_CAP_*) beyond the minimum */
205 static enum vmx_caps vmx_capabilities;
206
207 /* APICv posted interrupt vector */
208 static int pirvec = -1;
209
210 static uint_t vpid_alloc_failed;
211
212 int guest_l1d_flush;
213 int guest_l1d_flush_sw;
214
215 /* MSR save region is composed of an array of 'struct msr_entry' */
216 struct msr_entry {
217 uint32_t index;
218 uint32_t reserved;
219 uint64_t val;
220 };
221
222 static struct msr_entry msr_load_list[1] __aligned(16);
223
224 /*
225 * The definitions of SDT probes for VMX.
226 */
227
228 /* BEGIN CSTYLED */
229 SDT_PROBE_DEFINE3(vmm, vmx, exit, entry,
230 "struct vmx *", "int", "struct vm_exit *");
231
232 SDT_PROBE_DEFINE4(vmm, vmx, exit, taskswitch,
233 "struct vmx *", "int", "struct vm_exit *", "struct vm_task_switch *");
234
235 SDT_PROBE_DEFINE4(vmm, vmx, exit, craccess,
236 "struct vmx *", "int", "struct vm_exit *", "uint64_t");
237
238 SDT_PROBE_DEFINE4(vmm, vmx, exit, rdmsr,
239 "struct vmx *", "int", "struct vm_exit *", "uint32_t");
240
241 SDT_PROBE_DEFINE5(vmm, vmx, exit, wrmsr,
242 "struct vmx *", "int", "struct vm_exit *", "uint32_t", "uint64_t");
243
244 SDT_PROBE_DEFINE3(vmm, vmx, exit, halt,
245 "struct vmx *", "int", "struct vm_exit *");
246
247 SDT_PROBE_DEFINE3(vmm, vmx, exit, mtrap,
248 "struct vmx *", "int", "struct vm_exit *");
249
250 SDT_PROBE_DEFINE3(vmm, vmx, exit, pause,
251 "struct vmx *", "int", "struct vm_exit *");
252
253 SDT_PROBE_DEFINE3(vmm, vmx, exit, intrwindow,
254 "struct vmx *", "int", "struct vm_exit *");
255
256 SDT_PROBE_DEFINE4(vmm, vmx, exit, interrupt,
257 "struct vmx *", "int", "struct vm_exit *", "uint32_t");
258
259 SDT_PROBE_DEFINE3(vmm, vmx, exit, nmiwindow,
260 "struct vmx *", "int", "struct vm_exit *");
261
262 SDT_PROBE_DEFINE3(vmm, vmx, exit, inout,
263 "struct vmx *", "int", "struct vm_exit *");
264
265 SDT_PROBE_DEFINE3(vmm, vmx, exit, cpuid,
266 "struct vmx *", "int", "struct vm_exit *");
267
268 SDT_PROBE_DEFINE5(vmm, vmx, exit, exception,
269 "struct vmx *", "int", "struct vm_exit *", "uint32_t", "int");
270
271 SDT_PROBE_DEFINE5(vmm, vmx, exit, nestedfault,
272 "struct vmx *", "int", "struct vm_exit *", "uint64_t", "uint64_t");
273
274 SDT_PROBE_DEFINE4(vmm, vmx, exit, mmiofault,
275 "struct vmx *", "int", "struct vm_exit *", "uint64_t");
276
277 SDT_PROBE_DEFINE3(vmm, vmx, exit, eoi,
278 "struct vmx *", "int", "struct vm_exit *");
279
280 SDT_PROBE_DEFINE3(vmm, vmx, exit, apicaccess,
281 "struct vmx *", "int", "struct vm_exit *");
282
283 SDT_PROBE_DEFINE4(vmm, vmx, exit, apicwrite,
284 "struct vmx *", "int", "struct vm_exit *", "struct vlapic *");
285
286 SDT_PROBE_DEFINE3(vmm, vmx, exit, xsetbv,
287 "struct vmx *", "int", "struct vm_exit *");
288
289 SDT_PROBE_DEFINE3(vmm, vmx, exit, monitor,
290 "struct vmx *", "int", "struct vm_exit *");
291
292 SDT_PROBE_DEFINE3(vmm, vmx, exit, mwait,
293 "struct vmx *", "int", "struct vm_exit *");
294
295 SDT_PROBE_DEFINE3(vmm, vmx, exit, vminsn,
296 "struct vmx *", "int", "struct vm_exit *");
297
298 SDT_PROBE_DEFINE4(vmm, vmx, exit, unknown,
299 "struct vmx *", "int", "struct vm_exit *", "uint32_t");
300
301 SDT_PROBE_DEFINE4(vmm, vmx, exit, return,
302 "struct vmx *", "int", "struct vm_exit *", "int");
303 /* END CSTYLED */
304
305 static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc);
306 static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval);
307 static void vmx_apply_tsc_adjust(struct vmx *, int);
308 static void vmx_apicv_sync_tmr(struct vlapic *vlapic);
309 static void vmx_tpr_shadow_enter(struct vlapic *vlapic);
310 static void vmx_tpr_shadow_exit(struct vlapic *vlapic);
311
312 static void
vmx_allow_x2apic_msrs(struct vmx * vmx,int vcpuid)313 vmx_allow_x2apic_msrs(struct vmx *vmx, int vcpuid)
314 {
315 /*
316 * Allow readonly access to the following x2APIC MSRs from the guest.
317 */
318 guest_msr_ro(vmx, vcpuid, MSR_APIC_ID);
319 guest_msr_ro(vmx, vcpuid, MSR_APIC_VERSION);
320 guest_msr_ro(vmx, vcpuid, MSR_APIC_LDR);
321 guest_msr_ro(vmx, vcpuid, MSR_APIC_SVR);
322
323 for (uint_t i = 0; i < 8; i++) {
324 guest_msr_ro(vmx, vcpuid, MSR_APIC_ISR0 + i);
325 guest_msr_ro(vmx, vcpuid, MSR_APIC_TMR0 + i);
326 guest_msr_ro(vmx, vcpuid, MSR_APIC_IRR0 + i);
327 }
328
329 guest_msr_ro(vmx, vcpuid, MSR_APIC_ESR);
330 guest_msr_ro(vmx, vcpuid, MSR_APIC_LVT_TIMER);
331 guest_msr_ro(vmx, vcpuid, MSR_APIC_LVT_THERMAL);
332 guest_msr_ro(vmx, vcpuid, MSR_APIC_LVT_PCINT);
333 guest_msr_ro(vmx, vcpuid, MSR_APIC_LVT_LINT0);
334 guest_msr_ro(vmx, vcpuid, MSR_APIC_LVT_LINT1);
335 guest_msr_ro(vmx, vcpuid, MSR_APIC_LVT_ERROR);
336 guest_msr_ro(vmx, vcpuid, MSR_APIC_ICR_TIMER);
337 guest_msr_ro(vmx, vcpuid, MSR_APIC_DCR_TIMER);
338 guest_msr_ro(vmx, vcpuid, MSR_APIC_ICR);
339
340 /*
341 * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest.
342 *
343 * These registers get special treatment described in the section
344 * "Virtualizing MSR-Based APIC Accesses".
345 */
346 guest_msr_rw(vmx, vcpuid, MSR_APIC_TPR);
347 guest_msr_rw(vmx, vcpuid, MSR_APIC_EOI);
348 guest_msr_rw(vmx, vcpuid, MSR_APIC_SELF_IPI);
349 }
350
351 static ulong_t
vmx_fix_cr0(ulong_t cr0)352 vmx_fix_cr0(ulong_t cr0)
353 {
354 return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
355 }
356
357 /*
358 * Given a live (VMCS-active) cr0 value, and its shadow counterpart, calculate
359 * the value observable from the guest.
360 */
361 static ulong_t
vmx_unshadow_cr0(uint64_t cr0,uint64_t shadow)362 vmx_unshadow_cr0(uint64_t cr0, uint64_t shadow)
363 {
364 return ((cr0 & ~cr0_ones_mask) |
365 (shadow & (cr0_zeros_mask | cr0_ones_mask)));
366 }
367
368 static ulong_t
vmx_fix_cr4(ulong_t cr4)369 vmx_fix_cr4(ulong_t cr4)
370 {
371 return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
372 }
373
374 /*
375 * Given a live (VMCS-active) cr4 value, and its shadow counterpart, calculate
376 * the value observable from the guest.
377 */
378 static ulong_t
vmx_unshadow_cr4(uint64_t cr4,uint64_t shadow)379 vmx_unshadow_cr4(uint64_t cr4, uint64_t shadow)
380 {
381 return ((cr4 & ~cr4_ones_mask) |
382 (shadow & (cr4_zeros_mask | cr4_ones_mask)));
383 }
384
385 static void
vpid_free(int vpid)386 vpid_free(int vpid)
387 {
388 if (vpid < 0 || vpid > 0xffff)
389 panic("vpid_free: invalid vpid %d", vpid);
390
391 /*
392 * VPIDs [0,VM_MAXCPU] are special and are not allocated from
393 * the unit number allocator.
394 */
395
396 if (vpid > VM_MAXCPU)
397 hma_vmx_vpid_free((uint16_t)vpid);
398 }
399
400 static void
vpid_alloc(uint16_t * vpid,int num)401 vpid_alloc(uint16_t *vpid, int num)
402 {
403 int i, x;
404
405 if (num <= 0 || num > VM_MAXCPU)
406 panic("invalid number of vpids requested: %d", num);
407
408 /*
409 * If the "enable vpid" execution control is not enabled then the
410 * VPID is required to be 0 for all vcpus.
411 */
412 if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) {
413 for (i = 0; i < num; i++)
414 vpid[i] = 0;
415 return;
416 }
417
418 /*
419 * Allocate a unique VPID for each vcpu from the unit number allocator.
420 */
421 for (i = 0; i < num; i++) {
422 uint16_t tmp;
423
424 tmp = hma_vmx_vpid_alloc();
425 x = (tmp == 0) ? -1 : tmp;
426
427 if (x == -1)
428 break;
429 else
430 vpid[i] = x;
431 }
432
433 if (i < num) {
434 atomic_add_int(&vpid_alloc_failed, 1);
435
436 /*
437 * If the unit number allocator does not have enough unique
438 * VPIDs then we need to allocate from the [1,VM_MAXCPU] range.
439 *
440 * These VPIDs are not be unique across VMs but this does not
441 * affect correctness because the combined mappings are also
442 * tagged with the EP4TA which is unique for each VM.
443 *
444 * It is still sub-optimal because the invvpid will invalidate
445 * combined mappings for a particular VPID across all EP4TAs.
446 */
447 while (i-- > 0)
448 vpid_free(vpid[i]);
449
450 for (i = 0; i < num; i++)
451 vpid[i] = i + 1;
452 }
453 }
454
455 static void
vmx_restore(void)456 vmx_restore(void)
457 {
458 /* No-op on illumos */
459 }
460
461 static int
vmx_init(void)462 vmx_init(void)
463 {
464 int error;
465 uint64_t fixed0, fixed1;
466 uint32_t tmp;
467 enum vmx_caps avail_caps = VMX_CAP_NONE;
468
469 /* Check support for primary processor-based VM-execution controls */
470 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
471 MSR_VMX_TRUE_PROCBASED_CTLS,
472 PROCBASED_CTLS_ONE_SETTING,
473 PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
474 if (error) {
475 printf("vmx_init: processor does not support desired primary "
476 "processor-based controls\n");
477 return (error);
478 }
479
480 /*
481 * Clear interrupt-window/NMI-window exiting from the default proc-based
482 * controls. They are set and cleared based on runtime vCPU events.
483 */
484 procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
485
486 /* Check support for secondary processor-based VM-execution controls */
487 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
488 MSR_VMX_PROCBASED_CTLS2,
489 PROCBASED_CTLS2_ONE_SETTING,
490 PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
491 if (error) {
492 printf("vmx_init: processor does not support desired secondary "
493 "processor-based controls\n");
494 return (error);
495 }
496
497 /* Check support for VPID */
498 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
499 MSR_VMX_PROCBASED_CTLS2,
500 PROCBASED2_ENABLE_VPID,
501 0, &tmp);
502 if (error == 0)
503 procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
504
505 /* Check support for pin-based VM-execution controls */
506 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
507 MSR_VMX_TRUE_PINBASED_CTLS,
508 PINBASED_CTLS_ONE_SETTING,
509 PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
510 if (error) {
511 printf("vmx_init: processor does not support desired "
512 "pin-based controls\n");
513 return (error);
514 }
515
516 /* Check support for VM-exit controls */
517 error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
518 VM_EXIT_CTLS_ONE_SETTING,
519 VM_EXIT_CTLS_ZERO_SETTING,
520 &exit_ctls);
521 if (error) {
522 printf("vmx_init: processor does not support desired "
523 "exit controls\n");
524 return (error);
525 }
526
527 /* Check support for VM-entry controls */
528 error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
529 VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING,
530 &entry_ctls);
531 if (error) {
532 printf("vmx_init: processor does not support desired "
533 "entry controls\n");
534 return (error);
535 }
536
537 /*
538 * Check support for optional features by testing them
539 * as individual bits
540 */
541 cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
542 MSR_VMX_PROCBASED_CTLS,
543 PROCBASED_MTF, 0,
544 &tmp) == 0);
545
546 cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
547 MSR_VMX_TRUE_PROCBASED_CTLS,
548 PROCBASED_PAUSE_EXITING, 0,
549 &tmp) == 0);
550
551 cap_wbinvd_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
552 MSR_VMX_PROCBASED_CTLS2,
553 PROCBASED2_WBINVD_EXITING, 0,
554 &tmp) == 0);
555
556 cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
557 MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
558 &tmp) == 0);
559
560 /*
561 * Check for APIC virtualization capabilities:
562 * - TPR shadowing
563 * - Full APICv (with or without x2APIC support)
564 * - Posted interrupt handling
565 */
566 if (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, MSR_VMX_TRUE_PROCBASED_CTLS,
567 PROCBASED_USE_TPR_SHADOW, 0, &tmp) == 0) {
568 avail_caps |= VMX_CAP_TPR_SHADOW;
569
570 const uint32_t apicv_bits =
571 PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
572 PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
573 PROCBASED2_VIRTUALIZE_X2APIC_MODE |
574 PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY;
575 if (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
576 MSR_VMX_PROCBASED_CTLS2, apicv_bits, 0, &tmp) == 0) {
577 avail_caps |= VMX_CAP_APICV;
578
579 /*
580 * It may make sense in the future to differentiate
581 * hardware (or software) configurations with APICv but
582 * no support for accelerating x2APIC mode.
583 */
584 avail_caps |= VMX_CAP_APICV_X2APIC;
585
586 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
587 MSR_VMX_TRUE_PINBASED_CTLS,
588 PINBASED_POSTED_INTERRUPT, 0, &tmp);
589 if (error == 0) {
590 /*
591 * If the PSM-provided interfaces for requesting
592 * and using a PIR IPI vector are present, use
593 * them for posted interrupts.
594 */
595 if (psm_get_pir_ipivect != NULL &&
596 psm_send_pir_ipi != NULL) {
597 pirvec = psm_get_pir_ipivect();
598 avail_caps |= VMX_CAP_APICV_PIR;
599 }
600 }
601 }
602 }
603
604 /*
605 * Check for necessary EPT capabilities
606 *
607 * TODO: Properly handle when IA32_VMX_EPT_VPID_HW_AD is missing and the
608 * hypervisor intends to utilize dirty page tracking.
609 */
610 uint64_t ept_caps = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
611 if ((ept_caps & EPT_CAPS_REQUIRED) != EPT_CAPS_REQUIRED) {
612 cmn_err(CE_WARN, "!Inadequate EPT capabilities: %lx", ept_caps);
613 return (EINVAL);
614 }
615
616 #ifdef __FreeBSD__
617 guest_l1d_flush = (cpu_ia32_arch_caps &
618 IA32_ARCH_CAP_SKIP_L1DFL_VMENTRY) == 0;
619 TUNABLE_INT_FETCH("hw.vmm.l1d_flush", &guest_l1d_flush);
620
621 /*
622 * L1D cache flush is enabled. Use IA32_FLUSH_CMD MSR when
623 * available. Otherwise fall back to the software flush
624 * method which loads enough data from the kernel text to
625 * flush existing L1D content, both on VMX entry and on NMI
626 * return.
627 */
628 if (guest_l1d_flush) {
629 if ((cpu_stdext_feature3 & CPUID_STDEXT3_L1D_FLUSH) == 0) {
630 guest_l1d_flush_sw = 1;
631 TUNABLE_INT_FETCH("hw.vmm.l1d_flush_sw",
632 &guest_l1d_flush_sw);
633 }
634 if (guest_l1d_flush_sw) {
635 if (nmi_flush_l1d_sw <= 1)
636 nmi_flush_l1d_sw = 1;
637 } else {
638 msr_load_list[0].index = MSR_IA32_FLUSH_CMD;
639 msr_load_list[0].val = IA32_FLUSH_CMD_L1D;
640 }
641 }
642 #else
643 /* L1D flushing is taken care of by smt_acquire() and friends */
644 guest_l1d_flush = 0;
645 #endif /* __FreeBSD__ */
646
647 /*
648 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
649 */
650 fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
651 fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
652 cr0_ones_mask = fixed0 & fixed1;
653 cr0_zeros_mask = ~fixed0 & ~fixed1;
654
655 /*
656 * Since Unrestricted Guest was already verified present, CR0_PE and
657 * CR0_PG are allowed to be set to zero in VMX non-root operation
658 */
659 cr0_ones_mask &= ~(CR0_PG | CR0_PE);
660
661 /*
662 * Do not allow the guest to set CR0_NW or CR0_CD.
663 */
664 cr0_zeros_mask |= (CR0_NW | CR0_CD);
665
666 fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
667 fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
668 cr4_ones_mask = fixed0 & fixed1;
669 cr4_zeros_mask = ~fixed0 & ~fixed1;
670
671 vmx_msr_init();
672
673 vmx_capabilities = avail_caps;
674
675 return (0);
676 }
677
678 static void
vmx_trigger_hostintr(int vector)679 vmx_trigger_hostintr(int vector)
680 {
681 VERIFY(vector >= 32 && vector <= 255);
682 vmx_call_isr(vector - 32);
683 }
684
685 static void *
vmx_vminit(struct vm * vm)686 vmx_vminit(struct vm *vm)
687 {
688 uint16_t vpid[VM_MAXCPU];
689 int i, error, datasel;
690 struct vmx *vmx;
691 uint32_t exc_bitmap;
692 uint16_t maxcpus;
693 uint32_t proc_ctls, proc2_ctls, pin_ctls;
694 uint64_t apic_access_pa = UINT64_MAX;
695
696 vmx = kmem_zalloc(sizeof (struct vmx), KM_SLEEP);
697 VERIFY3U((uintptr_t)vmx & PAGE_MASK, ==, 0);
698
699 vmx->vm = vm;
700 vmx->eptp = vmspace_table_root(vm_get_vmspace(vm));
701
702 /*
703 * Clean up EP4TA-tagged guest-physical and combined mappings
704 *
705 * VMX transitions are not required to invalidate any guest physical
706 * mappings. So, it may be possible for stale guest physical mappings
707 * to be present in the processor TLBs.
708 *
709 * Combined mappings for this EP4TA are also invalidated for all VPIDs.
710 */
711 hma_vmx_invept_allcpus((uintptr_t)vmx->eptp);
712
713 vmx_msr_bitmap_initialize(vmx);
714
715 vpid_alloc(vpid, VM_MAXCPU);
716
717 /* Grab the established defaults */
718 proc_ctls = procbased_ctls;
719 proc2_ctls = procbased_ctls2;
720 pin_ctls = pinbased_ctls;
721 /* For now, default to the available capabilities */
722 vmx->vmx_caps = vmx_capabilities;
723
724 if (vmx_cap_en(vmx, VMX_CAP_TPR_SHADOW)) {
725 proc_ctls |= PROCBASED_USE_TPR_SHADOW;
726 proc_ctls &= ~PROCBASED_CR8_LOAD_EXITING;
727 proc_ctls &= ~PROCBASED_CR8_STORE_EXITING;
728 }
729 if (vmx_cap_en(vmx, VMX_CAP_APICV)) {
730 ASSERT(vmx_cap_en(vmx, VMX_CAP_TPR_SHADOW));
731
732 proc2_ctls |= (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
733 PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
734 PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
735
736 /*
737 * Allocate a page of memory to back the APIC access address for
738 * when APICv features are in use. Guest MMIO accesses should
739 * never actually reach this page, but rather be intercepted.
740 */
741 vmx->apic_access_page = kmem_zalloc(PAGESIZE, KM_SLEEP);
742 VERIFY3U((uintptr_t)vmx->apic_access_page & PAGEOFFSET, ==, 0);
743 apic_access_pa = vtophys(vmx->apic_access_page);
744
745 error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
746 apic_access_pa);
747 /* XXX this should really return an error to the caller */
748 KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
749 }
750 if (vmx_cap_en(vmx, VMX_CAP_APICV_PIR)) {
751 ASSERT(vmx_cap_en(vmx, VMX_CAP_APICV));
752
753 pin_ctls |= PINBASED_POSTED_INTERRUPT;
754 }
755
756 /* Reflect any enabled defaults in the cap set */
757 int cap_defaults = 0;
758 if ((proc_ctls & PROCBASED_HLT_EXITING) != 0) {
759 cap_defaults |= (1 << VM_CAP_HALT_EXIT);
760 }
761 if ((proc_ctls & PROCBASED_PAUSE_EXITING) != 0) {
762 cap_defaults |= (1 << VM_CAP_PAUSE_EXIT);
763 }
764 if ((proc_ctls & PROCBASED_MTF) != 0) {
765 cap_defaults |= (1 << VM_CAP_MTRAP_EXIT);
766 }
767 if ((proc2_ctls & PROCBASED2_ENABLE_INVPCID) != 0) {
768 cap_defaults |= (1 << VM_CAP_ENABLE_INVPCID);
769 }
770
771 maxcpus = vm_get_maxcpus(vm);
772 datasel = vmm_get_host_datasel();
773 for (i = 0; i < maxcpus; i++) {
774 /*
775 * Cache physical address lookups for various components which
776 * may be required inside the critical_enter() section implied
777 * by VMPTRLD() below.
778 */
779 vm_paddr_t msr_bitmap_pa = vtophys(vmx->msr_bitmap[i]);
780 vm_paddr_t apic_page_pa = vtophys(&vmx->apic_page[i]);
781 vm_paddr_t pir_desc_pa = vtophys(&vmx->pir_desc[i]);
782
783 vmx->vmcs_pa[i] = (uintptr_t)vtophys(&vmx->vmcs[i]);
784 vmcs_initialize(&vmx->vmcs[i], vmx->vmcs_pa[i]);
785
786 vmx_msr_guest_init(vmx, i);
787
788 vmcs_load(vmx->vmcs_pa[i]);
789
790 vmcs_write(VMCS_HOST_IA32_PAT, vmm_get_host_pat());
791 vmcs_write(VMCS_HOST_IA32_EFER, vmm_get_host_efer());
792
793 /* Load the control registers */
794 vmcs_write(VMCS_HOST_CR0, vmm_get_host_cr0());
795 vmcs_write(VMCS_HOST_CR4, vmm_get_host_cr4() | CR4_VMXE);
796
797 /* Load the segment selectors */
798 vmcs_write(VMCS_HOST_CS_SELECTOR, vmm_get_host_codesel());
799
800 vmcs_write(VMCS_HOST_ES_SELECTOR, datasel);
801 vmcs_write(VMCS_HOST_SS_SELECTOR, datasel);
802 vmcs_write(VMCS_HOST_DS_SELECTOR, datasel);
803
804 vmcs_write(VMCS_HOST_FS_SELECTOR, vmm_get_host_fssel());
805 vmcs_write(VMCS_HOST_GS_SELECTOR, vmm_get_host_gssel());
806 vmcs_write(VMCS_HOST_TR_SELECTOR, vmm_get_host_tsssel());
807
808 /*
809 * Configure host sysenter MSRs to be restored on VM exit.
810 * The thread-specific MSR_INTC_SEP_ESP value is loaded in
811 * vmx_run.
812 */
813 vmcs_write(VMCS_HOST_IA32_SYSENTER_CS, KCS_SEL);
814 vmcs_write(VMCS_HOST_IA32_SYSENTER_EIP,
815 rdmsr(MSR_SYSENTER_EIP_MSR));
816
817 /* instruction pointer */
818 vmcs_write(VMCS_HOST_RIP, (uint64_t)vmx_exit_guest);
819
820 /* link pointer */
821 vmcs_write(VMCS_LINK_POINTER, ~0);
822
823 vmcs_write(VMCS_EPTP, vmx->eptp);
824 vmcs_write(VMCS_PIN_BASED_CTLS, pin_ctls);
825 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, proc_ctls);
826
827 uint32_t use_proc2_ctls = proc2_ctls;
828 if (cap_wbinvd_exit && vcpu_trap_wbinvd(vm, i) != 0)
829 use_proc2_ctls |= PROCBASED2_WBINVD_EXITING;
830 vmcs_write(VMCS_SEC_PROC_BASED_CTLS, use_proc2_ctls);
831
832 vmcs_write(VMCS_EXIT_CTLS, exit_ctls);
833 vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
834 vmcs_write(VMCS_MSR_BITMAP, msr_bitmap_pa);
835 vmcs_write(VMCS_VPID, vpid[i]);
836
837 if (guest_l1d_flush && !guest_l1d_flush_sw) {
838 vmcs_write(VMCS_ENTRY_MSR_LOAD,
839 vtophys(&msr_load_list[0]));
840 vmcs_write(VMCS_ENTRY_MSR_LOAD_COUNT,
841 nitems(msr_load_list));
842 vmcs_write(VMCS_EXIT_MSR_STORE, 0);
843 vmcs_write(VMCS_EXIT_MSR_STORE_COUNT, 0);
844 }
845
846 /* exception bitmap */
847 if (vcpu_trace_exceptions(vm, i))
848 exc_bitmap = 0xffffffff;
849 else
850 exc_bitmap = 1 << IDT_MC;
851 vmcs_write(VMCS_EXCEPTION_BITMAP, exc_bitmap);
852
853 vmx->ctx[i].guest_dr6 = DBREG_DR6_RESERVED1;
854 vmcs_write(VMCS_GUEST_DR7, DBREG_DR7_RESERVED1);
855
856 if (vmx_cap_en(vmx, VMX_CAP_TPR_SHADOW)) {
857 vmcs_write(VMCS_VIRTUAL_APIC, apic_page_pa);
858 }
859
860 if (vmx_cap_en(vmx, VMX_CAP_APICV)) {
861 vmcs_write(VMCS_APIC_ACCESS, apic_access_pa);
862 vmcs_write(VMCS_EOI_EXIT0, 0);
863 vmcs_write(VMCS_EOI_EXIT1, 0);
864 vmcs_write(VMCS_EOI_EXIT2, 0);
865 vmcs_write(VMCS_EOI_EXIT3, 0);
866 }
867 if (vmx_cap_en(vmx, VMX_CAP_APICV_PIR)) {
868 vmcs_write(VMCS_PIR_VECTOR, pirvec);
869 vmcs_write(VMCS_PIR_DESC, pir_desc_pa);
870 }
871
872 /*
873 * Set up the CR0/4 masks and configure the read shadow state
874 * to the power-on register value from the Intel Sys Arch.
875 * CR0 - 0x60000010
876 * CR4 - 0
877 */
878 vmcs_write(VMCS_CR0_MASK, cr0_ones_mask | cr0_zeros_mask);
879 vmcs_write(VMCS_CR0_SHADOW, 0x60000010);
880 vmcs_write(VMCS_CR4_MASK, cr4_ones_mask | cr4_zeros_mask);
881 vmcs_write(VMCS_CR4_SHADOW, 0);
882
883 vmcs_clear(vmx->vmcs_pa[i]);
884
885 vmx->cap[i].set = cap_defaults;
886 vmx->cap[i].proc_ctls = proc_ctls;
887 vmx->cap[i].proc_ctls2 = proc2_ctls;
888 vmx->cap[i].exc_bitmap = exc_bitmap;
889
890 vmx->state[i].nextrip = ~0;
891 vmx->state[i].lastcpu = NOCPU;
892 vmx->state[i].vpid = vpid[i];
893 }
894
895 return (vmx);
896 }
897
898 static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved");
899 static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done");
900
901 #define INVVPID_TYPE_ADDRESS 0UL
902 #define INVVPID_TYPE_SINGLE_CONTEXT 1UL
903 #define INVVPID_TYPE_ALL_CONTEXTS 2UL
904
905 struct invvpid_desc {
906 uint16_t vpid;
907 uint16_t _res1;
908 uint32_t _res2;
909 uint64_t linear_addr;
910 };
911 CTASSERT(sizeof (struct invvpid_desc) == 16);
912
913 static __inline void
invvpid(uint64_t type,struct invvpid_desc desc)914 invvpid(uint64_t type, struct invvpid_desc desc)
915 {
916 int error;
917
918 DTRACE_PROBE3(vmx__invvpid, uint64_t, type, uint16_t, desc.vpid,
919 uint64_t, desc.linear_addr);
920
921 __asm __volatile("invvpid %[desc], %[type];"
922 VMX_SET_ERROR_CODE_ASM
923 : [error] "=r" (error)
924 : [desc] "m" (desc), [type] "r" (type)
925 : "memory");
926
927 if (error) {
928 panic("invvpid error %d", error);
929 }
930 }
931
932 /*
933 * Invalidate guest mappings identified by its VPID from the TLB.
934 *
935 * This is effectively a flush of the guest TLB, removing only "combined
936 * mappings" (to use the VMX parlance). Actions which modify the EPT structures
937 * for the instance (such as unmapping GPAs) would require an 'invept' flush.
938 */
939 static void
vmx_invvpid(struct vmx * vmx,int vcpu,int running)940 vmx_invvpid(struct vmx *vmx, int vcpu, int running)
941 {
942 struct vmxstate *vmxstate;
943 struct vmspace *vms;
944
945 vmxstate = &vmx->state[vcpu];
946 if (vmxstate->vpid == 0) {
947 return;
948 }
949
950 if (!running) {
951 /*
952 * Set the 'lastcpu' to an invalid host cpu.
953 *
954 * This will invalidate TLB entries tagged with the vcpu's
955 * vpid the next time it runs via vmx_set_pcpu_defaults().
956 */
957 vmxstate->lastcpu = NOCPU;
958 return;
959 }
960
961 /*
962 * Invalidate all mappings tagged with 'vpid'
963 *
964 * This is done when a vCPU moves between host CPUs, where there may be
965 * stale TLB entries for this VPID on the target, or if emulated actions
966 * in the guest CPU have incurred an explicit TLB flush.
967 */
968 vms = vm_get_vmspace(vmx->vm);
969 if (vmspace_table_gen(vms) == vmx->eptgen[curcpu]) {
970 struct invvpid_desc invvpid_desc = {
971 .vpid = vmxstate->vpid,
972 .linear_addr = 0,
973 ._res1 = 0,
974 ._res2 = 0,
975 };
976
977 invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
978 vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_DONE, 1);
979 } else {
980 /*
981 * The INVVPID can be skipped if an INVEPT is going to be
982 * performed before entering the guest. The INVEPT will
983 * invalidate combined mappings for the EP4TA associated with
984 * this guest, in all VPIDs.
985 */
986 vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1);
987 }
988 }
989
990 static __inline void
invept(uint64_t type,uint64_t eptp)991 invept(uint64_t type, uint64_t eptp)
992 {
993 int error;
994 struct invept_desc {
995 uint64_t eptp;
996 uint64_t _resv;
997 } desc = { eptp, 0 };
998
999 DTRACE_PROBE2(vmx__invept, uint64_t, type, uint64_t, eptp);
1000
1001 __asm __volatile("invept %[desc], %[type];"
1002 VMX_SET_ERROR_CODE_ASM
1003 : [error] "=r" (error)
1004 : [desc] "m" (desc), [type] "r" (type)
1005 : "memory");
1006
1007 if (error != 0) {
1008 panic("invvpid error %d", error);
1009 }
1010 }
1011
1012 static void
vmx_set_pcpu_defaults(struct vmx * vmx,int vcpu)1013 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu)
1014 {
1015 struct vmxstate *vmxstate;
1016
1017 /*
1018 * Regardless of whether the VM appears to have migrated between CPUs,
1019 * save the host sysenter stack pointer. As it points to the kernel
1020 * stack of each thread, the correct value must be maintained for every
1021 * trip into the critical section.
1022 */
1023 vmcs_write(VMCS_HOST_IA32_SYSENTER_ESP, rdmsr(MSR_SYSENTER_ESP_MSR));
1024
1025 /*
1026 * Perform any needed TSC_OFFSET adjustment based on TSC_MSR writes or
1027 * migration between host CPUs with differing TSC values.
1028 */
1029 vmx_apply_tsc_adjust(vmx, vcpu);
1030
1031 vmxstate = &vmx->state[vcpu];
1032 if (vmxstate->lastcpu == curcpu)
1033 return;
1034
1035 vmxstate->lastcpu = curcpu;
1036
1037 vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
1038
1039 /* Load the per-CPU IDT address */
1040 vmcs_write(VMCS_HOST_IDTR_BASE, vmm_get_host_idtrbase());
1041 vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
1042 vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
1043 vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
1044 vmx_invvpid(vmx, vcpu, 1);
1045 }
1046
1047 static __inline bool
vmx_int_window_exiting(struct vmx * vmx,int vcpu)1048 vmx_int_window_exiting(struct vmx *vmx, int vcpu)
1049 {
1050 return ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0);
1051 }
1052
1053 static __inline void
vmx_set_int_window_exiting(struct vmx * vmx,int vcpu)1054 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
1055 {
1056 if (!vmx_int_window_exiting(vmx, vcpu)) {
1057 /* Enable interrupt window exiting */
1058 vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
1059 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1060 }
1061 }
1062
1063 static __inline void
vmx_clear_int_window_exiting(struct vmx * vmx,int vcpu)1064 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
1065 {
1066 /* Disable interrupt window exiting */
1067 vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
1068 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1069 }
1070
1071 static __inline bool
vmx_nmi_window_exiting(struct vmx * vmx,int vcpu)1072 vmx_nmi_window_exiting(struct vmx *vmx, int vcpu)
1073 {
1074 return ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0);
1075 }
1076
1077 static __inline void
vmx_set_nmi_window_exiting(struct vmx * vmx,int vcpu)1078 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
1079 {
1080 if (!vmx_nmi_window_exiting(vmx, vcpu)) {
1081 vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1082 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1083 }
1084 }
1085
1086 static __inline void
vmx_clear_nmi_window_exiting(struct vmx * vmx,int vcpu)1087 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
1088 {
1089 vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1090 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1091 }
1092
1093 /*
1094 * Set the TSC adjustment, taking into account the offsets measured between
1095 * host physical CPUs. This is required even if the guest has not set a TSC
1096 * offset since vCPUs inherit the TSC offset of whatever physical CPU it has
1097 * migrated onto. Without this mitigation, un-synched host TSCs will convey
1098 * the appearance of TSC time-travel to the guest as its vCPUs migrate.
1099 */
1100 static void
vmx_apply_tsc_adjust(struct vmx * vmx,int vcpu)1101 vmx_apply_tsc_adjust(struct vmx *vmx, int vcpu)
1102 {
1103 const uint64_t offset = vcpu_tsc_offset(vmx->vm, vcpu, true);
1104
1105 ASSERT(vmx->cap[vcpu].proc_ctls & PROCBASED_TSC_OFFSET);
1106
1107 if (vmx->tsc_offset_active[vcpu] != offset) {
1108 vmcs_write(VMCS_TSC_OFFSET, offset);
1109 vmx->tsc_offset_active[vcpu] = offset;
1110 }
1111 }
1112
1113 CTASSERT(VMCS_INTR_T_HWINTR == VM_INTINFO_HWINTR);
1114 CTASSERT(VMCS_INTR_T_NMI == VM_INTINFO_NMI);
1115 CTASSERT(VMCS_INTR_T_HWEXCEPTION == VM_INTINFO_HWEXCP);
1116 CTASSERT(VMCS_INTR_T_SWINTR == VM_INTINFO_SWINTR);
1117 CTASSERT(VMCS_INTR_T_PRIV_SWEXCEPTION == VM_INTINFO_RESV5);
1118 CTASSERT(VMCS_INTR_T_SWEXCEPTION == VM_INTINFO_RESV6);
1119 CTASSERT(VMCS_IDT_VEC_ERRCODE_VALID == VM_INTINFO_DEL_ERRCODE);
1120 CTASSERT(VMCS_INTR_T_MASK == VM_INTINFO_MASK_TYPE);
1121
1122 static uint64_t
vmx_idtvec_to_intinfo(uint32_t info,uint32_t errcode)1123 vmx_idtvec_to_intinfo(uint32_t info, uint32_t errcode)
1124 {
1125 ASSERT(info & VMCS_IDT_VEC_VALID);
1126
1127 const uint32_t type = info & VMCS_INTR_T_MASK;
1128 const uint8_t vec = info & 0xff;
1129
1130 switch (type) {
1131 case VMCS_INTR_T_HWINTR:
1132 case VMCS_INTR_T_NMI:
1133 case VMCS_INTR_T_HWEXCEPTION:
1134 case VMCS_INTR_T_SWINTR:
1135 case VMCS_INTR_T_PRIV_SWEXCEPTION:
1136 case VMCS_INTR_T_SWEXCEPTION:
1137 break;
1138 default:
1139 panic("unexpected event type 0x%03x", type);
1140 }
1141
1142 uint64_t intinfo = VM_INTINFO_VALID | type | vec;
1143 if (info & VMCS_IDT_VEC_ERRCODE_VALID) {
1144 intinfo |= (uint64_t)errcode << 32;
1145 }
1146
1147 return (intinfo);
1148 }
1149
1150 CTASSERT(VMCS_INTR_DEL_ERRCODE == VMCS_IDT_VEC_ERRCODE_VALID);
1151 CTASSERT(VMCS_INTR_VALID == VMCS_IDT_VEC_VALID);
1152
1153 /*
1154 * Store VMX-specific event injection info for later handling. This depends on
1155 * the bhyve-internal event definitions matching those in the VMCS, as ensured
1156 * by the vmx_idtvec_to_intinfo() and the related CTASSERTs.
1157 */
1158 static void
vmx_stash_intinfo(struct vmx * vmx,int vcpu)1159 vmx_stash_intinfo(struct vmx *vmx, int vcpu)
1160 {
1161 uint64_t info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1162 if ((info & VMCS_INTR_VALID) != 0) {
1163 uint32_t errcode = 0;
1164
1165 if ((info & VMCS_INTR_DEL_ERRCODE) != 0) {
1166 errcode = vmcs_read(VMCS_ENTRY_EXCEPTION_ERROR);
1167 }
1168
1169 VERIFY0(vm_exit_intinfo(vmx->vm, vcpu,
1170 vmx_idtvec_to_intinfo(info, errcode)));
1171
1172 vmcs_write(VMCS_ENTRY_INTR_INFO, 0);
1173 vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, 0);
1174 }
1175 }
1176
1177 static void
vmx_inject_intinfo(uint64_t info)1178 vmx_inject_intinfo(uint64_t info)
1179 {
1180 ASSERT(VM_INTINFO_PENDING(info));
1181 ASSERT0(info & VM_INTINFO_MASK_RSVD);
1182
1183 /*
1184 * The bhyve format matches that of the VMCS, which is ensured by the
1185 * CTASSERTs above.
1186 */
1187 uint32_t inject = info;
1188 switch (VM_INTINFO_VECTOR(info)) {
1189 case IDT_BP:
1190 case IDT_OF:
1191 /*
1192 * VT-x requires #BP and #OF to be injected as software
1193 * exceptions.
1194 */
1195 inject &= ~VMCS_INTR_T_MASK;
1196 inject |= VMCS_INTR_T_SWEXCEPTION;
1197 break;
1198 default:
1199 break;
1200 }
1201
1202 if (VM_INTINFO_HAS_ERRCODE(info)) {
1203 vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR,
1204 VM_INTINFO_ERRCODE(info));
1205 }
1206 vmcs_write(VMCS_ENTRY_INTR_INFO, inject);
1207 }
1208
1209 #define NMI_BLOCKING (VMCS_INTERRUPTIBILITY_NMI_BLOCKING | \
1210 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1211 #define HWINTR_BLOCKING (VMCS_INTERRUPTIBILITY_STI_BLOCKING | \
1212 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1213
1214 static void
vmx_inject_nmi(struct vmx * vmx,int vcpu)1215 vmx_inject_nmi(struct vmx *vmx, int vcpu)
1216 {
1217 ASSERT0(vmcs_read(VMCS_GUEST_INTERRUPTIBILITY) & NMI_BLOCKING);
1218 ASSERT0(vmcs_read(VMCS_ENTRY_INTR_INFO) & VMCS_INTR_VALID);
1219
1220 /*
1221 * Inject the virtual NMI. The vector must be the NMI IDT entry
1222 * or the VMCS entry check will fail.
1223 */
1224 vmcs_write(VMCS_ENTRY_INTR_INFO,
1225 IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID);
1226
1227 /* Clear the request */
1228 vm_nmi_clear(vmx->vm, vcpu);
1229 }
1230
1231 /*
1232 * Inject exceptions, NMIs, and ExtINTs.
1233 *
1234 * The logic behind these are complicated and may involve mutex contention, so
1235 * the injection is performed without the protection of host CPU interrupts
1236 * being disabled. This means a racing notification could be "lost",
1237 * necessitating a later call to vmx_inject_recheck() to close that window
1238 * of opportunity.
1239 */
1240 static enum event_inject_state
vmx_inject_events(struct vmx * vmx,int vcpu,uint64_t rip)1241 vmx_inject_events(struct vmx *vmx, int vcpu, uint64_t rip)
1242 {
1243 uint64_t entryinfo;
1244 uint32_t gi, info;
1245 int vector;
1246 enum event_inject_state state;
1247
1248 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1249 info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1250 state = EIS_CAN_INJECT;
1251
1252 /* Clear any interrupt blocking if the guest %rip has changed */
1253 if (vmx->state[vcpu].nextrip != rip && (gi & HWINTR_BLOCKING) != 0) {
1254 gi &= ~HWINTR_BLOCKING;
1255 vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1256 }
1257
1258 /*
1259 * It could be that an interrupt is already pending for injection from
1260 * the VMCS. This would be the case if the vCPU exited for conditions
1261 * such as an AST before a vm-entry delivered the injection.
1262 */
1263 if ((info & VMCS_INTR_VALID) != 0) {
1264 return (EIS_EV_EXISTING | EIS_REQ_EXIT);
1265 }
1266
1267 if (vm_entry_intinfo(vmx->vm, vcpu, &entryinfo)) {
1268 vmx_inject_intinfo(entryinfo);
1269 state = EIS_EV_INJECTED;
1270 }
1271
1272 if (vm_nmi_pending(vmx->vm, vcpu)) {
1273 /*
1274 * If there are no conditions blocking NMI injection then inject
1275 * it directly here otherwise enable "NMI window exiting" to
1276 * inject it as soon as we can.
1277 *
1278 * According to the Intel manual, some CPUs do not allow NMI
1279 * injection when STI_BLOCKING is active. That check is
1280 * enforced here, regardless of CPU capability. If running on a
1281 * CPU without such a restriction it will immediately exit and
1282 * the NMI will be injected in the "NMI window exiting" handler.
1283 */
1284 if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
1285 if (state == EIS_CAN_INJECT) {
1286 vmx_inject_nmi(vmx, vcpu);
1287 state = EIS_EV_INJECTED;
1288 } else {
1289 return (state | EIS_REQ_EXIT);
1290 }
1291 } else {
1292 vmx_set_nmi_window_exiting(vmx, vcpu);
1293 }
1294 }
1295
1296 if (vm_extint_pending(vmx->vm, vcpu)) {
1297 if (state != EIS_CAN_INJECT) {
1298 return (state | EIS_REQ_EXIT);
1299 }
1300 if ((gi & HWINTR_BLOCKING) != 0 ||
1301 (vmcs_read(VMCS_GUEST_RFLAGS) & PSL_I) == 0) {
1302 return (EIS_GI_BLOCK);
1303 }
1304
1305 /* Ask the legacy pic for a vector to inject */
1306 vatpic_pending_intr(vmx->vm, &vector);
1307
1308 /*
1309 * From the Intel SDM, Volume 3, Section "Maskable
1310 * Hardware Interrupts":
1311 * - maskable interrupt vectors [0,255] can be delivered
1312 * through the INTR pin.
1313 */
1314 KASSERT(vector >= 0 && vector <= 255,
1315 ("invalid vector %d from INTR", vector));
1316
1317 /* Inject the interrupt */
1318 vmcs_write(VMCS_ENTRY_INTR_INFO,
1319 VMCS_INTR_T_HWINTR | VMCS_INTR_VALID | vector);
1320
1321 vm_extint_clear(vmx->vm, vcpu);
1322 vatpic_intr_accepted(vmx->vm, vector);
1323 state = EIS_EV_INJECTED;
1324 }
1325
1326 return (state);
1327 }
1328
1329 /*
1330 * Inject any interrupts pending on the vLAPIC.
1331 *
1332 * This is done with host CPU interrupts disabled so notification IPIs, either
1333 * from the standard vCPU notification or APICv posted interrupts, will be
1334 * queued on the host APIC and recognized when entering VMX context.
1335 */
1336 static enum event_inject_state
vmx_inject_vlapic(struct vmx * vmx,int vcpu,struct vlapic * vlapic)1337 vmx_inject_vlapic(struct vmx *vmx, int vcpu, struct vlapic *vlapic)
1338 {
1339 int vector;
1340
1341 if (!vlapic_pending_intr(vlapic, &vector)) {
1342 return (EIS_CAN_INJECT);
1343 }
1344
1345 /*
1346 * From the Intel SDM, Volume 3, Section "Maskable
1347 * Hardware Interrupts":
1348 * - maskable interrupt vectors [16,255] can be delivered
1349 * through the local APIC.
1350 */
1351 KASSERT(vector >= 16 && vector <= 255,
1352 ("invalid vector %d from local APIC", vector));
1353
1354 if (vmx_cap_en(vmx, VMX_CAP_APICV)) {
1355 uint16_t status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
1356 uint16_t status_new = (status_old & 0xff00) | vector;
1357
1358 /*
1359 * The APICv state will have been synced into the vLAPIC
1360 * as part of vlapic_pending_intr(). Prepare the VMCS
1361 * for the to-be-injected pending interrupt.
1362 */
1363 if (status_new > status_old) {
1364 vmcs_write(VMCS_GUEST_INTR_STATUS, status_new);
1365 }
1366
1367 /*
1368 * Ensure VMCS state regarding EOI traps is kept in sync
1369 * with the TMRs in the vlapic.
1370 */
1371 vmx_apicv_sync_tmr(vlapic);
1372
1373 /*
1374 * The rest of the injection process for injecting the
1375 * interrupt(s) is handled by APICv. It does not preclude other
1376 * event injection from occurring.
1377 */
1378 return (EIS_CAN_INJECT);
1379 }
1380
1381 ASSERT0(vmcs_read(VMCS_ENTRY_INTR_INFO) & VMCS_INTR_VALID);
1382
1383 /* Does guest interruptability block injection? */
1384 if ((vmcs_read(VMCS_GUEST_INTERRUPTIBILITY) & HWINTR_BLOCKING) != 0 ||
1385 (vmcs_read(VMCS_GUEST_RFLAGS) & PSL_I) == 0) {
1386 return (EIS_GI_BLOCK);
1387 }
1388
1389 /* Inject the interrupt */
1390 vmcs_write(VMCS_ENTRY_INTR_INFO,
1391 VMCS_INTR_T_HWINTR | VMCS_INTR_VALID | vector);
1392
1393 /* Update the Local APIC ISR */
1394 vlapic_intr_accepted(vlapic, vector);
1395
1396 return (EIS_EV_INJECTED);
1397 }
1398
1399 /*
1400 * Re-check for events to be injected.
1401 *
1402 * Once host CPU interrupts are disabled, check for the presence of any events
1403 * which require injection processing. If an exit is required upon injection,
1404 * or once the guest becomes interruptable, that will be configured too.
1405 */
1406 static bool
vmx_inject_recheck(struct vmx * vmx,int vcpu,enum event_inject_state state)1407 vmx_inject_recheck(struct vmx *vmx, int vcpu, enum event_inject_state state)
1408 {
1409 if (state == EIS_CAN_INJECT) {
1410 if (vm_nmi_pending(vmx->vm, vcpu) &&
1411 !vmx_nmi_window_exiting(vmx, vcpu)) {
1412 /* queued NMI not blocked by NMI-window-exiting */
1413 return (true);
1414 }
1415 if (vm_extint_pending(vmx->vm, vcpu)) {
1416 /* queued ExtINT not blocked by existing injection */
1417 return (true);
1418 }
1419 } else {
1420 if ((state & EIS_REQ_EXIT) != 0) {
1421 /*
1422 * Use a self-IPI to force an immediate exit after
1423 * event injection has occurred.
1424 */
1425 poke_cpu(CPU->cpu_id);
1426 } else {
1427 /*
1428 * If any event is being injected, an exit immediately
1429 * upon becoming interruptable again will allow pending
1430 * or newly queued events to be injected in a timely
1431 * manner.
1432 */
1433 vmx_set_int_window_exiting(vmx, vcpu);
1434 }
1435 }
1436 return (false);
1437 }
1438
1439 /*
1440 * If the Virtual NMIs execution control is '1' then the logical processor
1441 * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
1442 * the VMCS. An IRET instruction in VMX non-root operation will remove any
1443 * virtual-NMI blocking.
1444 *
1445 * This unblocking occurs even if the IRET causes a fault. In this case the
1446 * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
1447 */
1448 static void
vmx_restore_nmi_blocking(struct vmx * vmx,int vcpuid)1449 vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid)
1450 {
1451 uint32_t gi;
1452
1453 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1454 gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1455 vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1456 }
1457
1458 static void
vmx_clear_nmi_blocking(struct vmx * vmx,int vcpuid)1459 vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid)
1460 {
1461 uint32_t gi;
1462
1463 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1464 gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1465 vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1466 }
1467
1468 static void
vmx_assert_nmi_blocking(struct vmx * vmx,int vcpuid)1469 vmx_assert_nmi_blocking(struct vmx *vmx, int vcpuid)
1470 {
1471 uint32_t gi;
1472
1473 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1474 KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING,
1475 ("NMI blocking is not in effect %x", gi));
1476 }
1477
1478 static int
vmx_emulate_xsetbv(struct vmx * vmx,int vcpu,struct vm_exit * vmexit)1479 vmx_emulate_xsetbv(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1480 {
1481 struct vmxctx *vmxctx;
1482 uint64_t xcrval;
1483 const struct xsave_limits *limits;
1484
1485 vmxctx = &vmx->ctx[vcpu];
1486 limits = vmm_get_xsave_limits();
1487
1488 /*
1489 * Note that the processor raises a GP# fault on its own if
1490 * xsetbv is executed for CPL != 0, so we do not have to
1491 * emulate that fault here.
1492 */
1493
1494 /* Only xcr0 is supported. */
1495 if (vmxctx->guest_rcx != 0) {
1496 vm_inject_gp(vmx->vm, vcpu);
1497 return (HANDLED);
1498 }
1499
1500 /* We only handle xcr0 if both the host and guest have XSAVE enabled. */
1501 if (!limits->xsave_enabled ||
1502 !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) {
1503 vm_inject_ud(vmx->vm, vcpu);
1504 return (HANDLED);
1505 }
1506
1507 xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff);
1508 if ((xcrval & ~limits->xcr0_allowed) != 0) {
1509 vm_inject_gp(vmx->vm, vcpu);
1510 return (HANDLED);
1511 }
1512
1513 if (!(xcrval & XFEATURE_ENABLED_X87)) {
1514 vm_inject_gp(vmx->vm, vcpu);
1515 return (HANDLED);
1516 }
1517
1518 /* AVX (YMM_Hi128) requires SSE. */
1519 if (xcrval & XFEATURE_ENABLED_AVX &&
1520 (xcrval & XFEATURE_AVX) != XFEATURE_AVX) {
1521 vm_inject_gp(vmx->vm, vcpu);
1522 return (HANDLED);
1523 }
1524
1525 /*
1526 * AVX512 requires base AVX (YMM_Hi128) as well as OpMask,
1527 * ZMM_Hi256, and Hi16_ZMM.
1528 */
1529 if (xcrval & XFEATURE_AVX512 &&
1530 (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) !=
1531 (XFEATURE_AVX512 | XFEATURE_AVX)) {
1532 vm_inject_gp(vmx->vm, vcpu);
1533 return (HANDLED);
1534 }
1535
1536 /*
1537 * Intel MPX requires both bound register state flags to be
1538 * set.
1539 */
1540 if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) !=
1541 ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) {
1542 vm_inject_gp(vmx->vm, vcpu);
1543 return (HANDLED);
1544 }
1545
1546 /*
1547 * This runs "inside" vmrun() with the guest's FPU state, so
1548 * modifying xcr0 directly modifies the guest's xcr0, not the
1549 * host's.
1550 */
1551 load_xcr(0, xcrval);
1552 return (HANDLED);
1553 }
1554
1555 static uint64_t
vmx_get_guest_reg(struct vmx * vmx,int vcpu,int ident)1556 vmx_get_guest_reg(struct vmx *vmx, int vcpu, int ident)
1557 {
1558 const struct vmxctx *vmxctx;
1559
1560 vmxctx = &vmx->ctx[vcpu];
1561
1562 switch (ident) {
1563 case 0:
1564 return (vmxctx->guest_rax);
1565 case 1:
1566 return (vmxctx->guest_rcx);
1567 case 2:
1568 return (vmxctx->guest_rdx);
1569 case 3:
1570 return (vmxctx->guest_rbx);
1571 case 4:
1572 return (vmcs_read(VMCS_GUEST_RSP));
1573 case 5:
1574 return (vmxctx->guest_rbp);
1575 case 6:
1576 return (vmxctx->guest_rsi);
1577 case 7:
1578 return (vmxctx->guest_rdi);
1579 case 8:
1580 return (vmxctx->guest_r8);
1581 case 9:
1582 return (vmxctx->guest_r9);
1583 case 10:
1584 return (vmxctx->guest_r10);
1585 case 11:
1586 return (vmxctx->guest_r11);
1587 case 12:
1588 return (vmxctx->guest_r12);
1589 case 13:
1590 return (vmxctx->guest_r13);
1591 case 14:
1592 return (vmxctx->guest_r14);
1593 case 15:
1594 return (vmxctx->guest_r15);
1595 default:
1596 panic("invalid vmx register %d", ident);
1597 }
1598 }
1599
1600 static void
vmx_set_guest_reg(struct vmx * vmx,int vcpu,int ident,uint64_t regval)1601 vmx_set_guest_reg(struct vmx *vmx, int vcpu, int ident, uint64_t regval)
1602 {
1603 struct vmxctx *vmxctx;
1604
1605 vmxctx = &vmx->ctx[vcpu];
1606
1607 switch (ident) {
1608 case 0:
1609 vmxctx->guest_rax = regval;
1610 break;
1611 case 1:
1612 vmxctx->guest_rcx = regval;
1613 break;
1614 case 2:
1615 vmxctx->guest_rdx = regval;
1616 break;
1617 case 3:
1618 vmxctx->guest_rbx = regval;
1619 break;
1620 case 4:
1621 vmcs_write(VMCS_GUEST_RSP, regval);
1622 break;
1623 case 5:
1624 vmxctx->guest_rbp = regval;
1625 break;
1626 case 6:
1627 vmxctx->guest_rsi = regval;
1628 break;
1629 case 7:
1630 vmxctx->guest_rdi = regval;
1631 break;
1632 case 8:
1633 vmxctx->guest_r8 = regval;
1634 break;
1635 case 9:
1636 vmxctx->guest_r9 = regval;
1637 break;
1638 case 10:
1639 vmxctx->guest_r10 = regval;
1640 break;
1641 case 11:
1642 vmxctx->guest_r11 = regval;
1643 break;
1644 case 12:
1645 vmxctx->guest_r12 = regval;
1646 break;
1647 case 13:
1648 vmxctx->guest_r13 = regval;
1649 break;
1650 case 14:
1651 vmxctx->guest_r14 = regval;
1652 break;
1653 case 15:
1654 vmxctx->guest_r15 = regval;
1655 break;
1656 default:
1657 panic("invalid vmx register %d", ident);
1658 }
1659 }
1660
1661 static void
vmx_sync_efer_state(struct vmx * vmx,int vcpu,uint64_t efer)1662 vmx_sync_efer_state(struct vmx *vmx, int vcpu, uint64_t efer)
1663 {
1664 uint64_t ctrl;
1665
1666 /*
1667 * If the "load EFER" VM-entry control is 1 (which we require) then the
1668 * value of EFER.LMA must be identical to "IA-32e mode guest" bit in the
1669 * VM-entry control.
1670 */
1671 ctrl = vmcs_read(VMCS_ENTRY_CTLS);
1672 if ((efer & EFER_LMA) != 0) {
1673 ctrl |= VM_ENTRY_GUEST_LMA;
1674 } else {
1675 ctrl &= ~VM_ENTRY_GUEST_LMA;
1676 }
1677 vmcs_write(VMCS_ENTRY_CTLS, ctrl);
1678 }
1679
1680 static int
vmx_emulate_cr0_access(struct vmx * vmx,int vcpu,uint64_t exitqual)1681 vmx_emulate_cr0_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1682 {
1683 uint64_t crval, regval;
1684
1685 /* We only handle mov to %cr0 at this time */
1686 if ((exitqual & 0xf0) != 0x00)
1687 return (UNHANDLED);
1688
1689 regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1690
1691 vmcs_write(VMCS_CR0_SHADOW, regval);
1692
1693 crval = regval | cr0_ones_mask;
1694 crval &= ~cr0_zeros_mask;
1695
1696 const uint64_t old = vmcs_read(VMCS_GUEST_CR0);
1697 const uint64_t diff = crval ^ old;
1698 /* Flush the TLB if the paging or write-protect bits are changing */
1699 if ((diff & CR0_PG) != 0 || (diff & CR0_WP) != 0) {
1700 vmx_invvpid(vmx, vcpu, 1);
1701 }
1702
1703 vmcs_write(VMCS_GUEST_CR0, crval);
1704
1705 if (regval & CR0_PG) {
1706 uint64_t efer;
1707
1708 /* Keep EFER.LMA properly updated if paging is enabled */
1709 efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1710 if (efer & EFER_LME) {
1711 efer |= EFER_LMA;
1712 vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1713 vmx_sync_efer_state(vmx, vcpu, efer);
1714 }
1715 }
1716
1717 return (HANDLED);
1718 }
1719
1720 static int
vmx_emulate_cr4_access(struct vmx * vmx,int vcpu,uint64_t exitqual)1721 vmx_emulate_cr4_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1722 {
1723 uint64_t crval, regval;
1724
1725 /* We only handle mov to %cr4 at this time */
1726 if ((exitqual & 0xf0) != 0x00)
1727 return (UNHANDLED);
1728
1729 regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1730
1731 vmcs_write(VMCS_CR4_SHADOW, regval);
1732
1733 crval = regval | cr4_ones_mask;
1734 crval &= ~cr4_zeros_mask;
1735 vmcs_write(VMCS_GUEST_CR4, crval);
1736
1737 return (HANDLED);
1738 }
1739
1740 static int
vmx_emulate_cr8_access(struct vmx * vmx,int vcpu,uint64_t exitqual)1741 vmx_emulate_cr8_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1742 {
1743 struct vlapic *vlapic;
1744 uint64_t cr8;
1745 int regnum;
1746
1747 /* We only handle mov %cr8 to/from a register at this time. */
1748 if ((exitqual & 0xe0) != 0x00) {
1749 return (UNHANDLED);
1750 }
1751
1752 vlapic = vm_lapic(vmx->vm, vcpu);
1753 regnum = (exitqual >> 8) & 0xf;
1754 if (exitqual & 0x10) {
1755 cr8 = vlapic_get_cr8(vlapic);
1756 vmx_set_guest_reg(vmx, vcpu, regnum, cr8);
1757 } else {
1758 cr8 = vmx_get_guest_reg(vmx, vcpu, regnum);
1759 vlapic_set_cr8(vlapic, cr8);
1760 }
1761
1762 return (HANDLED);
1763 }
1764
1765 /*
1766 * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL
1767 */
1768 static int
vmx_cpl(void)1769 vmx_cpl(void)
1770 {
1771 uint32_t ssar;
1772
1773 ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS);
1774 return ((ssar >> 5) & 0x3);
1775 }
1776
1777 static enum vm_cpu_mode
vmx_cpu_mode(void)1778 vmx_cpu_mode(void)
1779 {
1780 uint32_t csar;
1781
1782 if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) {
1783 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1784 if (csar & 0x2000)
1785 return (CPU_MODE_64BIT); /* CS.L = 1 */
1786 else
1787 return (CPU_MODE_COMPATIBILITY);
1788 } else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) {
1789 return (CPU_MODE_PROTECTED);
1790 } else {
1791 return (CPU_MODE_REAL);
1792 }
1793 }
1794
1795 static enum vm_paging_mode
vmx_paging_mode(void)1796 vmx_paging_mode(void)
1797 {
1798
1799 if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG))
1800 return (PAGING_MODE_FLAT);
1801 if (!(vmcs_read(VMCS_GUEST_CR4) & CR4_PAE))
1802 return (PAGING_MODE_32);
1803 if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME)
1804 return (PAGING_MODE_64);
1805 else
1806 return (PAGING_MODE_PAE);
1807 }
1808
1809 static void
vmx_paging_info(struct vm_guest_paging * paging)1810 vmx_paging_info(struct vm_guest_paging *paging)
1811 {
1812 paging->cr3 = vmcs_read(VMCS_GUEST_CR3);
1813 paging->cpl = vmx_cpl();
1814 paging->cpu_mode = vmx_cpu_mode();
1815 paging->paging_mode = vmx_paging_mode();
1816 }
1817
1818 static void
vmexit_mmio_emul(struct vm_exit * vmexit,struct vie * vie,uint64_t gpa,uint64_t gla)1819 vmexit_mmio_emul(struct vm_exit *vmexit, struct vie *vie, uint64_t gpa,
1820 uint64_t gla)
1821 {
1822 struct vm_guest_paging paging;
1823 uint32_t csar;
1824
1825 vmexit->exitcode = VM_EXITCODE_MMIO_EMUL;
1826 vmexit->inst_length = 0;
1827 vmexit->u.mmio_emul.gpa = gpa;
1828 vmexit->u.mmio_emul.gla = gla;
1829 vmx_paging_info(&paging);
1830
1831 switch (paging.cpu_mode) {
1832 case CPU_MODE_REAL:
1833 vmexit->u.mmio_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
1834 vmexit->u.mmio_emul.cs_d = 0;
1835 break;
1836 case CPU_MODE_PROTECTED:
1837 case CPU_MODE_COMPATIBILITY:
1838 vmexit->u.mmio_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
1839 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1840 vmexit->u.mmio_emul.cs_d = SEG_DESC_DEF32(csar);
1841 break;
1842 default:
1843 vmexit->u.mmio_emul.cs_base = 0;
1844 vmexit->u.mmio_emul.cs_d = 0;
1845 break;
1846 }
1847
1848 vie_init_mmio(vie, NULL, 0, &paging, gpa);
1849 }
1850
1851 static void
vmexit_inout(struct vm_exit * vmexit,struct vie * vie,uint64_t qual,uint32_t eax)1852 vmexit_inout(struct vm_exit *vmexit, struct vie *vie, uint64_t qual,
1853 uint32_t eax)
1854 {
1855 struct vm_guest_paging paging;
1856 struct vm_inout *inout;
1857
1858 inout = &vmexit->u.inout;
1859
1860 inout->bytes = (qual & 0x7) + 1;
1861 inout->flags = 0;
1862 inout->flags |= (qual & 0x8) ? INOUT_IN : 0;
1863 inout->flags |= (qual & 0x10) ? INOUT_STR : 0;
1864 inout->flags |= (qual & 0x20) ? INOUT_REP : 0;
1865 inout->port = (uint16_t)(qual >> 16);
1866 inout->eax = eax;
1867 if (inout->flags & INOUT_STR) {
1868 uint64_t inst_info;
1869
1870 inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO);
1871
1872 /*
1873 * According to the SDM, bits 9:7 encode the address size of the
1874 * ins/outs operation, but only values 0/1/2 are expected,
1875 * corresponding to 16/32/64 bit sizes.
1876 */
1877 inout->addrsize = 2 << BITX(inst_info, 9, 7);
1878 VERIFY(inout->addrsize == 2 || inout->addrsize == 4 ||
1879 inout->addrsize == 8);
1880
1881 if (inout->flags & INOUT_IN) {
1882 /*
1883 * The bits describing the segment in INSTRUCTION_INFO
1884 * are not defined for ins, leaving it to system
1885 * software to assume %es (encoded as 0)
1886 */
1887 inout->segment = 0;
1888 } else {
1889 /*
1890 * Bits 15-17 encode the segment for OUTS.
1891 * This value follows the standard x86 segment order.
1892 */
1893 inout->segment = (inst_info >> 15) & 0x7;
1894 }
1895 }
1896
1897 vmexit->exitcode = VM_EXITCODE_INOUT;
1898 vmx_paging_info(&paging);
1899 vie_init_inout(vie, inout, vmexit->inst_length, &paging);
1900
1901 /* The in/out emulation will handle advancing %rip */
1902 vmexit->inst_length = 0;
1903 }
1904
1905 static int
ept_fault_type(uint64_t ept_qual)1906 ept_fault_type(uint64_t ept_qual)
1907 {
1908 int fault_type;
1909
1910 if (ept_qual & EPT_VIOLATION_DATA_WRITE)
1911 fault_type = PROT_WRITE;
1912 else if (ept_qual & EPT_VIOLATION_INST_FETCH)
1913 fault_type = PROT_EXEC;
1914 else
1915 fault_type = PROT_READ;
1916
1917 return (fault_type);
1918 }
1919
1920 static bool
ept_emulation_fault(uint64_t ept_qual)1921 ept_emulation_fault(uint64_t ept_qual)
1922 {
1923 int read, write;
1924
1925 /* EPT fault on an instruction fetch doesn't make sense here */
1926 if (ept_qual & EPT_VIOLATION_INST_FETCH)
1927 return (false);
1928
1929 /* EPT fault must be a read fault or a write fault */
1930 read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
1931 write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
1932 if ((read | write) == 0)
1933 return (false);
1934
1935 /*
1936 * The EPT violation must have been caused by accessing a
1937 * guest-physical address that is a translation of a guest-linear
1938 * address.
1939 */
1940 if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
1941 (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
1942 return (false);
1943 }
1944
1945 return (true);
1946 }
1947
1948 static __inline int
apic_access_virtualization(struct vmx * vmx,int vcpuid)1949 apic_access_virtualization(struct vmx *vmx, int vcpuid)
1950 {
1951 uint32_t proc_ctls2;
1952
1953 proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1954 return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0);
1955 }
1956
1957 static __inline int
x2apic_virtualization(struct vmx * vmx,int vcpuid)1958 x2apic_virtualization(struct vmx *vmx, int vcpuid)
1959 {
1960 uint32_t proc_ctls2;
1961
1962 proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1963 return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0);
1964 }
1965
1966 static int
vmx_handle_apic_write(struct vmx * vmx,int vcpuid,struct vlapic * vlapic,uint64_t qual)1967 vmx_handle_apic_write(struct vmx *vmx, int vcpuid, struct vlapic *vlapic,
1968 uint64_t qual)
1969 {
1970 const uint_t offset = APIC_WRITE_OFFSET(qual);
1971
1972 if (!apic_access_virtualization(vmx, vcpuid)) {
1973 /*
1974 * In general there should not be any APIC write VM-exits
1975 * unless APIC-access virtualization is enabled.
1976 *
1977 * However self-IPI virtualization can legitimately trigger
1978 * an APIC-write VM-exit so treat it specially.
1979 */
1980 if (x2apic_virtualization(vmx, vcpuid) &&
1981 offset == APIC_OFFSET_SELF_IPI) {
1982 const uint32_t *apic_regs =
1983 (uint32_t *)(vlapic->apic_page);
1984 const uint32_t vector =
1985 apic_regs[APIC_OFFSET_SELF_IPI / 4];
1986
1987 vlapic_self_ipi_handler(vlapic, vector);
1988 return (HANDLED);
1989 } else
1990 return (UNHANDLED);
1991 }
1992
1993 switch (offset) {
1994 case APIC_OFFSET_ID:
1995 vlapic_id_write_handler(vlapic);
1996 break;
1997 case APIC_OFFSET_LDR:
1998 vlapic_ldr_write_handler(vlapic);
1999 break;
2000 case APIC_OFFSET_DFR:
2001 vlapic_dfr_write_handler(vlapic);
2002 break;
2003 case APIC_OFFSET_SVR:
2004 vlapic_svr_write_handler(vlapic);
2005 break;
2006 case APIC_OFFSET_ESR:
2007 vlapic_esr_write_handler(vlapic);
2008 break;
2009 case APIC_OFFSET_ICR_LOW:
2010 vlapic_icrlo_write_handler(vlapic);
2011 break;
2012 case APIC_OFFSET_CMCI_LVT:
2013 case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
2014 vlapic_lvt_write_handler(vlapic, offset);
2015 break;
2016 case APIC_OFFSET_TIMER_ICR:
2017 vlapic_icrtmr_write_handler(vlapic);
2018 break;
2019 case APIC_OFFSET_TIMER_DCR:
2020 vlapic_dcr_write_handler(vlapic);
2021 break;
2022 default:
2023 return (UNHANDLED);
2024 }
2025 return (HANDLED);
2026 }
2027
2028 static bool
apic_access_fault(struct vmx * vmx,int vcpuid,uint64_t gpa)2029 apic_access_fault(struct vmx *vmx, int vcpuid, uint64_t gpa)
2030 {
2031
2032 if (apic_access_virtualization(vmx, vcpuid) &&
2033 (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
2034 return (true);
2035 else
2036 return (false);
2037 }
2038
2039 static int
vmx_handle_apic_access(struct vmx * vmx,int vcpuid,struct vm_exit * vmexit)2040 vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2041 {
2042 uint64_t qual;
2043 int access_type, offset, allowed;
2044 struct vie *vie;
2045
2046 if (!apic_access_virtualization(vmx, vcpuid))
2047 return (UNHANDLED);
2048
2049 qual = vmexit->u.vmx.exit_qualification;
2050 access_type = APIC_ACCESS_TYPE(qual);
2051 offset = APIC_ACCESS_OFFSET(qual);
2052
2053 allowed = 0;
2054 if (access_type == 0) {
2055 /*
2056 * Read data access to the following registers is expected.
2057 */
2058 switch (offset) {
2059 case APIC_OFFSET_APR:
2060 case APIC_OFFSET_PPR:
2061 case APIC_OFFSET_RRR:
2062 case APIC_OFFSET_CMCI_LVT:
2063 case APIC_OFFSET_TIMER_CCR:
2064 allowed = 1;
2065 break;
2066 default:
2067 break;
2068 }
2069 } else if (access_type == 1) {
2070 /*
2071 * Write data access to the following registers is expected.
2072 */
2073 switch (offset) {
2074 case APIC_OFFSET_VER:
2075 case APIC_OFFSET_APR:
2076 case APIC_OFFSET_PPR:
2077 case APIC_OFFSET_RRR:
2078 case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
2079 case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
2080 case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
2081 case APIC_OFFSET_CMCI_LVT:
2082 case APIC_OFFSET_TIMER_CCR:
2083 allowed = 1;
2084 break;
2085 default:
2086 break;
2087 }
2088 }
2089
2090 if (allowed) {
2091 vie = vm_vie_ctx(vmx->vm, vcpuid);
2092 vmexit_mmio_emul(vmexit, vie, DEFAULT_APIC_BASE + offset,
2093 VIE_INVALID_GLA);
2094 }
2095
2096 /*
2097 * Regardless of whether the APIC-access is allowed this handler
2098 * always returns UNHANDLED:
2099 * - if the access is allowed then it is handled by emulating the
2100 * instruction that caused the VM-exit (outside the critical section)
2101 * - if the access is not allowed then it will be converted to an
2102 * exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
2103 */
2104 return (UNHANDLED);
2105 }
2106
2107 static enum task_switch_reason
vmx_task_switch_reason(uint64_t qual)2108 vmx_task_switch_reason(uint64_t qual)
2109 {
2110 int reason;
2111
2112 reason = (qual >> 30) & 0x3;
2113 switch (reason) {
2114 case 0:
2115 return (TSR_CALL);
2116 case 1:
2117 return (TSR_IRET);
2118 case 2:
2119 return (TSR_JMP);
2120 case 3:
2121 return (TSR_IDT_GATE);
2122 default:
2123 panic("%s: invalid reason %d", __func__, reason);
2124 }
2125 }
2126
2127 static int
vmx_handle_msr(struct vmx * vmx,int vcpuid,struct vm_exit * vmexit,bool is_wrmsr)2128 vmx_handle_msr(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit,
2129 bool is_wrmsr)
2130 {
2131 struct vmxctx *vmxctx = &vmx->ctx[vcpuid];
2132 const uint32_t ecx = vmxctx->guest_rcx;
2133 vm_msr_result_t res;
2134 uint64_t val = 0;
2135
2136 if (is_wrmsr) {
2137 vmm_stat_incr(vmx->vm, vcpuid, VMEXIT_WRMSR, 1);
2138 val = vmxctx->guest_rdx << 32 | (uint32_t)vmxctx->guest_rax;
2139
2140 if (vlapic_owned_msr(ecx)) {
2141 struct vlapic *vlapic = vm_lapic(vmx->vm, vcpuid);
2142
2143 res = vlapic_wrmsr(vlapic, ecx, val);
2144 } else {
2145 res = vmx_wrmsr(vmx, vcpuid, ecx, val);
2146 }
2147 } else {
2148 vmm_stat_incr(vmx->vm, vcpuid, VMEXIT_RDMSR, 1);
2149
2150 if (vlapic_owned_msr(ecx)) {
2151 struct vlapic *vlapic = vm_lapic(vmx->vm, vcpuid);
2152
2153 res = vlapic_rdmsr(vlapic, ecx, &val);
2154 } else {
2155 res = vmx_rdmsr(vmx, vcpuid, ecx, &val);
2156 }
2157 }
2158
2159 switch (res) {
2160 case VMR_OK:
2161 /* Store rdmsr result in the appropriate registers */
2162 if (!is_wrmsr) {
2163 vmxctx->guest_rax = (uint32_t)val;
2164 vmxctx->guest_rdx = val >> 32;
2165 }
2166 return (HANDLED);
2167 case VMR_GP:
2168 vm_inject_gp(vmx->vm, vcpuid);
2169 return (HANDLED);
2170 case VMR_UNHANLDED:
2171 vmexit->exitcode = is_wrmsr ?
2172 VM_EXITCODE_WRMSR : VM_EXITCODE_RDMSR;
2173 vmexit->u.msr.code = ecx;
2174 vmexit->u.msr.wval = val;
2175 return (UNHANDLED);
2176 default:
2177 panic("unexpected msr result %u\n", res);
2178 }
2179 }
2180
2181 static int
vmx_exit_process(struct vmx * vmx,int vcpu,struct vm_exit * vmexit)2182 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
2183 {
2184 int error, errcode, errcode_valid, handled;
2185 struct vmxctx *vmxctx;
2186 struct vie *vie;
2187 struct vlapic *vlapic;
2188 struct vm_task_switch *ts;
2189 uint32_t idtvec_info, intr_info;
2190 uint32_t intr_type, intr_vec, reason;
2191 uint64_t qual, gpa;
2192
2193 CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
2194 CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
2195
2196 handled = UNHANDLED;
2197 vmxctx = &vmx->ctx[vcpu];
2198
2199 qual = vmexit->u.vmx.exit_qualification;
2200 reason = vmexit->u.vmx.exit_reason;
2201 vmexit->exitcode = VM_EXITCODE_BOGUS;
2202
2203 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
2204 SDT_PROBE3(vmm, vmx, exit, entry, vmx, vcpu, vmexit);
2205
2206 /*
2207 * VM-entry failures during or after loading guest state.
2208 *
2209 * These VM-exits are uncommon but must be handled specially
2210 * as most VM-exit fields are not populated as usual.
2211 */
2212 if (reason == EXIT_REASON_MCE_DURING_ENTRY) {
2213 vmm_call_trap(T_MCE);
2214 return (1);
2215 }
2216
2217 /*
2218 * VM exits that can be triggered during event delivery need to
2219 * be handled specially by re-injecting the event if the IDT
2220 * vectoring information field's valid bit is set.
2221 *
2222 * See "Information for VM Exits During Event Delivery" in Intel SDM
2223 * for details.
2224 */
2225 idtvec_info = vmcs_read(VMCS_IDT_VECTORING_INFO);
2226 if (idtvec_info & VMCS_IDT_VEC_VALID) {
2227 uint32_t errcode = 0;
2228 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2229 errcode = vmcs_read(VMCS_IDT_VECTORING_ERROR);
2230 }
2231
2232 /* Record exit intinfo */
2233 VERIFY0(vm_exit_intinfo(vmx->vm, vcpu,
2234 vmx_idtvec_to_intinfo(idtvec_info, errcode)));
2235
2236 /*
2237 * If 'virtual NMIs' are being used and the VM-exit
2238 * happened while injecting an NMI during the previous
2239 * VM-entry, then clear "blocking by NMI" in the
2240 * Guest Interruptibility-State so the NMI can be
2241 * reinjected on the subsequent VM-entry.
2242 *
2243 * However, if the NMI was being delivered through a task
2244 * gate, then the new task must start execution with NMIs
2245 * blocked so don't clear NMI blocking in this case.
2246 */
2247 intr_type = idtvec_info & VMCS_INTR_T_MASK;
2248 if (intr_type == VMCS_INTR_T_NMI) {
2249 if (reason != EXIT_REASON_TASK_SWITCH)
2250 vmx_clear_nmi_blocking(vmx, vcpu);
2251 else
2252 vmx_assert_nmi_blocking(vmx, vcpu);
2253 }
2254
2255 /*
2256 * Update VM-entry instruction length if the event being
2257 * delivered was a software interrupt or software exception.
2258 */
2259 if (intr_type == VMCS_INTR_T_SWINTR ||
2260 intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION ||
2261 intr_type == VMCS_INTR_T_SWEXCEPTION) {
2262 vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2263 }
2264 }
2265
2266 switch (reason) {
2267 case EXIT_REASON_TRIPLE_FAULT:
2268 (void) vm_suspend(vmx->vm, VM_SUSPEND_TRIPLEFAULT, vcpu);
2269 handled = HANDLED;
2270 break;
2271 case EXIT_REASON_TASK_SWITCH:
2272 ts = &vmexit->u.task_switch;
2273 ts->tsssel = qual & 0xffff;
2274 ts->reason = vmx_task_switch_reason(qual);
2275 ts->ext = 0;
2276 ts->errcode_valid = 0;
2277 vmx_paging_info(&ts->paging);
2278 /*
2279 * If the task switch was due to a CALL, JMP, IRET, software
2280 * interrupt (INT n) or software exception (INT3, INTO),
2281 * then the saved %rip references the instruction that caused
2282 * the task switch. The instruction length field in the VMCS
2283 * is valid in this case.
2284 *
2285 * In all other cases (e.g., NMI, hardware exception) the
2286 * saved %rip is one that would have been saved in the old TSS
2287 * had the task switch completed normally so the instruction
2288 * length field is not needed in this case and is explicitly
2289 * set to 0.
2290 */
2291 if (ts->reason == TSR_IDT_GATE) {
2292 KASSERT(idtvec_info & VMCS_IDT_VEC_VALID,
2293 ("invalid idtvec_info %x for IDT task switch",
2294 idtvec_info));
2295 intr_type = idtvec_info & VMCS_INTR_T_MASK;
2296 if (intr_type != VMCS_INTR_T_SWINTR &&
2297 intr_type != VMCS_INTR_T_SWEXCEPTION &&
2298 intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) {
2299 /* Task switch triggered by external event */
2300 ts->ext = 1;
2301 vmexit->inst_length = 0;
2302 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2303 ts->errcode_valid = 1;
2304 ts->errcode =
2305 vmcs_read(VMCS_IDT_VECTORING_ERROR);
2306 }
2307 }
2308 }
2309 vmexit->exitcode = VM_EXITCODE_TASK_SWITCH;
2310 SDT_PROBE4(vmm, vmx, exit, taskswitch, vmx, vcpu, vmexit, ts);
2311 break;
2312 case EXIT_REASON_CR_ACCESS:
2313 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
2314 SDT_PROBE4(vmm, vmx, exit, craccess, vmx, vcpu, vmexit, qual);
2315 switch (qual & 0xf) {
2316 case 0:
2317 handled = vmx_emulate_cr0_access(vmx, vcpu, qual);
2318 break;
2319 case 4:
2320 handled = vmx_emulate_cr4_access(vmx, vcpu, qual);
2321 break;
2322 case 8:
2323 handled = vmx_emulate_cr8_access(vmx, vcpu, qual);
2324 break;
2325 }
2326 break;
2327 case EXIT_REASON_RDMSR:
2328 case EXIT_REASON_WRMSR:
2329 handled = vmx_handle_msr(vmx, vcpu, vmexit,
2330 reason == EXIT_REASON_WRMSR);
2331 break;
2332 case EXIT_REASON_HLT:
2333 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
2334 SDT_PROBE3(vmm, vmx, exit, halt, vmx, vcpu, vmexit);
2335 vmexit->exitcode = VM_EXITCODE_HLT;
2336 vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2337 break;
2338 case EXIT_REASON_MTF:
2339 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
2340 SDT_PROBE3(vmm, vmx, exit, mtrap, vmx, vcpu, vmexit);
2341 vmexit->exitcode = VM_EXITCODE_MTRAP;
2342 vmexit->inst_length = 0;
2343 break;
2344 case EXIT_REASON_PAUSE:
2345 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
2346 SDT_PROBE3(vmm, vmx, exit, pause, vmx, vcpu, vmexit);
2347 vmexit->exitcode = VM_EXITCODE_PAUSE;
2348 break;
2349 case EXIT_REASON_INTR_WINDOW:
2350 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
2351 SDT_PROBE3(vmm, vmx, exit, intrwindow, vmx, vcpu, vmexit);
2352 ASSERT(vmx_int_window_exiting(vmx, vcpu));
2353 vmx_clear_int_window_exiting(vmx, vcpu);
2354 return (1);
2355 case EXIT_REASON_EXT_INTR:
2356 /*
2357 * External interrupts serve only to cause VM exits and allow
2358 * the host interrupt handler to run.
2359 *
2360 * If this external interrupt triggers a virtual interrupt
2361 * to a VM, then that state will be recorded by the
2362 * host interrupt handler in the VM's softc. We will inject
2363 * this virtual interrupt during the subsequent VM enter.
2364 */
2365 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2366 SDT_PROBE4(vmm, vmx, exit, interrupt,
2367 vmx, vcpu, vmexit, intr_info);
2368
2369 /*
2370 * XXX: Ignore this exit if VMCS_INTR_VALID is not set.
2371 * This appears to be a bug in VMware Fusion?
2372 */
2373 if (!(intr_info & VMCS_INTR_VALID))
2374 return (1);
2375 KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
2376 (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
2377 ("VM exit interruption info invalid: %x", intr_info));
2378 vmx_trigger_hostintr(intr_info & 0xff);
2379
2380 /*
2381 * This is special. We want to treat this as an 'handled'
2382 * VM-exit but not increment the instruction pointer.
2383 */
2384 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
2385 return (1);
2386 case EXIT_REASON_NMI_WINDOW:
2387 SDT_PROBE3(vmm, vmx, exit, nmiwindow, vmx, vcpu, vmexit);
2388 /* Exit to allow the pending virtual NMI to be injected */
2389 if (vm_nmi_pending(vmx->vm, vcpu))
2390 vmx_inject_nmi(vmx, vcpu);
2391 ASSERT(vmx_nmi_window_exiting(vmx, vcpu));
2392 vmx_clear_nmi_window_exiting(vmx, vcpu);
2393 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
2394 return (1);
2395 case EXIT_REASON_INOUT:
2396 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
2397 vie = vm_vie_ctx(vmx->vm, vcpu);
2398 vmexit_inout(vmexit, vie, qual, (uint32_t)vmxctx->guest_rax);
2399 SDT_PROBE3(vmm, vmx, exit, inout, vmx, vcpu, vmexit);
2400 break;
2401 case EXIT_REASON_CPUID:
2402 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
2403 SDT_PROBE3(vmm, vmx, exit, cpuid, vmx, vcpu, vmexit);
2404 vcpu_emulate_cpuid(vmx->vm, vcpu,
2405 (uint64_t *)&vmxctx->guest_rax,
2406 (uint64_t *)&vmxctx->guest_rbx,
2407 (uint64_t *)&vmxctx->guest_rcx,
2408 (uint64_t *)&vmxctx->guest_rdx);
2409 handled = HANDLED;
2410 break;
2411 case EXIT_REASON_EXCEPTION:
2412 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1);
2413 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2414 KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2415 ("VM exit interruption info invalid: %x", intr_info));
2416
2417 intr_vec = intr_info & 0xff;
2418 intr_type = intr_info & VMCS_INTR_T_MASK;
2419
2420 /*
2421 * If Virtual NMIs control is 1 and the VM-exit is due to a
2422 * fault encountered during the execution of IRET then we must
2423 * restore the state of "virtual-NMI blocking" before resuming
2424 * the guest.
2425 *
2426 * See "Resuming Guest Software after Handling an Exception".
2427 * See "Information for VM Exits Due to Vectored Events".
2428 */
2429 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2430 (intr_vec != IDT_DF) &&
2431 (intr_info & EXIT_QUAL_NMIUDTI) != 0)
2432 vmx_restore_nmi_blocking(vmx, vcpu);
2433
2434 /*
2435 * The NMI has already been handled in vmx_exit_handle_nmi().
2436 */
2437 if (intr_type == VMCS_INTR_T_NMI)
2438 return (1);
2439
2440 /*
2441 * Call the machine check handler by hand. Also don't reflect
2442 * the machine check back into the guest.
2443 */
2444 if (intr_vec == IDT_MC) {
2445 vmm_call_trap(T_MCE);
2446 return (1);
2447 }
2448
2449 /*
2450 * If the hypervisor has requested user exits for
2451 * debug exceptions, bounce them out to userland.
2452 */
2453 if (intr_type == VMCS_INTR_T_SWEXCEPTION &&
2454 intr_vec == IDT_BP &&
2455 (vmx->cap[vcpu].set & (1 << VM_CAP_BPT_EXIT))) {
2456 vmexit->exitcode = VM_EXITCODE_BPT;
2457 vmexit->u.bpt.inst_length = vmexit->inst_length;
2458 vmexit->inst_length = 0;
2459 break;
2460 }
2461
2462 if (intr_vec == IDT_PF) {
2463 vmxctx->guest_cr2 = qual;
2464 }
2465
2466 /*
2467 * Software exceptions exhibit trap-like behavior. This in
2468 * turn requires populating the VM-entry instruction length
2469 * so that the %rip in the trap frame is past the INT3/INTO
2470 * instruction.
2471 */
2472 if (intr_type == VMCS_INTR_T_SWEXCEPTION)
2473 vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2474
2475 /* Reflect all other exceptions back into the guest */
2476 errcode_valid = errcode = 0;
2477 if (intr_info & VMCS_INTR_DEL_ERRCODE) {
2478 errcode_valid = 1;
2479 errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE);
2480 }
2481 SDT_PROBE5(vmm, vmx, exit, exception,
2482 vmx, vcpu, vmexit, intr_vec, errcode);
2483 error = vm_inject_exception(vmx->vm, vcpu, intr_vec,
2484 errcode_valid, errcode, 0);
2485 KASSERT(error == 0, ("%s: vm_inject_exception error %d",
2486 __func__, error));
2487 return (1);
2488
2489 case EXIT_REASON_EPT_FAULT:
2490 /*
2491 * If 'gpa' lies within the address space allocated to
2492 * memory then this must be a nested page fault otherwise
2493 * this must be an instruction that accesses MMIO space.
2494 */
2495 gpa = vmcs_read(VMCS_GUEST_PHYSICAL_ADDRESS);
2496 if (vm_mem_allocated(vmx->vm, vcpu, gpa) ||
2497 apic_access_fault(vmx, vcpu, gpa)) {
2498 vmexit->exitcode = VM_EXITCODE_PAGING;
2499 vmexit->inst_length = 0;
2500 vmexit->u.paging.gpa = gpa;
2501 vmexit->u.paging.fault_type = ept_fault_type(qual);
2502 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
2503 SDT_PROBE5(vmm, vmx, exit, nestedfault,
2504 vmx, vcpu, vmexit, gpa, qual);
2505 } else if (ept_emulation_fault(qual)) {
2506 vie = vm_vie_ctx(vmx->vm, vcpu);
2507 vmexit_mmio_emul(vmexit, vie, gpa,
2508 vmcs_read(VMCS_GUEST_LINEAR_ADDRESS));
2509 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MMIO_EMUL, 1);
2510 SDT_PROBE4(vmm, vmx, exit, mmiofault,
2511 vmx, vcpu, vmexit, gpa);
2512 }
2513 /*
2514 * If Virtual NMIs control is 1 and the VM-exit is due to an
2515 * EPT fault during the execution of IRET then we must restore
2516 * the state of "virtual-NMI blocking" before resuming.
2517 *
2518 * See description of "NMI unblocking due to IRET" in
2519 * "Exit Qualification for EPT Violations".
2520 */
2521 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2522 (qual & EXIT_QUAL_NMIUDTI) != 0)
2523 vmx_restore_nmi_blocking(vmx, vcpu);
2524 break;
2525 case EXIT_REASON_VIRTUALIZED_EOI:
2526 vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
2527 vmexit->u.ioapic_eoi.vector = qual & 0xFF;
2528 SDT_PROBE3(vmm, vmx, exit, eoi, vmx, vcpu, vmexit);
2529 vmexit->inst_length = 0; /* trap-like */
2530 break;
2531 case EXIT_REASON_APIC_ACCESS:
2532 SDT_PROBE3(vmm, vmx, exit, apicaccess, vmx, vcpu, vmexit);
2533 handled = vmx_handle_apic_access(vmx, vcpu, vmexit);
2534 break;
2535 case EXIT_REASON_APIC_WRITE:
2536 /*
2537 * APIC-write VM exit is trap-like so the %rip is already
2538 * pointing to the next instruction.
2539 */
2540 vmexit->inst_length = 0;
2541 vlapic = vm_lapic(vmx->vm, vcpu);
2542 SDT_PROBE4(vmm, vmx, exit, apicwrite,
2543 vmx, vcpu, vmexit, vlapic);
2544 handled = vmx_handle_apic_write(vmx, vcpu, vlapic, qual);
2545 break;
2546 case EXIT_REASON_XSETBV:
2547 SDT_PROBE3(vmm, vmx, exit, xsetbv, vmx, vcpu, vmexit);
2548 handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit);
2549 break;
2550 case EXIT_REASON_MONITOR:
2551 SDT_PROBE3(vmm, vmx, exit, monitor, vmx, vcpu, vmexit);
2552 vmexit->exitcode = VM_EXITCODE_MONITOR;
2553 break;
2554 case EXIT_REASON_MWAIT:
2555 SDT_PROBE3(vmm, vmx, exit, mwait, vmx, vcpu, vmexit);
2556 vmexit->exitcode = VM_EXITCODE_MWAIT;
2557 break;
2558 case EXIT_REASON_TPR:
2559 vlapic = vm_lapic(vmx->vm, vcpu);
2560 vlapic_sync_tpr(vlapic);
2561 vmexit->inst_length = 0;
2562 handled = HANDLED;
2563 break;
2564 case EXIT_REASON_VMCALL:
2565 case EXIT_REASON_VMCLEAR:
2566 case EXIT_REASON_VMLAUNCH:
2567 case EXIT_REASON_VMPTRLD:
2568 case EXIT_REASON_VMPTRST:
2569 case EXIT_REASON_VMREAD:
2570 case EXIT_REASON_VMRESUME:
2571 case EXIT_REASON_VMWRITE:
2572 case EXIT_REASON_VMXOFF:
2573 case EXIT_REASON_VMXON:
2574 SDT_PROBE3(vmm, vmx, exit, vminsn, vmx, vcpu, vmexit);
2575 vmexit->exitcode = VM_EXITCODE_VMINSN;
2576 break;
2577 case EXIT_REASON_INVD:
2578 case EXIT_REASON_WBINVD:
2579 /* ignore exit */
2580 handled = HANDLED;
2581 break;
2582 default:
2583 SDT_PROBE4(vmm, vmx, exit, unknown,
2584 vmx, vcpu, vmexit, reason);
2585 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
2586 break;
2587 }
2588
2589 if (handled) {
2590 /*
2591 * It is possible that control is returned to userland
2592 * even though we were able to handle the VM exit in the
2593 * kernel.
2594 *
2595 * In such a case we want to make sure that the userland
2596 * restarts guest execution at the instruction *after*
2597 * the one we just processed. Therefore we update the
2598 * guest rip in the VMCS and in 'vmexit'.
2599 */
2600 vmexit->rip += vmexit->inst_length;
2601 vmexit->inst_length = 0;
2602 vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
2603 } else {
2604 if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
2605 /*
2606 * If this VM exit was not claimed by anybody then
2607 * treat it as a generic VMX exit.
2608 */
2609 vmexit->exitcode = VM_EXITCODE_VMX;
2610 vmexit->u.vmx.status = VM_SUCCESS;
2611 vmexit->u.vmx.inst_type = 0;
2612 vmexit->u.vmx.inst_error = 0;
2613 } else {
2614 /*
2615 * The exitcode and collateral have been populated.
2616 * The VM exit will be processed further in userland.
2617 */
2618 }
2619 }
2620
2621 SDT_PROBE4(vmm, vmx, exit, return,
2622 vmx, vcpu, vmexit, handled);
2623 return (handled);
2624 }
2625
2626 static void
vmx_exit_inst_error(struct vmxctx * vmxctx,int rc,struct vm_exit * vmexit)2627 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
2628 {
2629
2630 KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
2631 ("vmx_exit_inst_error: invalid inst_fail_status %d",
2632 vmxctx->inst_fail_status));
2633
2634 vmexit->inst_length = 0;
2635 vmexit->exitcode = VM_EXITCODE_VMX;
2636 vmexit->u.vmx.status = vmxctx->inst_fail_status;
2637 vmexit->u.vmx.inst_error = vmcs_read(VMCS_INSTRUCTION_ERROR);
2638 vmexit->u.vmx.exit_reason = ~0;
2639 vmexit->u.vmx.exit_qualification = ~0;
2640
2641 switch (rc) {
2642 case VMX_VMRESUME_ERROR:
2643 case VMX_VMLAUNCH_ERROR:
2644 case VMX_INVEPT_ERROR:
2645 case VMX_VMWRITE_ERROR:
2646 vmexit->u.vmx.inst_type = rc;
2647 break;
2648 default:
2649 panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
2650 }
2651 }
2652
2653 /*
2654 * If the NMI-exiting VM execution control is set to '1' then an NMI in
2655 * non-root operation causes a VM-exit. NMI blocking is in effect so it is
2656 * sufficient to simply vector to the NMI handler via a software interrupt.
2657 * However, this must be done before maskable interrupts are enabled
2658 * otherwise the "iret" issued by an interrupt handler will incorrectly
2659 * clear NMI blocking.
2660 */
2661 static __inline void
vmx_exit_handle_possible_nmi(struct vm_exit * vmexit)2662 vmx_exit_handle_possible_nmi(struct vm_exit *vmexit)
2663 {
2664 ASSERT(!interrupts_enabled());
2665
2666 if (vmexit->u.vmx.exit_reason == EXIT_REASON_EXCEPTION) {
2667 uint32_t intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2668 ASSERT(intr_info & VMCS_INTR_VALID);
2669
2670 if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
2671 ASSERT3U(intr_info & 0xff, ==, IDT_NMI);
2672 vmm_call_trap(T_NMIFLT);
2673 }
2674 }
2675 }
2676
2677 static __inline void
vmx_dr_enter_guest(struct vmxctx * vmxctx)2678 vmx_dr_enter_guest(struct vmxctx *vmxctx)
2679 {
2680 uint64_t rflags;
2681
2682 /* Save host control debug registers. */
2683 vmxctx->host_dr7 = rdr7();
2684 vmxctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
2685
2686 /*
2687 * Disable debugging in DR7 and DEBUGCTL to avoid triggering
2688 * exceptions in the host based on the guest DRx values. The
2689 * guest DR7 and DEBUGCTL are saved/restored in the VMCS.
2690 */
2691 load_dr7(0);
2692 wrmsr(MSR_DEBUGCTLMSR, 0);
2693
2694 /*
2695 * Disable single stepping the kernel to avoid corrupting the
2696 * guest DR6. A debugger might still be able to corrupt the
2697 * guest DR6 by setting a breakpoint after this point and then
2698 * single stepping.
2699 */
2700 rflags = read_rflags();
2701 vmxctx->host_tf = rflags & PSL_T;
2702 write_rflags(rflags & ~PSL_T);
2703
2704 /* Save host debug registers. */
2705 vmxctx->host_dr0 = rdr0();
2706 vmxctx->host_dr1 = rdr1();
2707 vmxctx->host_dr2 = rdr2();
2708 vmxctx->host_dr3 = rdr3();
2709 vmxctx->host_dr6 = rdr6();
2710
2711 /* Restore guest debug registers. */
2712 load_dr0(vmxctx->guest_dr0);
2713 load_dr1(vmxctx->guest_dr1);
2714 load_dr2(vmxctx->guest_dr2);
2715 load_dr3(vmxctx->guest_dr3);
2716 load_dr6(vmxctx->guest_dr6);
2717 }
2718
2719 static __inline void
vmx_dr_leave_guest(struct vmxctx * vmxctx)2720 vmx_dr_leave_guest(struct vmxctx *vmxctx)
2721 {
2722
2723 /* Save guest debug registers. */
2724 vmxctx->guest_dr0 = rdr0();
2725 vmxctx->guest_dr1 = rdr1();
2726 vmxctx->guest_dr2 = rdr2();
2727 vmxctx->guest_dr3 = rdr3();
2728 vmxctx->guest_dr6 = rdr6();
2729
2730 /*
2731 * Restore host debug registers. Restore DR7, DEBUGCTL, and
2732 * PSL_T last.
2733 */
2734 load_dr0(vmxctx->host_dr0);
2735 load_dr1(vmxctx->host_dr1);
2736 load_dr2(vmxctx->host_dr2);
2737 load_dr3(vmxctx->host_dr3);
2738 load_dr6(vmxctx->host_dr6);
2739 wrmsr(MSR_DEBUGCTLMSR, vmxctx->host_debugctl);
2740 load_dr7(vmxctx->host_dr7);
2741 write_rflags(read_rflags() | vmxctx->host_tf);
2742 }
2743
2744 static int
vmx_run(void * arg,int vcpu,uint64_t rip)2745 vmx_run(void *arg, int vcpu, uint64_t rip)
2746 {
2747 int rc, handled, launched;
2748 struct vmx *vmx;
2749 struct vm *vm;
2750 struct vmxctx *vmxctx;
2751 uintptr_t vmcs_pa;
2752 struct vm_exit *vmexit;
2753 struct vlapic *vlapic;
2754 uint32_t exit_reason;
2755 bool tpr_shadow_active;
2756 vm_client_t *vmc;
2757
2758 vmx = arg;
2759 vm = vmx->vm;
2760 vmcs_pa = vmx->vmcs_pa[vcpu];
2761 vmxctx = &vmx->ctx[vcpu];
2762 vlapic = vm_lapic(vm, vcpu);
2763 vmexit = vm_exitinfo(vm, vcpu);
2764 vmc = vm_get_vmclient(vm, vcpu);
2765 launched = 0;
2766 tpr_shadow_active = vmx_cap_en(vmx, VMX_CAP_TPR_SHADOW) &&
2767 !vmx_cap_en(vmx, VMX_CAP_APICV) &&
2768 (vmx->cap[vcpu].proc_ctls & PROCBASED_USE_TPR_SHADOW) != 0;
2769
2770 vmx_msr_guest_enter(vmx, vcpu);
2771
2772 vmcs_load(vmcs_pa);
2773
2774 VERIFY(vmx->vmcs_state[vcpu] == VS_NONE && curthread->t_preempt != 0);
2775 vmx->vmcs_state[vcpu] = VS_LOADED;
2776
2777 /*
2778 * XXX
2779 * We do this every time because we may setup the virtual machine
2780 * from a different process than the one that actually runs it.
2781 *
2782 * If the life of a virtual machine was spent entirely in the context
2783 * of a single process we could do this once in vmx_vminit().
2784 */
2785 vmcs_write(VMCS_HOST_CR3, rcr3());
2786
2787 vmcs_write(VMCS_GUEST_RIP, rip);
2788 vmx_set_pcpu_defaults(vmx, vcpu);
2789 do {
2790 enum event_inject_state inject_state;
2791 uint64_t eptgen;
2792
2793 ASSERT3U(vmcs_read(VMCS_GUEST_RIP), ==, rip);
2794
2795 handled = UNHANDLED;
2796
2797 /*
2798 * Perform initial event/exception/interrupt injection before
2799 * host CPU interrupts are disabled.
2800 */
2801 inject_state = vmx_inject_events(vmx, vcpu, rip);
2802
2803 /*
2804 * Interrupts are disabled from this point on until the
2805 * guest starts executing. This is done for the following
2806 * reasons:
2807 *
2808 * If an AST is asserted on this thread after the check below,
2809 * then the IPI_AST notification will not be lost, because it
2810 * will cause a VM exit due to external interrupt as soon as
2811 * the guest state is loaded.
2812 *
2813 * A posted interrupt after vmx_inject_vlapic() will not be
2814 * "lost" because it will be held pending in the host APIC
2815 * because interrupts are disabled. The pending interrupt will
2816 * be recognized as soon as the guest state is loaded.
2817 *
2818 * The same reasoning applies to the IPI generated by vmspace
2819 * invalidation.
2820 */
2821 disable_intr();
2822
2823 /*
2824 * If not precluded by existing events, inject any interrupt
2825 * pending on the vLAPIC. As a lock-less operation, it is safe
2826 * (and prudent) to perform with host CPU interrupts disabled.
2827 */
2828 if (inject_state == EIS_CAN_INJECT) {
2829 inject_state = vmx_inject_vlapic(vmx, vcpu, vlapic);
2830 }
2831
2832 /*
2833 * Check for vCPU bail-out conditions. This must be done after
2834 * vmx_inject_events() to detect a triple-fault condition.
2835 */
2836 if (vcpu_entry_bailout_checks(vmx->vm, vcpu, rip)) {
2837 enable_intr();
2838 break;
2839 }
2840
2841 if (vcpu_run_state_pending(vm, vcpu)) {
2842 enable_intr();
2843 vm_exit_run_state(vmx->vm, vcpu, rip);
2844 break;
2845 }
2846
2847 /*
2848 * If subsequent activity queued events which require injection
2849 * handling, take another lap to handle them.
2850 */
2851 if (vmx_inject_recheck(vmx, vcpu, inject_state)) {
2852 enable_intr();
2853 handled = HANDLED;
2854 continue;
2855 }
2856
2857 if ((rc = smt_acquire()) != 1) {
2858 enable_intr();
2859 vmexit->rip = rip;
2860 vmexit->inst_length = 0;
2861 if (rc == -1) {
2862 vmexit->exitcode = VM_EXITCODE_HT;
2863 } else {
2864 vmexit->exitcode = VM_EXITCODE_BOGUS;
2865 handled = HANDLED;
2866 }
2867 break;
2868 }
2869
2870 /*
2871 * If this thread has gone off-cpu due to mutex operations
2872 * during vmx_run, the VMCS will have been unloaded, forcing a
2873 * re-VMLAUNCH as opposed to VMRESUME.
2874 */
2875 launched = (vmx->vmcs_state[vcpu] & VS_LAUNCHED) != 0;
2876 /*
2877 * Restoration of the GDT limit is taken care of by
2878 * vmx_savectx(). Since the maximum practical index for the
2879 * IDT is 255, restoring its limits from the post-VMX-exit
2880 * default of 0xffff is not a concern.
2881 *
2882 * Only 64-bit hypervisor callers are allowed, which forgoes
2883 * the need to restore any LDT descriptor. Toss an error to
2884 * anyone attempting to break that rule.
2885 */
2886 if (curproc->p_model != DATAMODEL_LP64) {
2887 smt_release();
2888 enable_intr();
2889 bzero(vmexit, sizeof (*vmexit));
2890 vmexit->rip = rip;
2891 vmexit->exitcode = VM_EXITCODE_VMX;
2892 vmexit->u.vmx.status = VM_FAIL_INVALID;
2893 handled = UNHANDLED;
2894 break;
2895 }
2896
2897 if (tpr_shadow_active) {
2898 vmx_tpr_shadow_enter(vlapic);
2899 }
2900
2901 /*
2902 * Indicate activation of vmspace (EPT) table just prior to VMX
2903 * entry, checking for the necessity of an invept invalidation.
2904 */
2905 eptgen = vmc_table_enter(vmc);
2906 if (vmx->eptgen[curcpu] != eptgen) {
2907 /*
2908 * VMspace generation does not match what was previously
2909 * used on this host CPU, so all mappings associated
2910 * with this EP4TA must be invalidated.
2911 */
2912 invept(1, vmx->eptp);
2913 vmx->eptgen[curcpu] = eptgen;
2914 }
2915
2916 vcpu_ustate_change(vm, vcpu, VU_RUN);
2917 vmx_dr_enter_guest(vmxctx);
2918
2919 /* Perform VMX entry */
2920 rc = vmx_enter_guest(vmxctx, vmx, launched);
2921
2922 vmx_dr_leave_guest(vmxctx);
2923 vcpu_ustate_change(vm, vcpu, VU_EMU_KERN);
2924
2925 vmx->vmcs_state[vcpu] |= VS_LAUNCHED;
2926 smt_release();
2927
2928 if (tpr_shadow_active) {
2929 vmx_tpr_shadow_exit(vlapic);
2930 }
2931
2932 /* Collect some information for VM exit processing */
2933 vmexit->rip = rip = vmcs_read(VMCS_GUEST_RIP);
2934 vmexit->inst_length = vmcs_read(VMCS_EXIT_INSTRUCTION_LENGTH);
2935 vmexit->u.vmx.exit_reason = exit_reason =
2936 (vmcs_read(VMCS_EXIT_REASON) & BASIC_EXIT_REASON_MASK);
2937 vmexit->u.vmx.exit_qualification =
2938 vmcs_read(VMCS_EXIT_QUALIFICATION);
2939 /* Update 'nextrip' */
2940 vmx->state[vcpu].nextrip = rip;
2941
2942 if (rc == VMX_GUEST_VMEXIT) {
2943 vmx_exit_handle_possible_nmi(vmexit);
2944 }
2945 enable_intr();
2946 vmc_table_exit(vmc);
2947
2948 if (rc == VMX_GUEST_VMEXIT) {
2949 handled = vmx_exit_process(vmx, vcpu, vmexit);
2950 } else {
2951 vmx_exit_inst_error(vmxctx, rc, vmexit);
2952 }
2953 DTRACE_PROBE3(vmm__vexit, int, vcpu, uint64_t, rip,
2954 uint32_t, exit_reason);
2955 rip = vmexit->rip;
2956 } while (handled);
2957
2958 /* If a VM exit has been handled then the exitcode must be BOGUS */
2959 if (handled && vmexit->exitcode != VM_EXITCODE_BOGUS) {
2960 panic("Non-BOGUS exitcode (%d) unexpected for handled VM exit",
2961 vmexit->exitcode);
2962 }
2963
2964 vmcs_clear(vmcs_pa);
2965 vmx_msr_guest_exit(vmx, vcpu);
2966
2967 VERIFY(vmx->vmcs_state[vcpu] != VS_NONE && curthread->t_preempt != 0);
2968 vmx->vmcs_state[vcpu] = VS_NONE;
2969
2970 return (0);
2971 }
2972
2973 static void
vmx_vmcleanup(void * arg)2974 vmx_vmcleanup(void *arg)
2975 {
2976 int i;
2977 struct vmx *vmx = arg;
2978 uint16_t maxcpus;
2979
2980 if (vmx_cap_en(vmx, VMX_CAP_APICV)) {
2981 (void) vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
2982 kmem_free(vmx->apic_access_page, PAGESIZE);
2983 } else {
2984 VERIFY3P(vmx->apic_access_page, ==, NULL);
2985 }
2986
2987 vmx_msr_bitmap_destroy(vmx);
2988
2989 maxcpus = vm_get_maxcpus(vmx->vm);
2990 for (i = 0; i < maxcpus; i++)
2991 vpid_free(vmx->state[i].vpid);
2992
2993 kmem_free(vmx, sizeof (*vmx));
2994 }
2995
2996 /*
2997 * Ensure that the VMCS for this vcpu is loaded.
2998 * Returns true if a VMCS load was required.
2999 */
3000 static bool
vmx_vmcs_access_ensure(struct vmx * vmx,int vcpu)3001 vmx_vmcs_access_ensure(struct vmx *vmx, int vcpu)
3002 {
3003 int hostcpu;
3004
3005 if (vcpu_is_running(vmx->vm, vcpu, &hostcpu)) {
3006 if (hostcpu != curcpu) {
3007 panic("unexpected vcpu migration %d != %d",
3008 hostcpu, curcpu);
3009 }
3010 /* Earlier logic already took care of the load */
3011 return (false);
3012 } else {
3013 vmcs_load(vmx->vmcs_pa[vcpu]);
3014 return (true);
3015 }
3016 }
3017
3018 static void
vmx_vmcs_access_done(struct vmx * vmx,int vcpu)3019 vmx_vmcs_access_done(struct vmx *vmx, int vcpu)
3020 {
3021 int hostcpu;
3022
3023 if (vcpu_is_running(vmx->vm, vcpu, &hostcpu)) {
3024 if (hostcpu != curcpu) {
3025 panic("unexpected vcpu migration %d != %d",
3026 hostcpu, curcpu);
3027 }
3028 /* Later logic will take care of the unload */
3029 } else {
3030 vmcs_clear(vmx->vmcs_pa[vcpu]);
3031 }
3032 }
3033
3034 static uint64_t *
vmxctx_regptr(struct vmxctx * vmxctx,int reg)3035 vmxctx_regptr(struct vmxctx *vmxctx, int reg)
3036 {
3037 switch (reg) {
3038 case VM_REG_GUEST_RAX:
3039 return (&vmxctx->guest_rax);
3040 case VM_REG_GUEST_RBX:
3041 return (&vmxctx->guest_rbx);
3042 case VM_REG_GUEST_RCX:
3043 return (&vmxctx->guest_rcx);
3044 case VM_REG_GUEST_RDX:
3045 return (&vmxctx->guest_rdx);
3046 case VM_REG_GUEST_RSI:
3047 return (&vmxctx->guest_rsi);
3048 case VM_REG_GUEST_RDI:
3049 return (&vmxctx->guest_rdi);
3050 case VM_REG_GUEST_RBP:
3051 return (&vmxctx->guest_rbp);
3052 case VM_REG_GUEST_R8:
3053 return (&vmxctx->guest_r8);
3054 case VM_REG_GUEST_R9:
3055 return (&vmxctx->guest_r9);
3056 case VM_REG_GUEST_R10:
3057 return (&vmxctx->guest_r10);
3058 case VM_REG_GUEST_R11:
3059 return (&vmxctx->guest_r11);
3060 case VM_REG_GUEST_R12:
3061 return (&vmxctx->guest_r12);
3062 case VM_REG_GUEST_R13:
3063 return (&vmxctx->guest_r13);
3064 case VM_REG_GUEST_R14:
3065 return (&vmxctx->guest_r14);
3066 case VM_REG_GUEST_R15:
3067 return (&vmxctx->guest_r15);
3068 case VM_REG_GUEST_CR2:
3069 return (&vmxctx->guest_cr2);
3070 case VM_REG_GUEST_DR0:
3071 return (&vmxctx->guest_dr0);
3072 case VM_REG_GUEST_DR1:
3073 return (&vmxctx->guest_dr1);
3074 case VM_REG_GUEST_DR2:
3075 return (&vmxctx->guest_dr2);
3076 case VM_REG_GUEST_DR3:
3077 return (&vmxctx->guest_dr3);
3078 case VM_REG_GUEST_DR6:
3079 return (&vmxctx->guest_dr6);
3080 default:
3081 break;
3082 }
3083 return (NULL);
3084 }
3085
3086 static int
vmx_getreg(void * arg,int vcpu,int reg,uint64_t * retval)3087 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
3088 {
3089 struct vmx *vmx = arg;
3090 uint64_t *regp;
3091
3092 /* VMCS access not required for ctx reads */
3093 if ((regp = vmxctx_regptr(&vmx->ctx[vcpu], reg)) != NULL) {
3094 *retval = *regp;
3095 return (0);
3096 }
3097
3098 bool vmcs_loaded = vmx_vmcs_access_ensure(vmx, vcpu);
3099 int err = 0;
3100
3101 if (reg == VM_REG_GUEST_INTR_SHADOW) {
3102 uint64_t gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
3103 *retval = (gi & HWINTR_BLOCKING) ? 1 : 0;
3104 } else {
3105 uint32_t encoding;
3106
3107 encoding = vmcs_field_encoding(reg);
3108 switch (encoding) {
3109 case VMCS_GUEST_CR0:
3110 /* Take the shadow bits into account */
3111 *retval = vmx_unshadow_cr0(vmcs_read(encoding),
3112 vmcs_read(VMCS_CR0_SHADOW));
3113 break;
3114 case VMCS_GUEST_CR4:
3115 /* Take the shadow bits into account */
3116 *retval = vmx_unshadow_cr4(vmcs_read(encoding),
3117 vmcs_read(VMCS_CR4_SHADOW));
3118 break;
3119 case VMCS_INVALID_ENCODING:
3120 err = EINVAL;
3121 break;
3122 default:
3123 *retval = vmcs_read(encoding);
3124 break;
3125 }
3126 }
3127
3128 if (vmcs_loaded) {
3129 vmx_vmcs_access_done(vmx, vcpu);
3130 }
3131 return (err);
3132 }
3133
3134 static int
vmx_setreg(void * arg,int vcpu,int reg,uint64_t val)3135 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
3136 {
3137 struct vmx *vmx = arg;
3138 uint64_t *regp;
3139
3140 /* VMCS access not required for ctx writes */
3141 if ((regp = vmxctx_regptr(&vmx->ctx[vcpu], reg)) != NULL) {
3142 *regp = val;
3143 return (0);
3144 }
3145
3146 bool vmcs_loaded = vmx_vmcs_access_ensure(vmx, vcpu);
3147 int err = 0;
3148
3149 if (reg == VM_REG_GUEST_INTR_SHADOW) {
3150 if (val != 0) {
3151 /*
3152 * Forcing the vcpu into an interrupt shadow is not
3153 * presently supported.
3154 */
3155 err = EINVAL;
3156 } else {
3157 uint64_t gi;
3158
3159 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
3160 gi &= ~HWINTR_BLOCKING;
3161 vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
3162 err = 0;
3163 }
3164 } else {
3165 uint32_t encoding;
3166
3167 err = 0;
3168 encoding = vmcs_field_encoding(reg);
3169 switch (encoding) {
3170 case VMCS_GUEST_IA32_EFER:
3171 vmcs_write(encoding, val);
3172 vmx_sync_efer_state(vmx, vcpu, val);
3173 break;
3174 case VMCS_GUEST_CR0:
3175 /*
3176 * The guest is not allowed to modify certain bits in
3177 * %cr0 and %cr4. To maintain the illusion of full
3178 * control, they have shadow versions which contain the
3179 * guest-perceived (via reads from the register) values
3180 * as opposed to the guest-effective values.
3181 *
3182 * This is detailed in the SDM: Vol. 3 Ch. 24.6.6.
3183 */
3184 vmcs_write(VMCS_CR0_SHADOW, val);
3185 vmcs_write(encoding, vmx_fix_cr0(val));
3186 break;
3187 case VMCS_GUEST_CR4:
3188 /* See above for detail on %cr4 shadowing */
3189 vmcs_write(VMCS_CR4_SHADOW, val);
3190 vmcs_write(encoding, vmx_fix_cr4(val));
3191 break;
3192 case VMCS_GUEST_CR3:
3193 vmcs_write(encoding, val);
3194 /*
3195 * Invalidate the guest vcpu's TLB mappings to emulate
3196 * the behavior of updating %cr3.
3197 *
3198 * XXX the processor retains global mappings when %cr3
3199 * is updated but vmx_invvpid() does not.
3200 */
3201 vmx_invvpid(vmx, vcpu,
3202 vcpu_is_running(vmx->vm, vcpu, NULL));
3203 break;
3204 case VMCS_INVALID_ENCODING:
3205 err = EINVAL;
3206 break;
3207 default:
3208 vmcs_write(encoding, val);
3209 break;
3210 }
3211 }
3212
3213 if (vmcs_loaded) {
3214 vmx_vmcs_access_done(vmx, vcpu);
3215 }
3216 return (err);
3217 }
3218
3219 static int
vmx_getdesc(void * arg,int vcpu,int seg,struct seg_desc * desc)3220 vmx_getdesc(void *arg, int vcpu, int seg, struct seg_desc *desc)
3221 {
3222 struct vmx *vmx = arg;
3223 uint32_t base, limit, access;
3224
3225 bool vmcs_loaded = vmx_vmcs_access_ensure(vmx, vcpu);
3226
3227 vmcs_seg_desc_encoding(seg, &base, &limit, &access);
3228 desc->base = vmcs_read(base);
3229 desc->limit = vmcs_read(limit);
3230 if (access != VMCS_INVALID_ENCODING) {
3231 desc->access = vmcs_read(access);
3232 } else {
3233 desc->access = 0;
3234 }
3235
3236 if (vmcs_loaded) {
3237 vmx_vmcs_access_done(vmx, vcpu);
3238 }
3239 return (0);
3240 }
3241
3242 static int
vmx_setdesc(void * arg,int vcpu,int seg,const struct seg_desc * desc)3243 vmx_setdesc(void *arg, int vcpu, int seg, const struct seg_desc *desc)
3244 {
3245 struct vmx *vmx = arg;
3246 uint32_t base, limit, access;
3247
3248 bool vmcs_loaded = vmx_vmcs_access_ensure(vmx, vcpu);
3249
3250 vmcs_seg_desc_encoding(seg, &base, &limit, &access);
3251 vmcs_write(base, desc->base);
3252 vmcs_write(limit, desc->limit);
3253 if (access != VMCS_INVALID_ENCODING) {
3254 vmcs_write(access, desc->access);
3255 }
3256
3257 if (vmcs_loaded) {
3258 vmx_vmcs_access_done(vmx, vcpu);
3259 }
3260 return (0);
3261 }
3262
3263 static uint64_t *
vmx_msr_ptr(struct vmx * vmx,int vcpu,uint32_t msr)3264 vmx_msr_ptr(struct vmx *vmx, int vcpu, uint32_t msr)
3265 {
3266 uint64_t *guest_msrs = vmx->guest_msrs[vcpu];
3267
3268 switch (msr) {
3269 case MSR_LSTAR:
3270 return (&guest_msrs[IDX_MSR_LSTAR]);
3271 case MSR_CSTAR:
3272 return (&guest_msrs[IDX_MSR_CSTAR]);
3273 case MSR_STAR:
3274 return (&guest_msrs[IDX_MSR_STAR]);
3275 case MSR_SF_MASK:
3276 return (&guest_msrs[IDX_MSR_SF_MASK]);
3277 case MSR_KGSBASE:
3278 return (&guest_msrs[IDX_MSR_KGSBASE]);
3279 case MSR_PAT:
3280 return (&guest_msrs[IDX_MSR_PAT]);
3281 default:
3282 return (NULL);
3283 }
3284 }
3285
3286 static int
vmx_msr_get(void * arg,int vcpu,uint32_t msr,uint64_t * valp)3287 vmx_msr_get(void *arg, int vcpu, uint32_t msr, uint64_t *valp)
3288 {
3289 struct vmx *vmx = arg;
3290
3291 ASSERT(valp != NULL);
3292
3293 const uint64_t *msrp = vmx_msr_ptr(vmx, vcpu, msr);
3294 if (msrp != NULL) {
3295 *valp = *msrp;
3296 return (0);
3297 }
3298
3299 const uint32_t vmcs_enc = vmcs_msr_encoding(msr);
3300 if (vmcs_enc != VMCS_INVALID_ENCODING) {
3301 bool vmcs_loaded = vmx_vmcs_access_ensure(vmx, vcpu);
3302
3303 *valp = vmcs_read(vmcs_enc);
3304
3305 if (vmcs_loaded) {
3306 vmx_vmcs_access_done(vmx, vcpu);
3307 }
3308 return (0);
3309 }
3310
3311 return (EINVAL);
3312 }
3313
3314 static int
vmx_msr_set(void * arg,int vcpu,uint32_t msr,uint64_t val)3315 vmx_msr_set(void *arg, int vcpu, uint32_t msr, uint64_t val)
3316 {
3317 struct vmx *vmx = arg;
3318
3319 /* TODO: mask value */
3320
3321 uint64_t *msrp = vmx_msr_ptr(vmx, vcpu, msr);
3322 if (msrp != NULL) {
3323 *msrp = val;
3324 return (0);
3325 }
3326
3327 const uint32_t vmcs_enc = vmcs_msr_encoding(msr);
3328 if (vmcs_enc != VMCS_INVALID_ENCODING) {
3329 bool vmcs_loaded = vmx_vmcs_access_ensure(vmx, vcpu);
3330
3331 vmcs_write(vmcs_enc, val);
3332
3333 if (msr == MSR_EFER) {
3334 vmx_sync_efer_state(vmx, vcpu, val);
3335 }
3336
3337 if (vmcs_loaded) {
3338 vmx_vmcs_access_done(vmx, vcpu);
3339 }
3340 return (0);
3341 }
3342 return (EINVAL);
3343 }
3344
3345 static int
vmx_getcap(void * arg,int vcpu,int type,int * retval)3346 vmx_getcap(void *arg, int vcpu, int type, int *retval)
3347 {
3348 struct vmx *vmx = arg;
3349 int vcap;
3350 int ret;
3351
3352 ret = ENOENT;
3353
3354 vcap = vmx->cap[vcpu].set;
3355
3356 switch (type) {
3357 case VM_CAP_HALT_EXIT:
3358 ret = 0;
3359 break;
3360 case VM_CAP_PAUSE_EXIT:
3361 if (cap_pause_exit)
3362 ret = 0;
3363 break;
3364 case VM_CAP_MTRAP_EXIT:
3365 if (cap_monitor_trap)
3366 ret = 0;
3367 break;
3368 case VM_CAP_ENABLE_INVPCID:
3369 if (cap_invpcid)
3370 ret = 0;
3371 break;
3372 case VM_CAP_BPT_EXIT:
3373 ret = 0;
3374 break;
3375 default:
3376 break;
3377 }
3378
3379 if (ret == 0)
3380 *retval = (vcap & (1 << type)) ? 1 : 0;
3381
3382 return (ret);
3383 }
3384
3385 static int
vmx_setcap(void * arg,int vcpu,int type,int val)3386 vmx_setcap(void *arg, int vcpu, int type, int val)
3387 {
3388 struct vmx *vmx = arg;
3389 uint32_t baseval, reg, flag;
3390 uint32_t *pptr;
3391 int error;
3392
3393 error = ENOENT;
3394 pptr = NULL;
3395
3396 switch (type) {
3397 case VM_CAP_HALT_EXIT:
3398 error = 0;
3399 pptr = &vmx->cap[vcpu].proc_ctls;
3400 baseval = *pptr;
3401 flag = PROCBASED_HLT_EXITING;
3402 reg = VMCS_PRI_PROC_BASED_CTLS;
3403 break;
3404 case VM_CAP_MTRAP_EXIT:
3405 if (cap_monitor_trap) {
3406 error = 0;
3407 pptr = &vmx->cap[vcpu].proc_ctls;
3408 baseval = *pptr;
3409 flag = PROCBASED_MTF;
3410 reg = VMCS_PRI_PROC_BASED_CTLS;
3411 }
3412 break;
3413 case VM_CAP_PAUSE_EXIT:
3414 if (cap_pause_exit) {
3415 error = 0;
3416 pptr = &vmx->cap[vcpu].proc_ctls;
3417 baseval = *pptr;
3418 flag = PROCBASED_PAUSE_EXITING;
3419 reg = VMCS_PRI_PROC_BASED_CTLS;
3420 }
3421 break;
3422 case VM_CAP_ENABLE_INVPCID:
3423 if (cap_invpcid) {
3424 error = 0;
3425 pptr = &vmx->cap[vcpu].proc_ctls2;
3426 baseval = *pptr;
3427 flag = PROCBASED2_ENABLE_INVPCID;
3428 reg = VMCS_SEC_PROC_BASED_CTLS;
3429 }
3430 break;
3431 case VM_CAP_BPT_EXIT:
3432 error = 0;
3433
3434 /* Don't change the bitmap if we are tracing all exceptions. */
3435 if (vmx->cap[vcpu].exc_bitmap != 0xffffffff) {
3436 pptr = &vmx->cap[vcpu].exc_bitmap;
3437 baseval = *pptr;
3438 flag = (1 << IDT_BP);
3439 reg = VMCS_EXCEPTION_BITMAP;
3440 }
3441 break;
3442 default:
3443 break;
3444 }
3445
3446 if (error != 0) {
3447 return (error);
3448 }
3449
3450 if (pptr != NULL) {
3451 if (val) {
3452 baseval |= flag;
3453 } else {
3454 baseval &= ~flag;
3455 }
3456 vmcs_load(vmx->vmcs_pa[vcpu]);
3457 vmcs_write(reg, baseval);
3458 vmcs_clear(vmx->vmcs_pa[vcpu]);
3459
3460 /*
3461 * Update optional stored flags, and record
3462 * setting
3463 */
3464 *pptr = baseval;
3465 }
3466
3467 if (val) {
3468 vmx->cap[vcpu].set |= (1 << type);
3469 } else {
3470 vmx->cap[vcpu].set &= ~(1 << type);
3471 }
3472
3473 return (0);
3474 }
3475
3476 struct vlapic_vtx {
3477 struct vlapic vlapic;
3478
3479 /* Align to the nearest cacheline */
3480 uint8_t _pad[64 - (sizeof (struct vlapic) % 64)];
3481
3482 /* TMR handling state for posted interrupts */
3483 uint32_t tmr_active[8];
3484 uint32_t pending_level[8];
3485 uint32_t pending_edge[8];
3486
3487 struct pir_desc *pir_desc;
3488 struct vmx *vmx;
3489 uint_t pending_prio;
3490 boolean_t tmr_sync;
3491 };
3492
3493 CTASSERT((offsetof(struct vlapic_vtx, tmr_active) & 63) == 0);
3494
3495 #define VPR_PRIO_BIT(vpr) (1 << ((vpr) >> 4))
3496
3497 static vcpu_notify_t
vmx_apicv_set_ready(struct vlapic * vlapic,int vector,bool level)3498 vmx_apicv_set_ready(struct vlapic *vlapic, int vector, bool level)
3499 {
3500 struct vlapic_vtx *vlapic_vtx;
3501 struct pir_desc *pir_desc;
3502 uint32_t mask, tmrval;
3503 int idx;
3504 vcpu_notify_t notify = VCPU_NOTIFY_NONE;
3505
3506 vlapic_vtx = (struct vlapic_vtx *)vlapic;
3507 pir_desc = vlapic_vtx->pir_desc;
3508 idx = vector / 32;
3509 mask = 1UL << (vector % 32);
3510
3511 /*
3512 * If the currently asserted TMRs do not match the state requested by
3513 * the incoming interrupt, an exit will be required to reconcile those
3514 * bits in the APIC page. This will keep the vLAPIC behavior in line
3515 * with the architecturally defined expectations.
3516 *
3517 * If actors of mixed types (edge and level) are racing against the same
3518 * vector (toggling its TMR bit back and forth), the results could
3519 * inconsistent. Such circumstances are considered a rare edge case and
3520 * are never expected to be found in the wild.
3521 */
3522 tmrval = atomic_load_acq_int(&vlapic_vtx->tmr_active[idx]);
3523 if (!level) {
3524 if ((tmrval & mask) != 0) {
3525 /* Edge-triggered interrupt needs TMR de-asserted */
3526 atomic_set_int(&vlapic_vtx->pending_edge[idx], mask);
3527 atomic_store_rel_long(&pir_desc->pending, 1);
3528 return (VCPU_NOTIFY_EXIT);
3529 }
3530 } else {
3531 if ((tmrval & mask) == 0) {
3532 /* Level-triggered interrupt needs TMR asserted */
3533 atomic_set_int(&vlapic_vtx->pending_level[idx], mask);
3534 atomic_store_rel_long(&pir_desc->pending, 1);
3535 return (VCPU_NOTIFY_EXIT);
3536 }
3537 }
3538
3539 /*
3540 * If the interrupt request does not require manipulation of the TMRs
3541 * for delivery, set it in PIR descriptor. It cannot be inserted into
3542 * the APIC page while the vCPU might be running.
3543 */
3544 atomic_set_int(&pir_desc->pir[idx], mask);
3545
3546 /*
3547 * A notification is required whenever the 'pending' bit makes a
3548 * transition from 0->1.
3549 *
3550 * Even if the 'pending' bit is already asserted, notification about
3551 * the incoming interrupt may still be necessary. For example, if a
3552 * vCPU is HLTed with a high PPR, a low priority interrupt would cause
3553 * the 0->1 'pending' transition with a notification, but the vCPU
3554 * would ignore the interrupt for the time being. The same vCPU would
3555 * need to then be notified if a high-priority interrupt arrived which
3556 * satisfied the PPR.
3557 *
3558 * The priorities of interrupts injected while 'pending' is asserted
3559 * are tracked in a custom bitfield 'pending_prio'. Should the
3560 * to-be-injected interrupt exceed the priorities already present, the
3561 * notification is sent. The priorities recorded in 'pending_prio' are
3562 * cleared whenever the 'pending' bit makes another 0->1 transition.
3563 */
3564 if (atomic_cmpset_long(&pir_desc->pending, 0, 1) != 0) {
3565 notify = VCPU_NOTIFY_APIC;
3566 vlapic_vtx->pending_prio = 0;
3567 } else {
3568 const uint_t old_prio = vlapic_vtx->pending_prio;
3569 const uint_t prio_bit = VPR_PRIO_BIT(vector & APIC_TPR_INT);
3570
3571 if ((old_prio & prio_bit) == 0 && prio_bit > old_prio) {
3572 atomic_set_int(&vlapic_vtx->pending_prio, prio_bit);
3573 notify = VCPU_NOTIFY_APIC;
3574 }
3575 }
3576
3577 return (notify);
3578 }
3579
3580 static void
vmx_apicv_accepted(struct vlapic * vlapic,int vector)3581 vmx_apicv_accepted(struct vlapic *vlapic, int vector)
3582 {
3583 /*
3584 * When APICv is enabled for an instance, the traditional interrupt
3585 * injection method (populating ENTRY_INTR_INFO in the VMCS) is not
3586 * used and the CPU does the heavy lifting of virtual interrupt
3587 * delivery. For that reason vmx_intr_accepted() should never be called
3588 * when APICv is enabled.
3589 */
3590 panic("vmx_intr_accepted: not expected to be called");
3591 }
3592
3593 static void
vmx_apicv_sync_tmr(struct vlapic * vlapic)3594 vmx_apicv_sync_tmr(struct vlapic *vlapic)
3595 {
3596 struct vlapic_vtx *vlapic_vtx;
3597 const uint32_t *tmrs;
3598
3599 vlapic_vtx = (struct vlapic_vtx *)vlapic;
3600 tmrs = &vlapic_vtx->tmr_active[0];
3601
3602 if (!vlapic_vtx->tmr_sync) {
3603 return;
3604 }
3605
3606 vmcs_write(VMCS_EOI_EXIT0, ((uint64_t)tmrs[1] << 32) | tmrs[0]);
3607 vmcs_write(VMCS_EOI_EXIT1, ((uint64_t)tmrs[3] << 32) | tmrs[2]);
3608 vmcs_write(VMCS_EOI_EXIT2, ((uint64_t)tmrs[5] << 32) | tmrs[4]);
3609 vmcs_write(VMCS_EOI_EXIT3, ((uint64_t)tmrs[7] << 32) | tmrs[6]);
3610 vlapic_vtx->tmr_sync = B_FALSE;
3611 }
3612
3613 static void
vmx_enable_x2apic_mode_ts(struct vlapic * vlapic)3614 vmx_enable_x2apic_mode_ts(struct vlapic *vlapic)
3615 {
3616 struct vmx *vmx;
3617 uint32_t proc_ctls;
3618 int vcpuid;
3619
3620 vcpuid = vlapic->vcpuid;
3621 vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3622
3623 proc_ctls = vmx->cap[vcpuid].proc_ctls;
3624 proc_ctls &= ~PROCBASED_USE_TPR_SHADOW;
3625 proc_ctls |= PROCBASED_CR8_LOAD_EXITING;
3626 proc_ctls |= PROCBASED_CR8_STORE_EXITING;
3627 vmx->cap[vcpuid].proc_ctls = proc_ctls;
3628
3629 vmcs_load(vmx->vmcs_pa[vcpuid]);
3630 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, proc_ctls);
3631 vmcs_clear(vmx->vmcs_pa[vcpuid]);
3632 }
3633
3634 static void
vmx_enable_x2apic_mode_vid(struct vlapic * vlapic)3635 vmx_enable_x2apic_mode_vid(struct vlapic *vlapic)
3636 {
3637 struct vmx *vmx;
3638 uint32_t proc_ctls2;
3639 int vcpuid;
3640
3641 vcpuid = vlapic->vcpuid;
3642 vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3643
3644 proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
3645 KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0,
3646 ("%s: invalid proc_ctls2 %x", __func__, proc_ctls2));
3647
3648 proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES;
3649 proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE;
3650 vmx->cap[vcpuid].proc_ctls2 = proc_ctls2;
3651
3652 vmcs_load(vmx->vmcs_pa[vcpuid]);
3653 vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2);
3654 vmcs_clear(vmx->vmcs_pa[vcpuid]);
3655
3656 vmx_allow_x2apic_msrs(vmx, vcpuid);
3657 }
3658
3659 static void
vmx_apicv_notify(struct vlapic * vlapic,int hostcpu)3660 vmx_apicv_notify(struct vlapic *vlapic, int hostcpu)
3661 {
3662 psm_send_pir_ipi(hostcpu);
3663 }
3664
3665 static void
vmx_apicv_sync(struct vlapic * vlapic)3666 vmx_apicv_sync(struct vlapic *vlapic)
3667 {
3668 struct vlapic_vtx *vlapic_vtx;
3669 struct pir_desc *pir_desc;
3670 struct LAPIC *lapic;
3671 uint_t i;
3672
3673 vlapic_vtx = (struct vlapic_vtx *)vlapic;
3674 pir_desc = vlapic_vtx->pir_desc;
3675 lapic = vlapic->apic_page;
3676
3677 if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
3678 return;
3679 }
3680
3681 vlapic_vtx->pending_prio = 0;
3682
3683 /* Make sure the invalid (0-15) vectors are not set */
3684 ASSERT0(vlapic_vtx->pending_level[0] & 0xffff);
3685 ASSERT0(vlapic_vtx->pending_edge[0] & 0xffff);
3686 ASSERT0(pir_desc->pir[0] & 0xffff);
3687
3688 for (i = 0; i <= 7; i++) {
3689 uint32_t *tmrp = &lapic->tmr0 + (i * 4);
3690 uint32_t *irrp = &lapic->irr0 + (i * 4);
3691
3692 const uint32_t pending_level =
3693 atomic_readandclear_int(&vlapic_vtx->pending_level[i]);
3694 const uint32_t pending_edge =
3695 atomic_readandclear_int(&vlapic_vtx->pending_edge[i]);
3696 const uint32_t pending_inject =
3697 atomic_readandclear_int(&pir_desc->pir[i]);
3698
3699 if (pending_level != 0) {
3700 /*
3701 * Level-triggered interrupts assert their corresponding
3702 * bit in the TMR when queued in IRR.
3703 */
3704 *tmrp |= pending_level;
3705 *irrp |= pending_level;
3706 }
3707 if (pending_edge != 0) {
3708 /*
3709 * When queuing an edge-triggered interrupt in IRR, the
3710 * corresponding bit in the TMR is cleared.
3711 */
3712 *tmrp &= ~pending_edge;
3713 *irrp |= pending_edge;
3714 }
3715 if (pending_inject != 0) {
3716 /*
3717 * Interrupts which do not require a change to the TMR
3718 * (because it already matches the necessary state) can
3719 * simply be queued in IRR.
3720 */
3721 *irrp |= pending_inject;
3722 }
3723
3724 if (*tmrp != vlapic_vtx->tmr_active[i]) {
3725 /* Check if VMX EOI triggers require updating. */
3726 vlapic_vtx->tmr_active[i] = *tmrp;
3727 vlapic_vtx->tmr_sync = B_TRUE;
3728 }
3729 }
3730 }
3731
3732 static void
vmx_tpr_shadow_enter(struct vlapic * vlapic)3733 vmx_tpr_shadow_enter(struct vlapic *vlapic)
3734 {
3735 /*
3736 * When TPR shadowing is enabled, VMX will initiate a guest exit if its
3737 * TPR falls below a threshold priority. That threshold is set to the
3738 * current TPR priority, since guest interrupt status should be
3739 * re-evaluated if its TPR is set lower.
3740 */
3741 vmcs_write(VMCS_TPR_THRESHOLD, vlapic_get_cr8(vlapic));
3742 }
3743
3744 static void
vmx_tpr_shadow_exit(struct vlapic * vlapic)3745 vmx_tpr_shadow_exit(struct vlapic *vlapic)
3746 {
3747 /*
3748 * Unlike full APICv, where changes to the TPR are reflected in the PPR,
3749 * with TPR shadowing, that duty is relegated to the VMM. Upon exit,
3750 * the PPR is updated to reflect any change in the TPR here.
3751 */
3752 vlapic_sync_tpr(vlapic);
3753 }
3754
3755 static struct vlapic *
vmx_vlapic_init(void * arg,int vcpuid)3756 vmx_vlapic_init(void *arg, int vcpuid)
3757 {
3758 struct vmx *vmx = arg;
3759 struct vlapic_vtx *vlapic_vtx;
3760 struct vlapic *vlapic;
3761
3762 vlapic_vtx = kmem_zalloc(sizeof (struct vlapic_vtx), KM_SLEEP);
3763 vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid];
3764 vlapic_vtx->vmx = vmx;
3765
3766 vlapic = &vlapic_vtx->vlapic;
3767 vlapic->vm = vmx->vm;
3768 vlapic->vcpuid = vcpuid;
3769 vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid];
3770
3771 if (vmx_cap_en(vmx, VMX_CAP_TPR_SHADOW)) {
3772 vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_ts;
3773 }
3774 if (vmx_cap_en(vmx, VMX_CAP_APICV)) {
3775 vlapic->ops.set_intr_ready = vmx_apicv_set_ready;
3776 vlapic->ops.sync_state = vmx_apicv_sync;
3777 vlapic->ops.intr_accepted = vmx_apicv_accepted;
3778 vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_vid;
3779
3780 if (vmx_cap_en(vmx, VMX_CAP_APICV_PIR)) {
3781 vlapic->ops.post_intr = vmx_apicv_notify;
3782 }
3783 }
3784
3785 vlapic_init(vlapic);
3786
3787 return (vlapic);
3788 }
3789
3790 static void
vmx_vlapic_cleanup(void * arg,struct vlapic * vlapic)3791 vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic)
3792 {
3793 vlapic_cleanup(vlapic);
3794 kmem_free(vlapic, sizeof (struct vlapic_vtx));
3795 }
3796
3797 static void
vmx_pause(void * arg,int vcpuid)3798 vmx_pause(void *arg, int vcpuid)
3799 {
3800 struct vmx *vmx = arg;
3801
3802 VERIFY(vmx_vmcs_access_ensure(vmx, vcpuid));
3803
3804 /* Stash any interrupt/exception pending injection. */
3805 vmx_stash_intinfo(vmx, vcpuid);
3806
3807 /*
3808 * Now that no event is pending injection, interrupt-window exiting and
3809 * NMI-window exiting can be disabled. If/when this vCPU is made to run
3810 * again, those conditions will be reinstated when the now-queued events
3811 * are re-injected.
3812 */
3813 vmx_clear_nmi_window_exiting(vmx, vcpuid);
3814 vmx_clear_int_window_exiting(vmx, vcpuid);
3815
3816 vmx_vmcs_access_done(vmx, vcpuid);
3817 }
3818
3819 static void
vmx_savectx(void * arg,int vcpu)3820 vmx_savectx(void *arg, int vcpu)
3821 {
3822 struct vmx *vmx = arg;
3823
3824 if ((vmx->vmcs_state[vcpu] & VS_LOADED) != 0) {
3825 vmcs_clear(vmx->vmcs_pa[vcpu]);
3826 vmx_msr_guest_exit(vmx, vcpu);
3827 /*
3828 * Having VMCLEARed the VMCS, it can no longer be re-entered
3829 * with VMRESUME, but must be VMLAUNCHed again.
3830 */
3831 vmx->vmcs_state[vcpu] &= ~VS_LAUNCHED;
3832 }
3833
3834 reset_gdtr_limit();
3835 }
3836
3837 static void
vmx_restorectx(void * arg,int vcpu)3838 vmx_restorectx(void *arg, int vcpu)
3839 {
3840 struct vmx *vmx = arg;
3841
3842 ASSERT0(vmx->vmcs_state[vcpu] & VS_LAUNCHED);
3843
3844 if ((vmx->vmcs_state[vcpu] & VS_LOADED) != 0) {
3845 vmx_msr_guest_enter(vmx, vcpu);
3846 vmcs_load(vmx->vmcs_pa[vcpu]);
3847 }
3848 }
3849
3850 static freqratio_res_t
vmx_freq_ratio(uint64_t guest_hz,uint64_t host_hz,uint64_t * mult)3851 vmx_freq_ratio(uint64_t guest_hz, uint64_t host_hz, uint64_t *mult)
3852 {
3853 if (guest_hz == host_hz) {
3854 *mult = VM_TSCM_NOSCALE;
3855 return (FR_SCALING_NOT_NEEDED);
3856 }
3857
3858 /* VMX support not implemented at this time */
3859 return (FR_SCALING_NOT_SUPPORTED);
3860 }
3861
3862 struct vmm_ops vmm_ops_intel = {
3863 .init = vmx_init,
3864 .resume = vmx_restore,
3865
3866 .vminit = vmx_vminit,
3867 .vmrun = vmx_run,
3868 .vmcleanup = vmx_vmcleanup,
3869 .vmgetreg = vmx_getreg,
3870 .vmsetreg = vmx_setreg,
3871 .vmgetdesc = vmx_getdesc,
3872 .vmsetdesc = vmx_setdesc,
3873 .vmgetcap = vmx_getcap,
3874 .vmsetcap = vmx_setcap,
3875 .vlapic_init = vmx_vlapic_init,
3876 .vlapic_cleanup = vmx_vlapic_cleanup,
3877 .vmpause = vmx_pause,
3878
3879 .vmsavectx = vmx_savectx,
3880 .vmrestorectx = vmx_restorectx,
3881
3882 .vmgetmsr = vmx_msr_get,
3883 .vmsetmsr = vmx_msr_set,
3884
3885 .vmfreqratio = vmx_freq_ratio,
3886 .fr_intsize = INTEL_TSCM_INT_SIZE,
3887 .fr_fracsize = INTEL_TSCM_FRAC_SIZE,
3888 };
3889
3890 /* Side-effect free HW validation derived from checks in vmx_init. */
3891 int
vmx_x86_supported(const char ** msg)3892 vmx_x86_supported(const char **msg)
3893 {
3894 int error;
3895 uint32_t tmp;
3896
3897 ASSERT(msg != NULL);
3898
3899 /* Check support for primary processor-based VM-execution controls */
3900 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
3901 MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_CTLS_ONE_SETTING,
3902 PROCBASED_CTLS_ZERO_SETTING, &tmp);
3903 if (error) {
3904 *msg = "processor does not support desired primary "
3905 "processor-based controls";
3906 return (error);
3907 }
3908
3909 /* Check support for secondary processor-based VM-execution controls */
3910 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
3911 MSR_VMX_PROCBASED_CTLS2, PROCBASED_CTLS2_ONE_SETTING,
3912 PROCBASED_CTLS2_ZERO_SETTING, &tmp);
3913 if (error) {
3914 *msg = "processor does not support desired secondary "
3915 "processor-based controls";
3916 return (error);
3917 }
3918
3919 /* Check support for pin-based VM-execution controls */
3920 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
3921 MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_CTLS_ONE_SETTING,
3922 PINBASED_CTLS_ZERO_SETTING, &tmp);
3923 if (error) {
3924 *msg = "processor does not support desired pin-based controls";
3925 return (error);
3926 }
3927
3928 /* Check support for VM-exit controls */
3929 error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
3930 VM_EXIT_CTLS_ONE_SETTING, VM_EXIT_CTLS_ZERO_SETTING, &tmp);
3931 if (error) {
3932 *msg = "processor does not support desired exit controls";
3933 return (error);
3934 }
3935
3936 /* Check support for VM-entry controls */
3937 error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
3938 VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING, &tmp);
3939 if (error) {
3940 *msg = "processor does not support desired entry controls";
3941 return (error);
3942 }
3943
3944 /* Unrestricted guest is nominally optional, but not for us. */
3945 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
3946 PROCBASED2_UNRESTRICTED_GUEST, 0, &tmp);
3947 if (error) {
3948 *msg = "processor does not support desired unrestricted guest "
3949 "controls";
3950 return (error);
3951 }
3952
3953 return (0);
3954 }
3955