xref: /freebsd/sys/kern/vfs_vnops.c (revision b1de02c415de5df2d24d8021827634fc095b7a26)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
13  * Copyright (c) 2013, 2014 The FreeBSD Foundation
14  *
15  * Portions of this software were developed by Konstantin Belousov
16  * under sponsorship from the FreeBSD Foundation.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  */
42 
43 #include "opt_hwpmc_hooks.h"
44 #include "opt_hwt_hooks.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/buf.h>
49 #include <sys/disk.h>
50 #include <sys/dirent.h>
51 #include <sys/fail.h>
52 #include <sys/fcntl.h>
53 #include <sys/file.h>
54 #include <sys/filio.h>
55 #include <sys/inotify.h>
56 #include <sys/ktr.h>
57 #include <sys/ktrace.h>
58 #include <sys/limits.h>
59 #include <sys/lock.h>
60 #include <sys/mman.h>
61 #include <sys/mount.h>
62 #include <sys/mutex.h>
63 #include <sys/namei.h>
64 #include <sys/priv.h>
65 #include <sys/prng.h>
66 #include <sys/proc.h>
67 #include <sys/rwlock.h>
68 #include <sys/sleepqueue.h>
69 #include <sys/stat.h>
70 #include <sys/sysctl.h>
71 #include <sys/unistd.h>
72 #include <sys/user.h>
73 #include <sys/vnode.h>
74 
75 #include <security/audit/audit.h>
76 #include <security/mac/mac_framework.h>
77 
78 #include <vm/vm.h>
79 #include <vm/vm_extern.h>
80 #include <vm/pmap.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_object.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_pager.h>
85 #include <vm/vnode_pager.h>
86 
87 #ifdef HWPMC_HOOKS
88 #include <sys/pmckern.h>
89 #endif
90 
91 #ifdef HWT_HOOKS
92 #include <dev/hwt/hwt_hook.h>
93 #endif
94 
95 static fo_rdwr_t	vn_read;
96 static fo_rdwr_t	vn_write;
97 static fo_rdwr_t	vn_io_fault;
98 static fo_truncate_t	vn_truncate;
99 static fo_ioctl_t	vn_ioctl;
100 static fo_poll_t	vn_poll;
101 static fo_kqfilter_t	vn_kqfilter;
102 static fo_close_t	vn_closefile;
103 static fo_mmap_t	vn_mmap;
104 static fo_fallocate_t	vn_fallocate;
105 static fo_fspacectl_t	vn_fspacectl;
106 
107 const struct fileops vnops = {
108 	.fo_read = vn_io_fault,
109 	.fo_write = vn_io_fault,
110 	.fo_truncate = vn_truncate,
111 	.fo_ioctl = vn_ioctl,
112 	.fo_poll = vn_poll,
113 	.fo_kqfilter = vn_kqfilter,
114 	.fo_stat = vn_statfile,
115 	.fo_close = vn_closefile,
116 	.fo_chmod = vn_chmod,
117 	.fo_chown = vn_chown,
118 	.fo_sendfile = vn_sendfile,
119 	.fo_seek = vn_seek,
120 	.fo_fill_kinfo = vn_fill_kinfo,
121 	.fo_mmap = vn_mmap,
122 	.fo_fallocate = vn_fallocate,
123 	.fo_fspacectl = vn_fspacectl,
124 	.fo_cmp = vn_cmp,
125 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
126 };
127 
128 const u_int io_hold_cnt = 16;
129 static int vn_io_fault_enable = 1;
130 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RWTUN,
131     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
132 static int vn_io_fault_prefault = 0;
133 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RWTUN,
134     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
135 static int vn_io_pgcache_read_enable = 1;
136 SYSCTL_INT(_debug, OID_AUTO, vn_io_pgcache_read_enable, CTLFLAG_RWTUN,
137     &vn_io_pgcache_read_enable, 0,
138     "Enable copying from page cache for reads, avoiding fs");
139 static u_long vn_io_faults_cnt;
140 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
141     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
142 
143 static int vfs_allow_read_dir = 0;
144 SYSCTL_INT(_security_bsd, OID_AUTO, allow_read_dir, CTLFLAG_RW,
145     &vfs_allow_read_dir, 0,
146     "Enable read(2) of directory by root for filesystems that support it");
147 
148 /*
149  * Returns true if vn_io_fault mode of handling the i/o request should
150  * be used.
151  */
152 static bool
do_vn_io_fault(struct vnode * vp,struct uio * uio)153 do_vn_io_fault(struct vnode *vp, struct uio *uio)
154 {
155 	struct mount *mp;
156 
157 	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
158 	    (mp = vp->v_mount) != NULL &&
159 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
160 }
161 
162 /*
163  * Structure used to pass arguments to vn_io_fault1(), to do either
164  * file- or vnode-based I/O calls.
165  */
166 struct vn_io_fault_args {
167 	enum {
168 		VN_IO_FAULT_FOP,
169 		VN_IO_FAULT_VOP
170 	} kind;
171 	struct ucred *cred;
172 	int flags;
173 	union {
174 		struct fop_args_tag {
175 			struct file *fp;
176 			fo_rdwr_t *doio;
177 		} fop_args;
178 		struct vop_args_tag {
179 			struct vnode *vp;
180 		} vop_args;
181 	} args;
182 };
183 
184 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
185     struct vn_io_fault_args *args, struct thread *td);
186 
187 int
vn_open(struct nameidata * ndp,int * flagp,int cmode,struct file * fp)188 vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp)
189 {
190 	struct thread *td = curthread;
191 
192 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
193 }
194 
195 static uint64_t
open2nameif(int fmode,u_int vn_open_flags,uint64_t cn_flags)196 open2nameif(int fmode, u_int vn_open_flags, uint64_t cn_flags)
197 {
198 	uint64_t res;
199 
200 	res = ISOPEN | LOCKLEAF | cn_flags;
201 	if ((fmode & O_RESOLVE_BENEATH) != 0)
202 		res |= RBENEATH;
203 	if ((fmode & O_EMPTY_PATH) != 0)
204 		res |= EMPTYPATH;
205 	if ((fmode & FREAD) != 0)
206 		res |= OPENREAD;
207 	if ((fmode & FWRITE) != 0)
208 		res |= OPENWRITE;
209 	if ((fmode & O_NAMEDATTR) != 0)
210 		res |= OPENNAMED | CREATENAMED;
211 	if ((fmode & O_NOFOLLOW) != 0)
212 		res &= ~FOLLOW;
213 	if ((vn_open_flags & VN_OPEN_NOAUDIT) == 0)
214 		res |= AUDITVNODE1;
215 	else
216 		res &= ~AUDITVNODE1;
217 	if ((vn_open_flags & VN_OPEN_NOCAPCHECK) != 0)
218 		res |= NOCAPCHECK;
219 	if ((vn_open_flags & VN_OPEN_WANTIOCTLCAPS) != 0)
220 		res |= WANTIOCTLCAPS;
221 
222 	return (res);
223 }
224 
225 /*
226  * For the O_NAMEDATTR case, check for a valid use of it.
227  */
228 static int
vfs_check_namedattr(struct vnode * vp)229 vfs_check_namedattr(struct vnode *vp)
230 {
231 	int error;
232 	short irflag;
233 
234 	error = 0;
235 	irflag = vn_irflag_read(vp);
236 	if ((vp->v_mount->mnt_flag & MNT_NAMEDATTR) == 0 ||
237 	    ((irflag & VIRF_NAMEDATTR) != 0 && vp->v_type != VREG))
238 		error = EINVAL;
239 	else if ((irflag & (VIRF_NAMEDDIR | VIRF_NAMEDATTR)) == 0)
240 		error = ENOATTR;
241 	return (error);
242 }
243 
244 /*
245  * Common code for vnode open operations via a name lookup.
246  * Lookup the vnode and invoke VOP_CREATE if needed.
247  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
248  *
249  * Note that this does NOT free nameidata for the successful case,
250  * due to the NDINIT being done elsewhere.
251  */
252 int
vn_open_cred(struct nameidata * ndp,int * flagp,int cmode,u_int vn_open_flags,struct ucred * cred,struct file * fp)253 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
254     struct ucred *cred, struct file *fp)
255 {
256 	struct vnode *vp;
257 	struct mount *mp;
258 	struct vattr vat;
259 	struct vattr *vap = &vat;
260 	int fmode, error;
261 	bool first_open;
262 
263 restart:
264 	first_open = false;
265 	fmode = *flagp;
266 	if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
267 	    O_EXCL | O_DIRECTORY) ||
268 	    (fmode & (O_CREAT | O_EMPTY_PATH)) == (O_CREAT | O_EMPTY_PATH))
269 		return (EINVAL);
270 	else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
271 		ndp->ni_cnd.cn_nameiop = CREATE;
272 		ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags,
273 		    ndp->ni_cnd.cn_flags);
274 
275 		/*
276 		 * Set NOCACHE to avoid flushing the cache when
277 		 * rolling in many files at once.
278 		 *
279 		 * Set NC_KEEPPOSENTRY to keep positive entries if they already
280 		 * exist despite NOCACHE.
281 		 */
282 		ndp->ni_cnd.cn_flags |= LOCKPARENT | NOCACHE | NC_KEEPPOSENTRY;
283 		if ((fmode & O_EXCL) != 0)
284 			ndp->ni_cnd.cn_flags &= ~FOLLOW;
285 		if ((vn_open_flags & VN_OPEN_INVFS) == 0)
286 			bwillwrite();
287 		if ((error = namei(ndp)) != 0)
288 			return (error);
289 		if (ndp->ni_vp == NULL) {
290 			if ((fmode & O_NAMEDATTR) != 0 &&
291 			    (ndp->ni_dvp->v_mount->mnt_flag & MNT_NAMEDATTR) ==
292 			    0) {
293 				error = EINVAL;
294 				vp = ndp->ni_dvp;
295 				ndp->ni_dvp = NULL;
296 				goto bad;
297 			}
298 			VATTR_NULL(vap);
299 			vap->va_type = VREG;
300 			vap->va_mode = cmode;
301 			if (fmode & O_EXCL)
302 				vap->va_vaflags |= VA_EXCLUSIVE;
303 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
304 				NDFREE_PNBUF(ndp);
305 				vput(ndp->ni_dvp);
306 				if ((error = vn_start_write(NULL, &mp,
307 				    V_XSLEEP | V_PCATCH)) != 0)
308 					return (error);
309 				NDREINIT(ndp);
310 				goto restart;
311 			}
312 			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0 ||
313 			    (vn_irflag_read(ndp->ni_dvp) & VIRF_INOTIFY) != 0)
314 				ndp->ni_cnd.cn_flags |= MAKEENTRY;
315 #ifdef MAC
316 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
317 			    &ndp->ni_cnd, vap);
318 			if (error == 0)
319 #endif
320 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
321 				    &ndp->ni_cnd, vap);
322 			vp = ndp->ni_vp;
323 			if (error == 0 && (fmode & O_EXCL) != 0 &&
324 			    (fmode & (O_EXLOCK | O_SHLOCK)) != 0) {
325 				VI_LOCK(vp);
326 				vp->v_iflag |= VI_FOPENING;
327 				VI_UNLOCK(vp);
328 				first_open = true;
329 			}
330 			VOP_VPUT_PAIR(ndp->ni_dvp, error == 0 ? &vp : NULL,
331 			    false);
332 			vn_finished_write(mp);
333 			if (error) {
334 				NDFREE_PNBUF(ndp);
335 				if (error == ERELOOKUP) {
336 					NDREINIT(ndp);
337 					goto restart;
338 				}
339 				return (error);
340 			}
341 			fmode &= ~O_TRUNC;
342 		} else {
343 			if (ndp->ni_dvp == ndp->ni_vp)
344 				vrele(ndp->ni_dvp);
345 			else
346 				vput(ndp->ni_dvp);
347 			ndp->ni_dvp = NULL;
348 			vp = ndp->ni_vp;
349 			if (fmode & O_EXCL) {
350 				error = EEXIST;
351 				goto bad;
352 			}
353 			if ((fmode & O_NAMEDATTR) != 0) {
354 				error = vfs_check_namedattr(vp);
355 				if (error != 0)
356 					goto bad;
357 			} else if (vp->v_type == VDIR) {
358 				error = EISDIR;
359 				goto bad;
360 			}
361 			fmode &= ~O_CREAT;
362 		}
363 	} else {
364 		ndp->ni_cnd.cn_nameiop = LOOKUP;
365 		ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags,
366 		    ndp->ni_cnd.cn_flags);
367 		if ((fmode & FWRITE) == 0)
368 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
369 		if ((error = namei(ndp)) != 0)
370 			return (error);
371 		vp = ndp->ni_vp;
372 		if ((fmode & O_NAMEDATTR) != 0) {
373 			error = vfs_check_namedattr(vp);
374 			if (error != 0)
375 				goto bad;
376 		}
377 	}
378 	error = vn_open_vnode(vp, fmode, cred, curthread, fp);
379 	if (first_open) {
380 		VI_LOCK(vp);
381 		vp->v_iflag &= ~VI_FOPENING;
382 		wakeup(vp);
383 		VI_UNLOCK(vp);
384 	}
385 	if (error)
386 		goto bad;
387 	*flagp = fmode;
388 	return (0);
389 bad:
390 	NDFREE_PNBUF(ndp);
391 	vput(vp);
392 	*flagp = fmode;
393 	ndp->ni_vp = NULL;
394 	return (error);
395 }
396 
397 static int
vn_open_vnode_advlock(struct vnode * vp,int fmode,struct file * fp)398 vn_open_vnode_advlock(struct vnode *vp, int fmode, struct file *fp)
399 {
400 	struct flock lf;
401 	int error, lock_flags, type;
402 
403 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode_advlock");
404 	if ((fmode & (O_EXLOCK | O_SHLOCK)) == 0)
405 		return (0);
406 	KASSERT(fp != NULL, ("open with flock requires fp"));
407 	if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE)
408 		return (EOPNOTSUPP);
409 
410 	lock_flags = VOP_ISLOCKED(vp);
411 	VOP_UNLOCK(vp);
412 
413 	lf.l_whence = SEEK_SET;
414 	lf.l_start = 0;
415 	lf.l_len = 0;
416 	lf.l_type = (fmode & O_EXLOCK) != 0 ? F_WRLCK : F_RDLCK;
417 	type = F_FLOCK;
418 	if ((fmode & FNONBLOCK) == 0)
419 		type |= F_WAIT;
420 	if ((fmode & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
421 		type |= F_FIRSTOPEN;
422 	error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
423 	if (error == 0)
424 		fp->f_flag |= FHASLOCK;
425 
426 	vn_lock(vp, lock_flags | LK_RETRY);
427 	return (error);
428 }
429 
430 /*
431  * Common code for vnode open operations once a vnode is located.
432  * Check permissions, and call the VOP_OPEN routine.
433  */
434 int
vn_open_vnode(struct vnode * vp,int fmode,struct ucred * cred,struct thread * td,struct file * fp)435 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
436     struct thread *td, struct file *fp)
437 {
438 	accmode_t accmode;
439 	int error;
440 
441 	KASSERT((fmode & O_PATH) == 0 || (fmode & O_ACCMODE) == 0,
442 	    ("%s: O_PATH and O_ACCMODE are mutually exclusive", __func__));
443 
444 	if (vp->v_type == VLNK) {
445 		if ((fmode & O_PATH) == 0 || (fmode & FEXEC) != 0)
446 			return (EMLINK);
447 	}
448 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
449 		return (ENOTDIR);
450 
451 	accmode = 0;
452 	if ((fmode & O_PATH) == 0) {
453 		if (vp->v_type == VSOCK)
454 			return (EOPNOTSUPP);
455 		if ((fmode & (FWRITE | O_TRUNC)) != 0) {
456 			if (vp->v_type == VDIR)
457 				return (EISDIR);
458 			accmode |= VWRITE;
459 		}
460 		if ((fmode & FREAD) != 0)
461 			accmode |= VREAD;
462 		if ((fmode & O_APPEND) && (fmode & FWRITE))
463 			accmode |= VAPPEND;
464 #ifdef MAC
465 		if ((fmode & O_CREAT) != 0)
466 			accmode |= VCREAT;
467 #endif
468 	}
469 	if ((fmode & FEXEC) != 0)
470 		accmode |= VEXEC;
471 #ifdef MAC
472 	if ((fmode & O_VERIFY) != 0)
473 		accmode |= VVERIFY;
474 	error = mac_vnode_check_open(cred, vp, accmode);
475 	if (error != 0)
476 		return (error);
477 
478 	accmode &= ~(VCREAT | VVERIFY);
479 #endif
480 	if ((fmode & O_CREAT) == 0 && accmode != 0) {
481 		error = VOP_ACCESS(vp, accmode, cred, td);
482 		if (error != 0)
483 			return (error);
484 	}
485 	if ((fmode & O_PATH) != 0) {
486 		if (vp->v_type != VFIFO && vp->v_type != VSOCK &&
487 		    VOP_ACCESS(vp, VREAD, cred, td) == 0)
488 			fp->f_flag |= FKQALLOWED;
489 		INOTIFY(vp, IN_OPEN);
490 		return (0);
491 	}
492 
493 	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
494 		vn_lock(vp, LK_UPGRADE | LK_RETRY);
495 	error = VOP_OPEN(vp, fmode, cred, td, fp);
496 	if (error != 0)
497 		return (error);
498 
499 	error = vn_open_vnode_advlock(vp, fmode, fp);
500 	if (error == 0 && (fmode & FWRITE) != 0) {
501 		error = VOP_ADD_WRITECOUNT(vp, 1);
502 		if (error == 0) {
503 			CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
504 			     __func__, vp, vp->v_writecount);
505 		}
506 	}
507 
508 	/*
509 	 * Error from advlock or VOP_ADD_WRITECOUNT() still requires
510 	 * calling VOP_CLOSE() to pair with earlier VOP_OPEN().
511 	 */
512 	if (error != 0) {
513 		if (fp != NULL) {
514 			/*
515 			 * Arrange the call by having fdrop() to use
516 			 * vn_closefile().  This is to satisfy
517 			 * filesystems like devfs or tmpfs, which
518 			 * override fo_close().
519 			 */
520 			fp->f_flag |= FOPENFAILED;
521 			fp->f_vnode = vp;
522 			if (fp->f_ops == &badfileops) {
523 				fp->f_type = DTYPE_VNODE;
524 				fp->f_ops = &vnops;
525 			}
526 			vref(vp);
527 		} else {
528 			/*
529 			 * If there is no fp, due to kernel-mode open,
530 			 * we can call VOP_CLOSE() now.
531 			 */
532 			if ((vp->v_type == VFIFO ||
533 			    !MNT_EXTENDED_SHARED(vp->v_mount)) &&
534 			    VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
535 				vn_lock(vp, LK_UPGRADE | LK_RETRY);
536 			(void)VOP_CLOSE(vp, fmode & (FREAD | FWRITE | FEXEC),
537 			    cred, td);
538 		}
539 	}
540 
541 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
542 	return (error);
543 
544 }
545 
546 /*
547  * Check for write permissions on the specified vnode.
548  * Prototype text segments cannot be written.
549  * It is racy.
550  */
551 int
vn_writechk(struct vnode * vp)552 vn_writechk(struct vnode *vp)
553 {
554 
555 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
556 	/*
557 	 * If there's shared text associated with
558 	 * the vnode, try to free it up once.  If
559 	 * we fail, we can't allow writing.
560 	 */
561 	if (VOP_IS_TEXT(vp))
562 		return (ETXTBSY);
563 
564 	return (0);
565 }
566 
567 /*
568  * Vnode close call
569  */
570 static int
vn_close1(struct vnode * vp,int flags,struct ucred * file_cred,struct thread * td,bool keep_ref)571 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
572     struct thread *td, bool keep_ref)
573 {
574 	struct mount *mp;
575 	int error, lock_flags;
576 
577 	lock_flags = vp->v_type != VFIFO && MNT_EXTENDED_SHARED(vp->v_mount) ?
578 	    LK_SHARED : LK_EXCLUSIVE;
579 
580 	vn_start_write(vp, &mp, V_WAIT);
581 	vn_lock(vp, lock_flags | LK_RETRY);
582 	AUDIT_ARG_VNODE1(vp);
583 	if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
584 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
585 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
586 		    __func__, vp, vp->v_writecount);
587 	}
588 	error = VOP_CLOSE(vp, flags, file_cred, td);
589 	if (keep_ref)
590 		VOP_UNLOCK(vp);
591 	else
592 		vput(vp);
593 	vn_finished_write(mp);
594 	return (error);
595 }
596 
597 int
vn_close(struct vnode * vp,int flags,struct ucred * file_cred,struct thread * td)598 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
599     struct thread *td)
600 {
601 
602 	return (vn_close1(vp, flags, file_cred, td, false));
603 }
604 
605 /*
606  * Heuristic to detect sequential operation.
607  */
608 static int
sequential_heuristic(struct uio * uio,struct file * fp)609 sequential_heuristic(struct uio *uio, struct file *fp)
610 {
611 	enum uio_rw rw;
612 
613 	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
614 
615 	rw = uio->uio_rw;
616 	if (fp->f_flag & FRDAHEAD)
617 		return (fp->f_seqcount[rw] << IO_SEQSHIFT);
618 
619 	/*
620 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
621 	 * that the first I/O is normally considered to be slightly
622 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
623 	 * unless previous seeks have reduced f_seqcount to 0, in which
624 	 * case offset 0 is not special.
625 	 */
626 	if ((uio->uio_offset == 0 && fp->f_seqcount[rw] > 0) ||
627 	    uio->uio_offset == fp->f_nextoff[rw]) {
628 		/*
629 		 * f_seqcount is in units of fixed-size blocks so that it
630 		 * depends mainly on the amount of sequential I/O and not
631 		 * much on the number of sequential I/O's.  The fixed size
632 		 * of 16384 is hard-coded here since it is (not quite) just
633 		 * a magic size that works well here.  This size is more
634 		 * closely related to the best I/O size for real disks than
635 		 * to any block size used by software.
636 		 */
637 		if (uio->uio_resid >= IO_SEQMAX * 16384)
638 			fp->f_seqcount[rw] = IO_SEQMAX;
639 		else {
640 			fp->f_seqcount[rw] += howmany(uio->uio_resid, 16384);
641 			if (fp->f_seqcount[rw] > IO_SEQMAX)
642 				fp->f_seqcount[rw] = IO_SEQMAX;
643 		}
644 		return (fp->f_seqcount[rw] << IO_SEQSHIFT);
645 	}
646 
647 	/* Not sequential.  Quickly draw-down sequentiality. */
648 	if (fp->f_seqcount[rw] > 1)
649 		fp->f_seqcount[rw] = 1;
650 	else
651 		fp->f_seqcount[rw] = 0;
652 	return (0);
653 }
654 
655 /*
656  * Package up an I/O request on a vnode into a uio and do it.
657  */
658 int
vn_rdwr(enum uio_rw rw,struct vnode * vp,void * base,int len,off_t offset,enum uio_seg segflg,int ioflg,struct ucred * active_cred,struct ucred * file_cred,ssize_t * aresid,struct thread * td)659 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
660     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
661     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
662 {
663 	struct uio auio;
664 	struct iovec aiov;
665 	struct mount *mp;
666 	struct ucred *cred;
667 	void *rl_cookie;
668 	struct vn_io_fault_args args;
669 	int error, lock_flags;
670 
671 	if (offset < 0 && vp->v_type != VCHR)
672 		return (EINVAL);
673 	auio.uio_iov = &aiov;
674 	auio.uio_iovcnt = 1;
675 	aiov.iov_base = base;
676 	aiov.iov_len = len;
677 	auio.uio_resid = len;
678 	auio.uio_offset = offset;
679 	auio.uio_segflg = segflg;
680 	auio.uio_rw = rw;
681 	auio.uio_td = td;
682 	error = 0;
683 
684 	if ((ioflg & IO_NODELOCKED) == 0) {
685 		if ((ioflg & IO_RANGELOCKED) == 0) {
686 			if (rw == UIO_READ) {
687 				rl_cookie = vn_rangelock_rlock(vp, offset,
688 				    offset + len);
689 			} else if ((ioflg & IO_APPEND) != 0) {
690 				rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
691 			} else {
692 				rl_cookie = vn_rangelock_wlock(vp, offset,
693 				    offset + len);
694 			}
695 		} else
696 			rl_cookie = NULL;
697 		mp = NULL;
698 		if (rw == UIO_WRITE) {
699 			if (vp->v_type != VCHR &&
700 			    (error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH))
701 			    != 0)
702 				goto out;
703 			lock_flags = vn_lktype_write(mp, vp);
704 		} else
705 			lock_flags = LK_SHARED;
706 		vn_lock(vp, lock_flags | LK_RETRY);
707 	} else
708 		rl_cookie = NULL;
709 
710 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
711 #ifdef MAC
712 	if ((ioflg & IO_NOMACCHECK) == 0) {
713 		if (rw == UIO_READ)
714 			error = mac_vnode_check_read(active_cred, file_cred,
715 			    vp);
716 		else
717 			error = mac_vnode_check_write(active_cred, file_cred,
718 			    vp);
719 	}
720 #endif
721 	if (error == 0) {
722 		if (file_cred != NULL)
723 			cred = file_cred;
724 		else
725 			cred = active_cred;
726 		if (do_vn_io_fault(vp, &auio)) {
727 			args.kind = VN_IO_FAULT_VOP;
728 			args.cred = cred;
729 			args.flags = ioflg;
730 			args.args.vop_args.vp = vp;
731 			error = vn_io_fault1(vp, &auio, &args, td);
732 		} else if (rw == UIO_READ) {
733 			error = VOP_READ(vp, &auio, ioflg, cred);
734 		} else /* if (rw == UIO_WRITE) */ {
735 			error = VOP_WRITE(vp, &auio, ioflg, cred);
736 		}
737 	}
738 	if (aresid)
739 		*aresid = auio.uio_resid;
740 	else
741 		if (auio.uio_resid && error == 0)
742 			error = EIO;
743 	if ((ioflg & IO_NODELOCKED) == 0) {
744 		VOP_UNLOCK(vp);
745 		if (mp != NULL)
746 			vn_finished_write(mp);
747 	}
748  out:
749 	if (rl_cookie != NULL)
750 		vn_rangelock_unlock(vp, rl_cookie);
751 	return (error);
752 }
753 
754 /*
755  * Package up an I/O request on a vnode into a uio and do it.  The I/O
756  * request is split up into smaller chunks and we try to avoid saturating
757  * the buffer cache while potentially holding a vnode locked, so we
758  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
759  * to give other processes a chance to lock the vnode (either other processes
760  * core'ing the same binary, or unrelated processes scanning the directory).
761  */
762 int
vn_rdwr_inchunks(enum uio_rw rw,struct vnode * vp,void * base,size_t len,off_t offset,enum uio_seg segflg,int ioflg,struct ucred * active_cred,struct ucred * file_cred,size_t * aresid,struct thread * td)763 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len,
764     off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred,
765     struct ucred *file_cred, size_t *aresid, struct thread *td)
766 {
767 	int error = 0;
768 	ssize_t iaresid;
769 
770 	do {
771 		int chunk;
772 
773 		/*
774 		 * Force `offset' to a multiple of MAXBSIZE except possibly
775 		 * for the first chunk, so that filesystems only need to
776 		 * write full blocks except possibly for the first and last
777 		 * chunks.
778 		 */
779 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
780 
781 		if (chunk > len)
782 			chunk = len;
783 		if (rw != UIO_READ && vp->v_type == VREG)
784 			bwillwrite();
785 		iaresid = 0;
786 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
787 		    ioflg, active_cred, file_cred, &iaresid, td);
788 		len -= chunk;	/* aresid calc already includes length */
789 		if (error)
790 			break;
791 		offset += chunk;
792 		base = (char *)base + chunk;
793 		kern_yield(PRI_USER);
794 	} while (len);
795 	if (aresid)
796 		*aresid = len + iaresid;
797 	return (error);
798 }
799 
800 #if OFF_MAX <= LONG_MAX
801 static void
file_v_lock(struct file * fp,short lock_bit,short lock_wait_bit)802 file_v_lock(struct file *fp, short lock_bit, short lock_wait_bit)
803 {
804 	short *flagsp;
805 	short state;
806 
807 	flagsp = &fp->f_vflags;
808 	state = atomic_load_16(flagsp);
809 	for (;;) {
810 		if ((state & lock_bit) != 0)
811 			break;
812 		if (atomic_fcmpset_acq_16(flagsp, &state, state | lock_bit))
813 			return;
814 	}
815 
816 	sleepq_lock(flagsp);
817 	state = atomic_load_16(flagsp);
818 	for (;;) {
819 		if ((state & lock_bit) == 0) {
820 			if (!atomic_fcmpset_acq_16(flagsp, &state,
821 			    state | lock_bit))
822 				continue;
823 			break;
824 		}
825 		if ((state & lock_wait_bit) == 0) {
826 			if (!atomic_fcmpset_acq_16(flagsp, &state,
827 			    state | lock_wait_bit))
828 				continue;
829 		}
830 		DROP_GIANT();
831 		sleepq_add(flagsp, NULL, "vofflock", 0, 0);
832 		sleepq_wait(flagsp, PRI_MAX_KERN);
833 		PICKUP_GIANT();
834 		sleepq_lock(flagsp);
835 		state = atomic_load_16(flagsp);
836 	}
837 	sleepq_release(flagsp);
838 }
839 
840 static void
file_v_unlock(struct file * fp,short lock_bit,short lock_wait_bit)841 file_v_unlock(struct file *fp, short lock_bit, short lock_wait_bit)
842 {
843 	short *flagsp;
844 	short state;
845 
846 	flagsp = &fp->f_vflags;
847 	state = atomic_load_16(flagsp);
848 	for (;;) {
849 		if ((state & lock_wait_bit) != 0)
850 			break;
851 		if (atomic_fcmpset_rel_16(flagsp, &state, state & ~lock_bit))
852 			return;
853 	}
854 
855 	sleepq_lock(flagsp);
856 	MPASS((*flagsp & lock_bit) != 0);
857 	MPASS((*flagsp & lock_wait_bit) != 0);
858 	atomic_clear_16(flagsp, lock_bit | lock_wait_bit);
859 	sleepq_broadcast(flagsp, SLEEPQ_SLEEP, 0, 0);
860 	sleepq_release(flagsp);
861 }
862 
863 off_t
foffset_lock(struct file * fp,int flags)864 foffset_lock(struct file *fp, int flags)
865 {
866 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
867 
868 	if ((flags & FOF_NOLOCK) == 0) {
869 		file_v_lock(fp, FILE_V_FOFFSET_LOCKED,
870 		    FILE_V_FOFFSET_LOCK_WAITING);
871 	}
872 
873 	return (atomic_load_long(&fp->f_offset));
874 }
875 
876 void
foffset_unlock(struct file * fp,off_t val,int flags)877 foffset_unlock(struct file *fp, off_t val, int flags)
878 {
879 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
880 
881 	if ((flags & FOF_NOUPDATE) == 0)
882 		atomic_store_long(&fp->f_offset, val);
883 	if ((flags & FOF_NEXTOFF_R) != 0)
884 		fp->f_nextoff[UIO_READ] = val;
885 	if ((flags & FOF_NEXTOFF_W) != 0)
886 		fp->f_nextoff[UIO_WRITE] = val;
887 
888 	if ((flags & FOF_NOLOCK) == 0) {
889 		file_v_unlock(fp, FILE_V_FOFFSET_LOCKED,
890 		    FILE_V_FOFFSET_LOCK_WAITING);
891 	}
892 }
893 
894 static off_t
foffset_read(struct file * fp)895 foffset_read(struct file *fp)
896 {
897 
898 	return (atomic_load_long(&fp->f_offset));
899 }
900 
901 void
fsetfl_lock(struct file * fp)902 fsetfl_lock(struct file *fp)
903 {
904 	file_v_lock(fp, FILE_V_SETFL_LOCKED, FILE_V_SETFL_LOCK_WAITING);
905 }
906 
907 void
fsetfl_unlock(struct file * fp)908 fsetfl_unlock(struct file *fp)
909 {
910 	file_v_unlock(fp, FILE_V_SETFL_LOCKED, FILE_V_SETFL_LOCK_WAITING);
911 }
912 
913 #else	/* OFF_MAX <= LONG_MAX */
914 
915 static void
file_v_lock_mtxp(struct file * fp,struct mtx * mtxp,short lock_bit,short lock_wait_bit)916 file_v_lock_mtxp(struct file *fp, struct mtx *mtxp, short lock_bit,
917     short lock_wait_bit)
918 {
919 	mtx_assert(mtxp, MA_OWNED);
920 
921 	while ((fp->f_vflags & lock_bit) != 0) {
922 		fp->f_vflags |= lock_wait_bit;
923 		msleep(&fp->f_vflags, mtxp, PRI_MAX_KERN,
924 		    "vofflock", 0);
925 	}
926 	fp->f_vflags |= lock_bit;
927 }
928 
929 static void
file_v_unlock_mtxp(struct file * fp,struct mtx * mtxp,short lock_bit,short lock_wait_bit)930 file_v_unlock_mtxp(struct file *fp, struct mtx *mtxp, short lock_bit,
931     short lock_wait_bit)
932 {
933 	mtx_assert(mtxp, MA_OWNED);
934 
935 	KASSERT((fp->f_vflags & lock_bit) != 0, ("Lost lock_bit"));
936 	if ((fp->f_vflags & lock_wait_bit) != 0)
937 		wakeup(&fp->f_vflags);
938 	fp->f_vflags &= ~(lock_bit | lock_wait_bit);
939 }
940 
941 off_t
foffset_lock(struct file * fp,int flags)942 foffset_lock(struct file *fp, int flags)
943 {
944 	struct mtx *mtxp;
945 	off_t res;
946 
947 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
948 
949 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
950 	mtx_lock(mtxp);
951 	if ((flags & FOF_NOLOCK) == 0) {
952 		file_v_lock_mtxp(fp, mtxp, FILE_V_FOFFSET_LOCKED,
953 		    FILE_V_FOFFSET_LOCK_WAITING);
954 	}
955 	res = fp->f_offset;
956 	mtx_unlock(mtxp);
957 	return (res);
958 }
959 
960 void
foffset_unlock(struct file * fp,off_t val,int flags)961 foffset_unlock(struct file *fp, off_t val, int flags)
962 {
963 	struct mtx *mtxp;
964 
965 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
966 
967 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
968 	mtx_lock(mtxp);
969 	if ((flags & FOF_NOUPDATE) == 0)
970 		fp->f_offset = val;
971 	if ((flags & FOF_NEXTOFF_R) != 0)
972 		fp->f_nextoff[UIO_READ] = val;
973 	if ((flags & FOF_NEXTOFF_W) != 0)
974 		fp->f_nextoff[UIO_WRITE] = val;
975 	if ((flags & FOF_NOLOCK) == 0) {
976 		file_v_unlock_mtxp(fp, mtxp, FILE_V_FOFFSET_LOCKED,
977 		    FILE_V_FOFFSET_LOCK_WAITING);
978 	}
979 	mtx_unlock(mtxp);
980 }
981 
982 static off_t
foffset_read(struct file * fp)983 foffset_read(struct file *fp)
984 {
985 
986 	return (foffset_lock(fp, FOF_NOLOCK));
987 }
988 
989 void
fsetfl_lock(struct file * fp)990 fsetfl_lock(struct file *fp)
991 {
992 	struct mtx *mtxp;
993 
994 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
995 	mtx_lock(mtxp);
996 	file_v_lock_mtxp(fp, mtxp, FILE_V_SETFL_LOCKED,
997 	    FILE_V_SETFL_LOCK_WAITING);
998 	mtx_unlock(mtxp);
999 }
1000 
1001 void
fsetfl_unlock(struct file * fp)1002 fsetfl_unlock(struct file *fp)
1003 {
1004 	struct mtx *mtxp;
1005 
1006 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
1007 	mtx_lock(mtxp);
1008 	file_v_unlock_mtxp(fp, mtxp, FILE_V_SETFL_LOCKED,
1009 	    FILE_V_SETFL_LOCK_WAITING);
1010 	mtx_unlock(mtxp);
1011 }
1012 #endif
1013 
1014 void
foffset_lock_pair(struct file * fp1,off_t * off1p,struct file * fp2,off_t * off2p,int flags)1015 foffset_lock_pair(struct file *fp1, off_t *off1p, struct file *fp2, off_t *off2p,
1016     int flags)
1017 {
1018 	KASSERT(fp1 != fp2, ("foffset_lock_pair: fp1 == fp2"));
1019 
1020 	/* Lock in a consistent order to avoid deadlock. */
1021 	if ((uintptr_t)fp1 > (uintptr_t)fp2) {
1022 		struct file *tmpfp;
1023 		off_t *tmpoffp;
1024 
1025 		tmpfp = fp1, fp1 = fp2, fp2 = tmpfp;
1026 		tmpoffp = off1p, off1p = off2p, off2p = tmpoffp;
1027 	}
1028 	if (fp1 != NULL)
1029 		*off1p = foffset_lock(fp1, flags);
1030 	if (fp2 != NULL)
1031 		*off2p = foffset_lock(fp2, flags);
1032 }
1033 
1034 void
foffset_lock_uio(struct file * fp,struct uio * uio,int flags)1035 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
1036 {
1037 
1038 	if ((flags & FOF_OFFSET) == 0)
1039 		uio->uio_offset = foffset_lock(fp, flags);
1040 }
1041 
1042 void
foffset_unlock_uio(struct file * fp,struct uio * uio,int flags)1043 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
1044 {
1045 
1046 	if ((flags & FOF_OFFSET) == 0)
1047 		foffset_unlock(fp, uio->uio_offset, flags);
1048 }
1049 
1050 static int
get_advice(struct file * fp,struct uio * uio)1051 get_advice(struct file *fp, struct uio *uio)
1052 {
1053 	struct mtx *mtxp;
1054 	int ret;
1055 
1056 	ret = POSIX_FADV_NORMAL;
1057 	if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
1058 		return (ret);
1059 
1060 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
1061 	mtx_lock(mtxp);
1062 	if (fp->f_advice != NULL &&
1063 	    uio->uio_offset >= fp->f_advice->fa_start &&
1064 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
1065 		ret = fp->f_advice->fa_advice;
1066 	mtx_unlock(mtxp);
1067 	return (ret);
1068 }
1069 
1070 static int
get_write_ioflag(struct file * fp)1071 get_write_ioflag(struct file *fp)
1072 {
1073 	int ioflag;
1074 	struct mount *mp;
1075 	struct vnode *vp;
1076 
1077 	ioflag = 0;
1078 	vp = fp->f_vnode;
1079 	mp = atomic_load_ptr(&vp->v_mount);
1080 
1081 	if ((fp->f_flag & O_DIRECT) != 0)
1082 		ioflag |= IO_DIRECT;
1083 
1084 	if ((fp->f_flag & O_FSYNC) != 0 ||
1085 	    (mp != NULL && (mp->mnt_flag & MNT_SYNCHRONOUS) != 0))
1086 		ioflag |= IO_SYNC;
1087 
1088 	/*
1089 	 * For O_DSYNC we set both IO_SYNC and IO_DATASYNC, so that VOP_WRITE()
1090 	 * or VOP_DEALLOCATE() implementations that don't understand IO_DATASYNC
1091 	 * fall back to full O_SYNC behavior.
1092 	 */
1093 	if ((fp->f_flag & O_DSYNC) != 0)
1094 		ioflag |= IO_SYNC | IO_DATASYNC;
1095 
1096 	return (ioflag);
1097 }
1098 
1099 int
vn_read_from_obj(struct vnode * vp,struct uio * uio)1100 vn_read_from_obj(struct vnode *vp, struct uio *uio)
1101 {
1102 	vm_object_t obj;
1103 	vm_page_t ma[io_hold_cnt + 2];
1104 	off_t off, vsz;
1105 	ssize_t resid;
1106 	int error, i, j;
1107 
1108 	MPASS(uio->uio_resid <= ptoa(io_hold_cnt + 2));
1109 	obj = atomic_load_ptr(&vp->v_object);
1110 	if (obj == NULL)
1111 		return (EJUSTRETURN);
1112 
1113 	/*
1114 	 * Depends on type stability of vm_objects.
1115 	 */
1116 	vm_object_pip_add(obj, 1);
1117 	if ((obj->flags & OBJ_DEAD) != 0) {
1118 		/*
1119 		 * Note that object might be already reused from the
1120 		 * vnode, and the OBJ_DEAD flag cleared.  This is fine,
1121 		 * we recheck for DOOMED vnode state after all pages
1122 		 * are busied, and retract then.
1123 		 *
1124 		 * But we check for OBJ_DEAD to ensure that we do not
1125 		 * busy pages while vm_object_terminate_pages()
1126 		 * processes the queue.
1127 		 */
1128 		error = EJUSTRETURN;
1129 		goto out_pip;
1130 	}
1131 
1132 	resid = uio->uio_resid;
1133 	off = uio->uio_offset;
1134 	for (i = 0; resid > 0; i++) {
1135 		MPASS(i < io_hold_cnt + 2);
1136 		ma[i] = vm_page_grab_unlocked(obj, atop(off),
1137 		    VM_ALLOC_NOCREAT | VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY |
1138 		    VM_ALLOC_NOWAIT);
1139 		if (ma[i] == NULL)
1140 			break;
1141 
1142 		/*
1143 		 * Skip invalid pages.  Valid mask can be partial only
1144 		 * at EOF, and we clip later.
1145 		 */
1146 		if (vm_page_none_valid(ma[i])) {
1147 			vm_page_sunbusy(ma[i]);
1148 			break;
1149 		}
1150 
1151 		resid -= PAGE_SIZE;
1152 		off += PAGE_SIZE;
1153 	}
1154 	if (i == 0) {
1155 		error = EJUSTRETURN;
1156 		goto out_pip;
1157 	}
1158 
1159 	/*
1160 	 * Check VIRF_DOOMED after we busied our pages.  Since
1161 	 * vgonel() terminates the vnode' vm_object, it cannot
1162 	 * process past pages busied by us.
1163 	 */
1164 	if (VN_IS_DOOMED(vp)) {
1165 		error = EJUSTRETURN;
1166 		goto out;
1167 	}
1168 
1169 	resid = PAGE_SIZE - (uio->uio_offset & PAGE_MASK) + ptoa(i - 1);
1170 	if (resid > uio->uio_resid)
1171 		resid = uio->uio_resid;
1172 
1173 	/*
1174 	 * Unlocked read of vnp_size is safe because truncation cannot
1175 	 * pass busied page.  But we load vnp_size into a local
1176 	 * variable so that possible concurrent extension does not
1177 	 * break calculation.
1178 	 */
1179 #if defined(__powerpc__) && !defined(__powerpc64__)
1180 	vsz = obj->un_pager.vnp.vnp_size;
1181 #else
1182 	vsz = atomic_load_64(&obj->un_pager.vnp.vnp_size);
1183 #endif
1184 	if (uio->uio_offset >= vsz) {
1185 		error = EJUSTRETURN;
1186 		goto out;
1187 	}
1188 	if (uio->uio_offset + resid > vsz)
1189 		resid = vsz - uio->uio_offset;
1190 
1191 	error = vn_io_fault_pgmove(ma, uio->uio_offset & PAGE_MASK, resid, uio);
1192 
1193 out:
1194 	for (j = 0; j < i; j++) {
1195 		if (error == 0)
1196 			vm_page_reference(ma[j]);
1197 		vm_page_sunbusy(ma[j]);
1198 	}
1199 out_pip:
1200 	vm_object_pip_wakeup(obj);
1201 	if (error != 0)
1202 		return (error);
1203 	return (uio->uio_resid == 0 ? 0 : EJUSTRETURN);
1204 }
1205 
1206 /*
1207  * File table vnode read routine.
1208  */
1209 static int
vn_read(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1210 vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
1211     struct thread *td)
1212 {
1213 	struct vnode *vp;
1214 	off_t orig_offset;
1215 	int error, ioflag;
1216 	int advice;
1217 
1218 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
1219 	    uio->uio_td, td));
1220 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
1221 	vp = fp->f_vnode;
1222 	ioflag = 0;
1223 	if (fp->f_flag & FNONBLOCK)
1224 		ioflag |= IO_NDELAY;
1225 	if (fp->f_flag & O_DIRECT)
1226 		ioflag |= IO_DIRECT;
1227 
1228 	/*
1229 	 * Try to read from page cache.  VIRF_DOOMED check is racy but
1230 	 * allows us to avoid unneeded work outright.
1231 	 */
1232 	if (vn_io_pgcache_read_enable && !mac_vnode_check_read_enabled() &&
1233 	    (vn_irflag_read(vp) & (VIRF_DOOMED | VIRF_PGREAD)) == VIRF_PGREAD) {
1234 		error = VOP_READ_PGCACHE(vp, uio, ioflag, fp->f_cred);
1235 		if (error == 0) {
1236 			fp->f_nextoff[UIO_READ] = uio->uio_offset;
1237 			return (0);
1238 		}
1239 		if (error != EJUSTRETURN)
1240 			return (error);
1241 	}
1242 
1243 	advice = get_advice(fp, uio);
1244 	vn_lock(vp, LK_SHARED | LK_RETRY);
1245 
1246 	switch (advice) {
1247 	case POSIX_FADV_NORMAL:
1248 	case POSIX_FADV_SEQUENTIAL:
1249 	case POSIX_FADV_NOREUSE:
1250 		ioflag |= sequential_heuristic(uio, fp);
1251 		break;
1252 	case POSIX_FADV_RANDOM:
1253 		/* Disable read-ahead for random I/O. */
1254 		break;
1255 	}
1256 	orig_offset = uio->uio_offset;
1257 
1258 #ifdef MAC
1259 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
1260 	if (error == 0)
1261 #endif
1262 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
1263 	fp->f_nextoff[UIO_READ] = uio->uio_offset;
1264 	VOP_UNLOCK(vp);
1265 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1266 	    orig_offset != uio->uio_offset)
1267 		/*
1268 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1269 		 * for the backing file after a POSIX_FADV_NOREUSE
1270 		 * read(2).
1271 		 */
1272 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1273 		    POSIX_FADV_DONTNEED);
1274 	return (error);
1275 }
1276 
1277 /*
1278  * File table vnode write routine.
1279  */
1280 static int
vn_write(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1281 vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
1282     struct thread *td)
1283 {
1284 	struct vnode *vp;
1285 	struct mount *mp;
1286 	off_t orig_offset;
1287 	int error, ioflag;
1288 	int advice;
1289 	bool need_finished_write;
1290 
1291 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
1292 	    uio->uio_td, td));
1293 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
1294 	vp = fp->f_vnode;
1295 	if (vp->v_type == VREG)
1296 		bwillwrite();
1297 	ioflag = IO_UNIT;
1298 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND) != 0)
1299 		ioflag |= IO_APPEND;
1300 	if ((fp->f_flag & FNONBLOCK) != 0)
1301 		ioflag |= IO_NDELAY;
1302 	ioflag |= get_write_ioflag(fp);
1303 
1304 	mp = NULL;
1305 	need_finished_write = false;
1306 	if (vp->v_type != VCHR) {
1307 		error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
1308 		if (error != 0)
1309 			goto unlock;
1310 		need_finished_write = true;
1311 	}
1312 
1313 	advice = get_advice(fp, uio);
1314 
1315 	vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY);
1316 	switch (advice) {
1317 	case POSIX_FADV_NORMAL:
1318 	case POSIX_FADV_SEQUENTIAL:
1319 	case POSIX_FADV_NOREUSE:
1320 		ioflag |= sequential_heuristic(uio, fp);
1321 		break;
1322 	case POSIX_FADV_RANDOM:
1323 		/* XXX: Is this correct? */
1324 		break;
1325 	}
1326 	orig_offset = uio->uio_offset;
1327 
1328 #ifdef MAC
1329 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1330 	if (error == 0)
1331 #endif
1332 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
1333 	fp->f_nextoff[UIO_WRITE] = uio->uio_offset;
1334 	VOP_UNLOCK(vp);
1335 	if (need_finished_write)
1336 		vn_finished_write(mp);
1337 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1338 	    orig_offset != uio->uio_offset)
1339 		/*
1340 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1341 		 * for the backing file after a POSIX_FADV_NOREUSE
1342 		 * write(2).
1343 		 */
1344 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1345 		    POSIX_FADV_DONTNEED);
1346 unlock:
1347 	return (error);
1348 }
1349 
1350 /*
1351  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
1352  * prevent the following deadlock:
1353  *
1354  * Assume that the thread A reads from the vnode vp1 into userspace
1355  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
1356  * currently not resident, then system ends up with the call chain
1357  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
1358  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
1359  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
1360  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
1361  * backed by the pages of vnode vp1, and some page in buf2 is not
1362  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
1363  *
1364  * To prevent the lock order reversal and deadlock, vn_io_fault() does
1365  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
1366  * Instead, it first tries to do the whole range i/o with pagefaults
1367  * disabled. If all pages in the i/o buffer are resident and mapped,
1368  * VOP will succeed (ignoring the genuine filesystem errors).
1369  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
1370  * i/o in chunks, with all pages in the chunk prefaulted and held
1371  * using vm_fault_quick_hold_pages().
1372  *
1373  * Filesystems using this deadlock avoidance scheme should use the
1374  * array of the held pages from uio, saved in the curthread->td_ma,
1375  * instead of doing uiomove().  A helper function
1376  * vn_io_fault_uiomove() converts uiomove request into
1377  * uiomove_fromphys() over td_ma array.
1378  *
1379  * Since vnode locks do not cover the whole i/o anymore, rangelocks
1380  * make the current i/o request atomic with respect to other i/os and
1381  * truncations.
1382  */
1383 
1384 /*
1385  * Decode vn_io_fault_args and perform the corresponding i/o.
1386  */
1387 static int
vn_io_fault_doio(struct vn_io_fault_args * args,struct uio * uio,struct thread * td)1388 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
1389     struct thread *td)
1390 {
1391 	int error, save;
1392 
1393 	error = 0;
1394 	save = vm_fault_disable_pagefaults();
1395 	switch (args->kind) {
1396 	case VN_IO_FAULT_FOP:
1397 		error = (args->args.fop_args.doio)(args->args.fop_args.fp,
1398 		    uio, args->cred, args->flags, td);
1399 		break;
1400 	case VN_IO_FAULT_VOP:
1401 		switch (uio->uio_rw) {
1402 		case UIO_READ:
1403 			error = VOP_READ(args->args.vop_args.vp, uio,
1404 			    args->flags, args->cred);
1405 			break;
1406 		case UIO_WRITE:
1407 			error = VOP_WRITE(args->args.vop_args.vp, uio,
1408 			    args->flags, args->cred);
1409 			break;
1410 		}
1411 		break;
1412 	default:
1413 		panic("vn_io_fault_doio: unknown kind of io %d %d",
1414 		    args->kind, uio->uio_rw);
1415 	}
1416 	vm_fault_enable_pagefaults(save);
1417 	return (error);
1418 }
1419 
1420 static int
vn_io_fault_touch(char * base,const struct uio * uio)1421 vn_io_fault_touch(char *base, const struct uio *uio)
1422 {
1423 	int r;
1424 
1425 	r = fubyte(base);
1426 	if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
1427 		return (EFAULT);
1428 	return (0);
1429 }
1430 
1431 static int
vn_io_fault_prefault_user(const struct uio * uio)1432 vn_io_fault_prefault_user(const struct uio *uio)
1433 {
1434 	char *base;
1435 	const struct iovec *iov;
1436 	size_t len;
1437 	ssize_t resid;
1438 	int error, i;
1439 
1440 	KASSERT(uio->uio_segflg == UIO_USERSPACE,
1441 	    ("vn_io_fault_prefault userspace"));
1442 
1443 	error = i = 0;
1444 	iov = uio->uio_iov;
1445 	resid = uio->uio_resid;
1446 	base = iov->iov_base;
1447 	len = iov->iov_len;
1448 	while (resid > 0) {
1449 		error = vn_io_fault_touch(base, uio);
1450 		if (error != 0)
1451 			break;
1452 		if (len < PAGE_SIZE) {
1453 			if (len != 0) {
1454 				error = vn_io_fault_touch(base + len - 1, uio);
1455 				if (error != 0)
1456 					break;
1457 				resid -= len;
1458 			}
1459 			if (++i >= uio->uio_iovcnt)
1460 				break;
1461 			iov = uio->uio_iov + i;
1462 			base = iov->iov_base;
1463 			len = iov->iov_len;
1464 		} else {
1465 			len -= PAGE_SIZE;
1466 			base += PAGE_SIZE;
1467 			resid -= PAGE_SIZE;
1468 		}
1469 	}
1470 	return (error);
1471 }
1472 
1473 /*
1474  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1475  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1476  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1477  * into args and call vn_io_fault1() to handle faults during the user
1478  * mode buffer accesses.
1479  */
1480 static int
vn_io_fault1(struct vnode * vp,struct uio * uio,struct vn_io_fault_args * args,struct thread * td)1481 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1482     struct thread *td)
1483 {
1484 	vm_page_t ma[io_hold_cnt + 2];
1485 	struct uio *uio_clone, short_uio;
1486 	struct iovec short_iovec[1];
1487 	vm_page_t *prev_td_ma;
1488 	vm_prot_t prot;
1489 	vm_offset_t addr, end;
1490 	size_t len, resid;
1491 	ssize_t adv;
1492 	int error, cnt, saveheld, prev_td_ma_cnt;
1493 
1494 	if (vn_io_fault_prefault) {
1495 		error = vn_io_fault_prefault_user(uio);
1496 		if (error != 0)
1497 			return (error); /* Or ignore ? */
1498 	}
1499 
1500 	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1501 
1502 	/*
1503 	 * The UFS follows IO_UNIT directive and replays back both
1504 	 * uio_offset and uio_resid if an error is encountered during the
1505 	 * operation.  But, since the iovec may be already advanced,
1506 	 * uio is still in an inconsistent state.
1507 	 *
1508 	 * Cache a copy of the original uio, which is advanced to the redo
1509 	 * point using UIO_NOCOPY below.
1510 	 */
1511 	uio_clone = cloneuio(uio);
1512 	resid = uio->uio_resid;
1513 
1514 	short_uio.uio_segflg = UIO_USERSPACE;
1515 	short_uio.uio_rw = uio->uio_rw;
1516 	short_uio.uio_td = uio->uio_td;
1517 
1518 	error = vn_io_fault_doio(args, uio, td);
1519 	if (error != EFAULT)
1520 		goto out;
1521 
1522 	atomic_add_long(&vn_io_faults_cnt, 1);
1523 	uio_clone->uio_segflg = UIO_NOCOPY;
1524 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1525 	uio_clone->uio_segflg = uio->uio_segflg;
1526 
1527 	saveheld = curthread_pflags_set(TDP_UIOHELD);
1528 	prev_td_ma = td->td_ma;
1529 	prev_td_ma_cnt = td->td_ma_cnt;
1530 
1531 	while (uio_clone->uio_resid != 0) {
1532 		len = uio_clone->uio_iov->iov_len;
1533 		if (len == 0) {
1534 			KASSERT(uio_clone->uio_iovcnt >= 1,
1535 			    ("iovcnt underflow"));
1536 			uio_clone->uio_iov++;
1537 			uio_clone->uio_iovcnt--;
1538 			continue;
1539 		}
1540 		if (len > ptoa(io_hold_cnt))
1541 			len = ptoa(io_hold_cnt);
1542 		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1543 		end = round_page(addr + len);
1544 		if (end < addr) {
1545 			error = EFAULT;
1546 			break;
1547 		}
1548 		/*
1549 		 * A perfectly misaligned address and length could cause
1550 		 * both the start and the end of the chunk to use partial
1551 		 * page.  +2 accounts for such a situation.
1552 		 */
1553 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1554 		    addr, len, prot, ma, io_hold_cnt + 2);
1555 		if (cnt == -1) {
1556 			error = EFAULT;
1557 			break;
1558 		}
1559 		short_uio.uio_iov = &short_iovec[0];
1560 		short_iovec[0].iov_base = (void *)addr;
1561 		short_uio.uio_iovcnt = 1;
1562 		short_uio.uio_resid = short_iovec[0].iov_len = len;
1563 		short_uio.uio_offset = uio_clone->uio_offset;
1564 		td->td_ma = ma;
1565 		td->td_ma_cnt = cnt;
1566 
1567 		error = vn_io_fault_doio(args, &short_uio, td);
1568 		vm_page_unhold_pages(ma, cnt);
1569 		adv = len - short_uio.uio_resid;
1570 
1571 		uio_clone->uio_iov->iov_base =
1572 		    (char *)uio_clone->uio_iov->iov_base + adv;
1573 		uio_clone->uio_iov->iov_len -= adv;
1574 		uio_clone->uio_resid -= adv;
1575 		uio_clone->uio_offset += adv;
1576 
1577 		uio->uio_resid -= adv;
1578 		uio->uio_offset += adv;
1579 
1580 		if (error != 0 || adv == 0)
1581 			break;
1582 	}
1583 	td->td_ma = prev_td_ma;
1584 	td->td_ma_cnt = prev_td_ma_cnt;
1585 	curthread_pflags_restore(saveheld);
1586 out:
1587 	freeuio(uio_clone);
1588 	return (error);
1589 }
1590 
1591 static int
vn_io_fault(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1592 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1593     int flags, struct thread *td)
1594 {
1595 	fo_rdwr_t *doio;
1596 	struct vnode *vp;
1597 	void *rl_cookie;
1598 	struct vn_io_fault_args args;
1599 	int error;
1600 	bool do_io_fault, do_rangelock;
1601 
1602 	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1603 	vp = fp->f_vnode;
1604 
1605 	/*
1606 	 * The ability to read(2) on a directory has historically been
1607 	 * allowed for all users, but this can and has been the source of
1608 	 * at least one security issue in the past.  As such, it is now hidden
1609 	 * away behind a sysctl for those that actually need it to use it, and
1610 	 * restricted to root when it's turned on to make it relatively safe to
1611 	 * leave on for longer sessions of need.
1612 	 */
1613 	if (vp->v_type == VDIR) {
1614 		KASSERT(uio->uio_rw == UIO_READ,
1615 		    ("illegal write attempted on a directory"));
1616 		if (!vfs_allow_read_dir)
1617 			return (EISDIR);
1618 		if ((error = priv_check(td, PRIV_VFS_READ_DIR)) != 0)
1619 			return (EISDIR);
1620 	}
1621 
1622 	do_io_fault = do_vn_io_fault(vp, uio);
1623 	do_rangelock = do_io_fault || (vn_irflag_read(vp) & VIRF_PGREAD) != 0;
1624 	foffset_lock_uio(fp, uio, flags);
1625 	if (do_rangelock) {
1626 		if (uio->uio_rw == UIO_READ) {
1627 			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1628 			    uio->uio_offset + uio->uio_resid);
1629 		} else if ((fp->f_flag & O_APPEND) != 0 ||
1630 		    (flags & FOF_OFFSET) == 0) {
1631 			/* For appenders, punt and lock the whole range. */
1632 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1633 		} else {
1634 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1635 			    uio->uio_offset + uio->uio_resid);
1636 		}
1637 	}
1638 	if (do_io_fault) {
1639 		args.kind = VN_IO_FAULT_FOP;
1640 		args.args.fop_args.fp = fp;
1641 		args.args.fop_args.doio = doio;
1642 		args.cred = active_cred;
1643 		args.flags = flags | FOF_OFFSET;
1644 		error = vn_io_fault1(vp, uio, &args, td);
1645 	} else {
1646 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1647 	}
1648 	if (do_rangelock)
1649 		vn_rangelock_unlock(vp, rl_cookie);
1650 	foffset_unlock_uio(fp, uio, flags);
1651 	return (error);
1652 }
1653 
1654 /*
1655  * Helper function to perform the requested uiomove operation using
1656  * the held pages for io->uio_iov[0].iov_base buffer instead of
1657  * copyin/copyout.  Access to the pages with uiomove_fromphys()
1658  * instead of iov_base prevents page faults that could occur due to
1659  * pmap_collect() invalidating the mapping created by
1660  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1661  * object cleanup revoking the write access from page mappings.
1662  *
1663  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1664  * instead of plain uiomove().
1665  */
1666 int
vn_io_fault_uiomove(char * data,int xfersize,struct uio * uio)1667 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1668 {
1669 	struct uio transp_uio;
1670 	struct iovec transp_iov[1];
1671 	struct thread *td;
1672 	size_t adv;
1673 	int error, pgadv;
1674 
1675 	td = curthread;
1676 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1677 	    uio->uio_segflg != UIO_USERSPACE)
1678 		return (uiomove(data, xfersize, uio));
1679 
1680 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1681 	transp_iov[0].iov_base = data;
1682 	transp_uio.uio_iov = &transp_iov[0];
1683 	transp_uio.uio_iovcnt = 1;
1684 	if (xfersize > uio->uio_resid)
1685 		xfersize = uio->uio_resid;
1686 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1687 	transp_uio.uio_offset = 0;
1688 	transp_uio.uio_segflg = UIO_SYSSPACE;
1689 	/*
1690 	 * Since transp_iov points to data, and td_ma page array
1691 	 * corresponds to original uio->uio_iov, we need to invert the
1692 	 * direction of the i/o operation as passed to
1693 	 * uiomove_fromphys().
1694 	 */
1695 	switch (uio->uio_rw) {
1696 	case UIO_WRITE:
1697 		transp_uio.uio_rw = UIO_READ;
1698 		break;
1699 	case UIO_READ:
1700 		transp_uio.uio_rw = UIO_WRITE;
1701 		break;
1702 	}
1703 	transp_uio.uio_td = uio->uio_td;
1704 	error = uiomove_fromphys(td->td_ma,
1705 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1706 	    xfersize, &transp_uio);
1707 	adv = xfersize - transp_uio.uio_resid;
1708 	pgadv =
1709 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1710 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1711 	td->td_ma += pgadv;
1712 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1713 	    pgadv));
1714 	td->td_ma_cnt -= pgadv;
1715 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1716 	uio->uio_iov->iov_len -= adv;
1717 	uio->uio_resid -= adv;
1718 	uio->uio_offset += adv;
1719 	return (error);
1720 }
1721 
1722 int
vn_io_fault_pgmove(vm_page_t ma[],vm_offset_t offset,int xfersize,struct uio * uio)1723 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1724     struct uio *uio)
1725 {
1726 	struct thread *td;
1727 	vm_offset_t iov_base;
1728 	int cnt, pgadv;
1729 
1730 	td = curthread;
1731 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1732 	    uio->uio_segflg != UIO_USERSPACE)
1733 		return (uiomove_fromphys(ma, offset, xfersize, uio));
1734 
1735 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1736 	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1737 	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1738 	switch (uio->uio_rw) {
1739 	case UIO_WRITE:
1740 		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1741 		    offset, cnt);
1742 		break;
1743 	case UIO_READ:
1744 		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1745 		    cnt);
1746 		break;
1747 	}
1748 	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1749 	td->td_ma += pgadv;
1750 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1751 	    pgadv));
1752 	td->td_ma_cnt -= pgadv;
1753 	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1754 	uio->uio_iov->iov_len -= cnt;
1755 	uio->uio_resid -= cnt;
1756 	uio->uio_offset += cnt;
1757 	return (0);
1758 }
1759 
1760 /*
1761  * File table truncate routine.
1762  */
1763 static int
vn_truncate(struct file * fp,off_t length,struct ucred * active_cred,struct thread * td)1764 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1765     struct thread *td)
1766 {
1767 	struct mount *mp;
1768 	struct vnode *vp;
1769 	void *rl_cookie;
1770 	int error;
1771 
1772 	vp = fp->f_vnode;
1773 
1774 retry:
1775 	/*
1776 	 * Lock the whole range for truncation.  Otherwise split i/o
1777 	 * might happen partly before and partly after the truncation.
1778 	 */
1779 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1780 	error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
1781 	if (error)
1782 		goto out1;
1783 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1784 	AUDIT_ARG_VNODE1(vp);
1785 	if (vp->v_type == VDIR) {
1786 		error = EISDIR;
1787 		goto out;
1788 	}
1789 #ifdef MAC
1790 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1791 	if (error)
1792 		goto out;
1793 #endif
1794 	error = vn_truncate_locked(vp, length, (fp->f_flag & O_FSYNC) != 0,
1795 	    fp->f_cred);
1796 out:
1797 	VOP_UNLOCK(vp);
1798 	vn_finished_write(mp);
1799 out1:
1800 	vn_rangelock_unlock(vp, rl_cookie);
1801 	if (error == ERELOOKUP)
1802 		goto retry;
1803 	return (error);
1804 }
1805 
1806 /*
1807  * Truncate a file that is already locked.
1808  */
1809 int
vn_truncate_locked(struct vnode * vp,off_t length,bool sync,struct ucred * cred)1810 vn_truncate_locked(struct vnode *vp, off_t length, bool sync,
1811     struct ucred *cred)
1812 {
1813 	struct vattr vattr;
1814 	int error;
1815 
1816 	error = VOP_ADD_WRITECOUNT(vp, 1);
1817 	if (error == 0) {
1818 		VATTR_NULL(&vattr);
1819 		vattr.va_size = length;
1820 		if (sync)
1821 			vattr.va_vaflags |= VA_SYNC;
1822 		error = VOP_SETATTR(vp, &vattr, cred);
1823 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1824 		if (error == 0)
1825 			INOTIFY(vp, IN_MODIFY);
1826 	}
1827 	return (error);
1828 }
1829 
1830 /*
1831  * File table vnode stat routine.
1832  */
1833 int
vn_statfile(struct file * fp,struct stat * sb,struct ucred * active_cred)1834 vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred)
1835 {
1836 	struct vnode *vp = fp->f_vnode;
1837 	int error;
1838 
1839 	vn_lock(vp, LK_SHARED | LK_RETRY);
1840 	error = VOP_STAT(vp, sb, active_cred, fp->f_cred);
1841 	VOP_UNLOCK(vp);
1842 
1843 	return (error);
1844 }
1845 
1846 /*
1847  * File table vnode ioctl routine.
1848  */
1849 static int
vn_ioctl(struct file * fp,u_long com,void * data,struct ucred * active_cred,struct thread * td)1850 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
1851     struct thread *td)
1852 {
1853 	struct vnode *vp;
1854 	struct fiobmap2_arg *bmarg;
1855 	off_t size;
1856 	int error;
1857 
1858 	vp = fp->f_vnode;
1859 	switch (vp->v_type) {
1860 	case VDIR:
1861 	case VREG:
1862 		switch (com) {
1863 		case FIONREAD:
1864 			error = vn_getsize(vp, &size, active_cred);
1865 			if (error == 0)
1866 				*(int *)data = size - fp->f_offset;
1867 			return (error);
1868 		case FIOBMAP2:
1869 			bmarg = (struct fiobmap2_arg *)data;
1870 			vn_lock(vp, LK_SHARED | LK_RETRY);
1871 #ifdef MAC
1872 			error = mac_vnode_check_read(active_cred, fp->f_cred,
1873 			    vp);
1874 			if (error == 0)
1875 #endif
1876 				error = VOP_BMAP(vp, bmarg->bn, NULL,
1877 				    &bmarg->bn, &bmarg->runp, &bmarg->runb);
1878 			VOP_UNLOCK(vp);
1879 			return (error);
1880 		case FIONBIO:
1881 		case FIOASYNC:
1882 			return (0);
1883 		default:
1884 			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1885 			    active_cred, td));
1886 		}
1887 		break;
1888 	case VCHR:
1889 		return (VOP_IOCTL(vp, com, data, fp->f_flag,
1890 		    active_cred, td));
1891 	default:
1892 		return (ENOTTY);
1893 	}
1894 }
1895 
1896 /*
1897  * File table vnode poll routine.
1898  */
1899 static int
vn_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)1900 vn_poll(struct file *fp, int events, struct ucred *active_cred,
1901     struct thread *td)
1902 {
1903 	struct vnode *vp;
1904 	int error;
1905 
1906 	vp = fp->f_vnode;
1907 #if defined(MAC) || defined(AUDIT)
1908 	if (AUDITING_TD(td) || mac_vnode_check_poll_enabled()) {
1909 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1910 		AUDIT_ARG_VNODE1(vp);
1911 		error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1912 		VOP_UNLOCK(vp);
1913 		if (error != 0)
1914 			return (error);
1915 	}
1916 #endif
1917 	error = VOP_POLL(vp, events, fp->f_cred, td);
1918 	return (error);
1919 }
1920 
1921 /*
1922  * Acquire the requested lock and then check for validity.  LK_RETRY
1923  * permits vn_lock to return doomed vnodes.
1924  */
1925 static int __noinline
_vn_lock_fallback(struct vnode * vp,int flags,const char * file,int line,int error)1926 _vn_lock_fallback(struct vnode *vp, int flags, const char *file, int line,
1927     int error)
1928 {
1929 
1930 	KASSERT((flags & LK_RETRY) == 0 || error == 0,
1931 	    ("vn_lock: error %d incompatible with flags %#x", error, flags));
1932 
1933 	if (error == 0)
1934 		VNASSERT(VN_IS_DOOMED(vp), vp, ("vnode not doomed"));
1935 
1936 	if ((flags & LK_RETRY) == 0) {
1937 		if (error == 0) {
1938 			VOP_UNLOCK(vp);
1939 			error = ENOENT;
1940 		}
1941 		return (error);
1942 	}
1943 
1944 	/*
1945 	 * LK_RETRY case.
1946 	 *
1947 	 * Nothing to do if we got the lock.
1948 	 */
1949 	if (error == 0)
1950 		return (0);
1951 
1952 	/*
1953 	 * Interlock was dropped by the call in _vn_lock.
1954 	 */
1955 	flags &= ~LK_INTERLOCK;
1956 	do {
1957 		error = VOP_LOCK1(vp, flags, file, line);
1958 	} while (error != 0);
1959 	return (0);
1960 }
1961 
1962 int
_vn_lock(struct vnode * vp,int flags,const char * file,int line)1963 _vn_lock(struct vnode *vp, int flags, const char *file, int line)
1964 {
1965 	int error;
1966 
1967 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1968 	    ("vn_lock: no locktype (%d passed)", flags));
1969 	VNPASS(vp->v_holdcnt > 0, vp);
1970 	error = VOP_LOCK1(vp, flags, file, line);
1971 	if (__predict_false(error != 0 || VN_IS_DOOMED(vp)))
1972 		return (_vn_lock_fallback(vp, flags, file, line, error));
1973 	return (0);
1974 }
1975 
1976 /*
1977  * File table vnode close routine.
1978  */
1979 static int
vn_closefile(struct file * fp,struct thread * td)1980 vn_closefile(struct file *fp, struct thread *td)
1981 {
1982 	struct vnode *vp;
1983 	struct flock lf;
1984 	int error;
1985 	bool ref;
1986 
1987 	vp = fp->f_vnode;
1988 	fp->f_ops = &badfileops;
1989 	ref = (fp->f_flag & FHASLOCK) != 0;
1990 
1991 	error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
1992 
1993 	if (__predict_false(ref)) {
1994 		lf.l_whence = SEEK_SET;
1995 		lf.l_start = 0;
1996 		lf.l_len = 0;
1997 		lf.l_type = F_UNLCK;
1998 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1999 		vrele(vp);
2000 	}
2001 	return (error);
2002 }
2003 
2004 /*
2005  * Preparing to start a filesystem write operation. If the operation is
2006  * permitted, then we bump the count of operations in progress and
2007  * proceed. If a suspend request is in progress, we wait until the
2008  * suspension is over, and then proceed.
2009  */
2010 static int
vn_start_write_refed(struct mount * mp,int flags,bool mplocked)2011 vn_start_write_refed(struct mount *mp, int flags, bool mplocked)
2012 {
2013 	struct mount_pcpu *mpcpu;
2014 	int error, mflags;
2015 
2016 	if (__predict_true(!mplocked) && (flags & V_XSLEEP) == 0 &&
2017 	    vfs_op_thread_enter(mp, mpcpu)) {
2018 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
2019 		vfs_mp_count_add_pcpu(mpcpu, writeopcount, 1);
2020 		vfs_op_thread_exit(mp, mpcpu);
2021 		return (0);
2022 	}
2023 
2024 	if (mplocked)
2025 		mtx_assert(MNT_MTX(mp), MA_OWNED);
2026 	else
2027 		MNT_ILOCK(mp);
2028 
2029 	error = 0;
2030 
2031 	/*
2032 	 * Check on status of suspension.
2033 	 */
2034 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
2035 	    mp->mnt_susp_owner != curthread) {
2036 		mflags = 0;
2037 		if ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0) {
2038 			if (flags & V_PCATCH)
2039 				mflags |= PCATCH;
2040 		}
2041 		mflags |= PRI_MAX_KERN;
2042 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
2043 			if ((flags & V_NOWAIT) != 0) {
2044 				error = EWOULDBLOCK;
2045 				goto unlock;
2046 			}
2047 			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
2048 			    "suspfs", 0);
2049 			if (error != 0)
2050 				goto unlock;
2051 		}
2052 	}
2053 	if ((flags & V_XSLEEP) != 0)
2054 		goto unlock;
2055 	mp->mnt_writeopcount++;
2056 unlock:
2057 	if (error != 0 || (flags & V_XSLEEP) != 0)
2058 		MNT_REL(mp);
2059 	MNT_IUNLOCK(mp);
2060 	return (error);
2061 }
2062 
2063 int
vn_start_write(struct vnode * vp,struct mount ** mpp,int flags)2064 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
2065 {
2066 	struct mount *mp;
2067 	int error;
2068 
2069 	KASSERT((flags & ~V_VALID_FLAGS) == 0,
2070 	    ("%s: invalid flags passed %d\n", __func__, flags));
2071 
2072 	error = 0;
2073 	/*
2074 	 * If a vnode is provided, get and return the mount point that
2075 	 * to which it will write.
2076 	 */
2077 	if (vp != NULL) {
2078 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
2079 			*mpp = NULL;
2080 			if (error != EOPNOTSUPP)
2081 				return (error);
2082 			return (0);
2083 		}
2084 	}
2085 	if ((mp = *mpp) == NULL)
2086 		return (0);
2087 
2088 	/*
2089 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
2090 	 * a vfs_ref().
2091 	 * As long as a vnode is not provided we need to acquire a
2092 	 * refcount for the provided mountpoint too, in order to
2093 	 * emulate a vfs_ref().
2094 	 */
2095 	if (vp == NULL)
2096 		vfs_ref(mp);
2097 
2098 	error = vn_start_write_refed(mp, flags, false);
2099 	if (error != 0 && (flags & V_NOWAIT) == 0)
2100 		*mpp = NULL;
2101 	return (error);
2102 }
2103 
2104 /*
2105  * Secondary suspension. Used by operations such as vop_inactive
2106  * routines that are needed by the higher level functions. These
2107  * are allowed to proceed until all the higher level functions have
2108  * completed (indicated by mnt_writeopcount dropping to zero). At that
2109  * time, these operations are halted until the suspension is over.
2110  */
2111 int
vn_start_secondary_write(struct vnode * vp,struct mount ** mpp,int flags)2112 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
2113 {
2114 	struct mount *mp;
2115 	int error, mflags;
2116 
2117 	KASSERT((flags & (~V_VALID_FLAGS | V_XSLEEP)) == 0,
2118 	    ("%s: invalid flags passed %d\n", __func__, flags));
2119 
2120  retry:
2121 	if (vp != NULL) {
2122 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
2123 			*mpp = NULL;
2124 			if (error != EOPNOTSUPP)
2125 				return (error);
2126 			return (0);
2127 		}
2128 	}
2129 	/*
2130 	 * If we are not suspended or have not yet reached suspended
2131 	 * mode, then let the operation proceed.
2132 	 */
2133 	if ((mp = *mpp) == NULL)
2134 		return (0);
2135 
2136 	/*
2137 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
2138 	 * a vfs_ref().
2139 	 * As long as a vnode is not provided we need to acquire a
2140 	 * refcount for the provided mountpoint too, in order to
2141 	 * emulate a vfs_ref().
2142 	 */
2143 	MNT_ILOCK(mp);
2144 	if (vp == NULL)
2145 		MNT_REF(mp);
2146 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
2147 		mp->mnt_secondary_writes++;
2148 		mp->mnt_secondary_accwrites++;
2149 		MNT_IUNLOCK(mp);
2150 		return (0);
2151 	}
2152 	if ((flags & V_NOWAIT) != 0) {
2153 		MNT_REL(mp);
2154 		MNT_IUNLOCK(mp);
2155 		*mpp = NULL;
2156 		return (EWOULDBLOCK);
2157 	}
2158 	/*
2159 	 * Wait for the suspension to finish.
2160 	 */
2161 	mflags = 0;
2162 	if ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0) {
2163 		if ((flags & V_PCATCH) != 0)
2164 			mflags |= PCATCH;
2165 	}
2166 	mflags |= PRI_MAX_KERN | PDROP;
2167 	error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags, "suspfs", 0);
2168 	vfs_rel(mp);
2169 	if (error == 0)
2170 		goto retry;
2171 	*mpp = NULL;
2172 	return (error);
2173 }
2174 
2175 /*
2176  * Filesystem write operation has completed. If we are suspending and this
2177  * operation is the last one, notify the suspender that the suspension is
2178  * now in effect.
2179  */
2180 void
vn_finished_write(struct mount * mp)2181 vn_finished_write(struct mount *mp)
2182 {
2183 	struct mount_pcpu *mpcpu;
2184 	int c;
2185 
2186 	if (mp == NULL)
2187 		return;
2188 
2189 	if (vfs_op_thread_enter(mp, mpcpu)) {
2190 		vfs_mp_count_sub_pcpu(mpcpu, writeopcount, 1);
2191 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
2192 		vfs_op_thread_exit(mp, mpcpu);
2193 		return;
2194 	}
2195 
2196 	MNT_ILOCK(mp);
2197 	vfs_assert_mount_counters(mp);
2198 	MNT_REL(mp);
2199 	c = --mp->mnt_writeopcount;
2200 	if (mp->mnt_vfs_ops == 0) {
2201 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
2202 		MNT_IUNLOCK(mp);
2203 		return;
2204 	}
2205 	if (c < 0)
2206 		vfs_dump_mount_counters(mp);
2207 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && c == 0)
2208 		wakeup(&mp->mnt_writeopcount);
2209 	MNT_IUNLOCK(mp);
2210 }
2211 
2212 /*
2213  * Filesystem secondary write operation has completed. If we are
2214  * suspending and this operation is the last one, notify the suspender
2215  * that the suspension is now in effect.
2216  */
2217 void
vn_finished_secondary_write(struct mount * mp)2218 vn_finished_secondary_write(struct mount *mp)
2219 {
2220 	if (mp == NULL)
2221 		return;
2222 	MNT_ILOCK(mp);
2223 	MNT_REL(mp);
2224 	mp->mnt_secondary_writes--;
2225 	if (mp->mnt_secondary_writes < 0)
2226 		panic("vn_finished_secondary_write: neg cnt");
2227 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
2228 	    mp->mnt_secondary_writes <= 0)
2229 		wakeup(&mp->mnt_secondary_writes);
2230 	MNT_IUNLOCK(mp);
2231 }
2232 
2233 /*
2234  * Request a filesystem to suspend write operations.
2235  */
2236 int
vfs_write_suspend(struct mount * mp,int flags)2237 vfs_write_suspend(struct mount *mp, int flags)
2238 {
2239 	int error;
2240 
2241 	vfs_op_enter(mp);
2242 
2243 	MNT_ILOCK(mp);
2244 	vfs_assert_mount_counters(mp);
2245 	if (mp->mnt_susp_owner == curthread) {
2246 		vfs_op_exit_locked(mp);
2247 		MNT_IUNLOCK(mp);
2248 		return (EALREADY);
2249 	}
2250 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
2251 		msleep(&mp->mnt_flag, MNT_MTX(mp), PRI_MAX_KERN, "wsuspfs", 0);
2252 
2253 	/*
2254 	 * Unmount holds a write reference on the mount point.  If we
2255 	 * own busy reference and drain for writers, we deadlock with
2256 	 * the reference draining in the unmount path.  Callers of
2257 	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
2258 	 * vfs_busy() reference is owned and caller is not in the
2259 	 * unmount context.
2260 	 */
2261 	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
2262 	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
2263 		vfs_op_exit_locked(mp);
2264 		MNT_IUNLOCK(mp);
2265 		return (EBUSY);
2266 	}
2267 
2268 	mp->mnt_kern_flag |= MNTK_SUSPEND;
2269 	mp->mnt_susp_owner = curthread;
2270 	if (mp->mnt_writeopcount > 0)
2271 		(void) msleep(&mp->mnt_writeopcount,
2272 		    MNT_MTX(mp), PRI_MAX_KERN | PDROP, "suspwt", 0);
2273 	else
2274 		MNT_IUNLOCK(mp);
2275 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) {
2276 		vfs_write_resume(mp, 0);
2277 		/* vfs_write_resume does vfs_op_exit() for us */
2278 	}
2279 	return (error);
2280 }
2281 
2282 /*
2283  * Request a filesystem to resume write operations.
2284  */
2285 void
vfs_write_resume(struct mount * mp,int flags)2286 vfs_write_resume(struct mount *mp, int flags)
2287 {
2288 
2289 	MNT_ILOCK(mp);
2290 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
2291 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
2292 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
2293 				       MNTK_SUSPENDED);
2294 		mp->mnt_susp_owner = NULL;
2295 		wakeup(&mp->mnt_writeopcount);
2296 		wakeup(&mp->mnt_flag);
2297 		curthread->td_pflags &= ~TDP_IGNSUSP;
2298 		if ((flags & VR_START_WRITE) != 0) {
2299 			MNT_REF(mp);
2300 			mp->mnt_writeopcount++;
2301 		}
2302 		MNT_IUNLOCK(mp);
2303 		if ((flags & VR_NO_SUSPCLR) == 0)
2304 			VFS_SUSP_CLEAN(mp);
2305 		vfs_op_exit(mp);
2306 	} else if ((flags & VR_START_WRITE) != 0) {
2307 		MNT_REF(mp);
2308 		vn_start_write_refed(mp, 0, true);
2309 	} else {
2310 		MNT_IUNLOCK(mp);
2311 	}
2312 }
2313 
2314 /*
2315  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
2316  * methods.
2317  */
2318 int
vfs_write_suspend_umnt(struct mount * mp)2319 vfs_write_suspend_umnt(struct mount *mp)
2320 {
2321 	int error;
2322 
2323 	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
2324 	    ("vfs_write_suspend_umnt: recursed"));
2325 
2326 	/* dounmount() already called vn_start_write(). */
2327 	for (;;) {
2328 		vn_finished_write(mp);
2329 		error = vfs_write_suspend(mp, 0);
2330 		if (error != 0) {
2331 			vn_start_write(NULL, &mp, V_WAIT);
2332 			return (error);
2333 		}
2334 		MNT_ILOCK(mp);
2335 		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
2336 			break;
2337 		MNT_IUNLOCK(mp);
2338 		vn_start_write(NULL, &mp, V_WAIT);
2339 	}
2340 	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
2341 	wakeup(&mp->mnt_flag);
2342 	MNT_IUNLOCK(mp);
2343 	curthread->td_pflags |= TDP_IGNSUSP;
2344 	return (0);
2345 }
2346 
2347 /*
2348  * Implement kqueues for files by translating it to vnode operation.
2349  */
2350 static int
vn_kqfilter(struct file * fp,struct knote * kn)2351 vn_kqfilter(struct file *fp, struct knote *kn)
2352 {
2353 
2354 	return (VOP_KQFILTER(fp->f_vnode, kn));
2355 }
2356 
2357 int
vn_kqfilter_opath(struct file * fp,struct knote * kn)2358 vn_kqfilter_opath(struct file *fp, struct knote *kn)
2359 {
2360 	if ((fp->f_flag & FKQALLOWED) == 0)
2361 		return (EBADF);
2362 	return (vn_kqfilter(fp, kn));
2363 }
2364 
2365 /*
2366  * Simplified in-kernel wrapper calls for extended attribute access.
2367  * Both calls pass in a NULL credential, authorizing as "kernel" access.
2368  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
2369  */
2370 int
vn_extattr_get(struct vnode * vp,int ioflg,int attrnamespace,const char * attrname,int * buflen,char * buf,struct thread * td)2371 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
2372     const char *attrname, int *buflen, char *buf, struct thread *td)
2373 {
2374 	struct uio	auio;
2375 	struct iovec	iov;
2376 	int	error;
2377 
2378 	iov.iov_len = *buflen;
2379 	iov.iov_base = buf;
2380 
2381 	auio.uio_iov = &iov;
2382 	auio.uio_iovcnt = 1;
2383 	auio.uio_rw = UIO_READ;
2384 	auio.uio_segflg = UIO_SYSSPACE;
2385 	auio.uio_td = td;
2386 	auio.uio_offset = 0;
2387 	auio.uio_resid = *buflen;
2388 
2389 	if ((ioflg & IO_NODELOCKED) == 0)
2390 		vn_lock(vp, LK_SHARED | LK_RETRY);
2391 
2392 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2393 
2394 	/* authorize attribute retrieval as kernel */
2395 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
2396 	    td);
2397 
2398 	if ((ioflg & IO_NODELOCKED) == 0)
2399 		VOP_UNLOCK(vp);
2400 
2401 	if (error == 0) {
2402 		*buflen = *buflen - auio.uio_resid;
2403 	}
2404 
2405 	return (error);
2406 }
2407 
2408 /*
2409  * XXX failure mode if partially written?
2410  */
2411 int
vn_extattr_set(struct vnode * vp,int ioflg,int attrnamespace,const char * attrname,int buflen,char * buf,struct thread * td)2412 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
2413     const char *attrname, int buflen, char *buf, struct thread *td)
2414 {
2415 	struct uio	auio;
2416 	struct iovec	iov;
2417 	struct mount	*mp;
2418 	int	error;
2419 
2420 	iov.iov_len = buflen;
2421 	iov.iov_base = buf;
2422 
2423 	auio.uio_iov = &iov;
2424 	auio.uio_iovcnt = 1;
2425 	auio.uio_rw = UIO_WRITE;
2426 	auio.uio_segflg = UIO_SYSSPACE;
2427 	auio.uio_td = td;
2428 	auio.uio_offset = 0;
2429 	auio.uio_resid = buflen;
2430 
2431 	if ((ioflg & IO_NODELOCKED) == 0) {
2432 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2433 			return (error);
2434 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2435 	}
2436 
2437 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2438 
2439 	/* authorize attribute setting as kernel */
2440 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
2441 
2442 	if ((ioflg & IO_NODELOCKED) == 0) {
2443 		vn_finished_write(mp);
2444 		VOP_UNLOCK(vp);
2445 	}
2446 
2447 	return (error);
2448 }
2449 
2450 int
vn_extattr_rm(struct vnode * vp,int ioflg,int attrnamespace,const char * attrname,struct thread * td)2451 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2452     const char *attrname, struct thread *td)
2453 {
2454 	struct mount	*mp;
2455 	int	error;
2456 
2457 	if ((ioflg & IO_NODELOCKED) == 0) {
2458 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2459 			return (error);
2460 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2461 	}
2462 
2463 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2464 
2465 	/* authorize attribute removal as kernel */
2466 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2467 	if (error == EOPNOTSUPP)
2468 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2469 		    NULL, td);
2470 
2471 	if ((ioflg & IO_NODELOCKED) == 0) {
2472 		vn_finished_write(mp);
2473 		VOP_UNLOCK(vp);
2474 	}
2475 
2476 	return (error);
2477 }
2478 
2479 static int
vn_get_ino_alloc_vget(struct mount * mp,void * arg,int lkflags,struct vnode ** rvp)2480 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2481     struct vnode **rvp)
2482 {
2483 
2484 	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2485 }
2486 
2487 int
vn_vget_ino(struct vnode * vp,ino_t ino,int lkflags,struct vnode ** rvp)2488 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2489 {
2490 
2491 	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2492 	    lkflags, rvp));
2493 }
2494 
2495 int
vn_vget_ino_gen(struct vnode * vp,vn_get_ino_t alloc,void * alloc_arg,int lkflags,struct vnode ** rvp)2496 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2497     int lkflags, struct vnode **rvp)
2498 {
2499 	struct mount *mp;
2500 	int ltype, error;
2501 
2502 	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2503 	mp = vp->v_mount;
2504 	ltype = VOP_ISLOCKED(vp);
2505 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2506 	    ("vn_vget_ino: vp not locked"));
2507 	error = vfs_busy(mp, MBF_NOWAIT);
2508 	if (error != 0) {
2509 		vfs_ref(mp);
2510 		VOP_UNLOCK(vp);
2511 		error = vfs_busy(mp, 0);
2512 		vn_lock(vp, ltype | LK_RETRY);
2513 		vfs_rel(mp);
2514 		if (error != 0)
2515 			return (ENOENT);
2516 		if (VN_IS_DOOMED(vp)) {
2517 			vfs_unbusy(mp);
2518 			return (ENOENT);
2519 		}
2520 	}
2521 	VOP_UNLOCK(vp);
2522 	error = alloc(mp, alloc_arg, lkflags, rvp);
2523 	vfs_unbusy(mp);
2524 	if (error != 0 || *rvp != vp)
2525 		vn_lock(vp, ltype | LK_RETRY);
2526 	if (VN_IS_DOOMED(vp)) {
2527 		if (error == 0) {
2528 			if (*rvp == vp)
2529 				vunref(vp);
2530 			else
2531 				vput(*rvp);
2532 		}
2533 		error = ENOENT;
2534 	}
2535 	return (error);
2536 }
2537 
2538 static void
vn_send_sigxfsz(struct proc * p)2539 vn_send_sigxfsz(struct proc *p)
2540 {
2541 	PROC_LOCK(p);
2542 	kern_psignal(p, SIGXFSZ);
2543 	PROC_UNLOCK(p);
2544 }
2545 
2546 int
vn_rlimit_trunc(u_quad_t size,struct thread * td)2547 vn_rlimit_trunc(u_quad_t size, struct thread *td)
2548 {
2549 	if (size <= lim_cur(td, RLIMIT_FSIZE))
2550 		return (0);
2551 	vn_send_sigxfsz(td->td_proc);
2552 	return (EFBIG);
2553 }
2554 
2555 static int
vn_rlimit_fsizex1(const struct vnode * vp,struct uio * uio,off_t maxfsz,bool adj,struct thread * td)2556 vn_rlimit_fsizex1(const struct vnode *vp, struct uio *uio, off_t maxfsz,
2557     bool adj, struct thread *td)
2558 {
2559 	off_t lim;
2560 	bool ktr_write;
2561 
2562 	if (vp->v_type != VREG)
2563 		return (0);
2564 
2565 	/*
2566 	 * Handle file system maximum file size.
2567 	 */
2568 	if (maxfsz != 0 && uio->uio_offset + uio->uio_resid > maxfsz) {
2569 		if (!adj || uio->uio_offset >= maxfsz)
2570 			return (EFBIG);
2571 		uio->uio_resid = maxfsz - uio->uio_offset;
2572 	}
2573 
2574 	/*
2575 	 * This is kernel write (e.g. vnode_pager) or accounting
2576 	 * write, ignore limit.
2577 	 */
2578 	if (td == NULL || (td->td_pflags2 & TDP2_ACCT) != 0)
2579 		return (0);
2580 
2581 	/*
2582 	 * Calculate file size limit.
2583 	 */
2584 	ktr_write = (td->td_pflags & TDP_INKTRACE) != 0;
2585 	lim = __predict_false(ktr_write) ? td->td_ktr_io_lim :
2586 	    lim_cur(td, RLIMIT_FSIZE);
2587 
2588 	/*
2589 	 * Is the limit reached?
2590 	 */
2591 	if (__predict_true((uoff_t)uio->uio_offset + uio->uio_resid <= lim))
2592 		return (0);
2593 
2594 	/*
2595 	 * Prepared filesystems can handle writes truncated to the
2596 	 * file size limit.
2597 	 */
2598 	if (adj && (uoff_t)uio->uio_offset < lim) {
2599 		uio->uio_resid = lim - (uoff_t)uio->uio_offset;
2600 		return (0);
2601 	}
2602 
2603 	if (!ktr_write || ktr_filesize_limit_signal)
2604 		vn_send_sigxfsz(td->td_proc);
2605 	return (EFBIG);
2606 }
2607 
2608 /*
2609  * Helper for VOP_WRITE() implementations, the common code to
2610  * handle maximum supported file size on the filesystem, and
2611  * RLIMIT_FSIZE, except for special writes from accounting subsystem
2612  * and ktrace.
2613  *
2614  * For maximum file size (maxfsz argument):
2615  * - return EFBIG if uio_offset is beyond it
2616  * - otherwise, clamp uio_resid if write would extend file beyond maxfsz.
2617  *
2618  * For RLIMIT_FSIZE:
2619  * - return EFBIG and send SIGXFSZ if uio_offset is beyond the limit
2620  * - otherwise, clamp uio_resid if write would extend file beyond limit.
2621  *
2622  * If clamping occured, the adjustment for uio_resid is stored in
2623  * *resid_adj, to be re-applied by vn_rlimit_fsizex_res() on return
2624  * from the VOP.
2625  */
2626 int
vn_rlimit_fsizex(const struct vnode * vp,struct uio * uio,off_t maxfsz,ssize_t * resid_adj,struct thread * td)2627 vn_rlimit_fsizex(const struct vnode *vp, struct uio *uio, off_t maxfsz,
2628     ssize_t *resid_adj, struct thread *td)
2629 {
2630 	ssize_t resid_orig;
2631 	int error;
2632 	bool adj;
2633 
2634 	resid_orig = uio->uio_resid;
2635 	adj = resid_adj != NULL;
2636 	error = vn_rlimit_fsizex1(vp, uio, maxfsz, adj, td);
2637 	if (adj)
2638 		*resid_adj = resid_orig - uio->uio_resid;
2639 	return (error);
2640 }
2641 
2642 void
vn_rlimit_fsizex_res(struct uio * uio,ssize_t resid_adj)2643 vn_rlimit_fsizex_res(struct uio *uio, ssize_t resid_adj)
2644 {
2645 	uio->uio_resid += resid_adj;
2646 }
2647 
2648 int
vn_rlimit_fsize(const struct vnode * vp,const struct uio * uio,struct thread * td)2649 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2650     struct thread *td)
2651 {
2652 	return (vn_rlimit_fsizex(vp, __DECONST(struct uio *, uio), 0, NULL,
2653 	    td));
2654 }
2655 
2656 int
vn_chmod(struct file * fp,mode_t mode,struct ucred * active_cred,struct thread * td)2657 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2658     struct thread *td)
2659 {
2660 	struct vnode *vp;
2661 
2662 	vp = fp->f_vnode;
2663 #ifdef AUDIT
2664 	vn_lock(vp, LK_SHARED | LK_RETRY);
2665 	AUDIT_ARG_VNODE1(vp);
2666 	VOP_UNLOCK(vp);
2667 #endif
2668 	return (setfmode(td, active_cred, vp, mode));
2669 }
2670 
2671 int
vn_chown(struct file * fp,uid_t uid,gid_t gid,struct ucred * active_cred,struct thread * td)2672 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2673     struct thread *td)
2674 {
2675 	struct vnode *vp;
2676 
2677 	vp = fp->f_vnode;
2678 #ifdef AUDIT
2679 	vn_lock(vp, LK_SHARED | LK_RETRY);
2680 	AUDIT_ARG_VNODE1(vp);
2681 	VOP_UNLOCK(vp);
2682 #endif
2683 	return (setfown(td, active_cred, vp, uid, gid));
2684 }
2685 
2686 /*
2687  * Remove pages in the range ["start", "end") from the vnode's VM object.  If
2688  * "end" is 0, then the range extends to the end of the object.
2689  */
2690 void
vn_pages_remove(struct vnode * vp,vm_pindex_t start,vm_pindex_t end)2691 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2692 {
2693 	vm_object_t object;
2694 
2695 	if ((object = vp->v_object) == NULL)
2696 		return;
2697 	VM_OBJECT_WLOCK(object);
2698 	vm_object_page_remove(object, start, end, 0);
2699 	VM_OBJECT_WUNLOCK(object);
2700 }
2701 
2702 /*
2703  * Like vn_pages_remove(), but skips invalid pages, which by definition are not
2704  * mapped into any process' address space.  Filesystems may use this in
2705  * preference to vn_pages_remove() to avoid blocking on pages busied in
2706  * preparation for a VOP_GETPAGES.
2707  */
2708 void
vn_pages_remove_valid(struct vnode * vp,vm_pindex_t start,vm_pindex_t end)2709 vn_pages_remove_valid(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2710 {
2711 	vm_object_t object;
2712 
2713 	if ((object = vp->v_object) == NULL)
2714 		return;
2715 	VM_OBJECT_WLOCK(object);
2716 	vm_object_page_remove(object, start, end, OBJPR_VALIDONLY);
2717 	VM_OBJECT_WUNLOCK(object);
2718 }
2719 
2720 int
vn_bmap_seekhole_locked(struct vnode * vp,u_long cmd,off_t * off,struct ucred * cred)2721 vn_bmap_seekhole_locked(struct vnode *vp, u_long cmd, off_t *off,
2722     struct ucred *cred)
2723 {
2724 	off_t size;
2725 	daddr_t bn, bnp;
2726 	uint64_t bsize;
2727 	off_t noff;
2728 	int error;
2729 
2730 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2731 	    ("%s: Wrong command %lu", __func__, cmd));
2732 	ASSERT_VOP_ELOCKED(vp, "vn_bmap_seekhole_locked");
2733 
2734 	if (vp->v_type != VREG) {
2735 		error = ENOTTY;
2736 		goto out;
2737 	}
2738 	error = vn_getsize_locked(vp, &size, cred);
2739 	if (error != 0)
2740 		goto out;
2741 	noff = *off;
2742 	if (noff < 0 || noff >= size) {
2743 		error = ENXIO;
2744 		goto out;
2745 	}
2746 
2747 	/* See the comment in ufs_bmap_seekdata(). */
2748 	vnode_pager_clean_sync(vp);
2749 
2750 	bsize = vp->v_mount->mnt_stat.f_iosize;
2751 	for (bn = noff / bsize; noff < size; bn++, noff += bsize -
2752 	    noff % bsize) {
2753 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2754 		if (error == EOPNOTSUPP) {
2755 			error = ENOTTY;
2756 			goto out;
2757 		}
2758 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2759 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2760 			noff = bn * bsize;
2761 			if (noff < *off)
2762 				noff = *off;
2763 			goto out;
2764 		}
2765 	}
2766 	if (noff > size)
2767 		noff = size;
2768 	/* noff == size. There is an implicit hole at the end of file. */
2769 	if (cmd == FIOSEEKDATA)
2770 		error = ENXIO;
2771 out:
2772 	if (error == 0)
2773 		*off = noff;
2774 	return (error);
2775 }
2776 
2777 int
vn_bmap_seekhole(struct vnode * vp,u_long cmd,off_t * off,struct ucred * cred)2778 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2779 {
2780 	int error;
2781 
2782 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2783 	    ("%s: Wrong command %lu", __func__, cmd));
2784 
2785 	if (vn_lock(vp, LK_EXCLUSIVE) != 0)
2786 		return (EBADF);
2787 	error = vn_bmap_seekhole_locked(vp, cmd, off, cred);
2788 	VOP_UNLOCK(vp);
2789 	return (error);
2790 }
2791 
2792 int
vn_seek(struct file * fp,off_t offset,int whence,struct thread * td)2793 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2794 {
2795 	struct ucred *cred;
2796 	struct vnode *vp;
2797 	off_t foffset, fsize, size;
2798 	int error, noneg;
2799 
2800 	cred = td->td_ucred;
2801 	vp = fp->f_vnode;
2802 	noneg = (vp->v_type != VCHR);
2803 	/*
2804 	 * Try to dodge locking for common case of querying the offset.
2805 	 */
2806 	if (whence == L_INCR && offset == 0) {
2807 		foffset = foffset_read(fp);
2808 		if (__predict_false(foffset < 0 && noneg)) {
2809 			return (EOVERFLOW);
2810 		}
2811 		td->td_uretoff.tdu_off = foffset;
2812 		return (0);
2813 	}
2814 	foffset = foffset_lock(fp, 0);
2815 	error = 0;
2816 	switch (whence) {
2817 	case L_INCR:
2818 		if (noneg &&
2819 		    (foffset < 0 ||
2820 		    (offset > 0 && foffset > OFF_MAX - offset))) {
2821 			error = EOVERFLOW;
2822 			break;
2823 		}
2824 		offset += foffset;
2825 		break;
2826 	case L_XTND:
2827 		error = vn_getsize(vp, &fsize, cred);
2828 		if (error != 0)
2829 			break;
2830 
2831 		/*
2832 		 * If the file references a disk device, then fetch
2833 		 * the media size and use that to determine the ending
2834 		 * offset.
2835 		 */
2836 		if (fsize == 0 && vp->v_type == VCHR &&
2837 		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2838 			fsize = size;
2839 		if (noneg && offset > 0 && fsize > OFF_MAX - offset) {
2840 			error = EOVERFLOW;
2841 			break;
2842 		}
2843 		offset += fsize;
2844 		break;
2845 	case L_SET:
2846 		break;
2847 	case SEEK_DATA:
2848 		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2849 		if (error == ENOTTY)
2850 			error = EINVAL;
2851 		break;
2852 	case SEEK_HOLE:
2853 		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2854 		if (error == ENOTTY)
2855 			error = EINVAL;
2856 		break;
2857 	default:
2858 		error = EINVAL;
2859 	}
2860 	if (error == 0 && noneg && offset < 0)
2861 		error = EINVAL;
2862 	if (error != 0)
2863 		goto drop;
2864 	VFS_KNOTE_UNLOCKED(vp, 0);
2865 	td->td_uretoff.tdu_off = offset;
2866 drop:
2867 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2868 	return (error);
2869 }
2870 
2871 int
vn_utimes_perm(struct vnode * vp,struct vattr * vap,struct ucred * cred,struct thread * td)2872 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2873     struct thread *td)
2874 {
2875 	int error;
2876 
2877 	/*
2878 	 * Grant permission if the caller is the owner of the file, or
2879 	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2880 	 * on the file.  If the time pointer is null, then write
2881 	 * permission on the file is also sufficient.
2882 	 *
2883 	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2884 	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2885 	 * will be allowed to set the times [..] to the current
2886 	 * server time.
2887 	 */
2888 	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2889 	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2890 		error = VOP_ACCESS(vp, VWRITE, cred, td);
2891 	return (error);
2892 }
2893 
2894 int
vn_fill_kinfo(struct file * fp,struct kinfo_file * kif,struct filedesc * fdp)2895 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2896 {
2897 	struct vnode *vp;
2898 	int error;
2899 
2900 	if (fp->f_type == DTYPE_FIFO)
2901 		kif->kf_type = KF_TYPE_FIFO;
2902 	else
2903 		kif->kf_type = KF_TYPE_VNODE;
2904 	vp = fp->f_vnode;
2905 	vref(vp);
2906 	FILEDESC_SUNLOCK(fdp);
2907 	error = vn_fill_kinfo_vnode(vp, kif);
2908 	vrele(vp);
2909 	FILEDESC_SLOCK(fdp);
2910 	return (error);
2911 }
2912 
2913 static inline void
vn_fill_junk(struct kinfo_file * kif)2914 vn_fill_junk(struct kinfo_file *kif)
2915 {
2916 	size_t len, olen;
2917 
2918 	/*
2919 	 * Simulate vn_fullpath returning changing values for a given
2920 	 * vp during e.g. coredump.
2921 	 */
2922 	len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2923 	olen = strlen(kif->kf_path);
2924 	if (len < olen)
2925 		strcpy(&kif->kf_path[len - 1], "$");
2926 	else
2927 		for (; olen < len; olen++)
2928 			strcpy(&kif->kf_path[olen], "A");
2929 }
2930 
2931 int
vn_fill_kinfo_vnode(struct vnode * vp,struct kinfo_file * kif)2932 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2933 {
2934 	struct vattr va;
2935 	char *fullpath, *freepath;
2936 	int error;
2937 
2938 	kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type);
2939 	freepath = NULL;
2940 	fullpath = "-";
2941 	error = vn_fullpath(vp, &fullpath, &freepath);
2942 	if (error == 0) {
2943 		strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2944 	}
2945 	if (freepath != NULL)
2946 		free(freepath, M_TEMP);
2947 
2948 	KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2949 		vn_fill_junk(kif);
2950 	);
2951 
2952 	/*
2953 	 * Retrieve vnode attributes.
2954 	 */
2955 	va.va_fsid = VNOVAL;
2956 	va.va_rdev = NODEV;
2957 	vn_lock(vp, LK_SHARED | LK_RETRY);
2958 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2959 	VOP_UNLOCK(vp);
2960 	if (error != 0)
2961 		return (error);
2962 	if (va.va_fsid != VNOVAL)
2963 		kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2964 	else
2965 		kif->kf_un.kf_file.kf_file_fsid =
2966 		    vp->v_mount->mnt_stat.f_fsid.val[0];
2967 	kif->kf_un.kf_file.kf_file_fsid_freebsd11 =
2968 	    kif->kf_un.kf_file.kf_file_fsid; /* truncate */
2969 	kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2970 	kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2971 	kif->kf_un.kf_file.kf_file_size = va.va_size;
2972 	kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2973 	kif->kf_un.kf_file.kf_file_rdev_freebsd11 =
2974 	    kif->kf_un.kf_file.kf_file_rdev; /* truncate */
2975 	kif->kf_un.kf_file.kf_file_nlink = va.va_nlink;
2976 	return (0);
2977 }
2978 
2979 int
vn_mmap(struct file * fp,vm_map_t map,vm_offset_t * addr,vm_size_t size,vm_prot_t prot,vm_prot_t cap_maxprot,int flags,vm_ooffset_t foff,struct thread * td)2980 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2981     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2982     struct thread *td)
2983 {
2984 #ifdef HWPMC_HOOKS
2985 	struct pmckern_map_in pkm;
2986 #endif
2987 	struct mount *mp;
2988 	struct vnode *vp;
2989 	vm_object_t object;
2990 	vm_prot_t maxprot;
2991 	boolean_t writecounted;
2992 	int error;
2993 
2994 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2995     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2996 	/*
2997 	 * POSIX shared-memory objects are defined to have
2998 	 * kernel persistence, and are not defined to support
2999 	 * read(2)/write(2) -- or even open(2).  Thus, we can
3000 	 * use MAP_ASYNC to trade on-disk coherence for speed.
3001 	 * The shm_open(3) library routine turns on the FPOSIXSHM
3002 	 * flag to request this behavior.
3003 	 */
3004 	if ((fp->f_flag & FPOSIXSHM) != 0)
3005 		flags |= MAP_NOSYNC;
3006 #endif
3007 	vp = fp->f_vnode;
3008 
3009 	/*
3010 	 * Ensure that file and memory protections are
3011 	 * compatible.  Note that we only worry about
3012 	 * writability if mapping is shared; in this case,
3013 	 * current and max prot are dictated by the open file.
3014 	 * XXX use the vnode instead?  Problem is: what
3015 	 * credentials do we use for determination? What if
3016 	 * proc does a setuid?
3017 	 */
3018 	mp = vp->v_mount;
3019 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
3020 		maxprot = VM_PROT_NONE;
3021 		if ((prot & VM_PROT_EXECUTE) != 0)
3022 			return (EACCES);
3023 	} else
3024 		maxprot = VM_PROT_EXECUTE;
3025 	if ((fp->f_flag & FREAD) != 0)
3026 		maxprot |= VM_PROT_READ;
3027 	else if ((prot & VM_PROT_READ) != 0)
3028 		return (EACCES);
3029 
3030 	/*
3031 	 * If we are sharing potential changes via MAP_SHARED and we
3032 	 * are trying to get write permission although we opened it
3033 	 * without asking for it, bail out.
3034 	 */
3035 	if ((flags & MAP_SHARED) != 0) {
3036 		if ((fp->f_flag & FWRITE) != 0)
3037 			maxprot |= VM_PROT_WRITE;
3038 		else if ((prot & VM_PROT_WRITE) != 0)
3039 			return (EACCES);
3040 	} else {
3041 		maxprot |= VM_PROT_WRITE;
3042 		cap_maxprot |= VM_PROT_WRITE;
3043 	}
3044 	maxprot &= cap_maxprot;
3045 
3046 	/*
3047 	 * For regular files and shared memory, POSIX requires that
3048 	 * the value of foff be a legitimate offset within the data
3049 	 * object.  In particular, negative offsets are invalid.
3050 	 * Blocking negative offsets and overflows here avoids
3051 	 * possible wraparound or user-level access into reserved
3052 	 * ranges of the data object later.  In contrast, POSIX does
3053 	 * not dictate how offsets are used by device drivers, so in
3054 	 * the case of a device mapping a negative offset is passed
3055 	 * on.
3056 	 */
3057 	if (
3058 #ifdef _LP64
3059 	    size > OFF_MAX ||
3060 #endif
3061 	    foff > OFF_MAX - size)
3062 		return (EINVAL);
3063 
3064 	writecounted = FALSE;
3065 	error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
3066 	    &foff, &object, &writecounted);
3067 	if (error != 0)
3068 		return (error);
3069 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
3070 	    foff, writecounted, td);
3071 	if (error != 0) {
3072 		/*
3073 		 * If this mapping was accounted for in the vnode's
3074 		 * writecount, then undo that now.
3075 		 */
3076 		if (writecounted)
3077 			vm_pager_release_writecount(object, 0, size);
3078 		vm_object_deallocate(object);
3079 	}
3080 #ifdef HWPMC_HOOKS
3081 	/* Inform hwpmc(4) if an executable is being mapped. */
3082 	if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
3083 		if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
3084 			pkm.pm_file = vp;
3085 			pkm.pm_address = (uintptr_t) *addr;
3086 			PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm);
3087 		}
3088 	}
3089 #endif
3090 
3091 #ifdef HWT_HOOKS
3092 	if (HWT_HOOK_INSTALLED && (prot & VM_PROT_EXECUTE) != 0 &&
3093 	    error == 0) {
3094 		struct hwt_record_entry ent;
3095 		char *fullpath;
3096 		char *freepath;
3097 
3098 		if (vn_fullpath(vp, &fullpath, &freepath) == 0) {
3099 			ent.fullpath = fullpath;
3100 			ent.addr = (uintptr_t) *addr;
3101 			ent.record_type = HWT_RECORD_MMAP;
3102 			HWT_CALL_HOOK(td, HWT_MMAP, &ent);
3103 			free(freepath, M_TEMP);
3104 		}
3105 	}
3106 #endif
3107 
3108 	return (error);
3109 }
3110 
3111 void
vn_fsid(struct vnode * vp,struct vattr * va)3112 vn_fsid(struct vnode *vp, struct vattr *va)
3113 {
3114 	fsid_t *f;
3115 
3116 	f = &vp->v_mount->mnt_stat.f_fsid;
3117 	va->va_fsid = (uint32_t)f->val[1];
3118 	va->va_fsid <<= sizeof(f->val[1]) * NBBY;
3119 	va->va_fsid += (uint32_t)f->val[0];
3120 }
3121 
3122 int
vn_fsync_buf(struct vnode * vp,int waitfor)3123 vn_fsync_buf(struct vnode *vp, int waitfor)
3124 {
3125 	struct buf *bp, *nbp;
3126 	struct bufobj *bo;
3127 	struct mount *mp;
3128 	int error, maxretry;
3129 
3130 	error = 0;
3131 	maxretry = 10000;     /* large, arbitrarily chosen */
3132 	mp = NULL;
3133 	if (vp->v_type == VCHR) {
3134 		VI_LOCK(vp);
3135 		mp = vp->v_rdev->si_mountpt;
3136 		VI_UNLOCK(vp);
3137 	}
3138 	bo = &vp->v_bufobj;
3139 	BO_LOCK(bo);
3140 loop1:
3141 	/*
3142 	 * MARK/SCAN initialization to avoid infinite loops.
3143 	 */
3144         TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
3145 		bp->b_vflags &= ~BV_SCANNED;
3146 		bp->b_error = 0;
3147 	}
3148 
3149 	/*
3150 	 * Flush all dirty buffers associated with a vnode.
3151 	 */
3152 loop2:
3153 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
3154 		if ((bp->b_vflags & BV_SCANNED) != 0)
3155 			continue;
3156 		bp->b_vflags |= BV_SCANNED;
3157 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
3158 			if (waitfor != MNT_WAIT)
3159 				continue;
3160 			if (BUF_LOCK(bp,
3161 			    LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL,
3162 			    BO_LOCKPTR(bo)) != 0) {
3163 				BO_LOCK(bo);
3164 				goto loop1;
3165 			}
3166 			BO_LOCK(bo);
3167 		}
3168 		BO_UNLOCK(bo);
3169 		KASSERT(bp->b_bufobj == bo,
3170 		    ("bp %p wrong b_bufobj %p should be %p",
3171 		    bp, bp->b_bufobj, bo));
3172 		if ((bp->b_flags & B_DELWRI) == 0)
3173 			panic("fsync: not dirty");
3174 		if ((vp->v_object != NULL) && (bp->b_flags & B_CLUSTEROK)) {
3175 			vfs_bio_awrite(bp);
3176 		} else {
3177 			bremfree(bp);
3178 			bawrite(bp);
3179 		}
3180 		if (maxretry < 1000)
3181 			pause("dirty", hz < 1000 ? 1 : hz / 1000);
3182 		BO_LOCK(bo);
3183 		goto loop2;
3184 	}
3185 
3186 	/*
3187 	 * If synchronous the caller expects us to completely resolve all
3188 	 * dirty buffers in the system.  Wait for in-progress I/O to
3189 	 * complete (which could include background bitmap writes), then
3190 	 * retry if dirty blocks still exist.
3191 	 */
3192 	if (waitfor == MNT_WAIT) {
3193 		bufobj_wwait(bo, 0, 0);
3194 		if (bo->bo_dirty.bv_cnt > 0) {
3195 			/*
3196 			 * If we are unable to write any of these buffers
3197 			 * then we fail now rather than trying endlessly
3198 			 * to write them out.
3199 			 */
3200 			TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
3201 				if ((error = bp->b_error) != 0)
3202 					break;
3203 			if ((mp != NULL && mp->mnt_secondary_writes > 0) ||
3204 			    (error == 0 && --maxretry >= 0))
3205 				goto loop1;
3206 			if (error == 0)
3207 				error = EAGAIN;
3208 		}
3209 	}
3210 	BO_UNLOCK(bo);
3211 	if (error != 0)
3212 		vn_printf(vp, "fsync: giving up on dirty (error = %d) ", error);
3213 
3214 	return (error);
3215 }
3216 
3217 /*
3218  * Copies a byte range from invp to outvp.  Calls VOP_COPY_FILE_RANGE()
3219  * or vn_generic_copy_file_range() after rangelocking the byte ranges,
3220  * to do the actual copy.
3221  * vn_generic_copy_file_range() is factored out, so it can be called
3222  * from a VOP_COPY_FILE_RANGE() call as well, but handles vnodes from
3223  * different file systems.
3224  */
3225 int
vn_copy_file_range(struct vnode * invp,off_t * inoffp,struct vnode * outvp,off_t * outoffp,size_t * lenp,unsigned int flags,struct ucred * incred,struct ucred * outcred,struct thread * fsize_td)3226 vn_copy_file_range(struct vnode *invp, off_t *inoffp, struct vnode *outvp,
3227     off_t *outoffp, size_t *lenp, unsigned int flags, struct ucred *incred,
3228     struct ucred *outcred, struct thread *fsize_td)
3229 {
3230 	struct mount *inmp, *outmp;
3231 	struct vnode *invpl, *outvpl;
3232 	int error;
3233 	size_t len;
3234 	uint64_t uval;
3235 
3236 	invpl = outvpl = NULL;
3237 	len = *lenp;
3238 	*lenp = 0;		/* For error returns. */
3239 	error = 0;
3240 
3241 	/* Do some sanity checks on the arguments. */
3242 	if (invp->v_type == VDIR || outvp->v_type == VDIR)
3243 		error = EISDIR;
3244 	else if (*inoffp < 0 || *outoffp < 0 ||
3245 	    invp->v_type != VREG || outvp->v_type != VREG)
3246 		error = EINVAL;
3247 	if (error != 0)
3248 		goto out;
3249 
3250 	/* Ensure offset + len does not wrap around. */
3251 	uval = *inoffp;
3252 	uval += len;
3253 	if (uval > INT64_MAX)
3254 		len = INT64_MAX - *inoffp;
3255 	uval = *outoffp;
3256 	uval += len;
3257 	if (uval > INT64_MAX)
3258 		len = INT64_MAX - *outoffp;
3259 	if (len == 0)
3260 		goto out;
3261 
3262 	error = VOP_GETLOWVNODE(invp, &invpl, FREAD);
3263 	if (error != 0)
3264 		goto out;
3265 	error = VOP_GETLOWVNODE(outvp, &outvpl, FWRITE);
3266 	if (error != 0)
3267 		goto out1;
3268 
3269 	inmp = invpl->v_mount;
3270 	outmp = outvpl->v_mount;
3271 	if (inmp == NULL || outmp == NULL)
3272 		goto out2;
3273 
3274 	for (;;) {
3275 		error = vfs_busy(inmp, 0);
3276 		if (error != 0)
3277 			goto out2;
3278 		if (inmp == outmp)
3279 			break;
3280 		error = vfs_busy(outmp, MBF_NOWAIT);
3281 		if (error != 0) {
3282 			vfs_unbusy(inmp);
3283 			error = vfs_busy(outmp, 0);
3284 			if (error == 0) {
3285 				vfs_unbusy(outmp);
3286 				continue;
3287 			}
3288 			goto out2;
3289 		}
3290 		break;
3291 	}
3292 
3293 	/*
3294 	 * If the two vnodes are for the same file system type, call
3295 	 * VOP_COPY_FILE_RANGE(), otherwise call vn_generic_copy_file_range()
3296 	 * which can handle copies across multiple file system types.
3297 	 */
3298 	*lenp = len;
3299 	if (inmp == outmp || inmp->mnt_vfc == outmp->mnt_vfc)
3300 		error = VOP_COPY_FILE_RANGE(invpl, inoffp, outvpl, outoffp,
3301 		    lenp, flags, incred, outcred, fsize_td);
3302 	else
3303 		error = ENOSYS;
3304 	if (error == ENOSYS)
3305 		error = vn_generic_copy_file_range(invpl, inoffp, outvpl,
3306 		    outoffp, lenp, flags, incred, outcred, fsize_td);
3307 	vfs_unbusy(outmp);
3308 	if (inmp != outmp)
3309 		vfs_unbusy(inmp);
3310 out2:
3311 	if (outvpl != NULL)
3312 		vrele(outvpl);
3313 out1:
3314 	if (invpl != NULL)
3315 		vrele(invpl);
3316 out:
3317 	return (error);
3318 }
3319 
3320 /*
3321  * Test len bytes of data starting at dat for all bytes == 0.
3322  * Return true if all bytes are zero, false otherwise.
3323  * Expects dat to be well aligned.
3324  */
3325 static bool
mem_iszero(void * dat,int len)3326 mem_iszero(void *dat, int len)
3327 {
3328 	int i;
3329 	const u_int *p;
3330 	const char *cp;
3331 
3332 	for (p = dat; len > 0; len -= sizeof(*p), p++) {
3333 		if (len >= sizeof(*p)) {
3334 			if (*p != 0)
3335 				return (false);
3336 		} else {
3337 			cp = (const char *)p;
3338 			for (i = 0; i < len; i++, cp++)
3339 				if (*cp != '\0')
3340 					return (false);
3341 		}
3342 	}
3343 	return (true);
3344 }
3345 
3346 /*
3347  * Look for a hole in the output file and, if found, adjust *outoffp
3348  * and *xferp to skip past the hole.
3349  * *xferp is the entire hole length to be written and xfer2 is how many bytes
3350  * to be written as 0's upon return.
3351  */
3352 static off_t
vn_skip_hole(struct vnode * outvp,off_t xfer2,off_t * outoffp,off_t * xferp,off_t * dataoffp,off_t * holeoffp,struct ucred * cred)3353 vn_skip_hole(struct vnode *outvp, off_t xfer2, off_t *outoffp, off_t *xferp,
3354     off_t *dataoffp, off_t *holeoffp, struct ucred *cred)
3355 {
3356 	int error;
3357 	off_t delta;
3358 
3359 	if (*holeoffp == 0 || *holeoffp <= *outoffp) {
3360 		*dataoffp = *outoffp;
3361 		error = VOP_IOCTL(outvp, FIOSEEKDATA, dataoffp, 0, cred,
3362 		    curthread);
3363 		if (error == 0) {
3364 			*holeoffp = *dataoffp;
3365 			error = VOP_IOCTL(outvp, FIOSEEKHOLE, holeoffp, 0, cred,
3366 			    curthread);
3367 		}
3368 		if (error != 0 || *holeoffp == *dataoffp) {
3369 			/*
3370 			 * Since outvp is unlocked, it may be possible for
3371 			 * another thread to do a truncate(), lseek(), write()
3372 			 * creating a hole at startoff between the above
3373 			 * VOP_IOCTL() calls, if the other thread does not do
3374 			 * rangelocking.
3375 			 * If that happens, *holeoffp == *dataoffp and finding
3376 			 * the hole has failed, so disable vn_skip_hole().
3377 			 */
3378 			*holeoffp = -1;	/* Disable use of vn_skip_hole(). */
3379 			return (xfer2);
3380 		}
3381 		KASSERT(*dataoffp >= *outoffp,
3382 		    ("vn_skip_hole: dataoff=%jd < outoff=%jd",
3383 		    (intmax_t)*dataoffp, (intmax_t)*outoffp));
3384 		KASSERT(*holeoffp > *dataoffp,
3385 		    ("vn_skip_hole: holeoff=%jd <= dataoff=%jd",
3386 		    (intmax_t)*holeoffp, (intmax_t)*dataoffp));
3387 	}
3388 
3389 	/*
3390 	 * If there is a hole before the data starts, advance *outoffp and
3391 	 * *xferp past the hole.
3392 	 */
3393 	if (*dataoffp > *outoffp) {
3394 		delta = *dataoffp - *outoffp;
3395 		if (delta >= *xferp) {
3396 			/* Entire *xferp is a hole. */
3397 			*outoffp += *xferp;
3398 			*xferp = 0;
3399 			return (0);
3400 		}
3401 		*xferp -= delta;
3402 		*outoffp += delta;
3403 		xfer2 = MIN(xfer2, *xferp);
3404 	}
3405 
3406 	/*
3407 	 * If a hole starts before the end of this xfer2, reduce this xfer2 so
3408 	 * that the write ends at the start of the hole.
3409 	 * *holeoffp should always be greater than *outoffp, but for the
3410 	 * non-INVARIANTS case, check this to make sure xfer2 remains a sane
3411 	 * value.
3412 	 */
3413 	if (*holeoffp > *outoffp && *holeoffp < *outoffp + xfer2)
3414 		xfer2 = *holeoffp - *outoffp;
3415 	return (xfer2);
3416 }
3417 
3418 /*
3419  * Write an xfer sized chunk to outvp in blksize blocks from dat.
3420  * dat is a maximum of blksize in length and can be written repeatedly in
3421  * the chunk.
3422  * If growfile == true, just grow the file via vn_truncate_locked() instead
3423  * of doing actual writes.
3424  * If checkhole == true, a hole is being punched, so skip over any hole
3425  * already in the output file.
3426  */
3427 static int
vn_write_outvp(struct vnode * outvp,char * dat,off_t outoff,off_t xfer,u_long blksize,bool growfile,bool checkhole,struct ucred * cred)3428 vn_write_outvp(struct vnode *outvp, char *dat, off_t outoff, off_t xfer,
3429     u_long blksize, bool growfile, bool checkhole, struct ucred *cred)
3430 {
3431 	struct mount *mp;
3432 	off_t dataoff, holeoff, xfer2;
3433 	int error;
3434 
3435 	/*
3436 	 * Loop around doing writes of blksize until write has been completed.
3437 	 * Lock/unlock on each loop iteration so that a bwillwrite() can be
3438 	 * done for each iteration, since the xfer argument can be very
3439 	 * large if there is a large hole to punch in the output file.
3440 	 */
3441 	error = 0;
3442 	holeoff = 0;
3443 	do {
3444 		xfer2 = MIN(xfer, blksize);
3445 		if (checkhole) {
3446 			/*
3447 			 * Punching a hole.  Skip writing if there is
3448 			 * already a hole in the output file.
3449 			 */
3450 			xfer2 = vn_skip_hole(outvp, xfer2, &outoff, &xfer,
3451 			    &dataoff, &holeoff, cred);
3452 			if (xfer == 0)
3453 				break;
3454 			if (holeoff < 0)
3455 				checkhole = false;
3456 			KASSERT(xfer2 > 0, ("vn_write_outvp: xfer2=%jd",
3457 			    (intmax_t)xfer2));
3458 		}
3459 		bwillwrite();
3460 		mp = NULL;
3461 		error = vn_start_write(outvp, &mp, V_WAIT);
3462 		if (error != 0)
3463 			break;
3464 		if (growfile) {
3465 			error = vn_lock(outvp, LK_EXCLUSIVE);
3466 			if (error == 0) {
3467 				error = vn_truncate_locked(outvp, outoff + xfer,
3468 				    false, cred);
3469 				VOP_UNLOCK(outvp);
3470 			}
3471 		} else {
3472 			error = vn_lock(outvp, vn_lktype_write(mp, outvp));
3473 			if (error == 0) {
3474 				error = vn_rdwr(UIO_WRITE, outvp, dat, xfer2,
3475 				    outoff, UIO_SYSSPACE, IO_NODELOCKED,
3476 				    curthread->td_ucred, cred, NULL, curthread);
3477 				outoff += xfer2;
3478 				xfer -= xfer2;
3479 				VOP_UNLOCK(outvp);
3480 			}
3481 		}
3482 		if (mp != NULL)
3483 			vn_finished_write(mp);
3484 	} while (!growfile && xfer > 0 && error == 0);
3485 	return (error);
3486 }
3487 
3488 /*
3489  * Copy a byte range of one file to another.  This function can handle the
3490  * case where invp and outvp are on different file systems.
3491  * It can also be called by a VOP_COPY_FILE_RANGE() to do the work, if there
3492  * is no better file system specific way to do it.
3493  */
3494 int
vn_generic_copy_file_range(struct vnode * invp,off_t * inoffp,struct vnode * outvp,off_t * outoffp,size_t * lenp,unsigned int flags,struct ucred * incred,struct ucred * outcred,struct thread * fsize_td)3495 vn_generic_copy_file_range(struct vnode *invp, off_t *inoffp,
3496     struct vnode *outvp, off_t *outoffp, size_t *lenp, unsigned int flags,
3497     struct ucred *incred, struct ucred *outcred, struct thread *fsize_td)
3498 {
3499 	struct vattr inva;
3500 	struct mount *mp;
3501 	off_t startoff, endoff, xfer, xfer2;
3502 	u_long blksize;
3503 	int error, interrupted;
3504 	bool cantseek, readzeros, eof, first, lastblock, holetoeof, sparse;
3505 	ssize_t aresid, r = 0;
3506 	size_t copylen, len, savlen;
3507 	off_t outsize;
3508 	char *dat;
3509 	long holein, holeout;
3510 	struct timespec curts, endts;
3511 
3512 	holein = holeout = 0;
3513 	savlen = len = *lenp;
3514 	error = 0;
3515 	interrupted = 0;
3516 	dat = NULL;
3517 
3518 	if ((flags & COPY_FILE_RANGE_CLONE) != 0) {
3519 		error = EOPNOTSUPP;
3520 		goto out;
3521 	}
3522 
3523 	error = vn_lock(invp, LK_SHARED);
3524 	if (error != 0)
3525 		goto out;
3526 	if (VOP_PATHCONF(invp, _PC_MIN_HOLE_SIZE, &holein) != 0)
3527 		holein = 0;
3528 	error = VOP_GETATTR(invp, &inva, incred);
3529 	if (error == 0 && inva.va_size > OFF_MAX)
3530 		error = EFBIG;
3531 	VOP_UNLOCK(invp);
3532 	if (error != 0)
3533 		goto out;
3534 
3535 	/*
3536 	 * Use va_bytes >= va_size as a hint that the file does not have
3537 	 * sufficient holes to justify the overhead of doing FIOSEEKHOLE.
3538 	 * This hint does not work well for file systems doing compression
3539 	 * and may fail when allocations for extended attributes increases
3540 	 * the value of va_bytes to >= va_size.
3541 	 */
3542 	sparse = true;
3543 	if (holein != 0 && inva.va_bytes >= inva.va_size) {
3544 		holein = 0;
3545 		sparse = false;
3546 	}
3547 
3548 	mp = NULL;
3549 	error = vn_start_write(outvp, &mp, V_WAIT);
3550 	if (error == 0)
3551 		error = vn_lock(outvp, LK_EXCLUSIVE);
3552 	if (error == 0) {
3553 		/*
3554 		 * If fsize_td != NULL, do a vn_rlimit_fsizex() call,
3555 		 * now that outvp is locked.
3556 		 */
3557 		if (fsize_td != NULL) {
3558 			struct uio io;
3559 
3560 			io.uio_offset = *outoffp;
3561 			io.uio_resid = len;
3562 			error = vn_rlimit_fsizex(outvp, &io, 0, &r, fsize_td);
3563 			len = savlen = io.uio_resid;
3564 			/*
3565 			 * No need to call vn_rlimit_fsizex_res before return,
3566 			 * since the uio is local.
3567 			 */
3568 		}
3569 		if (VOP_PATHCONF(outvp, _PC_MIN_HOLE_SIZE, &holeout) != 0)
3570 			holeout = 0;
3571 		/*
3572 		 * Holes that are past EOF do not need to be written as a block
3573 		 * of zero bytes.  So, truncate the output file as far as
3574 		 * possible and then use size to decide if writing 0
3575 		 * bytes is necessary in the loop below.
3576 		 */
3577 		if (error == 0)
3578 			error = vn_getsize_locked(outvp, &outsize, outcred);
3579 		if (error == 0 && outsize > *outoffp &&
3580 		    *outoffp <= OFF_MAX - len && outsize <= *outoffp + len &&
3581 		    *inoffp < inva.va_size &&
3582 		    *outoffp <= OFF_MAX - (inva.va_size - *inoffp) &&
3583 		    outsize <= *outoffp + (inva.va_size - *inoffp)) {
3584 #ifdef MAC
3585 			error = mac_vnode_check_write(curthread->td_ucred,
3586 			    outcred, outvp);
3587 			if (error == 0)
3588 #endif
3589 				error = vn_truncate_locked(outvp, *outoffp,
3590 				    false, outcred);
3591 			if (error == 0)
3592 				outsize = *outoffp;
3593 		}
3594 		VOP_UNLOCK(outvp);
3595 	}
3596 	if (mp != NULL)
3597 		vn_finished_write(mp);
3598 	if (error != 0)
3599 		goto out;
3600 
3601 	if (sparse && holein == 0 && holeout > 0) {
3602 		/*
3603 		 * For this special case, the input data will be scanned
3604 		 * for blocks of all 0 bytes.  For these blocks, the
3605 		 * write can be skipped for the output file to create
3606 		 * an unallocated region.
3607 		 * Therefore, use the appropriate size for the output file.
3608 		 */
3609 		blksize = holeout;
3610 		if (blksize <= 512) {
3611 			/*
3612 			 * Use f_iosize, since ZFS reports a _PC_MIN_HOLE_SIZE
3613 			 * of 512, although it actually only creates
3614 			 * unallocated regions for blocks >= f_iosize.
3615 			 */
3616 			blksize = outvp->v_mount->mnt_stat.f_iosize;
3617 		}
3618 	} else {
3619 		/*
3620 		 * Use the larger of the two f_iosize values.  If they are
3621 		 * not the same size, one will normally be an exact multiple of
3622 		 * the other, since they are both likely to be a power of 2.
3623 		 */
3624 		blksize = MAX(invp->v_mount->mnt_stat.f_iosize,
3625 		    outvp->v_mount->mnt_stat.f_iosize);
3626 	}
3627 
3628 	/* Clip to sane limits. */
3629 	if (blksize < 4096)
3630 		blksize = 4096;
3631 	else if (blksize > maxphys)
3632 		blksize = maxphys;
3633 	dat = malloc(blksize, M_TEMP, M_WAITOK);
3634 
3635 	/*
3636 	 * If VOP_IOCTL(FIOSEEKHOLE) works for invp, use it and FIOSEEKDATA
3637 	 * to find holes.  Otherwise, just scan the read block for all 0s
3638 	 * in the inner loop where the data copying is done.
3639 	 * Note that some file systems such as NFSv3, NFSv4.0 and NFSv4.1 may
3640 	 * support holes on the server, but do not support FIOSEEKHOLE.
3641 	 * The kernel flag COPY_FILE_RANGE_TIMEO1SEC is used to indicate
3642 	 * that this function should return after 1second with a partial
3643 	 * completion.
3644 	 */
3645 	if ((flags & COPY_FILE_RANGE_TIMEO1SEC) != 0) {
3646 		getnanouptime(&endts);
3647 		endts.tv_sec++;
3648 	} else
3649 		timespecclear(&endts);
3650 	first = true;
3651 	holetoeof = eof = false;
3652 	while (len > 0 && error == 0 && !eof && interrupted == 0) {
3653 		endoff = 0;			/* To shut up compilers. */
3654 		cantseek = true;
3655 		startoff = *inoffp;
3656 		copylen = len;
3657 
3658 		/*
3659 		 * Find the next data area.  If there is just a hole to EOF,
3660 		 * FIOSEEKDATA should fail with ENXIO.
3661 		 * (I do not know if any file system will report a hole to
3662 		 *  EOF via FIOSEEKHOLE, but I am pretty sure FIOSEEKDATA
3663 		 *  will fail for those file systems.)
3664 		 *
3665 		 * For input files that don't support FIOSEEKDATA/FIOSEEKHOLE,
3666 		 * the code just falls through to the inner copy loop.
3667 		 */
3668 		error = EINVAL;
3669 		if (holein > 0) {
3670 			error = VOP_IOCTL(invp, FIOSEEKDATA, &startoff, 0,
3671 			    incred, curthread);
3672 			if (error == ENXIO) {
3673 				startoff = endoff = inva.va_size;
3674 				eof = holetoeof = true;
3675 				error = 0;
3676 			}
3677 		}
3678 		if (error == 0 && !holetoeof) {
3679 			endoff = startoff;
3680 			error = VOP_IOCTL(invp, FIOSEEKHOLE, &endoff, 0,
3681 			    incred, curthread);
3682 			/*
3683 			 * Since invp is unlocked, it may be possible for
3684 			 * another thread to do a truncate(), lseek(), write()
3685 			 * creating a hole at startoff between the above
3686 			 * VOP_IOCTL() calls, if the other thread does not do
3687 			 * rangelocking.
3688 			 * If that happens, startoff == endoff and finding
3689 			 * the hole has failed, so set an error.
3690 			 */
3691 			if (error == 0 && startoff == endoff)
3692 				error = EINVAL; /* Any error. Reset to 0. */
3693 		}
3694 		if (error == 0) {
3695 			if (startoff > *inoffp) {
3696 				/* Found hole before data block. */
3697 				xfer = MIN(startoff - *inoffp, len);
3698 				if (*outoffp < outsize) {
3699 					/* Must write 0s to punch hole. */
3700 					xfer2 = MIN(outsize - *outoffp,
3701 					    xfer);
3702 					memset(dat, 0, MIN(xfer2, blksize));
3703 					error = vn_write_outvp(outvp, dat,
3704 					    *outoffp, xfer2, blksize, false,
3705 					    holeout > 0, outcred);
3706 				}
3707 
3708 				if (error == 0 && *outoffp + xfer >
3709 				    outsize && (xfer == len || holetoeof)) {
3710 					/* Grow output file (hole at end). */
3711 					error = vn_write_outvp(outvp, dat,
3712 					    *outoffp, xfer, blksize, true,
3713 					    false, outcred);
3714 				}
3715 				if (error == 0) {
3716 					*inoffp += xfer;
3717 					*outoffp += xfer;
3718 					len -= xfer;
3719 					if (len < savlen) {
3720 						interrupted = sig_intr();
3721 						if (timespecisset(&endts) &&
3722 						    interrupted == 0) {
3723 							getnanouptime(&curts);
3724 							if (timespeccmp(&curts,
3725 							    &endts, >=))
3726 								interrupted =
3727 								    EINTR;
3728 						}
3729 					}
3730 				}
3731 			}
3732 			copylen = MIN(len, endoff - startoff);
3733 			cantseek = false;
3734 		} else {
3735 			cantseek = true;
3736 			if (!sparse)
3737 				cantseek = false;
3738 			startoff = *inoffp;
3739 			copylen = len;
3740 			error = 0;
3741 		}
3742 
3743 		xfer = blksize;
3744 		if (cantseek) {
3745 			/*
3746 			 * Set first xfer to end at a block boundary, so that
3747 			 * holes are more likely detected in the loop below via
3748 			 * the for all bytes 0 method.
3749 			 */
3750 			xfer -= (*inoffp % blksize);
3751 		}
3752 
3753 		/*
3754 		 * Loop copying the data block.  If this was our first attempt
3755 		 * to copy anything, allow a zero-length block so that the VOPs
3756 		 * get a chance to update metadata, specifically the atime.
3757 		 */
3758 		while (error == 0 && ((copylen > 0 && !eof) || first) &&
3759 		    interrupted == 0) {
3760 			if (copylen < xfer)
3761 				xfer = copylen;
3762 			first = false;
3763 			error = vn_lock(invp, LK_SHARED);
3764 			if (error != 0)
3765 				goto out;
3766 			error = vn_rdwr(UIO_READ, invp, dat, xfer,
3767 			    startoff, UIO_SYSSPACE, IO_NODELOCKED,
3768 			    curthread->td_ucred, incred, &aresid,
3769 			    curthread);
3770 			VOP_UNLOCK(invp);
3771 			lastblock = false;
3772 			if (error == 0 && (xfer == 0 || aresid > 0)) {
3773 				/* Stop the copy at EOF on the input file. */
3774 				xfer -= aresid;
3775 				eof = true;
3776 				lastblock = true;
3777 			}
3778 			if (error == 0) {
3779 				/*
3780 				 * Skip the write for holes past the initial EOF
3781 				 * of the output file, unless this is the last
3782 				 * write of the output file at EOF.
3783 				 */
3784 				readzeros = cantseek ? mem_iszero(dat, xfer) :
3785 				    false;
3786 				if (xfer == len)
3787 					lastblock = true;
3788 				if (!cantseek || *outoffp < outsize ||
3789 				    lastblock || !readzeros)
3790 					error = vn_write_outvp(outvp, dat,
3791 					    *outoffp, xfer, blksize,
3792 					    readzeros && lastblock &&
3793 					    *outoffp >= outsize, false,
3794 					    outcred);
3795 				if (error == 0) {
3796 					*inoffp += xfer;
3797 					startoff += xfer;
3798 					*outoffp += xfer;
3799 					copylen -= xfer;
3800 					len -= xfer;
3801 					if (len < savlen) {
3802 						interrupted = sig_intr();
3803 						if (timespecisset(&endts) &&
3804 						    interrupted == 0) {
3805 							getnanouptime(&curts);
3806 							if (timespeccmp(&curts,
3807 							    &endts, >=))
3808 								interrupted =
3809 								    EINTR;
3810 						}
3811 					}
3812 				}
3813 			}
3814 			xfer = blksize;
3815 		}
3816 	}
3817 out:
3818 	*lenp = savlen - len;
3819 	free(dat, M_TEMP);
3820 	return (error);
3821 }
3822 
3823 static int
vn_fallocate(struct file * fp,off_t offset,off_t len,struct thread * td)3824 vn_fallocate(struct file *fp, off_t offset, off_t len, struct thread *td)
3825 {
3826 	struct mount *mp;
3827 	struct vnode *vp;
3828 	off_t olen, ooffset;
3829 	int error;
3830 #ifdef AUDIT
3831 	int audited_vnode1 = 0;
3832 #endif
3833 
3834 	vp = fp->f_vnode;
3835 	if (vp->v_type != VREG)
3836 		return (ENODEV);
3837 
3838 	/* Allocating blocks may take a long time, so iterate. */
3839 	for (;;) {
3840 		olen = len;
3841 		ooffset = offset;
3842 
3843 		bwillwrite();
3844 		mp = NULL;
3845 		error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
3846 		if (error != 0)
3847 			break;
3848 		error = vn_lock(vp, LK_EXCLUSIVE);
3849 		if (error != 0) {
3850 			vn_finished_write(mp);
3851 			break;
3852 		}
3853 #ifdef AUDIT
3854 		if (!audited_vnode1) {
3855 			AUDIT_ARG_VNODE1(vp);
3856 			audited_vnode1 = 1;
3857 		}
3858 #endif
3859 #ifdef MAC
3860 		error = mac_vnode_check_write(td->td_ucred, fp->f_cred, vp);
3861 		if (error == 0)
3862 #endif
3863 			error = VOP_ALLOCATE(vp, &offset, &len, 0,
3864 			    td->td_ucred);
3865 		VOP_UNLOCK(vp);
3866 		vn_finished_write(mp);
3867 
3868 		if (olen + ooffset != offset + len) {
3869 			panic("offset + len changed from %jx/%jx to %jx/%jx",
3870 			    ooffset, olen, offset, len);
3871 		}
3872 		if (error != 0 || len == 0)
3873 			break;
3874 		KASSERT(olen > len, ("Iteration did not make progress?"));
3875 		maybe_yield();
3876 	}
3877 
3878 	return (error);
3879 }
3880 
3881 static int
vn_deallocate_impl(struct vnode * vp,off_t * offset,off_t * length,int flags,int ioflag,struct ucred * cred,struct ucred * active_cred,struct ucred * file_cred)3882 vn_deallocate_impl(struct vnode *vp, off_t *offset, off_t *length, int flags,
3883     int ioflag, struct ucred *cred, struct ucred *active_cred,
3884     struct ucred *file_cred)
3885 {
3886 	struct mount *mp;
3887 	void *rl_cookie;
3888 	off_t off, len;
3889 	int error;
3890 #ifdef AUDIT
3891 	bool audited_vnode1 = false;
3892 #endif
3893 
3894 	rl_cookie = NULL;
3895 	error = 0;
3896 	mp = NULL;
3897 	off = *offset;
3898 	len = *length;
3899 
3900 	if ((ioflag & (IO_NODELOCKED | IO_RANGELOCKED)) == 0)
3901 		rl_cookie = vn_rangelock_wlock(vp, off, off + len);
3902 	while (len > 0 && error == 0) {
3903 		/*
3904 		 * Try to deallocate the longest range in one pass.
3905 		 * In case a pass takes too long to be executed, it returns
3906 		 * partial result. The residue will be proceeded in the next
3907 		 * pass.
3908 		 */
3909 
3910 		if ((ioflag & IO_NODELOCKED) == 0) {
3911 			bwillwrite();
3912 			if ((error = vn_start_write(vp, &mp,
3913 			    V_WAIT | V_PCATCH)) != 0)
3914 				goto out;
3915 			vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY);
3916 		}
3917 #ifdef AUDIT
3918 		if (!audited_vnode1) {
3919 			AUDIT_ARG_VNODE1(vp);
3920 			audited_vnode1 = true;
3921 		}
3922 #endif
3923 
3924 #ifdef MAC
3925 		if ((ioflag & IO_NOMACCHECK) == 0)
3926 			error = mac_vnode_check_write(active_cred, file_cred,
3927 			    vp);
3928 #endif
3929 		if (error == 0)
3930 			error = VOP_DEALLOCATE(vp, &off, &len, flags, ioflag,
3931 			    cred);
3932 
3933 		if ((ioflag & IO_NODELOCKED) == 0) {
3934 			VOP_UNLOCK(vp);
3935 			if (mp != NULL) {
3936 				vn_finished_write(mp);
3937 				mp = NULL;
3938 			}
3939 		}
3940 		if (error == 0 && len != 0)
3941 			maybe_yield();
3942 	}
3943 out:
3944 	if (rl_cookie != NULL)
3945 		vn_rangelock_unlock(vp, rl_cookie);
3946 	*offset = off;
3947 	*length = len;
3948 	return (error);
3949 }
3950 
3951 /*
3952  * This function is supposed to be used in the situations where the deallocation
3953  * is not triggered by a user request.
3954  */
3955 int
vn_deallocate(struct vnode * vp,off_t * offset,off_t * length,int flags,int ioflag,struct ucred * active_cred,struct ucred * file_cred)3956 vn_deallocate(struct vnode *vp, off_t *offset, off_t *length, int flags,
3957     int ioflag, struct ucred *active_cred, struct ucred *file_cred)
3958 {
3959 	struct ucred *cred;
3960 
3961 	if (*offset < 0 || *length <= 0 || *length > OFF_MAX - *offset ||
3962 	    flags != 0)
3963 		return (EINVAL);
3964 	if (vp->v_type != VREG)
3965 		return (ENODEV);
3966 
3967 	cred = file_cred != NOCRED ? file_cred : active_cred;
3968 	return (vn_deallocate_impl(vp, offset, length, flags, ioflag, cred,
3969 	    active_cred, file_cred));
3970 }
3971 
3972 static int
vn_fspacectl(struct file * fp,int cmd,off_t * offset,off_t * length,int flags,struct ucred * active_cred,struct thread * td)3973 vn_fspacectl(struct file *fp, int cmd, off_t *offset, off_t *length, int flags,
3974     struct ucred *active_cred, struct thread *td)
3975 {
3976 	int error;
3977 	struct vnode *vp;
3978 	int ioflag;
3979 
3980 	KASSERT(cmd == SPACECTL_DEALLOC, ("vn_fspacectl: Invalid cmd"));
3981 	KASSERT((flags & ~SPACECTL_F_SUPPORTED) == 0,
3982 	    ("vn_fspacectl: non-zero flags"));
3983 	KASSERT(*offset >= 0 && *length > 0 && *length <= OFF_MAX - *offset,
3984 	    ("vn_fspacectl: offset/length overflow or underflow"));
3985 	vp = fp->f_vnode;
3986 
3987 	if (vp->v_type != VREG)
3988 		return (ENODEV);
3989 
3990 	ioflag = get_write_ioflag(fp);
3991 
3992 	switch (cmd) {
3993 	case SPACECTL_DEALLOC:
3994 		error = vn_deallocate_impl(vp, offset, length, flags, ioflag,
3995 		    active_cred, active_cred, fp->f_cred);
3996 		break;
3997 	default:
3998 		panic("vn_fspacectl: unknown cmd %d", cmd);
3999 	}
4000 
4001 	return (error);
4002 }
4003 
4004 /*
4005  * Keep this assert as long as sizeof(struct dirent) is used as the maximum
4006  * entry size.
4007  */
4008 _Static_assert(_GENERIC_MAXDIRSIZ == sizeof(struct dirent),
4009     "'struct dirent' size must be a multiple of its alignment "
4010     "(see _GENERIC_DIRLEN())");
4011 
4012 /*
4013  * Returns successive directory entries through some caller's provided buffer.
4014  *
4015  * This function automatically refills the provided buffer with calls to
4016  * VOP_READDIR() (after MAC permission checks).
4017  *
4018  * 'td' is used for credentials and passed to uiomove().  'dirbuf' is the
4019  * caller's buffer to fill and 'dirbuflen' its allocated size.  'dirbuf' must
4020  * be properly aligned to access 'struct dirent' structures and 'dirbuflen'
4021  * must be greater than GENERIC_MAXDIRSIZ to avoid VOP_READDIR() returning
4022  * EINVAL (the latter is not a strong guarantee (yet); but EINVAL will always
4023  * be returned if this requirement is not verified).  '*dpp' points to the
4024  * current directory entry in the buffer and '*len' contains the remaining
4025  * valid bytes in 'dirbuf' after 'dpp' (including the pointed entry).
4026  *
4027  * At first call (or when restarting the read), '*len' must have been set to 0,
4028  * '*off' to 0 (or any valid start offset) and '*eofflag' to 0.  There are no
4029  * more entries as soon as '*len' is 0 after a call that returned 0.  Calling
4030  * again this function after such a condition is considered an error and EINVAL
4031  * will be returned.  Other possible error codes are those of VOP_READDIR(),
4032  * EINTEGRITY if the returned entries do not pass coherency tests, or EINVAL
4033  * (bad call).  All errors are unrecoverable, i.e., the state ('*len', '*off'
4034  * and '*eofflag') must be re-initialized before a subsequent call.  On error
4035  * or at end of directory, '*dpp' is reset to NULL.
4036  *
4037  * '*len', '*off' and '*eofflag' are internal state the caller should not
4038  * tamper with except as explained above.  '*off' is the next directory offset
4039  * to read from to refill the buffer.  '*eofflag' is set to 0 or 1 by the last
4040  * internal call to VOP_READDIR() that returned without error, indicating
4041  * whether it reached the end of the directory, and to 2 by this function after
4042  * all entries have been read.
4043  */
4044 int
vn_dir_next_dirent(struct vnode * vp,struct thread * td,char * dirbuf,size_t dirbuflen,struct dirent ** dpp,size_t * len,off_t * off,int * eofflag)4045 vn_dir_next_dirent(struct vnode *vp, struct thread *td,
4046     char *dirbuf, size_t dirbuflen,
4047     struct dirent **dpp, size_t *len, off_t *off, int *eofflag)
4048 {
4049 	struct dirent *dp = NULL;
4050 	int reclen;
4051 	int error;
4052 	struct uio uio;
4053 	struct iovec iov;
4054 
4055 	ASSERT_VOP_LOCKED(vp, "vnode not locked");
4056 	VNASSERT(vp->v_type == VDIR, vp, ("vnode is not a directory"));
4057 	MPASS2((uintptr_t)dirbuf < (uintptr_t)dirbuf + dirbuflen,
4058 	    "Address space overflow");
4059 
4060 	if (__predict_false(dirbuflen < GENERIC_MAXDIRSIZ)) {
4061 		/* Don't take any chances in this case */
4062 		error = EINVAL;
4063 		goto out;
4064 	}
4065 
4066 	if (*len != 0) {
4067 		dp = *dpp;
4068 
4069 		/*
4070 		 * The caller continued to call us after an error (we set dp to
4071 		 * NULL in a previous iteration).  Bail out right now.
4072 		 */
4073 		if (__predict_false(dp == NULL))
4074 			return (EINVAL);
4075 
4076 		MPASS(*len <= dirbuflen);
4077 		MPASS2((uintptr_t)dirbuf <= (uintptr_t)dp &&
4078 		    (uintptr_t)dp + *len <= (uintptr_t)dirbuf + dirbuflen,
4079 		    "Filled range not inside buffer");
4080 
4081 		reclen = dp->d_reclen;
4082 		if (reclen >= *len) {
4083 			/* End of buffer reached */
4084 			*len = 0;
4085 		} else {
4086 			dp = (struct dirent *)((char *)dp + reclen);
4087 			*len -= reclen;
4088 		}
4089 	}
4090 
4091 	if (*len == 0) {
4092 		dp = NULL;
4093 
4094 		/* Have to refill. */
4095 		switch (*eofflag) {
4096 		case 0:
4097 			break;
4098 
4099 		case 1:
4100 			/* Nothing more to read. */
4101 			*eofflag = 2; /* Remember the caller reached EOF. */
4102 			goto success;
4103 
4104 		default:
4105 			/* The caller didn't test for EOF. */
4106 			error = EINVAL;
4107 			goto out;
4108 		}
4109 
4110 		iov.iov_base = dirbuf;
4111 		iov.iov_len = dirbuflen;
4112 
4113 		uio.uio_iov = &iov;
4114 		uio.uio_iovcnt = 1;
4115 		uio.uio_offset = *off;
4116 		uio.uio_resid = dirbuflen;
4117 		uio.uio_segflg = UIO_SYSSPACE;
4118 		uio.uio_rw = UIO_READ;
4119 		uio.uio_td = td;
4120 
4121 #ifdef MAC
4122 		error = mac_vnode_check_readdir(td->td_ucred, vp);
4123 		if (error == 0)
4124 #endif
4125 			error = VOP_READDIR(vp, &uio, td->td_ucred, eofflag,
4126 			    NULL, NULL);
4127 		if (error != 0)
4128 			goto out;
4129 
4130 		*len = dirbuflen - uio.uio_resid;
4131 		*off = uio.uio_offset;
4132 
4133 		if (*len == 0) {
4134 			/* Sanity check on INVARIANTS. */
4135 			MPASS(*eofflag != 0);
4136 			*eofflag = 1;
4137 			goto success;
4138 		}
4139 
4140 		/*
4141 		 * Normalize the flag returned by VOP_READDIR(), since we use 2
4142 		 * as a sentinel value.
4143 		 */
4144 		if (*eofflag != 0)
4145 			*eofflag = 1;
4146 
4147 		dp = (struct dirent *)dirbuf;
4148 	}
4149 
4150 	if (__predict_false(*len < GENERIC_MINDIRSIZ ||
4151 	    dp->d_reclen < GENERIC_MINDIRSIZ)) {
4152 		error = EINTEGRITY;
4153 		dp = NULL;
4154 		goto out;
4155 	}
4156 
4157 success:
4158 	error = 0;
4159 out:
4160 	*dpp = dp;
4161 	return (error);
4162 }
4163 
4164 /*
4165  * Checks whether a directory is empty or not.
4166  *
4167  * If the directory is empty, returns 0, and if it is not, ENOTEMPTY.  Other
4168  * values are genuine errors preventing the check.
4169  */
4170 int
vn_dir_check_empty(struct vnode * vp)4171 vn_dir_check_empty(struct vnode *vp)
4172 {
4173 	struct thread *const td = curthread;
4174 	char *dirbuf;
4175 	size_t dirbuflen, len;
4176 	off_t off;
4177 	int eofflag, error;
4178 	struct dirent *dp;
4179 	struct vattr va;
4180 
4181 	ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
4182 	VNPASS(vp->v_type == VDIR, vp);
4183 
4184 	error = VOP_GETATTR(vp, &va, td->td_ucred);
4185 	if (error != 0)
4186 		return (error);
4187 
4188 	dirbuflen = max(DEV_BSIZE, GENERIC_MAXDIRSIZ);
4189 	if (dirbuflen < va.va_blocksize)
4190 		dirbuflen = va.va_blocksize;
4191 	dirbuf = malloc(dirbuflen, M_TEMP, M_WAITOK);
4192 
4193 	len = 0;
4194 	off = 0;
4195 	eofflag = 0;
4196 
4197 	for (;;) {
4198 		error = vn_dir_next_dirent(vp, td, dirbuf, dirbuflen,
4199 		    &dp, &len, &off, &eofflag);
4200 		if (error != 0)
4201 			goto end;
4202 
4203 		if (len == 0) {
4204 			/* EOF */
4205 			error = 0;
4206 			goto end;
4207 		}
4208 
4209 		/*
4210 		 * Skip whiteouts.  Unionfs operates on filesystems only and
4211 		 * not on hierarchies, so these whiteouts would be shadowed on
4212 		 * the system hierarchy but not for a union using the
4213 		 * filesystem of their directories as the upper layer.
4214 		 * Additionally, unionfs currently transparently exposes
4215 		 * union-specific metadata of its upper layer, meaning that
4216 		 * whiteouts can be seen through the union view in empty
4217 		 * directories.  Taking into account these whiteouts would then
4218 		 * prevent mounting another filesystem on such effectively
4219 		 * empty directories.
4220 		 */
4221 		if (dp->d_type == DT_WHT)
4222 			continue;
4223 
4224 		/*
4225 		 * Any file in the directory which is not '.' or '..' indicates
4226 		 * the directory is not empty.
4227 		 */
4228 		switch (dp->d_namlen) {
4229 		case 2:
4230 			if (dp->d_name[1] != '.') {
4231 				/* Can't be '..' (nor '.') */
4232 				error = ENOTEMPTY;
4233 				goto end;
4234 			}
4235 			/* FALLTHROUGH */
4236 		case 1:
4237 			if (dp->d_name[0] != '.') {
4238 				/* Can't be '..' nor '.' */
4239 				error = ENOTEMPTY;
4240 				goto end;
4241 			}
4242 			break;
4243 
4244 		default:
4245 			error = ENOTEMPTY;
4246 			goto end;
4247 		}
4248 	}
4249 
4250 end:
4251 	free(dirbuf, M_TEMP);
4252 	return (error);
4253 }
4254 
4255 
4256 static u_long vn_lock_pair_pause_cnt;
4257 SYSCTL_ULONG(_debug, OID_AUTO, vn_lock_pair_pause, CTLFLAG_RD,
4258     &vn_lock_pair_pause_cnt, 0,
4259     "Count of vn_lock_pair deadlocks");
4260 
4261 u_int vn_lock_pair_pause_max;
4262 SYSCTL_UINT(_debug, OID_AUTO, vn_lock_pair_pause_max, CTLFLAG_RW,
4263     &vn_lock_pair_pause_max, 0,
4264     "Max ticks for vn_lock_pair deadlock avoidance sleep");
4265 
4266 static void
vn_lock_pair_pause(const char * wmesg)4267 vn_lock_pair_pause(const char *wmesg)
4268 {
4269 	atomic_add_long(&vn_lock_pair_pause_cnt, 1);
4270 	pause(wmesg, prng32_bounded(vn_lock_pair_pause_max));
4271 }
4272 
4273 /*
4274  * Lock pair of (possibly same) vnodes vp1, vp2, avoiding lock order
4275  * reversal.  vp1_locked indicates whether vp1 is locked; if not, vp1
4276  * must be unlocked.  Same for vp2 and vp2_locked.  One of the vnodes
4277  * can be NULL.
4278  *
4279  * The function returns with both vnodes exclusively or shared locked,
4280  * according to corresponding lkflags, and guarantees that it does not
4281  * create lock order reversal with other threads during its execution.
4282  * Both vnodes could be unlocked temporary (and reclaimed).
4283  *
4284  * If requesting shared locking, locked vnode lock must not be recursed.
4285  *
4286  * Only one of LK_SHARED and LK_EXCLUSIVE must be specified.
4287  * LK_NODDLKTREAT can be optionally passed.
4288  *
4289  * If vp1 == vp2, only one, most exclusive, lock is obtained on it.
4290  */
4291 void
vn_lock_pair(struct vnode * vp1,bool vp1_locked,int lkflags1,struct vnode * vp2,bool vp2_locked,int lkflags2)4292 vn_lock_pair(struct vnode *vp1, bool vp1_locked, int lkflags1,
4293     struct vnode *vp2, bool vp2_locked, int lkflags2)
4294 {
4295 	int error, locked1;
4296 
4297 	MPASS((((lkflags1 & LK_SHARED) != 0) ^ ((lkflags1 & LK_EXCLUSIVE) != 0)) ||
4298 	    (vp1 == NULL && lkflags1 == 0));
4299 	MPASS((lkflags1 & ~(LK_SHARED | LK_EXCLUSIVE | LK_NODDLKTREAT)) == 0);
4300 	MPASS((((lkflags2 & LK_SHARED) != 0) ^ ((lkflags2 & LK_EXCLUSIVE) != 0)) ||
4301 	    (vp2 == NULL && lkflags2 == 0));
4302 	MPASS((lkflags2 & ~(LK_SHARED | LK_EXCLUSIVE | LK_NODDLKTREAT)) == 0);
4303 
4304 	if (vp1 == NULL && vp2 == NULL)
4305 		return;
4306 
4307 	if (vp1 == vp2) {
4308 		MPASS(vp1_locked == vp2_locked);
4309 
4310 		/* Select the most exclusive mode for lock. */
4311 		if ((lkflags1 & LK_TYPE_MASK) != (lkflags2 & LK_TYPE_MASK))
4312 			lkflags1 = (lkflags1 & ~LK_SHARED) | LK_EXCLUSIVE;
4313 
4314 		if (vp1_locked) {
4315 			ASSERT_VOP_LOCKED(vp1, "vp1");
4316 
4317 			/* No need to relock if any lock is exclusive. */
4318 			if ((vp1->v_vnlock->lock_object.lo_flags &
4319 			    LK_NOSHARE) != 0)
4320 				return;
4321 
4322 			locked1 = VOP_ISLOCKED(vp1);
4323 			if (((lkflags1 & LK_SHARED) != 0 &&
4324 			    locked1 != LK_EXCLUSIVE) ||
4325 			    ((lkflags1 & LK_EXCLUSIVE) != 0 &&
4326 			    locked1 == LK_EXCLUSIVE))
4327 				return;
4328 			VOP_UNLOCK(vp1);
4329 		}
4330 
4331 		ASSERT_VOP_UNLOCKED(vp1, "vp1");
4332 		vn_lock(vp1, lkflags1 | LK_RETRY);
4333 		return;
4334 	}
4335 
4336 	if (vp1 != NULL) {
4337 		if ((lkflags1 & LK_SHARED) != 0 &&
4338 		    (vp1->v_vnlock->lock_object.lo_flags & LK_NOSHARE) != 0)
4339 			lkflags1 = (lkflags1 & ~LK_SHARED) | LK_EXCLUSIVE;
4340 		if (vp1_locked && VOP_ISLOCKED(vp1) != LK_EXCLUSIVE) {
4341 			ASSERT_VOP_LOCKED(vp1, "vp1");
4342 			if ((lkflags1 & LK_EXCLUSIVE) != 0) {
4343 				VOP_UNLOCK(vp1);
4344 				ASSERT_VOP_UNLOCKED(vp1,
4345 				    "vp1 shared recursed");
4346 				vp1_locked = false;
4347 			}
4348 		} else if (!vp1_locked)
4349 			ASSERT_VOP_UNLOCKED(vp1, "vp1");
4350 	} else {
4351 		vp1_locked = true;
4352 	}
4353 
4354 	if (vp2 != NULL) {
4355 		if ((lkflags2 & LK_SHARED) != 0 &&
4356 		    (vp2->v_vnlock->lock_object.lo_flags & LK_NOSHARE) != 0)
4357 			lkflags2 = (lkflags2 & ~LK_SHARED) | LK_EXCLUSIVE;
4358 		if (vp2_locked && VOP_ISLOCKED(vp2) != LK_EXCLUSIVE) {
4359 			ASSERT_VOP_LOCKED(vp2, "vp2");
4360 			if ((lkflags2 & LK_EXCLUSIVE) != 0) {
4361 				VOP_UNLOCK(vp2);
4362 				ASSERT_VOP_UNLOCKED(vp2,
4363 				    "vp2 shared recursed");
4364 				vp2_locked = false;
4365 			}
4366 		} else if (!vp2_locked)
4367 			ASSERT_VOP_UNLOCKED(vp2, "vp2");
4368 	} else {
4369 		vp2_locked = true;
4370 	}
4371 
4372 	if (!vp1_locked && !vp2_locked) {
4373 		vn_lock(vp1, lkflags1 | LK_RETRY);
4374 		vp1_locked = true;
4375 	}
4376 
4377 	while (!vp1_locked || !vp2_locked) {
4378 		if (vp1_locked && vp2 != NULL) {
4379 			if (vp1 != NULL) {
4380 				error = VOP_LOCK1(vp2, lkflags2 | LK_NOWAIT,
4381 				    __FILE__, __LINE__);
4382 				if (error == 0)
4383 					break;
4384 				VOP_UNLOCK(vp1);
4385 				vp1_locked = false;
4386 				vn_lock_pair_pause("vlp1");
4387 			}
4388 			vn_lock(vp2, lkflags2 | LK_RETRY);
4389 			vp2_locked = true;
4390 		}
4391 		if (vp2_locked && vp1 != NULL) {
4392 			if (vp2 != NULL) {
4393 				error = VOP_LOCK1(vp1, lkflags1 | LK_NOWAIT,
4394 				    __FILE__, __LINE__);
4395 				if (error == 0)
4396 					break;
4397 				VOP_UNLOCK(vp2);
4398 				vp2_locked = false;
4399 				vn_lock_pair_pause("vlp2");
4400 			}
4401 			vn_lock(vp1, lkflags1 | LK_RETRY);
4402 			vp1_locked = true;
4403 		}
4404 	}
4405 	if (vp1 != NULL) {
4406 		if (lkflags1 == LK_EXCLUSIVE)
4407 			ASSERT_VOP_ELOCKED(vp1, "vp1 ret");
4408 		else
4409 			ASSERT_VOP_LOCKED(vp1, "vp1 ret");
4410 	}
4411 	if (vp2 != NULL) {
4412 		if (lkflags2 == LK_EXCLUSIVE)
4413 			ASSERT_VOP_ELOCKED(vp2, "vp2 ret");
4414 		else
4415 			ASSERT_VOP_LOCKED(vp2, "vp2 ret");
4416 	}
4417 }
4418 
4419 int
vn_lktype_write(struct mount * mp,struct vnode * vp)4420 vn_lktype_write(struct mount *mp, struct vnode *vp)
4421 {
4422 	if (MNT_SHARED_WRITES(mp) ||
4423 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount)))
4424 		return (LK_SHARED);
4425 	return (LK_EXCLUSIVE);
4426 }
4427 
4428 int
vn_cmp(struct file * fp1,struct file * fp2,struct thread * td)4429 vn_cmp(struct file *fp1, struct file *fp2, struct thread *td)
4430 {
4431 	if (fp2->f_type != DTYPE_VNODE)
4432 		return (3);
4433 	return (kcmp_cmp((uintptr_t)fp1->f_vnode, (uintptr_t)fp2->f_vnode));
4434 }
4435