xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_gmc.c (revision b09cdeb4d38872b84c6d59878915eae2adbe9d2b)
1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #ifdef CONFIG_X86
29 #include <asm/hypervisor.h>
30 #endif
31 
32 #include "amdgpu.h"
33 #include "amdgpu_gmc.h"
34 #include "amdgpu_ras.h"
35 #include "amdgpu_reset.h"
36 #include "amdgpu_xgmi.h"
37 
38 #include <drm/drm_drv.h>
39 #include <drm/ttm/ttm_tt.h>
40 
41 /**
42  * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0
43  *
44  * @adev: amdgpu_device pointer
45  *
46  * Allocate video memory for pdb0 and map it for CPU access
47  * Returns 0 for success, error for failure.
48  */
49 int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev)
50 {
51 	int r;
52 	struct amdgpu_bo_param bp;
53 	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
54 	uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21;
55 	uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) - 1) >> pde0_page_shift;
56 
57 	memset(&bp, 0, sizeof(bp));
58 	bp.size = PAGE_ALIGN((npdes + 1) * 8);
59 	bp.byte_align = PAGE_SIZE;
60 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
61 	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
62 		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
63 	bp.type = ttm_bo_type_kernel;
64 	bp.resv = NULL;
65 	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
66 
67 	r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo);
68 	if (r)
69 		return r;
70 
71 	r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false);
72 	if (unlikely(r != 0))
73 		goto bo_reserve_failure;
74 
75 	r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM);
76 	if (r)
77 		goto bo_pin_failure;
78 	r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0);
79 	if (r)
80 		goto bo_kmap_failure;
81 
82 	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
83 	return 0;
84 
85 bo_kmap_failure:
86 	amdgpu_bo_unpin(adev->gmc.pdb0_bo);
87 bo_pin_failure:
88 	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
89 bo_reserve_failure:
90 	amdgpu_bo_unref(&adev->gmc.pdb0_bo);
91 	return r;
92 }
93 
94 /**
95  * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO
96  *
97  * @bo: the BO to get the PDE for
98  * @level: the level in the PD hirarchy
99  * @addr: resulting addr
100  * @flags: resulting flags
101  *
102  * Get the address and flags to be used for a PDE (Page Directory Entry).
103  */
104 void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level,
105 			       uint64_t *addr, uint64_t *flags)
106 {
107 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
108 
109 	switch (bo->tbo.resource->mem_type) {
110 	case TTM_PL_TT:
111 		*addr = bo->tbo.ttm->dma_address[0];
112 		break;
113 	case TTM_PL_VRAM:
114 		*addr = amdgpu_bo_gpu_offset(bo);
115 		break;
116 	default:
117 		*addr = 0;
118 		break;
119 	}
120 	*flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource);
121 	amdgpu_gmc_get_vm_pde(adev, level, addr, flags);
122 }
123 
124 /*
125  * amdgpu_gmc_pd_addr - return the address of the root directory
126  */
127 uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo)
128 {
129 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
130 	uint64_t pd_addr;
131 
132 	/* TODO: move that into ASIC specific code */
133 	if (adev->asic_type >= CHIP_VEGA10) {
134 		uint64_t flags = AMDGPU_PTE_VALID;
135 
136 		amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags);
137 		pd_addr |= flags;
138 	} else {
139 		pd_addr = amdgpu_bo_gpu_offset(bo);
140 	}
141 	return pd_addr;
142 }
143 
144 /**
145  * amdgpu_gmc_set_pte_pde - update the page tables using CPU
146  *
147  * @adev: amdgpu_device pointer
148  * @cpu_pt_addr: cpu address of the page table
149  * @gpu_page_idx: entry in the page table to update
150  * @addr: dst addr to write into pte/pde
151  * @flags: access flags
152  *
153  * Update the page tables using CPU.
154  */
155 int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr,
156 				uint32_t gpu_page_idx, uint64_t addr,
157 				uint64_t flags)
158 {
159 	void __iomem *ptr = (void *)cpu_pt_addr;
160 	uint64_t value;
161 
162 	/*
163 	 * The following is for PTE only. GART does not have PDEs.
164 	*/
165 	value = addr & 0x0000FFFFFFFFF000ULL;
166 	value |= flags;
167 	writeq(value, ptr + (gpu_page_idx * 8));
168 
169 	return 0;
170 }
171 
172 /**
173  * amdgpu_gmc_agp_addr - return the address in the AGP address space
174  *
175  * @bo: TTM BO which needs the address, must be in GTT domain
176  *
177  * Tries to figure out how to access the BO through the AGP aperture. Returns
178  * AMDGPU_BO_INVALID_OFFSET if that is not possible.
179  */
180 uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo)
181 {
182 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
183 
184 	if (!bo->ttm)
185 		return AMDGPU_BO_INVALID_OFFSET;
186 
187 	if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached)
188 		return AMDGPU_BO_INVALID_OFFSET;
189 
190 	if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size)
191 		return AMDGPU_BO_INVALID_OFFSET;
192 
193 	return adev->gmc.agp_start + bo->ttm->dma_address[0];
194 }
195 
196 /**
197  * amdgpu_gmc_vram_location - try to find VRAM location
198  *
199  * @adev: amdgpu device structure holding all necessary information
200  * @mc: memory controller structure holding memory information
201  * @base: base address at which to put VRAM
202  *
203  * Function will try to place VRAM at base address provided
204  * as parameter.
205  */
206 void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
207 			      u64 base)
208 {
209 	uint64_t vis_limit = (uint64_t)amdgpu_vis_vram_limit << 20;
210 	uint64_t limit = (uint64_t)amdgpu_vram_limit << 20;
211 
212 	mc->vram_start = base;
213 	mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
214 	if (limit < mc->real_vram_size)
215 		mc->real_vram_size = limit;
216 
217 	if (vis_limit && vis_limit < mc->visible_vram_size)
218 		mc->visible_vram_size = vis_limit;
219 
220 	if (mc->real_vram_size < mc->visible_vram_size)
221 		mc->visible_vram_size = mc->real_vram_size;
222 
223 	if (mc->xgmi.num_physical_nodes == 0) {
224 		mc->fb_start = mc->vram_start;
225 		mc->fb_end = mc->vram_end;
226 	}
227 	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
228 			mc->mc_vram_size >> 20, mc->vram_start,
229 			mc->vram_end, mc->real_vram_size >> 20);
230 }
231 
232 /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture
233  *
234  * @adev: amdgpu device structure holding all necessary information
235  * @mc: memory controller structure holding memory information
236  *
237  * This function is only used if use GART for FB translation. In such
238  * case, we use sysvm aperture (vmid0 page tables) for both vram
239  * and gart (aka system memory) access.
240  *
241  * GPUVM (and our organization of vmid0 page tables) require sysvm
242  * aperture to be placed at a location aligned with 8 times of native
243  * page size. For example, if vm_context0_cntl.page_table_block_size
244  * is 12, then native page size is 8G (2M*2^12), sysvm should start
245  * with a 64G aligned address. For simplicity, we just put sysvm at
246  * address 0. So vram start at address 0 and gart is right after vram.
247  */
248 void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
249 {
250 	u64 hive_vram_start = 0;
251 	u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1;
252 	mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id;
253 	mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1;
254 	mc->gart_start = hive_vram_end + 1;
255 	mc->gart_end = mc->gart_start + mc->gart_size - 1;
256 	mc->fb_start = hive_vram_start;
257 	mc->fb_end = hive_vram_end;
258 	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
259 			mc->mc_vram_size >> 20, mc->vram_start,
260 			mc->vram_end, mc->real_vram_size >> 20);
261 	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
262 			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
263 }
264 
265 /**
266  * amdgpu_gmc_gart_location - try to find GART location
267  *
268  * @adev: amdgpu device structure holding all necessary information
269  * @mc: memory controller structure holding memory information
270  * @gart_placement: GART placement policy with respect to VRAM
271  *
272  * Function will try to place GART before or after VRAM.
273  * If GART size is bigger than space left then we ajust GART size.
274  * Thus function will never fails.
275  */
276 void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
277 			      enum amdgpu_gart_placement gart_placement)
278 {
279 	const uint64_t four_gb = 0x100000000ULL;
280 	u64 size_af, size_bf;
281 	/*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/
282 	u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1);
283 
284 	/* VCE doesn't like it when BOs cross a 4GB segment, so align
285 	 * the GART base on a 4GB boundary as well.
286 	 */
287 	size_bf = mc->fb_start;
288 	size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb);
289 
290 	if (mc->gart_size > max(size_bf, size_af)) {
291 		dev_warn(adev->dev, "limiting GART\n");
292 		mc->gart_size = max(size_bf, size_af);
293 	}
294 
295 	switch (gart_placement) {
296 	case AMDGPU_GART_PLACEMENT_HIGH:
297 		mc->gart_start = max_mc_address - mc->gart_size + 1;
298 		break;
299 	case AMDGPU_GART_PLACEMENT_LOW:
300 		mc->gart_start = 0;
301 		break;
302 	case AMDGPU_GART_PLACEMENT_BEST_FIT:
303 	default:
304 		if ((size_bf >= mc->gart_size && size_bf < size_af) ||
305 		    (size_af < mc->gart_size))
306 			mc->gart_start = 0;
307 		else
308 			mc->gart_start = max_mc_address - mc->gart_size + 1;
309 		break;
310 	}
311 
312 	mc->gart_start &= ~(four_gb - 1);
313 	mc->gart_end = mc->gart_start + mc->gart_size - 1;
314 	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
315 			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
316 }
317 
318 /**
319  * amdgpu_gmc_agp_location - try to find AGP location
320  * @adev: amdgpu device structure holding all necessary information
321  * @mc: memory controller structure holding memory information
322  *
323  * Function will place try to find a place for the AGP BAR in the MC address
324  * space.
325  *
326  * AGP BAR will be assigned the largest available hole in the address space.
327  * Should be called after VRAM and GART locations are setup.
328  */
329 void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
330 {
331 	const uint64_t sixteen_gb = 1ULL << 34;
332 	const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1);
333 	u64 size_af, size_bf;
334 
335 	if (mc->fb_start > mc->gart_start) {
336 		size_bf = (mc->fb_start & sixteen_gb_mask) -
337 			ALIGN(mc->gart_end + 1, sixteen_gb);
338 		size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb);
339 	} else {
340 		size_bf = mc->fb_start & sixteen_gb_mask;
341 		size_af = (mc->gart_start & sixteen_gb_mask) -
342 			ALIGN(mc->fb_end + 1, sixteen_gb);
343 	}
344 
345 	if (size_bf > size_af) {
346 		mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask;
347 		mc->agp_size = size_bf;
348 	} else {
349 		mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb);
350 		mc->agp_size = size_af;
351 	}
352 
353 	mc->agp_end = mc->agp_start + mc->agp_size - 1;
354 	dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n",
355 			mc->agp_size >> 20, mc->agp_start, mc->agp_end);
356 }
357 
358 /**
359  * amdgpu_gmc_set_agp_default - Set the default AGP aperture value.
360  * @adev: amdgpu device structure holding all necessary information
361  * @mc: memory controller structure holding memory information
362  *
363  * To disable the AGP aperture, you need to set the start to a larger
364  * value than the end.  This function sets the default value which
365  * can then be overridden using amdgpu_gmc_agp_location() if you want
366  * to enable the AGP aperture on a specific chip.
367  *
368  */
369 void amdgpu_gmc_set_agp_default(struct amdgpu_device *adev,
370 				struct amdgpu_gmc *mc)
371 {
372 	mc->agp_start = 0xffffffffffff;
373 	mc->agp_end = 0;
374 	mc->agp_size = 0;
375 }
376 
377 /**
378  * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid
379  *
380  * @addr: 48 bit physical address, page aligned (36 significant bits)
381  * @pasid: 16 bit process address space identifier
382  */
383 static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid)
384 {
385 	return addr << 4 | pasid;
386 }
387 
388 /**
389  * amdgpu_gmc_filter_faults - filter VM faults
390  *
391  * @adev: amdgpu device structure
392  * @ih: interrupt ring that the fault received from
393  * @addr: address of the VM fault
394  * @pasid: PASID of the process causing the fault
395  * @timestamp: timestamp of the fault
396  *
397  * Returns:
398  * True if the fault was filtered and should not be processed further.
399  * False if the fault is a new one and needs to be handled.
400  */
401 bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev,
402 			      struct amdgpu_ih_ring *ih, uint64_t addr,
403 			      uint16_t pasid, uint64_t timestamp)
404 {
405 	struct amdgpu_gmc *gmc = &adev->gmc;
406 	uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid);
407 	struct amdgpu_gmc_fault *fault;
408 	uint32_t hash;
409 
410 	/* Stale retry fault if timestamp goes backward */
411 	if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp))
412 		return true;
413 
414 	/* If we don't have space left in the ring buffer return immediately */
415 	stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) -
416 		AMDGPU_GMC_FAULT_TIMEOUT;
417 	if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp)
418 		return true;
419 
420 	/* Try to find the fault in the hash */
421 	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
422 	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
423 	while (fault->timestamp >= stamp) {
424 		uint64_t tmp;
425 
426 		if (atomic64_read(&fault->key) == key) {
427 			/*
428 			 * if we get a fault which is already present in
429 			 * the fault_ring and the timestamp of
430 			 * the fault is after the expired timestamp,
431 			 * then this is a new fault that needs to be added
432 			 * into the fault ring.
433 			 */
434 			if (fault->timestamp_expiry != 0 &&
435 			    amdgpu_ih_ts_after(fault->timestamp_expiry,
436 					       timestamp))
437 				break;
438 			else
439 				return true;
440 		}
441 
442 		tmp = fault->timestamp;
443 		fault = &gmc->fault_ring[fault->next];
444 
445 		/* Check if the entry was reused */
446 		if (fault->timestamp >= tmp)
447 			break;
448 	}
449 
450 	/* Add the fault to the ring */
451 	fault = &gmc->fault_ring[gmc->last_fault];
452 	atomic64_set(&fault->key, key);
453 	fault->timestamp = timestamp;
454 
455 	/* And update the hash */
456 	fault->next = gmc->fault_hash[hash].idx;
457 	gmc->fault_hash[hash].idx = gmc->last_fault++;
458 	return false;
459 }
460 
461 /**
462  * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter
463  *
464  * @adev: amdgpu device structure
465  * @addr: address of the VM fault
466  * @pasid: PASID of the process causing the fault
467  *
468  * Remove the address from fault filter, then future vm fault on this address
469  * will pass to retry fault handler to recover.
470  */
471 void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr,
472 				     uint16_t pasid)
473 {
474 	struct amdgpu_gmc *gmc = &adev->gmc;
475 	uint64_t key = amdgpu_gmc_fault_key(addr, pasid);
476 	struct amdgpu_ih_ring *ih;
477 	struct amdgpu_gmc_fault *fault;
478 	uint32_t last_wptr;
479 	uint64_t last_ts;
480 	uint32_t hash;
481 	uint64_t tmp;
482 
483 	if (adev->irq.retry_cam_enabled)
484 		return;
485 
486 	ih = &adev->irq.ih1;
487 	/* Get the WPTR of the last entry in IH ring */
488 	last_wptr = amdgpu_ih_get_wptr(adev, ih);
489 	/* Order wptr with ring data. */
490 	rmb();
491 	/* Get the timetamp of the last entry in IH ring */
492 	last_ts = amdgpu_ih_decode_iv_ts(adev, ih, last_wptr, -1);
493 
494 	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
495 	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
496 	do {
497 		if (atomic64_read(&fault->key) == key) {
498 			/*
499 			 * Update the timestamp when this fault
500 			 * expired.
501 			 */
502 			fault->timestamp_expiry = last_ts;
503 			break;
504 		}
505 
506 		tmp = fault->timestamp;
507 		fault = &gmc->fault_ring[fault->next];
508 	} while (fault->timestamp < tmp);
509 }
510 
511 int amdgpu_gmc_ras_sw_init(struct amdgpu_device *adev)
512 {
513 	int r;
514 
515 	/* umc ras block */
516 	r = amdgpu_umc_ras_sw_init(adev);
517 	if (r)
518 		return r;
519 
520 	/* mmhub ras block */
521 	r = amdgpu_mmhub_ras_sw_init(adev);
522 	if (r)
523 		return r;
524 
525 	/* hdp ras block */
526 	r = amdgpu_hdp_ras_sw_init(adev);
527 	if (r)
528 		return r;
529 
530 	/* mca.x ras block */
531 	r = amdgpu_mca_mp0_ras_sw_init(adev);
532 	if (r)
533 		return r;
534 
535 	r = amdgpu_mca_mp1_ras_sw_init(adev);
536 	if (r)
537 		return r;
538 
539 	r = amdgpu_mca_mpio_ras_sw_init(adev);
540 	if (r)
541 		return r;
542 
543 	/* xgmi ras block */
544 	r = amdgpu_xgmi_ras_sw_init(adev);
545 	if (r)
546 		return r;
547 
548 	return 0;
549 }
550 
551 int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev)
552 {
553 	return 0;
554 }
555 
556 void amdgpu_gmc_ras_fini(struct amdgpu_device *adev)
557 {
558 
559 }
560 
561 	/*
562 	 * The latest engine allocation on gfx9/10 is:
563 	 * Engine 2, 3: firmware
564 	 * Engine 0, 1, 4~16: amdgpu ring,
565 	 *                    subject to change when ring number changes
566 	 * Engine 17: Gart flushes
567 	 */
568 #define AMDGPU_VMHUB_INV_ENG_BITMAP		0x1FFF3
569 
570 int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev)
571 {
572 	struct amdgpu_ring *ring;
573 	unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = {0};
574 	unsigned i;
575 	unsigned vmhub, inv_eng;
576 	struct amdgpu_ring *shared_ring;
577 
578 	/* init the vm inv eng for all vmhubs */
579 	for_each_set_bit(i, adev->vmhubs_mask, AMDGPU_MAX_VMHUBS) {
580 		vm_inv_engs[i] = AMDGPU_VMHUB_INV_ENG_BITMAP;
581 		/* reserve engine 5 for firmware */
582 		if (adev->enable_mes)
583 			vm_inv_engs[i] &= ~(1 << 5);
584 		/* reserve mmhub engine 3 for firmware */
585 		if (adev->enable_umsch_mm)
586 			vm_inv_engs[i] &= ~(1 << 3);
587 	}
588 
589 	for (i = 0; i < adev->num_rings; ++i) {
590 		ring = adev->rings[i];
591 		vmhub = ring->vm_hub;
592 
593 		if (ring == &adev->mes.ring[0] ||
594 		    ring == &adev->mes.ring[1] ||
595 		    ring == &adev->umsch_mm.ring ||
596 		    ring == &adev->cper.ring_buf)
597 			continue;
598 
599 		/* Skip if the ring is a shared ring */
600 		if (amdgpu_sdma_is_shared_inv_eng(adev, ring))
601 			continue;
602 
603 		inv_eng = ffs(vm_inv_engs[vmhub]);
604 		if (!inv_eng) {
605 			dev_err(adev->dev, "no VM inv eng for ring %s\n",
606 				ring->name);
607 			return -EINVAL;
608 		}
609 
610 		ring->vm_inv_eng = inv_eng - 1;
611 		vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng);
612 
613 		dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n",
614 			 ring->name, ring->vm_inv_eng, ring->vm_hub);
615 		/* SDMA has a special packet which allows it to use the same
616 		 * invalidation engine for all the rings in one instance.
617 		 * Therefore, we do not allocate a separate VM invalidation engine
618 		 * for SDMA page rings. Instead, they share the VM invalidation
619 		 * engine with the SDMA gfx ring. This change ensures efficient
620 		 * resource management and avoids the issue of insufficient VM
621 		 * invalidation engines.
622 		 */
623 		shared_ring = amdgpu_sdma_get_shared_ring(adev, ring);
624 		if (shared_ring) {
625 			shared_ring->vm_inv_eng = ring->vm_inv_eng;
626 			dev_info(adev->dev, "ring %s shares VM invalidation engine %u with ring %s on hub %u\n",
627 					ring->name, ring->vm_inv_eng, shared_ring->name, ring->vm_hub);
628 			continue;
629 		}
630 	}
631 
632 	return 0;
633 }
634 
635 void amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device *adev, uint32_t vmid,
636 			      uint32_t vmhub, uint32_t flush_type)
637 {
638 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
639 	struct amdgpu_vmhub *hub = &adev->vmhub[vmhub];
640 	struct dma_fence *fence;
641 	struct amdgpu_job *job;
642 	int r;
643 
644 	if (!hub->sdma_invalidation_workaround || vmid ||
645 	    !adev->mman.buffer_funcs_enabled || !adev->ib_pool_ready ||
646 	    !ring->sched.ready) {
647 		/*
648 		 * A GPU reset should flush all TLBs anyway, so no need to do
649 		 * this while one is ongoing.
650 		 */
651 		if (!down_read_trylock(&adev->reset_domain->sem))
652 			return;
653 
654 		if (adev->gmc.flush_tlb_needs_extra_type_2)
655 			adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
656 							   vmhub, 2);
657 
658 		if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
659 			adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
660 							   vmhub, 0);
661 
662 		adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, vmhub,
663 						   flush_type);
664 		up_read(&adev->reset_domain->sem);
665 		return;
666 	}
667 
668 	/* The SDMA on Navi 1x has a bug which can theoretically result in memory
669 	 * corruption if an invalidation happens at the same time as an VA
670 	 * translation. Avoid this by doing the invalidation from the SDMA
671 	 * itself at least for GART.
672 	 */
673 	mutex_lock(&adev->mman.gtt_window_lock);
674 	r = amdgpu_job_alloc_with_ib(ring->adev, &adev->mman.high_pr,
675 				     AMDGPU_FENCE_OWNER_UNDEFINED,
676 				     16 * 4, AMDGPU_IB_POOL_IMMEDIATE,
677 				     &job);
678 	if (r)
679 		goto error_alloc;
680 
681 	job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
682 	job->vm_needs_flush = true;
683 	job->ibs->ptr[job->ibs->length_dw++] = ring->funcs->nop;
684 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
685 	fence = amdgpu_job_submit(job);
686 	mutex_unlock(&adev->mman.gtt_window_lock);
687 
688 	dma_fence_wait(fence, false);
689 	dma_fence_put(fence);
690 
691 	return;
692 
693 error_alloc:
694 	mutex_unlock(&adev->mman.gtt_window_lock);
695 	dev_err(adev->dev, "Error flushing GPU TLB using the SDMA (%d)!\n", r);
696 }
697 
698 int amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device *adev, uint16_t pasid,
699 				   uint32_t flush_type, bool all_hub,
700 				   uint32_t inst)
701 {
702 	u32 usec_timeout = amdgpu_sriov_vf(adev) ? SRIOV_USEC_TIMEOUT :
703 		adev->usec_timeout;
704 	struct amdgpu_ring *ring = &adev->gfx.kiq[inst].ring;
705 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[inst];
706 	unsigned int ndw;
707 	int r;
708 	uint32_t seq;
709 
710 	/*
711 	 * A GPU reset should flush all TLBs anyway, so no need to do
712 	 * this while one is ongoing.
713 	 */
714 	if (!down_read_trylock(&adev->reset_domain->sem))
715 		return 0;
716 
717 	if (!adev->gmc.flush_pasid_uses_kiq || !ring->sched.ready) {
718 		if (adev->gmc.flush_tlb_needs_extra_type_2)
719 			adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
720 								 2, all_hub,
721 								 inst);
722 
723 		if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
724 			adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
725 								 0, all_hub,
726 								 inst);
727 
728 		adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
729 							 flush_type, all_hub,
730 							 inst);
731 		r = 0;
732 	} else {
733 		/* 2 dwords flush + 8 dwords fence */
734 		ndw = kiq->pmf->invalidate_tlbs_size + 8;
735 
736 		if (adev->gmc.flush_tlb_needs_extra_type_2)
737 			ndw += kiq->pmf->invalidate_tlbs_size;
738 
739 		if (adev->gmc.flush_tlb_needs_extra_type_0)
740 			ndw += kiq->pmf->invalidate_tlbs_size;
741 
742 		spin_lock(&adev->gfx.kiq[inst].ring_lock);
743 		r = amdgpu_ring_alloc(ring, ndw);
744 		if (r) {
745 			spin_unlock(&adev->gfx.kiq[inst].ring_lock);
746 			goto error_unlock_reset;
747 		}
748 		if (adev->gmc.flush_tlb_needs_extra_type_2)
749 			kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 2, all_hub);
750 
751 		if (flush_type == 2 && adev->gmc.flush_tlb_needs_extra_type_0)
752 			kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 0, all_hub);
753 
754 		kiq->pmf->kiq_invalidate_tlbs(ring, pasid, flush_type, all_hub);
755 		r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
756 		if (r) {
757 			amdgpu_ring_undo(ring);
758 			spin_unlock(&adev->gfx.kiq[inst].ring_lock);
759 			goto error_unlock_reset;
760 		}
761 
762 		amdgpu_ring_commit(ring);
763 		spin_unlock(&adev->gfx.kiq[inst].ring_lock);
764 		if (amdgpu_fence_wait_polling(ring, seq, usec_timeout) < 1) {
765 			dev_err(adev->dev, "timeout waiting for kiq fence\n");
766 			r = -ETIME;
767 		}
768 	}
769 
770 error_unlock_reset:
771 	up_read(&adev->reset_domain->sem);
772 	return r;
773 }
774 
775 void amdgpu_gmc_fw_reg_write_reg_wait(struct amdgpu_device *adev,
776 				      uint32_t reg0, uint32_t reg1,
777 				      uint32_t ref, uint32_t mask,
778 				      uint32_t xcc_inst)
779 {
780 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_inst];
781 	struct amdgpu_ring *ring = &kiq->ring;
782 	signed long r, cnt = 0;
783 	unsigned long flags;
784 	uint32_t seq;
785 
786 	if (adev->mes.ring[0].sched.ready) {
787 		amdgpu_mes_reg_write_reg_wait(adev, reg0, reg1,
788 					      ref, mask);
789 		return;
790 	}
791 
792 	spin_lock_irqsave(&kiq->ring_lock, flags);
793 	amdgpu_ring_alloc(ring, 32);
794 	amdgpu_ring_emit_reg_write_reg_wait(ring, reg0, reg1,
795 					    ref, mask);
796 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
797 	if (r)
798 		goto failed_undo;
799 
800 	amdgpu_ring_commit(ring);
801 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
802 
803 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
804 
805 	/* don't wait anymore for IRQ context */
806 	if (r < 1 && in_interrupt())
807 		goto failed_kiq;
808 
809 	might_sleep();
810 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY &&
811 	       !amdgpu_reset_pending(adev->reset_domain)) {
812 
813 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
814 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
815 	}
816 
817 	if (cnt > MAX_KIQ_REG_TRY)
818 		goto failed_kiq;
819 
820 	return;
821 
822 failed_undo:
823 	amdgpu_ring_undo(ring);
824 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
825 failed_kiq:
826 	dev_err(adev->dev, "failed to write reg %x wait reg %x\n", reg0, reg1);
827 }
828 
829 /**
830  * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ
831  * @adev: amdgpu_device pointer
832  *
833  * Check and set if an the device @adev supports Trusted Memory
834  * Zones (TMZ).
835  */
836 void amdgpu_gmc_tmz_set(struct amdgpu_device *adev)
837 {
838 	switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
839 	/* RAVEN */
840 	case IP_VERSION(9, 2, 2):
841 	case IP_VERSION(9, 1, 0):
842 	/* RENOIR looks like RAVEN */
843 	case IP_VERSION(9, 3, 0):
844 	/* GC 10.3.7 */
845 	case IP_VERSION(10, 3, 7):
846 	/* GC 11.0.1 */
847 	case IP_VERSION(11, 0, 1):
848 		if (amdgpu_tmz == 0) {
849 			adev->gmc.tmz_enabled = false;
850 			dev_info(adev->dev,
851 				 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n");
852 		} else {
853 			adev->gmc.tmz_enabled = true;
854 			dev_info(adev->dev,
855 				 "Trusted Memory Zone (TMZ) feature enabled\n");
856 		}
857 		break;
858 	case IP_VERSION(10, 1, 10):
859 	case IP_VERSION(10, 1, 1):
860 	case IP_VERSION(10, 1, 2):
861 	case IP_VERSION(10, 1, 3):
862 	case IP_VERSION(10, 3, 0):
863 	case IP_VERSION(10, 3, 2):
864 	case IP_VERSION(10, 3, 4):
865 	case IP_VERSION(10, 3, 5):
866 	case IP_VERSION(10, 3, 6):
867 	/* VANGOGH */
868 	case IP_VERSION(10, 3, 1):
869 	/* YELLOW_CARP*/
870 	case IP_VERSION(10, 3, 3):
871 	case IP_VERSION(11, 0, 4):
872 	case IP_VERSION(11, 5, 0):
873 	case IP_VERSION(11, 5, 1):
874 	case IP_VERSION(11, 5, 2):
875 	case IP_VERSION(11, 5, 3):
876 		/* Don't enable it by default yet.
877 		 */
878 		if (amdgpu_tmz < 1) {
879 			adev->gmc.tmz_enabled = false;
880 			dev_info(adev->dev,
881 				 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n");
882 		} else {
883 			adev->gmc.tmz_enabled = true;
884 			dev_info(adev->dev,
885 				 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n");
886 		}
887 		break;
888 	default:
889 		adev->gmc.tmz_enabled = false;
890 		dev_info(adev->dev,
891 			 "Trusted Memory Zone (TMZ) feature not supported\n");
892 		break;
893 	}
894 }
895 
896 /**
897  * amdgpu_gmc_noretry_set -- set per asic noretry defaults
898  * @adev: amdgpu_device pointer
899  *
900  * Set a per asic default for the no-retry parameter.
901  *
902  */
903 void amdgpu_gmc_noretry_set(struct amdgpu_device *adev)
904 {
905 	struct amdgpu_gmc *gmc = &adev->gmc;
906 	uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0);
907 	bool noretry_default = (gc_ver == IP_VERSION(9, 0, 1) ||
908 				gc_ver == IP_VERSION(9, 4, 0) ||
909 				gc_ver == IP_VERSION(9, 4, 1) ||
910 				gc_ver == IP_VERSION(9, 4, 2) ||
911 				gc_ver == IP_VERSION(9, 4, 3) ||
912 				gc_ver == IP_VERSION(9, 4, 4) ||
913 				gc_ver == IP_VERSION(9, 5, 0) ||
914 				gc_ver >= IP_VERSION(10, 3, 0));
915 
916 	if (!amdgpu_sriov_xnack_support(adev))
917 		gmc->noretry = 1;
918 	else
919 		gmc->noretry = (amdgpu_noretry == -1) ? noretry_default : amdgpu_noretry;
920 }
921 
922 void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type,
923 				   bool enable)
924 {
925 	struct amdgpu_vmhub *hub;
926 	u32 tmp, reg, i;
927 
928 	hub = &adev->vmhub[hub_type];
929 	for (i = 0; i < 16; i++) {
930 		reg = hub->vm_context0_cntl + hub->ctx_distance * i;
931 
932 		tmp = (hub_type == AMDGPU_GFXHUB(0)) ?
933 			RREG32_SOC15_IP(GC, reg) :
934 			RREG32_SOC15_IP(MMHUB, reg);
935 
936 		if (enable)
937 			tmp |= hub->vm_cntx_cntl_vm_fault;
938 		else
939 			tmp &= ~hub->vm_cntx_cntl_vm_fault;
940 
941 		(hub_type == AMDGPU_GFXHUB(0)) ?
942 			WREG32_SOC15_IP(GC, reg, tmp) :
943 			WREG32_SOC15_IP(MMHUB, reg, tmp);
944 	}
945 }
946 
947 void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev)
948 {
949 	unsigned size;
950 
951 	/*
952 	 * Some ASICs need to reserve a region of video memory to avoid access
953 	 * from driver
954 	 */
955 	adev->mman.stolen_reserved_offset = 0;
956 	adev->mman.stolen_reserved_size = 0;
957 
958 	/*
959 	 * TODO:
960 	 * Currently there is a bug where some memory client outside
961 	 * of the driver writes to first 8M of VRAM on S3 resume,
962 	 * this overrides GART which by default gets placed in first 8M and
963 	 * causes VM_FAULTS once GTT is accessed.
964 	 * Keep the stolen memory reservation until the while this is not solved.
965 	 */
966 	switch (adev->asic_type) {
967 	case CHIP_VEGA10:
968 		adev->mman.keep_stolen_vga_memory = true;
969 		/*
970 		 * VEGA10 SRIOV VF with MS_HYPERV host needs some firmware reserved area.
971 		 */
972 #ifdef CONFIG_X86
973 		if (amdgpu_sriov_vf(adev) && hypervisor_is_type(X86_HYPER_MS_HYPERV)) {
974 			adev->mman.stolen_reserved_offset = 0x500000;
975 			adev->mman.stolen_reserved_size = 0x200000;
976 		}
977 #endif
978 		break;
979 	case CHIP_RAVEN:
980 	case CHIP_RENOIR:
981 		adev->mman.keep_stolen_vga_memory = true;
982 		break;
983 	default:
984 		adev->mman.keep_stolen_vga_memory = false;
985 		break;
986 	}
987 
988 	if (amdgpu_sriov_vf(adev) ||
989 	    !amdgpu_device_has_display_hardware(adev)) {
990 		size = 0;
991 	} else {
992 		size = amdgpu_gmc_get_vbios_fb_size(adev);
993 
994 		if (adev->mman.keep_stolen_vga_memory)
995 			size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION);
996 	}
997 
998 	/* set to 0 if the pre-OS buffer uses up most of vram */
999 	if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024))
1000 		size = 0;
1001 
1002 	if (size > AMDGPU_VBIOS_VGA_ALLOCATION) {
1003 		adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION;
1004 		adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size;
1005 	} else {
1006 		adev->mman.stolen_vga_size = size;
1007 		adev->mman.stolen_extended_size = 0;
1008 	}
1009 }
1010 
1011 /**
1012  * amdgpu_gmc_init_pdb0 - initialize PDB0
1013  *
1014  * @adev: amdgpu_device pointer
1015  *
1016  * This function is only used when GART page table is used
1017  * for FB address translatioin. In such a case, we construct
1018  * a 2-level system VM page table: PDB0->PTB, to cover both
1019  * VRAM of the hive and system memory.
1020  *
1021  * PDB0 is static, initialized once on driver initialization.
1022  * The first n entries of PDB0 are used as PTE by setting
1023  * P bit to 1, pointing to VRAM. The n+1'th entry points
1024  * to a big PTB covering system memory.
1025  *
1026  */
1027 void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev)
1028 {
1029 	int i;
1030 	uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW?
1031 	/* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M
1032 	 */
1033 	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
1034 	u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21;
1035 	u64 vram_addr = adev->vm_manager.vram_base_offset -
1036 		adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size;
1037 	u64 vram_end = vram_addr + vram_size;
1038 	u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo);
1039 	int idx;
1040 
1041 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1042 		return;
1043 
1044 	flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
1045 	flags |= AMDGPU_PTE_WRITEABLE;
1046 	flags |= AMDGPU_PTE_SNOOPED;
1047 	flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1));
1048 	flags |= AMDGPU_PDE_PTE_FLAG(adev);
1049 
1050 	/* The first n PDE0 entries are used as PTE,
1051 	 * pointing to vram
1052 	 */
1053 	for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size)
1054 		amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags);
1055 
1056 	/* The n+1'th PDE0 entry points to a huge
1057 	 * PTB who has more than 512 entries each
1058 	 * pointing to a 4K system page
1059 	 */
1060 	flags = AMDGPU_PTE_VALID;
1061 	flags |= AMDGPU_PTE_SNOOPED | AMDGPU_PDE_BFS_FLAG(adev, 0);
1062 	/* Requires gart_ptb_gpu_pa to be 4K aligned */
1063 	amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags);
1064 	drm_dev_exit(idx);
1065 }
1066 
1067 /**
1068  * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC
1069  * address
1070  *
1071  * @adev: amdgpu_device pointer
1072  * @mc_addr: MC address of buffer
1073  */
1074 uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr)
1075 {
1076 	return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset;
1077 }
1078 
1079 /**
1080  * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from
1081  * GPU's view
1082  *
1083  * @adev: amdgpu_device pointer
1084  * @bo: amdgpu buffer object
1085  */
1086 uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
1087 {
1088 	return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo));
1089 }
1090 
1091 int amdgpu_gmc_vram_checking(struct amdgpu_device *adev)
1092 {
1093 	struct amdgpu_bo *vram_bo = NULL;
1094 	uint64_t vram_gpu = 0;
1095 	void *vram_ptr = NULL;
1096 
1097 	int ret, size = 0x100000;
1098 	uint8_t cptr[10];
1099 
1100 	ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE,
1101 				AMDGPU_GEM_DOMAIN_VRAM,
1102 				&vram_bo,
1103 				&vram_gpu,
1104 				&vram_ptr);
1105 	if (ret)
1106 		return ret;
1107 
1108 	memset(vram_ptr, 0x86, size);
1109 	memset(cptr, 0x86, 10);
1110 
1111 	/**
1112 	 * Check the start, the mid, and the end of the memory if the content of
1113 	 * each byte is the pattern "0x86". If yes, we suppose the vram bo is
1114 	 * workable.
1115 	 *
1116 	 * Note: If check the each byte of whole 1M bo, it will cost too many
1117 	 * seconds, so here, we just pick up three parts for emulation.
1118 	 */
1119 	ret = memcmp(vram_ptr, cptr, 10);
1120 	if (ret) {
1121 		ret = -EIO;
1122 		goto release_buffer;
1123 	}
1124 
1125 	ret = memcmp(vram_ptr + (size / 2), cptr, 10);
1126 	if (ret) {
1127 		ret = -EIO;
1128 		goto release_buffer;
1129 	}
1130 
1131 	ret = memcmp(vram_ptr + size - 10, cptr, 10);
1132 	if (ret) {
1133 		ret = -EIO;
1134 		goto release_buffer;
1135 	}
1136 
1137 release_buffer:
1138 	amdgpu_bo_free_kernel(&vram_bo, &vram_gpu,
1139 			&vram_ptr);
1140 
1141 	return ret;
1142 }
1143 
1144 static const char *nps_desc[] = {
1145 	[AMDGPU_NPS1_PARTITION_MODE] = "NPS1",
1146 	[AMDGPU_NPS2_PARTITION_MODE] = "NPS2",
1147 	[AMDGPU_NPS3_PARTITION_MODE] = "NPS3",
1148 	[AMDGPU_NPS4_PARTITION_MODE] = "NPS4",
1149 	[AMDGPU_NPS6_PARTITION_MODE] = "NPS6",
1150 	[AMDGPU_NPS8_PARTITION_MODE] = "NPS8",
1151 };
1152 
1153 static ssize_t available_memory_partition_show(struct device *dev,
1154 					       struct device_attribute *addr,
1155 					       char *buf)
1156 {
1157 	struct drm_device *ddev = dev_get_drvdata(dev);
1158 	struct amdgpu_device *adev = drm_to_adev(ddev);
1159 	int size = 0, mode;
1160 	char *sep = "";
1161 
1162 	for_each_inst(mode, adev->gmc.supported_nps_modes) {
1163 		size += sysfs_emit_at(buf, size, "%s%s", sep, nps_desc[mode]);
1164 		sep = ", ";
1165 	}
1166 	size += sysfs_emit_at(buf, size, "\n");
1167 
1168 	return size;
1169 }
1170 
1171 static ssize_t current_memory_partition_store(struct device *dev,
1172 					      struct device_attribute *attr,
1173 					      const char *buf, size_t count)
1174 {
1175 	struct drm_device *ddev = dev_get_drvdata(dev);
1176 	struct amdgpu_device *adev = drm_to_adev(ddev);
1177 	enum amdgpu_memory_partition mode;
1178 	struct amdgpu_hive_info *hive;
1179 	int i;
1180 
1181 	mode = UNKNOWN_MEMORY_PARTITION_MODE;
1182 	for_each_inst(i, adev->gmc.supported_nps_modes) {
1183 		if (!strncasecmp(nps_desc[i], buf, strlen(nps_desc[i]))) {
1184 			mode = i;
1185 			break;
1186 		}
1187 	}
1188 
1189 	if (mode == UNKNOWN_MEMORY_PARTITION_MODE)
1190 		return -EINVAL;
1191 
1192 	if (mode == adev->gmc.gmc_funcs->query_mem_partition_mode(adev)) {
1193 		dev_info(
1194 			adev->dev,
1195 			"requested NPS mode is same as current NPS mode, skipping\n");
1196 		return count;
1197 	}
1198 
1199 	/* If device is part of hive, all devices in the hive should request the
1200 	 * same mode. Hence store the requested mode in hive.
1201 	 */
1202 	hive = amdgpu_get_xgmi_hive(adev);
1203 	if (hive) {
1204 		atomic_set(&hive->requested_nps_mode, mode);
1205 		amdgpu_put_xgmi_hive(hive);
1206 	} else {
1207 		adev->gmc.requested_nps_mode = mode;
1208 	}
1209 
1210 	dev_info(
1211 		adev->dev,
1212 		"NPS mode change requested, please remove and reload the driver\n");
1213 
1214 	return count;
1215 }
1216 
1217 static ssize_t current_memory_partition_show(
1218 	struct device *dev, struct device_attribute *addr, char *buf)
1219 {
1220 	struct drm_device *ddev = dev_get_drvdata(dev);
1221 	struct amdgpu_device *adev = drm_to_adev(ddev);
1222 	enum amdgpu_memory_partition mode;
1223 
1224 	mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1225 	if ((mode >= ARRAY_SIZE(nps_desc)) ||
1226 	    (BIT(mode) & AMDGPU_ALL_NPS_MASK) != BIT(mode))
1227 		return sysfs_emit(buf, "UNKNOWN\n");
1228 
1229 	return sysfs_emit(buf, "%s\n", nps_desc[mode]);
1230 }
1231 
1232 static DEVICE_ATTR_RW(current_memory_partition);
1233 static DEVICE_ATTR_RO(available_memory_partition);
1234 
1235 int amdgpu_gmc_sysfs_init(struct amdgpu_device *adev)
1236 {
1237 	bool nps_switch_support;
1238 	int r = 0;
1239 
1240 	if (!adev->gmc.gmc_funcs->query_mem_partition_mode)
1241 		return 0;
1242 
1243 	nps_switch_support = (hweight32(adev->gmc.supported_nps_modes &
1244 					AMDGPU_ALL_NPS_MASK) > 1);
1245 	if (!nps_switch_support)
1246 		dev_attr_current_memory_partition.attr.mode &=
1247 			~(S_IWUSR | S_IWGRP | S_IWOTH);
1248 	else
1249 		r = device_create_file(adev->dev,
1250 				       &dev_attr_available_memory_partition);
1251 
1252 	if (r)
1253 		return r;
1254 
1255 	return device_create_file(adev->dev,
1256 				  &dev_attr_current_memory_partition);
1257 }
1258 
1259 void amdgpu_gmc_sysfs_fini(struct amdgpu_device *adev)
1260 {
1261 	if (!adev->gmc.gmc_funcs->query_mem_partition_mode)
1262 		return;
1263 
1264 	device_remove_file(adev->dev, &dev_attr_current_memory_partition);
1265 	device_remove_file(adev->dev, &dev_attr_available_memory_partition);
1266 }
1267 
1268 int amdgpu_gmc_get_nps_memranges(struct amdgpu_device *adev,
1269 				 struct amdgpu_mem_partition_info *mem_ranges,
1270 				 uint8_t *exp_ranges)
1271 {
1272 	struct amdgpu_gmc_memrange *ranges;
1273 	int range_cnt, ret, i, j;
1274 	uint32_t nps_type;
1275 	bool refresh;
1276 
1277 	if (!mem_ranges || !exp_ranges)
1278 		return -EINVAL;
1279 
1280 	refresh = (adev->init_lvl->level != AMDGPU_INIT_LEVEL_MINIMAL_XGMI) &&
1281 		  (adev->gmc.reset_flags & AMDGPU_GMC_INIT_RESET_NPS);
1282 	ret = amdgpu_discovery_get_nps_info(adev, &nps_type, &ranges,
1283 					    &range_cnt, refresh);
1284 
1285 	if (ret)
1286 		return ret;
1287 
1288 	/* TODO: For now, expect ranges and partition count to be the same.
1289 	 * Adjust if there are holes expected in any NPS domain.
1290 	 */
1291 	if (*exp_ranges && (range_cnt != *exp_ranges)) {
1292 		dev_warn(
1293 			adev->dev,
1294 			"NPS config mismatch - expected ranges: %d discovery - nps mode: %d, nps ranges: %d",
1295 			*exp_ranges, nps_type, range_cnt);
1296 		ret = -EINVAL;
1297 		goto err;
1298 	}
1299 
1300 	for (i = 0; i < range_cnt; ++i) {
1301 		if (ranges[i].base_address >= ranges[i].limit_address) {
1302 			dev_warn(
1303 				adev->dev,
1304 				"Invalid NPS range - nps mode: %d, range[%d]: base: %llx limit: %llx",
1305 				nps_type, i, ranges[i].base_address,
1306 				ranges[i].limit_address);
1307 			ret = -EINVAL;
1308 			goto err;
1309 		}
1310 
1311 		/* Check for overlaps, not expecting any now */
1312 		for (j = i - 1; j >= 0; j--) {
1313 			if (max(ranges[j].base_address,
1314 				ranges[i].base_address) <=
1315 			    min(ranges[j].limit_address,
1316 				ranges[i].limit_address)) {
1317 				dev_warn(
1318 					adev->dev,
1319 					"overlapping ranges detected [ %llx - %llx ] | [%llx - %llx]",
1320 					ranges[j].base_address,
1321 					ranges[j].limit_address,
1322 					ranges[i].base_address,
1323 					ranges[i].limit_address);
1324 				ret = -EINVAL;
1325 				goto err;
1326 			}
1327 		}
1328 
1329 		mem_ranges[i].range.fpfn =
1330 			(ranges[i].base_address -
1331 			 adev->vm_manager.vram_base_offset) >>
1332 			AMDGPU_GPU_PAGE_SHIFT;
1333 		mem_ranges[i].range.lpfn =
1334 			(ranges[i].limit_address -
1335 			 adev->vm_manager.vram_base_offset) >>
1336 			AMDGPU_GPU_PAGE_SHIFT;
1337 		mem_ranges[i].size =
1338 			ranges[i].limit_address - ranges[i].base_address + 1;
1339 	}
1340 
1341 	if (!*exp_ranges)
1342 		*exp_ranges = range_cnt;
1343 err:
1344 	kfree(ranges);
1345 
1346 	return ret;
1347 }
1348 
1349 int amdgpu_gmc_request_memory_partition(struct amdgpu_device *adev,
1350 					int nps_mode)
1351 {
1352 	/* Not supported on VF devices and APUs */
1353 	if (amdgpu_sriov_vf(adev) || (adev->flags & AMD_IS_APU))
1354 		return -EOPNOTSUPP;
1355 
1356 	if (!adev->psp.funcs) {
1357 		dev_err(adev->dev,
1358 			"PSP interface not available for nps mode change request");
1359 		return -EINVAL;
1360 	}
1361 
1362 	return psp_memory_partition(&adev->psp, nps_mode);
1363 }
1364 
1365 static inline bool amdgpu_gmc_need_nps_switch_req(struct amdgpu_device *adev,
1366 						  int req_nps_mode,
1367 						  int cur_nps_mode)
1368 {
1369 	return (((BIT(req_nps_mode) & adev->gmc.supported_nps_modes) ==
1370 			BIT(req_nps_mode)) &&
1371 		req_nps_mode != cur_nps_mode);
1372 }
1373 
1374 void amdgpu_gmc_prepare_nps_mode_change(struct amdgpu_device *adev)
1375 {
1376 	int req_nps_mode, cur_nps_mode, r;
1377 	struct amdgpu_hive_info *hive;
1378 
1379 	if (amdgpu_sriov_vf(adev) || !adev->gmc.supported_nps_modes ||
1380 	    !adev->gmc.gmc_funcs->request_mem_partition_mode)
1381 		return;
1382 
1383 	cur_nps_mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1384 	hive = amdgpu_get_xgmi_hive(adev);
1385 	if (hive) {
1386 		req_nps_mode = atomic_read(&hive->requested_nps_mode);
1387 		if (!amdgpu_gmc_need_nps_switch_req(adev, req_nps_mode,
1388 						    cur_nps_mode)) {
1389 			amdgpu_put_xgmi_hive(hive);
1390 			return;
1391 		}
1392 		r = amdgpu_xgmi_request_nps_change(adev, hive, req_nps_mode);
1393 		amdgpu_put_xgmi_hive(hive);
1394 		goto out;
1395 	}
1396 
1397 	req_nps_mode = adev->gmc.requested_nps_mode;
1398 	if (!amdgpu_gmc_need_nps_switch_req(adev, req_nps_mode, cur_nps_mode))
1399 		return;
1400 
1401 	/* even if this fails, we should let driver unload w/o blocking */
1402 	r = adev->gmc.gmc_funcs->request_mem_partition_mode(adev, req_nps_mode);
1403 out:
1404 	if (r)
1405 		dev_err(adev->dev, "NPS mode change request failed\n");
1406 	else
1407 		dev_info(
1408 			adev->dev,
1409 			"NPS mode change request done, reload driver to complete the change\n");
1410 }
1411 
1412 bool amdgpu_gmc_need_reset_on_init(struct amdgpu_device *adev)
1413 {
1414 	if (adev->gmc.gmc_funcs->need_reset_on_init)
1415 		return adev->gmc.gmc_funcs->need_reset_on_init(adev);
1416 
1417 	return false;
1418 }
1419