1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 */
28
29 #include <sys/sysmacros.h>
30 #include <sys/stack.h>
31 #include <sys/cpuvar.h>
32 #include <sys/ivintr.h>
33 #include <sys/intreg.h>
34 #include <sys/membar.h>
35 #include <sys/kmem.h>
36 #include <sys/intr.h>
37 #include <sys/sunddi.h>
38 #include <sys/sunndi.h>
39 #include <sys/cmn_err.h>
40 #include <sys/privregs.h>
41 #include <sys/systm.h>
42 #include <sys/archsystm.h>
43 #include <sys/machsystm.h>
44 #include <sys/x_call.h>
45 #include <vm/seg_kp.h>
46 #include <sys/debug.h>
47 #include <sys/cyclic.h>
48 #include <sys/kdi_impl.h>
49 #include <sys/ddi_periodic.h>
50
51 #include <sys/cpu_sgnblk_defs.h>
52
53 /* Global locks which protect the interrupt distribution lists */
54 static kmutex_t intr_dist_lock;
55 static kmutex_t intr_dist_cpu_lock;
56
57 /* Head of the interrupt distribution lists */
58 static struct intr_dist *intr_dist_head = NULL;
59 static struct intr_dist *intr_dist_whead = NULL;
60
61 static uint64_t siron_inum[DDI_IPL_10]; /* software interrupt numbers */
62 uint64_t *siron_cpu_inum = NULL;
63 uint64_t siron_poke_cpu_inum;
64 static int siron_cpu_setup(cpu_setup_t, int, void *);
65 extern uint_t softlevel1();
66
67 static uint64_t siron1_inum; /* backward compatibility */
68 uint64_t poke_cpu_inum;
69 uint_t poke_cpu_intr(caddr_t arg1, caddr_t arg2);
70 uint_t siron_poke_cpu_intr(caddr_t arg1, caddr_t arg2);
71
72 /*
73 * Variable to enable/disable printing a message when an invalid vecintr
74 * is received.
75 */
76 uint_t ignore_invalid_vecintr = 0;
77
78 /*
79 * Note:-
80 * siron_pending was originally created to prevent a resource over consumption
81 * bug in setsoftint(exhaustion of interrupt pool free list).
82 * It's original intention is obsolete with the use of iv_pending in
83 * setsoftint. However, siron_pending stayed around, acting as a second
84 * gatekeeper preventing soft interrupts from being queued. In this capacity,
85 * it can lead to hangs on MP systems, where due to global visibility issues
86 * it can end up set while iv_pending is reset, preventing soft interrupts from
87 * ever being processed. In addition to its gatekeeper role, init_intr also
88 * uses it to flag the situation where siron() was called before siron_inum has
89 * been defined.
90 *
91 * siron() does not need an extra gatekeeper; any cpu that wishes should be
92 * allowed to queue a soft interrupt. It is softint()'s job to ensure
93 * correct handling of the queues. Therefore, siron_pending has been
94 * stripped of its gatekeeper task, retaining only its intr_init job, where
95 * it indicates that there is a pending need to call siron().
96 */
97 static int siron_pending[DDI_IPL_10]; /* software interrupt pending flags */
98 static int siron1_pending; /* backward compatibility */
99
100 int intr_policy = INTR_WEIGHTED_DIST; /* interrupt distribution policy */
101 int intr_dist_debug = 0;
102 int32_t intr_dist_weight_max = 1;
103 int32_t intr_dist_weight_maxmax = 1000;
104 int intr_dist_weight_maxfactor = 2;
105 #define INTR_DEBUG(args) if (intr_dist_debug) cmn_err args
106
107 /*
108 * intr_init() - Interrupt initialization
109 * Initialize the system's interrupt vector table.
110 */
111 void
intr_init(cpu_t * cp)112 intr_init(cpu_t *cp)
113 {
114 int i;
115 extern uint_t softlevel1();
116
117 init_ivintr();
118 REGISTER_BBUS_INTR();
119
120 /*
121 * Register these software interrupts for ddi timer.
122 * Software interrupts up to the level 10 are supported.
123 */
124 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) {
125 siron_inum[i - 1] = add_softintr(i,
126 (softintrfunc)ddi_periodic_softintr,
127 (caddr_t)(uintptr_t)(i), SOFTINT_ST);
128 }
129
130 siron1_inum = add_softintr(PIL_1, softlevel1, 0, SOFTINT_ST);
131 poke_cpu_inum = add_softintr(PIL_13, poke_cpu_intr, 0, SOFTINT_MT);
132 siron_poke_cpu_inum = add_softintr(PIL_13,
133 siron_poke_cpu_intr, 0, SOFTINT_MT);
134 cp->cpu_m.poke_cpu_outstanding = B_FALSE;
135
136 mutex_init(&intr_dist_lock, NULL, MUTEX_DEFAULT, NULL);
137 mutex_init(&intr_dist_cpu_lock, NULL, MUTEX_DEFAULT, NULL);
138
139 /*
140 * A soft interrupt may have been requested prior to the initialization
141 * of soft interrupts. Soft interrupts can't be dispatched until after
142 * init_intr(), so we have to wait until now before we can dispatch the
143 * pending soft interrupt (if any).
144 */
145 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) {
146 if (siron_pending[i-1]) {
147 siron_pending[i-1] = 0;
148 sir_on(i);
149 }
150 }
151 if (siron1_pending) {
152 siron1_pending = 0;
153 siron();
154 }
155 }
156
157 /*
158 * poke_cpu_intr - fall through when poke_cpu calls
159 */
160 /* ARGSUSED */
161 uint_t
poke_cpu_intr(caddr_t arg1,caddr_t arg2)162 poke_cpu_intr(caddr_t arg1, caddr_t arg2)
163 {
164 CPU->cpu_m.poke_cpu_outstanding = B_FALSE;
165 membar_stld_stst();
166 return (1);
167 }
168
169 /*
170 * Trigger software interrupts dedicated to ddi timer.
171 */
172 void
sir_on(int level)173 sir_on(int level)
174 {
175 ASSERT(level >= DDI_IPL_1 && level <= DDI_IPL_10);
176 if (siron_inum[level-1])
177 setsoftint(siron_inum[level-1]);
178 else
179 siron_pending[level-1] = 1;
180 }
181
182 /*
183 * kmdb uses siron (and thus setsoftint) while the world is stopped in order to
184 * inform its driver component that there's work to be done. We need to keep
185 * DTrace from instrumenting kmdb's siron and setsoftint. We duplicate siron,
186 * giving kmdb's version a kdi_ prefix to keep DTrace at bay. The
187 * implementation of setsoftint is complicated enough that we don't want to
188 * duplicate it, but at the same time we don't want to preclude tracing either.
189 * The meat of setsoftint() therefore goes into kdi_setsoftint, with
190 * setsoftint() implemented as a wrapper. This allows tracing, while still
191 * providing a way for kmdb to sneak in unmolested.
192 */
193 void
kdi_siron(void)194 kdi_siron(void)
195 {
196 if (siron1_inum != 0)
197 kdi_setsoftint(siron1_inum);
198 else
199 siron1_pending = 1;
200 }
201
202 void
setsoftint(uint64_t inum)203 setsoftint(uint64_t inum)
204 {
205 kdi_setsoftint(inum);
206 }
207
208 /*
209 * Generates softlevel1 interrupt on current CPU if it
210 * is not pending already.
211 */
212 void
siron(void)213 siron(void)
214 {
215 uint64_t inum;
216
217 if (siron1_inum != 0) {
218 /*
219 * Once siron_cpu_inum has been allocated, we can
220 * use per-CPU siron inum.
221 */
222 if (siron_cpu_inum && siron_cpu_inum[CPU->cpu_id] != 0)
223 inum = siron_cpu_inum[CPU->cpu_id];
224 else
225 inum = siron1_inum;
226
227 setsoftint(inum);
228 } else
229 siron1_pending = 1;
230 }
231
232
233 static void
siron_init(void)234 siron_init(void)
235 {
236 /*
237 * We just allocate memory for per-cpu siron right now. Rest of
238 * the work is done when CPU is configured.
239 */
240 siron_cpu_inum = kmem_zalloc(sizeof (uint64_t) * NCPU, KM_SLEEP);
241 }
242
243 /*
244 * This routine creates per-CPU siron inum for CPUs which are
245 * configured during boot.
246 */
247 void
siron_mp_init()248 siron_mp_init()
249 {
250 cpu_t *c;
251
252 /*
253 * Get the memory for per-CPU siron inums
254 */
255 siron_init();
256
257 mutex_enter(&cpu_lock);
258 c = cpu_list;
259 do {
260 (void) siron_cpu_setup(CPU_CONFIG, c->cpu_id, NULL);
261 } while ((c = c->cpu_next) != cpu_list);
262
263 register_cpu_setup_func(siron_cpu_setup, NULL);
264 mutex_exit(&cpu_lock);
265 }
266
267 /*
268 * siron_poke_cpu_intr - cross-call handler.
269 */
270 /* ARGSUSED */
271 uint_t
siron_poke_cpu_intr(caddr_t arg1,caddr_t arg2)272 siron_poke_cpu_intr(caddr_t arg1, caddr_t arg2)
273 {
274 /* generate level1 softint */
275 siron();
276 return (1);
277 }
278
279 /*
280 * This routine generates a cross-call on target CPU(s).
281 */
282 void
siron_poke_cpu(cpuset_t poke)283 siron_poke_cpu(cpuset_t poke)
284 {
285 int cpuid = CPU->cpu_id;
286
287 if (CPU_IN_SET(poke, cpuid)) {
288 siron();
289 CPUSET_DEL(poke, cpuid);
290 if (CPUSET_ISNULL(poke))
291 return;
292 }
293
294 xt_some(poke, setsoftint_tl1, siron_poke_cpu_inum, 0);
295 }
296
297 /*
298 * This callback function allows us to create per-CPU siron inum.
299 */
300 /* ARGSUSED */
301 static int
siron_cpu_setup(cpu_setup_t what,int id,void * arg)302 siron_cpu_setup(cpu_setup_t what, int id, void *arg)
303 {
304 cpu_t *cp = cpu[id];
305
306 ASSERT(MUTEX_HELD(&cpu_lock));
307 ASSERT(cp != NULL);
308
309 switch (what) {
310 case CPU_CONFIG:
311 siron_cpu_inum[cp->cpu_id] = add_softintr(PIL_1,
312 (softintrfunc)softlevel1, 0, SOFTINT_ST);
313 break;
314 case CPU_UNCONFIG:
315 (void) rem_softintr(siron_cpu_inum[cp->cpu_id]);
316 siron_cpu_inum[cp->cpu_id] = 0;
317 break;
318 default:
319 break;
320 }
321
322 return (0);
323 }
324
325 /*
326 * no_ivintr()
327 * called by setvecint_tl1() through sys_trap()
328 * vector interrupt received but not valid or not
329 * registered in intr_vec_table
330 * considered as a spurious mondo interrupt
331 */
332 /* ARGSUSED */
333 void
no_ivintr(struct regs * rp,int inum,int pil)334 no_ivintr(struct regs *rp, int inum, int pil)
335 {
336 if (!ignore_invalid_vecintr)
337 cmn_err(CE_WARN, "invalid vector intr: number 0x%x, pil 0x%x",
338 inum, pil);
339
340 #ifdef DEBUG_VEC_INTR
341 prom_enter_mon();
342 #endif /* DEBUG_VEC_INTR */
343 }
344
345 void
intr_dequeue_req(uint_t pil,uint64_t inum)346 intr_dequeue_req(uint_t pil, uint64_t inum)
347 {
348 intr_vec_t *iv, *next, *prev;
349 struct machcpu *mcpu;
350 uint32_t clr;
351 processorid_t cpu_id;
352 extern uint_t getpstate(void);
353
354 ASSERT((getpstate() & PSTATE_IE) == 0);
355
356 mcpu = &CPU->cpu_m;
357 cpu_id = CPU->cpu_id;
358
359 iv = (intr_vec_t *)inum;
360 prev = NULL;
361 next = mcpu->intr_head[pil];
362
363 /* Find a matching entry in the list */
364 while (next != NULL) {
365 if (next == iv)
366 break;
367 prev = next;
368 next = IV_GET_PIL_NEXT(next, cpu_id);
369 }
370
371 if (next != NULL) {
372 intr_vec_t *next_iv = IV_GET_PIL_NEXT(next, cpu_id);
373
374 /* Remove entry from list */
375 if (prev != NULL)
376 IV_SET_PIL_NEXT(prev, cpu_id, next_iv); /* non-head */
377 else
378 mcpu->intr_head[pil] = next_iv; /* head */
379
380 if (next_iv == NULL)
381 mcpu->intr_tail[pil] = prev; /* tail */
382 }
383
384 /* Clear pending interrupts at this level if the list is empty */
385 if (mcpu->intr_head[pil] == NULL) {
386 clr = 1 << pil;
387 if (pil == PIL_14)
388 clr |= (TICK_INT_MASK | STICK_INT_MASK);
389 wr_clr_softint(clr);
390 }
391 }
392
393
394 /*
395 * Send a directed interrupt of specified interrupt number id to a cpu.
396 */
397 void
send_dirint(int cpuix,int intr_id)398 send_dirint(
399 int cpuix, /* cpu to be interrupted */
400 int intr_id) /* interrupt number id */
401 {
402 xt_one(cpuix, setsoftint_tl1, intr_id, 0);
403 }
404
405 /*
406 * Take the specified CPU out of participation in interrupts.
407 * Called by p_online(2) when a processor is being taken off-line.
408 * This allows interrupt threads being handled on the processor to
409 * complete before the processor is idled.
410 */
411 int
cpu_disable_intr(struct cpu * cp)412 cpu_disable_intr(struct cpu *cp)
413 {
414 ASSERT(MUTEX_HELD(&cpu_lock));
415
416 /*
417 * Turn off the CPU_ENABLE flag before calling the redistribution
418 * function, since it checks for this in the cpu flags.
419 */
420 cp->cpu_flags &= ~CPU_ENABLE;
421
422 intr_redist_all_cpus();
423
424 return (0);
425 }
426
427 /*
428 * Allow the specified CPU to participate in interrupts.
429 * Called by p_online(2) if a processor could not be taken off-line
430 * because of bound threads, in order to resume processing interrupts.
431 * Also called after starting a processor.
432 */
433 void
cpu_enable_intr(struct cpu * cp)434 cpu_enable_intr(struct cpu *cp)
435 {
436 ASSERT(MUTEX_HELD(&cpu_lock));
437
438 cp->cpu_flags |= CPU_ENABLE;
439
440 intr_redist_all_cpus();
441 }
442
443 /*
444 * Add function to callback list for intr_redist_all_cpus. We keep two lists,
445 * one for weighted callbacks and one for normal callbacks. Weighted callbacks
446 * are issued to redirect interrupts of a specified weight, from heavy to
447 * light. This allows all the interrupts of a given weight to be redistributed
448 * for all weighted nexus drivers prior to those of less weight.
449 */
450 static void
intr_dist_add_list(struct intr_dist ** phead,void (* func)(void *),void * arg)451 intr_dist_add_list(struct intr_dist **phead, void (*func)(void *), void *arg)
452 {
453 struct intr_dist *new = kmem_alloc(sizeof (*new), KM_SLEEP);
454 struct intr_dist *iptr;
455 struct intr_dist **pptr;
456
457 ASSERT(func);
458 new->func = func;
459 new->arg = arg;
460 new->next = NULL;
461
462 /* Add to tail so that redistribution occurs in original order. */
463 mutex_enter(&intr_dist_lock);
464 for (iptr = *phead, pptr = phead; iptr != NULL;
465 pptr = &iptr->next, iptr = iptr->next) {
466 /* check for problems as we locate the tail */
467 if ((iptr->func == func) && (iptr->arg == arg)) {
468 cmn_err(CE_PANIC, "intr_dist_add_list(): duplicate");
469 /*NOTREACHED*/
470 }
471 }
472 *pptr = new;
473
474 mutex_exit(&intr_dist_lock);
475 }
476
477 void
intr_dist_add(void (* func)(void *),void * arg)478 intr_dist_add(void (*func)(void *), void *arg)
479 {
480 intr_dist_add_list(&intr_dist_head, (void (*)(void *))func, arg);
481 }
482
483 void
intr_dist_add_weighted(void (* func)(void *,int32_t,int32_t),void * arg)484 intr_dist_add_weighted(void (*func)(void *, int32_t, int32_t), void *arg)
485 {
486 intr_dist_add_list(&intr_dist_whead, (void (*)(void *))func, arg);
487 }
488
489 /*
490 * Search for the interrupt distribution structure with the specified
491 * mondo vec reg in the interrupt distribution list. If a match is found,
492 * then delete the entry from the list. The caller is responsible for
493 * modifying the mondo vector registers.
494 */
495 static void
intr_dist_rem_list(struct intr_dist ** headp,void (* func)(void *),void * arg)496 intr_dist_rem_list(struct intr_dist **headp, void (*func)(void *), void *arg)
497 {
498 struct intr_dist *iptr;
499 struct intr_dist **vect;
500
501 mutex_enter(&intr_dist_lock);
502 for (iptr = *headp, vect = headp;
503 iptr != NULL; vect = &iptr->next, iptr = iptr->next) {
504 if ((iptr->func == func) && (iptr->arg == arg)) {
505 *vect = iptr->next;
506 kmem_free(iptr, sizeof (struct intr_dist));
507 mutex_exit(&intr_dist_lock);
508 return;
509 }
510 }
511
512 if (!panicstr)
513 cmn_err(CE_PANIC, "intr_dist_rem_list: not found");
514 mutex_exit(&intr_dist_lock);
515 }
516
517 void
intr_dist_rem(void (* func)(void *),void * arg)518 intr_dist_rem(void (*func)(void *), void *arg)
519 {
520 intr_dist_rem_list(&intr_dist_head, (void (*)(void *))func, arg);
521 }
522
523 void
intr_dist_rem_weighted(void (* func)(void *,int32_t,int32_t),void * arg)524 intr_dist_rem_weighted(void (*func)(void *, int32_t, int32_t), void *arg)
525 {
526 intr_dist_rem_list(&intr_dist_whead, (void (*)(void *))func, arg);
527 }
528
529 /*
530 * Initiate interrupt redistribution. Redistribution improves the isolation
531 * associated with interrupt weights by ordering operations from heavy weight
532 * to light weight. When a CPUs orientation changes relative to interrupts,
533 * there is *always* a redistribution to accommodate this change (call to
534 * intr_redist_all_cpus()). As devices (not CPUs) attach/detach it is possible
535 * that a redistribution could improve the quality of an initialization. For
536 * example, if you are not using a NIC it may not be attached with s10 (devfs).
537 * If you then configure the NIC (ifconfig), this may cause the NIC to attach
538 * and plumb interrupts. The CPU assignment for the NIC's interrupts is
539 * occurring late, so optimal "isolation" relative to weight is not occurring.
540 * The same applies to detach, although in this case doing the redistribution
541 * might improve "spread" for medium weight devices since the "isolation" of
542 * a higher weight device may no longer be present.
543 *
544 * NB: We should provide a utility to trigger redistribution (ala "intradm -r").
545 *
546 * NB: There is risk associated with automatically triggering execution of the
547 * redistribution code at arbitrary times. The risk comes from the fact that
548 * there is a lot of low-level hardware interaction associated with a
549 * redistribution. At some point we may want this code to perform automatic
550 * redistribution (redistribution thread; trigger timeout when add/remove
551 * weight delta is large enough, and call cv_signal from timeout - causing
552 * thead to call i_ddi_intr_redist_all_cpus()) but this is considered too
553 * risky at this time.
554 */
555 void
i_ddi_intr_redist_all_cpus()556 i_ddi_intr_redist_all_cpus()
557 {
558 mutex_enter(&cpu_lock);
559 INTR_DEBUG((CE_CONT, "intr_dist: i_ddi_intr_redist_all_cpus\n"));
560 intr_redist_all_cpus();
561 mutex_exit(&cpu_lock);
562 }
563
564 /*
565 * Redistribute all interrupts
566 *
567 * This function redistributes all interrupting devices, running the
568 * parent callback functions for each node.
569 */
570 void
intr_redist_all_cpus(void)571 intr_redist_all_cpus(void)
572 {
573 struct cpu *cp;
574 struct intr_dist *iptr;
575 int32_t weight, max_weight;
576
577 ASSERT(MUTEX_HELD(&cpu_lock));
578 mutex_enter(&intr_dist_lock);
579
580 /*
581 * zero cpu_intr_weight on all cpus - it is safe to traverse
582 * cpu_list since we hold cpu_lock.
583 */
584 cp = cpu_list;
585 do {
586 cp->cpu_intr_weight = 0;
587 } while ((cp = cp->cpu_next) != cpu_list);
588
589 /*
590 * Assume that this redistribution may encounter a device weight
591 * via driver.conf tuning of "ddi-intr-weight" that is at most
592 * intr_dist_weight_maxfactor times larger.
593 */
594 max_weight = intr_dist_weight_max * intr_dist_weight_maxfactor;
595 if (max_weight > intr_dist_weight_maxmax)
596 max_weight = intr_dist_weight_maxmax;
597 intr_dist_weight_max = 1;
598
599 INTR_DEBUG((CE_CONT, "intr_dist: "
600 "intr_redist_all_cpus: %d-0\n", max_weight));
601
602 /*
603 * Redistribute weighted, from heavy to light. The callback that
604 * specifies a weight equal to weight_max should redirect all
605 * interrupts of weight weight_max or greater [weight_max, inf.).
606 * Interrupts of lesser weight should be processed on the call with
607 * the matching weight. This allows all the heaver weight interrupts
608 * on all weighted busses (multiple pci busses) to be redirected prior
609 * to any lesser weight interrupts.
610 */
611 for (weight = max_weight; weight >= 0; weight--)
612 for (iptr = intr_dist_whead; iptr != NULL; iptr = iptr->next)
613 ((void (*)(void *, int32_t, int32_t))iptr->func)
614 (iptr->arg, max_weight, weight);
615
616 /* redistribute normal (non-weighted) interrupts */
617 for (iptr = intr_dist_head; iptr != NULL; iptr = iptr->next)
618 ((void (*)(void *))iptr->func)(iptr->arg);
619 mutex_exit(&intr_dist_lock);
620 }
621
622 void
intr_redist_all_cpus_shutdown(void)623 intr_redist_all_cpus_shutdown(void)
624 {
625 intr_policy = INTR_CURRENT_CPU;
626 intr_redist_all_cpus();
627 }
628
629 /*
630 * Determine what CPU to target, based on interrupt policy.
631 *
632 * INTR_FLAT_DIST: hold a current CPU pointer in a static variable and
633 * advance through interrupt enabled cpus (round-robin).
634 *
635 * INTR_WEIGHTED_DIST: search for an enabled CPU with the lowest
636 * cpu_intr_weight, round robin when all equal.
637 *
638 * Weighted interrupt distribution provides two things: "spread" of weight
639 * (associated with algorithm itself) and "isolation" (associated with a
640 * particular device weight). A redistribution is what provides optimal
641 * "isolation" of heavy weight interrupts, optimal "spread" of weight
642 * (relative to what came before) is always occurring.
643 *
644 * An interrupt weight is a subjective number that represents the
645 * percentage of a CPU required to service a device's interrupts: the
646 * default weight is 0% (however the algorithm still maintains
647 * round-robin), a network interface controller (NIC) may have a large
648 * weight (35%). Interrupt weight only has meaning relative to the
649 * interrupt weight of other devices: a CPU can be weighted more than
650 * 100%, and a single device might consume more than 100% of a CPU.
651 *
652 * A coarse interrupt weight can be defined by the parent nexus driver
653 * based on bus specific information, like pci class codes. A nexus
654 * driver that supports device interrupt weighting for its children
655 * should call intr_dist_cpuid_add/rem_device_weight(), which adds
656 * and removes the weight of a device from the CPU that an interrupt
657 * is directed at. The quality of initialization improves when the
658 * device interrupt weights more accuracy reflect actual run-time weights,
659 * and as the assignments are ordered from is heavy to light.
660 *
661 * The implementation also supports interrupt weight being specified in
662 * driver.conf files via the property "ddi-intr-weight", which takes
663 * precedence over the nexus supplied weight. This support is added to
664 * permit possible tweaking in the product in response to customer
665 * problems. This is not a formal or committed interface.
666 *
667 * While a weighted approach chooses the CPU providing the best spread
668 * given past weights, less than optimal isolation can result in cases
669 * where heavy weight devices show up last. The nexus driver's interrupt
670 * redistribution logic should use intr_dist_add/rem_weighted so that
671 * interrupts can be redistributed heavy first for optimal isolation.
672 */
673 uint32_t
intr_dist_cpuid(void)674 intr_dist_cpuid(void)
675 {
676 static struct cpu *curr_cpu;
677 struct cpu *start_cpu;
678 struct cpu *new_cpu;
679 struct cpu *cp;
680 int cpuid = -1;
681
682 /* Establish exclusion for curr_cpu and cpu_intr_weight manipulation */
683 mutex_enter(&intr_dist_cpu_lock);
684
685 switch (intr_policy) {
686 case INTR_CURRENT_CPU:
687 cpuid = CPU->cpu_id;
688 break;
689
690 case INTR_BOOT_CPU:
691 panic("INTR_BOOT_CPU no longer supported.");
692 /*NOTREACHED*/
693
694 case INTR_FLAT_DIST:
695 case INTR_WEIGHTED_DIST:
696 default:
697 /*
698 * Ensure that curr_cpu is valid - cpu_next will be NULL if
699 * the cpu has been deleted (cpu structs are never freed).
700 */
701 if (curr_cpu == NULL || curr_cpu->cpu_next == NULL)
702 curr_cpu = CPU;
703
704 /*
705 * Advance to online CPU after curr_cpu (round-robin). For
706 * INTR_WEIGHTED_DIST we choose the cpu with the lightest
707 * weight. For a nexus that does not support weight the
708 * default weight of zero is used. We degrade to round-robin
709 * behavior among equal weightes. The default weight is zero
710 * and round-robin behavior continues.
711 *
712 * Disable preemption while traversing cpu_next_onln to
713 * ensure the list does not change. This works because
714 * modifiers of this list and other lists in a struct cpu
715 * call pause_cpus() before making changes.
716 */
717 kpreempt_disable();
718 cp = start_cpu = curr_cpu->cpu_next_onln;
719 new_cpu = NULL;
720 do {
721 /* Skip CPUs with interrupts disabled */
722 if ((cp->cpu_flags & CPU_ENABLE) == 0)
723 continue;
724
725 if (intr_policy == INTR_FLAT_DIST) {
726 /* select CPU */
727 new_cpu = cp;
728 break;
729 } else if ((new_cpu == NULL) ||
730 (cp->cpu_intr_weight < new_cpu->cpu_intr_weight)) {
731 /* Choose if lighter weight */
732 new_cpu = cp;
733 }
734 } while ((cp = cp->cpu_next_onln) != start_cpu);
735 ASSERT(new_cpu);
736 cpuid = new_cpu->cpu_id;
737
738 INTR_DEBUG((CE_CONT, "intr_dist: cpu %2d weight %3d: "
739 "targeted\n", cpuid, new_cpu->cpu_intr_weight));
740
741 /* update static pointer for next round-robin */
742 curr_cpu = new_cpu;
743 kpreempt_enable();
744 break;
745 }
746 mutex_exit(&intr_dist_cpu_lock);
747 return (cpuid);
748 }
749
750 /*
751 * Add or remove the the weight of a device from a CPUs interrupt weight.
752 *
753 * We expect nexus drivers to call intr_dist_cpuid_add/rem_device_weight for
754 * their children to improve the overall quality of interrupt initialization.
755 *
756 * If a nexues shares the CPU returned by a single intr_dist_cpuid() call
757 * among multiple devices (sharing ino) then the nexus should call
758 * intr_dist_cpuid_add/rem_device_weight for each device separately. Devices
759 * that share must specify the same cpuid.
760 *
761 * If a nexus driver is unable to determine the cpu at remove_intr time
762 * for some of its interrupts, then it should not call add_device_weight -
763 * intr_dist_cpuid will still provide round-robin.
764 *
765 * An established device weight (from dev_info node) takes precedence over
766 * the weight passed in. If a device weight is not already established
767 * then the passed in nexus weight is established.
768 */
769 void
intr_dist_cpuid_add_device_weight(uint32_t cpuid,dev_info_t * dip,int32_t nweight)770 intr_dist_cpuid_add_device_weight(uint32_t cpuid,
771 dev_info_t *dip, int32_t nweight)
772 {
773 int32_t eweight;
774
775 /*
776 * For non-weighted policy everything has weight of zero (and we get
777 * round-robin distribution from intr_dist_cpuid).
778 * NB: intr_policy is limited to this file. A weighted nexus driver is
779 * calls this rouitne even if intr_policy has been patched to
780 * INTR_FLAG_DIST.
781 */
782 ASSERT(dip);
783 if (intr_policy != INTR_WEIGHTED_DIST)
784 return;
785
786 eweight = i_ddi_get_intr_weight(dip);
787 INTR_DEBUG((CE_CONT, "intr_dist: cpu %2d weight %3d: +%2d/%2d for "
788 "%s#%d/%s#%d\n", cpuid, cpu[cpuid]->cpu_intr_weight,
789 nweight, eweight, ddi_driver_name(ddi_get_parent(dip)),
790 ddi_get_instance(ddi_get_parent(dip)),
791 ddi_driver_name(dip), ddi_get_instance(dip)));
792
793 /* if no establish weight, establish nexus weight */
794 if (eweight < 0) {
795 if (nweight > 0)
796 (void) i_ddi_set_intr_weight(dip, nweight);
797 else
798 nweight = 0;
799 } else
800 nweight = eweight; /* use established weight */
801
802 /* Establish exclusion for cpu_intr_weight manipulation */
803 mutex_enter(&intr_dist_cpu_lock);
804 cpu[cpuid]->cpu_intr_weight += nweight;
805
806 /* update intr_dist_weight_max */
807 if (nweight > intr_dist_weight_max)
808 intr_dist_weight_max = nweight;
809 mutex_exit(&intr_dist_cpu_lock);
810 }
811
812 void
intr_dist_cpuid_rem_device_weight(uint32_t cpuid,dev_info_t * dip)813 intr_dist_cpuid_rem_device_weight(uint32_t cpuid, dev_info_t *dip)
814 {
815 struct cpu *cp;
816 int32_t weight;
817
818 ASSERT(dip);
819 if (intr_policy != INTR_WEIGHTED_DIST)
820 return;
821
822 /* remove weight of device from cpu */
823 weight = i_ddi_get_intr_weight(dip);
824 if (weight < 0)
825 weight = 0;
826 INTR_DEBUG((CE_CONT, "intr_dist: cpu %2d weight %3d: -%2d for "
827 "%s#%d/%s#%d\n", cpuid, cpu[cpuid]->cpu_intr_weight, weight,
828 ddi_driver_name(ddi_get_parent(dip)),
829 ddi_get_instance(ddi_get_parent(dip)),
830 ddi_driver_name(dip), ddi_get_instance(dip)));
831
832 /* Establish exclusion for cpu_intr_weight manipulation */
833 mutex_enter(&intr_dist_cpu_lock);
834 cp = cpu[cpuid];
835 cp->cpu_intr_weight -= weight;
836 if (cp->cpu_intr_weight < 0)
837 cp->cpu_intr_weight = 0; /* sanity */
838 mutex_exit(&intr_dist_cpu_lock);
839 }
840
841 ulong_t
create_softint(uint_t pil,uint_t (* func)(caddr_t,caddr_t),caddr_t arg1)842 create_softint(uint_t pil, uint_t (*func)(caddr_t, caddr_t), caddr_t arg1)
843 {
844 uint64_t inum;
845
846 inum = add_softintr(pil, func, arg1, SOFTINT_MT);
847 return ((ulong_t)inum);
848 }
849
850 void
invoke_softint(processorid_t cpuid,ulong_t hdl)851 invoke_softint(processorid_t cpuid, ulong_t hdl)
852 {
853 uint64_t inum = hdl;
854
855 if (cpuid == CPU->cpu_id)
856 setsoftint(inum);
857 else
858 xt_one(cpuid, setsoftint_tl1, inum, 0);
859 }
860
861 void
remove_softint(ulong_t hdl)862 remove_softint(ulong_t hdl)
863 {
864 uint64_t inum = hdl;
865
866 (void) rem_softintr(inum);
867 }
868
869 void
sync_softint(cpuset_t set)870 sync_softint(cpuset_t set)
871 {
872 xt_sync(set);
873 }
874