xref: /linux/kernel/irq/timings.c (revision 09e9d370ceb304418b47fd1fda901f00c7f450a0)
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2016, Linaro Ltd - Daniel Lezcano <daniel.lezcano@linaro.org>
3 #define pr_fmt(fmt) "irq_timings: " fmt
4 
5 #include <linux/kernel.h>
6 #include <linux/percpu.h>
7 #include <linux/slab.h>
8 #include <linux/static_key.h>
9 #include <linux/init.h>
10 #include <linux/interrupt.h>
11 #include <linux/idr.h>
12 #include <linux/irq.h>
13 #include <linux/math64.h>
14 #include <linux/log2.h>
15 
16 #include <trace/events/irq.h>
17 
18 #include "internals.h"
19 
20 DEFINE_STATIC_KEY_FALSE(irq_timing_enabled);
21 
22 DEFINE_PER_CPU(struct irq_timings, irq_timings);
23 
24 static DEFINE_IDR(irqt_stats);
25 
26 void irq_timings_enable(void)
27 {
28 	static_branch_enable(&irq_timing_enabled);
29 }
30 
31 void irq_timings_disable(void)
32 {
33 	static_branch_disable(&irq_timing_enabled);
34 }
35 
36 /*
37  * The main goal of this algorithm is to predict the next interrupt
38  * occurrence on the current CPU.
39  *
40  * Currently, the interrupt timings are stored in a circular array
41  * buffer every time there is an interrupt, as a tuple: the interrupt
42  * number and the associated timestamp when the event occurred <irq,
43  * timestamp>.
44  *
45  * For every interrupt occurring in a short period of time, we can
46  * measure the elapsed time between the occurrences for the same
47  * interrupt and we end up with a suite of intervals. The experience
48  * showed the interrupts are often coming following a periodic
49  * pattern.
50  *
51  * The objective of the algorithm is to find out this periodic pattern
52  * in a fastest way and use its period to predict the next irq event.
53  *
54  * When the next interrupt event is requested, we are in the situation
55  * where the interrupts are disabled and the circular buffer
56  * containing the timings is filled with the events which happened
57  * after the previous next-interrupt-event request.
58  *
59  * At this point, we read the circular buffer and we fill the irq
60  * related statistics structure. After this step, the circular array
61  * containing the timings is empty because all the values are
62  * dispatched in their corresponding buffers.
63  *
64  * Now for each interrupt, we can predict the next event by using the
65  * suffix array, log interval and exponential moving average
66  *
67  * 1. Suffix array
68  *
69  * Suffix array is an array of all the suffixes of a string. It is
70  * widely used as a data structure for compression, text search, ...
71  * For instance for the word 'banana', the suffixes will be: 'banana'
72  * 'anana' 'nana' 'ana' 'na' 'a'
73  *
74  * Usually, the suffix array is sorted but for our purpose it is
75  * not necessary and won't provide any improvement in the context of
76  * the solved problem where we clearly define the boundaries of the
77  * search by a max period and min period.
78  *
79  * The suffix array will build a suite of intervals of different
80  * length and will look for the repetition of each suite. If the suite
81  * is repeating then we have the period because it is the length of
82  * the suite whatever its position in the buffer.
83  *
84  * 2. Log interval
85  *
86  * We saw the irq timings allow to compute the interval of the
87  * occurrences for a specific interrupt. We can reasonably assume the
88  * longer is the interval, the higher is the error for the next event
89  * and we can consider storing those interval values into an array
90  * where each slot in the array correspond to an interval at the power
91  * of 2 of the index. For example, index 12 will contain values
92  * between 2^11 and 2^12.
93  *
94  * At the end we have an array of values where at each index defines a
95  * [2^index - 1, 2 ^ index] interval values allowing to store a large
96  * number of values inside a small array.
97  *
98  * For example, if we have the value 1123, then we store it at
99  * ilog2(1123) = 10 index value.
100  *
101  * Storing those value at the specific index is done by computing an
102  * exponential moving average for this specific slot. For instance,
103  * for values 1800, 1123, 1453, ... fall under the same slot (10) and
104  * the exponential moving average is computed every time a new value
105  * is stored at this slot.
106  *
107  * 3. Exponential Moving Average
108  *
109  * The EMA is largely used to track a signal for stocks or as a low
110  * pass filter. The magic of the formula, is it is very simple and the
111  * reactivity of the average can be tuned with the factors called
112  * alpha.
113  *
114  * The higher the alphas are, the faster the average respond to the
115  * signal change. In our case, if a slot in the array is a big
116  * interval, we can have numbers with a big difference between
117  * them. The impact of those differences in the average computation
118  * can be tuned by changing the alpha value.
119  *
120  *
121  *  -- The algorithm --
122  *
123  * We saw the different processing above, now let's see how they are
124  * used together.
125  *
126  * For each interrupt:
127  *	For each interval:
128  *		Compute the index = ilog2(interval)
129  *		Compute a new_ema(buffer[index], interval)
130  *		Store the index in a circular buffer
131  *
132  *	Compute the suffix array of the indexes
133  *
134  *	For each suffix:
135  *		If the suffix is reverse-found 3 times
136  *			Return suffix
137  *
138  *	Return Not found
139  *
140  * However we can not have endless suffix array to be build, it won't
141  * make sense and it will add an extra overhead, so we can restrict
142  * this to a maximum suffix length of 5 and a minimum suffix length of
143  * 2. The experience showed 5 is the majority of the maximum pattern
144  * period found for different devices.
145  *
146  * The result is a pattern finding less than 1us for an interrupt.
147  *
148  * Example based on real values:
149  *
150  * Example 1 : MMC write/read interrupt interval:
151  *
152  *	223947, 1240, 1384, 1386, 1386,
153  *	217416, 1236, 1384, 1386, 1387,
154  *	214719, 1241, 1386, 1387, 1384,
155  *	213696, 1234, 1384, 1386, 1388,
156  *	219904, 1240, 1385, 1389, 1385,
157  *	212240, 1240, 1386, 1386, 1386,
158  *	214415, 1236, 1384, 1386, 1387,
159  *	214276, 1234, 1384, 1388, ?
160  *
161  * For each element, apply ilog2(value)
162  *
163  *	15, 8, 8, 8, 8,
164  *	15, 8, 8, 8, 8,
165  *	15, 8, 8, 8, 8,
166  *	15, 8, 8, 8, 8,
167  *	15, 8, 8, 8, 8,
168  *	15, 8, 8, 8, 8,
169  *	15, 8, 8, 8, 8,
170  *	15, 8, 8, 8, ?
171  *
172  * Max period of 5, we take the last (max_period * 3) 15 elements as
173  * we can be confident if the pattern repeats itself three times it is
174  * a repeating pattern.
175  *
176  *	             8,
177  *	15, 8, 8, 8, 8,
178  *	15, 8, 8, 8, 8,
179  *	15, 8, 8, 8, ?
180  *
181  * Suffixes are:
182  *
183  *  1) 8, 15, 8, 8, 8  <- max period
184  *  2) 8, 15, 8, 8
185  *  3) 8, 15, 8
186  *  4) 8, 15           <- min period
187  *
188  * From there we search the repeating pattern for each suffix.
189  *
190  * buffer: 8, 15, 8, 8, 8, 8, 15, 8, 8, 8, 8, 15, 8, 8, 8
191  *         |   |  |  |  |  |   |  |  |  |  |   |  |  |  |
192  *         8, 15, 8, 8, 8  |   |  |  |  |  |   |  |  |  |
193  *                         8, 15, 8, 8, 8  |   |  |  |  |
194  *                                         8, 15, 8, 8, 8
195  *
196  * When moving the suffix, we found exactly 3 matches.
197  *
198  * The first suffix with period 5 is repeating.
199  *
200  * The next event is (3 * max_period) % suffix_period
201  *
202  * In this example, the result 0, so the next event is suffix[0] => 8
203  *
204  * However, 8 is the index in the array of exponential moving average
205  * which was calculated on the fly when storing the values, so the
206  * interval is ema[8] = 1366
207  *
208  *
209  * Example 2:
210  *
211  *	4, 3, 5, 100,
212  *	3, 3, 5, 117,
213  *	4, 4, 5, 112,
214  *	4, 3, 4, 110,
215  *	3, 5, 3, 117,
216  *	4, 4, 5, 112,
217  *	4, 3, 4, 110,
218  *	3, 4, 5, 112,
219  *	4, 3, 4, 110
220  *
221  * ilog2
222  *
223  *	0, 0, 0, 4,
224  *	0, 0, 0, 4,
225  *	0, 0, 0, 4,
226  *	0, 0, 0, 4,
227  *	0, 0, 0, 4,
228  *	0, 0, 0, 4,
229  *	0, 0, 0, 4,
230  *	0, 0, 0, 4,
231  *	0, 0, 0, 4
232  *
233  * Max period 5:
234  *	   0, 0, 4,
235  *	0, 0, 0, 4,
236  *	0, 0, 0, 4,
237  *	0, 0, 0, 4
238  *
239  * Suffixes:
240  *
241  *  1) 0, 0, 4, 0, 0
242  *  2) 0, 0, 4, 0
243  *  3) 0, 0, 4
244  *  4) 0, 0
245  *
246  * buffer: 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4
247  *         |  |  |  |  |  |  X
248  *         0, 0, 4, 0, 0, |  X
249  *                        0, 0
250  *
251  * buffer: 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4
252  *         |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
253  *         0, 0, 4, 0, |  |  |  |  |  |  |  |  |  |  |
254  *                     0, 0, 4, 0, |  |  |  |  |  |  |
255  *                                 0, 0, 4, 0, |  |  |
256  *                                             0  0  4
257  *
258  * Pattern is found 3 times, the remaining is 1 which results from
259  * (max_period * 3) % suffix_period. This value is the index in the
260  * suffix arrays. The suffix array for a period 4 has the value 4
261  * at index 1.
262  */
263 #define EMA_ALPHA_VAL		64
264 #define EMA_ALPHA_SHIFT		7
265 
266 #define PREDICTION_PERIOD_MIN	3
267 #define PREDICTION_PERIOD_MAX	5
268 #define PREDICTION_FACTOR	4
269 #define PREDICTION_MAX		10 /* 2 ^ PREDICTION_MAX useconds */
270 #define PREDICTION_BUFFER_SIZE	16 /* slots for EMAs, hardly more than 16 */
271 
272 /*
273  * Number of elements in the circular buffer: If it happens it was
274  * flushed before, then the number of elements could be smaller than
275  * IRQ_TIMINGS_SIZE, so the count is used, otherwise the array size is
276  * used as we wrapped. The index begins from zero when we did not
277  * wrap. That could be done in a nicer way with the proper circular
278  * array structure type but with the cost of extra computation in the
279  * interrupt handler hot path. We choose efficiency.
280  */
281 #define for_each_irqts(i, irqts)					\
282 	for (i = irqts->count < IRQ_TIMINGS_SIZE ?			\
283 		     0 : irqts->count & IRQ_TIMINGS_MASK,		\
284 		     irqts->count = min(IRQ_TIMINGS_SIZE,		\
285 					irqts->count);			\
286 	     irqts->count > 0; irqts->count--,				\
287 		     i = (i + 1) & IRQ_TIMINGS_MASK)
288 
289 struct irqt_stat {
290 	u64	last_ts;
291 	u64	ema_time[PREDICTION_BUFFER_SIZE];
292 	int	timings[IRQ_TIMINGS_SIZE];
293 	int	circ_timings[IRQ_TIMINGS_SIZE];
294 	int	count;
295 };
296 
297 /*
298  * Exponential moving average computation
299  */
300 static u64 irq_timings_ema_new(u64 value, u64 ema_old)
301 {
302 	s64 diff;
303 
304 	if (unlikely(!ema_old))
305 		return value;
306 
307 	diff = (value - ema_old) * EMA_ALPHA_VAL;
308 	/*
309 	 * We can use a s64 type variable to be added with the u64
310 	 * ema_old variable as this one will never have its topmost
311 	 * bit set, it will be always smaller than 2^63 nanosec
312 	 * interrupt interval (292 years).
313 	 */
314 	return ema_old + (diff >> EMA_ALPHA_SHIFT);
315 }
316 
317 static int irq_timings_next_event_index(int *buffer, size_t len, int period_max)
318 {
319 	int period;
320 
321 	/*
322 	 * Move the beginning pointer to the end minus the max period x 3.
323 	 * We are at the point we can begin searching the pattern
324 	 */
325 	buffer = &buffer[len - (period_max * 3)];
326 
327 	/* Adjust the length to the maximum allowed period x 3 */
328 	len = period_max * 3;
329 
330 	/*
331 	 * The buffer contains the suite of intervals, in a ilog2
332 	 * basis, we are looking for a repetition. We point the
333 	 * beginning of the search three times the length of the
334 	 * period beginning at the end of the buffer. We do that for
335 	 * each suffix.
336 	 */
337 	for (period = period_max; period >= PREDICTION_PERIOD_MIN; period--) {
338 
339 		/*
340 		 * The first comparison always succeed because the
341 		 * suffix is deduced from the first n-period bytes of
342 		 * the buffer and we compare the initial suffix with
343 		 * itself, so we can skip the first iteration.
344 		 */
345 		int idx = period;
346 		size_t size = period;
347 
348 		/*
349 		 * We look if the suite with period 'i' repeat
350 		 * itself. If it is truncated at the end, as it
351 		 * repeats we can use the period to find out the next
352 		 * element with the modulo.
353 		 */
354 		while (!memcmp(buffer, &buffer[idx], size * sizeof(int))) {
355 
356 			/*
357 			 * Move the index in a period basis
358 			 */
359 			idx += size;
360 
361 			/*
362 			 * If this condition is reached, all previous
363 			 * memcmp were successful, so the period is
364 			 * found.
365 			 */
366 			if (idx == len)
367 				return buffer[len % period];
368 
369 			/*
370 			 * If the remaining elements to compare are
371 			 * smaller than the period, readjust the size
372 			 * of the comparison for the last iteration.
373 			 */
374 			if (len - idx < period)
375 				size = len - idx;
376 		}
377 	}
378 
379 	return -1;
380 }
381 
382 static u64 __irq_timings_next_event(struct irqt_stat *irqs, int irq, u64 now)
383 {
384 	int index, i, period_max, count, start, min = INT_MAX;
385 
386 	if ((now - irqs->last_ts) >= NSEC_PER_SEC) {
387 		irqs->count = irqs->last_ts = 0;
388 		return U64_MAX;
389 	}
390 
391 	/*
392 	 * As we want to find three times the repetition, we need a
393 	 * number of intervals greater or equal to three times the
394 	 * maximum period, otherwise we truncate the max period.
395 	 */
396 	period_max = irqs->count > (3 * PREDICTION_PERIOD_MAX) ?
397 		PREDICTION_PERIOD_MAX : irqs->count / 3;
398 
399 	/*
400 	 * If we don't have enough irq timings for this prediction,
401 	 * just bail out.
402 	 */
403 	if (period_max <= PREDICTION_PERIOD_MIN)
404 		return U64_MAX;
405 
406 	/*
407 	 * 'count' will depends if the circular buffer wrapped or not
408 	 */
409 	count = irqs->count < IRQ_TIMINGS_SIZE ?
410 		irqs->count : IRQ_TIMINGS_SIZE;
411 
412 	start = irqs->count < IRQ_TIMINGS_SIZE ?
413 		0 : (irqs->count & IRQ_TIMINGS_MASK);
414 
415 	/*
416 	 * Copy the content of the circular buffer into another buffer
417 	 * in order to linearize the buffer instead of dealing with
418 	 * wrapping indexes and shifted array which will be prone to
419 	 * error and extremely difficult to debug.
420 	 */
421 	for (i = 0; i < count; i++) {
422 		int index = (start + i) & IRQ_TIMINGS_MASK;
423 
424 		irqs->timings[i] = irqs->circ_timings[index];
425 		min = min_t(int, irqs->timings[i], min);
426 	}
427 
428 	index = irq_timings_next_event_index(irqs->timings, count, period_max);
429 	if (index < 0)
430 		return irqs->last_ts + irqs->ema_time[min];
431 
432 	return irqs->last_ts + irqs->ema_time[index];
433 }
434 
435 static __always_inline int irq_timings_interval_index(u64 interval)
436 {
437 	/*
438 	 * The PREDICTION_FACTOR increase the interval size for the
439 	 * array of exponential average.
440 	 */
441 	u64 interval_us = (interval >> 10) / PREDICTION_FACTOR;
442 
443 	return likely(interval_us) ? ilog2(interval_us) : 0;
444 }
445 
446 static __always_inline void __irq_timings_store(int irq, struct irqt_stat *irqs,
447 						u64 interval)
448 {
449 	int index;
450 
451 	/*
452 	 * Get the index in the ema table for this interrupt.
453 	 */
454 	index = irq_timings_interval_index(interval);
455 
456 	if (index > PREDICTION_BUFFER_SIZE - 1) {
457 		irqs->count = 0;
458 		return;
459 	}
460 
461 	/*
462 	 * Store the index as an element of the pattern in another
463 	 * circular array.
464 	 */
465 	irqs->circ_timings[irqs->count & IRQ_TIMINGS_MASK] = index;
466 
467 	irqs->ema_time[index] = irq_timings_ema_new(interval,
468 						    irqs->ema_time[index]);
469 
470 	irqs->count++;
471 }
472 
473 static inline void irq_timings_store(int irq, struct irqt_stat *irqs, u64 ts)
474 {
475 	u64 old_ts = irqs->last_ts;
476 	u64 interval;
477 
478 	/*
479 	 * The timestamps are absolute time values, we need to compute
480 	 * the timing interval between two interrupts.
481 	 */
482 	irqs->last_ts = ts;
483 
484 	/*
485 	 * The interval type is u64 in order to deal with the same
486 	 * type in our computation, that prevent mindfuck issues with
487 	 * overflow, sign and division.
488 	 */
489 	interval = ts - old_ts;
490 
491 	/*
492 	 * The interrupt triggered more than one second apart, that
493 	 * ends the sequence as predictable for our purpose. In this
494 	 * case, assume we have the beginning of a sequence and the
495 	 * timestamp is the first value. As it is impossible to
496 	 * predict anything at this point, return.
497 	 *
498 	 * Note the first timestamp of the sequence will always fall
499 	 * in this test because the old_ts is zero. That is what we
500 	 * want as we need another timestamp to compute an interval.
501 	 */
502 	if (interval >= NSEC_PER_SEC) {
503 		irqs->count = 0;
504 		return;
505 	}
506 
507 	__irq_timings_store(irq, irqs, interval);
508 }
509 
510 /**
511  * irq_timings_next_event - Return when the next event is supposed to arrive
512  * @now: current time
513  *
514  * During the last busy cycle, the number of interrupts is incremented
515  * and stored in the irq_timings structure. This information is
516  * necessary to:
517  *
518  * - know if the index in the table wrapped up:
519  *
520  *      If more than the array size interrupts happened during the
521  *      last busy/idle cycle, the index wrapped up and we have to
522  *      begin with the next element in the array which is the last one
523  *      in the sequence, otherwise it is at the index 0.
524  *
525  * - have an indication of the interrupts activity on this CPU
526  *   (eg. irq/sec)
527  *
528  * The values are 'consumed' after inserting in the statistical model,
529  * thus the count is reinitialized.
530  *
531  * The array of values **must** be browsed in the time direction, the
532  * timestamp must increase between an element and the next one.
533  *
534  * Returns a nanosec time based estimation of the earliest interrupt,
535  * U64_MAX otherwise.
536  */
537 u64 irq_timings_next_event(u64 now)
538 {
539 	struct irq_timings *irqts = this_cpu_ptr(&irq_timings);
540 	struct irqt_stat *irqs;
541 	struct irqt_stat __percpu *s;
542 	u64 ts, next_evt = U64_MAX;
543 	int i, irq = 0;
544 
545 	/*
546 	 * This function must be called with the local irq disabled in
547 	 * order to prevent the timings circular buffer to be updated
548 	 * while we are reading it.
549 	 */
550 	lockdep_assert_irqs_disabled();
551 
552 	if (!irqts->count)
553 		return next_evt;
554 
555 	/*
556 	 * Number of elements in the circular buffer: If it happens it
557 	 * was flushed before, then the number of elements could be
558 	 * smaller than IRQ_TIMINGS_SIZE, so the count is used,
559 	 * otherwise the array size is used as we wrapped. The index
560 	 * begins from zero when we did not wrap. That could be done
561 	 * in a nicer way with the proper circular array structure
562 	 * type but with the cost of extra computation in the
563 	 * interrupt handler hot path. We choose efficiency.
564 	 *
565 	 * Inject measured irq/timestamp to the pattern prediction
566 	 * model while decrementing the counter because we consume the
567 	 * data from our circular buffer.
568 	 */
569 	for_each_irqts(i, irqts) {
570 		irq = irq_timing_decode(irqts->values[i], &ts);
571 		s = idr_find(&irqt_stats, irq);
572 		if (s)
573 			irq_timings_store(irq, this_cpu_ptr(s), ts);
574 	}
575 
576 	/*
577 	 * Look in the list of interrupts' statistics, the earliest
578 	 * next event.
579 	 */
580 	idr_for_each_entry(&irqt_stats, s, i) {
581 
582 		irqs = this_cpu_ptr(s);
583 
584 		ts = __irq_timings_next_event(irqs, i, now);
585 		if (ts <= now)
586 			return now;
587 
588 		if (ts < next_evt)
589 			next_evt = ts;
590 	}
591 
592 	return next_evt;
593 }
594 
595 void irq_timings_free(int irq)
596 {
597 	struct irqt_stat __percpu *s;
598 
599 	s = idr_find(&irqt_stats, irq);
600 	if (s) {
601 		free_percpu(s);
602 		idr_remove(&irqt_stats, irq);
603 	}
604 }
605 
606 int irq_timings_alloc(int irq)
607 {
608 	struct irqt_stat __percpu *s;
609 	int id;
610 
611 	/*
612 	 * Some platforms can have the same private interrupt per cpu,
613 	 * so this function may be called several times with the
614 	 * same interrupt number. Just bail out in case the per cpu
615 	 * stat structure is already allocated.
616 	 */
617 	s = idr_find(&irqt_stats, irq);
618 	if (s)
619 		return 0;
620 
621 	s = alloc_percpu(*s);
622 	if (!s)
623 		return -ENOMEM;
624 
625 	idr_preload(GFP_KERNEL);
626 	id = idr_alloc(&irqt_stats, s, irq, irq + 1, GFP_NOWAIT);
627 	idr_preload_end();
628 
629 	if (id < 0) {
630 		free_percpu(s);
631 		return id;
632 	}
633 
634 	return 0;
635 }
636 
637 #ifdef CONFIG_TEST_IRQ_TIMINGS
638 struct timings_intervals {
639 	u64 *intervals;
640 	size_t count;
641 };
642 
643 /*
644  * Intervals are given in nanosecond base
645  */
646 static u64 intervals0[] __initdata = {
647 	10000, 50000, 200000, 500000,
648 	10000, 50000, 200000, 500000,
649 	10000, 50000, 200000, 500000,
650 	10000, 50000, 200000, 500000,
651 	10000, 50000, 200000, 500000,
652 	10000, 50000, 200000, 500000,
653 	10000, 50000, 200000, 500000,
654 	10000, 50000, 200000, 500000,
655 	10000, 50000, 200000,
656 };
657 
658 static u64 intervals1[] __initdata = {
659 	223947000, 1240000, 1384000, 1386000, 1386000,
660 	217416000, 1236000, 1384000, 1386000, 1387000,
661 	214719000, 1241000, 1386000, 1387000, 1384000,
662 	213696000, 1234000, 1384000, 1386000, 1388000,
663 	219904000, 1240000, 1385000, 1389000, 1385000,
664 	212240000, 1240000, 1386000, 1386000, 1386000,
665 	214415000, 1236000, 1384000, 1386000, 1387000,
666 	214276000, 1234000,
667 };
668 
669 static u64 intervals2[] __initdata = {
670 	4000, 3000, 5000, 100000,
671 	3000, 3000, 5000, 117000,
672 	4000, 4000, 5000, 112000,
673 	4000, 3000, 4000, 110000,
674 	3000, 5000, 3000, 117000,
675 	4000, 4000, 5000, 112000,
676 	4000, 3000, 4000, 110000,
677 	3000, 4000, 5000, 112000,
678 	4000,
679 };
680 
681 static u64 intervals3[] __initdata = {
682 	1385000, 212240000, 1240000,
683 	1386000, 214415000, 1236000,
684 	1384000, 214276000, 1234000,
685 	1386000, 214415000, 1236000,
686 	1385000, 212240000, 1240000,
687 	1386000, 214415000, 1236000,
688 	1384000, 214276000, 1234000,
689 	1386000, 214415000, 1236000,
690 	1385000, 212240000, 1240000,
691 };
692 
693 static u64 intervals4[] __initdata = {
694 	10000, 50000, 10000, 50000,
695 	10000, 50000, 10000, 50000,
696 	10000, 50000, 10000, 50000,
697 	10000, 50000, 10000, 50000,
698 	10000, 50000, 10000, 50000,
699 	10000, 50000, 10000, 50000,
700 	10000, 50000, 10000, 50000,
701 	10000, 50000, 10000, 50000,
702 	10000,
703 };
704 
705 static struct timings_intervals tis[] __initdata = {
706 	{ intervals0, ARRAY_SIZE(intervals0) },
707 	{ intervals1, ARRAY_SIZE(intervals1) },
708 	{ intervals2, ARRAY_SIZE(intervals2) },
709 	{ intervals3, ARRAY_SIZE(intervals3) },
710 	{ intervals4, ARRAY_SIZE(intervals4) },
711 };
712 
713 static int __init irq_timings_test_next_index(struct timings_intervals *ti)
714 {
715 	int _buffer[IRQ_TIMINGS_SIZE];
716 	int buffer[IRQ_TIMINGS_SIZE];
717 	int index, start, i, count, period_max;
718 
719 	count = ti->count - 1;
720 
721 	period_max = count > (3 * PREDICTION_PERIOD_MAX) ?
722 		PREDICTION_PERIOD_MAX : count / 3;
723 
724 	/*
725 	 * Inject all values except the last one which will be used
726 	 * to compare with the next index result.
727 	 */
728 	pr_debug("index suite: ");
729 
730 	for (i = 0; i < count; i++) {
731 		index = irq_timings_interval_index(ti->intervals[i]);
732 		_buffer[i & IRQ_TIMINGS_MASK] = index;
733 		pr_cont("%d ", index);
734 	}
735 
736 	start = count < IRQ_TIMINGS_SIZE ? 0 :
737 		count & IRQ_TIMINGS_MASK;
738 
739 	count = min_t(int, count, IRQ_TIMINGS_SIZE);
740 
741 	for (i = 0; i < count; i++) {
742 		int index = (start + i) & IRQ_TIMINGS_MASK;
743 		buffer[i] = _buffer[index];
744 	}
745 
746 	index = irq_timings_next_event_index(buffer, count, period_max);
747 	i = irq_timings_interval_index(ti->intervals[ti->count - 1]);
748 
749 	if (index != i) {
750 		pr_err("Expected (%d) and computed (%d) next indexes differ\n",
751 		       i, index);
752 		return -EINVAL;
753 	}
754 
755 	return 0;
756 }
757 
758 static int __init irq_timings_next_index_selftest(void)
759 {
760 	int i, ret;
761 
762 	for (i = 0; i < ARRAY_SIZE(tis); i++) {
763 
764 		pr_info("---> Injecting intervals number #%d (count=%zd)\n",
765 			i, tis[i].count);
766 
767 		ret = irq_timings_test_next_index(&tis[i]);
768 		if (ret)
769 			break;
770 	}
771 
772 	return ret;
773 }
774 
775 static int __init irq_timings_test_irqs(struct timings_intervals *ti)
776 {
777 	struct irqt_stat __percpu *s;
778 	struct irqt_stat *irqs;
779 	int i, index, ret, irq = 0xACE5;
780 
781 	ret = irq_timings_alloc(irq);
782 	if (ret) {
783 		pr_err("Failed to allocate irq timings\n");
784 		return ret;
785 	}
786 
787 	s = idr_find(&irqt_stats, irq);
788 	if (!s) {
789 		ret = -EIDRM;
790 		goto out;
791 	}
792 
793 	irqs = this_cpu_ptr(s);
794 
795 	for (i = 0; i < ti->count; i++) {
796 
797 		index = irq_timings_interval_index(ti->intervals[i]);
798 		pr_debug("%d: interval=%llu ema_index=%d\n",
799 			 i, ti->intervals[i], index);
800 
801 		__irq_timings_store(irq, irqs, ti->intervals[i]);
802 		if (irqs->circ_timings[i & IRQ_TIMINGS_MASK] != index) {
803 			ret = -EBADSLT;
804 			pr_err("Failed to store in the circular buffer\n");
805 			goto out;
806 		}
807 	}
808 
809 	if (irqs->count != ti->count) {
810 		ret = -ERANGE;
811 		pr_err("Count differs\n");
812 		goto out;
813 	}
814 
815 	ret = 0;
816 out:
817 	irq_timings_free(irq);
818 
819 	return ret;
820 }
821 
822 static int __init irq_timings_irqs_selftest(void)
823 {
824 	int i, ret;
825 
826 	for (i = 0; i < ARRAY_SIZE(tis); i++) {
827 		pr_info("---> Injecting intervals number #%d (count=%zd)\n",
828 			i, tis[i].count);
829 		ret = irq_timings_test_irqs(&tis[i]);
830 		if (ret)
831 			break;
832 	}
833 
834 	return ret;
835 }
836 
837 static int __init irq_timings_test_irqts(struct irq_timings *irqts,
838 					 unsigned count)
839 {
840 	int start = count >= IRQ_TIMINGS_SIZE ? count - IRQ_TIMINGS_SIZE : 0;
841 	int i, irq, oirq = 0xBEEF;
842 	u64 ots = 0xDEAD, ts;
843 
844 	/*
845 	 * Fill the circular buffer by using the dedicated function.
846 	 */
847 	for (i = 0; i < count; i++) {
848 		pr_debug("%d: index=%d, ts=%llX irq=%X\n",
849 			 i, i & IRQ_TIMINGS_MASK, ots + i, oirq + i);
850 
851 		irq_timings_push(ots + i, oirq + i);
852 	}
853 
854 	/*
855 	 * Compute the first elements values after the index wrapped
856 	 * up or not.
857 	 */
858 	ots += start;
859 	oirq += start;
860 
861 	/*
862 	 * Test the circular buffer count is correct.
863 	 */
864 	pr_debug("---> Checking timings array count (%d) is right\n", count);
865 	if (WARN_ON(irqts->count != count))
866 		return -EINVAL;
867 
868 	/*
869 	 * Test the macro allowing to browse all the irqts.
870 	 */
871 	pr_debug("---> Checking the for_each_irqts() macro\n");
872 	for_each_irqts(i, irqts) {
873 
874 		irq = irq_timing_decode(irqts->values[i], &ts);
875 
876 		pr_debug("index=%d, ts=%llX / %llX, irq=%X / %X\n",
877 			 i, ts, ots, irq, oirq);
878 
879 		if (WARN_ON(ts != ots || irq != oirq))
880 			return -EINVAL;
881 
882 		ots++; oirq++;
883 	}
884 
885 	/*
886 	 * The circular buffer should have be flushed when browsed
887 	 * with for_each_irqts
888 	 */
889 	pr_debug("---> Checking timings array is empty after browsing it\n");
890 	if (WARN_ON(irqts->count))
891 		return -EINVAL;
892 
893 	return 0;
894 }
895 
896 static int __init irq_timings_irqts_selftest(void)
897 {
898 	struct irq_timings *irqts = this_cpu_ptr(&irq_timings);
899 	int i, ret;
900 
901 	/*
902 	 * Test the circular buffer with different number of
903 	 * elements. The purpose is to test at the limits (empty, half
904 	 * full, full, wrapped with the cursor at the boundaries,
905 	 * wrapped several times, etc ...
906 	 */
907 	int count[] = { 0,
908 			IRQ_TIMINGS_SIZE >> 1,
909 			IRQ_TIMINGS_SIZE,
910 			IRQ_TIMINGS_SIZE + (IRQ_TIMINGS_SIZE >> 1),
911 			2 * IRQ_TIMINGS_SIZE,
912 			(2 * IRQ_TIMINGS_SIZE) + 3,
913 	};
914 
915 	for (i = 0; i < ARRAY_SIZE(count); i++) {
916 
917 		pr_info("---> Checking the timings with %d/%d values\n",
918 			count[i], IRQ_TIMINGS_SIZE);
919 
920 		ret = irq_timings_test_irqts(irqts, count[i]);
921 		if (ret)
922 			break;
923 	}
924 
925 	return ret;
926 }
927 
928 static int __init irq_timings_selftest(void)
929 {
930 	int ret;
931 
932 	pr_info("------------------- selftest start -----------------\n");
933 
934 	/*
935 	 * At this point, we don't except any subsystem to use the irq
936 	 * timings but us, so it should not be enabled.
937 	 */
938 	if (static_branch_unlikely(&irq_timing_enabled)) {
939 		pr_warn("irq timings already initialized, skipping selftest\n");
940 		return 0;
941 	}
942 
943 	ret = irq_timings_irqts_selftest();
944 	if (ret)
945 		goto out;
946 
947 	ret = irq_timings_irqs_selftest();
948 	if (ret)
949 		goto out;
950 
951 	ret = irq_timings_next_index_selftest();
952 out:
953 	pr_info("---------- selftest end with %s -----------\n",
954 		ret ? "failure" : "success");
955 
956 	return ret;
957 }
958 early_initcall(irq_timings_selftest);
959 #endif
960