1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2020 Intel Corporation
4 *
5 */
6
7 #include "i915_drv.h"
8 #include "i915_reg.h"
9 #include "intel_de.h"
10 #include "intel_display_types.h"
11 #include "intel_vrr.h"
12 #include "intel_vrr_regs.h"
13 #include "intel_dp.h"
14
15 #define FIXED_POINT_PRECISION 100
16 #define CMRR_PRECISION_TOLERANCE 10
17
intel_vrr_is_capable(struct intel_connector * connector)18 bool intel_vrr_is_capable(struct intel_connector *connector)
19 {
20 struct intel_display *display = to_intel_display(connector);
21 const struct drm_display_info *info = &connector->base.display_info;
22 struct intel_dp *intel_dp;
23
24 /*
25 * DP Sink is capable of VRR video timings if
26 * Ignore MSA bit is set in DPCD.
27 * EDID monitor range also should be atleast 10 for reasonable
28 * Adaptive Sync or Variable Refresh Rate end user experience.
29 */
30 switch (connector->base.connector_type) {
31 case DRM_MODE_CONNECTOR_eDP:
32 if (!connector->panel.vbt.vrr)
33 return false;
34 fallthrough;
35 case DRM_MODE_CONNECTOR_DisplayPort:
36 intel_dp = intel_attached_dp(connector);
37
38 if (!drm_dp_sink_can_do_video_without_timing_msa(intel_dp->dpcd))
39 return false;
40
41 break;
42 default:
43 return false;
44 }
45
46 return HAS_VRR(display) &&
47 info->monitor_range.max_vfreq - info->monitor_range.min_vfreq > 10;
48 }
49
intel_vrr_is_in_range(struct intel_connector * connector,int vrefresh)50 bool intel_vrr_is_in_range(struct intel_connector *connector, int vrefresh)
51 {
52 const struct drm_display_info *info = &connector->base.display_info;
53
54 return intel_vrr_is_capable(connector) &&
55 vrefresh >= info->monitor_range.min_vfreq &&
56 vrefresh <= info->monitor_range.max_vfreq;
57 }
58
intel_vrr_possible(const struct intel_crtc_state * crtc_state)59 bool intel_vrr_possible(const struct intel_crtc_state *crtc_state)
60 {
61 return crtc_state->vrr.flipline;
62 }
63
64 void
intel_vrr_check_modeset(struct intel_atomic_state * state)65 intel_vrr_check_modeset(struct intel_atomic_state *state)
66 {
67 int i;
68 struct intel_crtc_state *old_crtc_state, *new_crtc_state;
69 struct intel_crtc *crtc;
70
71 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
72 new_crtc_state, i) {
73 if (new_crtc_state->uapi.vrr_enabled !=
74 old_crtc_state->uapi.vrr_enabled)
75 new_crtc_state->uapi.mode_changed = true;
76 }
77 }
78
79 /*
80 * Without VRR registers get latched at:
81 * vblank_start
82 *
83 * With VRR the earliest registers can get latched is:
84 * intel_vrr_vmin_vblank_start(), which if we want to maintain
85 * the correct min vtotal is >=vblank_start+1
86 *
87 * The latest point registers can get latched is the vmax decision boundary:
88 * intel_vrr_vmax_vblank_start()
89 *
90 * Between those two points the vblank exit starts (and hence registers get
91 * latched) ASAP after a push is sent.
92 *
93 * framestart_delay is programmable 1-4.
94 */
intel_vrr_vblank_exit_length(const struct intel_crtc_state * crtc_state)95 static int intel_vrr_vblank_exit_length(const struct intel_crtc_state *crtc_state)
96 {
97 struct intel_display *display = to_intel_display(crtc_state);
98
99 if (DISPLAY_VER(display) >= 13)
100 return crtc_state->vrr.guardband;
101 else
102 /* The hw imposes the extra scanline before frame start */
103 return crtc_state->vrr.pipeline_full + crtc_state->framestart_delay + 1;
104 }
105
intel_vrr_vmin_vblank_start(const struct intel_crtc_state * crtc_state)106 int intel_vrr_vmin_vblank_start(const struct intel_crtc_state *crtc_state)
107 {
108 /* Min vblank actually determined by flipline that is always >=vmin+1 */
109 return crtc_state->vrr.vmin + 1 - intel_vrr_vblank_exit_length(crtc_state);
110 }
111
intel_vrr_vmax_vblank_start(const struct intel_crtc_state * crtc_state)112 int intel_vrr_vmax_vblank_start(const struct intel_crtc_state *crtc_state)
113 {
114 return crtc_state->vrr.vmax - intel_vrr_vblank_exit_length(crtc_state);
115 }
116
117 static bool
is_cmrr_frac_required(struct intel_crtc_state * crtc_state)118 is_cmrr_frac_required(struct intel_crtc_state *crtc_state)
119 {
120 struct intel_display *display = to_intel_display(crtc_state);
121 int calculated_refresh_k, actual_refresh_k, pixel_clock_per_line;
122 struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
123
124 if (!HAS_CMRR(display))
125 return false;
126
127 actual_refresh_k =
128 drm_mode_vrefresh(adjusted_mode) * FIXED_POINT_PRECISION;
129 pixel_clock_per_line =
130 adjusted_mode->crtc_clock * 1000 / adjusted_mode->crtc_htotal;
131 calculated_refresh_k =
132 pixel_clock_per_line * FIXED_POINT_PRECISION / adjusted_mode->crtc_vtotal;
133
134 if ((actual_refresh_k - calculated_refresh_k) < CMRR_PRECISION_TOLERANCE)
135 return false;
136
137 return true;
138 }
139
140 static unsigned int
cmrr_get_vtotal(struct intel_crtc_state * crtc_state,bool video_mode_required)141 cmrr_get_vtotal(struct intel_crtc_state *crtc_state, bool video_mode_required)
142 {
143 int multiplier_m = 1, multiplier_n = 1, vtotal, desired_refresh_rate;
144 u64 adjusted_pixel_rate;
145 struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
146
147 desired_refresh_rate = drm_mode_vrefresh(adjusted_mode);
148
149 if (video_mode_required) {
150 multiplier_m = 1001;
151 multiplier_n = 1000;
152 }
153
154 crtc_state->cmrr.cmrr_n = mul_u32_u32(desired_refresh_rate * adjusted_mode->crtc_htotal,
155 multiplier_n);
156 vtotal = DIV_ROUND_UP_ULL(mul_u32_u32(adjusted_mode->crtc_clock * 1000, multiplier_n),
157 crtc_state->cmrr.cmrr_n);
158 adjusted_pixel_rate = mul_u32_u32(adjusted_mode->crtc_clock * 1000, multiplier_m);
159 crtc_state->cmrr.cmrr_m = do_div(adjusted_pixel_rate, crtc_state->cmrr.cmrr_n);
160
161 return vtotal;
162 }
163
164 void
intel_vrr_compute_config(struct intel_crtc_state * crtc_state,struct drm_connector_state * conn_state)165 intel_vrr_compute_config(struct intel_crtc_state *crtc_state,
166 struct drm_connector_state *conn_state)
167 {
168 struct intel_display *display = to_intel_display(crtc_state);
169 struct intel_connector *connector =
170 to_intel_connector(conn_state->connector);
171 struct intel_dp *intel_dp = intel_attached_dp(connector);
172 bool is_edp = intel_dp_is_edp(intel_dp);
173 struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
174 const struct drm_display_info *info = &connector->base.display_info;
175 int vmin, vmax;
176
177 /*
178 * FIXME all joined pipes share the same transcoder.
179 * Need to account for that during VRR toggle/push/etc.
180 */
181 if (crtc_state->joiner_pipes)
182 return;
183
184 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
185 return;
186
187 crtc_state->vrr.in_range =
188 intel_vrr_is_in_range(connector, drm_mode_vrefresh(adjusted_mode));
189 if (!crtc_state->vrr.in_range)
190 return;
191
192 if (HAS_LRR(display))
193 crtc_state->update_lrr = true;
194
195 vmin = DIV_ROUND_UP(adjusted_mode->crtc_clock * 1000,
196 adjusted_mode->crtc_htotal * info->monitor_range.max_vfreq);
197 vmax = adjusted_mode->crtc_clock * 1000 /
198 (adjusted_mode->crtc_htotal * info->monitor_range.min_vfreq);
199
200 vmin = max_t(int, vmin, adjusted_mode->crtc_vtotal);
201 vmax = max_t(int, vmax, adjusted_mode->crtc_vtotal);
202
203 if (vmin >= vmax)
204 return;
205
206 /*
207 * flipline determines the min vblank length the hardware will
208 * generate, and flipline>=vmin+1, hence we reduce vmin by one
209 * to make sure we can get the actual min vblank length.
210 */
211 crtc_state->vrr.vmin = vmin - 1;
212 crtc_state->vrr.vmax = vmax;
213
214 crtc_state->vrr.flipline = crtc_state->vrr.vmin + 1;
215
216 /*
217 * When panel is VRR capable and userspace has
218 * not enabled adaptive sync mode then Fixed Average
219 * Vtotal mode should be enabled.
220 */
221 if (crtc_state->uapi.vrr_enabled) {
222 crtc_state->vrr.enable = true;
223 crtc_state->mode_flags |= I915_MODE_FLAG_VRR;
224 } else if (is_cmrr_frac_required(crtc_state) && is_edp) {
225 crtc_state->vrr.enable = true;
226 crtc_state->cmrr.enable = true;
227 /*
228 * TODO: Compute precise target refresh rate to determine
229 * if video_mode_required should be true. Currently set to
230 * false due to uncertainty about the precise target
231 * refresh Rate.
232 */
233 crtc_state->vrr.vmax = cmrr_get_vtotal(crtc_state, false);
234 crtc_state->vrr.vmin = crtc_state->vrr.vmax;
235 crtc_state->vrr.flipline = crtc_state->vrr.vmin;
236 crtc_state->mode_flags |= I915_MODE_FLAG_VRR;
237 }
238
239 if (intel_dp->as_sdp_supported && crtc_state->vrr.enable) {
240 crtc_state->vrr.vsync_start =
241 (crtc_state->hw.adjusted_mode.crtc_vtotal -
242 crtc_state->hw.adjusted_mode.vsync_start);
243 crtc_state->vrr.vsync_end =
244 (crtc_state->hw.adjusted_mode.crtc_vtotal -
245 crtc_state->hw.adjusted_mode.vsync_end);
246 }
247 }
248
intel_vrr_compute_config_late(struct intel_crtc_state * crtc_state)249 void intel_vrr_compute_config_late(struct intel_crtc_state *crtc_state)
250 {
251 struct intel_display *display = to_intel_display(crtc_state);
252 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
253
254 if (!intel_vrr_possible(crtc_state))
255 return;
256
257 if (DISPLAY_VER(display) >= 13) {
258 crtc_state->vrr.guardband =
259 crtc_state->vrr.vmin + 1 - adjusted_mode->crtc_vblank_start;
260 } else {
261 crtc_state->vrr.pipeline_full =
262 min(255, crtc_state->vrr.vmin - adjusted_mode->crtc_vblank_start -
263 crtc_state->framestart_delay - 1);
264 }
265 }
266
trans_vrr_ctl(const struct intel_crtc_state * crtc_state)267 static u32 trans_vrr_ctl(const struct intel_crtc_state *crtc_state)
268 {
269 struct intel_display *display = to_intel_display(crtc_state);
270
271 if (DISPLAY_VER(display) >= 13)
272 return VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN |
273 XELPD_VRR_CTL_VRR_GUARDBAND(crtc_state->vrr.guardband);
274 else
275 return VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN |
276 VRR_CTL_PIPELINE_FULL(crtc_state->vrr.pipeline_full) |
277 VRR_CTL_PIPELINE_FULL_OVERRIDE;
278 }
279
intel_vrr_set_transcoder_timings(const struct intel_crtc_state * crtc_state)280 void intel_vrr_set_transcoder_timings(const struct intel_crtc_state *crtc_state)
281 {
282 struct intel_display *display = to_intel_display(crtc_state);
283 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
284
285 /*
286 * This bit seems to have two meanings depending on the platform:
287 * TGL: generate VRR "safe window" for DSB vblank waits
288 * ADL/DG2: make TRANS_SET_CONTEXT_LATENCY effective with VRR
289 */
290 if (IS_DISPLAY_VER(display, 12, 13))
291 intel_de_rmw(display, CHICKEN_TRANS(cpu_transcoder),
292 0, PIPE_VBLANK_WITH_DELAY);
293
294 if (!intel_vrr_possible(crtc_state)) {
295 intel_de_write(display,
296 TRANS_VRR_CTL(display, cpu_transcoder), 0);
297 return;
298 }
299
300 if (crtc_state->cmrr.enable) {
301 intel_de_write(display, TRANS_CMRR_M_HI(display, cpu_transcoder),
302 upper_32_bits(crtc_state->cmrr.cmrr_m));
303 intel_de_write(display, TRANS_CMRR_M_LO(display, cpu_transcoder),
304 lower_32_bits(crtc_state->cmrr.cmrr_m));
305 intel_de_write(display, TRANS_CMRR_N_HI(display, cpu_transcoder),
306 upper_32_bits(crtc_state->cmrr.cmrr_n));
307 intel_de_write(display, TRANS_CMRR_N_LO(display, cpu_transcoder),
308 lower_32_bits(crtc_state->cmrr.cmrr_n));
309 }
310
311 intel_de_write(display, TRANS_VRR_VMIN(display, cpu_transcoder),
312 crtc_state->vrr.vmin - 1);
313 intel_de_write(display, TRANS_VRR_VMAX(display, cpu_transcoder),
314 crtc_state->vrr.vmax - 1);
315 intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder),
316 trans_vrr_ctl(crtc_state));
317 intel_de_write(display, TRANS_VRR_FLIPLINE(display, cpu_transcoder),
318 crtc_state->vrr.flipline - 1);
319 }
320
intel_vrr_send_push(const struct intel_crtc_state * crtc_state)321 void intel_vrr_send_push(const struct intel_crtc_state *crtc_state)
322 {
323 struct intel_display *display = to_intel_display(crtc_state);
324 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
325
326 if (!crtc_state->vrr.enable)
327 return;
328
329 intel_de_write(display, TRANS_PUSH(display, cpu_transcoder),
330 TRANS_PUSH_EN | TRANS_PUSH_SEND);
331 }
332
intel_vrr_is_push_sent(const struct intel_crtc_state * crtc_state)333 bool intel_vrr_is_push_sent(const struct intel_crtc_state *crtc_state)
334 {
335 struct intel_display *display = to_intel_display(crtc_state);
336 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
337
338 if (!crtc_state->vrr.enable)
339 return false;
340
341 return intel_de_read(display, TRANS_PUSH(display, cpu_transcoder)) & TRANS_PUSH_SEND;
342 }
343
intel_vrr_enable(const struct intel_crtc_state * crtc_state)344 void intel_vrr_enable(const struct intel_crtc_state *crtc_state)
345 {
346 struct intel_display *display = to_intel_display(crtc_state);
347 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
348
349 if (!crtc_state->vrr.enable)
350 return;
351
352 intel_de_write(display, TRANS_PUSH(display, cpu_transcoder),
353 TRANS_PUSH_EN);
354
355 if (HAS_AS_SDP(display))
356 intel_de_write(display,
357 TRANS_VRR_VSYNC(display, cpu_transcoder),
358 VRR_VSYNC_END(crtc_state->vrr.vsync_end) |
359 VRR_VSYNC_START(crtc_state->vrr.vsync_start));
360
361 if (crtc_state->cmrr.enable) {
362 intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder),
363 VRR_CTL_VRR_ENABLE | VRR_CTL_CMRR_ENABLE |
364 trans_vrr_ctl(crtc_state));
365 } else {
366 intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder),
367 VRR_CTL_VRR_ENABLE | trans_vrr_ctl(crtc_state));
368 }
369 }
370
intel_vrr_disable(const struct intel_crtc_state * old_crtc_state)371 void intel_vrr_disable(const struct intel_crtc_state *old_crtc_state)
372 {
373 struct intel_display *display = to_intel_display(old_crtc_state);
374 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
375
376 if (!old_crtc_state->vrr.enable)
377 return;
378
379 intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder),
380 trans_vrr_ctl(old_crtc_state));
381 intel_de_wait_for_clear(display,
382 TRANS_VRR_STATUS(display, cpu_transcoder),
383 VRR_STATUS_VRR_EN_LIVE, 1000);
384 intel_de_write(display, TRANS_PUSH(display, cpu_transcoder), 0);
385
386 if (HAS_AS_SDP(display))
387 intel_de_write(display,
388 TRANS_VRR_VSYNC(display, cpu_transcoder), 0);
389 }
390
intel_vrr_get_config(struct intel_crtc_state * crtc_state)391 void intel_vrr_get_config(struct intel_crtc_state *crtc_state)
392 {
393 struct intel_display *display = to_intel_display(crtc_state);
394 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
395 u32 trans_vrr_ctl, trans_vrr_vsync;
396
397 trans_vrr_ctl = intel_de_read(display,
398 TRANS_VRR_CTL(display, cpu_transcoder));
399
400 crtc_state->vrr.enable = trans_vrr_ctl & VRR_CTL_VRR_ENABLE;
401 if (HAS_CMRR(display))
402 crtc_state->cmrr.enable = (trans_vrr_ctl & VRR_CTL_CMRR_ENABLE);
403
404 if (crtc_state->cmrr.enable) {
405 crtc_state->cmrr.cmrr_n =
406 intel_de_read64_2x32(display, TRANS_CMRR_N_LO(display, cpu_transcoder),
407 TRANS_CMRR_N_HI(display, cpu_transcoder));
408 crtc_state->cmrr.cmrr_m =
409 intel_de_read64_2x32(display, TRANS_CMRR_M_LO(display, cpu_transcoder),
410 TRANS_CMRR_M_HI(display, cpu_transcoder));
411 }
412
413 if (DISPLAY_VER(display) >= 13)
414 crtc_state->vrr.guardband =
415 REG_FIELD_GET(XELPD_VRR_CTL_VRR_GUARDBAND_MASK, trans_vrr_ctl);
416 else
417 if (trans_vrr_ctl & VRR_CTL_PIPELINE_FULL_OVERRIDE)
418 crtc_state->vrr.pipeline_full =
419 REG_FIELD_GET(VRR_CTL_PIPELINE_FULL_MASK, trans_vrr_ctl);
420
421 if (trans_vrr_ctl & VRR_CTL_FLIP_LINE_EN) {
422 crtc_state->vrr.flipline = intel_de_read(display,
423 TRANS_VRR_FLIPLINE(display, cpu_transcoder)) + 1;
424 crtc_state->vrr.vmax = intel_de_read(display,
425 TRANS_VRR_VMAX(display, cpu_transcoder)) + 1;
426 crtc_state->vrr.vmin = intel_de_read(display,
427 TRANS_VRR_VMIN(display, cpu_transcoder)) + 1;
428 }
429
430 if (crtc_state->vrr.enable) {
431 crtc_state->mode_flags |= I915_MODE_FLAG_VRR;
432
433 if (HAS_AS_SDP(display)) {
434 trans_vrr_vsync =
435 intel_de_read(display,
436 TRANS_VRR_VSYNC(display, cpu_transcoder));
437 crtc_state->vrr.vsync_start =
438 REG_FIELD_GET(VRR_VSYNC_START_MASK, trans_vrr_vsync);
439 crtc_state->vrr.vsync_end =
440 REG_FIELD_GET(VRR_VSYNC_END_MASK, trans_vrr_vsync);
441 }
442 }
443 }
444