1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2019 Intel Corporation
4 */
5
6 #include <linux/string_helpers.h>
7
8 #include <drm/intel/i915_drm.h>
9
10 #include "display/intel_display.h"
11 #include "display/intel_display_irq.h"
12 #include "i915_drv.h"
13 #include "i915_irq.h"
14 #include "i915_reg.h"
15 #include "intel_breadcrumbs.h"
16 #include "intel_gt.h"
17 #include "intel_gt_clock_utils.h"
18 #include "intel_gt_irq.h"
19 #include "intel_gt_pm.h"
20 #include "intel_gt_pm_irq.h"
21 #include "intel_gt_print.h"
22 #include "intel_gt_regs.h"
23 #include "intel_mchbar_regs.h"
24 #include "intel_pcode.h"
25 #include "intel_rps.h"
26 #include "vlv_sideband.h"
27 #include "../../../platform/x86/intel_ips.h"
28
29 #define BUSY_MAX_EI 20u /* ms */
30
31 /*
32 * Lock protecting IPS related data structures
33 */
34 static DEFINE_SPINLOCK(mchdev_lock);
35
rps_to_gt(struct intel_rps * rps)36 static struct intel_gt *rps_to_gt(struct intel_rps *rps)
37 {
38 return container_of(rps, struct intel_gt, rps);
39 }
40
rps_to_i915(struct intel_rps * rps)41 static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
42 {
43 return rps_to_gt(rps)->i915;
44 }
45
rps_to_uncore(struct intel_rps * rps)46 static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
47 {
48 return rps_to_gt(rps)->uncore;
49 }
50
rps_to_slpc(struct intel_rps * rps)51 static struct intel_guc_slpc *rps_to_slpc(struct intel_rps *rps)
52 {
53 struct intel_gt *gt = rps_to_gt(rps);
54
55 return >_to_guc(gt)->slpc;
56 }
57
rps_uses_slpc(struct intel_rps * rps)58 static bool rps_uses_slpc(struct intel_rps *rps)
59 {
60 struct intel_gt *gt = rps_to_gt(rps);
61
62 return intel_uc_uses_guc_slpc(>->uc);
63 }
64
rps_pm_sanitize_mask(struct intel_rps * rps,u32 mask)65 static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
66 {
67 return mask & ~rps->pm_intrmsk_mbz;
68 }
69
set(struct intel_uncore * uncore,i915_reg_t reg,u32 val)70 static void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
71 {
72 intel_uncore_write_fw(uncore, reg, val);
73 }
74
rps_timer(struct timer_list * t)75 static void rps_timer(struct timer_list *t)
76 {
77 struct intel_rps *rps = from_timer(rps, t, timer);
78 struct intel_gt *gt = rps_to_gt(rps);
79 struct intel_engine_cs *engine;
80 ktime_t dt, last, timestamp;
81 enum intel_engine_id id;
82 s64 max_busy[3] = {};
83
84 timestamp = 0;
85 for_each_engine(engine, gt, id) {
86 s64 busy;
87 int i;
88
89 dt = intel_engine_get_busy_time(engine, ×tamp);
90 last = engine->stats.rps;
91 engine->stats.rps = dt;
92
93 busy = ktime_to_ns(ktime_sub(dt, last));
94 for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
95 if (busy > max_busy[i])
96 swap(busy, max_busy[i]);
97 }
98 }
99 last = rps->pm_timestamp;
100 rps->pm_timestamp = timestamp;
101
102 if (intel_rps_is_active(rps)) {
103 s64 busy;
104 int i;
105
106 dt = ktime_sub(timestamp, last);
107
108 /*
109 * Our goal is to evaluate each engine independently, so we run
110 * at the lowest clocks required to sustain the heaviest
111 * workload. However, a task may be split into sequential
112 * dependent operations across a set of engines, such that
113 * the independent contributions do not account for high load,
114 * but overall the task is GPU bound. For example, consider
115 * video decode on vcs followed by colour post-processing
116 * on vecs, followed by general post-processing on rcs.
117 * Since multi-engines being active does imply a single
118 * continuous workload across all engines, we hedge our
119 * bets by only contributing a factor of the distributed
120 * load into our busyness calculation.
121 */
122 busy = max_busy[0];
123 for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
124 if (!max_busy[i])
125 break;
126
127 busy += div_u64(max_busy[i], 1 << i);
128 }
129 GT_TRACE(gt,
130 "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
131 busy, (int)div64_u64(100 * busy, dt),
132 max_busy[0], max_busy[1], max_busy[2],
133 rps->pm_interval);
134
135 if (100 * busy > rps->power.up_threshold * dt &&
136 rps->cur_freq < rps->max_freq_softlimit) {
137 rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
138 rps->pm_interval = 1;
139 queue_work(gt->i915->unordered_wq, &rps->work);
140 } else if (100 * busy < rps->power.down_threshold * dt &&
141 rps->cur_freq > rps->min_freq_softlimit) {
142 rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
143 rps->pm_interval = 1;
144 queue_work(gt->i915->unordered_wq, &rps->work);
145 } else {
146 rps->last_adj = 0;
147 }
148
149 mod_timer(&rps->timer,
150 jiffies + msecs_to_jiffies(rps->pm_interval));
151 rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
152 }
153 }
154
rps_start_timer(struct intel_rps * rps)155 static void rps_start_timer(struct intel_rps *rps)
156 {
157 rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
158 rps->pm_interval = 1;
159 mod_timer(&rps->timer, jiffies + 1);
160 }
161
rps_stop_timer(struct intel_rps * rps)162 static void rps_stop_timer(struct intel_rps *rps)
163 {
164 del_timer_sync(&rps->timer);
165 rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
166 cancel_work_sync(&rps->work);
167 }
168
rps_pm_mask(struct intel_rps * rps,u8 val)169 static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
170 {
171 u32 mask = 0;
172
173 /* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
174 if (val > rps->min_freq_softlimit)
175 mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
176 GEN6_PM_RP_DOWN_THRESHOLD |
177 GEN6_PM_RP_DOWN_TIMEOUT);
178
179 if (val < rps->max_freq_softlimit)
180 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
181
182 mask &= rps->pm_events;
183
184 return rps_pm_sanitize_mask(rps, ~mask);
185 }
186
rps_reset_ei(struct intel_rps * rps)187 static void rps_reset_ei(struct intel_rps *rps)
188 {
189 memset(&rps->ei, 0, sizeof(rps->ei));
190 }
191
rps_enable_interrupts(struct intel_rps * rps)192 static void rps_enable_interrupts(struct intel_rps *rps)
193 {
194 struct intel_gt *gt = rps_to_gt(rps);
195
196 GEM_BUG_ON(rps_uses_slpc(rps));
197
198 GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
199 rps->pm_events, rps_pm_mask(rps, rps->last_freq));
200
201 rps_reset_ei(rps);
202
203 spin_lock_irq(gt->irq_lock);
204 gen6_gt_pm_enable_irq(gt, rps->pm_events);
205 spin_unlock_irq(gt->irq_lock);
206
207 intel_uncore_write(gt->uncore,
208 GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
209 }
210
gen6_rps_reset_interrupts(struct intel_rps * rps)211 static void gen6_rps_reset_interrupts(struct intel_rps *rps)
212 {
213 gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
214 }
215
gen11_rps_reset_interrupts(struct intel_rps * rps)216 static void gen11_rps_reset_interrupts(struct intel_rps *rps)
217 {
218 while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
219 ;
220 }
221
rps_reset_interrupts(struct intel_rps * rps)222 static void rps_reset_interrupts(struct intel_rps *rps)
223 {
224 struct intel_gt *gt = rps_to_gt(rps);
225
226 spin_lock_irq(gt->irq_lock);
227 if (GRAPHICS_VER(gt->i915) >= 11)
228 gen11_rps_reset_interrupts(rps);
229 else
230 gen6_rps_reset_interrupts(rps);
231
232 rps->pm_iir = 0;
233 spin_unlock_irq(gt->irq_lock);
234 }
235
rps_disable_interrupts(struct intel_rps * rps)236 static void rps_disable_interrupts(struct intel_rps *rps)
237 {
238 struct intel_gt *gt = rps_to_gt(rps);
239
240 intel_uncore_write(gt->uncore,
241 GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
242
243 spin_lock_irq(gt->irq_lock);
244 gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
245 spin_unlock_irq(gt->irq_lock);
246
247 intel_synchronize_irq(gt->i915);
248
249 /*
250 * Now that we will not be generating any more work, flush any
251 * outstanding tasks. As we are called on the RPS idle path,
252 * we will reset the GPU to minimum frequencies, so the current
253 * state of the worker can be discarded.
254 */
255 cancel_work_sync(&rps->work);
256
257 rps_reset_interrupts(rps);
258 GT_TRACE(gt, "interrupts:off\n");
259 }
260
261 static const struct cparams {
262 u16 i;
263 u16 t;
264 u16 m;
265 u16 c;
266 } cparams[] = {
267 { 1, 1333, 301, 28664 },
268 { 1, 1067, 294, 24460 },
269 { 1, 800, 294, 25192 },
270 { 0, 1333, 276, 27605 },
271 { 0, 1067, 276, 27605 },
272 { 0, 800, 231, 23784 },
273 };
274
gen5_rps_init(struct intel_rps * rps)275 static void gen5_rps_init(struct intel_rps *rps)
276 {
277 struct drm_i915_private *i915 = rps_to_i915(rps);
278 struct intel_uncore *uncore = rps_to_uncore(rps);
279 u8 fmax, fmin, fstart;
280 u32 rgvmodectl;
281 int c_m, i;
282
283 if (i915->fsb_freq <= 3200000)
284 c_m = 0;
285 else if (i915->fsb_freq <= 4800000)
286 c_m = 1;
287 else
288 c_m = 2;
289
290 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
291 if (cparams[i].i == c_m &&
292 cparams[i].t == DIV_ROUND_CLOSEST(i915->mem_freq, 1000)) {
293 rps->ips.m = cparams[i].m;
294 rps->ips.c = cparams[i].c;
295 break;
296 }
297 }
298
299 rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
300
301 /* Set up min, max, and cur for interrupt handling */
302 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
303 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
304 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
305 MEMMODE_FSTART_SHIFT;
306 drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
307 fmax, fmin, fstart);
308
309 rps->min_freq = fmax;
310 rps->efficient_freq = fstart;
311 rps->max_freq = fmin;
312 }
313
314 static unsigned long
__ips_chipset_val(struct intel_ips * ips)315 __ips_chipset_val(struct intel_ips *ips)
316 {
317 struct intel_uncore *uncore =
318 rps_to_uncore(container_of(ips, struct intel_rps, ips));
319 unsigned long now = jiffies_to_msecs(jiffies), dt;
320 unsigned long result;
321 u64 total, delta;
322
323 lockdep_assert_held(&mchdev_lock);
324
325 /*
326 * Prevent division-by-zero if we are asking too fast.
327 * Also, we don't get interesting results if we are polling
328 * faster than once in 10ms, so just return the saved value
329 * in such cases.
330 */
331 dt = now - ips->last_time1;
332 if (dt <= 10)
333 return ips->chipset_power;
334
335 /* FIXME: handle per-counter overflow */
336 total = intel_uncore_read(uncore, DMIEC);
337 total += intel_uncore_read(uncore, DDREC);
338 total += intel_uncore_read(uncore, CSIEC);
339
340 delta = total - ips->last_count1;
341
342 result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
343
344 ips->last_count1 = total;
345 ips->last_time1 = now;
346
347 ips->chipset_power = result;
348
349 return result;
350 }
351
ips_mch_val(struct intel_uncore * uncore)352 static unsigned long ips_mch_val(struct intel_uncore *uncore)
353 {
354 unsigned int m, x, b;
355 u32 tsfs;
356
357 tsfs = intel_uncore_read(uncore, TSFS);
358 x = intel_uncore_read8(uncore, TR1);
359
360 b = tsfs & TSFS_INTR_MASK;
361 m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
362
363 return m * x / 127 - b;
364 }
365
_pxvid_to_vd(u8 pxvid)366 static int _pxvid_to_vd(u8 pxvid)
367 {
368 if (pxvid == 0)
369 return 0;
370
371 if (pxvid >= 8 && pxvid < 31)
372 pxvid = 31;
373
374 return (pxvid + 2) * 125;
375 }
376
pvid_to_extvid(struct drm_i915_private * i915,u8 pxvid)377 static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
378 {
379 const int vd = _pxvid_to_vd(pxvid);
380
381 if (INTEL_INFO(i915)->is_mobile)
382 return max(vd - 1125, 0);
383
384 return vd;
385 }
386
__gen5_ips_update(struct intel_ips * ips)387 static void __gen5_ips_update(struct intel_ips *ips)
388 {
389 struct intel_uncore *uncore =
390 rps_to_uncore(container_of(ips, struct intel_rps, ips));
391 u64 now, delta, dt;
392 u32 count;
393
394 lockdep_assert_held(&mchdev_lock);
395
396 now = ktime_get_raw_ns();
397 dt = now - ips->last_time2;
398 do_div(dt, NSEC_PER_MSEC);
399
400 /* Don't divide by 0 */
401 if (dt <= 10)
402 return;
403
404 count = intel_uncore_read(uncore, GFXEC);
405 delta = count - ips->last_count2;
406
407 ips->last_count2 = count;
408 ips->last_time2 = now;
409
410 /* More magic constants... */
411 ips->gfx_power = div_u64(delta * 1181, dt * 10);
412 }
413
gen5_rps_update(struct intel_rps * rps)414 static void gen5_rps_update(struct intel_rps *rps)
415 {
416 spin_lock_irq(&mchdev_lock);
417 __gen5_ips_update(&rps->ips);
418 spin_unlock_irq(&mchdev_lock);
419 }
420
gen5_invert_freq(struct intel_rps * rps,unsigned int val)421 static unsigned int gen5_invert_freq(struct intel_rps *rps,
422 unsigned int val)
423 {
424 /* Invert the frequency bin into an ips delay */
425 val = rps->max_freq - val;
426 val = rps->min_freq + val;
427
428 return val;
429 }
430
__gen5_rps_set(struct intel_rps * rps,u8 val)431 static int __gen5_rps_set(struct intel_rps *rps, u8 val)
432 {
433 struct intel_uncore *uncore = rps_to_uncore(rps);
434 u16 rgvswctl;
435
436 lockdep_assert_held(&mchdev_lock);
437
438 rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
439 if (rgvswctl & MEMCTL_CMD_STS) {
440 drm_dbg(&rps_to_i915(rps)->drm,
441 "gpu busy, RCS change rejected\n");
442 return -EBUSY; /* still busy with another command */
443 }
444
445 /* Invert the frequency bin into an ips delay */
446 val = gen5_invert_freq(rps, val);
447
448 rgvswctl =
449 (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
450 (val << MEMCTL_FREQ_SHIFT) |
451 MEMCTL_SFCAVM;
452 intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
453 intel_uncore_posting_read16(uncore, MEMSWCTL);
454
455 rgvswctl |= MEMCTL_CMD_STS;
456 intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
457
458 return 0;
459 }
460
gen5_rps_set(struct intel_rps * rps,u8 val)461 static int gen5_rps_set(struct intel_rps *rps, u8 val)
462 {
463 int err;
464
465 spin_lock_irq(&mchdev_lock);
466 err = __gen5_rps_set(rps, val);
467 spin_unlock_irq(&mchdev_lock);
468
469 return err;
470 }
471
intel_pxfreq(u32 vidfreq)472 static unsigned long intel_pxfreq(u32 vidfreq)
473 {
474 int div = (vidfreq & 0x3f0000) >> 16;
475 int post = (vidfreq & 0x3000) >> 12;
476 int pre = (vidfreq & 0x7);
477
478 if (!pre)
479 return 0;
480
481 return div * 133333 / (pre << post);
482 }
483
init_emon(struct intel_uncore * uncore)484 static unsigned int init_emon(struct intel_uncore *uncore)
485 {
486 u8 pxw[16];
487 int i;
488
489 /* Disable to program */
490 intel_uncore_write(uncore, ECR, 0);
491 intel_uncore_posting_read(uncore, ECR);
492
493 /* Program energy weights for various events */
494 intel_uncore_write(uncore, SDEW, 0x15040d00);
495 intel_uncore_write(uncore, CSIEW0, 0x007f0000);
496 intel_uncore_write(uncore, CSIEW1, 0x1e220004);
497 intel_uncore_write(uncore, CSIEW2, 0x04000004);
498
499 for (i = 0; i < 5; i++)
500 intel_uncore_write(uncore, PEW(i), 0);
501 for (i = 0; i < 3; i++)
502 intel_uncore_write(uncore, DEW(i), 0);
503
504 /* Program P-state weights to account for frequency power adjustment */
505 for (i = 0; i < 16; i++) {
506 u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
507 unsigned int freq = intel_pxfreq(pxvidfreq);
508 unsigned int vid =
509 (pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
510 unsigned int val;
511
512 val = vid * vid * freq / 1000 * 255;
513 val /= 127 * 127 * 900;
514
515 pxw[i] = val;
516 }
517 /* Render standby states get 0 weight */
518 pxw[14] = 0;
519 pxw[15] = 0;
520
521 for (i = 0; i < 4; i++) {
522 intel_uncore_write(uncore, PXW(i),
523 pxw[i * 4 + 0] << 24 |
524 pxw[i * 4 + 1] << 16 |
525 pxw[i * 4 + 2] << 8 |
526 pxw[i * 4 + 3] << 0);
527 }
528
529 /* Adjust magic regs to magic values (more experimental results) */
530 intel_uncore_write(uncore, OGW0, 0);
531 intel_uncore_write(uncore, OGW1, 0);
532 intel_uncore_write(uncore, EG0, 0x00007f00);
533 intel_uncore_write(uncore, EG1, 0x0000000e);
534 intel_uncore_write(uncore, EG2, 0x000e0000);
535 intel_uncore_write(uncore, EG3, 0x68000300);
536 intel_uncore_write(uncore, EG4, 0x42000000);
537 intel_uncore_write(uncore, EG5, 0x00140031);
538 intel_uncore_write(uncore, EG6, 0);
539 intel_uncore_write(uncore, EG7, 0);
540
541 for (i = 0; i < 8; i++)
542 intel_uncore_write(uncore, PXWL(i), 0);
543
544 /* Enable PMON + select events */
545 intel_uncore_write(uncore, ECR, 0x80000019);
546
547 return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
548 }
549
gen5_rps_enable(struct intel_rps * rps)550 static bool gen5_rps_enable(struct intel_rps *rps)
551 {
552 struct drm_i915_private *i915 = rps_to_i915(rps);
553 struct intel_uncore *uncore = rps_to_uncore(rps);
554 u8 fstart, vstart;
555 u32 rgvmodectl;
556
557 spin_lock_irq(&mchdev_lock);
558
559 rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
560
561 /* Enable temp reporting */
562 intel_uncore_write16(uncore, PMMISC,
563 intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
564 intel_uncore_write16(uncore, TSC1,
565 intel_uncore_read16(uncore, TSC1) | TSE);
566
567 /* 100ms RC evaluation intervals */
568 intel_uncore_write(uncore, RCUPEI, 100000);
569 intel_uncore_write(uncore, RCDNEI, 100000);
570
571 /* Set max/min thresholds to 90ms and 80ms respectively */
572 intel_uncore_write(uncore, RCBMAXAVG, 90000);
573 intel_uncore_write(uncore, RCBMINAVG, 80000);
574
575 intel_uncore_write(uncore, MEMIHYST, 1);
576
577 /* Set up min, max, and cur for interrupt handling */
578 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
579 MEMMODE_FSTART_SHIFT;
580
581 vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
582 PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
583
584 intel_uncore_write(uncore,
585 MEMINTREN,
586 MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
587
588 intel_uncore_write(uncore, VIDSTART, vstart);
589 intel_uncore_posting_read(uncore, VIDSTART);
590
591 rgvmodectl |= MEMMODE_SWMODE_EN;
592 intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
593
594 if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
595 MEMCTL_CMD_STS) == 0, 10))
596 drm_err(&uncore->i915->drm,
597 "stuck trying to change perf mode\n");
598 mdelay(1);
599
600 __gen5_rps_set(rps, rps->cur_freq);
601
602 rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
603 rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
604 rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
605 rps->ips.last_time1 = jiffies_to_msecs(jiffies);
606
607 rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
608 rps->ips.last_time2 = ktime_get_raw_ns();
609
610 spin_lock(&i915->irq_lock);
611 ilk_enable_display_irq(i915, DE_PCU_EVENT);
612 spin_unlock(&i915->irq_lock);
613
614 spin_unlock_irq(&mchdev_lock);
615
616 rps->ips.corr = init_emon(uncore);
617
618 return true;
619 }
620
gen5_rps_disable(struct intel_rps * rps)621 static void gen5_rps_disable(struct intel_rps *rps)
622 {
623 struct drm_i915_private *i915 = rps_to_i915(rps);
624 struct intel_uncore *uncore = rps_to_uncore(rps);
625 u16 rgvswctl;
626
627 spin_lock_irq(&mchdev_lock);
628
629 spin_lock(&i915->irq_lock);
630 ilk_disable_display_irq(i915, DE_PCU_EVENT);
631 spin_unlock(&i915->irq_lock);
632
633 rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
634
635 /* Ack interrupts, disable EFC interrupt */
636 intel_uncore_rmw(uncore, MEMINTREN, MEMINT_EVAL_CHG_EN, 0);
637 intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
638
639 /* Go back to the starting frequency */
640 __gen5_rps_set(rps, rps->idle_freq);
641 mdelay(1);
642 rgvswctl |= MEMCTL_CMD_STS;
643 intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
644 mdelay(1);
645
646 spin_unlock_irq(&mchdev_lock);
647 }
648
rps_limits(struct intel_rps * rps,u8 val)649 static u32 rps_limits(struct intel_rps *rps, u8 val)
650 {
651 u32 limits;
652
653 /*
654 * Only set the down limit when we've reached the lowest level to avoid
655 * getting more interrupts, otherwise leave this clear. This prevents a
656 * race in the hw when coming out of rc6: There's a tiny window where
657 * the hw runs at the minimal clock before selecting the desired
658 * frequency, if the down threshold expires in that window we will not
659 * receive a down interrupt.
660 */
661 if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
662 limits = rps->max_freq_softlimit << 23;
663 if (val <= rps->min_freq_softlimit)
664 limits |= rps->min_freq_softlimit << 14;
665 } else {
666 limits = rps->max_freq_softlimit << 24;
667 if (val <= rps->min_freq_softlimit)
668 limits |= rps->min_freq_softlimit << 16;
669 }
670
671 return limits;
672 }
673
rps_set_power(struct intel_rps * rps,int new_power)674 static void rps_set_power(struct intel_rps *rps, int new_power)
675 {
676 struct intel_gt *gt = rps_to_gt(rps);
677 struct intel_uncore *uncore = gt->uncore;
678 u32 ei_up = 0, ei_down = 0;
679
680 lockdep_assert_held(&rps->power.mutex);
681
682 if (new_power == rps->power.mode)
683 return;
684
685 /* Note the units here are not exactly 1us, but 1280ns. */
686 switch (new_power) {
687 case LOW_POWER:
688 ei_up = 16000;
689 ei_down = 32000;
690 break;
691
692 case BETWEEN:
693 ei_up = 13000;
694 ei_down = 32000;
695 break;
696
697 case HIGH_POWER:
698 ei_up = 10000;
699 ei_down = 32000;
700 break;
701 }
702
703 /* When byt can survive without system hang with dynamic
704 * sw freq adjustments, this restriction can be lifted.
705 */
706 if (IS_VALLEYVIEW(gt->i915))
707 goto skip_hw_write;
708
709 GT_TRACE(gt,
710 "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
711 new_power,
712 rps->power.up_threshold, ei_up,
713 rps->power.down_threshold, ei_down);
714
715 set(uncore, GEN6_RP_UP_EI,
716 intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
717 set(uncore, GEN6_RP_UP_THRESHOLD,
718 intel_gt_ns_to_pm_interval(gt,
719 ei_up * rps->power.up_threshold * 10));
720
721 set(uncore, GEN6_RP_DOWN_EI,
722 intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
723 set(uncore, GEN6_RP_DOWN_THRESHOLD,
724 intel_gt_ns_to_pm_interval(gt,
725 ei_down *
726 rps->power.down_threshold * 10));
727
728 set(uncore, GEN6_RP_CONTROL,
729 (GRAPHICS_VER(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
730 GEN6_RP_MEDIA_HW_NORMAL_MODE |
731 GEN6_RP_MEDIA_IS_GFX |
732 GEN6_RP_ENABLE |
733 GEN6_RP_UP_BUSY_AVG |
734 GEN6_RP_DOWN_IDLE_AVG);
735
736 skip_hw_write:
737 rps->power.mode = new_power;
738 }
739
gen6_rps_set_thresholds(struct intel_rps * rps,u8 val)740 static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
741 {
742 int new_power;
743
744 new_power = rps->power.mode;
745 switch (rps->power.mode) {
746 case LOW_POWER:
747 if (val > rps->efficient_freq + 1 &&
748 val > rps->cur_freq)
749 new_power = BETWEEN;
750 break;
751
752 case BETWEEN:
753 if (val <= rps->efficient_freq &&
754 val < rps->cur_freq)
755 new_power = LOW_POWER;
756 else if (val >= rps->rp0_freq &&
757 val > rps->cur_freq)
758 new_power = HIGH_POWER;
759 break;
760
761 case HIGH_POWER:
762 if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
763 val < rps->cur_freq)
764 new_power = BETWEEN;
765 break;
766 }
767 /* Max/min bins are special */
768 if (val <= rps->min_freq_softlimit)
769 new_power = LOW_POWER;
770 if (val >= rps->max_freq_softlimit)
771 new_power = HIGH_POWER;
772
773 mutex_lock(&rps->power.mutex);
774 if (rps->power.interactive)
775 new_power = HIGH_POWER;
776 rps_set_power(rps, new_power);
777 mutex_unlock(&rps->power.mutex);
778 }
779
intel_rps_mark_interactive(struct intel_rps * rps,bool interactive)780 void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
781 {
782 GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n",
783 str_yes_no(interactive));
784
785 mutex_lock(&rps->power.mutex);
786 if (interactive) {
787 if (!rps->power.interactive++ && intel_rps_is_active(rps))
788 rps_set_power(rps, HIGH_POWER);
789 } else {
790 GEM_BUG_ON(!rps->power.interactive);
791 rps->power.interactive--;
792 }
793 mutex_unlock(&rps->power.mutex);
794 }
795
gen6_rps_set(struct intel_rps * rps,u8 val)796 static int gen6_rps_set(struct intel_rps *rps, u8 val)
797 {
798 struct intel_uncore *uncore = rps_to_uncore(rps);
799 struct drm_i915_private *i915 = rps_to_i915(rps);
800 u32 swreq;
801
802 GEM_BUG_ON(rps_uses_slpc(rps));
803
804 if (GRAPHICS_VER(i915) >= 9)
805 swreq = GEN9_FREQUENCY(val);
806 else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
807 swreq = HSW_FREQUENCY(val);
808 else
809 swreq = (GEN6_FREQUENCY(val) |
810 GEN6_OFFSET(0) |
811 GEN6_AGGRESSIVE_TURBO);
812 set(uncore, GEN6_RPNSWREQ, swreq);
813
814 GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
815 val, intel_gpu_freq(rps, val), swreq);
816
817 return 0;
818 }
819
vlv_rps_set(struct intel_rps * rps,u8 val)820 static int vlv_rps_set(struct intel_rps *rps, u8 val)
821 {
822 struct drm_i915_private *i915 = rps_to_i915(rps);
823 int err;
824
825 vlv_punit_get(i915);
826 err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
827 vlv_punit_put(i915);
828
829 GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
830 val, intel_gpu_freq(rps, val));
831
832 return err;
833 }
834
rps_set(struct intel_rps * rps,u8 val,bool update)835 static int rps_set(struct intel_rps *rps, u8 val, bool update)
836 {
837 struct drm_i915_private *i915 = rps_to_i915(rps);
838 int err;
839
840 if (val == rps->last_freq)
841 return 0;
842
843 if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
844 err = vlv_rps_set(rps, val);
845 else if (GRAPHICS_VER(i915) >= 6)
846 err = gen6_rps_set(rps, val);
847 else
848 err = gen5_rps_set(rps, val);
849 if (err)
850 return err;
851
852 if (update && GRAPHICS_VER(i915) >= 6)
853 gen6_rps_set_thresholds(rps, val);
854 rps->last_freq = val;
855
856 return 0;
857 }
858
intel_rps_unpark(struct intel_rps * rps)859 void intel_rps_unpark(struct intel_rps *rps)
860 {
861 if (!intel_rps_is_enabled(rps))
862 return;
863
864 GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
865
866 /*
867 * Use the user's desired frequency as a guide, but for better
868 * performance, jump directly to RPe as our starting frequency.
869 */
870 mutex_lock(&rps->lock);
871
872 intel_rps_set_active(rps);
873 intel_rps_set(rps,
874 clamp(rps->cur_freq,
875 rps->min_freq_softlimit,
876 rps->max_freq_softlimit));
877
878 mutex_unlock(&rps->lock);
879
880 rps->pm_iir = 0;
881 if (intel_rps_has_interrupts(rps))
882 rps_enable_interrupts(rps);
883 if (intel_rps_uses_timer(rps))
884 rps_start_timer(rps);
885
886 if (GRAPHICS_VER(rps_to_i915(rps)) == 5)
887 gen5_rps_update(rps);
888 }
889
intel_rps_park(struct intel_rps * rps)890 void intel_rps_park(struct intel_rps *rps)
891 {
892 int adj;
893
894 if (!intel_rps_is_enabled(rps))
895 return;
896
897 if (!intel_rps_clear_active(rps))
898 return;
899
900 if (intel_rps_uses_timer(rps))
901 rps_stop_timer(rps);
902 if (intel_rps_has_interrupts(rps))
903 rps_disable_interrupts(rps);
904
905 if (rps->last_freq <= rps->idle_freq)
906 return;
907
908 /*
909 * The punit delays the write of the frequency and voltage until it
910 * determines the GPU is awake. During normal usage we don't want to
911 * waste power changing the frequency if the GPU is sleeping (rc6).
912 * However, the GPU and driver is now idle and we do not want to delay
913 * switching to minimum voltage (reducing power whilst idle) as we do
914 * not expect to be woken in the near future and so must flush the
915 * change by waking the device.
916 *
917 * We choose to take the media powerwell (either would do to trick the
918 * punit into committing the voltage change) as that takes a lot less
919 * power than the render powerwell.
920 */
921 intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
922 rps_set(rps, rps->idle_freq, false);
923 intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
924
925 /*
926 * Since we will try and restart from the previously requested
927 * frequency on unparking, treat this idle point as a downclock
928 * interrupt and reduce the frequency for resume. If we park/unpark
929 * more frequently than the rps worker can run, we will not respond
930 * to any EI and never see a change in frequency.
931 *
932 * (Note we accommodate Cherryview's limitation of only using an
933 * even bin by applying it to all.)
934 */
935 adj = rps->last_adj;
936 if (adj < 0)
937 adj *= 2;
938 else /* CHV needs even encode values */
939 adj = -2;
940 rps->last_adj = adj;
941 rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
942 if (rps->cur_freq < rps->efficient_freq) {
943 rps->cur_freq = rps->efficient_freq;
944 rps->last_adj = 0;
945 }
946
947 GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
948 }
949
intel_rps_get_boost_frequency(struct intel_rps * rps)950 u32 intel_rps_get_boost_frequency(struct intel_rps *rps)
951 {
952 struct intel_guc_slpc *slpc;
953
954 if (rps_uses_slpc(rps)) {
955 slpc = rps_to_slpc(rps);
956
957 return slpc->boost_freq;
958 } else {
959 return intel_gpu_freq(rps, rps->boost_freq);
960 }
961 }
962
rps_set_boost_freq(struct intel_rps * rps,u32 val)963 static int rps_set_boost_freq(struct intel_rps *rps, u32 val)
964 {
965 bool boost = false;
966
967 /* Validate against (static) hardware limits */
968 val = intel_freq_opcode(rps, val);
969 if (val < rps->min_freq || val > rps->max_freq)
970 return -EINVAL;
971
972 mutex_lock(&rps->lock);
973 if (val != rps->boost_freq) {
974 rps->boost_freq = val;
975 boost = atomic_read(&rps->num_waiters);
976 }
977 mutex_unlock(&rps->lock);
978 if (boost)
979 queue_work(rps_to_gt(rps)->i915->unordered_wq, &rps->work);
980
981 return 0;
982 }
983
intel_rps_set_boost_frequency(struct intel_rps * rps,u32 freq)984 int intel_rps_set_boost_frequency(struct intel_rps *rps, u32 freq)
985 {
986 struct intel_guc_slpc *slpc;
987
988 if (rps_uses_slpc(rps)) {
989 slpc = rps_to_slpc(rps);
990
991 return intel_guc_slpc_set_boost_freq(slpc, freq);
992 } else {
993 return rps_set_boost_freq(rps, freq);
994 }
995 }
996
intel_rps_dec_waiters(struct intel_rps * rps)997 void intel_rps_dec_waiters(struct intel_rps *rps)
998 {
999 struct intel_guc_slpc *slpc;
1000
1001 if (rps_uses_slpc(rps)) {
1002 slpc = rps_to_slpc(rps);
1003
1004 intel_guc_slpc_dec_waiters(slpc);
1005 } else {
1006 atomic_dec(&rps->num_waiters);
1007 }
1008 }
1009
intel_rps_boost(struct i915_request * rq)1010 void intel_rps_boost(struct i915_request *rq)
1011 {
1012 struct intel_guc_slpc *slpc;
1013
1014 if (i915_request_signaled(rq) || i915_request_has_waitboost(rq))
1015 return;
1016
1017 /* Waitboost is not needed for contexts marked with a Freq hint */
1018 if (test_bit(CONTEXT_LOW_LATENCY, &rq->context->flags))
1019 return;
1020
1021 /* Serializes with i915_request_retire() */
1022 if (!test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) {
1023 struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
1024
1025 if (rps_uses_slpc(rps)) {
1026 slpc = rps_to_slpc(rps);
1027
1028 if (slpc->min_freq_softlimit >= slpc->boost_freq)
1029 return;
1030
1031 /* Return if old value is non zero */
1032 if (!atomic_fetch_inc(&slpc->num_waiters)) {
1033 GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
1034 rq->fence.context, rq->fence.seqno);
1035 queue_work(rps_to_gt(rps)->i915->unordered_wq,
1036 &slpc->boost_work);
1037 }
1038
1039 return;
1040 }
1041
1042 if (atomic_fetch_inc(&rps->num_waiters))
1043 return;
1044
1045 if (!intel_rps_is_active(rps))
1046 return;
1047
1048 GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
1049 rq->fence.context, rq->fence.seqno);
1050
1051 if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
1052 queue_work(rps_to_gt(rps)->i915->unordered_wq, &rps->work);
1053
1054 WRITE_ONCE(rps->boosts, rps->boosts + 1); /* debug only */
1055 }
1056 }
1057
intel_rps_set(struct intel_rps * rps,u8 val)1058 int intel_rps_set(struct intel_rps *rps, u8 val)
1059 {
1060 int err;
1061
1062 lockdep_assert_held(&rps->lock);
1063 GEM_BUG_ON(val > rps->max_freq);
1064 GEM_BUG_ON(val < rps->min_freq);
1065
1066 if (intel_rps_is_active(rps)) {
1067 err = rps_set(rps, val, true);
1068 if (err)
1069 return err;
1070
1071 /*
1072 * Make sure we continue to get interrupts
1073 * until we hit the minimum or maximum frequencies.
1074 */
1075 if (intel_rps_has_interrupts(rps)) {
1076 struct intel_uncore *uncore = rps_to_uncore(rps);
1077
1078 set(uncore,
1079 GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
1080
1081 set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
1082 }
1083 }
1084
1085 rps->cur_freq = val;
1086 return 0;
1087 }
1088
intel_rps_read_state_cap(struct intel_rps * rps)1089 static u32 intel_rps_read_state_cap(struct intel_rps *rps)
1090 {
1091 struct drm_i915_private *i915 = rps_to_i915(rps);
1092 struct intel_uncore *uncore = rps_to_uncore(rps);
1093
1094 if (IS_GEN9_LP(i915))
1095 return intel_uncore_read(uncore, BXT_RP_STATE_CAP);
1096 else
1097 return intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
1098 }
1099
1100 static void
mtl_get_freq_caps(struct intel_rps * rps,struct intel_rps_freq_caps * caps)1101 mtl_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1102 {
1103 struct intel_uncore *uncore = rps_to_uncore(rps);
1104 u32 rp_state_cap = rps_to_gt(rps)->type == GT_MEDIA ?
1105 intel_uncore_read(uncore, MTL_MEDIAP_STATE_CAP) :
1106 intel_uncore_read(uncore, MTL_RP_STATE_CAP);
1107 u32 rpe = rps_to_gt(rps)->type == GT_MEDIA ?
1108 intel_uncore_read(uncore, MTL_MPE_FREQUENCY) :
1109 intel_uncore_read(uncore, MTL_GT_RPE_FREQUENCY);
1110
1111 /* MTL values are in units of 16.67 MHz */
1112 caps->rp0_freq = REG_FIELD_GET(MTL_RP0_CAP_MASK, rp_state_cap);
1113 caps->min_freq = REG_FIELD_GET(MTL_RPN_CAP_MASK, rp_state_cap);
1114 caps->rp1_freq = REG_FIELD_GET(MTL_RPE_MASK, rpe);
1115 }
1116
1117 static void
__gen6_rps_get_freq_caps(struct intel_rps * rps,struct intel_rps_freq_caps * caps)1118 __gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1119 {
1120 struct drm_i915_private *i915 = rps_to_i915(rps);
1121 u32 rp_state_cap;
1122
1123 rp_state_cap = intel_rps_read_state_cap(rps);
1124
1125 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
1126 if (IS_GEN9_LP(i915)) {
1127 caps->rp0_freq = (rp_state_cap >> 16) & 0xff;
1128 caps->rp1_freq = (rp_state_cap >> 8) & 0xff;
1129 caps->min_freq = (rp_state_cap >> 0) & 0xff;
1130 } else {
1131 caps->rp0_freq = (rp_state_cap >> 0) & 0xff;
1132 if (GRAPHICS_VER(i915) >= 10)
1133 caps->rp1_freq = REG_FIELD_GET(RPE_MASK,
1134 intel_uncore_read(to_gt(i915)->uncore,
1135 GEN10_FREQ_INFO_REC));
1136 else
1137 caps->rp1_freq = (rp_state_cap >> 8) & 0xff;
1138 caps->min_freq = (rp_state_cap >> 16) & 0xff;
1139 }
1140
1141 if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1142 /*
1143 * In this case rp_state_cap register reports frequencies in
1144 * units of 50 MHz. Convert these to the actual "hw unit", i.e.
1145 * units of 16.67 MHz
1146 */
1147 caps->rp0_freq *= GEN9_FREQ_SCALER;
1148 caps->rp1_freq *= GEN9_FREQ_SCALER;
1149 caps->min_freq *= GEN9_FREQ_SCALER;
1150 }
1151 }
1152
1153 /**
1154 * gen6_rps_get_freq_caps - Get freq caps exposed by HW
1155 * @rps: the intel_rps structure
1156 * @caps: returned freq caps
1157 *
1158 * Returned "caps" frequencies should be converted to MHz using
1159 * intel_gpu_freq()
1160 */
gen6_rps_get_freq_caps(struct intel_rps * rps,struct intel_rps_freq_caps * caps)1161 void gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1162 {
1163 struct drm_i915_private *i915 = rps_to_i915(rps);
1164
1165 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
1166 return mtl_get_freq_caps(rps, caps);
1167 else
1168 return __gen6_rps_get_freq_caps(rps, caps);
1169 }
1170
gen6_rps_init(struct intel_rps * rps)1171 static void gen6_rps_init(struct intel_rps *rps)
1172 {
1173 struct drm_i915_private *i915 = rps_to_i915(rps);
1174 struct intel_rps_freq_caps caps;
1175
1176 gen6_rps_get_freq_caps(rps, &caps);
1177 rps->rp0_freq = caps.rp0_freq;
1178 rps->rp1_freq = caps.rp1_freq;
1179 rps->min_freq = caps.min_freq;
1180
1181 /* hw_max = RP0 until we check for overclocking */
1182 rps->max_freq = rps->rp0_freq;
1183
1184 rps->efficient_freq = rps->rp1_freq;
1185 if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
1186 IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1187 u32 ddcc_status = 0;
1188 u32 mult = 1;
1189
1190 if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11)
1191 mult = GEN9_FREQ_SCALER;
1192 if (snb_pcode_read(rps_to_gt(rps)->uncore,
1193 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
1194 &ddcc_status, NULL) == 0)
1195 rps->efficient_freq =
1196 clamp_t(u32,
1197 ((ddcc_status >> 8) & 0xff) * mult,
1198 rps->min_freq,
1199 rps->max_freq);
1200 }
1201 }
1202
rps_reset(struct intel_rps * rps)1203 static bool rps_reset(struct intel_rps *rps)
1204 {
1205 struct drm_i915_private *i915 = rps_to_i915(rps);
1206
1207 /* force a reset */
1208 rps->power.mode = -1;
1209 rps->last_freq = -1;
1210
1211 if (rps_set(rps, rps->min_freq, true)) {
1212 drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
1213 return false;
1214 }
1215
1216 rps->cur_freq = rps->min_freq;
1217 return true;
1218 }
1219
1220 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
gen9_rps_enable(struct intel_rps * rps)1221 static bool gen9_rps_enable(struct intel_rps *rps)
1222 {
1223 struct intel_gt *gt = rps_to_gt(rps);
1224 struct intel_uncore *uncore = gt->uncore;
1225
1226 /* Program defaults and thresholds for RPS */
1227 if (GRAPHICS_VER(gt->i915) == 9)
1228 intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1229 GEN9_FREQUENCY(rps->rp1_freq));
1230
1231 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
1232
1233 rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1234
1235 return rps_reset(rps);
1236 }
1237
gen8_rps_enable(struct intel_rps * rps)1238 static bool gen8_rps_enable(struct intel_rps *rps)
1239 {
1240 struct intel_uncore *uncore = rps_to_uncore(rps);
1241
1242 intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1243 HSW_FREQUENCY(rps->rp1_freq));
1244
1245 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1246
1247 rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1248
1249 return rps_reset(rps);
1250 }
1251
gen6_rps_enable(struct intel_rps * rps)1252 static bool gen6_rps_enable(struct intel_rps *rps)
1253 {
1254 struct intel_uncore *uncore = rps_to_uncore(rps);
1255
1256 /* Power down if completely idle for over 50ms */
1257 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
1258 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1259
1260 rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1261 GEN6_PM_RP_DOWN_THRESHOLD |
1262 GEN6_PM_RP_DOWN_TIMEOUT);
1263
1264 return rps_reset(rps);
1265 }
1266
chv_rps_max_freq(struct intel_rps * rps)1267 static int chv_rps_max_freq(struct intel_rps *rps)
1268 {
1269 struct drm_i915_private *i915 = rps_to_i915(rps);
1270 struct intel_gt *gt = rps_to_gt(rps);
1271 u32 val;
1272
1273 val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1274
1275 switch (gt->info.sseu.eu_total) {
1276 case 8:
1277 /* (2 * 4) config */
1278 val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
1279 break;
1280 case 12:
1281 /* (2 * 6) config */
1282 val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
1283 break;
1284 case 16:
1285 /* (2 * 8) config */
1286 default:
1287 /* Setting (2 * 8) Min RP0 for any other combination */
1288 val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
1289 break;
1290 }
1291
1292 return val & FB_GFX_FREQ_FUSE_MASK;
1293 }
1294
chv_rps_rpe_freq(struct intel_rps * rps)1295 static int chv_rps_rpe_freq(struct intel_rps *rps)
1296 {
1297 struct drm_i915_private *i915 = rps_to_i915(rps);
1298 u32 val;
1299
1300 val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
1301 val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
1302
1303 return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
1304 }
1305
chv_rps_guar_freq(struct intel_rps * rps)1306 static int chv_rps_guar_freq(struct intel_rps *rps)
1307 {
1308 struct drm_i915_private *i915 = rps_to_i915(rps);
1309 u32 val;
1310
1311 val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1312
1313 return val & FB_GFX_FREQ_FUSE_MASK;
1314 }
1315
chv_rps_min_freq(struct intel_rps * rps)1316 static u32 chv_rps_min_freq(struct intel_rps *rps)
1317 {
1318 struct drm_i915_private *i915 = rps_to_i915(rps);
1319 u32 val;
1320
1321 val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
1322 val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
1323
1324 return val & FB_GFX_FREQ_FUSE_MASK;
1325 }
1326
chv_rps_enable(struct intel_rps * rps)1327 static bool chv_rps_enable(struct intel_rps *rps)
1328 {
1329 struct intel_uncore *uncore = rps_to_uncore(rps);
1330 struct drm_i915_private *i915 = rps_to_i915(rps);
1331 u32 val;
1332
1333 /* 1: Program defaults and thresholds for RPS*/
1334 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1335 intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1336 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1337 intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1338 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1339
1340 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1341
1342 /* 2: Enable RPS */
1343 intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1344 GEN6_RP_MEDIA_HW_NORMAL_MODE |
1345 GEN6_RP_MEDIA_IS_GFX |
1346 GEN6_RP_ENABLE |
1347 GEN6_RP_UP_BUSY_AVG |
1348 GEN6_RP_DOWN_IDLE_AVG);
1349
1350 rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1351 GEN6_PM_RP_DOWN_THRESHOLD |
1352 GEN6_PM_RP_DOWN_TIMEOUT);
1353
1354 /* Setting Fixed Bias */
1355 vlv_punit_get(i915);
1356
1357 val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
1358 vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1359
1360 val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1361
1362 vlv_punit_put(i915);
1363
1364 /* RPS code assumes GPLL is used */
1365 drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1366 "GPLL not enabled\n");
1367
1368 drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1369 str_yes_no(val & GPLLENABLE));
1370 drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1371
1372 return rps_reset(rps);
1373 }
1374
vlv_rps_guar_freq(struct intel_rps * rps)1375 static int vlv_rps_guar_freq(struct intel_rps *rps)
1376 {
1377 struct drm_i915_private *i915 = rps_to_i915(rps);
1378 u32 val, rp1;
1379
1380 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1381
1382 rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
1383 rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
1384
1385 return rp1;
1386 }
1387
vlv_rps_max_freq(struct intel_rps * rps)1388 static int vlv_rps_max_freq(struct intel_rps *rps)
1389 {
1390 struct drm_i915_private *i915 = rps_to_i915(rps);
1391 u32 val, rp0;
1392
1393 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1394
1395 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
1396 /* Clamp to max */
1397 rp0 = min_t(u32, rp0, 0xea);
1398
1399 return rp0;
1400 }
1401
vlv_rps_rpe_freq(struct intel_rps * rps)1402 static int vlv_rps_rpe_freq(struct intel_rps *rps)
1403 {
1404 struct drm_i915_private *i915 = rps_to_i915(rps);
1405 u32 val, rpe;
1406
1407 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
1408 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
1409 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
1410 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
1411
1412 return rpe;
1413 }
1414
vlv_rps_min_freq(struct intel_rps * rps)1415 static int vlv_rps_min_freq(struct intel_rps *rps)
1416 {
1417 struct drm_i915_private *i915 = rps_to_i915(rps);
1418 u32 val;
1419
1420 val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
1421 /*
1422 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
1423 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
1424 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
1425 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
1426 * to make sure it matches what Punit accepts.
1427 */
1428 return max_t(u32, val, 0xc0);
1429 }
1430
vlv_rps_enable(struct intel_rps * rps)1431 static bool vlv_rps_enable(struct intel_rps *rps)
1432 {
1433 struct intel_uncore *uncore = rps_to_uncore(rps);
1434 struct drm_i915_private *i915 = rps_to_i915(rps);
1435 u32 val;
1436
1437 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1438 intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1439 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1440 intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1441 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1442
1443 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1444
1445 intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1446 GEN6_RP_MEDIA_TURBO |
1447 GEN6_RP_MEDIA_HW_NORMAL_MODE |
1448 GEN6_RP_MEDIA_IS_GFX |
1449 GEN6_RP_ENABLE |
1450 GEN6_RP_UP_BUSY_AVG |
1451 GEN6_RP_DOWN_IDLE_CONT);
1452
1453 /* WaGsvRC0ResidencyMethod:vlv */
1454 rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
1455
1456 vlv_punit_get(i915);
1457
1458 /* Setting Fixed Bias */
1459 val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
1460 vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1461
1462 val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1463
1464 vlv_punit_put(i915);
1465
1466 /* RPS code assumes GPLL is used */
1467 drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1468 "GPLL not enabled\n");
1469
1470 drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1471 str_yes_no(val & GPLLENABLE));
1472 drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1473
1474 return rps_reset(rps);
1475 }
1476
__ips_gfx_val(struct intel_ips * ips)1477 static unsigned long __ips_gfx_val(struct intel_ips *ips)
1478 {
1479 struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
1480 struct intel_uncore *uncore = rps_to_uncore(rps);
1481 unsigned int t, state1, state2;
1482 u32 pxvid, ext_v;
1483 u64 corr, corr2;
1484
1485 lockdep_assert_held(&mchdev_lock);
1486
1487 pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
1488 pxvid = (pxvid >> 24) & 0x7f;
1489 ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
1490
1491 state1 = ext_v;
1492
1493 /* Revel in the empirically derived constants */
1494
1495 /* Correction factor in 1/100000 units */
1496 t = ips_mch_val(uncore);
1497 if (t > 80)
1498 corr = t * 2349 + 135940;
1499 else if (t >= 50)
1500 corr = t * 964 + 29317;
1501 else /* < 50 */
1502 corr = t * 301 + 1004;
1503
1504 corr = div_u64(corr * 150142 * state1, 10000) - 78642;
1505 corr2 = div_u64(corr, 100000) * ips->corr;
1506
1507 state2 = div_u64(corr2 * state1, 10000);
1508 state2 /= 100; /* convert to mW */
1509
1510 __gen5_ips_update(ips);
1511
1512 return ips->gfx_power + state2;
1513 }
1514
has_busy_stats(struct intel_rps * rps)1515 static bool has_busy_stats(struct intel_rps *rps)
1516 {
1517 struct intel_engine_cs *engine;
1518 enum intel_engine_id id;
1519
1520 for_each_engine(engine, rps_to_gt(rps), id) {
1521 if (!intel_engine_supports_stats(engine))
1522 return false;
1523 }
1524
1525 return true;
1526 }
1527
intel_rps_enable(struct intel_rps * rps)1528 void intel_rps_enable(struct intel_rps *rps)
1529 {
1530 struct drm_i915_private *i915 = rps_to_i915(rps);
1531 struct intel_uncore *uncore = rps_to_uncore(rps);
1532 bool enabled = false;
1533
1534 if (!HAS_RPS(i915))
1535 return;
1536
1537 if (rps_uses_slpc(rps))
1538 return;
1539
1540 intel_gt_check_clock_frequency(rps_to_gt(rps));
1541
1542 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1543 if (rps->max_freq <= rps->min_freq)
1544 /* leave disabled, no room for dynamic reclocking */;
1545 else if (IS_CHERRYVIEW(i915))
1546 enabled = chv_rps_enable(rps);
1547 else if (IS_VALLEYVIEW(i915))
1548 enabled = vlv_rps_enable(rps);
1549 else if (GRAPHICS_VER(i915) >= 9)
1550 enabled = gen9_rps_enable(rps);
1551 else if (GRAPHICS_VER(i915) >= 8)
1552 enabled = gen8_rps_enable(rps);
1553 else if (GRAPHICS_VER(i915) >= 6)
1554 enabled = gen6_rps_enable(rps);
1555 else if (IS_IRONLAKE_M(i915))
1556 enabled = gen5_rps_enable(rps);
1557 else
1558 MISSING_CASE(GRAPHICS_VER(i915));
1559 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1560 if (!enabled)
1561 return;
1562
1563 GT_TRACE(rps_to_gt(rps),
1564 "min:%x, max:%x, freq:[%d, %d], thresholds:[%u, %u]\n",
1565 rps->min_freq, rps->max_freq,
1566 intel_gpu_freq(rps, rps->min_freq),
1567 intel_gpu_freq(rps, rps->max_freq),
1568 rps->power.up_threshold,
1569 rps->power.down_threshold);
1570
1571 GEM_BUG_ON(rps->max_freq < rps->min_freq);
1572 GEM_BUG_ON(rps->idle_freq > rps->max_freq);
1573
1574 GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
1575 GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
1576
1577 if (has_busy_stats(rps))
1578 intel_rps_set_timer(rps);
1579 else if (GRAPHICS_VER(i915) >= 6 && GRAPHICS_VER(i915) <= 11)
1580 intel_rps_set_interrupts(rps);
1581 else
1582 /* Ironlake currently uses intel_ips.ko */ {}
1583
1584 intel_rps_set_enabled(rps);
1585 }
1586
gen6_rps_disable(struct intel_rps * rps)1587 static void gen6_rps_disable(struct intel_rps *rps)
1588 {
1589 set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
1590 }
1591
intel_rps_disable(struct intel_rps * rps)1592 void intel_rps_disable(struct intel_rps *rps)
1593 {
1594 struct drm_i915_private *i915 = rps_to_i915(rps);
1595
1596 if (!intel_rps_is_enabled(rps))
1597 return;
1598
1599 intel_rps_clear_enabled(rps);
1600 intel_rps_clear_interrupts(rps);
1601 intel_rps_clear_timer(rps);
1602
1603 if (GRAPHICS_VER(i915) >= 6)
1604 gen6_rps_disable(rps);
1605 else if (IS_IRONLAKE_M(i915))
1606 gen5_rps_disable(rps);
1607 }
1608
byt_gpu_freq(struct intel_rps * rps,int val)1609 static int byt_gpu_freq(struct intel_rps *rps, int val)
1610 {
1611 /*
1612 * N = val - 0xb7
1613 * Slow = Fast = GPLL ref * N
1614 */
1615 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
1616 }
1617
byt_freq_opcode(struct intel_rps * rps,int val)1618 static int byt_freq_opcode(struct intel_rps *rps, int val)
1619 {
1620 return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
1621 }
1622
chv_gpu_freq(struct intel_rps * rps,int val)1623 static int chv_gpu_freq(struct intel_rps *rps, int val)
1624 {
1625 /*
1626 * N = val / 2
1627 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
1628 */
1629 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
1630 }
1631
chv_freq_opcode(struct intel_rps * rps,int val)1632 static int chv_freq_opcode(struct intel_rps *rps, int val)
1633 {
1634 /* CHV needs even values */
1635 return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
1636 }
1637
intel_gpu_freq(struct intel_rps * rps,int val)1638 int intel_gpu_freq(struct intel_rps *rps, int val)
1639 {
1640 struct drm_i915_private *i915 = rps_to_i915(rps);
1641
1642 if (GRAPHICS_VER(i915) >= 9)
1643 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
1644 GEN9_FREQ_SCALER);
1645 else if (IS_CHERRYVIEW(i915))
1646 return chv_gpu_freq(rps, val);
1647 else if (IS_VALLEYVIEW(i915))
1648 return byt_gpu_freq(rps, val);
1649 else if (GRAPHICS_VER(i915) >= 6)
1650 return val * GT_FREQUENCY_MULTIPLIER;
1651 else
1652 return val;
1653 }
1654
intel_freq_opcode(struct intel_rps * rps,int val)1655 int intel_freq_opcode(struct intel_rps *rps, int val)
1656 {
1657 struct drm_i915_private *i915 = rps_to_i915(rps);
1658
1659 if (GRAPHICS_VER(i915) >= 9)
1660 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
1661 GT_FREQUENCY_MULTIPLIER);
1662 else if (IS_CHERRYVIEW(i915))
1663 return chv_freq_opcode(rps, val);
1664 else if (IS_VALLEYVIEW(i915))
1665 return byt_freq_opcode(rps, val);
1666 else if (GRAPHICS_VER(i915) >= 6)
1667 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
1668 else
1669 return val;
1670 }
1671
vlv_init_gpll_ref_freq(struct intel_rps * rps)1672 static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
1673 {
1674 struct drm_i915_private *i915 = rps_to_i915(rps);
1675
1676 rps->gpll_ref_freq =
1677 vlv_get_cck_clock(i915, "GPLL ref",
1678 CCK_GPLL_CLOCK_CONTROL,
1679 i915->czclk_freq);
1680
1681 drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
1682 rps->gpll_ref_freq);
1683 }
1684
vlv_rps_init(struct intel_rps * rps)1685 static void vlv_rps_init(struct intel_rps *rps)
1686 {
1687 struct drm_i915_private *i915 = rps_to_i915(rps);
1688
1689 vlv_iosf_sb_get(i915,
1690 BIT(VLV_IOSF_SB_PUNIT) |
1691 BIT(VLV_IOSF_SB_NC) |
1692 BIT(VLV_IOSF_SB_CCK));
1693
1694 vlv_init_gpll_ref_freq(rps);
1695
1696 rps->max_freq = vlv_rps_max_freq(rps);
1697 rps->rp0_freq = rps->max_freq;
1698 drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1699 intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1700
1701 rps->efficient_freq = vlv_rps_rpe_freq(rps);
1702 drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1703 intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1704
1705 rps->rp1_freq = vlv_rps_guar_freq(rps);
1706 drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
1707 intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1708
1709 rps->min_freq = vlv_rps_min_freq(rps);
1710 drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1711 intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1712
1713 vlv_iosf_sb_put(i915,
1714 BIT(VLV_IOSF_SB_PUNIT) |
1715 BIT(VLV_IOSF_SB_NC) |
1716 BIT(VLV_IOSF_SB_CCK));
1717 }
1718
chv_rps_init(struct intel_rps * rps)1719 static void chv_rps_init(struct intel_rps *rps)
1720 {
1721 struct drm_i915_private *i915 = rps_to_i915(rps);
1722
1723 vlv_iosf_sb_get(i915,
1724 BIT(VLV_IOSF_SB_PUNIT) |
1725 BIT(VLV_IOSF_SB_NC) |
1726 BIT(VLV_IOSF_SB_CCK));
1727
1728 vlv_init_gpll_ref_freq(rps);
1729
1730 rps->max_freq = chv_rps_max_freq(rps);
1731 rps->rp0_freq = rps->max_freq;
1732 drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1733 intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1734
1735 rps->efficient_freq = chv_rps_rpe_freq(rps);
1736 drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1737 intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1738
1739 rps->rp1_freq = chv_rps_guar_freq(rps);
1740 drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
1741 intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1742
1743 rps->min_freq = chv_rps_min_freq(rps);
1744 drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1745 intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1746
1747 vlv_iosf_sb_put(i915,
1748 BIT(VLV_IOSF_SB_PUNIT) |
1749 BIT(VLV_IOSF_SB_NC) |
1750 BIT(VLV_IOSF_SB_CCK));
1751
1752 drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
1753 rps->rp1_freq | rps->min_freq) & 1,
1754 "Odd GPU freq values\n");
1755 }
1756
vlv_c0_read(struct intel_uncore * uncore,struct intel_rps_ei * ei)1757 static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
1758 {
1759 ei->ktime = ktime_get_raw();
1760 ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
1761 ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
1762 }
1763
vlv_wa_c0_ei(struct intel_rps * rps,u32 pm_iir)1764 static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
1765 {
1766 struct intel_uncore *uncore = rps_to_uncore(rps);
1767 const struct intel_rps_ei *prev = &rps->ei;
1768 struct intel_rps_ei now;
1769 u32 events = 0;
1770
1771 if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1772 return 0;
1773
1774 vlv_c0_read(uncore, &now);
1775
1776 if (prev->ktime) {
1777 u64 time, c0;
1778 u32 render, media;
1779
1780 time = ktime_us_delta(now.ktime, prev->ktime);
1781
1782 time *= rps_to_i915(rps)->czclk_freq;
1783
1784 /* Workload can be split between render + media,
1785 * e.g. SwapBuffers being blitted in X after being rendered in
1786 * mesa. To account for this we need to combine both engines
1787 * into our activity counter.
1788 */
1789 render = now.render_c0 - prev->render_c0;
1790 media = now.media_c0 - prev->media_c0;
1791 c0 = max(render, media);
1792 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1793
1794 if (c0 > time * rps->power.up_threshold)
1795 events = GEN6_PM_RP_UP_THRESHOLD;
1796 else if (c0 < time * rps->power.down_threshold)
1797 events = GEN6_PM_RP_DOWN_THRESHOLD;
1798 }
1799
1800 rps->ei = now;
1801 return events;
1802 }
1803
rps_work(struct work_struct * work)1804 static void rps_work(struct work_struct *work)
1805 {
1806 struct intel_rps *rps = container_of(work, typeof(*rps), work);
1807 struct intel_gt *gt = rps_to_gt(rps);
1808 struct drm_i915_private *i915 = rps_to_i915(rps);
1809 bool client_boost = false;
1810 int new_freq, adj, min, max;
1811 u32 pm_iir = 0;
1812
1813 spin_lock_irq(gt->irq_lock);
1814 pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
1815 client_boost = atomic_read(&rps->num_waiters);
1816 spin_unlock_irq(gt->irq_lock);
1817
1818 /* Make sure we didn't queue anything we're not going to process. */
1819 if (!pm_iir && !client_boost)
1820 goto out;
1821
1822 mutex_lock(&rps->lock);
1823 if (!intel_rps_is_active(rps)) {
1824 mutex_unlock(&rps->lock);
1825 return;
1826 }
1827
1828 pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
1829
1830 adj = rps->last_adj;
1831 new_freq = rps->cur_freq;
1832 min = rps->min_freq_softlimit;
1833 max = rps->max_freq_softlimit;
1834 if (client_boost)
1835 max = rps->max_freq;
1836
1837 GT_TRACE(gt,
1838 "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
1839 pm_iir, str_yes_no(client_boost),
1840 adj, new_freq, min, max);
1841
1842 if (client_boost && new_freq < rps->boost_freq) {
1843 new_freq = rps->boost_freq;
1844 adj = 0;
1845 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1846 if (adj > 0)
1847 adj *= 2;
1848 else /* CHV needs even encode values */
1849 adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
1850
1851 if (new_freq >= rps->max_freq_softlimit)
1852 adj = 0;
1853 } else if (client_boost) {
1854 adj = 0;
1855 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1856 if (rps->cur_freq > rps->efficient_freq)
1857 new_freq = rps->efficient_freq;
1858 else if (rps->cur_freq > rps->min_freq_softlimit)
1859 new_freq = rps->min_freq_softlimit;
1860 adj = 0;
1861 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1862 if (adj < 0)
1863 adj *= 2;
1864 else /* CHV needs even encode values */
1865 adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
1866
1867 if (new_freq <= rps->min_freq_softlimit)
1868 adj = 0;
1869 } else { /* unknown event */
1870 adj = 0;
1871 }
1872
1873 /*
1874 * sysfs frequency limits may have snuck in while
1875 * servicing the interrupt
1876 */
1877 new_freq += adj;
1878 new_freq = clamp_t(int, new_freq, min, max);
1879
1880 if (intel_rps_set(rps, new_freq)) {
1881 drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
1882 adj = 0;
1883 }
1884 rps->last_adj = adj;
1885
1886 mutex_unlock(&rps->lock);
1887
1888 out:
1889 spin_lock_irq(gt->irq_lock);
1890 gen6_gt_pm_unmask_irq(gt, rps->pm_events);
1891 spin_unlock_irq(gt->irq_lock);
1892 }
1893
gen11_rps_irq_handler(struct intel_rps * rps,u32 pm_iir)1894 void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1895 {
1896 struct intel_gt *gt = rps_to_gt(rps);
1897 const u32 events = rps->pm_events & pm_iir;
1898
1899 lockdep_assert_held(gt->irq_lock);
1900
1901 if (unlikely(!events))
1902 return;
1903
1904 GT_TRACE(gt, "irq events:%x\n", events);
1905
1906 gen6_gt_pm_mask_irq(gt, events);
1907
1908 rps->pm_iir |= events;
1909 queue_work(gt->i915->unordered_wq, &rps->work);
1910 }
1911
gen6_rps_irq_handler(struct intel_rps * rps,u32 pm_iir)1912 void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1913 {
1914 struct intel_gt *gt = rps_to_gt(rps);
1915 u32 events;
1916
1917 events = pm_iir & rps->pm_events;
1918 if (events) {
1919 spin_lock(gt->irq_lock);
1920
1921 GT_TRACE(gt, "irq events:%x\n", events);
1922
1923 gen6_gt_pm_mask_irq(gt, events);
1924 rps->pm_iir |= events;
1925
1926 queue_work(gt->i915->unordered_wq, &rps->work);
1927 spin_unlock(gt->irq_lock);
1928 }
1929
1930 if (GRAPHICS_VER(gt->i915) >= 8)
1931 return;
1932
1933 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1934 intel_engine_cs_irq(gt->engine[VECS0], pm_iir >> 10);
1935
1936 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1937 drm_dbg(&rps_to_i915(rps)->drm,
1938 "Command parser error, pm_iir 0x%08x\n", pm_iir);
1939 }
1940
gen5_rps_irq_handler(struct intel_rps * rps)1941 void gen5_rps_irq_handler(struct intel_rps *rps)
1942 {
1943 struct intel_uncore *uncore = rps_to_uncore(rps);
1944 u32 busy_up, busy_down, max_avg, min_avg;
1945 u8 new_freq;
1946
1947 spin_lock(&mchdev_lock);
1948
1949 intel_uncore_write16(uncore,
1950 MEMINTRSTS,
1951 intel_uncore_read(uncore, MEMINTRSTS));
1952
1953 intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1954 busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1955 busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1956 max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1957 min_avg = intel_uncore_read(uncore, RCBMINAVG);
1958
1959 /* Handle RCS change request from hw */
1960 new_freq = rps->cur_freq;
1961 if (busy_up > max_avg)
1962 new_freq++;
1963 else if (busy_down < min_avg)
1964 new_freq--;
1965 new_freq = clamp(new_freq,
1966 rps->min_freq_softlimit,
1967 rps->max_freq_softlimit);
1968
1969 if (new_freq != rps->cur_freq && !__gen5_rps_set(rps, new_freq))
1970 rps->cur_freq = new_freq;
1971
1972 spin_unlock(&mchdev_lock);
1973 }
1974
intel_rps_init_early(struct intel_rps * rps)1975 void intel_rps_init_early(struct intel_rps *rps)
1976 {
1977 mutex_init(&rps->lock);
1978 mutex_init(&rps->power.mutex);
1979
1980 INIT_WORK(&rps->work, rps_work);
1981 timer_setup(&rps->timer, rps_timer, 0);
1982
1983 atomic_set(&rps->num_waiters, 0);
1984 }
1985
intel_rps_init(struct intel_rps * rps)1986 void intel_rps_init(struct intel_rps *rps)
1987 {
1988 struct drm_i915_private *i915 = rps_to_i915(rps);
1989
1990 if (rps_uses_slpc(rps))
1991 return;
1992
1993 if (IS_CHERRYVIEW(i915))
1994 chv_rps_init(rps);
1995 else if (IS_VALLEYVIEW(i915))
1996 vlv_rps_init(rps);
1997 else if (GRAPHICS_VER(i915) >= 6)
1998 gen6_rps_init(rps);
1999 else if (IS_IRONLAKE_M(i915))
2000 gen5_rps_init(rps);
2001
2002 /* Derive initial user preferences/limits from the hardware limits */
2003 rps->max_freq_softlimit = rps->max_freq;
2004 rps_to_gt(rps)->defaults.max_freq = rps->max_freq_softlimit;
2005 rps->min_freq_softlimit = rps->min_freq;
2006 rps_to_gt(rps)->defaults.min_freq = rps->min_freq_softlimit;
2007
2008 /* After setting max-softlimit, find the overclock max freq */
2009 if (GRAPHICS_VER(i915) == 6 || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
2010 u32 params = 0;
2011
2012 snb_pcode_read(rps_to_gt(rps)->uncore, GEN6_READ_OC_PARAMS, ¶ms, NULL);
2013 if (params & BIT(31)) { /* OC supported */
2014 drm_dbg(&i915->drm,
2015 "Overclocking supported, max: %dMHz, overclock: %dMHz\n",
2016 (rps->max_freq & 0xff) * 50,
2017 (params & 0xff) * 50);
2018 rps->max_freq = params & 0xff;
2019 }
2020 }
2021
2022 /* Set default thresholds in % */
2023 rps->power.up_threshold = 95;
2024 rps_to_gt(rps)->defaults.rps_up_threshold = rps->power.up_threshold;
2025 rps->power.down_threshold = 85;
2026 rps_to_gt(rps)->defaults.rps_down_threshold = rps->power.down_threshold;
2027
2028 /* Finally allow us to boost to max by default */
2029 rps->boost_freq = rps->max_freq;
2030 rps->idle_freq = rps->min_freq;
2031
2032 /* Start in the middle, from here we will autotune based on workload */
2033 rps->cur_freq = rps->efficient_freq;
2034
2035 rps->pm_intrmsk_mbz = 0;
2036
2037 /*
2038 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
2039 * if GEN6_PM_UP_EI_EXPIRED is masked.
2040 *
2041 * TODO: verify if this can be reproduced on VLV,CHV.
2042 */
2043 if (GRAPHICS_VER(i915) <= 7)
2044 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
2045
2046 if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) < 11)
2047 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
2048
2049 /* GuC needs ARAT expired interrupt unmasked */
2050 if (intel_uc_uses_guc_submission(&rps_to_gt(rps)->uc))
2051 rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
2052 }
2053
intel_rps_sanitize(struct intel_rps * rps)2054 void intel_rps_sanitize(struct intel_rps *rps)
2055 {
2056 if (rps_uses_slpc(rps))
2057 return;
2058
2059 if (GRAPHICS_VER(rps_to_i915(rps)) >= 6)
2060 rps_disable_interrupts(rps);
2061 }
2062
intel_rps_read_rpstat(struct intel_rps * rps)2063 u32 intel_rps_read_rpstat(struct intel_rps *rps)
2064 {
2065 struct drm_i915_private *i915 = rps_to_i915(rps);
2066 i915_reg_t rpstat;
2067
2068 rpstat = (GRAPHICS_VER(i915) >= 12) ? GEN12_RPSTAT1 : GEN6_RPSTAT1;
2069
2070 return intel_uncore_read(rps_to_gt(rps)->uncore, rpstat);
2071 }
2072
intel_rps_get_cagf(struct intel_rps * rps,u32 rpstat)2073 static u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
2074 {
2075 struct drm_i915_private *i915 = rps_to_i915(rps);
2076 u32 cagf;
2077
2078 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
2079 cagf = REG_FIELD_GET(MTL_CAGF_MASK, rpstat);
2080 else if (GRAPHICS_VER(i915) >= 12)
2081 cagf = REG_FIELD_GET(GEN12_CAGF_MASK, rpstat);
2082 else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
2083 cagf = REG_FIELD_GET(RPE_MASK, rpstat);
2084 else if (GRAPHICS_VER(i915) >= 9)
2085 cagf = REG_FIELD_GET(GEN9_CAGF_MASK, rpstat);
2086 else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
2087 cagf = REG_FIELD_GET(HSW_CAGF_MASK, rpstat);
2088 else if (GRAPHICS_VER(i915) >= 6)
2089 cagf = REG_FIELD_GET(GEN6_CAGF_MASK, rpstat);
2090 else
2091 cagf = gen5_invert_freq(rps, REG_FIELD_GET(MEMSTAT_PSTATE_MASK, rpstat));
2092
2093 return cagf;
2094 }
2095
__read_cagf(struct intel_rps * rps,bool take_fw)2096 static u32 __read_cagf(struct intel_rps *rps, bool take_fw)
2097 {
2098 struct drm_i915_private *i915 = rps_to_i915(rps);
2099 struct intel_uncore *uncore = rps_to_uncore(rps);
2100 i915_reg_t r = INVALID_MMIO_REG;
2101 u32 freq;
2102
2103 /*
2104 * For Gen12+ reading freq from HW does not need a forcewake and
2105 * registers will return 0 freq when GT is in RC6
2106 */
2107 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) {
2108 r = MTL_MIRROR_TARGET_WP1;
2109 } else if (GRAPHICS_VER(i915) >= 12) {
2110 r = GEN12_RPSTAT1;
2111 } else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
2112 vlv_punit_get(i915);
2113 freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
2114 vlv_punit_put(i915);
2115 } else if (GRAPHICS_VER(i915) >= 6) {
2116 r = GEN6_RPSTAT1;
2117 } else {
2118 r = MEMSTAT_ILK;
2119 }
2120
2121 if (i915_mmio_reg_valid(r))
2122 freq = take_fw ? intel_uncore_read(uncore, r) : intel_uncore_read_fw(uncore, r);
2123
2124 return intel_rps_get_cagf(rps, freq);
2125 }
2126
read_cagf(struct intel_rps * rps)2127 static u32 read_cagf(struct intel_rps *rps)
2128 {
2129 return __read_cagf(rps, true);
2130 }
2131
intel_rps_read_actual_frequency(struct intel_rps * rps)2132 u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
2133 {
2134 struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2135 intel_wakeref_t wakeref;
2136 u32 freq = 0;
2137
2138 with_intel_runtime_pm_if_in_use(rpm, wakeref)
2139 freq = intel_gpu_freq(rps, read_cagf(rps));
2140
2141 return freq;
2142 }
2143
intel_rps_read_actual_frequency_fw(struct intel_rps * rps)2144 u32 intel_rps_read_actual_frequency_fw(struct intel_rps *rps)
2145 {
2146 return intel_gpu_freq(rps, __read_cagf(rps, false));
2147 }
2148
intel_rps_read_punit_req(struct intel_rps * rps)2149 static u32 intel_rps_read_punit_req(struct intel_rps *rps)
2150 {
2151 struct intel_uncore *uncore = rps_to_uncore(rps);
2152 struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2153 intel_wakeref_t wakeref;
2154 u32 freq = 0;
2155
2156 with_intel_runtime_pm_if_in_use(rpm, wakeref)
2157 freq = intel_uncore_read(uncore, GEN6_RPNSWREQ);
2158
2159 return freq;
2160 }
2161
intel_rps_get_req(u32 pureq)2162 static u32 intel_rps_get_req(u32 pureq)
2163 {
2164 u32 req = pureq >> GEN9_SW_REQ_UNSLICE_RATIO_SHIFT;
2165
2166 return req;
2167 }
2168
intel_rps_read_punit_req_frequency(struct intel_rps * rps)2169 u32 intel_rps_read_punit_req_frequency(struct intel_rps *rps)
2170 {
2171 u32 freq = intel_rps_get_req(intel_rps_read_punit_req(rps));
2172
2173 return intel_gpu_freq(rps, freq);
2174 }
2175
intel_rps_get_requested_frequency(struct intel_rps * rps)2176 u32 intel_rps_get_requested_frequency(struct intel_rps *rps)
2177 {
2178 if (rps_uses_slpc(rps))
2179 return intel_rps_read_punit_req_frequency(rps);
2180 else
2181 return intel_gpu_freq(rps, rps->cur_freq);
2182 }
2183
intel_rps_get_max_frequency(struct intel_rps * rps)2184 u32 intel_rps_get_max_frequency(struct intel_rps *rps)
2185 {
2186 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2187
2188 if (rps_uses_slpc(rps))
2189 return slpc->max_freq_softlimit;
2190 else
2191 return intel_gpu_freq(rps, rps->max_freq_softlimit);
2192 }
2193
2194 /**
2195 * intel_rps_get_max_raw_freq - returns the max frequency in some raw format.
2196 * @rps: the intel_rps structure
2197 *
2198 * Returns the max frequency in a raw format. In newer platforms raw is in
2199 * units of 50 MHz.
2200 */
intel_rps_get_max_raw_freq(struct intel_rps * rps)2201 u32 intel_rps_get_max_raw_freq(struct intel_rps *rps)
2202 {
2203 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2204 u32 freq;
2205
2206 if (rps_uses_slpc(rps)) {
2207 return DIV_ROUND_CLOSEST(slpc->rp0_freq,
2208 GT_FREQUENCY_MULTIPLIER);
2209 } else {
2210 freq = rps->max_freq;
2211 if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
2212 /* Convert GT frequency to 50 MHz units */
2213 freq /= GEN9_FREQ_SCALER;
2214 }
2215 return freq;
2216 }
2217 }
2218
intel_rps_get_rp0_frequency(struct intel_rps * rps)2219 u32 intel_rps_get_rp0_frequency(struct intel_rps *rps)
2220 {
2221 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2222
2223 if (rps_uses_slpc(rps))
2224 return slpc->rp0_freq;
2225 else
2226 return intel_gpu_freq(rps, rps->rp0_freq);
2227 }
2228
intel_rps_get_rp1_frequency(struct intel_rps * rps)2229 u32 intel_rps_get_rp1_frequency(struct intel_rps *rps)
2230 {
2231 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2232
2233 if (rps_uses_slpc(rps))
2234 return slpc->rp1_freq;
2235 else
2236 return intel_gpu_freq(rps, rps->rp1_freq);
2237 }
2238
intel_rps_get_rpn_frequency(struct intel_rps * rps)2239 u32 intel_rps_get_rpn_frequency(struct intel_rps *rps)
2240 {
2241 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2242
2243 if (rps_uses_slpc(rps))
2244 return slpc->min_freq;
2245 else
2246 return intel_gpu_freq(rps, rps->min_freq);
2247 }
2248
rps_frequency_dump(struct intel_rps * rps,struct drm_printer * p)2249 static void rps_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2250 {
2251 struct intel_gt *gt = rps_to_gt(rps);
2252 struct drm_i915_private *i915 = gt->i915;
2253 struct intel_uncore *uncore = gt->uncore;
2254 struct intel_rps_freq_caps caps;
2255 u32 rp_state_limits;
2256 u32 gt_perf_status;
2257 u32 rpmodectl, rpinclimit, rpdeclimit;
2258 u32 rpstat, cagf, reqf;
2259 u32 rpcurupei, rpcurup, rpprevup;
2260 u32 rpcurdownei, rpcurdown, rpprevdown;
2261 u32 rpupei, rpupt, rpdownei, rpdownt;
2262 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
2263
2264 rp_state_limits = intel_uncore_read(uncore, GEN6_RP_STATE_LIMITS);
2265 gen6_rps_get_freq_caps(rps, &caps);
2266 if (IS_GEN9_LP(i915))
2267 gt_perf_status = intel_uncore_read(uncore, BXT_GT_PERF_STATUS);
2268 else
2269 gt_perf_status = intel_uncore_read(uncore, GEN6_GT_PERF_STATUS);
2270
2271 /* RPSTAT1 is in the GT power well */
2272 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
2273
2274 reqf = intel_uncore_read(uncore, GEN6_RPNSWREQ);
2275 if (GRAPHICS_VER(i915) >= 9) {
2276 reqf >>= 23;
2277 } else {
2278 reqf &= ~GEN6_TURBO_DISABLE;
2279 if (IS_HASWELL(i915) || IS_BROADWELL(i915))
2280 reqf >>= 24;
2281 else
2282 reqf >>= 25;
2283 }
2284 reqf = intel_gpu_freq(rps, reqf);
2285
2286 rpmodectl = intel_uncore_read(uncore, GEN6_RP_CONTROL);
2287 rpinclimit = intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD);
2288 rpdeclimit = intel_uncore_read(uncore, GEN6_RP_DOWN_THRESHOLD);
2289
2290 rpstat = intel_rps_read_rpstat(rps);
2291 rpcurupei = intel_uncore_read(uncore, GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
2292 rpcurup = intel_uncore_read(uncore, GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
2293 rpprevup = intel_uncore_read(uncore, GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
2294 rpcurdownei = intel_uncore_read(uncore, GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
2295 rpcurdown = intel_uncore_read(uncore, GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
2296 rpprevdown = intel_uncore_read(uncore, GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
2297
2298 rpupei = intel_uncore_read(uncore, GEN6_RP_UP_EI);
2299 rpupt = intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD);
2300
2301 rpdownei = intel_uncore_read(uncore, GEN6_RP_DOWN_EI);
2302 rpdownt = intel_uncore_read(uncore, GEN6_RP_DOWN_THRESHOLD);
2303
2304 cagf = intel_rps_read_actual_frequency(rps);
2305
2306 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
2307
2308 if (GRAPHICS_VER(i915) >= 11) {
2309 pm_ier = intel_uncore_read(uncore, GEN11_GPM_WGBOXPERF_INTR_ENABLE);
2310 pm_imr = intel_uncore_read(uncore, GEN11_GPM_WGBOXPERF_INTR_MASK);
2311 /*
2312 * The equivalent to the PM ISR & IIR cannot be read
2313 * without affecting the current state of the system
2314 */
2315 pm_isr = 0;
2316 pm_iir = 0;
2317 } else if (GRAPHICS_VER(i915) >= 8) {
2318 pm_ier = intel_uncore_read(uncore, GEN8_GT_IER(2));
2319 pm_imr = intel_uncore_read(uncore, GEN8_GT_IMR(2));
2320 pm_isr = intel_uncore_read(uncore, GEN8_GT_ISR(2));
2321 pm_iir = intel_uncore_read(uncore, GEN8_GT_IIR(2));
2322 } else {
2323 pm_ier = intel_uncore_read(uncore, GEN6_PMIER);
2324 pm_imr = intel_uncore_read(uncore, GEN6_PMIMR);
2325 pm_isr = intel_uncore_read(uncore, GEN6_PMISR);
2326 pm_iir = intel_uncore_read(uncore, GEN6_PMIIR);
2327 }
2328 pm_mask = intel_uncore_read(uncore, GEN6_PMINTRMSK);
2329
2330 drm_printf(p, "Video Turbo Mode: %s\n",
2331 str_yes_no(rpmodectl & GEN6_RP_MEDIA_TURBO));
2332 drm_printf(p, "HW control enabled: %s\n",
2333 str_yes_no(rpmodectl & GEN6_RP_ENABLE));
2334 drm_printf(p, "SW control enabled: %s\n",
2335 str_yes_no((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) == GEN6_RP_MEDIA_SW_MODE));
2336
2337 drm_printf(p, "PM IER=0x%08x IMR=0x%08x, MASK=0x%08x\n",
2338 pm_ier, pm_imr, pm_mask);
2339 if (GRAPHICS_VER(i915) <= 10)
2340 drm_printf(p, "PM ISR=0x%08x IIR=0x%08x\n",
2341 pm_isr, pm_iir);
2342 drm_printf(p, "pm_intrmsk_mbz: 0x%08x\n",
2343 rps->pm_intrmsk_mbz);
2344 drm_printf(p, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
2345 drm_printf(p, "Render p-state ratio: %d\n",
2346 (gt_perf_status & (GRAPHICS_VER(i915) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
2347 drm_printf(p, "Render p-state VID: %d\n",
2348 gt_perf_status & 0xff);
2349 drm_printf(p, "Render p-state limit: %d\n",
2350 rp_state_limits & 0xff);
2351 drm_printf(p, "RPSTAT1: 0x%08x\n", rpstat);
2352 drm_printf(p, "RPMODECTL: 0x%08x\n", rpmodectl);
2353 drm_printf(p, "RPINCLIMIT: 0x%08x\n", rpinclimit);
2354 drm_printf(p, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
2355 drm_printf(p, "RPNSWREQ: %dMHz\n", reqf);
2356 drm_printf(p, "CAGF: %dMHz\n", cagf);
2357 drm_printf(p, "RP CUR UP EI: %d (%lldns)\n",
2358 rpcurupei,
2359 intel_gt_pm_interval_to_ns(gt, rpcurupei));
2360 drm_printf(p, "RP CUR UP: %d (%lldns)\n",
2361 rpcurup, intel_gt_pm_interval_to_ns(gt, rpcurup));
2362 drm_printf(p, "RP PREV UP: %d (%lldns)\n",
2363 rpprevup, intel_gt_pm_interval_to_ns(gt, rpprevup));
2364 drm_printf(p, "Up threshold: %d%%\n",
2365 rps->power.up_threshold);
2366 drm_printf(p, "RP UP EI: %d (%lldns)\n",
2367 rpupei, intel_gt_pm_interval_to_ns(gt, rpupei));
2368 drm_printf(p, "RP UP THRESHOLD: %d (%lldns)\n",
2369 rpupt, intel_gt_pm_interval_to_ns(gt, rpupt));
2370
2371 drm_printf(p, "RP CUR DOWN EI: %d (%lldns)\n",
2372 rpcurdownei,
2373 intel_gt_pm_interval_to_ns(gt, rpcurdownei));
2374 drm_printf(p, "RP CUR DOWN: %d (%lldns)\n",
2375 rpcurdown,
2376 intel_gt_pm_interval_to_ns(gt, rpcurdown));
2377 drm_printf(p, "RP PREV DOWN: %d (%lldns)\n",
2378 rpprevdown,
2379 intel_gt_pm_interval_to_ns(gt, rpprevdown));
2380 drm_printf(p, "Down threshold: %d%%\n",
2381 rps->power.down_threshold);
2382 drm_printf(p, "RP DOWN EI: %d (%lldns)\n",
2383 rpdownei, intel_gt_pm_interval_to_ns(gt, rpdownei));
2384 drm_printf(p, "RP DOWN THRESHOLD: %d (%lldns)\n",
2385 rpdownt, intel_gt_pm_interval_to_ns(gt, rpdownt));
2386
2387 drm_printf(p, "Lowest (RPN) frequency: %dMHz\n",
2388 intel_gpu_freq(rps, caps.min_freq));
2389 drm_printf(p, "Nominal (RP1) frequency: %dMHz\n",
2390 intel_gpu_freq(rps, caps.rp1_freq));
2391 drm_printf(p, "Max non-overclocked (RP0) frequency: %dMHz\n",
2392 intel_gpu_freq(rps, caps.rp0_freq));
2393 drm_printf(p, "Max overclocked frequency: %dMHz\n",
2394 intel_gpu_freq(rps, rps->max_freq));
2395
2396 drm_printf(p, "Current freq: %d MHz\n",
2397 intel_gpu_freq(rps, rps->cur_freq));
2398 drm_printf(p, "Actual freq: %d MHz\n", cagf);
2399 drm_printf(p, "Idle freq: %d MHz\n",
2400 intel_gpu_freq(rps, rps->idle_freq));
2401 drm_printf(p, "Min freq: %d MHz\n",
2402 intel_gpu_freq(rps, rps->min_freq));
2403 drm_printf(p, "Boost freq: %d MHz\n",
2404 intel_gpu_freq(rps, rps->boost_freq));
2405 drm_printf(p, "Max freq: %d MHz\n",
2406 intel_gpu_freq(rps, rps->max_freq));
2407 drm_printf(p,
2408 "efficient (RPe) frequency: %d MHz\n",
2409 intel_gpu_freq(rps, rps->efficient_freq));
2410 }
2411
slpc_frequency_dump(struct intel_rps * rps,struct drm_printer * p)2412 static void slpc_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2413 {
2414 struct intel_gt *gt = rps_to_gt(rps);
2415 struct intel_uncore *uncore = gt->uncore;
2416 struct intel_rps_freq_caps caps;
2417 u32 pm_mask;
2418
2419 gen6_rps_get_freq_caps(rps, &caps);
2420 pm_mask = intel_uncore_read(uncore, GEN6_PMINTRMSK);
2421
2422 drm_printf(p, "PM MASK=0x%08x\n", pm_mask);
2423 drm_printf(p, "pm_intrmsk_mbz: 0x%08x\n",
2424 rps->pm_intrmsk_mbz);
2425 drm_printf(p, "RPSTAT1: 0x%08x\n", intel_rps_read_rpstat(rps));
2426 drm_printf(p, "RPNSWREQ: %dMHz\n", intel_rps_get_requested_frequency(rps));
2427 drm_printf(p, "Lowest (RPN) frequency: %dMHz\n",
2428 intel_gpu_freq(rps, caps.min_freq));
2429 drm_printf(p, "Nominal (RP1) frequency: %dMHz\n",
2430 intel_gpu_freq(rps, caps.rp1_freq));
2431 drm_printf(p, "Max non-overclocked (RP0) frequency: %dMHz\n",
2432 intel_gpu_freq(rps, caps.rp0_freq));
2433 drm_printf(p, "Current freq: %d MHz\n",
2434 intel_rps_get_requested_frequency(rps));
2435 drm_printf(p, "Actual freq: %d MHz\n",
2436 intel_rps_read_actual_frequency(rps));
2437 drm_printf(p, "Min freq: %d MHz\n",
2438 intel_rps_get_min_frequency(rps));
2439 drm_printf(p, "Boost freq: %d MHz\n",
2440 intel_rps_get_boost_frequency(rps));
2441 drm_printf(p, "Max freq: %d MHz\n",
2442 intel_rps_get_max_frequency(rps));
2443 drm_printf(p,
2444 "efficient (RPe) frequency: %d MHz\n",
2445 intel_gpu_freq(rps, caps.rp1_freq));
2446 }
2447
gen6_rps_frequency_dump(struct intel_rps * rps,struct drm_printer * p)2448 void gen6_rps_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2449 {
2450 if (rps_uses_slpc(rps))
2451 return slpc_frequency_dump(rps, p);
2452 else
2453 return rps_frequency_dump(rps, p);
2454 }
2455
set_max_freq(struct intel_rps * rps,u32 val)2456 static int set_max_freq(struct intel_rps *rps, u32 val)
2457 {
2458 struct drm_i915_private *i915 = rps_to_i915(rps);
2459 int ret = 0;
2460
2461 mutex_lock(&rps->lock);
2462
2463 val = intel_freq_opcode(rps, val);
2464 if (val < rps->min_freq ||
2465 val > rps->max_freq ||
2466 val < rps->min_freq_softlimit) {
2467 ret = -EINVAL;
2468 goto unlock;
2469 }
2470
2471 if (val > rps->rp0_freq)
2472 drm_dbg(&i915->drm, "User requested overclocking to %d\n",
2473 intel_gpu_freq(rps, val));
2474
2475 rps->max_freq_softlimit = val;
2476
2477 val = clamp_t(int, rps->cur_freq,
2478 rps->min_freq_softlimit,
2479 rps->max_freq_softlimit);
2480
2481 /*
2482 * We still need *_set_rps to process the new max_delay and
2483 * update the interrupt limits and PMINTRMSK even though
2484 * frequency request may be unchanged.
2485 */
2486 intel_rps_set(rps, val);
2487
2488 unlock:
2489 mutex_unlock(&rps->lock);
2490
2491 return ret;
2492 }
2493
intel_rps_set_max_frequency(struct intel_rps * rps,u32 val)2494 int intel_rps_set_max_frequency(struct intel_rps *rps, u32 val)
2495 {
2496 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2497
2498 if (rps_uses_slpc(rps))
2499 return intel_guc_slpc_set_max_freq(slpc, val);
2500 else
2501 return set_max_freq(rps, val);
2502 }
2503
intel_rps_get_min_frequency(struct intel_rps * rps)2504 u32 intel_rps_get_min_frequency(struct intel_rps *rps)
2505 {
2506 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2507
2508 if (rps_uses_slpc(rps))
2509 return slpc->min_freq_softlimit;
2510 else
2511 return intel_gpu_freq(rps, rps->min_freq_softlimit);
2512 }
2513
2514 /**
2515 * intel_rps_get_min_raw_freq - returns the min frequency in some raw format.
2516 * @rps: the intel_rps structure
2517 *
2518 * Returns the min frequency in a raw format. In newer platforms raw is in
2519 * units of 50 MHz.
2520 */
intel_rps_get_min_raw_freq(struct intel_rps * rps)2521 u32 intel_rps_get_min_raw_freq(struct intel_rps *rps)
2522 {
2523 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2524 u32 freq;
2525
2526 if (rps_uses_slpc(rps)) {
2527 return DIV_ROUND_CLOSEST(slpc->min_freq,
2528 GT_FREQUENCY_MULTIPLIER);
2529 } else {
2530 freq = rps->min_freq;
2531 if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
2532 /* Convert GT frequency to 50 MHz units */
2533 freq /= GEN9_FREQ_SCALER;
2534 }
2535 return freq;
2536 }
2537 }
2538
set_min_freq(struct intel_rps * rps,u32 val)2539 static int set_min_freq(struct intel_rps *rps, u32 val)
2540 {
2541 int ret = 0;
2542
2543 mutex_lock(&rps->lock);
2544
2545 val = intel_freq_opcode(rps, val);
2546 if (val < rps->min_freq ||
2547 val > rps->max_freq ||
2548 val > rps->max_freq_softlimit) {
2549 ret = -EINVAL;
2550 goto unlock;
2551 }
2552
2553 rps->min_freq_softlimit = val;
2554
2555 val = clamp_t(int, rps->cur_freq,
2556 rps->min_freq_softlimit,
2557 rps->max_freq_softlimit);
2558
2559 /*
2560 * We still need *_set_rps to process the new min_delay and
2561 * update the interrupt limits and PMINTRMSK even though
2562 * frequency request may be unchanged.
2563 */
2564 intel_rps_set(rps, val);
2565
2566 unlock:
2567 mutex_unlock(&rps->lock);
2568
2569 return ret;
2570 }
2571
intel_rps_set_min_frequency(struct intel_rps * rps,u32 val)2572 int intel_rps_set_min_frequency(struct intel_rps *rps, u32 val)
2573 {
2574 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2575
2576 if (rps_uses_slpc(rps))
2577 return intel_guc_slpc_set_min_freq(slpc, val);
2578 else
2579 return set_min_freq(rps, val);
2580 }
2581
intel_rps_get_up_threshold(struct intel_rps * rps)2582 u8 intel_rps_get_up_threshold(struct intel_rps *rps)
2583 {
2584 return rps->power.up_threshold;
2585 }
2586
rps_set_threshold(struct intel_rps * rps,u8 * threshold,u8 val)2587 static int rps_set_threshold(struct intel_rps *rps, u8 *threshold, u8 val)
2588 {
2589 int ret;
2590
2591 if (val > 100)
2592 return -EINVAL;
2593
2594 ret = mutex_lock_interruptible(&rps->lock);
2595 if (ret)
2596 return ret;
2597
2598 if (*threshold == val)
2599 goto out_unlock;
2600
2601 *threshold = val;
2602
2603 /* Force reset. */
2604 rps->last_freq = -1;
2605 mutex_lock(&rps->power.mutex);
2606 rps->power.mode = -1;
2607 mutex_unlock(&rps->power.mutex);
2608
2609 intel_rps_set(rps, clamp(rps->cur_freq,
2610 rps->min_freq_softlimit,
2611 rps->max_freq_softlimit));
2612
2613 out_unlock:
2614 mutex_unlock(&rps->lock);
2615
2616 return ret;
2617 }
2618
intel_rps_set_up_threshold(struct intel_rps * rps,u8 threshold)2619 int intel_rps_set_up_threshold(struct intel_rps *rps, u8 threshold)
2620 {
2621 return rps_set_threshold(rps, &rps->power.up_threshold, threshold);
2622 }
2623
intel_rps_get_down_threshold(struct intel_rps * rps)2624 u8 intel_rps_get_down_threshold(struct intel_rps *rps)
2625 {
2626 return rps->power.down_threshold;
2627 }
2628
intel_rps_set_down_threshold(struct intel_rps * rps,u8 threshold)2629 int intel_rps_set_down_threshold(struct intel_rps *rps, u8 threshold)
2630 {
2631 return rps_set_threshold(rps, &rps->power.down_threshold, threshold);
2632 }
2633
intel_rps_set_manual(struct intel_rps * rps,bool enable)2634 static void intel_rps_set_manual(struct intel_rps *rps, bool enable)
2635 {
2636 struct intel_uncore *uncore = rps_to_uncore(rps);
2637 u32 state = enable ? GEN9_RPSWCTL_ENABLE : GEN9_RPSWCTL_DISABLE;
2638
2639 /* Allow punit to process software requests */
2640 intel_uncore_write(uncore, GEN6_RP_CONTROL, state);
2641 }
2642
intel_rps_raise_unslice(struct intel_rps * rps)2643 void intel_rps_raise_unslice(struct intel_rps *rps)
2644 {
2645 struct intel_uncore *uncore = rps_to_uncore(rps);
2646
2647 mutex_lock(&rps->lock);
2648
2649 if (rps_uses_slpc(rps)) {
2650 /* RP limits have not been initialized yet for SLPC path */
2651 struct intel_rps_freq_caps caps;
2652
2653 gen6_rps_get_freq_caps(rps, &caps);
2654
2655 intel_rps_set_manual(rps, true);
2656 intel_uncore_write(uncore, GEN6_RPNSWREQ,
2657 ((caps.rp0_freq <<
2658 GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2659 GEN9_IGNORE_SLICE_RATIO));
2660 intel_rps_set_manual(rps, false);
2661 } else {
2662 intel_rps_set(rps, rps->rp0_freq);
2663 }
2664
2665 mutex_unlock(&rps->lock);
2666 }
2667
intel_rps_lower_unslice(struct intel_rps * rps)2668 void intel_rps_lower_unslice(struct intel_rps *rps)
2669 {
2670 struct intel_uncore *uncore = rps_to_uncore(rps);
2671
2672 mutex_lock(&rps->lock);
2673
2674 if (rps_uses_slpc(rps)) {
2675 /* RP limits have not been initialized yet for SLPC path */
2676 struct intel_rps_freq_caps caps;
2677
2678 gen6_rps_get_freq_caps(rps, &caps);
2679
2680 intel_rps_set_manual(rps, true);
2681 intel_uncore_write(uncore, GEN6_RPNSWREQ,
2682 ((caps.min_freq <<
2683 GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2684 GEN9_IGNORE_SLICE_RATIO));
2685 intel_rps_set_manual(rps, false);
2686 } else {
2687 intel_rps_set(rps, rps->min_freq);
2688 }
2689
2690 mutex_unlock(&rps->lock);
2691 }
2692
rps_read_mmio(struct intel_rps * rps,i915_reg_t reg32)2693 static u32 rps_read_mmio(struct intel_rps *rps, i915_reg_t reg32)
2694 {
2695 struct intel_gt *gt = rps_to_gt(rps);
2696 intel_wakeref_t wakeref;
2697 u32 val;
2698
2699 with_intel_runtime_pm(gt->uncore->rpm, wakeref)
2700 val = intel_uncore_read(gt->uncore, reg32);
2701
2702 return val;
2703 }
2704
rps_read_mask_mmio(struct intel_rps * rps,i915_reg_t reg32,u32 mask)2705 bool rps_read_mask_mmio(struct intel_rps *rps,
2706 i915_reg_t reg32, u32 mask)
2707 {
2708 return rps_read_mmio(rps, reg32) & mask;
2709 }
2710
2711 /* External interface for intel_ips.ko */
2712
2713 static struct drm_i915_private __rcu *ips_mchdev;
2714
2715 /*
2716 * Tells the intel_ips driver that the i915 driver is now loaded, if
2717 * IPS got loaded first.
2718 *
2719 * This awkward dance is so that neither module has to depend on the
2720 * other in order for IPS to do the appropriate communication of
2721 * GPU turbo limits to i915.
2722 */
2723 static void
ips_ping_for_i915_load(void)2724 ips_ping_for_i915_load(void)
2725 {
2726 void (*link)(void);
2727
2728 link = symbol_get(ips_link_to_i915_driver);
2729 if (link) {
2730 link();
2731 symbol_put(ips_link_to_i915_driver);
2732 }
2733 }
2734
intel_rps_driver_register(struct intel_rps * rps)2735 void intel_rps_driver_register(struct intel_rps *rps)
2736 {
2737 struct intel_gt *gt = rps_to_gt(rps);
2738
2739 /*
2740 * We only register the i915 ips part with intel-ips once everything is
2741 * set up, to avoid intel-ips sneaking in and reading bogus values.
2742 */
2743 if (GRAPHICS_VER(gt->i915) == 5) {
2744 GEM_BUG_ON(ips_mchdev);
2745 rcu_assign_pointer(ips_mchdev, gt->i915);
2746 ips_ping_for_i915_load();
2747 }
2748 }
2749
intel_rps_driver_unregister(struct intel_rps * rps)2750 void intel_rps_driver_unregister(struct intel_rps *rps)
2751 {
2752 if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
2753 rcu_assign_pointer(ips_mchdev, NULL);
2754 }
2755
mchdev_get(void)2756 static struct drm_i915_private *mchdev_get(void)
2757 {
2758 struct drm_i915_private *i915;
2759
2760 rcu_read_lock();
2761 i915 = rcu_dereference(ips_mchdev);
2762 if (i915 && !kref_get_unless_zero(&i915->drm.ref))
2763 i915 = NULL;
2764 rcu_read_unlock();
2765
2766 return i915;
2767 }
2768
2769 /**
2770 * i915_read_mch_val - return value for IPS use
2771 *
2772 * Calculate and return a value for the IPS driver to use when deciding whether
2773 * we have thermal and power headroom to increase CPU or GPU power budget.
2774 */
i915_read_mch_val(void)2775 unsigned long i915_read_mch_val(void)
2776 {
2777 struct drm_i915_private *i915;
2778 unsigned long chipset_val = 0;
2779 unsigned long graphics_val = 0;
2780 intel_wakeref_t wakeref;
2781
2782 i915 = mchdev_get();
2783 if (!i915)
2784 return 0;
2785
2786 with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2787 struct intel_ips *ips = &to_gt(i915)->rps.ips;
2788
2789 spin_lock_irq(&mchdev_lock);
2790 chipset_val = __ips_chipset_val(ips);
2791 graphics_val = __ips_gfx_val(ips);
2792 spin_unlock_irq(&mchdev_lock);
2793 }
2794
2795 drm_dev_put(&i915->drm);
2796 return chipset_val + graphics_val;
2797 }
2798 EXPORT_SYMBOL_GPL(i915_read_mch_val);
2799
2800 /**
2801 * i915_gpu_raise - raise GPU frequency limit
2802 *
2803 * Raise the limit; IPS indicates we have thermal headroom.
2804 */
i915_gpu_raise(void)2805 bool i915_gpu_raise(void)
2806 {
2807 struct drm_i915_private *i915;
2808 struct intel_rps *rps;
2809
2810 i915 = mchdev_get();
2811 if (!i915)
2812 return false;
2813
2814 rps = &to_gt(i915)->rps;
2815
2816 spin_lock_irq(&mchdev_lock);
2817 if (rps->max_freq_softlimit < rps->max_freq)
2818 rps->max_freq_softlimit++;
2819 spin_unlock_irq(&mchdev_lock);
2820
2821 drm_dev_put(&i915->drm);
2822 return true;
2823 }
2824 EXPORT_SYMBOL_GPL(i915_gpu_raise);
2825
2826 /**
2827 * i915_gpu_lower - lower GPU frequency limit
2828 *
2829 * IPS indicates we're close to a thermal limit, so throttle back the GPU
2830 * frequency maximum.
2831 */
i915_gpu_lower(void)2832 bool i915_gpu_lower(void)
2833 {
2834 struct drm_i915_private *i915;
2835 struct intel_rps *rps;
2836
2837 i915 = mchdev_get();
2838 if (!i915)
2839 return false;
2840
2841 rps = &to_gt(i915)->rps;
2842
2843 spin_lock_irq(&mchdev_lock);
2844 if (rps->max_freq_softlimit > rps->min_freq)
2845 rps->max_freq_softlimit--;
2846 spin_unlock_irq(&mchdev_lock);
2847
2848 drm_dev_put(&i915->drm);
2849 return true;
2850 }
2851 EXPORT_SYMBOL_GPL(i915_gpu_lower);
2852
2853 /**
2854 * i915_gpu_busy - indicate GPU business to IPS
2855 *
2856 * Tell the IPS driver whether or not the GPU is busy.
2857 */
i915_gpu_busy(void)2858 bool i915_gpu_busy(void)
2859 {
2860 struct drm_i915_private *i915;
2861 bool ret;
2862
2863 i915 = mchdev_get();
2864 if (!i915)
2865 return false;
2866
2867 ret = to_gt(i915)->awake;
2868
2869 drm_dev_put(&i915->drm);
2870 return ret;
2871 }
2872 EXPORT_SYMBOL_GPL(i915_gpu_busy);
2873
2874 /**
2875 * i915_gpu_turbo_disable - disable graphics turbo
2876 *
2877 * Disable graphics turbo by resetting the max frequency and setting the
2878 * current frequency to the default.
2879 */
i915_gpu_turbo_disable(void)2880 bool i915_gpu_turbo_disable(void)
2881 {
2882 struct drm_i915_private *i915;
2883 struct intel_rps *rps;
2884 bool ret;
2885
2886 i915 = mchdev_get();
2887 if (!i915)
2888 return false;
2889
2890 rps = &to_gt(i915)->rps;
2891
2892 spin_lock_irq(&mchdev_lock);
2893 rps->max_freq_softlimit = rps->min_freq;
2894 ret = !__gen5_rps_set(&to_gt(i915)->rps, rps->min_freq);
2895 spin_unlock_irq(&mchdev_lock);
2896
2897 drm_dev_put(&i915->drm);
2898 return ret;
2899 }
2900 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
2901
2902 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2903 #include "selftest_rps.c"
2904 #include "selftest_slpc.c"
2905 #endif
2906