xref: /linux/drivers/net/ethernet/stmicro/stmmac/dwmac-intel.c (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2020, Intel Corporation
3  */
4 
5 #include <linux/clk-provider.h>
6 #include <linux/pci.h>
7 #include <linux/dmi.h>
8 #include <linux/platform_data/x86/intel_pmc_ipc.h>
9 #include "dwmac-intel.h"
10 #include "dwmac4.h"
11 #include "stmmac.h"
12 #include "stmmac_ptp.h"
13 
14 struct pmc_serdes_regs {
15 	u8 index;
16 	u32 val;
17 };
18 
19 struct pmc_serdes_reg_info {
20 	const struct pmc_serdes_regs *regs;
21 	u8 num_regs;
22 };
23 
24 struct intel_priv_data {
25 	int mdio_adhoc_addr;	/* mdio address for serdes & etc */
26 	unsigned long crossts_adj;
27 	bool is_pse;
28 	const int *tsn_lane_regs;
29 	int max_tsn_lane_regs;
30 	struct pmc_serdes_reg_info pid_1g;
31 	struct pmc_serdes_reg_info pid_2p5g;
32 };
33 
34 /* This struct is used to associate PCI Function of MAC controller on a board,
35  * discovered via DMI, with the address of PHY connected to the MAC. The
36  * negative value of the address means that MAC controller is not connected
37  * with PHY.
38  */
39 struct stmmac_pci_func_data {
40 	unsigned int func;
41 	int phy_addr;
42 };
43 
44 struct stmmac_pci_dmi_data {
45 	const struct stmmac_pci_func_data *func;
46 	size_t nfuncs;
47 };
48 
49 struct stmmac_pci_info {
50 	int (*setup)(struct pci_dev *pdev, struct plat_stmmacenet_data *plat);
51 };
52 
53 static const struct pmc_serdes_regs pid_modphy3_1g_regs[] = {
54 	{ PID_MODPHY3_B_MODPHY_PCR_LCPLL_DWORD0,	B_MODPHY_PCR_LCPLL_DWORD0_1G },
55 	{ PID_MODPHY3_N_MODPHY_PCR_LCPLL_DWORD2,	N_MODPHY_PCR_LCPLL_DWORD2_1G },
56 	{ PID_MODPHY3_N_MODPHY_PCR_LCPLL_DWORD7,	N_MODPHY_PCR_LCPLL_DWORD7_1G },
57 	{ PID_MODPHY3_N_MODPHY_PCR_LPPLL_DWORD10,	N_MODPHY_PCR_LPPLL_DWORD10_1G },
58 	{ PID_MODPHY3_N_MODPHY_PCR_CMN_ANA_DWORD30,	N_MODPHY_PCR_CMN_ANA_DWORD30_1G },
59 	{}
60 };
61 
62 static const struct pmc_serdes_regs pid_modphy3_2p5g_regs[] = {
63 	{ PID_MODPHY3_B_MODPHY_PCR_LCPLL_DWORD0,	B_MODPHY_PCR_LCPLL_DWORD0_2P5G },
64 	{ PID_MODPHY3_N_MODPHY_PCR_LCPLL_DWORD2,	N_MODPHY_PCR_LCPLL_DWORD2_2P5G },
65 	{ PID_MODPHY3_N_MODPHY_PCR_LCPLL_DWORD7,	N_MODPHY_PCR_LCPLL_DWORD7_2P5G },
66 	{ PID_MODPHY3_N_MODPHY_PCR_LPPLL_DWORD10,	N_MODPHY_PCR_LPPLL_DWORD10_2P5G },
67 	{ PID_MODPHY3_N_MODPHY_PCR_CMN_ANA_DWORD30,	N_MODPHY_PCR_CMN_ANA_DWORD30_2P5G },
68 	{}
69 };
70 
71 static const struct pmc_serdes_regs pid_modphy1_1g_regs[] = {
72 	{ PID_MODPHY1_B_MODPHY_PCR_LCPLL_DWORD0,	B_MODPHY_PCR_LCPLL_DWORD0_1G },
73 	{ PID_MODPHY1_N_MODPHY_PCR_LCPLL_DWORD2,	N_MODPHY_PCR_LCPLL_DWORD2_1G },
74 	{ PID_MODPHY1_N_MODPHY_PCR_LCPLL_DWORD7,	N_MODPHY_PCR_LCPLL_DWORD7_1G },
75 	{ PID_MODPHY1_N_MODPHY_PCR_LPPLL_DWORD10,	N_MODPHY_PCR_LPPLL_DWORD10_1G },
76 	{ PID_MODPHY1_N_MODPHY_PCR_CMN_ANA_DWORD30,	N_MODPHY_PCR_CMN_ANA_DWORD30_1G },
77 	{}
78 };
79 
80 static const struct pmc_serdes_regs pid_modphy1_2p5g_regs[] = {
81 	{ PID_MODPHY1_B_MODPHY_PCR_LCPLL_DWORD0,	B_MODPHY_PCR_LCPLL_DWORD0_2P5G },
82 	{ PID_MODPHY1_N_MODPHY_PCR_LCPLL_DWORD2,	N_MODPHY_PCR_LCPLL_DWORD2_2P5G },
83 	{ PID_MODPHY1_N_MODPHY_PCR_LCPLL_DWORD7,	N_MODPHY_PCR_LCPLL_DWORD7_2P5G },
84 	{ PID_MODPHY1_N_MODPHY_PCR_LPPLL_DWORD10,	N_MODPHY_PCR_LPPLL_DWORD10_2P5G },
85 	{ PID_MODPHY1_N_MODPHY_PCR_CMN_ANA_DWORD30,	N_MODPHY_PCR_CMN_ANA_DWORD30_2P5G },
86 	{}
87 };
88 
89 static const int ehl_tsn_lane_regs[] = {7, 8, 9, 10, 11};
90 static const int adln_tsn_lane_regs[] = {6};
91 
stmmac_pci_find_phy_addr(struct pci_dev * pdev,const struct dmi_system_id * dmi_list)92 static int stmmac_pci_find_phy_addr(struct pci_dev *pdev,
93 				    const struct dmi_system_id *dmi_list)
94 {
95 	const struct stmmac_pci_func_data *func_data;
96 	const struct stmmac_pci_dmi_data *dmi_data;
97 	const struct dmi_system_id *dmi_id;
98 	int func = PCI_FUNC(pdev->devfn);
99 	size_t n;
100 
101 	dmi_id = dmi_first_match(dmi_list);
102 	if (!dmi_id)
103 		return -ENODEV;
104 
105 	dmi_data = dmi_id->driver_data;
106 	func_data = dmi_data->func;
107 
108 	for (n = 0; n < dmi_data->nfuncs; n++, func_data++)
109 		if (func_data->func == func)
110 			return func_data->phy_addr;
111 
112 	return -ENODEV;
113 }
114 
serdes_status_poll(struct stmmac_priv * priv,int phyaddr,int phyreg,u32 mask,u32 val)115 static int serdes_status_poll(struct stmmac_priv *priv, int phyaddr,
116 			      int phyreg, u32 mask, u32 val)
117 {
118 	unsigned int retries = 10;
119 	int val_rd;
120 
121 	do {
122 		val_rd = mdiobus_read(priv->mii, phyaddr, phyreg);
123 		if ((val_rd & mask) == (val & mask))
124 			return 0;
125 		udelay(POLL_DELAY_US);
126 	} while (--retries);
127 
128 	return -ETIMEDOUT;
129 }
130 
intel_serdes_powerup(struct net_device * ndev,void * priv_data)131 static int intel_serdes_powerup(struct net_device *ndev, void *priv_data)
132 {
133 	struct intel_priv_data *intel_priv = priv_data;
134 	struct stmmac_priv *priv = netdev_priv(ndev);
135 	int serdes_phy_addr = 0;
136 	u32 data = 0;
137 
138 	if (!intel_priv->mdio_adhoc_addr)
139 		return 0;
140 
141 	serdes_phy_addr = intel_priv->mdio_adhoc_addr;
142 
143 	/* Set the serdes rate and the PCLK rate */
144 	data = mdiobus_read(priv->mii, serdes_phy_addr,
145 			    SERDES_GCR0);
146 
147 	data &= ~SERDES_RATE_MASK;
148 	data &= ~SERDES_PCLK_MASK;
149 
150 	if (priv->plat->phy_interface == PHY_INTERFACE_MODE_2500BASEX)
151 		data |= SERDES_RATE_PCIE_GEN2 << SERDES_RATE_PCIE_SHIFT |
152 			SERDES_PCLK_37p5MHZ << SERDES_PCLK_SHIFT;
153 	else
154 		data |= SERDES_RATE_PCIE_GEN1 << SERDES_RATE_PCIE_SHIFT |
155 			SERDES_PCLK_70MHZ << SERDES_PCLK_SHIFT;
156 
157 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
158 
159 	/* assert clk_req */
160 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
161 	data |= SERDES_PLL_CLK;
162 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
163 
164 	/* check for clk_ack assertion */
165 	data = serdes_status_poll(priv, serdes_phy_addr,
166 				  SERDES_GSR0,
167 				  SERDES_PLL_CLK,
168 				  SERDES_PLL_CLK);
169 
170 	if (data) {
171 		dev_err(priv->device, "Serdes PLL clk request timeout\n");
172 		return data;
173 	}
174 
175 	/* assert lane reset */
176 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
177 	data |= SERDES_RST;
178 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
179 
180 	/* check for assert lane reset reflection */
181 	data = serdes_status_poll(priv, serdes_phy_addr,
182 				  SERDES_GSR0,
183 				  SERDES_RST,
184 				  SERDES_RST);
185 
186 	if (data) {
187 		dev_err(priv->device, "Serdes assert lane reset timeout\n");
188 		return data;
189 	}
190 
191 	/*  move power state to P0 */
192 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
193 
194 	data &= ~SERDES_PWR_ST_MASK;
195 	data |= SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT;
196 
197 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
198 
199 	/* Check for P0 state */
200 	data = serdes_status_poll(priv, serdes_phy_addr,
201 				  SERDES_GSR0,
202 				  SERDES_PWR_ST_MASK,
203 				  SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT);
204 
205 	if (data) {
206 		dev_err(priv->device, "Serdes power state P0 timeout.\n");
207 		return data;
208 	}
209 
210 	/* PSE only - ungate SGMII PHY Rx Clock */
211 	if (intel_priv->is_pse)
212 		mdiobus_modify(priv->mii, serdes_phy_addr, SERDES_GCR0,
213 			       0, SERDES_PHY_RX_CLK);
214 
215 	return 0;
216 }
217 
intel_serdes_powerdown(struct net_device * ndev,void * intel_data)218 static void intel_serdes_powerdown(struct net_device *ndev, void *intel_data)
219 {
220 	struct intel_priv_data *intel_priv = intel_data;
221 	struct stmmac_priv *priv = netdev_priv(ndev);
222 	int serdes_phy_addr = 0;
223 	u32 data = 0;
224 
225 	if (!intel_priv->mdio_adhoc_addr)
226 		return;
227 
228 	serdes_phy_addr = intel_priv->mdio_adhoc_addr;
229 
230 	/* PSE only - gate SGMII PHY Rx Clock */
231 	if (intel_priv->is_pse)
232 		mdiobus_modify(priv->mii, serdes_phy_addr, SERDES_GCR0,
233 			       SERDES_PHY_RX_CLK, 0);
234 
235 	/*  move power state to P3 */
236 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
237 
238 	data &= ~SERDES_PWR_ST_MASK;
239 	data |= SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT;
240 
241 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
242 
243 	/* Check for P3 state */
244 	data = serdes_status_poll(priv, serdes_phy_addr,
245 				  SERDES_GSR0,
246 				  SERDES_PWR_ST_MASK,
247 				  SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT);
248 
249 	if (data) {
250 		dev_err(priv->device, "Serdes power state P3 timeout\n");
251 		return;
252 	}
253 
254 	/* de-assert clk_req */
255 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
256 	data &= ~SERDES_PLL_CLK;
257 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
258 
259 	/* check for clk_ack de-assert */
260 	data = serdes_status_poll(priv, serdes_phy_addr,
261 				  SERDES_GSR0,
262 				  SERDES_PLL_CLK,
263 				  (u32)~SERDES_PLL_CLK);
264 
265 	if (data) {
266 		dev_err(priv->device, "Serdes PLL clk de-assert timeout\n");
267 		return;
268 	}
269 
270 	/* de-assert lane reset */
271 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
272 	data &= ~SERDES_RST;
273 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
274 
275 	/* check for de-assert lane reset reflection */
276 	data = serdes_status_poll(priv, serdes_phy_addr,
277 				  SERDES_GSR0,
278 				  SERDES_RST,
279 				  (u32)~SERDES_RST);
280 
281 	if (data) {
282 		dev_err(priv->device, "Serdes de-assert lane reset timeout\n");
283 		return;
284 	}
285 }
286 
intel_speed_mode_2500(struct net_device * ndev,void * intel_data)287 static void intel_speed_mode_2500(struct net_device *ndev, void *intel_data)
288 {
289 	struct intel_priv_data *intel_priv = intel_data;
290 	struct stmmac_priv *priv = netdev_priv(ndev);
291 	int serdes_phy_addr = 0;
292 	u32 data = 0;
293 
294 	serdes_phy_addr = intel_priv->mdio_adhoc_addr;
295 
296 	/* Determine the link speed mode: 2.5Gbps/1Gbps */
297 	data = mdiobus_read(priv->mii, serdes_phy_addr,
298 			    SERDES_GCR);
299 
300 	if (((data & SERDES_LINK_MODE_MASK) >> SERDES_LINK_MODE_SHIFT) ==
301 	    SERDES_LINK_MODE_2G5) {
302 		dev_info(priv->device, "Link Speed Mode: 2.5Gbps\n");
303 		priv->plat->max_speed = 2500;
304 		priv->plat->phy_interface = PHY_INTERFACE_MODE_2500BASEX;
305 		priv->plat->mdio_bus_data->default_an_inband = false;
306 	} else {
307 		priv->plat->max_speed = 1000;
308 	}
309 }
310 
311 /* Program PTP Clock Frequency for different variant of
312  * Intel mGBE that has slightly different GPO mapping
313  */
intel_mgbe_ptp_clk_freq_config(struct stmmac_priv * priv)314 static void intel_mgbe_ptp_clk_freq_config(struct stmmac_priv *priv)
315 {
316 	struct intel_priv_data *intel_priv;
317 	u32 gpio_value;
318 
319 	intel_priv = (struct intel_priv_data *)priv->plat->bsp_priv;
320 
321 	gpio_value = readl(priv->ioaddr + GMAC_GPIO_STATUS);
322 
323 	if (intel_priv->is_pse) {
324 		/* For PSE GbE, use 200MHz */
325 		gpio_value &= ~PSE_PTP_CLK_FREQ_MASK;
326 		gpio_value |= PSE_PTP_CLK_FREQ_200MHZ;
327 	} else {
328 		/* For PCH GbE, use 200MHz */
329 		gpio_value &= ~PCH_PTP_CLK_FREQ_MASK;
330 		gpio_value |= PCH_PTP_CLK_FREQ_200MHZ;
331 	}
332 
333 	writel(gpio_value, priv->ioaddr + GMAC_GPIO_STATUS);
334 }
335 
get_arttime(struct mii_bus * mii,int intel_adhoc_addr,u64 * art_time)336 static void get_arttime(struct mii_bus *mii, int intel_adhoc_addr,
337 			u64 *art_time)
338 {
339 	u64 ns;
340 
341 	ns = mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE3);
342 	ns <<= GMAC4_ART_TIME_SHIFT;
343 	ns |= mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE2);
344 	ns <<= GMAC4_ART_TIME_SHIFT;
345 	ns |= mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE1);
346 	ns <<= GMAC4_ART_TIME_SHIFT;
347 	ns |= mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE0);
348 
349 	*art_time = ns;
350 }
351 
stmmac_cross_ts_isr(struct stmmac_priv * priv)352 static int stmmac_cross_ts_isr(struct stmmac_priv *priv)
353 {
354 	return (readl(priv->ioaddr + GMAC_INT_STATUS) & GMAC_INT_TSIE);
355 }
356 
intel_crosststamp(ktime_t * device,struct system_counterval_t * system,void * ctx)357 static int intel_crosststamp(ktime_t *device,
358 			     struct system_counterval_t *system,
359 			     void *ctx)
360 {
361 	struct intel_priv_data *intel_priv;
362 
363 	struct stmmac_priv *priv = (struct stmmac_priv *)ctx;
364 	void __iomem *ptpaddr = priv->ptpaddr;
365 	void __iomem *ioaddr = priv->hw->pcsr;
366 	unsigned long flags;
367 	u64 art_time = 0;
368 	u64 ptp_time = 0;
369 	u32 num_snapshot;
370 	u32 gpio_value;
371 	u32 acr_value;
372 	int i;
373 
374 	if (!boot_cpu_has(X86_FEATURE_ART))
375 		return -EOPNOTSUPP;
376 
377 	intel_priv = priv->plat->bsp_priv;
378 
379 	/* Both internal crosstimestamping and external triggered event
380 	 * timestamping cannot be run concurrently.
381 	 */
382 	if (priv->plat->flags & STMMAC_FLAG_EXT_SNAPSHOT_EN)
383 		return -EBUSY;
384 
385 	priv->plat->flags |= STMMAC_FLAG_INT_SNAPSHOT_EN;
386 
387 	mutex_lock(&priv->aux_ts_lock);
388 	/* Enable Internal snapshot trigger */
389 	acr_value = readl(ptpaddr + PTP_ACR);
390 	acr_value &= ~PTP_ACR_MASK;
391 	switch (priv->plat->int_snapshot_num) {
392 	case AUX_SNAPSHOT0:
393 		acr_value |= PTP_ACR_ATSEN0;
394 		break;
395 	case AUX_SNAPSHOT1:
396 		acr_value |= PTP_ACR_ATSEN1;
397 		break;
398 	case AUX_SNAPSHOT2:
399 		acr_value |= PTP_ACR_ATSEN2;
400 		break;
401 	case AUX_SNAPSHOT3:
402 		acr_value |= PTP_ACR_ATSEN3;
403 		break;
404 	default:
405 		mutex_unlock(&priv->aux_ts_lock);
406 		priv->plat->flags &= ~STMMAC_FLAG_INT_SNAPSHOT_EN;
407 		return -EINVAL;
408 	}
409 	writel(acr_value, ptpaddr + PTP_ACR);
410 
411 	/* Clear FIFO */
412 	acr_value = readl(ptpaddr + PTP_ACR);
413 	acr_value |= PTP_ACR_ATSFC;
414 	writel(acr_value, ptpaddr + PTP_ACR);
415 	/* Release the mutex */
416 	mutex_unlock(&priv->aux_ts_lock);
417 
418 	/* Trigger Internal snapshot signal
419 	 * Create a rising edge by just toggle the GPO1 to low
420 	 * and back to high.
421 	 */
422 	gpio_value = readl(ioaddr + GMAC_GPIO_STATUS);
423 	gpio_value &= ~GMAC_GPO1;
424 	writel(gpio_value, ioaddr + GMAC_GPIO_STATUS);
425 	gpio_value |= GMAC_GPO1;
426 	writel(gpio_value, ioaddr + GMAC_GPIO_STATUS);
427 
428 	/* Time sync done Indication - Interrupt method */
429 	if (!wait_event_interruptible_timeout(priv->tstamp_busy_wait,
430 					      stmmac_cross_ts_isr(priv),
431 					      HZ / 100)) {
432 		priv->plat->flags &= ~STMMAC_FLAG_INT_SNAPSHOT_EN;
433 		return -ETIMEDOUT;
434 	}
435 
436 	num_snapshot = (readl(ioaddr + GMAC_TIMESTAMP_STATUS) &
437 			GMAC_TIMESTAMP_ATSNS_MASK) >>
438 			GMAC_TIMESTAMP_ATSNS_SHIFT;
439 
440 	/* Repeat until the timestamps are from the FIFO last segment */
441 	for (i = 0; i < num_snapshot; i++) {
442 		read_lock_irqsave(&priv->ptp_lock, flags);
443 		stmmac_get_ptptime(priv, ptpaddr, &ptp_time);
444 		*device = ns_to_ktime(ptp_time);
445 		read_unlock_irqrestore(&priv->ptp_lock, flags);
446 		get_arttime(priv->mii, intel_priv->mdio_adhoc_addr, &art_time);
447 		system->cycles = art_time;
448 	}
449 
450 	system->cycles *= intel_priv->crossts_adj;
451 	system->cs_id = CSID_X86_ART;
452 	priv->plat->flags &= ~STMMAC_FLAG_INT_SNAPSHOT_EN;
453 
454 	return 0;
455 }
456 
intel_mgbe_pse_crossts_adj(struct intel_priv_data * intel_priv,int base)457 static void intel_mgbe_pse_crossts_adj(struct intel_priv_data *intel_priv,
458 				       int base)
459 {
460 	if (boot_cpu_has(X86_FEATURE_ART)) {
461 		unsigned int art_freq;
462 
463 		/* On systems that support ART, ART frequency can be obtained
464 		 * from ECX register of CPUID leaf (0x15).
465 		 */
466 		art_freq = cpuid_ecx(ART_CPUID_LEAF);
467 		do_div(art_freq, base);
468 		intel_priv->crossts_adj = art_freq;
469 	}
470 }
471 
intel_tsn_lane_is_available(struct net_device * ndev,struct intel_priv_data * intel_priv)472 static int intel_tsn_lane_is_available(struct net_device *ndev,
473 				       struct intel_priv_data *intel_priv)
474 {
475 	struct stmmac_priv *priv = netdev_priv(ndev);
476 	struct pmc_ipc_cmd tmp = {};
477 	struct pmc_ipc_rbuf rbuf = {};
478 	int ret = 0, i, j;
479 	const int max_fia_regs = 5;
480 
481 	tmp.cmd = IPC_SOC_REGISTER_ACCESS;
482 	tmp.sub_cmd = IPC_SOC_SUB_CMD_READ;
483 
484 	for (i = 0; i < max_fia_regs; i++) {
485 		tmp.wbuf[0] = R_PCH_FIA_15_PCR_LOS1_REG_BASE + i;
486 
487 		ret = intel_pmc_ipc(&tmp, &rbuf);
488 		if (ret < 0) {
489 			netdev_info(priv->dev, "Failed to read from PMC.\n");
490 			return ret;
491 		}
492 
493 		for (j = 0; j <= intel_priv->max_tsn_lane_regs; j++)
494 			if ((rbuf.buf[0] >>
495 				(4 * (intel_priv->tsn_lane_regs[j] % 8)) &
496 					B_PCH_FIA_PCR_L0O) == 0xB)
497 				return 0;
498 	}
499 
500 	return -EINVAL;
501 }
502 
intel_set_reg_access(const struct pmc_serdes_regs * regs,int max_regs)503 static int intel_set_reg_access(const struct pmc_serdes_regs *regs, int max_regs)
504 {
505 	int ret = 0, i;
506 
507 	for (i = 0; i < max_regs; i++) {
508 		struct pmc_ipc_cmd tmp = {};
509 		struct pmc_ipc_rbuf rbuf = {};
510 
511 		tmp.cmd = IPC_SOC_REGISTER_ACCESS;
512 		tmp.sub_cmd = IPC_SOC_SUB_CMD_WRITE;
513 		tmp.wbuf[0] = (u32)regs[i].index;
514 		tmp.wbuf[1] = regs[i].val;
515 
516 		ret = intel_pmc_ipc(&tmp, &rbuf);
517 		if (ret < 0)
518 			return ret;
519 	}
520 
521 	return ret;
522 }
523 
intel_mac_finish(struct net_device * ndev,void * intel_data,unsigned int mode,phy_interface_t interface)524 static int intel_mac_finish(struct net_device *ndev,
525 			    void *intel_data,
526 			    unsigned int mode,
527 			    phy_interface_t interface)
528 {
529 	struct intel_priv_data *intel_priv = intel_data;
530 	struct stmmac_priv *priv = netdev_priv(ndev);
531 	const struct pmc_serdes_regs *regs;
532 	int max_regs = 0;
533 	int ret = 0;
534 
535 	ret = intel_tsn_lane_is_available(ndev, intel_priv);
536 	if (ret < 0) {
537 		netdev_info(priv->dev, "No TSN lane available to set the registers.\n");
538 		return ret;
539 	}
540 
541 	if (interface == PHY_INTERFACE_MODE_2500BASEX) {
542 		regs = intel_priv->pid_2p5g.regs;
543 		max_regs = intel_priv->pid_2p5g.num_regs;
544 	} else {
545 		regs = intel_priv->pid_1g.regs;
546 		max_regs = intel_priv->pid_1g.num_regs;
547 	}
548 
549 	ret = intel_set_reg_access(regs, max_regs);
550 	if (ret < 0)
551 		return ret;
552 
553 	priv->plat->phy_interface = interface;
554 
555 	intel_serdes_powerdown(ndev, intel_priv);
556 	intel_serdes_powerup(ndev, intel_priv);
557 
558 	return ret;
559 }
560 
common_default_data(struct plat_stmmacenet_data * plat)561 static void common_default_data(struct plat_stmmacenet_data *plat)
562 {
563 	plat->clk_csr = 2;	/* clk_csr_i = 20-35MHz & MDC = clk_csr_i/16 */
564 	plat->has_gmac = 1;
565 	plat->force_sf_dma_mode = 1;
566 
567 	plat->mdio_bus_data->needs_reset = true;
568 
569 	/* Set default value for multicast hash bins */
570 	plat->multicast_filter_bins = HASH_TABLE_SIZE;
571 
572 	/* Set default value for unicast filter entries */
573 	plat->unicast_filter_entries = 1;
574 
575 	/* Set the maxmtu to a default of JUMBO_LEN */
576 	plat->maxmtu = JUMBO_LEN;
577 
578 	/* Set default number of RX and TX queues to use */
579 	plat->tx_queues_to_use = 1;
580 	plat->rx_queues_to_use = 1;
581 
582 	/* Disable Priority config by default */
583 	plat->tx_queues_cfg[0].use_prio = false;
584 	plat->rx_queues_cfg[0].use_prio = false;
585 
586 	/* Disable RX queues routing by default */
587 	plat->rx_queues_cfg[0].pkt_route = 0x0;
588 }
589 
intel_mgbe_select_pcs(struct stmmac_priv * priv,phy_interface_t interface)590 static struct phylink_pcs *intel_mgbe_select_pcs(struct stmmac_priv *priv,
591 						 phy_interface_t interface)
592 {
593 	/* plat->mdio_bus_data->has_xpcs has been set true, so there
594 	 * should always be an XPCS. The original code would always
595 	 * return this if present.
596 	 */
597 	return xpcs_to_phylink_pcs(priv->hw->xpcs);
598 }
599 
intel_mgbe_common_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)600 static int intel_mgbe_common_data(struct pci_dev *pdev,
601 				  struct plat_stmmacenet_data *plat)
602 {
603 	struct fwnode_handle *fwnode;
604 	char clk_name[20];
605 	int ret;
606 	int i;
607 
608 	plat->pdev = pdev;
609 	plat->phy_addr = -1;
610 	plat->clk_csr = 5;
611 	plat->has_gmac = 0;
612 	plat->has_gmac4 = 1;
613 	plat->force_sf_dma_mode = 0;
614 	plat->flags |= (STMMAC_FLAG_TSO_EN | STMMAC_FLAG_SPH_DISABLE);
615 
616 	/* Multiplying factor to the clk_eee_i clock time
617 	 * period to make it closer to 100 ns. This value
618 	 * should be programmed such that the clk_eee_time_period *
619 	 * (MULT_FACT_100NS + 1) should be within 80 ns to 120 ns
620 	 * clk_eee frequency is 19.2Mhz
621 	 * clk_eee_time_period is 52ns
622 	 * 52ns * (1 + 1) = 104ns
623 	 * MULT_FACT_100NS = 1
624 	 */
625 	plat->mult_fact_100ns = 1;
626 
627 	plat->rx_sched_algorithm = MTL_RX_ALGORITHM_SP;
628 
629 	for (i = 0; i < plat->rx_queues_to_use; i++) {
630 		plat->rx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB;
631 		plat->rx_queues_cfg[i].chan = i;
632 
633 		/* Disable Priority config by default */
634 		plat->rx_queues_cfg[i].use_prio = false;
635 
636 		/* Disable RX queues routing by default */
637 		plat->rx_queues_cfg[i].pkt_route = 0x0;
638 	}
639 
640 	for (i = 0; i < plat->tx_queues_to_use; i++) {
641 		plat->tx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB;
642 
643 		/* Disable Priority config by default */
644 		plat->tx_queues_cfg[i].use_prio = false;
645 		/* Default TX Q0 to use TSO and rest TXQ for TBS */
646 		if (i > 0)
647 			plat->tx_queues_cfg[i].tbs_en = 1;
648 	}
649 
650 	/* FIFO size is 4096 bytes for 1 tx/rx queue */
651 	plat->tx_fifo_size = plat->tx_queues_to_use * 4096;
652 	plat->rx_fifo_size = plat->rx_queues_to_use * 4096;
653 
654 	plat->tx_sched_algorithm = MTL_TX_ALGORITHM_WRR;
655 	plat->tx_queues_cfg[0].weight = 0x09;
656 	plat->tx_queues_cfg[1].weight = 0x0A;
657 	plat->tx_queues_cfg[2].weight = 0x0B;
658 	plat->tx_queues_cfg[3].weight = 0x0C;
659 	plat->tx_queues_cfg[4].weight = 0x0D;
660 	plat->tx_queues_cfg[5].weight = 0x0E;
661 	plat->tx_queues_cfg[6].weight = 0x0F;
662 	plat->tx_queues_cfg[7].weight = 0x10;
663 
664 	plat->dma_cfg->pbl = 32;
665 	plat->dma_cfg->pblx8 = true;
666 	plat->dma_cfg->fixed_burst = 0;
667 	plat->dma_cfg->mixed_burst = 0;
668 	plat->dma_cfg->aal = 0;
669 	plat->dma_cfg->dche = true;
670 
671 	plat->axi = devm_kzalloc(&pdev->dev, sizeof(*plat->axi),
672 				 GFP_KERNEL);
673 	if (!plat->axi)
674 		return -ENOMEM;
675 
676 	plat->axi->axi_lpi_en = 0;
677 	plat->axi->axi_xit_frm = 0;
678 	plat->axi->axi_wr_osr_lmt = 1;
679 	plat->axi->axi_rd_osr_lmt = 1;
680 	plat->axi->axi_blen[0] = 4;
681 	plat->axi->axi_blen[1] = 8;
682 	plat->axi->axi_blen[2] = 16;
683 
684 	plat->ptp_max_adj = plat->clk_ptp_rate;
685 	plat->eee_usecs_rate = plat->clk_ptp_rate;
686 
687 	/* Set system clock */
688 	sprintf(clk_name, "%s-%s", "stmmac", pci_name(pdev));
689 
690 	plat->stmmac_clk = clk_register_fixed_rate(&pdev->dev,
691 						   clk_name, NULL, 0,
692 						   plat->clk_ptp_rate);
693 
694 	if (IS_ERR(plat->stmmac_clk)) {
695 		dev_warn(&pdev->dev, "Fail to register stmmac-clk\n");
696 		plat->stmmac_clk = NULL;
697 	}
698 
699 	ret = clk_prepare_enable(plat->stmmac_clk);
700 	if (ret) {
701 		clk_unregister_fixed_rate(plat->stmmac_clk);
702 		return ret;
703 	}
704 
705 	plat->ptp_clk_freq_config = intel_mgbe_ptp_clk_freq_config;
706 
707 	/* Set default value for multicast hash bins */
708 	plat->multicast_filter_bins = HASH_TABLE_SIZE;
709 
710 	/* Set default value for unicast filter entries */
711 	plat->unicast_filter_entries = 1;
712 
713 	/* Set the maxmtu to a default of JUMBO_LEN */
714 	plat->maxmtu = JUMBO_LEN;
715 
716 	plat->flags |= STMMAC_FLAG_VLAN_FAIL_Q_EN;
717 
718 	/* Use the last Rx queue */
719 	plat->vlan_fail_q = plat->rx_queues_to_use - 1;
720 
721 	/* For fixed-link setup, we allow phy-mode setting */
722 	fwnode = dev_fwnode(&pdev->dev);
723 	if (fwnode) {
724 		int phy_mode;
725 
726 		/* "phy-mode" setting is optional. If it is set,
727 		 *  we allow either sgmii or 1000base-x for now.
728 		 */
729 		phy_mode = fwnode_get_phy_mode(fwnode);
730 		if (phy_mode >= 0) {
731 			if (phy_mode == PHY_INTERFACE_MODE_SGMII ||
732 			    phy_mode == PHY_INTERFACE_MODE_1000BASEX)
733 				plat->phy_interface = phy_mode;
734 			else
735 				dev_warn(&pdev->dev, "Invalid phy-mode\n");
736 		}
737 	}
738 
739 	/* Intel mgbe SGMII interface uses pcs-xcps */
740 	if (plat->phy_interface == PHY_INTERFACE_MODE_SGMII ||
741 	    plat->phy_interface == PHY_INTERFACE_MODE_1000BASEX) {
742 		plat->mdio_bus_data->pcs_mask = BIT(INTEL_MGBE_XPCS_ADDR);
743 		plat->mdio_bus_data->default_an_inband = true;
744 		plat->select_pcs = intel_mgbe_select_pcs;
745 	}
746 
747 	/* Ensure mdio bus scan skips intel serdes and pcs-xpcs */
748 	plat->mdio_bus_data->phy_mask = 1 << INTEL_MGBE_ADHOC_ADDR;
749 	plat->mdio_bus_data->phy_mask |= 1 << INTEL_MGBE_XPCS_ADDR;
750 
751 	plat->int_snapshot_num = AUX_SNAPSHOT1;
752 
753 	plat->crosststamp = intel_crosststamp;
754 	plat->flags &= ~STMMAC_FLAG_INT_SNAPSHOT_EN;
755 
756 	/* Setup MSI vector offset specific to Intel mGbE controller */
757 	plat->msi_mac_vec = 29;
758 	plat->msi_lpi_vec = 28;
759 	plat->msi_sfty_ce_vec = 27;
760 	plat->msi_sfty_ue_vec = 26;
761 	plat->msi_rx_base_vec = 0;
762 	plat->msi_tx_base_vec = 1;
763 
764 	return 0;
765 }
766 
ehl_common_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)767 static int ehl_common_data(struct pci_dev *pdev,
768 			   struct plat_stmmacenet_data *plat)
769 {
770 	struct intel_priv_data *intel_priv = plat->bsp_priv;
771 
772 	plat->rx_queues_to_use = 8;
773 	plat->tx_queues_to_use = 8;
774 	plat->flags |= STMMAC_FLAG_USE_PHY_WOL;
775 	plat->flags |= STMMAC_FLAG_HWTSTAMP_CORRECT_LATENCY;
776 
777 	plat->safety_feat_cfg->tsoee = 1;
778 	plat->safety_feat_cfg->mrxpee = 1;
779 	plat->safety_feat_cfg->mestee = 1;
780 	plat->safety_feat_cfg->mrxee = 1;
781 	plat->safety_feat_cfg->mtxee = 1;
782 	plat->safety_feat_cfg->epsi = 0;
783 	plat->safety_feat_cfg->edpp = 0;
784 	plat->safety_feat_cfg->prtyen = 0;
785 	plat->safety_feat_cfg->tmouten = 0;
786 
787 	intel_priv->tsn_lane_regs = ehl_tsn_lane_regs;
788 	intel_priv->max_tsn_lane_regs = ARRAY_SIZE(ehl_tsn_lane_regs);
789 
790 	return intel_mgbe_common_data(pdev, plat);
791 }
792 
ehl_sgmii_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)793 static int ehl_sgmii_data(struct pci_dev *pdev,
794 			  struct plat_stmmacenet_data *plat)
795 {
796 	struct intel_priv_data *intel_priv = plat->bsp_priv;
797 
798 	plat->bus_id = 1;
799 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
800 	plat->serdes_powerup = intel_serdes_powerup;
801 	plat->serdes_powerdown = intel_serdes_powerdown;
802 	plat->mac_finish = intel_mac_finish;
803 	plat->clk_ptp_rate = 204800000;
804 
805 	intel_priv->pid_1g.regs = pid_modphy3_1g_regs;
806 	intel_priv->pid_1g.num_regs = ARRAY_SIZE(pid_modphy3_1g_regs);
807 	intel_priv->pid_2p5g.regs = pid_modphy3_2p5g_regs;
808 	intel_priv->pid_2p5g.num_regs = ARRAY_SIZE(pid_modphy3_2p5g_regs);
809 
810 	return ehl_common_data(pdev, plat);
811 }
812 
813 static struct stmmac_pci_info ehl_sgmii1g_info = {
814 	.setup = ehl_sgmii_data,
815 };
816 
ehl_rgmii_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)817 static int ehl_rgmii_data(struct pci_dev *pdev,
818 			  struct plat_stmmacenet_data *plat)
819 {
820 	plat->bus_id = 1;
821 	plat->phy_interface = PHY_INTERFACE_MODE_RGMII;
822 
823 	plat->clk_ptp_rate = 204800000;
824 
825 	return ehl_common_data(pdev, plat);
826 }
827 
828 static struct stmmac_pci_info ehl_rgmii1g_info = {
829 	.setup = ehl_rgmii_data,
830 };
831 
ehl_pse0_common_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)832 static int ehl_pse0_common_data(struct pci_dev *pdev,
833 				struct plat_stmmacenet_data *plat)
834 {
835 	struct intel_priv_data *intel_priv = plat->bsp_priv;
836 
837 	intel_priv->is_pse = true;
838 	plat->bus_id = 2;
839 	plat->host_dma_width = 32;
840 
841 	plat->clk_ptp_rate = 200000000;
842 
843 	intel_mgbe_pse_crossts_adj(intel_priv, EHL_PSE_ART_MHZ);
844 
845 	return ehl_common_data(pdev, plat);
846 }
847 
ehl_pse0_rgmii1g_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)848 static int ehl_pse0_rgmii1g_data(struct pci_dev *pdev,
849 				 struct plat_stmmacenet_data *plat)
850 {
851 	plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID;
852 	return ehl_pse0_common_data(pdev, plat);
853 }
854 
855 static struct stmmac_pci_info ehl_pse0_rgmii1g_info = {
856 	.setup = ehl_pse0_rgmii1g_data,
857 };
858 
ehl_pse0_sgmii1g_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)859 static int ehl_pse0_sgmii1g_data(struct pci_dev *pdev,
860 				 struct plat_stmmacenet_data *plat)
861 {
862 	struct intel_priv_data *intel_priv = plat->bsp_priv;
863 
864 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
865 	plat->serdes_powerup = intel_serdes_powerup;
866 	plat->serdes_powerdown = intel_serdes_powerdown;
867 	plat->mac_finish = intel_mac_finish;
868 
869 	intel_priv->pid_1g.regs = pid_modphy1_1g_regs;
870 	intel_priv->pid_1g.num_regs = ARRAY_SIZE(pid_modphy1_1g_regs);
871 	intel_priv->pid_2p5g.regs = pid_modphy1_2p5g_regs;
872 	intel_priv->pid_2p5g.num_regs = ARRAY_SIZE(pid_modphy1_2p5g_regs);
873 
874 	return ehl_pse0_common_data(pdev, plat);
875 }
876 
877 static struct stmmac_pci_info ehl_pse0_sgmii1g_info = {
878 	.setup = ehl_pse0_sgmii1g_data,
879 };
880 
ehl_pse1_common_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)881 static int ehl_pse1_common_data(struct pci_dev *pdev,
882 				struct plat_stmmacenet_data *plat)
883 {
884 	struct intel_priv_data *intel_priv = plat->bsp_priv;
885 
886 	intel_priv->is_pse = true;
887 	plat->bus_id = 3;
888 	plat->host_dma_width = 32;
889 
890 	plat->clk_ptp_rate = 200000000;
891 
892 	intel_mgbe_pse_crossts_adj(intel_priv, EHL_PSE_ART_MHZ);
893 
894 	return ehl_common_data(pdev, plat);
895 }
896 
ehl_pse1_rgmii1g_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)897 static int ehl_pse1_rgmii1g_data(struct pci_dev *pdev,
898 				 struct plat_stmmacenet_data *plat)
899 {
900 	plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID;
901 	return ehl_pse1_common_data(pdev, plat);
902 }
903 
904 static struct stmmac_pci_info ehl_pse1_rgmii1g_info = {
905 	.setup = ehl_pse1_rgmii1g_data,
906 };
907 
ehl_pse1_sgmii1g_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)908 static int ehl_pse1_sgmii1g_data(struct pci_dev *pdev,
909 				 struct plat_stmmacenet_data *plat)
910 {
911 	struct intel_priv_data *intel_priv = plat->bsp_priv;
912 
913 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
914 	plat->serdes_powerup = intel_serdes_powerup;
915 	plat->serdes_powerdown = intel_serdes_powerdown;
916 	plat->mac_finish = intel_mac_finish;
917 
918 	intel_priv->pid_1g.regs = pid_modphy1_1g_regs;
919 	intel_priv->pid_1g.num_regs = ARRAY_SIZE(pid_modphy1_1g_regs);
920 	intel_priv->pid_2p5g.regs = pid_modphy1_2p5g_regs;
921 	intel_priv->pid_2p5g.num_regs = ARRAY_SIZE(pid_modphy1_2p5g_regs);
922 
923 	return ehl_pse1_common_data(pdev, plat);
924 }
925 
926 static struct stmmac_pci_info ehl_pse1_sgmii1g_info = {
927 	.setup = ehl_pse1_sgmii1g_data,
928 };
929 
tgl_common_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)930 static int tgl_common_data(struct pci_dev *pdev,
931 			   struct plat_stmmacenet_data *plat)
932 {
933 	plat->rx_queues_to_use = 6;
934 	plat->tx_queues_to_use = 4;
935 	plat->clk_ptp_rate = 204800000;
936 	plat->speed_mode_2500 = intel_speed_mode_2500;
937 
938 	plat->safety_feat_cfg->tsoee = 1;
939 	plat->safety_feat_cfg->mrxpee = 0;
940 	plat->safety_feat_cfg->mestee = 1;
941 	plat->safety_feat_cfg->mrxee = 1;
942 	plat->safety_feat_cfg->mtxee = 1;
943 	plat->safety_feat_cfg->epsi = 0;
944 	plat->safety_feat_cfg->edpp = 0;
945 	plat->safety_feat_cfg->prtyen = 0;
946 	plat->safety_feat_cfg->tmouten = 0;
947 
948 	return intel_mgbe_common_data(pdev, plat);
949 }
950 
tgl_sgmii_phy0_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)951 static int tgl_sgmii_phy0_data(struct pci_dev *pdev,
952 			       struct plat_stmmacenet_data *plat)
953 {
954 	plat->bus_id = 1;
955 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
956 	plat->serdes_powerup = intel_serdes_powerup;
957 	plat->serdes_powerdown = intel_serdes_powerdown;
958 	return tgl_common_data(pdev, plat);
959 }
960 
961 static struct stmmac_pci_info tgl_sgmii1g_phy0_info = {
962 	.setup = tgl_sgmii_phy0_data,
963 };
964 
tgl_sgmii_phy1_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)965 static int tgl_sgmii_phy1_data(struct pci_dev *pdev,
966 			       struct plat_stmmacenet_data *plat)
967 {
968 	plat->bus_id = 2;
969 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
970 	plat->serdes_powerup = intel_serdes_powerup;
971 	plat->serdes_powerdown = intel_serdes_powerdown;
972 	return tgl_common_data(pdev, plat);
973 }
974 
975 static struct stmmac_pci_info tgl_sgmii1g_phy1_info = {
976 	.setup = tgl_sgmii_phy1_data,
977 };
978 
adls_sgmii_phy0_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)979 static int adls_sgmii_phy0_data(struct pci_dev *pdev,
980 				struct plat_stmmacenet_data *plat)
981 {
982 	plat->bus_id = 1;
983 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
984 
985 	/* SerDes power up and power down are done in BIOS for ADL */
986 
987 	return tgl_common_data(pdev, plat);
988 }
989 
990 static struct stmmac_pci_info adls_sgmii1g_phy0_info = {
991 	.setup = adls_sgmii_phy0_data,
992 };
993 
adls_sgmii_phy1_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)994 static int adls_sgmii_phy1_data(struct pci_dev *pdev,
995 				struct plat_stmmacenet_data *plat)
996 {
997 	plat->bus_id = 2;
998 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
999 
1000 	/* SerDes power up and power down are done in BIOS for ADL */
1001 
1002 	return tgl_common_data(pdev, plat);
1003 }
1004 
1005 static struct stmmac_pci_info adls_sgmii1g_phy1_info = {
1006 	.setup = adls_sgmii_phy1_data,
1007 };
1008 
adln_common_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)1009 static int adln_common_data(struct pci_dev *pdev,
1010 			    struct plat_stmmacenet_data *plat)
1011 {
1012 	struct intel_priv_data *intel_priv = plat->bsp_priv;
1013 
1014 	plat->rx_queues_to_use = 6;
1015 	plat->tx_queues_to_use = 4;
1016 	plat->clk_ptp_rate = 204800000;
1017 
1018 	plat->safety_feat_cfg->tsoee = 1;
1019 	plat->safety_feat_cfg->mrxpee = 0;
1020 	plat->safety_feat_cfg->mestee = 1;
1021 	plat->safety_feat_cfg->mrxee = 1;
1022 	plat->safety_feat_cfg->mtxee = 1;
1023 	plat->safety_feat_cfg->epsi = 0;
1024 	plat->safety_feat_cfg->edpp = 0;
1025 	plat->safety_feat_cfg->prtyen = 0;
1026 	plat->safety_feat_cfg->tmouten = 0;
1027 
1028 	intel_priv->tsn_lane_regs = adln_tsn_lane_regs;
1029 	intel_priv->max_tsn_lane_regs = ARRAY_SIZE(adln_tsn_lane_regs);
1030 
1031 	return intel_mgbe_common_data(pdev, plat);
1032 }
1033 
adln_sgmii_phy0_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)1034 static int adln_sgmii_phy0_data(struct pci_dev *pdev,
1035 				struct plat_stmmacenet_data *plat)
1036 {
1037 	struct intel_priv_data *intel_priv = plat->bsp_priv;
1038 
1039 	plat->bus_id = 1;
1040 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
1041 	plat->serdes_powerup = intel_serdes_powerup;
1042 	plat->serdes_powerdown = intel_serdes_powerdown;
1043 	plat->mac_finish = intel_mac_finish;
1044 
1045 	intel_priv->pid_1g.regs = pid_modphy1_1g_regs;
1046 	intel_priv->pid_1g.num_regs = ARRAY_SIZE(pid_modphy1_1g_regs);
1047 	intel_priv->pid_2p5g.regs = pid_modphy1_2p5g_regs;
1048 	intel_priv->pid_2p5g.num_regs = ARRAY_SIZE(pid_modphy1_2p5g_regs);
1049 
1050 	return adln_common_data(pdev, plat);
1051 }
1052 
1053 static struct stmmac_pci_info adln_sgmii1g_phy0_info = {
1054 	.setup = adln_sgmii_phy0_data,
1055 };
1056 
1057 static const struct stmmac_pci_func_data galileo_stmmac_func_data[] = {
1058 	{
1059 		.func = 6,
1060 		.phy_addr = 1,
1061 	},
1062 };
1063 
1064 static const struct stmmac_pci_dmi_data galileo_stmmac_dmi_data = {
1065 	.func = galileo_stmmac_func_data,
1066 	.nfuncs = ARRAY_SIZE(galileo_stmmac_func_data),
1067 };
1068 
1069 static const struct stmmac_pci_func_data iot2040_stmmac_func_data[] = {
1070 	{
1071 		.func = 6,
1072 		.phy_addr = 1,
1073 	},
1074 	{
1075 		.func = 7,
1076 		.phy_addr = 1,
1077 	},
1078 };
1079 
1080 static const struct stmmac_pci_dmi_data iot2040_stmmac_dmi_data = {
1081 	.func = iot2040_stmmac_func_data,
1082 	.nfuncs = ARRAY_SIZE(iot2040_stmmac_func_data),
1083 };
1084 
1085 static const struct dmi_system_id quark_pci_dmi[] = {
1086 	{
1087 		.matches = {
1088 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "Galileo"),
1089 		},
1090 		.driver_data = (void *)&galileo_stmmac_dmi_data,
1091 	},
1092 	{
1093 		.matches = {
1094 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "GalileoGen2"),
1095 		},
1096 		.driver_data = (void *)&galileo_stmmac_dmi_data,
1097 	},
1098 	/* There are 2 types of SIMATIC IOT2000: IOT2020 and IOT2040.
1099 	 * The asset tag "6ES7647-0AA00-0YA2" is only for IOT2020 which
1100 	 * has only one pci network device while other asset tags are
1101 	 * for IOT2040 which has two.
1102 	 */
1103 	{
1104 		.matches = {
1105 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"),
1106 			DMI_EXACT_MATCH(DMI_BOARD_ASSET_TAG,
1107 					"6ES7647-0AA00-0YA2"),
1108 		},
1109 		.driver_data = (void *)&galileo_stmmac_dmi_data,
1110 	},
1111 	{
1112 		.matches = {
1113 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"),
1114 		},
1115 		.driver_data = (void *)&iot2040_stmmac_dmi_data,
1116 	},
1117 	{}
1118 };
1119 
quark_default_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)1120 static int quark_default_data(struct pci_dev *pdev,
1121 			      struct plat_stmmacenet_data *plat)
1122 {
1123 	int ret;
1124 
1125 	/* Set common default data first */
1126 	common_default_data(plat);
1127 
1128 	/* Refuse to load the driver and register net device if MAC controller
1129 	 * does not connect to any PHY interface.
1130 	 */
1131 	ret = stmmac_pci_find_phy_addr(pdev, quark_pci_dmi);
1132 	if (ret < 0) {
1133 		/* Return error to the caller on DMI enabled boards. */
1134 		if (dmi_get_system_info(DMI_BOARD_NAME))
1135 			return ret;
1136 
1137 		/* Galileo boards with old firmware don't support DMI. We always
1138 		 * use 1 here as PHY address, so at least the first found MAC
1139 		 * controller would be probed.
1140 		 */
1141 		ret = 1;
1142 	}
1143 
1144 	plat->bus_id = pci_dev_id(pdev);
1145 	plat->phy_addr = ret;
1146 	plat->phy_interface = PHY_INTERFACE_MODE_RMII;
1147 
1148 	plat->dma_cfg->pbl = 16;
1149 	plat->dma_cfg->pblx8 = true;
1150 	plat->dma_cfg->fixed_burst = 1;
1151 	/* AXI (TODO) */
1152 
1153 	return 0;
1154 }
1155 
1156 static const struct stmmac_pci_info quark_info = {
1157 	.setup = quark_default_data,
1158 };
1159 
stmmac_config_single_msi(struct pci_dev * pdev,struct plat_stmmacenet_data * plat,struct stmmac_resources * res)1160 static int stmmac_config_single_msi(struct pci_dev *pdev,
1161 				    struct plat_stmmacenet_data *plat,
1162 				    struct stmmac_resources *res)
1163 {
1164 	int ret;
1165 
1166 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1167 	if (ret < 0) {
1168 		dev_info(&pdev->dev, "%s: Single IRQ enablement failed\n",
1169 			 __func__);
1170 		return ret;
1171 	}
1172 
1173 	res->irq = pci_irq_vector(pdev, 0);
1174 	res->wol_irq = res->irq;
1175 	plat->flags &= ~STMMAC_FLAG_MULTI_MSI_EN;
1176 	dev_info(&pdev->dev, "%s: Single IRQ enablement successful\n",
1177 		 __func__);
1178 
1179 	return 0;
1180 }
1181 
stmmac_config_multi_msi(struct pci_dev * pdev,struct plat_stmmacenet_data * plat,struct stmmac_resources * res)1182 static int stmmac_config_multi_msi(struct pci_dev *pdev,
1183 				   struct plat_stmmacenet_data *plat,
1184 				   struct stmmac_resources *res)
1185 {
1186 	int ret;
1187 	int i;
1188 
1189 	if (plat->msi_rx_base_vec >= STMMAC_MSI_VEC_MAX ||
1190 	    plat->msi_tx_base_vec >= STMMAC_MSI_VEC_MAX) {
1191 		dev_info(&pdev->dev, "%s: Invalid RX & TX vector defined\n",
1192 			 __func__);
1193 		return -1;
1194 	}
1195 
1196 	ret = pci_alloc_irq_vectors(pdev, 2, STMMAC_MSI_VEC_MAX,
1197 				    PCI_IRQ_MSI | PCI_IRQ_MSIX);
1198 	if (ret < 0) {
1199 		dev_info(&pdev->dev, "%s: multi MSI enablement failed\n",
1200 			 __func__);
1201 		return ret;
1202 	}
1203 
1204 	/* For RX MSI */
1205 	for (i = 0; i < plat->rx_queues_to_use; i++) {
1206 		res->rx_irq[i] = pci_irq_vector(pdev,
1207 						plat->msi_rx_base_vec + i * 2);
1208 	}
1209 
1210 	/* For TX MSI */
1211 	for (i = 0; i < plat->tx_queues_to_use; i++) {
1212 		res->tx_irq[i] = pci_irq_vector(pdev,
1213 						plat->msi_tx_base_vec + i * 2);
1214 	}
1215 
1216 	if (plat->msi_mac_vec < STMMAC_MSI_VEC_MAX)
1217 		res->irq = pci_irq_vector(pdev, plat->msi_mac_vec);
1218 	if (plat->msi_wol_vec < STMMAC_MSI_VEC_MAX)
1219 		res->wol_irq = pci_irq_vector(pdev, plat->msi_wol_vec);
1220 	if (plat->msi_lpi_vec < STMMAC_MSI_VEC_MAX)
1221 		res->lpi_irq = pci_irq_vector(pdev, plat->msi_lpi_vec);
1222 	if (plat->msi_sfty_ce_vec < STMMAC_MSI_VEC_MAX)
1223 		res->sfty_ce_irq = pci_irq_vector(pdev, plat->msi_sfty_ce_vec);
1224 	if (plat->msi_sfty_ue_vec < STMMAC_MSI_VEC_MAX)
1225 		res->sfty_ue_irq = pci_irq_vector(pdev, plat->msi_sfty_ue_vec);
1226 
1227 	plat->flags |= STMMAC_FLAG_MULTI_MSI_EN;
1228 	dev_info(&pdev->dev, "%s: multi MSI enablement successful\n", __func__);
1229 
1230 	return 0;
1231 }
1232 
1233 /**
1234  * intel_eth_pci_probe
1235  *
1236  * @pdev: pci device pointer
1237  * @id: pointer to table of device id/id's.
1238  *
1239  * Description: This probing function gets called for all PCI devices which
1240  * match the ID table and are not "owned" by other driver yet. This function
1241  * gets passed a "struct pci_dev *" for each device whose entry in the ID table
1242  * matches the device. The probe functions returns zero when the driver choose
1243  * to take "ownership" of the device or an error code(-ve no) otherwise.
1244  */
intel_eth_pci_probe(struct pci_dev * pdev,const struct pci_device_id * id)1245 static int intel_eth_pci_probe(struct pci_dev *pdev,
1246 			       const struct pci_device_id *id)
1247 {
1248 	struct stmmac_pci_info *info = (struct stmmac_pci_info *)id->driver_data;
1249 	struct intel_priv_data *intel_priv;
1250 	struct plat_stmmacenet_data *plat;
1251 	struct stmmac_resources res;
1252 	int ret;
1253 
1254 	intel_priv = devm_kzalloc(&pdev->dev, sizeof(*intel_priv), GFP_KERNEL);
1255 	if (!intel_priv)
1256 		return -ENOMEM;
1257 
1258 	plat = devm_kzalloc(&pdev->dev, sizeof(*plat), GFP_KERNEL);
1259 	if (!plat)
1260 		return -ENOMEM;
1261 
1262 	plat->mdio_bus_data = devm_kzalloc(&pdev->dev,
1263 					   sizeof(*plat->mdio_bus_data),
1264 					   GFP_KERNEL);
1265 	if (!plat->mdio_bus_data)
1266 		return -ENOMEM;
1267 
1268 	plat->dma_cfg = devm_kzalloc(&pdev->dev, sizeof(*plat->dma_cfg),
1269 				     GFP_KERNEL);
1270 	if (!plat->dma_cfg)
1271 		return -ENOMEM;
1272 
1273 	plat->safety_feat_cfg = devm_kzalloc(&pdev->dev,
1274 					     sizeof(*plat->safety_feat_cfg),
1275 					     GFP_KERNEL);
1276 	if (!plat->safety_feat_cfg)
1277 		return -ENOMEM;
1278 
1279 	/* Enable pci device */
1280 	ret = pcim_enable_device(pdev);
1281 	if (ret) {
1282 		dev_err(&pdev->dev, "%s: ERROR: failed to enable device\n",
1283 			__func__);
1284 		return ret;
1285 	}
1286 
1287 	ret = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev));
1288 	if (ret)
1289 		return ret;
1290 
1291 	pci_set_master(pdev);
1292 
1293 	plat->bsp_priv = intel_priv;
1294 	intel_priv->mdio_adhoc_addr = INTEL_MGBE_ADHOC_ADDR;
1295 	intel_priv->crossts_adj = 1;
1296 
1297 	/* Initialize all MSI vectors to invalid so that it can be set
1298 	 * according to platform data settings below.
1299 	 * Note: MSI vector takes value from 0 upto 31 (STMMAC_MSI_VEC_MAX)
1300 	 */
1301 	plat->msi_mac_vec = STMMAC_MSI_VEC_MAX;
1302 	plat->msi_wol_vec = STMMAC_MSI_VEC_MAX;
1303 	plat->msi_lpi_vec = STMMAC_MSI_VEC_MAX;
1304 	plat->msi_sfty_ce_vec = STMMAC_MSI_VEC_MAX;
1305 	plat->msi_sfty_ue_vec = STMMAC_MSI_VEC_MAX;
1306 	plat->msi_rx_base_vec = STMMAC_MSI_VEC_MAX;
1307 	plat->msi_tx_base_vec = STMMAC_MSI_VEC_MAX;
1308 
1309 	ret = info->setup(pdev, plat);
1310 	if (ret)
1311 		return ret;
1312 
1313 	memset(&res, 0, sizeof(res));
1314 	res.addr = pcim_iomap_table(pdev)[0];
1315 
1316 	if (plat->eee_usecs_rate > 0) {
1317 		u32 tx_lpi_usec;
1318 
1319 		tx_lpi_usec = (plat->eee_usecs_rate / 1000000) - 1;
1320 		writel(tx_lpi_usec, res.addr + GMAC_1US_TIC_COUNTER);
1321 	}
1322 
1323 	ret = stmmac_config_multi_msi(pdev, plat, &res);
1324 	if (ret) {
1325 		ret = stmmac_config_single_msi(pdev, plat, &res);
1326 		if (ret) {
1327 			dev_err(&pdev->dev, "%s: ERROR: failed to enable IRQ\n",
1328 				__func__);
1329 			goto err_alloc_irq;
1330 		}
1331 	}
1332 
1333 	ret = stmmac_dvr_probe(&pdev->dev, plat, &res);
1334 	if (ret) {
1335 		goto err_alloc_irq;
1336 	}
1337 
1338 	return 0;
1339 
1340 err_alloc_irq:
1341 	clk_disable_unprepare(plat->stmmac_clk);
1342 	clk_unregister_fixed_rate(plat->stmmac_clk);
1343 	return ret;
1344 }
1345 
1346 /**
1347  * intel_eth_pci_remove
1348  *
1349  * @pdev: pci device pointer
1350  * Description: this function calls the main to free the net resources
1351  * and releases the PCI resources.
1352  */
intel_eth_pci_remove(struct pci_dev * pdev)1353 static void intel_eth_pci_remove(struct pci_dev *pdev)
1354 {
1355 	struct net_device *ndev = dev_get_drvdata(&pdev->dev);
1356 	struct stmmac_priv *priv = netdev_priv(ndev);
1357 
1358 	stmmac_dvr_remove(&pdev->dev);
1359 
1360 	clk_disable_unprepare(priv->plat->stmmac_clk);
1361 	clk_unregister_fixed_rate(priv->plat->stmmac_clk);
1362 }
1363 
intel_eth_pci_suspend(struct device * dev)1364 static int __maybe_unused intel_eth_pci_suspend(struct device *dev)
1365 {
1366 	struct pci_dev *pdev = to_pci_dev(dev);
1367 	int ret;
1368 
1369 	ret = stmmac_suspend(dev);
1370 	if (ret)
1371 		return ret;
1372 
1373 	ret = pci_save_state(pdev);
1374 	if (ret)
1375 		return ret;
1376 
1377 	pci_wake_from_d3(pdev, true);
1378 	pci_set_power_state(pdev, PCI_D3hot);
1379 	return 0;
1380 }
1381 
intel_eth_pci_resume(struct device * dev)1382 static int __maybe_unused intel_eth_pci_resume(struct device *dev)
1383 {
1384 	struct pci_dev *pdev = to_pci_dev(dev);
1385 	int ret;
1386 
1387 	pci_restore_state(pdev);
1388 	pci_set_power_state(pdev, PCI_D0);
1389 
1390 	ret = pcim_enable_device(pdev);
1391 	if (ret)
1392 		return ret;
1393 
1394 	pci_set_master(pdev);
1395 
1396 	return stmmac_resume(dev);
1397 }
1398 
1399 static SIMPLE_DEV_PM_OPS(intel_eth_pm_ops, intel_eth_pci_suspend,
1400 			 intel_eth_pci_resume);
1401 
1402 #define PCI_DEVICE_ID_INTEL_QUARK		0x0937
1403 #define PCI_DEVICE_ID_INTEL_EHL_RGMII1G		0x4b30
1404 #define PCI_DEVICE_ID_INTEL_EHL_SGMII1G		0x4b31
1405 #define PCI_DEVICE_ID_INTEL_EHL_SGMII2G5	0x4b32
1406 /* Intel(R) Programmable Services Engine (Intel(R) PSE) consist of 2 MAC
1407  * which are named PSE0 and PSE1
1408  */
1409 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_RGMII1G	0x4ba0
1410 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII1G	0x4ba1
1411 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII2G5	0x4ba2
1412 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_RGMII1G	0x4bb0
1413 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII1G	0x4bb1
1414 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII2G5	0x4bb2
1415 #define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_0	0x43ac
1416 #define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_1	0x43a2
1417 #define PCI_DEVICE_ID_INTEL_TGL_SGMII1G		0xa0ac
1418 #define PCI_DEVICE_ID_INTEL_ADLS_SGMII1G_0	0x7aac
1419 #define PCI_DEVICE_ID_INTEL_ADLS_SGMII1G_1	0x7aad
1420 #define PCI_DEVICE_ID_INTEL_ADLN_SGMII1G	0x54ac
1421 #define PCI_DEVICE_ID_INTEL_RPLP_SGMII1G	0x51ac
1422 
1423 static const struct pci_device_id intel_eth_pci_id_table[] = {
1424 	{ PCI_DEVICE_DATA(INTEL, QUARK, &quark_info) },
1425 	{ PCI_DEVICE_DATA(INTEL, EHL_RGMII1G, &ehl_rgmii1g_info) },
1426 	{ PCI_DEVICE_DATA(INTEL, EHL_SGMII1G, &ehl_sgmii1g_info) },
1427 	{ PCI_DEVICE_DATA(INTEL, EHL_SGMII2G5, &ehl_sgmii1g_info) },
1428 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_RGMII1G, &ehl_pse0_rgmii1g_info) },
1429 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII1G, &ehl_pse0_sgmii1g_info) },
1430 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII2G5, &ehl_pse0_sgmii1g_info) },
1431 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_RGMII1G, &ehl_pse1_rgmii1g_info) },
1432 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII1G, &ehl_pse1_sgmii1g_info) },
1433 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII2G5, &ehl_pse1_sgmii1g_info) },
1434 	{ PCI_DEVICE_DATA(INTEL, TGL_SGMII1G, &tgl_sgmii1g_phy0_info) },
1435 	{ PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_0, &tgl_sgmii1g_phy0_info) },
1436 	{ PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_1, &tgl_sgmii1g_phy1_info) },
1437 	{ PCI_DEVICE_DATA(INTEL, ADLS_SGMII1G_0, &adls_sgmii1g_phy0_info) },
1438 	{ PCI_DEVICE_DATA(INTEL, ADLS_SGMII1G_1, &adls_sgmii1g_phy1_info) },
1439 	{ PCI_DEVICE_DATA(INTEL, ADLN_SGMII1G, &adln_sgmii1g_phy0_info) },
1440 	{ PCI_DEVICE_DATA(INTEL, RPLP_SGMII1G, &adln_sgmii1g_phy0_info) },
1441 	{}
1442 };
1443 MODULE_DEVICE_TABLE(pci, intel_eth_pci_id_table);
1444 
1445 static struct pci_driver intel_eth_pci_driver = {
1446 	.name = "intel-eth-pci",
1447 	.id_table = intel_eth_pci_id_table,
1448 	.probe = intel_eth_pci_probe,
1449 	.remove = intel_eth_pci_remove,
1450 	.driver         = {
1451 		.pm     = &intel_eth_pm_ops,
1452 	},
1453 };
1454 
1455 module_pci_driver(intel_eth_pci_driver);
1456 
1457 MODULE_DESCRIPTION("INTEL 10/100/1000 Ethernet PCI driver");
1458 MODULE_AUTHOR("Voon Weifeng <weifeng.voon@intel.com>");
1459 MODULE_LICENSE("GPL v2");
1460