1 /* 2 * Copyright © 2006-2017 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/debugfs.h> 25 #include <linux/time.h> 26 27 #include <drm/drm_fixed.h> 28 29 #include "soc/intel_dram.h" 30 31 #include "hsw_ips.h" 32 #include "i915_drv.h" 33 #include "i915_reg.h" 34 #include "intel_atomic.h" 35 #include "intel_atomic_plane.h" 36 #include "intel_audio.h" 37 #include "intel_bw.h" 38 #include "intel_cdclk.h" 39 #include "intel_crtc.h" 40 #include "intel_de.h" 41 #include "intel_display_types.h" 42 #include "intel_mchbar_regs.h" 43 #include "intel_pci_config.h" 44 #include "intel_pcode.h" 45 #include "intel_psr.h" 46 #include "intel_vdsc.h" 47 #include "skl_watermark.h" 48 #include "skl_watermark_regs.h" 49 #include "vlv_dsi.h" 50 #include "vlv_sideband.h" 51 52 /** 53 * DOC: CDCLK / RAWCLK 54 * 55 * The display engine uses several different clocks to do its work. There 56 * are two main clocks involved that aren't directly related to the actual 57 * pixel clock or any symbol/bit clock of the actual output port. These 58 * are the core display clock (CDCLK) and RAWCLK. 59 * 60 * CDCLK clocks most of the display pipe logic, and thus its frequency 61 * must be high enough to support the rate at which pixels are flowing 62 * through the pipes. Downscaling must also be accounted as that increases 63 * the effective pixel rate. 64 * 65 * On several platforms the CDCLK frequency can be changed dynamically 66 * to minimize power consumption for a given display configuration. 67 * Typically changes to the CDCLK frequency require all the display pipes 68 * to be shut down while the frequency is being changed. 69 * 70 * On SKL+ the DMC will toggle the CDCLK off/on during DC5/6 entry/exit. 71 * DMC will not change the active CDCLK frequency however, so that part 72 * will still be performed by the driver directly. 73 * 74 * There are multiple components involved in the generation of the CDCLK 75 * frequency: 76 * 77 * - We have the CDCLK PLL, which generates an output clock based on a 78 * reference clock and a ratio parameter. 79 * - The CD2X Divider, which divides the output of the PLL based on a 80 * divisor selected from a set of pre-defined choices. 81 * - The CD2X Squasher, which further divides the output based on a 82 * waveform represented as a sequence of bits where each zero 83 * "squashes out" a clock cycle. 84 * - And, finally, a fixed divider that divides the output frequency by 2. 85 * 86 * As such, the resulting CDCLK frequency can be calculated with the 87 * following formula: 88 * 89 * cdclk = vco / cd2x_div / (sq_len / sq_div) / 2 90 * 91 * , where vco is the frequency generated by the PLL; cd2x_div 92 * represents the CD2X Divider; sq_len and sq_div are the bit length 93 * and the number of high bits for the CD2X Squasher waveform, respectively; 94 * and 2 represents the fixed divider. 95 * 96 * Note that some older platforms do not contain the CD2X Divider 97 * and/or CD2X Squasher, in which case we can ignore their respective 98 * factors in the formula above. 99 * 100 * Several methods exist to change the CDCLK frequency, which ones are 101 * supported depends on the platform: 102 * 103 * - Full PLL disable + re-enable with new VCO frequency. Pipes must be inactive. 104 * - CD2X divider update. Single pipe can be active as the divider update 105 * can be synchronized with the pipe's start of vblank. 106 * - Crawl the PLL smoothly to the new VCO frequency. Pipes can be active. 107 * - Squash waveform update. Pipes can be active. 108 * - Crawl and squash can also be done back to back. Pipes can be active. 109 * 110 * RAWCLK is a fixed frequency clock, often used by various auxiliary 111 * blocks such as AUX CH or backlight PWM. Hence the only thing we 112 * really need to know about RAWCLK is its frequency so that various 113 * dividers can be programmed correctly. 114 */ 115 116 struct intel_cdclk_funcs { 117 void (*get_cdclk)(struct intel_display *display, 118 struct intel_cdclk_config *cdclk_config); 119 void (*set_cdclk)(struct intel_display *display, 120 const struct intel_cdclk_config *cdclk_config, 121 enum pipe pipe); 122 int (*modeset_calc_cdclk)(struct intel_atomic_state *state); 123 u8 (*calc_voltage_level)(int cdclk); 124 }; 125 126 void intel_cdclk_get_cdclk(struct intel_display *display, 127 struct intel_cdclk_config *cdclk_config) 128 { 129 display->funcs.cdclk->get_cdclk(display, cdclk_config); 130 } 131 132 static void intel_cdclk_set_cdclk(struct intel_display *display, 133 const struct intel_cdclk_config *cdclk_config, 134 enum pipe pipe) 135 { 136 display->funcs.cdclk->set_cdclk(display, cdclk_config, pipe); 137 } 138 139 static int intel_cdclk_modeset_calc_cdclk(struct intel_atomic_state *state) 140 { 141 struct intel_display *display = to_intel_display(state); 142 143 return display->funcs.cdclk->modeset_calc_cdclk(state); 144 } 145 146 static u8 intel_cdclk_calc_voltage_level(struct intel_display *display, 147 int cdclk) 148 { 149 return display->funcs.cdclk->calc_voltage_level(cdclk); 150 } 151 152 static void fixed_133mhz_get_cdclk(struct intel_display *display, 153 struct intel_cdclk_config *cdclk_config) 154 { 155 cdclk_config->cdclk = 133333; 156 } 157 158 static void fixed_200mhz_get_cdclk(struct intel_display *display, 159 struct intel_cdclk_config *cdclk_config) 160 { 161 cdclk_config->cdclk = 200000; 162 } 163 164 static void fixed_266mhz_get_cdclk(struct intel_display *display, 165 struct intel_cdclk_config *cdclk_config) 166 { 167 cdclk_config->cdclk = 266667; 168 } 169 170 static void fixed_333mhz_get_cdclk(struct intel_display *display, 171 struct intel_cdclk_config *cdclk_config) 172 { 173 cdclk_config->cdclk = 333333; 174 } 175 176 static void fixed_400mhz_get_cdclk(struct intel_display *display, 177 struct intel_cdclk_config *cdclk_config) 178 { 179 cdclk_config->cdclk = 400000; 180 } 181 182 static void fixed_450mhz_get_cdclk(struct intel_display *display, 183 struct intel_cdclk_config *cdclk_config) 184 { 185 cdclk_config->cdclk = 450000; 186 } 187 188 static void i85x_get_cdclk(struct intel_display *display, 189 struct intel_cdclk_config *cdclk_config) 190 { 191 struct pci_dev *pdev = to_pci_dev(display->drm->dev); 192 u16 hpllcc = 0; 193 194 /* 195 * 852GM/852GMV only supports 133 MHz and the HPLLCC 196 * encoding is different :( 197 * FIXME is this the right way to detect 852GM/852GMV? 198 */ 199 if (pdev->revision == 0x1) { 200 cdclk_config->cdclk = 133333; 201 return; 202 } 203 204 pci_bus_read_config_word(pdev->bus, 205 PCI_DEVFN(0, 3), HPLLCC, &hpllcc); 206 207 /* Assume that the hardware is in the high speed state. This 208 * should be the default. 209 */ 210 switch (hpllcc & GC_CLOCK_CONTROL_MASK) { 211 case GC_CLOCK_133_200: 212 case GC_CLOCK_133_200_2: 213 case GC_CLOCK_100_200: 214 cdclk_config->cdclk = 200000; 215 break; 216 case GC_CLOCK_166_250: 217 cdclk_config->cdclk = 250000; 218 break; 219 case GC_CLOCK_100_133: 220 cdclk_config->cdclk = 133333; 221 break; 222 case GC_CLOCK_133_266: 223 case GC_CLOCK_133_266_2: 224 case GC_CLOCK_166_266: 225 cdclk_config->cdclk = 266667; 226 break; 227 } 228 } 229 230 static void i915gm_get_cdclk(struct intel_display *display, 231 struct intel_cdclk_config *cdclk_config) 232 { 233 struct pci_dev *pdev = to_pci_dev(display->drm->dev); 234 u16 gcfgc = 0; 235 236 pci_read_config_word(pdev, GCFGC, &gcfgc); 237 238 if (gcfgc & GC_LOW_FREQUENCY_ENABLE) { 239 cdclk_config->cdclk = 133333; 240 return; 241 } 242 243 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { 244 case GC_DISPLAY_CLOCK_333_320_MHZ: 245 cdclk_config->cdclk = 333333; 246 break; 247 default: 248 case GC_DISPLAY_CLOCK_190_200_MHZ: 249 cdclk_config->cdclk = 190000; 250 break; 251 } 252 } 253 254 static void i945gm_get_cdclk(struct intel_display *display, 255 struct intel_cdclk_config *cdclk_config) 256 { 257 struct pci_dev *pdev = to_pci_dev(display->drm->dev); 258 u16 gcfgc = 0; 259 260 pci_read_config_word(pdev, GCFGC, &gcfgc); 261 262 if (gcfgc & GC_LOW_FREQUENCY_ENABLE) { 263 cdclk_config->cdclk = 133333; 264 return; 265 } 266 267 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { 268 case GC_DISPLAY_CLOCK_333_320_MHZ: 269 cdclk_config->cdclk = 320000; 270 break; 271 default: 272 case GC_DISPLAY_CLOCK_190_200_MHZ: 273 cdclk_config->cdclk = 200000; 274 break; 275 } 276 } 277 278 static unsigned int intel_hpll_vco(struct intel_display *display) 279 { 280 static const unsigned int blb_vco[8] = { 281 [0] = 3200000, 282 [1] = 4000000, 283 [2] = 5333333, 284 [3] = 4800000, 285 [4] = 6400000, 286 }; 287 static const unsigned int pnv_vco[8] = { 288 [0] = 3200000, 289 [1] = 4000000, 290 [2] = 5333333, 291 [3] = 4800000, 292 [4] = 2666667, 293 }; 294 static const unsigned int cl_vco[8] = { 295 [0] = 3200000, 296 [1] = 4000000, 297 [2] = 5333333, 298 [3] = 6400000, 299 [4] = 3333333, 300 [5] = 3566667, 301 [6] = 4266667, 302 }; 303 static const unsigned int elk_vco[8] = { 304 [0] = 3200000, 305 [1] = 4000000, 306 [2] = 5333333, 307 [3] = 4800000, 308 }; 309 static const unsigned int ctg_vco[8] = { 310 [0] = 3200000, 311 [1] = 4000000, 312 [2] = 5333333, 313 [3] = 6400000, 314 [4] = 2666667, 315 [5] = 4266667, 316 }; 317 const unsigned int *vco_table; 318 unsigned int vco; 319 u8 tmp = 0; 320 321 /* FIXME other chipsets? */ 322 if (display->platform.gm45) 323 vco_table = ctg_vco; 324 else if (display->platform.g45) 325 vco_table = elk_vco; 326 else if (display->platform.i965gm) 327 vco_table = cl_vco; 328 else if (display->platform.pineview) 329 vco_table = pnv_vco; 330 else if (display->platform.g33) 331 vco_table = blb_vco; 332 else 333 return 0; 334 335 tmp = intel_de_read(display, display->platform.pineview || 336 display->platform.mobile ? HPLLVCO_MOBILE : HPLLVCO); 337 338 vco = vco_table[tmp & 0x7]; 339 if (vco == 0) 340 drm_err(display->drm, "Bad HPLL VCO (HPLLVCO=0x%02x)\n", 341 tmp); 342 else 343 drm_dbg_kms(display->drm, "HPLL VCO %u kHz\n", vco); 344 345 return vco; 346 } 347 348 static void g33_get_cdclk(struct intel_display *display, 349 struct intel_cdclk_config *cdclk_config) 350 { 351 struct pci_dev *pdev = to_pci_dev(display->drm->dev); 352 static const u8 div_3200[] = { 12, 10, 8, 7, 5, 16 }; 353 static const u8 div_4000[] = { 14, 12, 10, 8, 6, 20 }; 354 static const u8 div_4800[] = { 20, 14, 12, 10, 8, 24 }; 355 static const u8 div_5333[] = { 20, 16, 12, 12, 8, 28 }; 356 const u8 *div_table; 357 unsigned int cdclk_sel; 358 u16 tmp = 0; 359 360 cdclk_config->vco = intel_hpll_vco(display); 361 362 pci_read_config_word(pdev, GCFGC, &tmp); 363 364 cdclk_sel = (tmp >> 4) & 0x7; 365 366 if (cdclk_sel >= ARRAY_SIZE(div_3200)) 367 goto fail; 368 369 switch (cdclk_config->vco) { 370 case 3200000: 371 div_table = div_3200; 372 break; 373 case 4000000: 374 div_table = div_4000; 375 break; 376 case 4800000: 377 div_table = div_4800; 378 break; 379 case 5333333: 380 div_table = div_5333; 381 break; 382 default: 383 goto fail; 384 } 385 386 cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco, 387 div_table[cdclk_sel]); 388 return; 389 390 fail: 391 drm_err(display->drm, 392 "Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", 393 cdclk_config->vco, tmp); 394 cdclk_config->cdclk = 190476; 395 } 396 397 static void pnv_get_cdclk(struct intel_display *display, 398 struct intel_cdclk_config *cdclk_config) 399 { 400 struct pci_dev *pdev = to_pci_dev(display->drm->dev); 401 u16 gcfgc = 0; 402 403 pci_read_config_word(pdev, GCFGC, &gcfgc); 404 405 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { 406 case GC_DISPLAY_CLOCK_267_MHZ_PNV: 407 cdclk_config->cdclk = 266667; 408 break; 409 case GC_DISPLAY_CLOCK_333_MHZ_PNV: 410 cdclk_config->cdclk = 333333; 411 break; 412 case GC_DISPLAY_CLOCK_444_MHZ_PNV: 413 cdclk_config->cdclk = 444444; 414 break; 415 case GC_DISPLAY_CLOCK_200_MHZ_PNV: 416 cdclk_config->cdclk = 200000; 417 break; 418 default: 419 drm_err(display->drm, 420 "Unknown pnv display core clock 0x%04x\n", gcfgc); 421 fallthrough; 422 case GC_DISPLAY_CLOCK_133_MHZ_PNV: 423 cdclk_config->cdclk = 133333; 424 break; 425 case GC_DISPLAY_CLOCK_167_MHZ_PNV: 426 cdclk_config->cdclk = 166667; 427 break; 428 } 429 } 430 431 static void i965gm_get_cdclk(struct intel_display *display, 432 struct intel_cdclk_config *cdclk_config) 433 { 434 struct pci_dev *pdev = to_pci_dev(display->drm->dev); 435 static const u8 div_3200[] = { 16, 10, 8 }; 436 static const u8 div_4000[] = { 20, 12, 10 }; 437 static const u8 div_5333[] = { 24, 16, 14 }; 438 const u8 *div_table; 439 unsigned int cdclk_sel; 440 u16 tmp = 0; 441 442 cdclk_config->vco = intel_hpll_vco(display); 443 444 pci_read_config_word(pdev, GCFGC, &tmp); 445 446 cdclk_sel = ((tmp >> 8) & 0x1f) - 1; 447 448 if (cdclk_sel >= ARRAY_SIZE(div_3200)) 449 goto fail; 450 451 switch (cdclk_config->vco) { 452 case 3200000: 453 div_table = div_3200; 454 break; 455 case 4000000: 456 div_table = div_4000; 457 break; 458 case 5333333: 459 div_table = div_5333; 460 break; 461 default: 462 goto fail; 463 } 464 465 cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco, 466 div_table[cdclk_sel]); 467 return; 468 469 fail: 470 drm_err(display->drm, 471 "Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", 472 cdclk_config->vco, tmp); 473 cdclk_config->cdclk = 200000; 474 } 475 476 static void gm45_get_cdclk(struct intel_display *display, 477 struct intel_cdclk_config *cdclk_config) 478 { 479 struct pci_dev *pdev = to_pci_dev(display->drm->dev); 480 unsigned int cdclk_sel; 481 u16 tmp = 0; 482 483 cdclk_config->vco = intel_hpll_vco(display); 484 485 pci_read_config_word(pdev, GCFGC, &tmp); 486 487 cdclk_sel = (tmp >> 12) & 0x1; 488 489 switch (cdclk_config->vco) { 490 case 2666667: 491 case 4000000: 492 case 5333333: 493 cdclk_config->cdclk = cdclk_sel ? 333333 : 222222; 494 break; 495 case 3200000: 496 cdclk_config->cdclk = cdclk_sel ? 320000 : 228571; 497 break; 498 default: 499 drm_err(display->drm, 500 "Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", 501 cdclk_config->vco, tmp); 502 cdclk_config->cdclk = 222222; 503 break; 504 } 505 } 506 507 static void hsw_get_cdclk(struct intel_display *display, 508 struct intel_cdclk_config *cdclk_config) 509 { 510 u32 lcpll = intel_de_read(display, LCPLL_CTL); 511 u32 freq = lcpll & LCPLL_CLK_FREQ_MASK; 512 513 if (lcpll & LCPLL_CD_SOURCE_FCLK) 514 cdclk_config->cdclk = 800000; 515 else if (intel_de_read(display, FUSE_STRAP) & HSW_CDCLK_LIMIT) 516 cdclk_config->cdclk = 450000; 517 else if (freq == LCPLL_CLK_FREQ_450) 518 cdclk_config->cdclk = 450000; 519 else if (display->platform.haswell_ult) 520 cdclk_config->cdclk = 337500; 521 else 522 cdclk_config->cdclk = 540000; 523 } 524 525 static int vlv_calc_cdclk(struct intel_display *display, int min_cdclk) 526 { 527 struct drm_i915_private *dev_priv = to_i915(display->drm); 528 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 529 333333 : 320000; 530 531 /* 532 * We seem to get an unstable or solid color picture at 200MHz. 533 * Not sure what's wrong. For now use 200MHz only when all pipes 534 * are off. 535 */ 536 if (display->platform.valleyview && min_cdclk > freq_320) 537 return 400000; 538 else if (min_cdclk > 266667) 539 return freq_320; 540 else if (min_cdclk > 0) 541 return 266667; 542 else 543 return 200000; 544 } 545 546 static u8 vlv_calc_voltage_level(struct intel_display *display, int cdclk) 547 { 548 struct drm_i915_private *dev_priv = to_i915(display->drm); 549 550 if (display->platform.valleyview) { 551 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */ 552 return 2; 553 else if (cdclk >= 266667) 554 return 1; 555 else 556 return 0; 557 } else { 558 /* 559 * Specs are full of misinformation, but testing on actual 560 * hardware has shown that we just need to write the desired 561 * CCK divider into the Punit register. 562 */ 563 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1; 564 } 565 } 566 567 static void vlv_get_cdclk(struct intel_display *display, 568 struct intel_cdclk_config *cdclk_config) 569 { 570 struct drm_i915_private *dev_priv = to_i915(display->drm); 571 u32 val; 572 573 vlv_iosf_sb_get(dev_priv, 574 BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT)); 575 576 cdclk_config->vco = vlv_get_hpll_vco(dev_priv); 577 cdclk_config->cdclk = vlv_get_cck_clock(dev_priv, "cdclk", 578 CCK_DISPLAY_CLOCK_CONTROL, 579 cdclk_config->vco); 580 581 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); 582 583 vlv_iosf_sb_put(dev_priv, 584 BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT)); 585 586 if (display->platform.valleyview) 587 cdclk_config->voltage_level = (val & DSPFREQGUAR_MASK) >> 588 DSPFREQGUAR_SHIFT; 589 else 590 cdclk_config->voltage_level = (val & DSPFREQGUAR_MASK_CHV) >> 591 DSPFREQGUAR_SHIFT_CHV; 592 } 593 594 static void vlv_program_pfi_credits(struct intel_display *display) 595 { 596 struct drm_i915_private *dev_priv = to_i915(display->drm); 597 unsigned int credits, default_credits; 598 599 if (display->platform.cherryview) 600 default_credits = PFI_CREDIT(12); 601 else 602 default_credits = PFI_CREDIT(8); 603 604 if (display->cdclk.hw.cdclk >= dev_priv->czclk_freq) { 605 /* CHV suggested value is 31 or 63 */ 606 if (display->platform.cherryview) 607 credits = PFI_CREDIT_63; 608 else 609 credits = PFI_CREDIT(15); 610 } else { 611 credits = default_credits; 612 } 613 614 /* 615 * WA - write default credits before re-programming 616 * FIXME: should we also set the resend bit here? 617 */ 618 intel_de_write(display, GCI_CONTROL, 619 VGA_FAST_MODE_DISABLE | default_credits); 620 621 intel_de_write(display, GCI_CONTROL, 622 VGA_FAST_MODE_DISABLE | credits | PFI_CREDIT_RESEND); 623 624 /* 625 * FIXME is this guaranteed to clear 626 * immediately or should we poll for it? 627 */ 628 drm_WARN_ON(display->drm, 629 intel_de_read(display, GCI_CONTROL) & PFI_CREDIT_RESEND); 630 } 631 632 static void vlv_set_cdclk(struct intel_display *display, 633 const struct intel_cdclk_config *cdclk_config, 634 enum pipe pipe) 635 { 636 struct drm_i915_private *dev_priv = to_i915(display->drm); 637 int cdclk = cdclk_config->cdclk; 638 u32 val, cmd = cdclk_config->voltage_level; 639 intel_wakeref_t wakeref; 640 641 switch (cdclk) { 642 case 400000: 643 case 333333: 644 case 320000: 645 case 266667: 646 case 200000: 647 break; 648 default: 649 MISSING_CASE(cdclk); 650 return; 651 } 652 653 /* There are cases where we can end up here with power domains 654 * off and a CDCLK frequency other than the minimum, like when 655 * issuing a modeset without actually changing any display after 656 * a system suspend. So grab the display core domain, which covers 657 * the HW blocks needed for the following programming. 658 */ 659 wakeref = intel_display_power_get(display, POWER_DOMAIN_DISPLAY_CORE); 660 661 vlv_iosf_sb_get(dev_priv, 662 BIT(VLV_IOSF_SB_CCK) | 663 BIT(VLV_IOSF_SB_BUNIT) | 664 BIT(VLV_IOSF_SB_PUNIT)); 665 666 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); 667 val &= ~DSPFREQGUAR_MASK; 668 val |= (cmd << DSPFREQGUAR_SHIFT); 669 vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val); 670 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) & 671 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT), 672 50)) { 673 drm_err(display->drm, 674 "timed out waiting for CDclk change\n"); 675 } 676 677 if (cdclk == 400000) { 678 u32 divider; 679 680 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, 681 cdclk) - 1; 682 683 /* adjust cdclk divider */ 684 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL); 685 val &= ~CCK_FREQUENCY_VALUES; 686 val |= divider; 687 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val); 688 689 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) & 690 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT), 691 50)) 692 drm_err(display->drm, 693 "timed out waiting for CDclk change\n"); 694 } 695 696 /* adjust self-refresh exit latency value */ 697 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC); 698 val &= ~0x7f; 699 700 /* 701 * For high bandwidth configs, we set a higher latency in the bunit 702 * so that the core display fetch happens in time to avoid underruns. 703 */ 704 if (cdclk == 400000) 705 val |= 4500 / 250; /* 4.5 usec */ 706 else 707 val |= 3000 / 250; /* 3.0 usec */ 708 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val); 709 710 vlv_iosf_sb_put(dev_priv, 711 BIT(VLV_IOSF_SB_CCK) | 712 BIT(VLV_IOSF_SB_BUNIT) | 713 BIT(VLV_IOSF_SB_PUNIT)); 714 715 intel_update_cdclk(display); 716 717 vlv_program_pfi_credits(display); 718 719 intel_display_power_put(display, POWER_DOMAIN_DISPLAY_CORE, wakeref); 720 } 721 722 static void chv_set_cdclk(struct intel_display *display, 723 const struct intel_cdclk_config *cdclk_config, 724 enum pipe pipe) 725 { 726 struct drm_i915_private *dev_priv = to_i915(display->drm); 727 int cdclk = cdclk_config->cdclk; 728 u32 val, cmd = cdclk_config->voltage_level; 729 intel_wakeref_t wakeref; 730 731 switch (cdclk) { 732 case 333333: 733 case 320000: 734 case 266667: 735 case 200000: 736 break; 737 default: 738 MISSING_CASE(cdclk); 739 return; 740 } 741 742 /* There are cases where we can end up here with power domains 743 * off and a CDCLK frequency other than the minimum, like when 744 * issuing a modeset without actually changing any display after 745 * a system suspend. So grab the display core domain, which covers 746 * the HW blocks needed for the following programming. 747 */ 748 wakeref = intel_display_power_get(display, POWER_DOMAIN_DISPLAY_CORE); 749 750 vlv_punit_get(dev_priv); 751 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); 752 val &= ~DSPFREQGUAR_MASK_CHV; 753 val |= (cmd << DSPFREQGUAR_SHIFT_CHV); 754 vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val); 755 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) & 756 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV), 757 50)) { 758 drm_err(display->drm, 759 "timed out waiting for CDclk change\n"); 760 } 761 762 vlv_punit_put(dev_priv); 763 764 intel_update_cdclk(display); 765 766 vlv_program_pfi_credits(display); 767 768 intel_display_power_put(display, POWER_DOMAIN_DISPLAY_CORE, wakeref); 769 } 770 771 static int bdw_calc_cdclk(int min_cdclk) 772 { 773 if (min_cdclk > 540000) 774 return 675000; 775 else if (min_cdclk > 450000) 776 return 540000; 777 else if (min_cdclk > 337500) 778 return 450000; 779 else 780 return 337500; 781 } 782 783 static u8 bdw_calc_voltage_level(int cdclk) 784 { 785 switch (cdclk) { 786 default: 787 case 337500: 788 return 2; 789 case 450000: 790 return 0; 791 case 540000: 792 return 1; 793 case 675000: 794 return 3; 795 } 796 } 797 798 static void bdw_get_cdclk(struct intel_display *display, 799 struct intel_cdclk_config *cdclk_config) 800 { 801 u32 lcpll = intel_de_read(display, LCPLL_CTL); 802 u32 freq = lcpll & LCPLL_CLK_FREQ_MASK; 803 804 if (lcpll & LCPLL_CD_SOURCE_FCLK) 805 cdclk_config->cdclk = 800000; 806 else if (intel_de_read(display, FUSE_STRAP) & HSW_CDCLK_LIMIT) 807 cdclk_config->cdclk = 450000; 808 else if (freq == LCPLL_CLK_FREQ_450) 809 cdclk_config->cdclk = 450000; 810 else if (freq == LCPLL_CLK_FREQ_54O_BDW) 811 cdclk_config->cdclk = 540000; 812 else if (freq == LCPLL_CLK_FREQ_337_5_BDW) 813 cdclk_config->cdclk = 337500; 814 else 815 cdclk_config->cdclk = 675000; 816 817 /* 818 * Can't read this out :( Let's assume it's 819 * at least what the CDCLK frequency requires. 820 */ 821 cdclk_config->voltage_level = 822 bdw_calc_voltage_level(cdclk_config->cdclk); 823 } 824 825 static u32 bdw_cdclk_freq_sel(int cdclk) 826 { 827 switch (cdclk) { 828 default: 829 MISSING_CASE(cdclk); 830 fallthrough; 831 case 337500: 832 return LCPLL_CLK_FREQ_337_5_BDW; 833 case 450000: 834 return LCPLL_CLK_FREQ_450; 835 case 540000: 836 return LCPLL_CLK_FREQ_54O_BDW; 837 case 675000: 838 return LCPLL_CLK_FREQ_675_BDW; 839 } 840 } 841 842 static void bdw_set_cdclk(struct intel_display *display, 843 const struct intel_cdclk_config *cdclk_config, 844 enum pipe pipe) 845 { 846 struct drm_i915_private *dev_priv = to_i915(display->drm); 847 int cdclk = cdclk_config->cdclk; 848 int ret; 849 850 if (drm_WARN(display->drm, 851 (intel_de_read(display, LCPLL_CTL) & 852 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK | 853 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE | 854 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW | 855 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK, 856 "trying to change cdclk frequency with cdclk not enabled\n")) 857 return; 858 859 ret = snb_pcode_write(&dev_priv->uncore, BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0); 860 if (ret) { 861 drm_err(display->drm, 862 "failed to inform pcode about cdclk change\n"); 863 return; 864 } 865 866 intel_de_rmw(display, LCPLL_CTL, 867 0, LCPLL_CD_SOURCE_FCLK); 868 869 /* 870 * According to the spec, it should be enough to poll for this 1 us. 871 * However, extensive testing shows that this can take longer. 872 */ 873 if (wait_for_us(intel_de_read(display, LCPLL_CTL) & 874 LCPLL_CD_SOURCE_FCLK_DONE, 100)) 875 drm_err(display->drm, "Switching to FCLK failed\n"); 876 877 intel_de_rmw(display, LCPLL_CTL, 878 LCPLL_CLK_FREQ_MASK, bdw_cdclk_freq_sel(cdclk)); 879 880 intel_de_rmw(display, LCPLL_CTL, 881 LCPLL_CD_SOURCE_FCLK, 0); 882 883 if (wait_for_us((intel_de_read(display, LCPLL_CTL) & 884 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1)) 885 drm_err(display->drm, "Switching back to LCPLL failed\n"); 886 887 snb_pcode_write(&dev_priv->uncore, HSW_PCODE_DE_WRITE_FREQ_REQ, 888 cdclk_config->voltage_level); 889 890 intel_de_write(display, CDCLK_FREQ, 891 DIV_ROUND_CLOSEST(cdclk, 1000) - 1); 892 893 intel_update_cdclk(display); 894 } 895 896 static int skl_calc_cdclk(int min_cdclk, int vco) 897 { 898 if (vco == 8640000) { 899 if (min_cdclk > 540000) 900 return 617143; 901 else if (min_cdclk > 432000) 902 return 540000; 903 else if (min_cdclk > 308571) 904 return 432000; 905 else 906 return 308571; 907 } else { 908 if (min_cdclk > 540000) 909 return 675000; 910 else if (min_cdclk > 450000) 911 return 540000; 912 else if (min_cdclk > 337500) 913 return 450000; 914 else 915 return 337500; 916 } 917 } 918 919 static u8 skl_calc_voltage_level(int cdclk) 920 { 921 if (cdclk > 540000) 922 return 3; 923 else if (cdclk > 450000) 924 return 2; 925 else if (cdclk > 337500) 926 return 1; 927 else 928 return 0; 929 } 930 931 static void skl_dpll0_update(struct intel_display *display, 932 struct intel_cdclk_config *cdclk_config) 933 { 934 u32 val; 935 936 cdclk_config->ref = 24000; 937 cdclk_config->vco = 0; 938 939 val = intel_de_read(display, LCPLL1_CTL); 940 if ((val & LCPLL_PLL_ENABLE) == 0) 941 return; 942 943 if (drm_WARN_ON(display->drm, (val & LCPLL_PLL_LOCK) == 0)) 944 return; 945 946 val = intel_de_read(display, DPLL_CTRL1); 947 948 if (drm_WARN_ON(display->drm, 949 (val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | 950 DPLL_CTRL1_SSC(SKL_DPLL0) | 951 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) != 952 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) 953 return; 954 955 switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) { 956 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0): 957 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0): 958 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0): 959 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0): 960 cdclk_config->vco = 8100000; 961 break; 962 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0): 963 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0): 964 cdclk_config->vco = 8640000; 965 break; 966 default: 967 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)); 968 break; 969 } 970 } 971 972 static void skl_get_cdclk(struct intel_display *display, 973 struct intel_cdclk_config *cdclk_config) 974 { 975 u32 cdctl; 976 977 skl_dpll0_update(display, cdclk_config); 978 979 cdclk_config->cdclk = cdclk_config->bypass = cdclk_config->ref; 980 981 if (cdclk_config->vco == 0) 982 goto out; 983 984 cdctl = intel_de_read(display, CDCLK_CTL); 985 986 if (cdclk_config->vco == 8640000) { 987 switch (cdctl & CDCLK_FREQ_SEL_MASK) { 988 case CDCLK_FREQ_450_432: 989 cdclk_config->cdclk = 432000; 990 break; 991 case CDCLK_FREQ_337_308: 992 cdclk_config->cdclk = 308571; 993 break; 994 case CDCLK_FREQ_540: 995 cdclk_config->cdclk = 540000; 996 break; 997 case CDCLK_FREQ_675_617: 998 cdclk_config->cdclk = 617143; 999 break; 1000 default: 1001 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK); 1002 break; 1003 } 1004 } else { 1005 switch (cdctl & CDCLK_FREQ_SEL_MASK) { 1006 case CDCLK_FREQ_450_432: 1007 cdclk_config->cdclk = 450000; 1008 break; 1009 case CDCLK_FREQ_337_308: 1010 cdclk_config->cdclk = 337500; 1011 break; 1012 case CDCLK_FREQ_540: 1013 cdclk_config->cdclk = 540000; 1014 break; 1015 case CDCLK_FREQ_675_617: 1016 cdclk_config->cdclk = 675000; 1017 break; 1018 default: 1019 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK); 1020 break; 1021 } 1022 } 1023 1024 out: 1025 /* 1026 * Can't read this out :( Let's assume it's 1027 * at least what the CDCLK frequency requires. 1028 */ 1029 cdclk_config->voltage_level = 1030 skl_calc_voltage_level(cdclk_config->cdclk); 1031 } 1032 1033 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */ 1034 static int skl_cdclk_decimal(int cdclk) 1035 { 1036 return DIV_ROUND_CLOSEST(cdclk - 1000, 500); 1037 } 1038 1039 static void skl_set_preferred_cdclk_vco(struct intel_display *display, int vco) 1040 { 1041 bool changed = display->cdclk.skl_preferred_vco_freq != vco; 1042 1043 display->cdclk.skl_preferred_vco_freq = vco; 1044 1045 if (changed) 1046 intel_update_max_cdclk(display); 1047 } 1048 1049 static u32 skl_dpll0_link_rate(struct intel_display *display, int vco) 1050 { 1051 drm_WARN_ON(display->drm, vco != 8100000 && vco != 8640000); 1052 1053 /* 1054 * We always enable DPLL0 with the lowest link rate possible, but still 1055 * taking into account the VCO required to operate the eDP panel at the 1056 * desired frequency. The usual DP link rates operate with a VCO of 1057 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640. 1058 * The modeset code is responsible for the selection of the exact link 1059 * rate later on, with the constraint of choosing a frequency that 1060 * works with vco. 1061 */ 1062 if (vco == 8640000) 1063 return DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0); 1064 else 1065 return DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0); 1066 } 1067 1068 static void skl_dpll0_enable(struct intel_display *display, int vco) 1069 { 1070 intel_de_rmw(display, DPLL_CTRL1, 1071 DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | 1072 DPLL_CTRL1_SSC(SKL_DPLL0) | 1073 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0), 1074 DPLL_CTRL1_OVERRIDE(SKL_DPLL0) | 1075 skl_dpll0_link_rate(display, vco)); 1076 intel_de_posting_read(display, DPLL_CTRL1); 1077 1078 intel_de_rmw(display, LCPLL1_CTL, 1079 0, LCPLL_PLL_ENABLE); 1080 1081 if (intel_de_wait_for_set(display, LCPLL1_CTL, LCPLL_PLL_LOCK, 5)) 1082 drm_err(display->drm, "DPLL0 not locked\n"); 1083 1084 display->cdclk.hw.vco = vco; 1085 1086 /* We'll want to keep using the current vco from now on. */ 1087 skl_set_preferred_cdclk_vco(display, vco); 1088 } 1089 1090 static void skl_dpll0_disable(struct intel_display *display) 1091 { 1092 intel_de_rmw(display, LCPLL1_CTL, 1093 LCPLL_PLL_ENABLE, 0); 1094 1095 if (intel_de_wait_for_clear(display, LCPLL1_CTL, LCPLL_PLL_LOCK, 1)) 1096 drm_err(display->drm, "Couldn't disable DPLL0\n"); 1097 1098 display->cdclk.hw.vco = 0; 1099 } 1100 1101 static u32 skl_cdclk_freq_sel(struct intel_display *display, 1102 int cdclk, int vco) 1103 { 1104 switch (cdclk) { 1105 default: 1106 drm_WARN_ON(display->drm, 1107 cdclk != display->cdclk.hw.bypass); 1108 drm_WARN_ON(display->drm, vco != 0); 1109 fallthrough; 1110 case 308571: 1111 case 337500: 1112 return CDCLK_FREQ_337_308; 1113 case 450000: 1114 case 432000: 1115 return CDCLK_FREQ_450_432; 1116 case 540000: 1117 return CDCLK_FREQ_540; 1118 case 617143: 1119 case 675000: 1120 return CDCLK_FREQ_675_617; 1121 } 1122 } 1123 1124 static void skl_set_cdclk(struct intel_display *display, 1125 const struct intel_cdclk_config *cdclk_config, 1126 enum pipe pipe) 1127 { 1128 struct drm_i915_private *dev_priv = to_i915(display->drm); 1129 int cdclk = cdclk_config->cdclk; 1130 int vco = cdclk_config->vco; 1131 u32 freq_select, cdclk_ctl; 1132 int ret; 1133 1134 /* 1135 * Based on WA#1183 CDCLK rates 308 and 617MHz CDCLK rates are 1136 * unsupported on SKL. In theory this should never happen since only 1137 * the eDP1.4 2.16 and 4.32Gbps rates require it, but eDP1.4 is not 1138 * supported on SKL either, see the above WA. WARN whenever trying to 1139 * use the corresponding VCO freq as that always leads to using the 1140 * minimum 308MHz CDCLK. 1141 */ 1142 drm_WARN_ON_ONCE(display->drm, 1143 display->platform.skylake && vco == 8640000); 1144 1145 ret = skl_pcode_request(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL, 1146 SKL_CDCLK_PREPARE_FOR_CHANGE, 1147 SKL_CDCLK_READY_FOR_CHANGE, 1148 SKL_CDCLK_READY_FOR_CHANGE, 3); 1149 if (ret) { 1150 drm_err(display->drm, 1151 "Failed to inform PCU about cdclk change (%d)\n", ret); 1152 return; 1153 } 1154 1155 freq_select = skl_cdclk_freq_sel(display, cdclk, vco); 1156 1157 if (display->cdclk.hw.vco != 0 && 1158 display->cdclk.hw.vco != vco) 1159 skl_dpll0_disable(display); 1160 1161 cdclk_ctl = intel_de_read(display, CDCLK_CTL); 1162 1163 if (display->cdclk.hw.vco != vco) { 1164 /* Wa Display #1183: skl,kbl,cfl */ 1165 cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK); 1166 cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk); 1167 intel_de_write(display, CDCLK_CTL, cdclk_ctl); 1168 } 1169 1170 /* Wa Display #1183: skl,kbl,cfl */ 1171 cdclk_ctl |= CDCLK_DIVMUX_CD_OVERRIDE; 1172 intel_de_write(display, CDCLK_CTL, cdclk_ctl); 1173 intel_de_posting_read(display, CDCLK_CTL); 1174 1175 if (display->cdclk.hw.vco != vco) 1176 skl_dpll0_enable(display, vco); 1177 1178 /* Wa Display #1183: skl,kbl,cfl */ 1179 cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK); 1180 intel_de_write(display, CDCLK_CTL, cdclk_ctl); 1181 1182 cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk); 1183 intel_de_write(display, CDCLK_CTL, cdclk_ctl); 1184 1185 /* Wa Display #1183: skl,kbl,cfl */ 1186 cdclk_ctl &= ~CDCLK_DIVMUX_CD_OVERRIDE; 1187 intel_de_write(display, CDCLK_CTL, cdclk_ctl); 1188 intel_de_posting_read(display, CDCLK_CTL); 1189 1190 /* inform PCU of the change */ 1191 snb_pcode_write(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL, 1192 cdclk_config->voltage_level); 1193 1194 intel_update_cdclk(display); 1195 } 1196 1197 static void skl_sanitize_cdclk(struct intel_display *display) 1198 { 1199 u32 cdctl, expected; 1200 1201 /* 1202 * check if the pre-os initialized the display 1203 * There is SWF18 scratchpad register defined which is set by the 1204 * pre-os which can be used by the OS drivers to check the status 1205 */ 1206 if ((intel_de_read(display, SWF_ILK(0x18)) & 0x00FFFFFF) == 0) 1207 goto sanitize; 1208 1209 intel_update_cdclk(display); 1210 intel_cdclk_dump_config(display, &display->cdclk.hw, "Current CDCLK"); 1211 1212 /* Is PLL enabled and locked ? */ 1213 if (display->cdclk.hw.vco == 0 || 1214 display->cdclk.hw.cdclk == display->cdclk.hw.bypass) 1215 goto sanitize; 1216 1217 /* DPLL okay; verify the cdclock 1218 * 1219 * Noticed in some instances that the freq selection is correct but 1220 * decimal part is programmed wrong from BIOS where pre-os does not 1221 * enable display. Verify the same as well. 1222 */ 1223 cdctl = intel_de_read(display, CDCLK_CTL); 1224 expected = (cdctl & CDCLK_FREQ_SEL_MASK) | 1225 skl_cdclk_decimal(display->cdclk.hw.cdclk); 1226 if (cdctl == expected) 1227 /* All well; nothing to sanitize */ 1228 return; 1229 1230 sanitize: 1231 drm_dbg_kms(display->drm, "Sanitizing cdclk programmed by pre-os\n"); 1232 1233 /* force cdclk programming */ 1234 display->cdclk.hw.cdclk = 0; 1235 /* force full PLL disable + enable */ 1236 display->cdclk.hw.vco = ~0; 1237 } 1238 1239 static void skl_cdclk_init_hw(struct intel_display *display) 1240 { 1241 struct intel_cdclk_config cdclk_config; 1242 1243 skl_sanitize_cdclk(display); 1244 1245 if (display->cdclk.hw.cdclk != 0 && 1246 display->cdclk.hw.vco != 0) { 1247 /* 1248 * Use the current vco as our initial 1249 * guess as to what the preferred vco is. 1250 */ 1251 if (display->cdclk.skl_preferred_vco_freq == 0) 1252 skl_set_preferred_cdclk_vco(display, 1253 display->cdclk.hw.vco); 1254 return; 1255 } 1256 1257 cdclk_config = display->cdclk.hw; 1258 1259 cdclk_config.vco = display->cdclk.skl_preferred_vco_freq; 1260 if (cdclk_config.vco == 0) 1261 cdclk_config.vco = 8100000; 1262 cdclk_config.cdclk = skl_calc_cdclk(0, cdclk_config.vco); 1263 cdclk_config.voltage_level = skl_calc_voltage_level(cdclk_config.cdclk); 1264 1265 skl_set_cdclk(display, &cdclk_config, INVALID_PIPE); 1266 } 1267 1268 static void skl_cdclk_uninit_hw(struct intel_display *display) 1269 { 1270 struct intel_cdclk_config cdclk_config = display->cdclk.hw; 1271 1272 cdclk_config.cdclk = cdclk_config.bypass; 1273 cdclk_config.vco = 0; 1274 cdclk_config.voltage_level = skl_calc_voltage_level(cdclk_config.cdclk); 1275 1276 skl_set_cdclk(display, &cdclk_config, INVALID_PIPE); 1277 } 1278 1279 struct intel_cdclk_vals { 1280 u32 cdclk; 1281 u16 refclk; 1282 u16 waveform; 1283 u8 ratio; 1284 }; 1285 1286 static const struct intel_cdclk_vals bxt_cdclk_table[] = { 1287 { .refclk = 19200, .cdclk = 144000, .ratio = 60 }, 1288 { .refclk = 19200, .cdclk = 288000, .ratio = 60 }, 1289 { .refclk = 19200, .cdclk = 384000, .ratio = 60 }, 1290 { .refclk = 19200, .cdclk = 576000, .ratio = 60 }, 1291 { .refclk = 19200, .cdclk = 624000, .ratio = 65 }, 1292 {} 1293 }; 1294 1295 static const struct intel_cdclk_vals glk_cdclk_table[] = { 1296 { .refclk = 19200, .cdclk = 79200, .ratio = 33 }, 1297 { .refclk = 19200, .cdclk = 158400, .ratio = 33 }, 1298 { .refclk = 19200, .cdclk = 316800, .ratio = 33 }, 1299 {} 1300 }; 1301 1302 static const struct intel_cdclk_vals icl_cdclk_table[] = { 1303 { .refclk = 19200, .cdclk = 172800, .ratio = 18 }, 1304 { .refclk = 19200, .cdclk = 192000, .ratio = 20 }, 1305 { .refclk = 19200, .cdclk = 307200, .ratio = 32 }, 1306 { .refclk = 19200, .cdclk = 326400, .ratio = 68 }, 1307 { .refclk = 19200, .cdclk = 556800, .ratio = 58 }, 1308 { .refclk = 19200, .cdclk = 652800, .ratio = 68 }, 1309 1310 { .refclk = 24000, .cdclk = 180000, .ratio = 15 }, 1311 { .refclk = 24000, .cdclk = 192000, .ratio = 16 }, 1312 { .refclk = 24000, .cdclk = 312000, .ratio = 26 }, 1313 { .refclk = 24000, .cdclk = 324000, .ratio = 54 }, 1314 { .refclk = 24000, .cdclk = 552000, .ratio = 46 }, 1315 { .refclk = 24000, .cdclk = 648000, .ratio = 54 }, 1316 1317 { .refclk = 38400, .cdclk = 172800, .ratio = 9 }, 1318 { .refclk = 38400, .cdclk = 192000, .ratio = 10 }, 1319 { .refclk = 38400, .cdclk = 307200, .ratio = 16 }, 1320 { .refclk = 38400, .cdclk = 326400, .ratio = 34 }, 1321 { .refclk = 38400, .cdclk = 556800, .ratio = 29 }, 1322 { .refclk = 38400, .cdclk = 652800, .ratio = 34 }, 1323 {} 1324 }; 1325 1326 static const struct intel_cdclk_vals rkl_cdclk_table[] = { 1327 { .refclk = 19200, .cdclk = 172800, .ratio = 36 }, 1328 { .refclk = 19200, .cdclk = 192000, .ratio = 40 }, 1329 { .refclk = 19200, .cdclk = 307200, .ratio = 64 }, 1330 { .refclk = 19200, .cdclk = 326400, .ratio = 136 }, 1331 { .refclk = 19200, .cdclk = 556800, .ratio = 116 }, 1332 { .refclk = 19200, .cdclk = 652800, .ratio = 136 }, 1333 1334 { .refclk = 24000, .cdclk = 180000, .ratio = 30 }, 1335 { .refclk = 24000, .cdclk = 192000, .ratio = 32 }, 1336 { .refclk = 24000, .cdclk = 312000, .ratio = 52 }, 1337 { .refclk = 24000, .cdclk = 324000, .ratio = 108 }, 1338 { .refclk = 24000, .cdclk = 552000, .ratio = 92 }, 1339 { .refclk = 24000, .cdclk = 648000, .ratio = 108 }, 1340 1341 { .refclk = 38400, .cdclk = 172800, .ratio = 18 }, 1342 { .refclk = 38400, .cdclk = 192000, .ratio = 20 }, 1343 { .refclk = 38400, .cdclk = 307200, .ratio = 32 }, 1344 { .refclk = 38400, .cdclk = 326400, .ratio = 68 }, 1345 { .refclk = 38400, .cdclk = 556800, .ratio = 58 }, 1346 { .refclk = 38400, .cdclk = 652800, .ratio = 68 }, 1347 {} 1348 }; 1349 1350 static const struct intel_cdclk_vals adlp_a_step_cdclk_table[] = { 1351 { .refclk = 19200, .cdclk = 307200, .ratio = 32 }, 1352 { .refclk = 19200, .cdclk = 556800, .ratio = 58 }, 1353 { .refclk = 19200, .cdclk = 652800, .ratio = 68 }, 1354 1355 { .refclk = 24000, .cdclk = 312000, .ratio = 26 }, 1356 { .refclk = 24000, .cdclk = 552000, .ratio = 46 }, 1357 { .refclk = 24400, .cdclk = 648000, .ratio = 54 }, 1358 1359 { .refclk = 38400, .cdclk = 307200, .ratio = 16 }, 1360 { .refclk = 38400, .cdclk = 556800, .ratio = 29 }, 1361 { .refclk = 38400, .cdclk = 652800, .ratio = 34 }, 1362 {} 1363 }; 1364 1365 static const struct intel_cdclk_vals adlp_cdclk_table[] = { 1366 { .refclk = 19200, .cdclk = 172800, .ratio = 27 }, 1367 { .refclk = 19200, .cdclk = 192000, .ratio = 20 }, 1368 { .refclk = 19200, .cdclk = 307200, .ratio = 32 }, 1369 { .refclk = 19200, .cdclk = 556800, .ratio = 58 }, 1370 { .refclk = 19200, .cdclk = 652800, .ratio = 68 }, 1371 1372 { .refclk = 24000, .cdclk = 176000, .ratio = 22 }, 1373 { .refclk = 24000, .cdclk = 192000, .ratio = 16 }, 1374 { .refclk = 24000, .cdclk = 312000, .ratio = 26 }, 1375 { .refclk = 24000, .cdclk = 552000, .ratio = 46 }, 1376 { .refclk = 24000, .cdclk = 648000, .ratio = 54 }, 1377 1378 { .refclk = 38400, .cdclk = 179200, .ratio = 14 }, 1379 { .refclk = 38400, .cdclk = 192000, .ratio = 10 }, 1380 { .refclk = 38400, .cdclk = 307200, .ratio = 16 }, 1381 { .refclk = 38400, .cdclk = 556800, .ratio = 29 }, 1382 { .refclk = 38400, .cdclk = 652800, .ratio = 34 }, 1383 {} 1384 }; 1385 1386 static const struct intel_cdclk_vals rplu_cdclk_table[] = { 1387 { .refclk = 19200, .cdclk = 172800, .ratio = 27 }, 1388 { .refclk = 19200, .cdclk = 192000, .ratio = 20 }, 1389 { .refclk = 19200, .cdclk = 307200, .ratio = 32 }, 1390 { .refclk = 19200, .cdclk = 480000, .ratio = 50 }, 1391 { .refclk = 19200, .cdclk = 556800, .ratio = 58 }, 1392 { .refclk = 19200, .cdclk = 652800, .ratio = 68 }, 1393 1394 { .refclk = 24000, .cdclk = 176000, .ratio = 22 }, 1395 { .refclk = 24000, .cdclk = 192000, .ratio = 16 }, 1396 { .refclk = 24000, .cdclk = 312000, .ratio = 26 }, 1397 { .refclk = 24000, .cdclk = 480000, .ratio = 40 }, 1398 { .refclk = 24000, .cdclk = 552000, .ratio = 46 }, 1399 { .refclk = 24000, .cdclk = 648000, .ratio = 54 }, 1400 1401 { .refclk = 38400, .cdclk = 179200, .ratio = 14 }, 1402 { .refclk = 38400, .cdclk = 192000, .ratio = 10 }, 1403 { .refclk = 38400, .cdclk = 307200, .ratio = 16 }, 1404 { .refclk = 38400, .cdclk = 480000, .ratio = 25 }, 1405 { .refclk = 38400, .cdclk = 556800, .ratio = 29 }, 1406 { .refclk = 38400, .cdclk = 652800, .ratio = 34 }, 1407 {} 1408 }; 1409 1410 static const struct intel_cdclk_vals dg2_cdclk_table[] = { 1411 { .refclk = 38400, .cdclk = 163200, .ratio = 34, .waveform = 0x8888 }, 1412 { .refclk = 38400, .cdclk = 204000, .ratio = 34, .waveform = 0x9248 }, 1413 { .refclk = 38400, .cdclk = 244800, .ratio = 34, .waveform = 0xa4a4 }, 1414 { .refclk = 38400, .cdclk = 285600, .ratio = 34, .waveform = 0xa54a }, 1415 { .refclk = 38400, .cdclk = 326400, .ratio = 34, .waveform = 0xaaaa }, 1416 { .refclk = 38400, .cdclk = 367200, .ratio = 34, .waveform = 0xad5a }, 1417 { .refclk = 38400, .cdclk = 408000, .ratio = 34, .waveform = 0xb6b6 }, 1418 { .refclk = 38400, .cdclk = 448800, .ratio = 34, .waveform = 0xdbb6 }, 1419 { .refclk = 38400, .cdclk = 489600, .ratio = 34, .waveform = 0xeeee }, 1420 { .refclk = 38400, .cdclk = 530400, .ratio = 34, .waveform = 0xf7de }, 1421 { .refclk = 38400, .cdclk = 571200, .ratio = 34, .waveform = 0xfefe }, 1422 { .refclk = 38400, .cdclk = 612000, .ratio = 34, .waveform = 0xfffe }, 1423 { .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0xffff }, 1424 {} 1425 }; 1426 1427 static const struct intel_cdclk_vals mtl_cdclk_table[] = { 1428 { .refclk = 38400, .cdclk = 172800, .ratio = 16, .waveform = 0xad5a }, 1429 { .refclk = 38400, .cdclk = 192000, .ratio = 16, .waveform = 0xb6b6 }, 1430 { .refclk = 38400, .cdclk = 307200, .ratio = 16, .waveform = 0x0000 }, 1431 { .refclk = 38400, .cdclk = 480000, .ratio = 25, .waveform = 0x0000 }, 1432 { .refclk = 38400, .cdclk = 556800, .ratio = 29, .waveform = 0x0000 }, 1433 { .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0x0000 }, 1434 {} 1435 }; 1436 1437 static const struct intel_cdclk_vals xe2lpd_cdclk_table[] = { 1438 { .refclk = 38400, .cdclk = 153600, .ratio = 16, .waveform = 0xaaaa }, 1439 { .refclk = 38400, .cdclk = 172800, .ratio = 16, .waveform = 0xad5a }, 1440 { .refclk = 38400, .cdclk = 192000, .ratio = 16, .waveform = 0xb6b6 }, 1441 { .refclk = 38400, .cdclk = 211200, .ratio = 16, .waveform = 0xdbb6 }, 1442 { .refclk = 38400, .cdclk = 230400, .ratio = 16, .waveform = 0xeeee }, 1443 { .refclk = 38400, .cdclk = 249600, .ratio = 16, .waveform = 0xf7de }, 1444 { .refclk = 38400, .cdclk = 268800, .ratio = 16, .waveform = 0xfefe }, 1445 { .refclk = 38400, .cdclk = 288000, .ratio = 16, .waveform = 0xfffe }, 1446 { .refclk = 38400, .cdclk = 307200, .ratio = 16, .waveform = 0xffff }, 1447 { .refclk = 38400, .cdclk = 330000, .ratio = 25, .waveform = 0xdbb6 }, 1448 { .refclk = 38400, .cdclk = 360000, .ratio = 25, .waveform = 0xeeee }, 1449 { .refclk = 38400, .cdclk = 390000, .ratio = 25, .waveform = 0xf7de }, 1450 { .refclk = 38400, .cdclk = 420000, .ratio = 25, .waveform = 0xfefe }, 1451 { .refclk = 38400, .cdclk = 450000, .ratio = 25, .waveform = 0xfffe }, 1452 { .refclk = 38400, .cdclk = 480000, .ratio = 25, .waveform = 0xffff }, 1453 { .refclk = 38400, .cdclk = 487200, .ratio = 29, .waveform = 0xfefe }, 1454 { .refclk = 38400, .cdclk = 522000, .ratio = 29, .waveform = 0xfffe }, 1455 { .refclk = 38400, .cdclk = 556800, .ratio = 29, .waveform = 0xffff }, 1456 { .refclk = 38400, .cdclk = 571200, .ratio = 34, .waveform = 0xfefe }, 1457 { .refclk = 38400, .cdclk = 612000, .ratio = 34, .waveform = 0xfffe }, 1458 { .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0xffff }, 1459 {} 1460 }; 1461 1462 /* 1463 * Xe2_HPD always uses the minimal cdclk table from Wa_15015413771 1464 */ 1465 static const struct intel_cdclk_vals xe2hpd_cdclk_table[] = { 1466 { .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0xffff }, 1467 {} 1468 }; 1469 1470 static const struct intel_cdclk_vals xe3lpd_cdclk_table[] = { 1471 { .refclk = 38400, .cdclk = 153600, .ratio = 16, .waveform = 0xaaaa }, 1472 { .refclk = 38400, .cdclk = 172800, .ratio = 16, .waveform = 0xad5a }, 1473 { .refclk = 38400, .cdclk = 192000, .ratio = 16, .waveform = 0xb6b6 }, 1474 { .refclk = 38400, .cdclk = 211200, .ratio = 16, .waveform = 0xdbb6 }, 1475 { .refclk = 38400, .cdclk = 230400, .ratio = 16, .waveform = 0xeeee }, 1476 { .refclk = 38400, .cdclk = 249600, .ratio = 16, .waveform = 0xf7de }, 1477 { .refclk = 38400, .cdclk = 268800, .ratio = 16, .waveform = 0xfefe }, 1478 { .refclk = 38400, .cdclk = 288000, .ratio = 16, .waveform = 0xfffe }, 1479 { .refclk = 38400, .cdclk = 307200, .ratio = 16, .waveform = 0xffff }, 1480 { .refclk = 38400, .cdclk = 326400, .ratio = 17, .waveform = 0xffff }, 1481 { .refclk = 38400, .cdclk = 345600, .ratio = 18, .waveform = 0xffff }, 1482 { .refclk = 38400, .cdclk = 364800, .ratio = 19, .waveform = 0xffff }, 1483 { .refclk = 38400, .cdclk = 384000, .ratio = 20, .waveform = 0xffff }, 1484 { .refclk = 38400, .cdclk = 403200, .ratio = 21, .waveform = 0xffff }, 1485 { .refclk = 38400, .cdclk = 422400, .ratio = 22, .waveform = 0xffff }, 1486 { .refclk = 38400, .cdclk = 441600, .ratio = 23, .waveform = 0xffff }, 1487 { .refclk = 38400, .cdclk = 460800, .ratio = 24, .waveform = 0xffff }, 1488 { .refclk = 38400, .cdclk = 480000, .ratio = 25, .waveform = 0xffff }, 1489 { .refclk = 38400, .cdclk = 499200, .ratio = 26, .waveform = 0xffff }, 1490 { .refclk = 38400, .cdclk = 518400, .ratio = 27, .waveform = 0xffff }, 1491 { .refclk = 38400, .cdclk = 537600, .ratio = 28, .waveform = 0xffff }, 1492 { .refclk = 38400, .cdclk = 556800, .ratio = 29, .waveform = 0xffff }, 1493 { .refclk = 38400, .cdclk = 576000, .ratio = 30, .waveform = 0xffff }, 1494 { .refclk = 38400, .cdclk = 595200, .ratio = 31, .waveform = 0xffff }, 1495 { .refclk = 38400, .cdclk = 614400, .ratio = 32, .waveform = 0xffff }, 1496 { .refclk = 38400, .cdclk = 633600, .ratio = 33, .waveform = 0xffff }, 1497 { .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0xffff }, 1498 { .refclk = 38400, .cdclk = 672000, .ratio = 35, .waveform = 0xffff }, 1499 { .refclk = 38400, .cdclk = 691200, .ratio = 36, .waveform = 0xffff }, 1500 {} 1501 }; 1502 1503 static const int cdclk_squash_len = 16; 1504 1505 static int cdclk_squash_divider(u16 waveform) 1506 { 1507 return hweight16(waveform ?: 0xffff); 1508 } 1509 1510 static int cdclk_divider(int cdclk, int vco, u16 waveform) 1511 { 1512 /* 2 * cd2x divider */ 1513 return DIV_ROUND_CLOSEST(vco * cdclk_squash_divider(waveform), 1514 cdclk * cdclk_squash_len); 1515 } 1516 1517 static int bxt_calc_cdclk(struct intel_display *display, int min_cdclk) 1518 { 1519 const struct intel_cdclk_vals *table = display->cdclk.table; 1520 int i; 1521 1522 for (i = 0; table[i].refclk; i++) 1523 if (table[i].refclk == display->cdclk.hw.ref && 1524 table[i].cdclk >= min_cdclk) 1525 return table[i].cdclk; 1526 1527 drm_WARN(display->drm, 1, 1528 "Cannot satisfy minimum cdclk %d with refclk %u\n", 1529 min_cdclk, display->cdclk.hw.ref); 1530 return 0; 1531 } 1532 1533 static int bxt_calc_cdclk_pll_vco(struct intel_display *display, int cdclk) 1534 { 1535 const struct intel_cdclk_vals *table = display->cdclk.table; 1536 int i; 1537 1538 if (cdclk == display->cdclk.hw.bypass) 1539 return 0; 1540 1541 for (i = 0; table[i].refclk; i++) 1542 if (table[i].refclk == display->cdclk.hw.ref && 1543 table[i].cdclk == cdclk) 1544 return display->cdclk.hw.ref * table[i].ratio; 1545 1546 drm_WARN(display->drm, 1, "cdclk %d not valid for refclk %u\n", 1547 cdclk, display->cdclk.hw.ref); 1548 return 0; 1549 } 1550 1551 static u8 bxt_calc_voltage_level(int cdclk) 1552 { 1553 return DIV_ROUND_UP(cdclk, 25000); 1554 } 1555 1556 static u8 calc_voltage_level(int cdclk, int num_voltage_levels, 1557 const int voltage_level_max_cdclk[]) 1558 { 1559 int voltage_level; 1560 1561 for (voltage_level = 0; voltage_level < num_voltage_levels; voltage_level++) { 1562 if (cdclk <= voltage_level_max_cdclk[voltage_level]) 1563 return voltage_level; 1564 } 1565 1566 MISSING_CASE(cdclk); 1567 return num_voltage_levels - 1; 1568 } 1569 1570 static u8 icl_calc_voltage_level(int cdclk) 1571 { 1572 static const int icl_voltage_level_max_cdclk[] = { 1573 [0] = 312000, 1574 [1] = 556800, 1575 [2] = 652800, 1576 }; 1577 1578 return calc_voltage_level(cdclk, 1579 ARRAY_SIZE(icl_voltage_level_max_cdclk), 1580 icl_voltage_level_max_cdclk); 1581 } 1582 1583 static u8 ehl_calc_voltage_level(int cdclk) 1584 { 1585 static const int ehl_voltage_level_max_cdclk[] = { 1586 [0] = 180000, 1587 [1] = 312000, 1588 [2] = 326400, 1589 /* 1590 * Bspec lists the limit as 556.8 MHz, but some JSL 1591 * development boards (at least) boot with 652.8 MHz 1592 */ 1593 [3] = 652800, 1594 }; 1595 1596 return calc_voltage_level(cdclk, 1597 ARRAY_SIZE(ehl_voltage_level_max_cdclk), 1598 ehl_voltage_level_max_cdclk); 1599 } 1600 1601 static u8 tgl_calc_voltage_level(int cdclk) 1602 { 1603 static const int tgl_voltage_level_max_cdclk[] = { 1604 [0] = 312000, 1605 [1] = 326400, 1606 [2] = 556800, 1607 [3] = 652800, 1608 }; 1609 1610 return calc_voltage_level(cdclk, 1611 ARRAY_SIZE(tgl_voltage_level_max_cdclk), 1612 tgl_voltage_level_max_cdclk); 1613 } 1614 1615 static u8 rplu_calc_voltage_level(int cdclk) 1616 { 1617 static const int rplu_voltage_level_max_cdclk[] = { 1618 [0] = 312000, 1619 [1] = 480000, 1620 [2] = 556800, 1621 [3] = 652800, 1622 }; 1623 1624 return calc_voltage_level(cdclk, 1625 ARRAY_SIZE(rplu_voltage_level_max_cdclk), 1626 rplu_voltage_level_max_cdclk); 1627 } 1628 1629 static u8 xe3lpd_calc_voltage_level(int cdclk) 1630 { 1631 /* 1632 * Starting with xe3lpd power controller does not need the voltage 1633 * index when doing the modeset update. This function is best left 1634 * defined but returning 0 to the mask. 1635 */ 1636 return 0; 1637 } 1638 1639 static void icl_readout_refclk(struct intel_display *display, 1640 struct intel_cdclk_config *cdclk_config) 1641 { 1642 u32 dssm = intel_de_read(display, SKL_DSSM) & ICL_DSSM_CDCLK_PLL_REFCLK_MASK; 1643 1644 switch (dssm) { 1645 default: 1646 MISSING_CASE(dssm); 1647 fallthrough; 1648 case ICL_DSSM_CDCLK_PLL_REFCLK_24MHz: 1649 cdclk_config->ref = 24000; 1650 break; 1651 case ICL_DSSM_CDCLK_PLL_REFCLK_19_2MHz: 1652 cdclk_config->ref = 19200; 1653 break; 1654 case ICL_DSSM_CDCLK_PLL_REFCLK_38_4MHz: 1655 cdclk_config->ref = 38400; 1656 break; 1657 } 1658 } 1659 1660 static void bxt_de_pll_readout(struct intel_display *display, 1661 struct intel_cdclk_config *cdclk_config) 1662 { 1663 u32 val, ratio; 1664 1665 if (display->platform.dg2) 1666 cdclk_config->ref = 38400; 1667 else if (DISPLAY_VER(display) >= 11) 1668 icl_readout_refclk(display, cdclk_config); 1669 else 1670 cdclk_config->ref = 19200; 1671 1672 val = intel_de_read(display, BXT_DE_PLL_ENABLE); 1673 if ((val & BXT_DE_PLL_PLL_ENABLE) == 0 || 1674 (val & BXT_DE_PLL_LOCK) == 0) { 1675 /* 1676 * CDCLK PLL is disabled, the VCO/ratio doesn't matter, but 1677 * setting it to zero is a way to signal that. 1678 */ 1679 cdclk_config->vco = 0; 1680 return; 1681 } 1682 1683 /* 1684 * DISPLAY_VER >= 11 have the ratio directly in the PLL enable register, 1685 * gen9lp had it in a separate PLL control register. 1686 */ 1687 if (DISPLAY_VER(display) >= 11) 1688 ratio = val & ICL_CDCLK_PLL_RATIO_MASK; 1689 else 1690 ratio = intel_de_read(display, BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK; 1691 1692 cdclk_config->vco = ratio * cdclk_config->ref; 1693 } 1694 1695 static void bxt_get_cdclk(struct intel_display *display, 1696 struct intel_cdclk_config *cdclk_config) 1697 { 1698 u32 squash_ctl = 0; 1699 u32 divider; 1700 int div; 1701 1702 bxt_de_pll_readout(display, cdclk_config); 1703 1704 if (DISPLAY_VER(display) >= 12) 1705 cdclk_config->bypass = cdclk_config->ref / 2; 1706 else if (DISPLAY_VER(display) >= 11) 1707 cdclk_config->bypass = 50000; 1708 else 1709 cdclk_config->bypass = cdclk_config->ref; 1710 1711 if (cdclk_config->vco == 0) { 1712 cdclk_config->cdclk = cdclk_config->bypass; 1713 goto out; 1714 } 1715 1716 divider = intel_de_read(display, CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK; 1717 1718 switch (divider) { 1719 case BXT_CDCLK_CD2X_DIV_SEL_1: 1720 div = 2; 1721 break; 1722 case BXT_CDCLK_CD2X_DIV_SEL_1_5: 1723 div = 3; 1724 break; 1725 case BXT_CDCLK_CD2X_DIV_SEL_2: 1726 div = 4; 1727 break; 1728 case BXT_CDCLK_CD2X_DIV_SEL_4: 1729 div = 8; 1730 break; 1731 default: 1732 MISSING_CASE(divider); 1733 return; 1734 } 1735 1736 if (HAS_CDCLK_SQUASH(display)) 1737 squash_ctl = intel_de_read(display, CDCLK_SQUASH_CTL); 1738 1739 if (squash_ctl & CDCLK_SQUASH_ENABLE) { 1740 u16 waveform; 1741 int size; 1742 1743 size = REG_FIELD_GET(CDCLK_SQUASH_WINDOW_SIZE_MASK, squash_ctl) + 1; 1744 waveform = REG_FIELD_GET(CDCLK_SQUASH_WAVEFORM_MASK, squash_ctl) >> (16 - size); 1745 1746 cdclk_config->cdclk = DIV_ROUND_CLOSEST(hweight16(waveform) * 1747 cdclk_config->vco, size * div); 1748 } else { 1749 cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco, div); 1750 } 1751 1752 out: 1753 if (DISPLAY_VER(display) >= 20) 1754 cdclk_config->joined_mbus = intel_de_read(display, MBUS_CTL) & MBUS_JOIN; 1755 /* 1756 * Can't read this out :( Let's assume it's 1757 * at least what the CDCLK frequency requires. 1758 */ 1759 cdclk_config->voltage_level = 1760 intel_cdclk_calc_voltage_level(display, cdclk_config->cdclk); 1761 } 1762 1763 static void bxt_de_pll_disable(struct intel_display *display) 1764 { 1765 intel_de_write(display, BXT_DE_PLL_ENABLE, 0); 1766 1767 /* Timeout 200us */ 1768 if (intel_de_wait_for_clear(display, 1769 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1)) 1770 drm_err(display->drm, "timeout waiting for DE PLL unlock\n"); 1771 1772 display->cdclk.hw.vco = 0; 1773 } 1774 1775 static void bxt_de_pll_enable(struct intel_display *display, int vco) 1776 { 1777 int ratio = DIV_ROUND_CLOSEST(vco, display->cdclk.hw.ref); 1778 1779 intel_de_rmw(display, BXT_DE_PLL_CTL, 1780 BXT_DE_PLL_RATIO_MASK, BXT_DE_PLL_RATIO(ratio)); 1781 1782 intel_de_write(display, BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE); 1783 1784 /* Timeout 200us */ 1785 if (intel_de_wait_for_set(display, 1786 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1)) 1787 drm_err(display->drm, "timeout waiting for DE PLL lock\n"); 1788 1789 display->cdclk.hw.vco = vco; 1790 } 1791 1792 static void icl_cdclk_pll_disable(struct intel_display *display) 1793 { 1794 intel_de_rmw(display, BXT_DE_PLL_ENABLE, 1795 BXT_DE_PLL_PLL_ENABLE, 0); 1796 1797 /* Timeout 200us */ 1798 if (intel_de_wait_for_clear(display, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1)) 1799 drm_err(display->drm, "timeout waiting for CDCLK PLL unlock\n"); 1800 1801 display->cdclk.hw.vco = 0; 1802 } 1803 1804 static void icl_cdclk_pll_enable(struct intel_display *display, int vco) 1805 { 1806 int ratio = DIV_ROUND_CLOSEST(vco, display->cdclk.hw.ref); 1807 u32 val; 1808 1809 val = ICL_CDCLK_PLL_RATIO(ratio); 1810 intel_de_write(display, BXT_DE_PLL_ENABLE, val); 1811 1812 val |= BXT_DE_PLL_PLL_ENABLE; 1813 intel_de_write(display, BXT_DE_PLL_ENABLE, val); 1814 1815 /* Timeout 200us */ 1816 if (intel_de_wait_for_set(display, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1)) 1817 drm_err(display->drm, "timeout waiting for CDCLK PLL lock\n"); 1818 1819 display->cdclk.hw.vco = vco; 1820 } 1821 1822 static void adlp_cdclk_pll_crawl(struct intel_display *display, int vco) 1823 { 1824 int ratio = DIV_ROUND_CLOSEST(vco, display->cdclk.hw.ref); 1825 u32 val; 1826 1827 /* Write PLL ratio without disabling */ 1828 val = ICL_CDCLK_PLL_RATIO(ratio) | BXT_DE_PLL_PLL_ENABLE; 1829 intel_de_write(display, BXT_DE_PLL_ENABLE, val); 1830 1831 /* Submit freq change request */ 1832 val |= BXT_DE_PLL_FREQ_REQ; 1833 intel_de_write(display, BXT_DE_PLL_ENABLE, val); 1834 1835 /* Timeout 200us */ 1836 if (intel_de_wait_for_set(display, BXT_DE_PLL_ENABLE, 1837 BXT_DE_PLL_LOCK | BXT_DE_PLL_FREQ_REQ_ACK, 1)) 1838 drm_err(display->drm, "timeout waiting for FREQ change request ack\n"); 1839 1840 val &= ~BXT_DE_PLL_FREQ_REQ; 1841 intel_de_write(display, BXT_DE_PLL_ENABLE, val); 1842 1843 display->cdclk.hw.vco = vco; 1844 } 1845 1846 static u32 bxt_cdclk_cd2x_pipe(struct intel_display *display, enum pipe pipe) 1847 { 1848 if (DISPLAY_VER(display) >= 12) { 1849 if (pipe == INVALID_PIPE) 1850 return TGL_CDCLK_CD2X_PIPE_NONE; 1851 else 1852 return TGL_CDCLK_CD2X_PIPE(pipe); 1853 } else if (DISPLAY_VER(display) >= 11) { 1854 if (pipe == INVALID_PIPE) 1855 return ICL_CDCLK_CD2X_PIPE_NONE; 1856 else 1857 return ICL_CDCLK_CD2X_PIPE(pipe); 1858 } else { 1859 if (pipe == INVALID_PIPE) 1860 return BXT_CDCLK_CD2X_PIPE_NONE; 1861 else 1862 return BXT_CDCLK_CD2X_PIPE(pipe); 1863 } 1864 } 1865 1866 static u32 bxt_cdclk_cd2x_div_sel(struct intel_display *display, 1867 int cdclk, int vco, u16 waveform) 1868 { 1869 /* cdclk = vco / 2 / div{1,1.5,2,4} */ 1870 switch (cdclk_divider(cdclk, vco, waveform)) { 1871 default: 1872 drm_WARN_ON(display->drm, 1873 cdclk != display->cdclk.hw.bypass); 1874 drm_WARN_ON(display->drm, vco != 0); 1875 fallthrough; 1876 case 2: 1877 return BXT_CDCLK_CD2X_DIV_SEL_1; 1878 case 3: 1879 return BXT_CDCLK_CD2X_DIV_SEL_1_5; 1880 case 4: 1881 return BXT_CDCLK_CD2X_DIV_SEL_2; 1882 case 8: 1883 return BXT_CDCLK_CD2X_DIV_SEL_4; 1884 } 1885 } 1886 1887 static u16 cdclk_squash_waveform(struct intel_display *display, 1888 int cdclk) 1889 { 1890 const struct intel_cdclk_vals *table = display->cdclk.table; 1891 int i; 1892 1893 if (cdclk == display->cdclk.hw.bypass) 1894 return 0; 1895 1896 for (i = 0; table[i].refclk; i++) 1897 if (table[i].refclk == display->cdclk.hw.ref && 1898 table[i].cdclk == cdclk) 1899 return table[i].waveform; 1900 1901 drm_WARN(display->drm, 1, "cdclk %d not valid for refclk %u\n", 1902 cdclk, display->cdclk.hw.ref); 1903 1904 return 0xffff; 1905 } 1906 1907 static void icl_cdclk_pll_update(struct intel_display *display, int vco) 1908 { 1909 if (display->cdclk.hw.vco != 0 && 1910 display->cdclk.hw.vco != vco) 1911 icl_cdclk_pll_disable(display); 1912 1913 if (display->cdclk.hw.vco != vco) 1914 icl_cdclk_pll_enable(display, vco); 1915 } 1916 1917 static void bxt_cdclk_pll_update(struct intel_display *display, int vco) 1918 { 1919 if (display->cdclk.hw.vco != 0 && 1920 display->cdclk.hw.vco != vco) 1921 bxt_de_pll_disable(display); 1922 1923 if (display->cdclk.hw.vco != vco) 1924 bxt_de_pll_enable(display, vco); 1925 } 1926 1927 static void dg2_cdclk_squash_program(struct intel_display *display, 1928 u16 waveform) 1929 { 1930 u32 squash_ctl = 0; 1931 1932 if (waveform) 1933 squash_ctl = CDCLK_SQUASH_ENABLE | 1934 CDCLK_SQUASH_WINDOW_SIZE(0xf) | waveform; 1935 1936 intel_de_write(display, CDCLK_SQUASH_CTL, squash_ctl); 1937 } 1938 1939 static bool cdclk_pll_is_unknown(unsigned int vco) 1940 { 1941 /* 1942 * Ensure driver does not take the crawl path for the 1943 * case when the vco is set to ~0 in the 1944 * sanitize path. 1945 */ 1946 return vco == ~0; 1947 } 1948 1949 static bool mdclk_source_is_cdclk_pll(struct intel_display *display) 1950 { 1951 return DISPLAY_VER(display) >= 20; 1952 } 1953 1954 static u32 xe2lpd_mdclk_source_sel(struct intel_display *display) 1955 { 1956 if (mdclk_source_is_cdclk_pll(display)) 1957 return MDCLK_SOURCE_SEL_CDCLK_PLL; 1958 1959 return MDCLK_SOURCE_SEL_CD2XCLK; 1960 } 1961 1962 int intel_mdclk_cdclk_ratio(struct intel_display *display, 1963 const struct intel_cdclk_config *cdclk_config) 1964 { 1965 if (mdclk_source_is_cdclk_pll(display)) 1966 return DIV_ROUND_UP(cdclk_config->vco, cdclk_config->cdclk); 1967 1968 /* Otherwise, source for MDCLK is CD2XCLK. */ 1969 return 2; 1970 } 1971 1972 static void xe2lpd_mdclk_cdclk_ratio_program(struct intel_display *display, 1973 const struct intel_cdclk_config *cdclk_config) 1974 { 1975 struct drm_i915_private *i915 = to_i915(display->drm); 1976 1977 intel_dbuf_mdclk_cdclk_ratio_update(i915, 1978 intel_mdclk_cdclk_ratio(display, cdclk_config), 1979 cdclk_config->joined_mbus); 1980 } 1981 1982 static bool cdclk_compute_crawl_and_squash_midpoint(struct intel_display *display, 1983 const struct intel_cdclk_config *old_cdclk_config, 1984 const struct intel_cdclk_config *new_cdclk_config, 1985 struct intel_cdclk_config *mid_cdclk_config) 1986 { 1987 u16 old_waveform, new_waveform, mid_waveform; 1988 int old_div, new_div, mid_div; 1989 1990 /* Return if PLL is in an unknown state, force a complete disable and re-enable. */ 1991 if (cdclk_pll_is_unknown(old_cdclk_config->vco)) 1992 return false; 1993 1994 /* Return if both Squash and Crawl are not present */ 1995 if (!HAS_CDCLK_CRAWL(display) || !HAS_CDCLK_SQUASH(display)) 1996 return false; 1997 1998 old_waveform = cdclk_squash_waveform(display, old_cdclk_config->cdclk); 1999 new_waveform = cdclk_squash_waveform(display, new_cdclk_config->cdclk); 2000 2001 /* Return if Squash only or Crawl only is the desired action */ 2002 if (old_cdclk_config->vco == 0 || new_cdclk_config->vco == 0 || 2003 old_cdclk_config->vco == new_cdclk_config->vco || 2004 old_waveform == new_waveform) 2005 return false; 2006 2007 old_div = cdclk_divider(old_cdclk_config->cdclk, 2008 old_cdclk_config->vco, old_waveform); 2009 new_div = cdclk_divider(new_cdclk_config->cdclk, 2010 new_cdclk_config->vco, new_waveform); 2011 2012 /* 2013 * Should not happen currently. We might need more midpoint 2014 * transitions if we need to also change the cd2x divider. 2015 */ 2016 if (drm_WARN_ON(display->drm, old_div != new_div)) 2017 return false; 2018 2019 *mid_cdclk_config = *new_cdclk_config; 2020 2021 /* 2022 * Populate the mid_cdclk_config accordingly. 2023 * - If moving to a higher cdclk, the desired action is squashing. 2024 * The mid cdclk config should have the new (squash) waveform. 2025 * - If moving to a lower cdclk, the desired action is crawling. 2026 * The mid cdclk config should have the new vco. 2027 */ 2028 2029 if (cdclk_squash_divider(new_waveform) > cdclk_squash_divider(old_waveform)) { 2030 mid_cdclk_config->vco = old_cdclk_config->vco; 2031 mid_div = old_div; 2032 mid_waveform = new_waveform; 2033 } else { 2034 mid_cdclk_config->vco = new_cdclk_config->vco; 2035 mid_div = new_div; 2036 mid_waveform = old_waveform; 2037 } 2038 2039 mid_cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_squash_divider(mid_waveform) * 2040 mid_cdclk_config->vco, 2041 cdclk_squash_len * mid_div); 2042 2043 /* make sure the mid clock came out sane */ 2044 2045 drm_WARN_ON(display->drm, mid_cdclk_config->cdclk < 2046 min(old_cdclk_config->cdclk, new_cdclk_config->cdclk)); 2047 drm_WARN_ON(display->drm, mid_cdclk_config->cdclk > 2048 display->cdclk.max_cdclk_freq); 2049 drm_WARN_ON(display->drm, cdclk_squash_waveform(display, mid_cdclk_config->cdclk) != 2050 mid_waveform); 2051 2052 return true; 2053 } 2054 2055 static bool pll_enable_wa_needed(struct intel_display *display) 2056 { 2057 return (DISPLAY_VERx100(display) == 2000 || 2058 DISPLAY_VERx100(display) == 1400 || 2059 display->platform.dg2) && 2060 display->cdclk.hw.vco > 0; 2061 } 2062 2063 static u32 bxt_cdclk_ctl(struct intel_display *display, 2064 const struct intel_cdclk_config *cdclk_config, 2065 enum pipe pipe) 2066 { 2067 int cdclk = cdclk_config->cdclk; 2068 int vco = cdclk_config->vco; 2069 u16 waveform; 2070 u32 val; 2071 2072 waveform = cdclk_squash_waveform(display, cdclk); 2073 2074 val = bxt_cdclk_cd2x_div_sel(display, cdclk, vco, waveform) | 2075 bxt_cdclk_cd2x_pipe(display, pipe); 2076 2077 /* 2078 * Disable SSA Precharge when CD clock frequency < 500 MHz, 2079 * enable otherwise. 2080 */ 2081 if ((display->platform.geminilake || display->platform.broxton) && 2082 cdclk >= 500000) 2083 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE; 2084 2085 if (DISPLAY_VER(display) >= 20) 2086 val |= xe2lpd_mdclk_source_sel(display); 2087 else 2088 val |= skl_cdclk_decimal(cdclk); 2089 2090 return val; 2091 } 2092 2093 static void _bxt_set_cdclk(struct intel_display *display, 2094 const struct intel_cdclk_config *cdclk_config, 2095 enum pipe pipe) 2096 { 2097 int cdclk = cdclk_config->cdclk; 2098 int vco = cdclk_config->vco; 2099 2100 if (HAS_CDCLK_CRAWL(display) && display->cdclk.hw.vco > 0 && vco > 0 && 2101 !cdclk_pll_is_unknown(display->cdclk.hw.vco)) { 2102 if (display->cdclk.hw.vco != vco) 2103 adlp_cdclk_pll_crawl(display, vco); 2104 } else if (DISPLAY_VER(display) >= 11) { 2105 /* wa_15010685871: dg2, mtl */ 2106 if (pll_enable_wa_needed(display)) 2107 dg2_cdclk_squash_program(display, 0); 2108 2109 icl_cdclk_pll_update(display, vco); 2110 } else { 2111 bxt_cdclk_pll_update(display, vco); 2112 } 2113 2114 if (HAS_CDCLK_SQUASH(display)) { 2115 u16 waveform = cdclk_squash_waveform(display, cdclk); 2116 2117 dg2_cdclk_squash_program(display, waveform); 2118 } 2119 2120 intel_de_write(display, CDCLK_CTL, bxt_cdclk_ctl(display, cdclk_config, pipe)); 2121 2122 if (pipe != INVALID_PIPE) 2123 intel_crtc_wait_for_next_vblank(intel_crtc_for_pipe(display, pipe)); 2124 } 2125 2126 static void bxt_set_cdclk(struct intel_display *display, 2127 const struct intel_cdclk_config *cdclk_config, 2128 enum pipe pipe) 2129 { 2130 struct drm_i915_private *dev_priv = to_i915(display->drm); 2131 struct intel_cdclk_config mid_cdclk_config; 2132 int cdclk = cdclk_config->cdclk; 2133 int ret = 0; 2134 2135 /* 2136 * Inform power controller of upcoming frequency change. 2137 * Display versions 14 and beyond do not follow the PUnit 2138 * mailbox communication, skip 2139 * this step. 2140 */ 2141 if (DISPLAY_VER(display) >= 14 || display->platform.dg2) 2142 ; /* NOOP */ 2143 else if (DISPLAY_VER(display) >= 11) 2144 ret = skl_pcode_request(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL, 2145 SKL_CDCLK_PREPARE_FOR_CHANGE, 2146 SKL_CDCLK_READY_FOR_CHANGE, 2147 SKL_CDCLK_READY_FOR_CHANGE, 3); 2148 else 2149 /* 2150 * BSpec requires us to wait up to 150usec, but that leads to 2151 * timeouts; the 2ms used here is based on experiment. 2152 */ 2153 ret = snb_pcode_write_timeout(&dev_priv->uncore, 2154 HSW_PCODE_DE_WRITE_FREQ_REQ, 2155 0x80000000, 150, 2); 2156 2157 if (ret) { 2158 drm_err(display->drm, 2159 "Failed to inform PCU about cdclk change (err %d, freq %d)\n", 2160 ret, cdclk); 2161 return; 2162 } 2163 2164 if (DISPLAY_VER(display) >= 20 && cdclk < display->cdclk.hw.cdclk) 2165 xe2lpd_mdclk_cdclk_ratio_program(display, cdclk_config); 2166 2167 if (cdclk_compute_crawl_and_squash_midpoint(display, &display->cdclk.hw, 2168 cdclk_config, &mid_cdclk_config)) { 2169 _bxt_set_cdclk(display, &mid_cdclk_config, pipe); 2170 _bxt_set_cdclk(display, cdclk_config, pipe); 2171 } else { 2172 _bxt_set_cdclk(display, cdclk_config, pipe); 2173 } 2174 2175 if (DISPLAY_VER(display) >= 20 && cdclk > display->cdclk.hw.cdclk) 2176 xe2lpd_mdclk_cdclk_ratio_program(display, cdclk_config); 2177 2178 if (DISPLAY_VER(display) >= 14) 2179 /* 2180 * NOOP - No Pcode communication needed for 2181 * Display versions 14 and beyond 2182 */; 2183 else if (DISPLAY_VER(display) >= 11 && !display->platform.dg2) 2184 ret = snb_pcode_write(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL, 2185 cdclk_config->voltage_level); 2186 if (DISPLAY_VER(display) < 11) { 2187 /* 2188 * The timeout isn't specified, the 2ms used here is based on 2189 * experiment. 2190 * FIXME: Waiting for the request completion could be delayed 2191 * until the next PCODE request based on BSpec. 2192 */ 2193 ret = snb_pcode_write_timeout(&dev_priv->uncore, 2194 HSW_PCODE_DE_WRITE_FREQ_REQ, 2195 cdclk_config->voltage_level, 2196 150, 2); 2197 } 2198 if (ret) { 2199 drm_err(display->drm, 2200 "PCode CDCLK freq set failed, (err %d, freq %d)\n", 2201 ret, cdclk); 2202 return; 2203 } 2204 2205 intel_update_cdclk(display); 2206 2207 if (DISPLAY_VER(display) >= 11) 2208 /* 2209 * Can't read out the voltage level :( 2210 * Let's just assume everything is as expected. 2211 */ 2212 display->cdclk.hw.voltage_level = cdclk_config->voltage_level; 2213 } 2214 2215 static void bxt_sanitize_cdclk(struct intel_display *display) 2216 { 2217 u32 cdctl, expected; 2218 int cdclk, vco; 2219 2220 intel_update_cdclk(display); 2221 intel_cdclk_dump_config(display, &display->cdclk.hw, "Current CDCLK"); 2222 2223 if (display->cdclk.hw.vco == 0 || 2224 display->cdclk.hw.cdclk == display->cdclk.hw.bypass) 2225 goto sanitize; 2226 2227 /* Make sure this is a legal cdclk value for the platform */ 2228 cdclk = bxt_calc_cdclk(display, display->cdclk.hw.cdclk); 2229 if (cdclk != display->cdclk.hw.cdclk) 2230 goto sanitize; 2231 2232 /* Make sure the VCO is correct for the cdclk */ 2233 vco = bxt_calc_cdclk_pll_vco(display, cdclk); 2234 if (vco != display->cdclk.hw.vco) 2235 goto sanitize; 2236 2237 /* 2238 * Some BIOS versions leave an incorrect decimal frequency value and 2239 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4, 2240 * so sanitize this register. 2241 */ 2242 cdctl = intel_de_read(display, CDCLK_CTL); 2243 expected = bxt_cdclk_ctl(display, &display->cdclk.hw, INVALID_PIPE); 2244 2245 /* 2246 * Let's ignore the pipe field, since BIOS could have configured the 2247 * dividers both syncing to an active pipe, or asynchronously 2248 * (PIPE_NONE). 2249 */ 2250 cdctl &= ~bxt_cdclk_cd2x_pipe(display, INVALID_PIPE); 2251 expected &= ~bxt_cdclk_cd2x_pipe(display, INVALID_PIPE); 2252 2253 if (cdctl == expected) 2254 /* All well; nothing to sanitize */ 2255 return; 2256 2257 sanitize: 2258 drm_dbg_kms(display->drm, "Sanitizing cdclk programmed by pre-os\n"); 2259 2260 /* force cdclk programming */ 2261 display->cdclk.hw.cdclk = 0; 2262 2263 /* force full PLL disable + enable */ 2264 display->cdclk.hw.vco = ~0; 2265 } 2266 2267 static void bxt_cdclk_init_hw(struct intel_display *display) 2268 { 2269 struct intel_cdclk_config cdclk_config; 2270 2271 bxt_sanitize_cdclk(display); 2272 2273 if (display->cdclk.hw.cdclk != 0 && 2274 display->cdclk.hw.vco != 0) 2275 return; 2276 2277 cdclk_config = display->cdclk.hw; 2278 2279 /* 2280 * FIXME: 2281 * - The initial CDCLK needs to be read from VBT. 2282 * Need to make this change after VBT has changes for BXT. 2283 */ 2284 cdclk_config.cdclk = bxt_calc_cdclk(display, 0); 2285 cdclk_config.vco = bxt_calc_cdclk_pll_vco(display, cdclk_config.cdclk); 2286 cdclk_config.voltage_level = 2287 intel_cdclk_calc_voltage_level(display, cdclk_config.cdclk); 2288 2289 bxt_set_cdclk(display, &cdclk_config, INVALID_PIPE); 2290 } 2291 2292 static void bxt_cdclk_uninit_hw(struct intel_display *display) 2293 { 2294 struct intel_cdclk_config cdclk_config = display->cdclk.hw; 2295 2296 cdclk_config.cdclk = cdclk_config.bypass; 2297 cdclk_config.vco = 0; 2298 cdclk_config.voltage_level = 2299 intel_cdclk_calc_voltage_level(display, cdclk_config.cdclk); 2300 2301 bxt_set_cdclk(display, &cdclk_config, INVALID_PIPE); 2302 } 2303 2304 /** 2305 * intel_cdclk_init_hw - Initialize CDCLK hardware 2306 * @display: display instance 2307 * 2308 * Initialize CDCLK. This consists mainly of initializing display->cdclk.hw and 2309 * sanitizing the state of the hardware if needed. This is generally done only 2310 * during the display core initialization sequence, after which the DMC will 2311 * take care of turning CDCLK off/on as needed. 2312 */ 2313 void intel_cdclk_init_hw(struct intel_display *display) 2314 { 2315 if (DISPLAY_VER(display) >= 10 || display->platform.broxton) 2316 bxt_cdclk_init_hw(display); 2317 else if (DISPLAY_VER(display) == 9) 2318 skl_cdclk_init_hw(display); 2319 } 2320 2321 /** 2322 * intel_cdclk_uninit_hw - Uninitialize CDCLK hardware 2323 * @display: display instance 2324 * 2325 * Uninitialize CDCLK. This is done only during the display core 2326 * uninitialization sequence. 2327 */ 2328 void intel_cdclk_uninit_hw(struct intel_display *display) 2329 { 2330 if (DISPLAY_VER(display) >= 10 || display->platform.broxton) 2331 bxt_cdclk_uninit_hw(display); 2332 else if (DISPLAY_VER(display) == 9) 2333 skl_cdclk_uninit_hw(display); 2334 } 2335 2336 static bool intel_cdclk_can_crawl_and_squash(struct intel_display *display, 2337 const struct intel_cdclk_config *a, 2338 const struct intel_cdclk_config *b) 2339 { 2340 u16 old_waveform; 2341 u16 new_waveform; 2342 2343 drm_WARN_ON(display->drm, cdclk_pll_is_unknown(a->vco)); 2344 2345 if (a->vco == 0 || b->vco == 0) 2346 return false; 2347 2348 if (!HAS_CDCLK_CRAWL(display) || !HAS_CDCLK_SQUASH(display)) 2349 return false; 2350 2351 old_waveform = cdclk_squash_waveform(display, a->cdclk); 2352 new_waveform = cdclk_squash_waveform(display, b->cdclk); 2353 2354 return a->vco != b->vco && 2355 old_waveform != new_waveform; 2356 } 2357 2358 static bool intel_cdclk_can_crawl(struct intel_display *display, 2359 const struct intel_cdclk_config *a, 2360 const struct intel_cdclk_config *b) 2361 { 2362 int a_div, b_div; 2363 2364 if (!HAS_CDCLK_CRAWL(display)) 2365 return false; 2366 2367 /* 2368 * The vco and cd2x divider will change independently 2369 * from each, so we disallow cd2x change when crawling. 2370 */ 2371 a_div = DIV_ROUND_CLOSEST(a->vco, a->cdclk); 2372 b_div = DIV_ROUND_CLOSEST(b->vco, b->cdclk); 2373 2374 return a->vco != 0 && b->vco != 0 && 2375 a->vco != b->vco && 2376 a_div == b_div && 2377 a->ref == b->ref; 2378 } 2379 2380 static bool intel_cdclk_can_squash(struct intel_display *display, 2381 const struct intel_cdclk_config *a, 2382 const struct intel_cdclk_config *b) 2383 { 2384 /* 2385 * FIXME should store a bit more state in intel_cdclk_config 2386 * to differentiate squasher vs. cd2x divider properly. For 2387 * the moment all platforms with squasher use a fixed cd2x 2388 * divider. 2389 */ 2390 if (!HAS_CDCLK_SQUASH(display)) 2391 return false; 2392 2393 return a->cdclk != b->cdclk && 2394 a->vco != 0 && 2395 a->vco == b->vco && 2396 a->ref == b->ref; 2397 } 2398 2399 /** 2400 * intel_cdclk_clock_changed - Check whether the clock changed 2401 * @a: first CDCLK configuration 2402 * @b: second CDCLK configuration 2403 * 2404 * Returns: 2405 * True if CDCLK changed in a way that requires re-programming and 2406 * False otherwise. 2407 */ 2408 bool intel_cdclk_clock_changed(const struct intel_cdclk_config *a, 2409 const struct intel_cdclk_config *b) 2410 { 2411 return a->cdclk != b->cdclk || 2412 a->vco != b->vco || 2413 a->ref != b->ref; 2414 } 2415 2416 /** 2417 * intel_cdclk_can_cd2x_update - Determine if changing between the two CDCLK 2418 * configurations requires only a cd2x divider update 2419 * @display: display instance 2420 * @a: first CDCLK configuration 2421 * @b: second CDCLK configuration 2422 * 2423 * Returns: 2424 * True if changing between the two CDCLK configurations 2425 * can be done with just a cd2x divider update, false if not. 2426 */ 2427 static bool intel_cdclk_can_cd2x_update(struct intel_display *display, 2428 const struct intel_cdclk_config *a, 2429 const struct intel_cdclk_config *b) 2430 { 2431 /* Older hw doesn't have the capability */ 2432 if (DISPLAY_VER(display) < 10 && !display->platform.broxton) 2433 return false; 2434 2435 /* 2436 * FIXME should store a bit more state in intel_cdclk_config 2437 * to differentiate squasher vs. cd2x divider properly. For 2438 * the moment all platforms with squasher use a fixed cd2x 2439 * divider. 2440 */ 2441 if (HAS_CDCLK_SQUASH(display)) 2442 return false; 2443 2444 return a->cdclk != b->cdclk && 2445 a->vco != 0 && 2446 a->vco == b->vco && 2447 a->ref == b->ref; 2448 } 2449 2450 /** 2451 * intel_cdclk_changed - Determine if two CDCLK configurations are different 2452 * @a: first CDCLK configuration 2453 * @b: second CDCLK configuration 2454 * 2455 * Returns: 2456 * True if the CDCLK configurations don't match, false if they do. 2457 */ 2458 static bool intel_cdclk_changed(const struct intel_cdclk_config *a, 2459 const struct intel_cdclk_config *b) 2460 { 2461 return intel_cdclk_clock_changed(a, b) || 2462 a->voltage_level != b->voltage_level; 2463 } 2464 2465 void intel_cdclk_dump_config(struct intel_display *display, 2466 const struct intel_cdclk_config *cdclk_config, 2467 const char *context) 2468 { 2469 drm_dbg_kms(display->drm, "%s %d kHz, VCO %d kHz, ref %d kHz, bypass %d kHz, voltage level %d\n", 2470 context, cdclk_config->cdclk, cdclk_config->vco, 2471 cdclk_config->ref, cdclk_config->bypass, 2472 cdclk_config->voltage_level); 2473 } 2474 2475 static void intel_pcode_notify(struct intel_display *display, 2476 u8 voltage_level, 2477 u8 active_pipe_count, 2478 u16 cdclk, 2479 bool cdclk_update_valid, 2480 bool pipe_count_update_valid) 2481 { 2482 struct drm_i915_private *i915 = to_i915(display->drm); 2483 int ret; 2484 u32 update_mask = 0; 2485 2486 if (!display->platform.dg2) 2487 return; 2488 2489 update_mask = DISPLAY_TO_PCODE_UPDATE_MASK(cdclk, active_pipe_count, voltage_level); 2490 2491 if (cdclk_update_valid) 2492 update_mask |= DISPLAY_TO_PCODE_CDCLK_VALID; 2493 2494 if (pipe_count_update_valid) 2495 update_mask |= DISPLAY_TO_PCODE_PIPE_COUNT_VALID; 2496 2497 ret = skl_pcode_request(&i915->uncore, SKL_PCODE_CDCLK_CONTROL, 2498 SKL_CDCLK_PREPARE_FOR_CHANGE | 2499 update_mask, 2500 SKL_CDCLK_READY_FOR_CHANGE, 2501 SKL_CDCLK_READY_FOR_CHANGE, 3); 2502 if (ret) 2503 drm_err(display->drm, 2504 "Failed to inform PCU about display config (err %d)\n", 2505 ret); 2506 } 2507 2508 static void intel_set_cdclk(struct intel_display *display, 2509 const struct intel_cdclk_config *cdclk_config, 2510 enum pipe pipe, const char *context) 2511 { 2512 struct intel_encoder *encoder; 2513 2514 if (!intel_cdclk_changed(&display->cdclk.hw, cdclk_config)) 2515 return; 2516 2517 if (drm_WARN_ON_ONCE(display->drm, !display->funcs.cdclk->set_cdclk)) 2518 return; 2519 2520 intel_cdclk_dump_config(display, cdclk_config, context); 2521 2522 for_each_intel_encoder_with_psr(display->drm, encoder) { 2523 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2524 2525 intel_psr_pause(intel_dp); 2526 } 2527 2528 intel_audio_cdclk_change_pre(display); 2529 2530 /* 2531 * Lock aux/gmbus while we change cdclk in case those 2532 * functions use cdclk. Not all platforms/ports do, 2533 * but we'll lock them all for simplicity. 2534 */ 2535 mutex_lock(&display->gmbus.mutex); 2536 for_each_intel_dp(display->drm, encoder) { 2537 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2538 2539 mutex_lock_nest_lock(&intel_dp->aux.hw_mutex, 2540 &display->gmbus.mutex); 2541 } 2542 2543 intel_cdclk_set_cdclk(display, cdclk_config, pipe); 2544 2545 for_each_intel_dp(display->drm, encoder) { 2546 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2547 2548 mutex_unlock(&intel_dp->aux.hw_mutex); 2549 } 2550 mutex_unlock(&display->gmbus.mutex); 2551 2552 for_each_intel_encoder_with_psr(display->drm, encoder) { 2553 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2554 2555 intel_psr_resume(intel_dp); 2556 } 2557 2558 intel_audio_cdclk_change_post(display); 2559 2560 if (drm_WARN(display->drm, 2561 intel_cdclk_changed(&display->cdclk.hw, cdclk_config), 2562 "cdclk state doesn't match!\n")) { 2563 intel_cdclk_dump_config(display, &display->cdclk.hw, "[hw state]"); 2564 intel_cdclk_dump_config(display, cdclk_config, "[sw state]"); 2565 } 2566 } 2567 2568 static void intel_cdclk_pcode_pre_notify(struct intel_atomic_state *state) 2569 { 2570 struct intel_display *display = to_intel_display(state); 2571 const struct intel_cdclk_state *old_cdclk_state = 2572 intel_atomic_get_old_cdclk_state(state); 2573 const struct intel_cdclk_state *new_cdclk_state = 2574 intel_atomic_get_new_cdclk_state(state); 2575 unsigned int cdclk = 0; u8 voltage_level, num_active_pipes = 0; 2576 bool change_cdclk, update_pipe_count; 2577 2578 if (!intel_cdclk_changed(&old_cdclk_state->actual, 2579 &new_cdclk_state->actual) && 2580 new_cdclk_state->active_pipes == 2581 old_cdclk_state->active_pipes) 2582 return; 2583 2584 /* According to "Sequence Before Frequency Change", voltage level set to 0x3 */ 2585 voltage_level = DISPLAY_TO_PCODE_VOLTAGE_MAX; 2586 2587 change_cdclk = new_cdclk_state->actual.cdclk != old_cdclk_state->actual.cdclk; 2588 update_pipe_count = hweight8(new_cdclk_state->active_pipes) > 2589 hweight8(old_cdclk_state->active_pipes); 2590 2591 /* 2592 * According to "Sequence Before Frequency Change", 2593 * if CDCLK is increasing, set bits 25:16 to upcoming CDCLK, 2594 * if CDCLK is decreasing or not changing, set bits 25:16 to current CDCLK, 2595 * which basically means we choose the maximum of old and new CDCLK, if we know both 2596 */ 2597 if (change_cdclk) 2598 cdclk = max(new_cdclk_state->actual.cdclk, old_cdclk_state->actual.cdclk); 2599 2600 /* 2601 * According to "Sequence For Pipe Count Change", 2602 * if pipe count is increasing, set bits 25:16 to upcoming pipe count 2603 * (power well is enabled) 2604 * no action if it is decreasing, before the change 2605 */ 2606 if (update_pipe_count) 2607 num_active_pipes = hweight8(new_cdclk_state->active_pipes); 2608 2609 intel_pcode_notify(display, voltage_level, num_active_pipes, cdclk, 2610 change_cdclk, update_pipe_count); 2611 } 2612 2613 static void intel_cdclk_pcode_post_notify(struct intel_atomic_state *state) 2614 { 2615 struct intel_display *display = to_intel_display(state); 2616 const struct intel_cdclk_state *new_cdclk_state = 2617 intel_atomic_get_new_cdclk_state(state); 2618 const struct intel_cdclk_state *old_cdclk_state = 2619 intel_atomic_get_old_cdclk_state(state); 2620 unsigned int cdclk = 0; u8 voltage_level, num_active_pipes = 0; 2621 bool update_cdclk, update_pipe_count; 2622 2623 /* According to "Sequence After Frequency Change", set voltage to used level */ 2624 voltage_level = new_cdclk_state->actual.voltage_level; 2625 2626 update_cdclk = new_cdclk_state->actual.cdclk != old_cdclk_state->actual.cdclk; 2627 update_pipe_count = hweight8(new_cdclk_state->active_pipes) < 2628 hweight8(old_cdclk_state->active_pipes); 2629 2630 /* 2631 * According to "Sequence After Frequency Change", 2632 * set bits 25:16 to current CDCLK 2633 */ 2634 if (update_cdclk) 2635 cdclk = new_cdclk_state->actual.cdclk; 2636 2637 /* 2638 * According to "Sequence For Pipe Count Change", 2639 * if pipe count is decreasing, set bits 25:16 to current pipe count, 2640 * after the change(power well is disabled) 2641 * no action if it is increasing, after the change 2642 */ 2643 if (update_pipe_count) 2644 num_active_pipes = hweight8(new_cdclk_state->active_pipes); 2645 2646 intel_pcode_notify(display, voltage_level, num_active_pipes, cdclk, 2647 update_cdclk, update_pipe_count); 2648 } 2649 2650 bool intel_cdclk_is_decreasing_later(struct intel_atomic_state *state) 2651 { 2652 const struct intel_cdclk_state *old_cdclk_state = 2653 intel_atomic_get_old_cdclk_state(state); 2654 const struct intel_cdclk_state *new_cdclk_state = 2655 intel_atomic_get_new_cdclk_state(state); 2656 2657 return new_cdclk_state && !new_cdclk_state->disable_pipes && 2658 new_cdclk_state->actual.cdclk < old_cdclk_state->actual.cdclk; 2659 } 2660 2661 /** 2662 * intel_set_cdclk_pre_plane_update - Push the CDCLK state to the hardware 2663 * @state: intel atomic state 2664 * 2665 * Program the hardware before updating the HW plane state based on the 2666 * new CDCLK state, if necessary. 2667 */ 2668 void 2669 intel_set_cdclk_pre_plane_update(struct intel_atomic_state *state) 2670 { 2671 struct intel_display *display = to_intel_display(state); 2672 const struct intel_cdclk_state *old_cdclk_state = 2673 intel_atomic_get_old_cdclk_state(state); 2674 const struct intel_cdclk_state *new_cdclk_state = 2675 intel_atomic_get_new_cdclk_state(state); 2676 struct intel_cdclk_config cdclk_config; 2677 enum pipe pipe; 2678 2679 if (!intel_cdclk_changed(&old_cdclk_state->actual, 2680 &new_cdclk_state->actual)) 2681 return; 2682 2683 if (display->platform.dg2) 2684 intel_cdclk_pcode_pre_notify(state); 2685 2686 if (new_cdclk_state->disable_pipes) { 2687 cdclk_config = new_cdclk_state->actual; 2688 pipe = INVALID_PIPE; 2689 } else { 2690 if (new_cdclk_state->actual.cdclk >= old_cdclk_state->actual.cdclk) { 2691 cdclk_config = new_cdclk_state->actual; 2692 pipe = new_cdclk_state->pipe; 2693 } else { 2694 cdclk_config = old_cdclk_state->actual; 2695 pipe = INVALID_PIPE; 2696 } 2697 2698 cdclk_config.voltage_level = max(new_cdclk_state->actual.voltage_level, 2699 old_cdclk_state->actual.voltage_level); 2700 } 2701 2702 /* 2703 * mbus joining will be changed later by 2704 * intel_dbuf_mbus_{pre,post}_ddb_update() 2705 */ 2706 cdclk_config.joined_mbus = old_cdclk_state->actual.joined_mbus; 2707 2708 drm_WARN_ON(display->drm, !new_cdclk_state->base.changed); 2709 2710 intel_set_cdclk(display, &cdclk_config, pipe, 2711 "Pre changing CDCLK to"); 2712 } 2713 2714 /** 2715 * intel_set_cdclk_post_plane_update - Push the CDCLK state to the hardware 2716 * @state: intel atomic state 2717 * 2718 * Program the hardware after updating the HW plane state based on the 2719 * new CDCLK state, if necessary. 2720 */ 2721 void 2722 intel_set_cdclk_post_plane_update(struct intel_atomic_state *state) 2723 { 2724 struct intel_display *display = to_intel_display(state); 2725 const struct intel_cdclk_state *old_cdclk_state = 2726 intel_atomic_get_old_cdclk_state(state); 2727 const struct intel_cdclk_state *new_cdclk_state = 2728 intel_atomic_get_new_cdclk_state(state); 2729 enum pipe pipe; 2730 2731 if (!intel_cdclk_changed(&old_cdclk_state->actual, 2732 &new_cdclk_state->actual)) 2733 return; 2734 2735 if (display->platform.dg2) 2736 intel_cdclk_pcode_post_notify(state); 2737 2738 if (!new_cdclk_state->disable_pipes && 2739 new_cdclk_state->actual.cdclk < old_cdclk_state->actual.cdclk) 2740 pipe = new_cdclk_state->pipe; 2741 else 2742 pipe = INVALID_PIPE; 2743 2744 drm_WARN_ON(display->drm, !new_cdclk_state->base.changed); 2745 2746 intel_set_cdclk(display, &new_cdclk_state->actual, pipe, 2747 "Post changing CDCLK to"); 2748 } 2749 2750 /* pixels per CDCLK */ 2751 static int intel_cdclk_ppc(struct intel_display *display, bool double_wide) 2752 { 2753 return DISPLAY_VER(display) >= 10 || double_wide ? 2 : 1; 2754 } 2755 2756 /* max pixel rate as % of CDCLK (not accounting for PPC) */ 2757 static int intel_cdclk_guardband(struct intel_display *display) 2758 { 2759 if (DISPLAY_VER(display) >= 9 || 2760 display->platform.broadwell || display->platform.haswell) 2761 return 100; 2762 else if (display->platform.cherryview) 2763 return 95; 2764 else 2765 return 90; 2766 } 2767 2768 static int intel_pixel_rate_to_cdclk(const struct intel_crtc_state *crtc_state) 2769 { 2770 struct intel_display *display = to_intel_display(crtc_state); 2771 int ppc = intel_cdclk_ppc(display, crtc_state->double_wide); 2772 int guardband = intel_cdclk_guardband(display); 2773 int pixel_rate = crtc_state->pixel_rate; 2774 2775 return DIV_ROUND_UP(pixel_rate * 100, guardband * ppc); 2776 } 2777 2778 static int intel_planes_min_cdclk(const struct intel_crtc_state *crtc_state) 2779 { 2780 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2781 struct intel_display *display = to_intel_display(crtc); 2782 struct intel_plane *plane; 2783 int min_cdclk = 0; 2784 2785 for_each_intel_plane_on_crtc(display->drm, crtc, plane) 2786 min_cdclk = max(min_cdclk, crtc_state->min_cdclk[plane->id]); 2787 2788 return min_cdclk; 2789 } 2790 2791 static int intel_crtc_compute_min_cdclk(const struct intel_crtc_state *crtc_state) 2792 { 2793 int min_cdclk; 2794 2795 if (!crtc_state->hw.enable) 2796 return 0; 2797 2798 min_cdclk = intel_pixel_rate_to_cdclk(crtc_state); 2799 min_cdclk = max(min_cdclk, hsw_ips_min_cdclk(crtc_state)); 2800 min_cdclk = max(min_cdclk, intel_audio_min_cdclk(crtc_state)); 2801 min_cdclk = max(min_cdclk, vlv_dsi_min_cdclk(crtc_state)); 2802 min_cdclk = max(min_cdclk, intel_planes_min_cdclk(crtc_state)); 2803 min_cdclk = max(min_cdclk, intel_vdsc_min_cdclk(crtc_state)); 2804 2805 return min_cdclk; 2806 } 2807 2808 static int intel_compute_min_cdclk(struct intel_atomic_state *state) 2809 { 2810 struct intel_display *display = to_intel_display(state); 2811 struct drm_i915_private *dev_priv = to_i915(display->drm); 2812 struct intel_cdclk_state *cdclk_state = 2813 intel_atomic_get_new_cdclk_state(state); 2814 const struct intel_bw_state *bw_state; 2815 struct intel_crtc *crtc; 2816 struct intel_crtc_state *crtc_state; 2817 int min_cdclk, i; 2818 enum pipe pipe; 2819 2820 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 2821 int ret; 2822 2823 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state); 2824 if (min_cdclk < 0) 2825 return min_cdclk; 2826 2827 if (cdclk_state->min_cdclk[crtc->pipe] == min_cdclk) 2828 continue; 2829 2830 cdclk_state->min_cdclk[crtc->pipe] = min_cdclk; 2831 2832 ret = intel_atomic_lock_global_state(&cdclk_state->base); 2833 if (ret) 2834 return ret; 2835 } 2836 2837 bw_state = intel_atomic_get_new_bw_state(state); 2838 if (bw_state) { 2839 min_cdclk = intel_bw_min_cdclk(dev_priv, bw_state); 2840 2841 if (cdclk_state->bw_min_cdclk != min_cdclk) { 2842 int ret; 2843 2844 cdclk_state->bw_min_cdclk = min_cdclk; 2845 2846 ret = intel_atomic_lock_global_state(&cdclk_state->base); 2847 if (ret) 2848 return ret; 2849 } 2850 } 2851 2852 min_cdclk = max(cdclk_state->force_min_cdclk, 2853 cdclk_state->bw_min_cdclk); 2854 for_each_pipe(display, pipe) 2855 min_cdclk = max(min_cdclk, cdclk_state->min_cdclk[pipe]); 2856 2857 /* 2858 * Avoid glk_force_audio_cdclk() causing excessive screen 2859 * blinking when multiple pipes are active by making sure 2860 * CDCLK frequency is always high enough for audio. With a 2861 * single active pipe we can always change CDCLK frequency 2862 * by changing the cd2x divider (see glk_cdclk_table[]) and 2863 * thus a full modeset won't be needed then. 2864 */ 2865 if (display->platform.geminilake && cdclk_state->active_pipes && 2866 !is_power_of_2(cdclk_state->active_pipes)) 2867 min_cdclk = max(min_cdclk, 2 * 96000); 2868 2869 if (min_cdclk > display->cdclk.max_cdclk_freq) { 2870 drm_dbg_kms(display->drm, 2871 "required cdclk (%d kHz) exceeds max (%d kHz)\n", 2872 min_cdclk, display->cdclk.max_cdclk_freq); 2873 return -EINVAL; 2874 } 2875 2876 return min_cdclk; 2877 } 2878 2879 /* 2880 * Account for port clock min voltage level requirements. 2881 * This only really does something on DISPLA_VER >= 11 but can be 2882 * called on earlier platforms as well. 2883 * 2884 * Note that this functions assumes that 0 is 2885 * the lowest voltage value, and higher values 2886 * correspond to increasingly higher voltages. 2887 * 2888 * Should that relationship no longer hold on 2889 * future platforms this code will need to be 2890 * adjusted. 2891 */ 2892 static int bxt_compute_min_voltage_level(struct intel_atomic_state *state) 2893 { 2894 struct intel_display *display = to_intel_display(state); 2895 struct intel_cdclk_state *cdclk_state = 2896 intel_atomic_get_new_cdclk_state(state); 2897 struct intel_crtc *crtc; 2898 struct intel_crtc_state *crtc_state; 2899 u8 min_voltage_level; 2900 int i; 2901 enum pipe pipe; 2902 2903 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 2904 int ret; 2905 2906 if (crtc_state->hw.enable) 2907 min_voltage_level = crtc_state->min_voltage_level; 2908 else 2909 min_voltage_level = 0; 2910 2911 if (cdclk_state->min_voltage_level[crtc->pipe] == min_voltage_level) 2912 continue; 2913 2914 cdclk_state->min_voltage_level[crtc->pipe] = min_voltage_level; 2915 2916 ret = intel_atomic_lock_global_state(&cdclk_state->base); 2917 if (ret) 2918 return ret; 2919 } 2920 2921 min_voltage_level = 0; 2922 for_each_pipe(display, pipe) 2923 min_voltage_level = max(min_voltage_level, 2924 cdclk_state->min_voltage_level[pipe]); 2925 2926 return min_voltage_level; 2927 } 2928 2929 static int vlv_modeset_calc_cdclk(struct intel_atomic_state *state) 2930 { 2931 struct intel_display *display = to_intel_display(state); 2932 struct intel_cdclk_state *cdclk_state = 2933 intel_atomic_get_new_cdclk_state(state); 2934 int min_cdclk, cdclk; 2935 2936 min_cdclk = intel_compute_min_cdclk(state); 2937 if (min_cdclk < 0) 2938 return min_cdclk; 2939 2940 cdclk = vlv_calc_cdclk(display, min_cdclk); 2941 2942 cdclk_state->logical.cdclk = cdclk; 2943 cdclk_state->logical.voltage_level = 2944 vlv_calc_voltage_level(display, cdclk); 2945 2946 if (!cdclk_state->active_pipes) { 2947 cdclk = vlv_calc_cdclk(display, cdclk_state->force_min_cdclk); 2948 2949 cdclk_state->actual.cdclk = cdclk; 2950 cdclk_state->actual.voltage_level = 2951 vlv_calc_voltage_level(display, cdclk); 2952 } else { 2953 cdclk_state->actual = cdclk_state->logical; 2954 } 2955 2956 return 0; 2957 } 2958 2959 static int bdw_modeset_calc_cdclk(struct intel_atomic_state *state) 2960 { 2961 struct intel_cdclk_state *cdclk_state = 2962 intel_atomic_get_new_cdclk_state(state); 2963 int min_cdclk, cdclk; 2964 2965 min_cdclk = intel_compute_min_cdclk(state); 2966 if (min_cdclk < 0) 2967 return min_cdclk; 2968 2969 cdclk = bdw_calc_cdclk(min_cdclk); 2970 2971 cdclk_state->logical.cdclk = cdclk; 2972 cdclk_state->logical.voltage_level = 2973 bdw_calc_voltage_level(cdclk); 2974 2975 if (!cdclk_state->active_pipes) { 2976 cdclk = bdw_calc_cdclk(cdclk_state->force_min_cdclk); 2977 2978 cdclk_state->actual.cdclk = cdclk; 2979 cdclk_state->actual.voltage_level = 2980 bdw_calc_voltage_level(cdclk); 2981 } else { 2982 cdclk_state->actual = cdclk_state->logical; 2983 } 2984 2985 return 0; 2986 } 2987 2988 static int skl_dpll0_vco(struct intel_atomic_state *state) 2989 { 2990 struct intel_display *display = to_intel_display(state); 2991 struct intel_cdclk_state *cdclk_state = 2992 intel_atomic_get_new_cdclk_state(state); 2993 struct intel_crtc *crtc; 2994 struct intel_crtc_state *crtc_state; 2995 int vco, i; 2996 2997 vco = cdclk_state->logical.vco; 2998 if (!vco) 2999 vco = display->cdclk.skl_preferred_vco_freq; 3000 3001 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 3002 if (!crtc_state->hw.enable) 3003 continue; 3004 3005 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) 3006 continue; 3007 3008 /* 3009 * DPLL0 VCO may need to be adjusted to get the correct 3010 * clock for eDP. This will affect cdclk as well. 3011 */ 3012 switch (crtc_state->port_clock / 2) { 3013 case 108000: 3014 case 216000: 3015 vco = 8640000; 3016 break; 3017 default: 3018 vco = 8100000; 3019 break; 3020 } 3021 } 3022 3023 return vco; 3024 } 3025 3026 static int skl_modeset_calc_cdclk(struct intel_atomic_state *state) 3027 { 3028 struct intel_cdclk_state *cdclk_state = 3029 intel_atomic_get_new_cdclk_state(state); 3030 int min_cdclk, cdclk, vco; 3031 3032 min_cdclk = intel_compute_min_cdclk(state); 3033 if (min_cdclk < 0) 3034 return min_cdclk; 3035 3036 vco = skl_dpll0_vco(state); 3037 3038 cdclk = skl_calc_cdclk(min_cdclk, vco); 3039 3040 cdclk_state->logical.vco = vco; 3041 cdclk_state->logical.cdclk = cdclk; 3042 cdclk_state->logical.voltage_level = 3043 skl_calc_voltage_level(cdclk); 3044 3045 if (!cdclk_state->active_pipes) { 3046 cdclk = skl_calc_cdclk(cdclk_state->force_min_cdclk, vco); 3047 3048 cdclk_state->actual.vco = vco; 3049 cdclk_state->actual.cdclk = cdclk; 3050 cdclk_state->actual.voltage_level = 3051 skl_calc_voltage_level(cdclk); 3052 } else { 3053 cdclk_state->actual = cdclk_state->logical; 3054 } 3055 3056 return 0; 3057 } 3058 3059 static int bxt_modeset_calc_cdclk(struct intel_atomic_state *state) 3060 { 3061 struct intel_display *display = to_intel_display(state); 3062 struct intel_cdclk_state *cdclk_state = 3063 intel_atomic_get_new_cdclk_state(state); 3064 int min_cdclk, min_voltage_level, cdclk, vco; 3065 3066 min_cdclk = intel_compute_min_cdclk(state); 3067 if (min_cdclk < 0) 3068 return min_cdclk; 3069 3070 min_voltage_level = bxt_compute_min_voltage_level(state); 3071 if (min_voltage_level < 0) 3072 return min_voltage_level; 3073 3074 cdclk = bxt_calc_cdclk(display, min_cdclk); 3075 vco = bxt_calc_cdclk_pll_vco(display, cdclk); 3076 3077 cdclk_state->logical.vco = vco; 3078 cdclk_state->logical.cdclk = cdclk; 3079 cdclk_state->logical.voltage_level = 3080 max_t(int, min_voltage_level, 3081 intel_cdclk_calc_voltage_level(display, cdclk)); 3082 3083 if (!cdclk_state->active_pipes) { 3084 cdclk = bxt_calc_cdclk(display, cdclk_state->force_min_cdclk); 3085 vco = bxt_calc_cdclk_pll_vco(display, cdclk); 3086 3087 cdclk_state->actual.vco = vco; 3088 cdclk_state->actual.cdclk = cdclk; 3089 cdclk_state->actual.voltage_level = 3090 intel_cdclk_calc_voltage_level(display, cdclk); 3091 } else { 3092 cdclk_state->actual = cdclk_state->logical; 3093 } 3094 3095 return 0; 3096 } 3097 3098 static int fixed_modeset_calc_cdclk(struct intel_atomic_state *state) 3099 { 3100 int min_cdclk; 3101 3102 /* 3103 * We can't change the cdclk frequency, but we still want to 3104 * check that the required minimum frequency doesn't exceed 3105 * the actual cdclk frequency. 3106 */ 3107 min_cdclk = intel_compute_min_cdclk(state); 3108 if (min_cdclk < 0) 3109 return min_cdclk; 3110 3111 return 0; 3112 } 3113 3114 static struct intel_global_state *intel_cdclk_duplicate_state(struct intel_global_obj *obj) 3115 { 3116 struct intel_cdclk_state *cdclk_state; 3117 3118 cdclk_state = kmemdup(obj->state, sizeof(*cdclk_state), GFP_KERNEL); 3119 if (!cdclk_state) 3120 return NULL; 3121 3122 cdclk_state->pipe = INVALID_PIPE; 3123 cdclk_state->disable_pipes = false; 3124 3125 return &cdclk_state->base; 3126 } 3127 3128 static void intel_cdclk_destroy_state(struct intel_global_obj *obj, 3129 struct intel_global_state *state) 3130 { 3131 kfree(state); 3132 } 3133 3134 static const struct intel_global_state_funcs intel_cdclk_funcs = { 3135 .atomic_duplicate_state = intel_cdclk_duplicate_state, 3136 .atomic_destroy_state = intel_cdclk_destroy_state, 3137 }; 3138 3139 struct intel_cdclk_state * 3140 intel_atomic_get_cdclk_state(struct intel_atomic_state *state) 3141 { 3142 struct intel_display *display = to_intel_display(state); 3143 struct intel_global_state *cdclk_state; 3144 3145 cdclk_state = intel_atomic_get_global_obj_state(state, &display->cdclk.obj); 3146 if (IS_ERR(cdclk_state)) 3147 return ERR_CAST(cdclk_state); 3148 3149 return to_intel_cdclk_state(cdclk_state); 3150 } 3151 3152 int intel_cdclk_atomic_check(struct intel_atomic_state *state, 3153 bool *need_cdclk_calc) 3154 { 3155 const struct intel_cdclk_state *old_cdclk_state; 3156 const struct intel_cdclk_state *new_cdclk_state; 3157 struct intel_plane_state __maybe_unused *plane_state; 3158 struct intel_plane *plane; 3159 int ret; 3160 int i; 3161 3162 /* 3163 * active_planes bitmask has been updated, and potentially affected 3164 * planes are part of the state. We can now compute the minimum cdclk 3165 * for each plane. 3166 */ 3167 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 3168 ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc); 3169 if (ret) 3170 return ret; 3171 } 3172 3173 ret = intel_bw_calc_min_cdclk(state, need_cdclk_calc); 3174 if (ret) 3175 return ret; 3176 3177 old_cdclk_state = intel_atomic_get_old_cdclk_state(state); 3178 new_cdclk_state = intel_atomic_get_new_cdclk_state(state); 3179 3180 if (new_cdclk_state && 3181 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk) 3182 *need_cdclk_calc = true; 3183 3184 return 0; 3185 } 3186 3187 int intel_cdclk_state_set_joined_mbus(struct intel_atomic_state *state, bool joined_mbus) 3188 { 3189 struct intel_cdclk_state *cdclk_state; 3190 3191 cdclk_state = intel_atomic_get_cdclk_state(state); 3192 if (IS_ERR(cdclk_state)) 3193 return PTR_ERR(cdclk_state); 3194 3195 cdclk_state->actual.joined_mbus = joined_mbus; 3196 cdclk_state->logical.joined_mbus = joined_mbus; 3197 3198 return intel_atomic_lock_global_state(&cdclk_state->base); 3199 } 3200 3201 int intel_cdclk_init(struct intel_display *display) 3202 { 3203 struct intel_cdclk_state *cdclk_state; 3204 3205 cdclk_state = kzalloc(sizeof(*cdclk_state), GFP_KERNEL); 3206 if (!cdclk_state) 3207 return -ENOMEM; 3208 3209 intel_atomic_global_obj_init(display, &display->cdclk.obj, 3210 &cdclk_state->base, &intel_cdclk_funcs); 3211 3212 return 0; 3213 } 3214 3215 static bool intel_cdclk_need_serialize(struct intel_display *display, 3216 const struct intel_cdclk_state *old_cdclk_state, 3217 const struct intel_cdclk_state *new_cdclk_state) 3218 { 3219 bool power_well_cnt_changed = hweight8(old_cdclk_state->active_pipes) != 3220 hweight8(new_cdclk_state->active_pipes); 3221 bool cdclk_changed = intel_cdclk_changed(&old_cdclk_state->actual, 3222 &new_cdclk_state->actual); 3223 /* 3224 * We need to poke hw for gen >= 12, because we notify PCode if 3225 * pipe power well count changes. 3226 */ 3227 return cdclk_changed || (display->platform.dg2 && power_well_cnt_changed); 3228 } 3229 3230 int intel_modeset_calc_cdclk(struct intel_atomic_state *state) 3231 { 3232 struct intel_display *display = to_intel_display(state); 3233 const struct intel_cdclk_state *old_cdclk_state; 3234 struct intel_cdclk_state *new_cdclk_state; 3235 enum pipe pipe = INVALID_PIPE; 3236 int ret; 3237 3238 new_cdclk_state = intel_atomic_get_cdclk_state(state); 3239 if (IS_ERR(new_cdclk_state)) 3240 return PTR_ERR(new_cdclk_state); 3241 3242 old_cdclk_state = intel_atomic_get_old_cdclk_state(state); 3243 3244 new_cdclk_state->active_pipes = 3245 intel_calc_active_pipes(state, old_cdclk_state->active_pipes); 3246 3247 ret = intel_cdclk_modeset_calc_cdclk(state); 3248 if (ret) 3249 return ret; 3250 3251 if (intel_cdclk_need_serialize(display, old_cdclk_state, new_cdclk_state)) { 3252 /* 3253 * Also serialize commits across all crtcs 3254 * if the actual hw needs to be poked. 3255 */ 3256 ret = intel_atomic_serialize_global_state(&new_cdclk_state->base); 3257 if (ret) 3258 return ret; 3259 } else if (old_cdclk_state->active_pipes != new_cdclk_state->active_pipes || 3260 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk || 3261 intel_cdclk_changed(&old_cdclk_state->logical, 3262 &new_cdclk_state->logical)) { 3263 ret = intel_atomic_lock_global_state(&new_cdclk_state->base); 3264 if (ret) 3265 return ret; 3266 } else { 3267 return 0; 3268 } 3269 3270 if (is_power_of_2(new_cdclk_state->active_pipes) && 3271 intel_cdclk_can_cd2x_update(display, 3272 &old_cdclk_state->actual, 3273 &new_cdclk_state->actual)) { 3274 struct intel_crtc *crtc; 3275 struct intel_crtc_state *crtc_state; 3276 3277 pipe = ilog2(new_cdclk_state->active_pipes); 3278 crtc = intel_crtc_for_pipe(display, pipe); 3279 3280 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 3281 if (IS_ERR(crtc_state)) 3282 return PTR_ERR(crtc_state); 3283 3284 if (intel_crtc_needs_modeset(crtc_state)) 3285 pipe = INVALID_PIPE; 3286 } 3287 3288 if (intel_cdclk_can_crawl_and_squash(display, 3289 &old_cdclk_state->actual, 3290 &new_cdclk_state->actual)) { 3291 drm_dbg_kms(display->drm, 3292 "Can change cdclk via crawling and squashing\n"); 3293 } else if (intel_cdclk_can_squash(display, 3294 &old_cdclk_state->actual, 3295 &new_cdclk_state->actual)) { 3296 drm_dbg_kms(display->drm, 3297 "Can change cdclk via squashing\n"); 3298 } else if (intel_cdclk_can_crawl(display, 3299 &old_cdclk_state->actual, 3300 &new_cdclk_state->actual)) { 3301 drm_dbg_kms(display->drm, 3302 "Can change cdclk via crawling\n"); 3303 } else if (pipe != INVALID_PIPE) { 3304 new_cdclk_state->pipe = pipe; 3305 3306 drm_dbg_kms(display->drm, 3307 "Can change cdclk cd2x divider with pipe %c active\n", 3308 pipe_name(pipe)); 3309 } else if (intel_cdclk_clock_changed(&old_cdclk_state->actual, 3310 &new_cdclk_state->actual)) { 3311 /* All pipes must be switched off while we change the cdclk. */ 3312 ret = intel_modeset_all_pipes_late(state, "CDCLK change"); 3313 if (ret) 3314 return ret; 3315 3316 new_cdclk_state->disable_pipes = true; 3317 3318 drm_dbg_kms(display->drm, 3319 "Modeset required for cdclk change\n"); 3320 } 3321 3322 if (intel_mdclk_cdclk_ratio(display, &old_cdclk_state->actual) != 3323 intel_mdclk_cdclk_ratio(display, &new_cdclk_state->actual)) { 3324 int ratio = intel_mdclk_cdclk_ratio(display, &new_cdclk_state->actual); 3325 3326 ret = intel_dbuf_state_set_mdclk_cdclk_ratio(state, ratio); 3327 if (ret) 3328 return ret; 3329 } 3330 3331 drm_dbg_kms(display->drm, 3332 "New cdclk calculated to be logical %u kHz, actual %u kHz\n", 3333 new_cdclk_state->logical.cdclk, 3334 new_cdclk_state->actual.cdclk); 3335 drm_dbg_kms(display->drm, 3336 "New voltage level calculated to be logical %u, actual %u\n", 3337 new_cdclk_state->logical.voltage_level, 3338 new_cdclk_state->actual.voltage_level); 3339 3340 return 0; 3341 } 3342 3343 void intel_cdclk_update_hw_state(struct intel_display *display) 3344 { 3345 struct intel_cdclk_state *cdclk_state = 3346 to_intel_cdclk_state(display->cdclk.obj.state); 3347 struct intel_crtc *crtc; 3348 3349 cdclk_state->active_pipes = 0; 3350 3351 for_each_intel_crtc(display->drm, crtc) { 3352 const struct intel_crtc_state *crtc_state = 3353 to_intel_crtc_state(crtc->base.state); 3354 enum pipe pipe = crtc->pipe; 3355 3356 if (crtc_state->hw.active) 3357 cdclk_state->active_pipes |= BIT(pipe); 3358 3359 cdclk_state->min_cdclk[pipe] = intel_crtc_compute_min_cdclk(crtc_state); 3360 cdclk_state->min_voltage_level[pipe] = crtc_state->min_voltage_level; 3361 } 3362 } 3363 3364 void intel_cdclk_crtc_disable_noatomic(struct intel_crtc *crtc) 3365 { 3366 struct intel_display *display = to_intel_display(crtc); 3367 3368 intel_cdclk_update_hw_state(display); 3369 } 3370 3371 static int intel_compute_max_dotclk(struct intel_display *display) 3372 { 3373 int ppc = intel_cdclk_ppc(display, HAS_DOUBLE_WIDE(display)); 3374 int guardband = intel_cdclk_guardband(display); 3375 int max_cdclk_freq = display->cdclk.max_cdclk_freq; 3376 3377 return ppc * max_cdclk_freq * guardband / 100; 3378 } 3379 3380 /** 3381 * intel_update_max_cdclk - Determine the maximum support CDCLK frequency 3382 * @display: display instance 3383 * 3384 * Determine the maximum CDCLK frequency the platform supports, and also 3385 * derive the maximum dot clock frequency the maximum CDCLK frequency 3386 * allows. 3387 */ 3388 void intel_update_max_cdclk(struct intel_display *display) 3389 { 3390 if (DISPLAY_VER(display) >= 30) { 3391 display->cdclk.max_cdclk_freq = 691200; 3392 } else if (display->platform.jasperlake || display->platform.elkhartlake) { 3393 if (display->cdclk.hw.ref == 24000) 3394 display->cdclk.max_cdclk_freq = 552000; 3395 else 3396 display->cdclk.max_cdclk_freq = 556800; 3397 } else if (DISPLAY_VER(display) >= 11) { 3398 if (display->cdclk.hw.ref == 24000) 3399 display->cdclk.max_cdclk_freq = 648000; 3400 else 3401 display->cdclk.max_cdclk_freq = 652800; 3402 } else if (display->platform.geminilake) { 3403 display->cdclk.max_cdclk_freq = 316800; 3404 } else if (display->platform.broxton) { 3405 display->cdclk.max_cdclk_freq = 624000; 3406 } else if (DISPLAY_VER(display) == 9) { 3407 u32 limit = intel_de_read(display, SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK; 3408 int max_cdclk, vco; 3409 3410 vco = display->cdclk.skl_preferred_vco_freq; 3411 drm_WARN_ON(display->drm, vco != 8100000 && vco != 8640000); 3412 3413 /* 3414 * Use the lower (vco 8640) cdclk values as a 3415 * first guess. skl_calc_cdclk() will correct it 3416 * if the preferred vco is 8100 instead. 3417 */ 3418 if (limit == SKL_DFSM_CDCLK_LIMIT_675) 3419 max_cdclk = 617143; 3420 else if (limit == SKL_DFSM_CDCLK_LIMIT_540) 3421 max_cdclk = 540000; 3422 else if (limit == SKL_DFSM_CDCLK_LIMIT_450) 3423 max_cdclk = 432000; 3424 else 3425 max_cdclk = 308571; 3426 3427 display->cdclk.max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco); 3428 } else if (display->platform.broadwell) { 3429 /* 3430 * FIXME with extra cooling we can allow 3431 * 540 MHz for ULX and 675 Mhz for ULT. 3432 * How can we know if extra cooling is 3433 * available? PCI ID, VTB, something else? 3434 */ 3435 if (intel_de_read(display, FUSE_STRAP) & HSW_CDCLK_LIMIT) 3436 display->cdclk.max_cdclk_freq = 450000; 3437 else if (display->platform.broadwell_ulx) 3438 display->cdclk.max_cdclk_freq = 450000; 3439 else if (display->platform.broadwell_ult) 3440 display->cdclk.max_cdclk_freq = 540000; 3441 else 3442 display->cdclk.max_cdclk_freq = 675000; 3443 } else if (display->platform.cherryview) { 3444 display->cdclk.max_cdclk_freq = 320000; 3445 } else if (display->platform.valleyview) { 3446 display->cdclk.max_cdclk_freq = 400000; 3447 } else { 3448 /* otherwise assume cdclk is fixed */ 3449 display->cdclk.max_cdclk_freq = display->cdclk.hw.cdclk; 3450 } 3451 3452 display->cdclk.max_dotclk_freq = intel_compute_max_dotclk(display); 3453 3454 drm_dbg(display->drm, "Max CD clock rate: %d kHz\n", 3455 display->cdclk.max_cdclk_freq); 3456 3457 drm_dbg(display->drm, "Max dotclock rate: %d kHz\n", 3458 display->cdclk.max_dotclk_freq); 3459 } 3460 3461 /** 3462 * intel_update_cdclk - Determine the current CDCLK frequency 3463 * @display: display instance 3464 * 3465 * Determine the current CDCLK frequency. 3466 */ 3467 void intel_update_cdclk(struct intel_display *display) 3468 { 3469 intel_cdclk_get_cdclk(display, &display->cdclk.hw); 3470 3471 /* 3472 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq): 3473 * Programmng [sic] note: bit[9:2] should be programmed to the number 3474 * of cdclk that generates 4MHz reference clock freq which is used to 3475 * generate GMBus clock. This will vary with the cdclk freq. 3476 */ 3477 if (display->platform.valleyview || display->platform.cherryview) 3478 intel_de_write(display, GMBUSFREQ_VLV, 3479 DIV_ROUND_UP(display->cdclk.hw.cdclk, 1000)); 3480 } 3481 3482 static int dg1_rawclk(struct intel_display *display) 3483 { 3484 /* 3485 * DG1 always uses a 38.4 MHz rawclk. The bspec tells us 3486 * "Program Numerator=2, Denominator=4, Divider=37 decimal." 3487 */ 3488 intel_de_write(display, PCH_RAWCLK_FREQ, 3489 CNP_RAWCLK_DEN(4) | CNP_RAWCLK_DIV(37) | ICP_RAWCLK_NUM(2)); 3490 3491 return 38400; 3492 } 3493 3494 static int cnp_rawclk(struct intel_display *display) 3495 { 3496 struct drm_i915_private *dev_priv = to_i915(display->drm); 3497 int divider, fraction; 3498 u32 rawclk; 3499 3500 if (intel_de_read(display, SFUSE_STRAP) & SFUSE_STRAP_RAW_FREQUENCY) { 3501 /* 24 MHz */ 3502 divider = 24000; 3503 fraction = 0; 3504 } else { 3505 /* 19.2 MHz */ 3506 divider = 19000; 3507 fraction = 200; 3508 } 3509 3510 rawclk = CNP_RAWCLK_DIV(divider / 1000); 3511 if (fraction) { 3512 int numerator = 1; 3513 3514 rawclk |= CNP_RAWCLK_DEN(DIV_ROUND_CLOSEST(numerator * 1000, 3515 fraction) - 1); 3516 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 3517 rawclk |= ICP_RAWCLK_NUM(numerator); 3518 } 3519 3520 intel_de_write(display, PCH_RAWCLK_FREQ, rawclk); 3521 return divider + fraction; 3522 } 3523 3524 static int pch_rawclk(struct intel_display *display) 3525 { 3526 return (intel_de_read(display, PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000; 3527 } 3528 3529 static int vlv_hrawclk(struct intel_display *display) 3530 { 3531 struct drm_i915_private *dev_priv = to_i915(display->drm); 3532 3533 /* RAWCLK_FREQ_VLV register updated from power well code */ 3534 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk", 3535 CCK_DISPLAY_REF_CLOCK_CONTROL); 3536 } 3537 3538 static int i9xx_hrawclk(struct intel_display *display) 3539 { 3540 struct drm_i915_private *i915 = to_i915(display->drm); 3541 3542 /* hrawclock is 1/4 the FSB frequency */ 3543 return DIV_ROUND_CLOSEST(i9xx_fsb_freq(i915), 4); 3544 } 3545 3546 /** 3547 * intel_read_rawclk - Determine the current RAWCLK frequency 3548 * @display: display instance 3549 * 3550 * Determine the current RAWCLK frequency. RAWCLK is a fixed 3551 * frequency clock so this needs to done only once. 3552 */ 3553 u32 intel_read_rawclk(struct intel_display *display) 3554 { 3555 struct drm_i915_private *dev_priv = to_i915(display->drm); 3556 u32 freq; 3557 3558 if (INTEL_PCH_TYPE(dev_priv) >= PCH_MTL) 3559 /* 3560 * MTL always uses a 38.4 MHz rawclk. The bspec tells us 3561 * "RAWCLK_FREQ defaults to the values for 38.4 and does 3562 * not need to be programmed." 3563 */ 3564 freq = 38400; 3565 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1) 3566 freq = dg1_rawclk(display); 3567 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP) 3568 freq = cnp_rawclk(display); 3569 else if (HAS_PCH_SPLIT(dev_priv)) 3570 freq = pch_rawclk(display); 3571 else if (display->platform.valleyview || display->platform.cherryview) 3572 freq = vlv_hrawclk(display); 3573 else if (DISPLAY_VER(display) >= 3) 3574 freq = i9xx_hrawclk(display); 3575 else 3576 /* no rawclk on other platforms, or no need to know it */ 3577 return 0; 3578 3579 return freq; 3580 } 3581 3582 static int i915_cdclk_info_show(struct seq_file *m, void *unused) 3583 { 3584 struct intel_display *display = m->private; 3585 3586 seq_printf(m, "Current CD clock frequency: %d kHz\n", display->cdclk.hw.cdclk); 3587 seq_printf(m, "Max CD clock frequency: %d kHz\n", display->cdclk.max_cdclk_freq); 3588 seq_printf(m, "Max pixel clock frequency: %d kHz\n", display->cdclk.max_dotclk_freq); 3589 3590 return 0; 3591 } 3592 3593 DEFINE_SHOW_ATTRIBUTE(i915_cdclk_info); 3594 3595 void intel_cdclk_debugfs_register(struct intel_display *display) 3596 { 3597 struct drm_minor *minor = display->drm->primary; 3598 3599 debugfs_create_file("i915_cdclk_info", 0444, minor->debugfs_root, 3600 display, &i915_cdclk_info_fops); 3601 } 3602 3603 static const struct intel_cdclk_funcs xe3lpd_cdclk_funcs = { 3604 .get_cdclk = bxt_get_cdclk, 3605 .set_cdclk = bxt_set_cdclk, 3606 .modeset_calc_cdclk = bxt_modeset_calc_cdclk, 3607 .calc_voltage_level = xe3lpd_calc_voltage_level, 3608 }; 3609 3610 static const struct intel_cdclk_funcs rplu_cdclk_funcs = { 3611 .get_cdclk = bxt_get_cdclk, 3612 .set_cdclk = bxt_set_cdclk, 3613 .modeset_calc_cdclk = bxt_modeset_calc_cdclk, 3614 .calc_voltage_level = rplu_calc_voltage_level, 3615 }; 3616 3617 static const struct intel_cdclk_funcs tgl_cdclk_funcs = { 3618 .get_cdclk = bxt_get_cdclk, 3619 .set_cdclk = bxt_set_cdclk, 3620 .modeset_calc_cdclk = bxt_modeset_calc_cdclk, 3621 .calc_voltage_level = tgl_calc_voltage_level, 3622 }; 3623 3624 static const struct intel_cdclk_funcs ehl_cdclk_funcs = { 3625 .get_cdclk = bxt_get_cdclk, 3626 .set_cdclk = bxt_set_cdclk, 3627 .modeset_calc_cdclk = bxt_modeset_calc_cdclk, 3628 .calc_voltage_level = ehl_calc_voltage_level, 3629 }; 3630 3631 static const struct intel_cdclk_funcs icl_cdclk_funcs = { 3632 .get_cdclk = bxt_get_cdclk, 3633 .set_cdclk = bxt_set_cdclk, 3634 .modeset_calc_cdclk = bxt_modeset_calc_cdclk, 3635 .calc_voltage_level = icl_calc_voltage_level, 3636 }; 3637 3638 static const struct intel_cdclk_funcs bxt_cdclk_funcs = { 3639 .get_cdclk = bxt_get_cdclk, 3640 .set_cdclk = bxt_set_cdclk, 3641 .modeset_calc_cdclk = bxt_modeset_calc_cdclk, 3642 .calc_voltage_level = bxt_calc_voltage_level, 3643 }; 3644 3645 static const struct intel_cdclk_funcs skl_cdclk_funcs = { 3646 .get_cdclk = skl_get_cdclk, 3647 .set_cdclk = skl_set_cdclk, 3648 .modeset_calc_cdclk = skl_modeset_calc_cdclk, 3649 }; 3650 3651 static const struct intel_cdclk_funcs bdw_cdclk_funcs = { 3652 .get_cdclk = bdw_get_cdclk, 3653 .set_cdclk = bdw_set_cdclk, 3654 .modeset_calc_cdclk = bdw_modeset_calc_cdclk, 3655 }; 3656 3657 static const struct intel_cdclk_funcs chv_cdclk_funcs = { 3658 .get_cdclk = vlv_get_cdclk, 3659 .set_cdclk = chv_set_cdclk, 3660 .modeset_calc_cdclk = vlv_modeset_calc_cdclk, 3661 }; 3662 3663 static const struct intel_cdclk_funcs vlv_cdclk_funcs = { 3664 .get_cdclk = vlv_get_cdclk, 3665 .set_cdclk = vlv_set_cdclk, 3666 .modeset_calc_cdclk = vlv_modeset_calc_cdclk, 3667 }; 3668 3669 static const struct intel_cdclk_funcs hsw_cdclk_funcs = { 3670 .get_cdclk = hsw_get_cdclk, 3671 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3672 }; 3673 3674 /* SNB, IVB, 965G, 945G */ 3675 static const struct intel_cdclk_funcs fixed_400mhz_cdclk_funcs = { 3676 .get_cdclk = fixed_400mhz_get_cdclk, 3677 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3678 }; 3679 3680 static const struct intel_cdclk_funcs ilk_cdclk_funcs = { 3681 .get_cdclk = fixed_450mhz_get_cdclk, 3682 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3683 }; 3684 3685 static const struct intel_cdclk_funcs gm45_cdclk_funcs = { 3686 .get_cdclk = gm45_get_cdclk, 3687 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3688 }; 3689 3690 /* G45 uses G33 */ 3691 3692 static const struct intel_cdclk_funcs i965gm_cdclk_funcs = { 3693 .get_cdclk = i965gm_get_cdclk, 3694 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3695 }; 3696 3697 /* i965G uses fixed 400 */ 3698 3699 static const struct intel_cdclk_funcs pnv_cdclk_funcs = { 3700 .get_cdclk = pnv_get_cdclk, 3701 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3702 }; 3703 3704 static const struct intel_cdclk_funcs g33_cdclk_funcs = { 3705 .get_cdclk = g33_get_cdclk, 3706 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3707 }; 3708 3709 static const struct intel_cdclk_funcs i945gm_cdclk_funcs = { 3710 .get_cdclk = i945gm_get_cdclk, 3711 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3712 }; 3713 3714 /* i945G uses fixed 400 */ 3715 3716 static const struct intel_cdclk_funcs i915gm_cdclk_funcs = { 3717 .get_cdclk = i915gm_get_cdclk, 3718 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3719 }; 3720 3721 static const struct intel_cdclk_funcs i915g_cdclk_funcs = { 3722 .get_cdclk = fixed_333mhz_get_cdclk, 3723 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3724 }; 3725 3726 static const struct intel_cdclk_funcs i865g_cdclk_funcs = { 3727 .get_cdclk = fixed_266mhz_get_cdclk, 3728 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3729 }; 3730 3731 static const struct intel_cdclk_funcs i85x_cdclk_funcs = { 3732 .get_cdclk = i85x_get_cdclk, 3733 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3734 }; 3735 3736 static const struct intel_cdclk_funcs i845g_cdclk_funcs = { 3737 .get_cdclk = fixed_200mhz_get_cdclk, 3738 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3739 }; 3740 3741 static const struct intel_cdclk_funcs i830_cdclk_funcs = { 3742 .get_cdclk = fixed_133mhz_get_cdclk, 3743 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3744 }; 3745 3746 /** 3747 * intel_init_cdclk_hooks - Initialize CDCLK related modesetting hooks 3748 * @display: display instance 3749 */ 3750 void intel_init_cdclk_hooks(struct intel_display *display) 3751 { 3752 if (DISPLAY_VER(display) >= 30) { 3753 display->funcs.cdclk = &xe3lpd_cdclk_funcs; 3754 display->cdclk.table = xe3lpd_cdclk_table; 3755 } else if (DISPLAY_VER(display) >= 20) { 3756 display->funcs.cdclk = &rplu_cdclk_funcs; 3757 display->cdclk.table = xe2lpd_cdclk_table; 3758 } else if (DISPLAY_VERx100(display) >= 1401) { 3759 display->funcs.cdclk = &rplu_cdclk_funcs; 3760 display->cdclk.table = xe2hpd_cdclk_table; 3761 } else if (DISPLAY_VER(display) >= 14) { 3762 display->funcs.cdclk = &rplu_cdclk_funcs; 3763 display->cdclk.table = mtl_cdclk_table; 3764 } else if (display->platform.dg2) { 3765 display->funcs.cdclk = &tgl_cdclk_funcs; 3766 display->cdclk.table = dg2_cdclk_table; 3767 } else if (display->platform.alderlake_p) { 3768 /* Wa_22011320316:adl-p[a0] */ 3769 if (display->platform.alderlake_p && IS_DISPLAY_STEP(display, STEP_A0, STEP_B0)) { 3770 display->cdclk.table = adlp_a_step_cdclk_table; 3771 display->funcs.cdclk = &tgl_cdclk_funcs; 3772 } else if (display->platform.alderlake_p_raptorlake_u) { 3773 display->cdclk.table = rplu_cdclk_table; 3774 display->funcs.cdclk = &rplu_cdclk_funcs; 3775 } else { 3776 display->cdclk.table = adlp_cdclk_table; 3777 display->funcs.cdclk = &tgl_cdclk_funcs; 3778 } 3779 } else if (display->platform.rocketlake) { 3780 display->funcs.cdclk = &tgl_cdclk_funcs; 3781 display->cdclk.table = rkl_cdclk_table; 3782 } else if (DISPLAY_VER(display) >= 12) { 3783 display->funcs.cdclk = &tgl_cdclk_funcs; 3784 display->cdclk.table = icl_cdclk_table; 3785 } else if (display->platform.jasperlake || display->platform.elkhartlake) { 3786 display->funcs.cdclk = &ehl_cdclk_funcs; 3787 display->cdclk.table = icl_cdclk_table; 3788 } else if (DISPLAY_VER(display) >= 11) { 3789 display->funcs.cdclk = &icl_cdclk_funcs; 3790 display->cdclk.table = icl_cdclk_table; 3791 } else if (display->platform.geminilake || display->platform.broxton) { 3792 display->funcs.cdclk = &bxt_cdclk_funcs; 3793 if (display->platform.geminilake) 3794 display->cdclk.table = glk_cdclk_table; 3795 else 3796 display->cdclk.table = bxt_cdclk_table; 3797 } else if (DISPLAY_VER(display) == 9) { 3798 display->funcs.cdclk = &skl_cdclk_funcs; 3799 } else if (display->platform.broadwell) { 3800 display->funcs.cdclk = &bdw_cdclk_funcs; 3801 } else if (display->platform.haswell) { 3802 display->funcs.cdclk = &hsw_cdclk_funcs; 3803 } else if (display->platform.cherryview) { 3804 display->funcs.cdclk = &chv_cdclk_funcs; 3805 } else if (display->platform.valleyview) { 3806 display->funcs.cdclk = &vlv_cdclk_funcs; 3807 } else if (display->platform.sandybridge || display->platform.ivybridge) { 3808 display->funcs.cdclk = &fixed_400mhz_cdclk_funcs; 3809 } else if (display->platform.ironlake) { 3810 display->funcs.cdclk = &ilk_cdclk_funcs; 3811 } else if (display->platform.gm45) { 3812 display->funcs.cdclk = &gm45_cdclk_funcs; 3813 } else if (display->platform.g45) { 3814 display->funcs.cdclk = &g33_cdclk_funcs; 3815 } else if (display->platform.i965gm) { 3816 display->funcs.cdclk = &i965gm_cdclk_funcs; 3817 } else if (display->platform.i965g) { 3818 display->funcs.cdclk = &fixed_400mhz_cdclk_funcs; 3819 } else if (display->platform.pineview) { 3820 display->funcs.cdclk = &pnv_cdclk_funcs; 3821 } else if (display->platform.g33) { 3822 display->funcs.cdclk = &g33_cdclk_funcs; 3823 } else if (display->platform.i945gm) { 3824 display->funcs.cdclk = &i945gm_cdclk_funcs; 3825 } else if (display->platform.i945g) { 3826 display->funcs.cdclk = &fixed_400mhz_cdclk_funcs; 3827 } else if (display->platform.i915gm) { 3828 display->funcs.cdclk = &i915gm_cdclk_funcs; 3829 } else if (display->platform.i915g) { 3830 display->funcs.cdclk = &i915g_cdclk_funcs; 3831 } else if (display->platform.i865g) { 3832 display->funcs.cdclk = &i865g_cdclk_funcs; 3833 } else if (display->platform.i85x) { 3834 display->funcs.cdclk = &i85x_cdclk_funcs; 3835 } else if (display->platform.i845g) { 3836 display->funcs.cdclk = &i845g_cdclk_funcs; 3837 } else if (display->platform.i830) { 3838 display->funcs.cdclk = &i830_cdclk_funcs; 3839 } 3840 3841 if (drm_WARN(display->drm, !display->funcs.cdclk, 3842 "Unknown platform. Assuming i830\n")) 3843 display->funcs.cdclk = &i830_cdclk_funcs; 3844 } 3845