1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2019 Intel Corporation
4 */
5
6 #include <linux/string_helpers.h>
7
8 #include <drm/intel/i915_drm.h>
9
10 #include "display/intel_display.h"
11 #include "display/intel_display_rps.h"
12 #include "i915_drv.h"
13 #include "i915_irq.h"
14 #include "i915_reg.h"
15 #include "intel_breadcrumbs.h"
16 #include "intel_gt.h"
17 #include "intel_gt_clock_utils.h"
18 #include "intel_gt_irq.h"
19 #include "intel_gt_pm.h"
20 #include "intel_gt_pm_irq.h"
21 #include "intel_gt_print.h"
22 #include "intel_gt_regs.h"
23 #include "intel_mchbar_regs.h"
24 #include "intel_pcode.h"
25 #include "intel_rps.h"
26 #include "vlv_sideband.h"
27 #include "../../../platform/x86/intel_ips.h"
28
29 #define BUSY_MAX_EI 20u /* ms */
30
31 /*
32 * Lock protecting IPS related data structures
33 */
34 static DEFINE_SPINLOCK(mchdev_lock);
35
rps_to_gt(struct intel_rps * rps)36 static struct intel_gt *rps_to_gt(struct intel_rps *rps)
37 {
38 return container_of(rps, struct intel_gt, rps);
39 }
40
rps_to_i915(struct intel_rps * rps)41 static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
42 {
43 return rps_to_gt(rps)->i915;
44 }
45
rps_to_uncore(struct intel_rps * rps)46 static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
47 {
48 return rps_to_gt(rps)->uncore;
49 }
50
rps_to_slpc(struct intel_rps * rps)51 static struct intel_guc_slpc *rps_to_slpc(struct intel_rps *rps)
52 {
53 struct intel_gt *gt = rps_to_gt(rps);
54
55 return >_to_guc(gt)->slpc;
56 }
57
rps_uses_slpc(struct intel_rps * rps)58 static bool rps_uses_slpc(struct intel_rps *rps)
59 {
60 struct intel_gt *gt = rps_to_gt(rps);
61
62 return intel_uc_uses_guc_slpc(>->uc);
63 }
64
rps_pm_sanitize_mask(struct intel_rps * rps,u32 mask)65 static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
66 {
67 return mask & ~rps->pm_intrmsk_mbz;
68 }
69
set(struct intel_uncore * uncore,i915_reg_t reg,u32 val)70 static void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
71 {
72 intel_uncore_write_fw(uncore, reg, val);
73 }
74
rps_timer(struct timer_list * t)75 static void rps_timer(struct timer_list *t)
76 {
77 struct intel_rps *rps = timer_container_of(rps, t, timer);
78 struct intel_gt *gt = rps_to_gt(rps);
79 struct intel_engine_cs *engine;
80 ktime_t dt, last, timestamp;
81 enum intel_engine_id id;
82 s64 max_busy[3] = {};
83
84 timestamp = 0;
85 for_each_engine(engine, gt, id) {
86 s64 busy;
87 int i;
88
89 dt = intel_engine_get_busy_time(engine, ×tamp);
90 last = engine->stats.rps;
91 engine->stats.rps = dt;
92
93 busy = ktime_to_ns(ktime_sub(dt, last));
94 for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
95 if (busy > max_busy[i])
96 swap(busy, max_busy[i]);
97 }
98 }
99 last = rps->pm_timestamp;
100 rps->pm_timestamp = timestamp;
101
102 if (intel_rps_is_active(rps)) {
103 s64 busy;
104 int i;
105
106 dt = ktime_sub(timestamp, last);
107
108 /*
109 * Our goal is to evaluate each engine independently, so we run
110 * at the lowest clocks required to sustain the heaviest
111 * workload. However, a task may be split into sequential
112 * dependent operations across a set of engines, such that
113 * the independent contributions do not account for high load,
114 * but overall the task is GPU bound. For example, consider
115 * video decode on vcs followed by colour post-processing
116 * on vecs, followed by general post-processing on rcs.
117 * Since multi-engines being active does imply a single
118 * continuous workload across all engines, we hedge our
119 * bets by only contributing a factor of the distributed
120 * load into our busyness calculation.
121 */
122 busy = max_busy[0];
123 for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
124 if (!max_busy[i])
125 break;
126
127 busy += div_u64(max_busy[i], 1 << i);
128 }
129 GT_TRACE(gt,
130 "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
131 busy, (int)div64_u64(100 * busy, dt),
132 max_busy[0], max_busy[1], max_busy[2],
133 rps->pm_interval);
134
135 if (100 * busy > rps->power.up_threshold * dt &&
136 rps->cur_freq < rps->max_freq_softlimit) {
137 rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
138 rps->pm_interval = 1;
139 queue_work(gt->i915->unordered_wq, &rps->work);
140 } else if (100 * busy < rps->power.down_threshold * dt &&
141 rps->cur_freq > rps->min_freq_softlimit) {
142 rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
143 rps->pm_interval = 1;
144 queue_work(gt->i915->unordered_wq, &rps->work);
145 } else {
146 rps->last_adj = 0;
147 }
148
149 mod_timer(&rps->timer,
150 jiffies + msecs_to_jiffies(rps->pm_interval));
151 rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
152 }
153 }
154
rps_start_timer(struct intel_rps * rps)155 static void rps_start_timer(struct intel_rps *rps)
156 {
157 rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
158 rps->pm_interval = 1;
159 mod_timer(&rps->timer, jiffies + 1);
160 }
161
rps_stop_timer(struct intel_rps * rps)162 static void rps_stop_timer(struct intel_rps *rps)
163 {
164 timer_delete_sync(&rps->timer);
165 rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
166 cancel_work_sync(&rps->work);
167 }
168
rps_pm_mask(struct intel_rps * rps,u8 val)169 static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
170 {
171 u32 mask = 0;
172
173 /* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
174 if (val > rps->min_freq_softlimit)
175 mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
176 GEN6_PM_RP_DOWN_THRESHOLD |
177 GEN6_PM_RP_DOWN_TIMEOUT);
178
179 if (val < rps->max_freq_softlimit)
180 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
181
182 mask &= rps->pm_events;
183
184 return rps_pm_sanitize_mask(rps, ~mask);
185 }
186
rps_reset_ei(struct intel_rps * rps)187 static void rps_reset_ei(struct intel_rps *rps)
188 {
189 memset(&rps->ei, 0, sizeof(rps->ei));
190 }
191
rps_enable_interrupts(struct intel_rps * rps)192 static void rps_enable_interrupts(struct intel_rps *rps)
193 {
194 struct intel_gt *gt = rps_to_gt(rps);
195
196 GEM_BUG_ON(rps_uses_slpc(rps));
197
198 GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
199 rps->pm_events, rps_pm_mask(rps, rps->last_freq));
200
201 rps_reset_ei(rps);
202
203 spin_lock_irq(gt->irq_lock);
204 gen6_gt_pm_enable_irq(gt, rps->pm_events);
205 spin_unlock_irq(gt->irq_lock);
206
207 intel_uncore_write(gt->uncore,
208 GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
209 }
210
gen6_rps_reset_interrupts(struct intel_rps * rps)211 static void gen6_rps_reset_interrupts(struct intel_rps *rps)
212 {
213 gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
214 }
215
gen11_rps_reset_interrupts(struct intel_rps * rps)216 static void gen11_rps_reset_interrupts(struct intel_rps *rps)
217 {
218 while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
219 ;
220 }
221
rps_reset_interrupts(struct intel_rps * rps)222 static void rps_reset_interrupts(struct intel_rps *rps)
223 {
224 struct intel_gt *gt = rps_to_gt(rps);
225
226 spin_lock_irq(gt->irq_lock);
227 if (GRAPHICS_VER(gt->i915) >= 11)
228 gen11_rps_reset_interrupts(rps);
229 else
230 gen6_rps_reset_interrupts(rps);
231
232 rps->pm_iir = 0;
233 spin_unlock_irq(gt->irq_lock);
234 }
235
rps_disable_interrupts(struct intel_rps * rps)236 static void rps_disable_interrupts(struct intel_rps *rps)
237 {
238 struct intel_gt *gt = rps_to_gt(rps);
239
240 intel_uncore_write(gt->uncore,
241 GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
242
243 spin_lock_irq(gt->irq_lock);
244 gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
245 spin_unlock_irq(gt->irq_lock);
246
247 intel_synchronize_irq(gt->i915);
248
249 /*
250 * Now that we will not be generating any more work, flush any
251 * outstanding tasks. As we are called on the RPS idle path,
252 * we will reset the GPU to minimum frequencies, so the current
253 * state of the worker can be discarded.
254 */
255 cancel_work_sync(&rps->work);
256
257 rps_reset_interrupts(rps);
258 GT_TRACE(gt, "interrupts:off\n");
259 }
260
261 static const struct cparams {
262 u16 i;
263 u16 t;
264 u16 m;
265 u16 c;
266 } cparams[] = {
267 { 1, 1333, 301, 28664 },
268 { 1, 1067, 294, 24460 },
269 { 1, 800, 294, 25192 },
270 { 0, 1333, 276, 27605 },
271 { 0, 1067, 276, 27605 },
272 { 0, 800, 231, 23784 },
273 };
274
gen5_rps_init(struct intel_rps * rps)275 static void gen5_rps_init(struct intel_rps *rps)
276 {
277 struct drm_i915_private *i915 = rps_to_i915(rps);
278 struct intel_uncore *uncore = rps_to_uncore(rps);
279 u8 fmax, fmin, fstart;
280 u32 rgvmodectl;
281 int c_m, i;
282
283 if (i915->fsb_freq <= 3200000)
284 c_m = 0;
285 else if (i915->fsb_freq <= 4800000)
286 c_m = 1;
287 else
288 c_m = 2;
289
290 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
291 if (cparams[i].i == c_m &&
292 cparams[i].t == DIV_ROUND_CLOSEST(i915->mem_freq, 1000)) {
293 rps->ips.m = cparams[i].m;
294 rps->ips.c = cparams[i].c;
295 break;
296 }
297 }
298
299 rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
300
301 /* Set up min, max, and cur for interrupt handling */
302 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
303 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
304 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
305 MEMMODE_FSTART_SHIFT;
306 drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
307 fmax, fmin, fstart);
308
309 rps->min_freq = fmax;
310 rps->efficient_freq = fstart;
311 rps->max_freq = fmin;
312 }
313
314 static unsigned long
__ips_chipset_val(struct intel_ips * ips)315 __ips_chipset_val(struct intel_ips *ips)
316 {
317 struct intel_uncore *uncore =
318 rps_to_uncore(container_of(ips, struct intel_rps, ips));
319 unsigned long now = jiffies_to_msecs(jiffies), dt;
320 unsigned long result;
321 u64 total, delta;
322
323 lockdep_assert_held(&mchdev_lock);
324
325 /*
326 * Prevent division-by-zero if we are asking too fast.
327 * Also, we don't get interesting results if we are polling
328 * faster than once in 10ms, so just return the saved value
329 * in such cases.
330 */
331 dt = now - ips->last_time1;
332 if (dt <= 10)
333 return ips->chipset_power;
334
335 /* FIXME: handle per-counter overflow */
336 total = intel_uncore_read(uncore, DMIEC);
337 total += intel_uncore_read(uncore, DDREC);
338 total += intel_uncore_read(uncore, CSIEC);
339
340 delta = total - ips->last_count1;
341
342 result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
343
344 ips->last_count1 = total;
345 ips->last_time1 = now;
346
347 ips->chipset_power = result;
348
349 return result;
350 }
351
ips_mch_val(struct intel_uncore * uncore)352 static unsigned long ips_mch_val(struct intel_uncore *uncore)
353 {
354 unsigned int m, x, b;
355 u32 tsfs;
356
357 tsfs = intel_uncore_read(uncore, TSFS);
358 x = intel_uncore_read8(uncore, TR1);
359
360 b = tsfs & TSFS_INTR_MASK;
361 m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
362
363 return m * x / 127 - b;
364 }
365
_pxvid_to_vd(u8 pxvid)366 static int _pxvid_to_vd(u8 pxvid)
367 {
368 if (pxvid == 0)
369 return 0;
370
371 if (pxvid >= 8 && pxvid < 31)
372 pxvid = 31;
373
374 return (pxvid + 2) * 125;
375 }
376
pvid_to_extvid(struct drm_i915_private * i915,u8 pxvid)377 static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
378 {
379 const int vd = _pxvid_to_vd(pxvid);
380
381 if (INTEL_INFO(i915)->is_mobile)
382 return max(vd - 1125, 0);
383
384 return vd;
385 }
386
__gen5_ips_update(struct intel_ips * ips)387 static void __gen5_ips_update(struct intel_ips *ips)
388 {
389 struct intel_uncore *uncore =
390 rps_to_uncore(container_of(ips, struct intel_rps, ips));
391 u64 now, delta, dt;
392 u32 count;
393
394 lockdep_assert_held(&mchdev_lock);
395
396 now = ktime_get_raw_ns();
397 dt = now - ips->last_time2;
398 do_div(dt, NSEC_PER_MSEC);
399
400 /* Don't divide by 0 */
401 if (dt <= 10)
402 return;
403
404 count = intel_uncore_read(uncore, GFXEC);
405 delta = count - ips->last_count2;
406
407 ips->last_count2 = count;
408 ips->last_time2 = now;
409
410 /* More magic constants... */
411 ips->gfx_power = div_u64(delta * 1181, dt * 10);
412 }
413
gen5_rps_update(struct intel_rps * rps)414 static void gen5_rps_update(struct intel_rps *rps)
415 {
416 spin_lock_irq(&mchdev_lock);
417 __gen5_ips_update(&rps->ips);
418 spin_unlock_irq(&mchdev_lock);
419 }
420
gen5_invert_freq(struct intel_rps * rps,unsigned int val)421 static unsigned int gen5_invert_freq(struct intel_rps *rps,
422 unsigned int val)
423 {
424 /* Invert the frequency bin into an ips delay */
425 val = rps->max_freq - val;
426 val = rps->min_freq + val;
427
428 return val;
429 }
430
__gen5_rps_set(struct intel_rps * rps,u8 val)431 static int __gen5_rps_set(struct intel_rps *rps, u8 val)
432 {
433 struct intel_uncore *uncore = rps_to_uncore(rps);
434 u16 rgvswctl;
435
436 lockdep_assert_held(&mchdev_lock);
437
438 rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
439 if (rgvswctl & MEMCTL_CMD_STS) {
440 drm_dbg(&rps_to_i915(rps)->drm,
441 "gpu busy, RCS change rejected\n");
442 return -EBUSY; /* still busy with another command */
443 }
444
445 /* Invert the frequency bin into an ips delay */
446 val = gen5_invert_freq(rps, val);
447
448 rgvswctl =
449 (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
450 (val << MEMCTL_FREQ_SHIFT) |
451 MEMCTL_SFCAVM;
452 intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
453 intel_uncore_posting_read16(uncore, MEMSWCTL);
454
455 rgvswctl |= MEMCTL_CMD_STS;
456 intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
457
458 return 0;
459 }
460
gen5_rps_set(struct intel_rps * rps,u8 val)461 static int gen5_rps_set(struct intel_rps *rps, u8 val)
462 {
463 int err;
464
465 spin_lock_irq(&mchdev_lock);
466 err = __gen5_rps_set(rps, val);
467 spin_unlock_irq(&mchdev_lock);
468
469 return err;
470 }
471
intel_pxfreq(u32 vidfreq)472 static unsigned long intel_pxfreq(u32 vidfreq)
473 {
474 int div = (vidfreq & 0x3f0000) >> 16;
475 int post = (vidfreq & 0x3000) >> 12;
476 int pre = (vidfreq & 0x7);
477
478 if (!pre)
479 return 0;
480
481 return div * 133333 / (pre << post);
482 }
483
init_emon(struct intel_uncore * uncore)484 static unsigned int init_emon(struct intel_uncore *uncore)
485 {
486 u8 pxw[16];
487 int i;
488
489 /* Disable to program */
490 intel_uncore_write(uncore, ECR, 0);
491 intel_uncore_posting_read(uncore, ECR);
492
493 /* Program energy weights for various events */
494 intel_uncore_write(uncore, SDEW, 0x15040d00);
495 intel_uncore_write(uncore, CSIEW0, 0x007f0000);
496 intel_uncore_write(uncore, CSIEW1, 0x1e220004);
497 intel_uncore_write(uncore, CSIEW2, 0x04000004);
498
499 for (i = 0; i < 5; i++)
500 intel_uncore_write(uncore, PEW(i), 0);
501 for (i = 0; i < 3; i++)
502 intel_uncore_write(uncore, DEW(i), 0);
503
504 /* Program P-state weights to account for frequency power adjustment */
505 for (i = 0; i < 16; i++) {
506 u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
507 unsigned int freq = intel_pxfreq(pxvidfreq);
508 unsigned int vid =
509 (pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
510 unsigned int val;
511
512 val = vid * vid * freq / 1000 * 255;
513 val /= 127 * 127 * 900;
514
515 pxw[i] = val;
516 }
517 /* Render standby states get 0 weight */
518 pxw[14] = 0;
519 pxw[15] = 0;
520
521 for (i = 0; i < 4; i++) {
522 intel_uncore_write(uncore, PXW(i),
523 pxw[i * 4 + 0] << 24 |
524 pxw[i * 4 + 1] << 16 |
525 pxw[i * 4 + 2] << 8 |
526 pxw[i * 4 + 3] << 0);
527 }
528
529 /* Adjust magic regs to magic values (more experimental results) */
530 intel_uncore_write(uncore, OGW0, 0);
531 intel_uncore_write(uncore, OGW1, 0);
532 intel_uncore_write(uncore, EG0, 0x00007f00);
533 intel_uncore_write(uncore, EG1, 0x0000000e);
534 intel_uncore_write(uncore, EG2, 0x000e0000);
535 intel_uncore_write(uncore, EG3, 0x68000300);
536 intel_uncore_write(uncore, EG4, 0x42000000);
537 intel_uncore_write(uncore, EG5, 0x00140031);
538 intel_uncore_write(uncore, EG6, 0);
539 intel_uncore_write(uncore, EG7, 0);
540
541 for (i = 0; i < 8; i++)
542 intel_uncore_write(uncore, PXWL(i), 0);
543
544 /* Enable PMON + select events */
545 intel_uncore_write(uncore, ECR, 0x80000019);
546
547 return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
548 }
549
gen5_rps_enable(struct intel_rps * rps)550 static bool gen5_rps_enable(struct intel_rps *rps)
551 {
552 struct drm_i915_private *i915 = rps_to_i915(rps);
553 struct intel_display *display = &i915->display;
554 struct intel_uncore *uncore = rps_to_uncore(rps);
555 u8 fstart, vstart;
556 u32 rgvmodectl;
557
558 spin_lock_irq(&mchdev_lock);
559
560 rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
561
562 /* Enable temp reporting */
563 intel_uncore_write16(uncore, PMMISC,
564 intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
565 intel_uncore_write16(uncore, TSC1,
566 intel_uncore_read16(uncore, TSC1) | TSE);
567
568 /* 100ms RC evaluation intervals */
569 intel_uncore_write(uncore, RCUPEI, 100000);
570 intel_uncore_write(uncore, RCDNEI, 100000);
571
572 /* Set max/min thresholds to 90ms and 80ms respectively */
573 intel_uncore_write(uncore, RCBMAXAVG, 90000);
574 intel_uncore_write(uncore, RCBMINAVG, 80000);
575
576 intel_uncore_write(uncore, MEMIHYST, 1);
577
578 /* Set up min, max, and cur for interrupt handling */
579 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
580 MEMMODE_FSTART_SHIFT;
581
582 vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
583 PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
584
585 intel_uncore_write(uncore,
586 MEMINTREN,
587 MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
588
589 intel_uncore_write(uncore, VIDSTART, vstart);
590 intel_uncore_posting_read(uncore, VIDSTART);
591
592 rgvmodectl |= MEMMODE_SWMODE_EN;
593 intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
594
595 if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
596 MEMCTL_CMD_STS) == 0, 10))
597 drm_err(&uncore->i915->drm,
598 "stuck trying to change perf mode\n");
599 mdelay(1);
600
601 __gen5_rps_set(rps, rps->cur_freq);
602
603 rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
604 rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
605 rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
606 rps->ips.last_time1 = jiffies_to_msecs(jiffies);
607
608 rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
609 rps->ips.last_time2 = ktime_get_raw_ns();
610
611 ilk_display_rps_enable(display);
612
613 spin_unlock_irq(&mchdev_lock);
614
615 rps->ips.corr = init_emon(uncore);
616
617 return true;
618 }
619
gen5_rps_disable(struct intel_rps * rps)620 static void gen5_rps_disable(struct intel_rps *rps)
621 {
622 struct drm_i915_private *i915 = rps_to_i915(rps);
623 struct intel_display *display = &i915->display;
624 struct intel_uncore *uncore = rps_to_uncore(rps);
625 u16 rgvswctl;
626
627 spin_lock_irq(&mchdev_lock);
628
629 ilk_display_rps_disable(display);
630
631 rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
632
633 /* Ack interrupts, disable EFC interrupt */
634 intel_uncore_rmw(uncore, MEMINTREN, MEMINT_EVAL_CHG_EN, 0);
635 intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
636
637 /* Go back to the starting frequency */
638 __gen5_rps_set(rps, rps->idle_freq);
639 mdelay(1);
640 rgvswctl |= MEMCTL_CMD_STS;
641 intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
642 mdelay(1);
643
644 spin_unlock_irq(&mchdev_lock);
645 }
646
rps_limits(struct intel_rps * rps,u8 val)647 static u32 rps_limits(struct intel_rps *rps, u8 val)
648 {
649 u32 limits;
650
651 /*
652 * Only set the down limit when we've reached the lowest level to avoid
653 * getting more interrupts, otherwise leave this clear. This prevents a
654 * race in the hw when coming out of rc6: There's a tiny window where
655 * the hw runs at the minimal clock before selecting the desired
656 * frequency, if the down threshold expires in that window we will not
657 * receive a down interrupt.
658 */
659 if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
660 limits = rps->max_freq_softlimit << 23;
661 if (val <= rps->min_freq_softlimit)
662 limits |= rps->min_freq_softlimit << 14;
663 } else {
664 limits = rps->max_freq_softlimit << 24;
665 if (val <= rps->min_freq_softlimit)
666 limits |= rps->min_freq_softlimit << 16;
667 }
668
669 return limits;
670 }
671
rps_set_power(struct intel_rps * rps,int new_power)672 static void rps_set_power(struct intel_rps *rps, int new_power)
673 {
674 struct intel_gt *gt = rps_to_gt(rps);
675 struct intel_uncore *uncore = gt->uncore;
676 u32 ei_up = 0, ei_down = 0;
677
678 lockdep_assert_held(&rps->power.mutex);
679
680 if (new_power == rps->power.mode)
681 return;
682
683 /* Note the units here are not exactly 1us, but 1280ns. */
684 switch (new_power) {
685 case LOW_POWER:
686 ei_up = 16000;
687 ei_down = 32000;
688 break;
689
690 case BETWEEN:
691 ei_up = 13000;
692 ei_down = 32000;
693 break;
694
695 case HIGH_POWER:
696 ei_up = 10000;
697 ei_down = 32000;
698 break;
699 }
700
701 /* When byt can survive without system hang with dynamic
702 * sw freq adjustments, this restriction can be lifted.
703 */
704 if (IS_VALLEYVIEW(gt->i915))
705 goto skip_hw_write;
706
707 GT_TRACE(gt,
708 "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
709 new_power,
710 rps->power.up_threshold, ei_up,
711 rps->power.down_threshold, ei_down);
712
713 set(uncore, GEN6_RP_UP_EI,
714 intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
715 set(uncore, GEN6_RP_UP_THRESHOLD,
716 intel_gt_ns_to_pm_interval(gt,
717 ei_up * rps->power.up_threshold * 10));
718
719 set(uncore, GEN6_RP_DOWN_EI,
720 intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
721 set(uncore, GEN6_RP_DOWN_THRESHOLD,
722 intel_gt_ns_to_pm_interval(gt,
723 ei_down *
724 rps->power.down_threshold * 10));
725
726 set(uncore, GEN6_RP_CONTROL,
727 (GRAPHICS_VER(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
728 GEN6_RP_MEDIA_HW_NORMAL_MODE |
729 GEN6_RP_MEDIA_IS_GFX |
730 GEN6_RP_ENABLE |
731 GEN6_RP_UP_BUSY_AVG |
732 GEN6_RP_DOWN_IDLE_AVG);
733
734 skip_hw_write:
735 rps->power.mode = new_power;
736 }
737
gen6_rps_set_thresholds(struct intel_rps * rps,u8 val)738 static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
739 {
740 int new_power;
741
742 new_power = rps->power.mode;
743 switch (rps->power.mode) {
744 case LOW_POWER:
745 if (val > rps->efficient_freq + 1 &&
746 val > rps->cur_freq)
747 new_power = BETWEEN;
748 break;
749
750 case BETWEEN:
751 if (val <= rps->efficient_freq &&
752 val < rps->cur_freq)
753 new_power = LOW_POWER;
754 else if (val >= rps->rp0_freq &&
755 val > rps->cur_freq)
756 new_power = HIGH_POWER;
757 break;
758
759 case HIGH_POWER:
760 if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
761 val < rps->cur_freq)
762 new_power = BETWEEN;
763 break;
764 }
765 /* Max/min bins are special */
766 if (val <= rps->min_freq_softlimit)
767 new_power = LOW_POWER;
768 if (val >= rps->max_freq_softlimit)
769 new_power = HIGH_POWER;
770
771 mutex_lock(&rps->power.mutex);
772 if (rps->power.interactive)
773 new_power = HIGH_POWER;
774 rps_set_power(rps, new_power);
775 mutex_unlock(&rps->power.mutex);
776 }
777
intel_rps_mark_interactive(struct intel_rps * rps,bool interactive)778 void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
779 {
780 GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n",
781 str_yes_no(interactive));
782
783 mutex_lock(&rps->power.mutex);
784 if (interactive) {
785 if (!rps->power.interactive++ && intel_rps_is_active(rps))
786 rps_set_power(rps, HIGH_POWER);
787 } else {
788 GEM_BUG_ON(!rps->power.interactive);
789 rps->power.interactive--;
790 }
791 mutex_unlock(&rps->power.mutex);
792 }
793
gen6_rps_set(struct intel_rps * rps,u8 val)794 static int gen6_rps_set(struct intel_rps *rps, u8 val)
795 {
796 struct intel_uncore *uncore = rps_to_uncore(rps);
797 struct drm_i915_private *i915 = rps_to_i915(rps);
798 u32 swreq;
799
800 GEM_BUG_ON(rps_uses_slpc(rps));
801
802 if (GRAPHICS_VER(i915) >= 9)
803 swreq = GEN9_FREQUENCY(val);
804 else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
805 swreq = HSW_FREQUENCY(val);
806 else
807 swreq = (GEN6_FREQUENCY(val) |
808 GEN6_OFFSET(0) |
809 GEN6_AGGRESSIVE_TURBO);
810 set(uncore, GEN6_RPNSWREQ, swreq);
811
812 GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
813 val, intel_gpu_freq(rps, val), swreq);
814
815 return 0;
816 }
817
vlv_rps_set(struct intel_rps * rps,u8 val)818 static int vlv_rps_set(struct intel_rps *rps, u8 val)
819 {
820 struct drm_i915_private *i915 = rps_to_i915(rps);
821 int err;
822
823 vlv_punit_get(i915);
824 err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
825 vlv_punit_put(i915);
826
827 GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
828 val, intel_gpu_freq(rps, val));
829
830 return err;
831 }
832
rps_set(struct intel_rps * rps,u8 val,bool update)833 static int rps_set(struct intel_rps *rps, u8 val, bool update)
834 {
835 struct drm_i915_private *i915 = rps_to_i915(rps);
836 int err;
837
838 if (val == rps->last_freq)
839 return 0;
840
841 if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
842 err = vlv_rps_set(rps, val);
843 else if (GRAPHICS_VER(i915) >= 6)
844 err = gen6_rps_set(rps, val);
845 else
846 err = gen5_rps_set(rps, val);
847 if (err)
848 return err;
849
850 if (update && GRAPHICS_VER(i915) >= 6)
851 gen6_rps_set_thresholds(rps, val);
852 rps->last_freq = val;
853
854 return 0;
855 }
856
intel_rps_unpark(struct intel_rps * rps)857 void intel_rps_unpark(struct intel_rps *rps)
858 {
859 if (!intel_rps_is_enabled(rps))
860 return;
861
862 GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
863
864 /*
865 * Use the user's desired frequency as a guide, but for better
866 * performance, jump directly to RPe as our starting frequency.
867 */
868 mutex_lock(&rps->lock);
869
870 intel_rps_set_active(rps);
871 intel_rps_set(rps,
872 clamp(rps->cur_freq,
873 rps->min_freq_softlimit,
874 rps->max_freq_softlimit));
875
876 mutex_unlock(&rps->lock);
877
878 rps->pm_iir = 0;
879 if (intel_rps_has_interrupts(rps))
880 rps_enable_interrupts(rps);
881 if (intel_rps_uses_timer(rps))
882 rps_start_timer(rps);
883
884 if (GRAPHICS_VER(rps_to_i915(rps)) == 5)
885 gen5_rps_update(rps);
886 }
887
intel_rps_park(struct intel_rps * rps)888 void intel_rps_park(struct intel_rps *rps)
889 {
890 int adj;
891
892 if (!intel_rps_is_enabled(rps))
893 return;
894
895 if (!intel_rps_clear_active(rps))
896 return;
897
898 if (intel_rps_uses_timer(rps))
899 rps_stop_timer(rps);
900 if (intel_rps_has_interrupts(rps))
901 rps_disable_interrupts(rps);
902
903 if (rps->last_freq <= rps->idle_freq)
904 return;
905
906 /*
907 * The punit delays the write of the frequency and voltage until it
908 * determines the GPU is awake. During normal usage we don't want to
909 * waste power changing the frequency if the GPU is sleeping (rc6).
910 * However, the GPU and driver is now idle and we do not want to delay
911 * switching to minimum voltage (reducing power whilst idle) as we do
912 * not expect to be woken in the near future and so must flush the
913 * change by waking the device.
914 *
915 * We choose to take the media powerwell (either would do to trick the
916 * punit into committing the voltage change) as that takes a lot less
917 * power than the render powerwell.
918 */
919 intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
920 rps_set(rps, rps->idle_freq, false);
921 intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
922
923 /*
924 * Since we will try and restart from the previously requested
925 * frequency on unparking, treat this idle point as a downclock
926 * interrupt and reduce the frequency for resume. If we park/unpark
927 * more frequently than the rps worker can run, we will not respond
928 * to any EI and never see a change in frequency.
929 *
930 * (Note we accommodate Cherryview's limitation of only using an
931 * even bin by applying it to all.)
932 */
933 adj = rps->last_adj;
934 if (adj < 0)
935 adj *= 2;
936 else /* CHV needs even encode values */
937 adj = -2;
938 rps->last_adj = adj;
939 rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
940 if (rps->cur_freq < rps->efficient_freq) {
941 rps->cur_freq = rps->efficient_freq;
942 rps->last_adj = 0;
943 }
944
945 GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
946 }
947
intel_rps_get_boost_frequency(struct intel_rps * rps)948 u32 intel_rps_get_boost_frequency(struct intel_rps *rps)
949 {
950 struct intel_guc_slpc *slpc;
951
952 if (rps_uses_slpc(rps)) {
953 slpc = rps_to_slpc(rps);
954
955 return slpc->boost_freq;
956 } else {
957 return intel_gpu_freq(rps, rps->boost_freq);
958 }
959 }
960
rps_set_boost_freq(struct intel_rps * rps,u32 val)961 static int rps_set_boost_freq(struct intel_rps *rps, u32 val)
962 {
963 bool boost = false;
964
965 /* Validate against (static) hardware limits */
966 val = intel_freq_opcode(rps, val);
967 if (val < rps->min_freq || val > rps->max_freq)
968 return -EINVAL;
969
970 mutex_lock(&rps->lock);
971 if (val != rps->boost_freq) {
972 rps->boost_freq = val;
973 boost = atomic_read(&rps->num_waiters);
974 }
975 mutex_unlock(&rps->lock);
976 if (boost)
977 queue_work(rps_to_gt(rps)->i915->unordered_wq, &rps->work);
978
979 return 0;
980 }
981
intel_rps_set_boost_frequency(struct intel_rps * rps,u32 freq)982 int intel_rps_set_boost_frequency(struct intel_rps *rps, u32 freq)
983 {
984 struct intel_guc_slpc *slpc;
985
986 if (rps_uses_slpc(rps)) {
987 slpc = rps_to_slpc(rps);
988
989 return intel_guc_slpc_set_boost_freq(slpc, freq);
990 } else {
991 return rps_set_boost_freq(rps, freq);
992 }
993 }
994
intel_rps_dec_waiters(struct intel_rps * rps)995 void intel_rps_dec_waiters(struct intel_rps *rps)
996 {
997 struct intel_guc_slpc *slpc;
998
999 if (rps_uses_slpc(rps)) {
1000 slpc = rps_to_slpc(rps);
1001
1002 /* Don't decrement num_waiters for req where increment was skipped */
1003 if (slpc->power_profile == SLPC_POWER_PROFILES_POWER_SAVING)
1004 return;
1005
1006 intel_guc_slpc_dec_waiters(slpc);
1007 } else {
1008 atomic_dec(&rps->num_waiters);
1009 }
1010 }
1011
intel_rps_boost(struct i915_request * rq)1012 void intel_rps_boost(struct i915_request *rq)
1013 {
1014 struct intel_guc_slpc *slpc;
1015
1016 if (i915_request_signaled(rq) || i915_request_has_waitboost(rq))
1017 return;
1018
1019 /* Waitboost is not needed for contexts marked with a Freq hint */
1020 if (test_bit(CONTEXT_LOW_LATENCY, &rq->context->flags))
1021 return;
1022
1023 /* Serializes with i915_request_retire() */
1024 if (!test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) {
1025 struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
1026
1027 if (rps_uses_slpc(rps)) {
1028 slpc = rps_to_slpc(rps);
1029
1030 /* Waitboost should not be done with power saving profile */
1031 if (slpc->power_profile == SLPC_POWER_PROFILES_POWER_SAVING)
1032 return;
1033
1034 /* Return if old value is non zero */
1035 if (!atomic_fetch_inc(&slpc->num_waiters)) {
1036 /*
1037 * Skip queuing boost work if frequency is already boosted,
1038 * but still increment num_waiters.
1039 */
1040 if (slpc->min_freq_softlimit >= slpc->boost_freq)
1041 return;
1042
1043 GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
1044 rq->fence.context, rq->fence.seqno);
1045 queue_work(rps_to_gt(rps)->i915->unordered_wq,
1046 &slpc->boost_work);
1047 }
1048
1049 return;
1050 }
1051
1052 if (atomic_fetch_inc(&rps->num_waiters))
1053 return;
1054
1055 if (!intel_rps_is_active(rps))
1056 return;
1057
1058 GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
1059 rq->fence.context, rq->fence.seqno);
1060
1061 if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
1062 queue_work(rps_to_gt(rps)->i915->unordered_wq, &rps->work);
1063
1064 WRITE_ONCE(rps->boosts, rps->boosts + 1); /* debug only */
1065 }
1066 }
1067
intel_rps_set(struct intel_rps * rps,u8 val)1068 int intel_rps_set(struct intel_rps *rps, u8 val)
1069 {
1070 int err;
1071
1072 lockdep_assert_held(&rps->lock);
1073 GEM_BUG_ON(val > rps->max_freq);
1074 GEM_BUG_ON(val < rps->min_freq);
1075
1076 if (intel_rps_is_active(rps)) {
1077 err = rps_set(rps, val, true);
1078 if (err)
1079 return err;
1080
1081 /*
1082 * Make sure we continue to get interrupts
1083 * until we hit the minimum or maximum frequencies.
1084 */
1085 if (intel_rps_has_interrupts(rps)) {
1086 struct intel_uncore *uncore = rps_to_uncore(rps);
1087
1088 set(uncore,
1089 GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
1090
1091 set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
1092 }
1093 }
1094
1095 rps->cur_freq = val;
1096 return 0;
1097 }
1098
intel_rps_read_state_cap(struct intel_rps * rps)1099 static u32 intel_rps_read_state_cap(struct intel_rps *rps)
1100 {
1101 struct drm_i915_private *i915 = rps_to_i915(rps);
1102 struct intel_uncore *uncore = rps_to_uncore(rps);
1103
1104 if (IS_GEN9_LP(i915))
1105 return intel_uncore_read(uncore, BXT_RP_STATE_CAP);
1106 else
1107 return intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
1108 }
1109
1110 static void
mtl_get_freq_caps(struct intel_rps * rps,struct intel_rps_freq_caps * caps)1111 mtl_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1112 {
1113 struct intel_uncore *uncore = rps_to_uncore(rps);
1114 u32 rp_state_cap = rps_to_gt(rps)->type == GT_MEDIA ?
1115 intel_uncore_read(uncore, MTL_MEDIAP_STATE_CAP) :
1116 intel_uncore_read(uncore, MTL_RP_STATE_CAP);
1117 u32 rpe = rps_to_gt(rps)->type == GT_MEDIA ?
1118 intel_uncore_read(uncore, MTL_MPE_FREQUENCY) :
1119 intel_uncore_read(uncore, MTL_GT_RPE_FREQUENCY);
1120
1121 /* MTL values are in units of 16.67 MHz */
1122 caps->rp0_freq = REG_FIELD_GET(MTL_RP0_CAP_MASK, rp_state_cap);
1123 caps->min_freq = REG_FIELD_GET(MTL_RPN_CAP_MASK, rp_state_cap);
1124 caps->rp1_freq = REG_FIELD_GET(MTL_RPE_MASK, rpe);
1125 }
1126
1127 static void
__gen6_rps_get_freq_caps(struct intel_rps * rps,struct intel_rps_freq_caps * caps)1128 __gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1129 {
1130 struct drm_i915_private *i915 = rps_to_i915(rps);
1131 u32 rp_state_cap;
1132
1133 rp_state_cap = intel_rps_read_state_cap(rps);
1134
1135 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
1136 if (IS_GEN9_LP(i915)) {
1137 caps->rp0_freq = (rp_state_cap >> 16) & 0xff;
1138 caps->rp1_freq = (rp_state_cap >> 8) & 0xff;
1139 caps->min_freq = (rp_state_cap >> 0) & 0xff;
1140 } else {
1141 caps->rp0_freq = (rp_state_cap >> 0) & 0xff;
1142 if (GRAPHICS_VER(i915) >= 10)
1143 caps->rp1_freq = REG_FIELD_GET(RPE_MASK,
1144 intel_uncore_read(to_gt(i915)->uncore,
1145 GEN10_FREQ_INFO_REC));
1146 else
1147 caps->rp1_freq = (rp_state_cap >> 8) & 0xff;
1148 caps->min_freq = (rp_state_cap >> 16) & 0xff;
1149 }
1150
1151 if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1152 /*
1153 * In this case rp_state_cap register reports frequencies in
1154 * units of 50 MHz. Convert these to the actual "hw unit", i.e.
1155 * units of 16.67 MHz
1156 */
1157 caps->rp0_freq *= GEN9_FREQ_SCALER;
1158 caps->rp1_freq *= GEN9_FREQ_SCALER;
1159 caps->min_freq *= GEN9_FREQ_SCALER;
1160 }
1161 }
1162
1163 /**
1164 * gen6_rps_get_freq_caps - Get freq caps exposed by HW
1165 * @rps: the intel_rps structure
1166 * @caps: returned freq caps
1167 *
1168 * Returned "caps" frequencies should be converted to MHz using
1169 * intel_gpu_freq()
1170 */
gen6_rps_get_freq_caps(struct intel_rps * rps,struct intel_rps_freq_caps * caps)1171 void gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1172 {
1173 struct drm_i915_private *i915 = rps_to_i915(rps);
1174
1175 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
1176 return mtl_get_freq_caps(rps, caps);
1177 else
1178 return __gen6_rps_get_freq_caps(rps, caps);
1179 }
1180
gen6_rps_init(struct intel_rps * rps)1181 static void gen6_rps_init(struct intel_rps *rps)
1182 {
1183 struct drm_i915_private *i915 = rps_to_i915(rps);
1184 struct intel_rps_freq_caps caps;
1185
1186 gen6_rps_get_freq_caps(rps, &caps);
1187 rps->rp0_freq = caps.rp0_freq;
1188 rps->rp1_freq = caps.rp1_freq;
1189 rps->min_freq = caps.min_freq;
1190
1191 /* hw_max = RP0 until we check for overclocking */
1192 rps->max_freq = rps->rp0_freq;
1193
1194 rps->efficient_freq = rps->rp1_freq;
1195 if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
1196 IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1197 u32 ddcc_status = 0;
1198 u32 mult = 1;
1199
1200 if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11)
1201 mult = GEN9_FREQ_SCALER;
1202 if (snb_pcode_read(rps_to_gt(rps)->uncore,
1203 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
1204 &ddcc_status, NULL) == 0)
1205 rps->efficient_freq =
1206 clamp_t(u32,
1207 ((ddcc_status >> 8) & 0xff) * mult,
1208 rps->min_freq,
1209 rps->max_freq);
1210 }
1211 }
1212
rps_reset(struct intel_rps * rps)1213 static bool rps_reset(struct intel_rps *rps)
1214 {
1215 struct drm_i915_private *i915 = rps_to_i915(rps);
1216
1217 /* force a reset */
1218 rps->power.mode = -1;
1219 rps->last_freq = -1;
1220
1221 if (rps_set(rps, rps->min_freq, true)) {
1222 drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
1223 return false;
1224 }
1225
1226 rps->cur_freq = rps->min_freq;
1227 return true;
1228 }
1229
1230 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
gen9_rps_enable(struct intel_rps * rps)1231 static bool gen9_rps_enable(struct intel_rps *rps)
1232 {
1233 struct intel_gt *gt = rps_to_gt(rps);
1234 struct intel_uncore *uncore = gt->uncore;
1235
1236 /* Program defaults and thresholds for RPS */
1237 if (GRAPHICS_VER(gt->i915) == 9)
1238 intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1239 GEN9_FREQUENCY(rps->rp1_freq));
1240
1241 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
1242
1243 rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1244
1245 return rps_reset(rps);
1246 }
1247
gen8_rps_enable(struct intel_rps * rps)1248 static bool gen8_rps_enable(struct intel_rps *rps)
1249 {
1250 struct intel_uncore *uncore = rps_to_uncore(rps);
1251
1252 intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1253 HSW_FREQUENCY(rps->rp1_freq));
1254
1255 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1256
1257 rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1258
1259 return rps_reset(rps);
1260 }
1261
gen6_rps_enable(struct intel_rps * rps)1262 static bool gen6_rps_enable(struct intel_rps *rps)
1263 {
1264 struct intel_uncore *uncore = rps_to_uncore(rps);
1265
1266 /* Power down if completely idle for over 50ms */
1267 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
1268 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1269
1270 rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1271 GEN6_PM_RP_DOWN_THRESHOLD |
1272 GEN6_PM_RP_DOWN_TIMEOUT);
1273
1274 return rps_reset(rps);
1275 }
1276
chv_rps_max_freq(struct intel_rps * rps)1277 static int chv_rps_max_freq(struct intel_rps *rps)
1278 {
1279 struct drm_i915_private *i915 = rps_to_i915(rps);
1280 struct intel_gt *gt = rps_to_gt(rps);
1281 u32 val;
1282
1283 val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1284
1285 switch (gt->info.sseu.eu_total) {
1286 case 8:
1287 /* (2 * 4) config */
1288 val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
1289 break;
1290 case 12:
1291 /* (2 * 6) config */
1292 val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
1293 break;
1294 case 16:
1295 /* (2 * 8) config */
1296 default:
1297 /* Setting (2 * 8) Min RP0 for any other combination */
1298 val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
1299 break;
1300 }
1301
1302 return val & FB_GFX_FREQ_FUSE_MASK;
1303 }
1304
chv_rps_rpe_freq(struct intel_rps * rps)1305 static int chv_rps_rpe_freq(struct intel_rps *rps)
1306 {
1307 struct drm_i915_private *i915 = rps_to_i915(rps);
1308 u32 val;
1309
1310 val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
1311 val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
1312
1313 return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
1314 }
1315
chv_rps_guar_freq(struct intel_rps * rps)1316 static int chv_rps_guar_freq(struct intel_rps *rps)
1317 {
1318 struct drm_i915_private *i915 = rps_to_i915(rps);
1319 u32 val;
1320
1321 val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1322
1323 return val & FB_GFX_FREQ_FUSE_MASK;
1324 }
1325
chv_rps_min_freq(struct intel_rps * rps)1326 static u32 chv_rps_min_freq(struct intel_rps *rps)
1327 {
1328 struct drm_i915_private *i915 = rps_to_i915(rps);
1329 u32 val;
1330
1331 val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
1332 val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
1333
1334 return val & FB_GFX_FREQ_FUSE_MASK;
1335 }
1336
chv_rps_enable(struct intel_rps * rps)1337 static bool chv_rps_enable(struct intel_rps *rps)
1338 {
1339 struct intel_uncore *uncore = rps_to_uncore(rps);
1340 struct drm_i915_private *i915 = rps_to_i915(rps);
1341 u32 val;
1342
1343 /* 1: Program defaults and thresholds for RPS*/
1344 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1345 intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1346 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1347 intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1348 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1349
1350 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1351
1352 /* 2: Enable RPS */
1353 intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1354 GEN6_RP_MEDIA_HW_NORMAL_MODE |
1355 GEN6_RP_MEDIA_IS_GFX |
1356 GEN6_RP_ENABLE |
1357 GEN6_RP_UP_BUSY_AVG |
1358 GEN6_RP_DOWN_IDLE_AVG);
1359
1360 rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1361 GEN6_PM_RP_DOWN_THRESHOLD |
1362 GEN6_PM_RP_DOWN_TIMEOUT);
1363
1364 /* Setting Fixed Bias */
1365 vlv_punit_get(i915);
1366
1367 val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
1368 vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1369
1370 val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1371
1372 vlv_punit_put(i915);
1373
1374 /* RPS code assumes GPLL is used */
1375 drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1376 "GPLL not enabled\n");
1377
1378 drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1379 str_yes_no(val & GPLLENABLE));
1380 drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1381
1382 return rps_reset(rps);
1383 }
1384
vlv_rps_guar_freq(struct intel_rps * rps)1385 static int vlv_rps_guar_freq(struct intel_rps *rps)
1386 {
1387 struct drm_i915_private *i915 = rps_to_i915(rps);
1388 u32 val, rp1;
1389
1390 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1391
1392 rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
1393 rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
1394
1395 return rp1;
1396 }
1397
vlv_rps_max_freq(struct intel_rps * rps)1398 static int vlv_rps_max_freq(struct intel_rps *rps)
1399 {
1400 struct drm_i915_private *i915 = rps_to_i915(rps);
1401 u32 val, rp0;
1402
1403 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1404
1405 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
1406 /* Clamp to max */
1407 rp0 = min_t(u32, rp0, 0xea);
1408
1409 return rp0;
1410 }
1411
vlv_rps_rpe_freq(struct intel_rps * rps)1412 static int vlv_rps_rpe_freq(struct intel_rps *rps)
1413 {
1414 struct drm_i915_private *i915 = rps_to_i915(rps);
1415 u32 val, rpe;
1416
1417 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
1418 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
1419 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
1420 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
1421
1422 return rpe;
1423 }
1424
vlv_rps_min_freq(struct intel_rps * rps)1425 static int vlv_rps_min_freq(struct intel_rps *rps)
1426 {
1427 struct drm_i915_private *i915 = rps_to_i915(rps);
1428 u32 val;
1429
1430 val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
1431 /*
1432 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
1433 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
1434 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
1435 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
1436 * to make sure it matches what Punit accepts.
1437 */
1438 return max_t(u32, val, 0xc0);
1439 }
1440
vlv_rps_enable(struct intel_rps * rps)1441 static bool vlv_rps_enable(struct intel_rps *rps)
1442 {
1443 struct intel_uncore *uncore = rps_to_uncore(rps);
1444 struct drm_i915_private *i915 = rps_to_i915(rps);
1445 u32 val;
1446
1447 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1448 intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1449 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1450 intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1451 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1452
1453 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1454
1455 intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1456 GEN6_RP_MEDIA_TURBO |
1457 GEN6_RP_MEDIA_HW_NORMAL_MODE |
1458 GEN6_RP_MEDIA_IS_GFX |
1459 GEN6_RP_ENABLE |
1460 GEN6_RP_UP_BUSY_AVG |
1461 GEN6_RP_DOWN_IDLE_CONT);
1462
1463 /* WaGsvRC0ResidencyMethod:vlv */
1464 rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
1465
1466 vlv_punit_get(i915);
1467
1468 /* Setting Fixed Bias */
1469 val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
1470 vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1471
1472 val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1473
1474 vlv_punit_put(i915);
1475
1476 /* RPS code assumes GPLL is used */
1477 drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1478 "GPLL not enabled\n");
1479
1480 drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1481 str_yes_no(val & GPLLENABLE));
1482 drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1483
1484 return rps_reset(rps);
1485 }
1486
__ips_gfx_val(struct intel_ips * ips)1487 static unsigned long __ips_gfx_val(struct intel_ips *ips)
1488 {
1489 struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
1490 struct intel_uncore *uncore = rps_to_uncore(rps);
1491 unsigned int t, state1, state2;
1492 u32 pxvid, ext_v;
1493 u64 corr, corr2;
1494
1495 lockdep_assert_held(&mchdev_lock);
1496
1497 pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
1498 pxvid = (pxvid >> 24) & 0x7f;
1499 ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
1500
1501 state1 = ext_v;
1502
1503 /* Revel in the empirically derived constants */
1504
1505 /* Correction factor in 1/100000 units */
1506 t = ips_mch_val(uncore);
1507 if (t > 80)
1508 corr = t * 2349 + 135940;
1509 else if (t >= 50)
1510 corr = t * 964 + 29317;
1511 else /* < 50 */
1512 corr = t * 301 + 1004;
1513
1514 corr = div_u64(corr * 150142 * state1, 10000) - 78642;
1515 corr2 = div_u64(corr, 100000) * ips->corr;
1516
1517 state2 = div_u64(corr2 * state1, 10000);
1518 state2 /= 100; /* convert to mW */
1519
1520 __gen5_ips_update(ips);
1521
1522 return ips->gfx_power + state2;
1523 }
1524
has_busy_stats(struct intel_rps * rps)1525 static bool has_busy_stats(struct intel_rps *rps)
1526 {
1527 struct intel_engine_cs *engine;
1528 enum intel_engine_id id;
1529
1530 for_each_engine(engine, rps_to_gt(rps), id) {
1531 if (!intel_engine_supports_stats(engine))
1532 return false;
1533 }
1534
1535 return true;
1536 }
1537
intel_rps_enable(struct intel_rps * rps)1538 void intel_rps_enable(struct intel_rps *rps)
1539 {
1540 struct drm_i915_private *i915 = rps_to_i915(rps);
1541 struct intel_uncore *uncore = rps_to_uncore(rps);
1542 bool enabled = false;
1543
1544 if (!HAS_RPS(i915))
1545 return;
1546
1547 if (rps_uses_slpc(rps))
1548 return;
1549
1550 intel_gt_check_clock_frequency(rps_to_gt(rps));
1551
1552 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1553 if (rps->max_freq <= rps->min_freq)
1554 /* leave disabled, no room for dynamic reclocking */;
1555 else if (IS_CHERRYVIEW(i915))
1556 enabled = chv_rps_enable(rps);
1557 else if (IS_VALLEYVIEW(i915))
1558 enabled = vlv_rps_enable(rps);
1559 else if (GRAPHICS_VER(i915) >= 9)
1560 enabled = gen9_rps_enable(rps);
1561 else if (GRAPHICS_VER(i915) >= 8)
1562 enabled = gen8_rps_enable(rps);
1563 else if (GRAPHICS_VER(i915) >= 6)
1564 enabled = gen6_rps_enable(rps);
1565 else if (IS_IRONLAKE_M(i915))
1566 enabled = gen5_rps_enable(rps);
1567 else
1568 MISSING_CASE(GRAPHICS_VER(i915));
1569 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1570 if (!enabled)
1571 return;
1572
1573 GT_TRACE(rps_to_gt(rps),
1574 "min:%x, max:%x, freq:[%d, %d], thresholds:[%u, %u]\n",
1575 rps->min_freq, rps->max_freq,
1576 intel_gpu_freq(rps, rps->min_freq),
1577 intel_gpu_freq(rps, rps->max_freq),
1578 rps->power.up_threshold,
1579 rps->power.down_threshold);
1580
1581 GEM_BUG_ON(rps->max_freq < rps->min_freq);
1582 GEM_BUG_ON(rps->idle_freq > rps->max_freq);
1583
1584 GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
1585 GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
1586
1587 if (has_busy_stats(rps))
1588 intel_rps_set_timer(rps);
1589 else if (GRAPHICS_VER(i915) >= 6 && GRAPHICS_VER(i915) <= 11)
1590 intel_rps_set_interrupts(rps);
1591 else
1592 /* Ironlake currently uses intel_ips.ko */ {}
1593
1594 intel_rps_set_enabled(rps);
1595 }
1596
gen6_rps_disable(struct intel_rps * rps)1597 static void gen6_rps_disable(struct intel_rps *rps)
1598 {
1599 set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
1600 }
1601
intel_rps_disable(struct intel_rps * rps)1602 void intel_rps_disable(struct intel_rps *rps)
1603 {
1604 struct drm_i915_private *i915 = rps_to_i915(rps);
1605
1606 if (!intel_rps_is_enabled(rps))
1607 return;
1608
1609 intel_rps_clear_enabled(rps);
1610 intel_rps_clear_interrupts(rps);
1611 intel_rps_clear_timer(rps);
1612
1613 if (GRAPHICS_VER(i915) >= 6)
1614 gen6_rps_disable(rps);
1615 else if (IS_IRONLAKE_M(i915))
1616 gen5_rps_disable(rps);
1617 }
1618
byt_gpu_freq(struct intel_rps * rps,int val)1619 static int byt_gpu_freq(struct intel_rps *rps, int val)
1620 {
1621 /*
1622 * N = val - 0xb7
1623 * Slow = Fast = GPLL ref * N
1624 */
1625 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
1626 }
1627
byt_freq_opcode(struct intel_rps * rps,int val)1628 static int byt_freq_opcode(struct intel_rps *rps, int val)
1629 {
1630 return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
1631 }
1632
chv_gpu_freq(struct intel_rps * rps,int val)1633 static int chv_gpu_freq(struct intel_rps *rps, int val)
1634 {
1635 /*
1636 * N = val / 2
1637 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
1638 */
1639 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
1640 }
1641
chv_freq_opcode(struct intel_rps * rps,int val)1642 static int chv_freq_opcode(struct intel_rps *rps, int val)
1643 {
1644 /* CHV needs even values */
1645 return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
1646 }
1647
intel_gpu_freq(struct intel_rps * rps,int val)1648 int intel_gpu_freq(struct intel_rps *rps, int val)
1649 {
1650 struct drm_i915_private *i915 = rps_to_i915(rps);
1651
1652 if (GRAPHICS_VER(i915) >= 9)
1653 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
1654 GEN9_FREQ_SCALER);
1655 else if (IS_CHERRYVIEW(i915))
1656 return chv_gpu_freq(rps, val);
1657 else if (IS_VALLEYVIEW(i915))
1658 return byt_gpu_freq(rps, val);
1659 else if (GRAPHICS_VER(i915) >= 6)
1660 return val * GT_FREQUENCY_MULTIPLIER;
1661 else
1662 return val;
1663 }
1664
intel_freq_opcode(struct intel_rps * rps,int val)1665 int intel_freq_opcode(struct intel_rps *rps, int val)
1666 {
1667 struct drm_i915_private *i915 = rps_to_i915(rps);
1668
1669 if (GRAPHICS_VER(i915) >= 9)
1670 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
1671 GT_FREQUENCY_MULTIPLIER);
1672 else if (IS_CHERRYVIEW(i915))
1673 return chv_freq_opcode(rps, val);
1674 else if (IS_VALLEYVIEW(i915))
1675 return byt_freq_opcode(rps, val);
1676 else if (GRAPHICS_VER(i915) >= 6)
1677 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
1678 else
1679 return val;
1680 }
1681
vlv_init_gpll_ref_freq(struct intel_rps * rps)1682 static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
1683 {
1684 struct drm_i915_private *i915 = rps_to_i915(rps);
1685
1686 rps->gpll_ref_freq =
1687 vlv_get_cck_clock(i915, "GPLL ref",
1688 CCK_GPLL_CLOCK_CONTROL,
1689 i915->czclk_freq);
1690
1691 drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
1692 rps->gpll_ref_freq);
1693 }
1694
vlv_rps_init(struct intel_rps * rps)1695 static void vlv_rps_init(struct intel_rps *rps)
1696 {
1697 struct drm_i915_private *i915 = rps_to_i915(rps);
1698
1699 vlv_iosf_sb_get(i915,
1700 BIT(VLV_IOSF_SB_PUNIT) |
1701 BIT(VLV_IOSF_SB_NC) |
1702 BIT(VLV_IOSF_SB_CCK));
1703
1704 vlv_init_gpll_ref_freq(rps);
1705
1706 rps->max_freq = vlv_rps_max_freq(rps);
1707 rps->rp0_freq = rps->max_freq;
1708 drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1709 intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1710
1711 rps->efficient_freq = vlv_rps_rpe_freq(rps);
1712 drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1713 intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1714
1715 rps->rp1_freq = vlv_rps_guar_freq(rps);
1716 drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
1717 intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1718
1719 rps->min_freq = vlv_rps_min_freq(rps);
1720 drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1721 intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1722
1723 vlv_iosf_sb_put(i915,
1724 BIT(VLV_IOSF_SB_PUNIT) |
1725 BIT(VLV_IOSF_SB_NC) |
1726 BIT(VLV_IOSF_SB_CCK));
1727 }
1728
chv_rps_init(struct intel_rps * rps)1729 static void chv_rps_init(struct intel_rps *rps)
1730 {
1731 struct drm_i915_private *i915 = rps_to_i915(rps);
1732
1733 vlv_iosf_sb_get(i915,
1734 BIT(VLV_IOSF_SB_PUNIT) |
1735 BIT(VLV_IOSF_SB_NC) |
1736 BIT(VLV_IOSF_SB_CCK));
1737
1738 vlv_init_gpll_ref_freq(rps);
1739
1740 rps->max_freq = chv_rps_max_freq(rps);
1741 rps->rp0_freq = rps->max_freq;
1742 drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1743 intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1744
1745 rps->efficient_freq = chv_rps_rpe_freq(rps);
1746 drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1747 intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1748
1749 rps->rp1_freq = chv_rps_guar_freq(rps);
1750 drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
1751 intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1752
1753 rps->min_freq = chv_rps_min_freq(rps);
1754 drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1755 intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1756
1757 vlv_iosf_sb_put(i915,
1758 BIT(VLV_IOSF_SB_PUNIT) |
1759 BIT(VLV_IOSF_SB_NC) |
1760 BIT(VLV_IOSF_SB_CCK));
1761
1762 drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
1763 rps->rp1_freq | rps->min_freq) & 1,
1764 "Odd GPU freq values\n");
1765 }
1766
vlv_c0_read(struct intel_uncore * uncore,struct intel_rps_ei * ei)1767 static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
1768 {
1769 ei->ktime = ktime_get_raw();
1770 ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
1771 ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
1772 }
1773
vlv_wa_c0_ei(struct intel_rps * rps,u32 pm_iir)1774 static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
1775 {
1776 struct intel_uncore *uncore = rps_to_uncore(rps);
1777 const struct intel_rps_ei *prev = &rps->ei;
1778 struct intel_rps_ei now;
1779 u32 events = 0;
1780
1781 if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1782 return 0;
1783
1784 vlv_c0_read(uncore, &now);
1785
1786 if (prev->ktime) {
1787 u64 time, c0;
1788 u32 render, media;
1789
1790 time = ktime_us_delta(now.ktime, prev->ktime);
1791
1792 time *= rps_to_i915(rps)->czclk_freq;
1793
1794 /* Workload can be split between render + media,
1795 * e.g. SwapBuffers being blitted in X after being rendered in
1796 * mesa. To account for this we need to combine both engines
1797 * into our activity counter.
1798 */
1799 render = now.render_c0 - prev->render_c0;
1800 media = now.media_c0 - prev->media_c0;
1801 c0 = max(render, media);
1802 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1803
1804 if (c0 > time * rps->power.up_threshold)
1805 events = GEN6_PM_RP_UP_THRESHOLD;
1806 else if (c0 < time * rps->power.down_threshold)
1807 events = GEN6_PM_RP_DOWN_THRESHOLD;
1808 }
1809
1810 rps->ei = now;
1811 return events;
1812 }
1813
rps_work(struct work_struct * work)1814 static void rps_work(struct work_struct *work)
1815 {
1816 struct intel_rps *rps = container_of(work, typeof(*rps), work);
1817 struct intel_gt *gt = rps_to_gt(rps);
1818 struct drm_i915_private *i915 = rps_to_i915(rps);
1819 bool client_boost = false;
1820 int new_freq, adj, min, max;
1821 u32 pm_iir = 0;
1822
1823 spin_lock_irq(gt->irq_lock);
1824 pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
1825 client_boost = atomic_read(&rps->num_waiters);
1826 spin_unlock_irq(gt->irq_lock);
1827
1828 /* Make sure we didn't queue anything we're not going to process. */
1829 if (!pm_iir && !client_boost)
1830 goto out;
1831
1832 mutex_lock(&rps->lock);
1833 if (!intel_rps_is_active(rps)) {
1834 mutex_unlock(&rps->lock);
1835 return;
1836 }
1837
1838 pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
1839
1840 adj = rps->last_adj;
1841 new_freq = rps->cur_freq;
1842 min = rps->min_freq_softlimit;
1843 max = rps->max_freq_softlimit;
1844 if (client_boost)
1845 max = rps->max_freq;
1846
1847 GT_TRACE(gt,
1848 "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
1849 pm_iir, str_yes_no(client_boost),
1850 adj, new_freq, min, max);
1851
1852 if (client_boost && new_freq < rps->boost_freq) {
1853 new_freq = rps->boost_freq;
1854 adj = 0;
1855 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1856 if (adj > 0)
1857 adj *= 2;
1858 else /* CHV needs even encode values */
1859 adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
1860
1861 if (new_freq >= rps->max_freq_softlimit)
1862 adj = 0;
1863 } else if (client_boost) {
1864 adj = 0;
1865 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1866 if (rps->cur_freq > rps->efficient_freq)
1867 new_freq = rps->efficient_freq;
1868 else if (rps->cur_freq > rps->min_freq_softlimit)
1869 new_freq = rps->min_freq_softlimit;
1870 adj = 0;
1871 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1872 if (adj < 0)
1873 adj *= 2;
1874 else /* CHV needs even encode values */
1875 adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
1876
1877 if (new_freq <= rps->min_freq_softlimit)
1878 adj = 0;
1879 } else { /* unknown event */
1880 adj = 0;
1881 }
1882
1883 /*
1884 * sysfs frequency limits may have snuck in while
1885 * servicing the interrupt
1886 */
1887 new_freq += adj;
1888 new_freq = clamp_t(int, new_freq, min, max);
1889
1890 if (intel_rps_set(rps, new_freq)) {
1891 drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
1892 adj = 0;
1893 }
1894 rps->last_adj = adj;
1895
1896 mutex_unlock(&rps->lock);
1897
1898 out:
1899 spin_lock_irq(gt->irq_lock);
1900 gen6_gt_pm_unmask_irq(gt, rps->pm_events);
1901 spin_unlock_irq(gt->irq_lock);
1902 }
1903
gen11_rps_irq_handler(struct intel_rps * rps,u32 pm_iir)1904 void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1905 {
1906 struct intel_gt *gt = rps_to_gt(rps);
1907 const u32 events = rps->pm_events & pm_iir;
1908
1909 lockdep_assert_held(gt->irq_lock);
1910
1911 if (unlikely(!events))
1912 return;
1913
1914 GT_TRACE(gt, "irq events:%x\n", events);
1915
1916 gen6_gt_pm_mask_irq(gt, events);
1917
1918 rps->pm_iir |= events;
1919 queue_work(gt->i915->unordered_wq, &rps->work);
1920 }
1921
gen6_rps_irq_handler(struct intel_rps * rps,u32 pm_iir)1922 void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1923 {
1924 struct intel_gt *gt = rps_to_gt(rps);
1925 u32 events;
1926
1927 events = pm_iir & rps->pm_events;
1928 if (events) {
1929 spin_lock(gt->irq_lock);
1930
1931 GT_TRACE(gt, "irq events:%x\n", events);
1932
1933 gen6_gt_pm_mask_irq(gt, events);
1934 rps->pm_iir |= events;
1935
1936 queue_work(gt->i915->unordered_wq, &rps->work);
1937 spin_unlock(gt->irq_lock);
1938 }
1939
1940 if (GRAPHICS_VER(gt->i915) >= 8)
1941 return;
1942
1943 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1944 intel_engine_cs_irq(gt->engine[VECS0], pm_iir >> 10);
1945
1946 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1947 drm_dbg(&rps_to_i915(rps)->drm,
1948 "Command parser error, pm_iir 0x%08x\n", pm_iir);
1949 }
1950
gen5_rps_irq_handler(struct intel_rps * rps)1951 void gen5_rps_irq_handler(struct intel_rps *rps)
1952 {
1953 struct intel_uncore *uncore = rps_to_uncore(rps);
1954 u32 busy_up, busy_down, max_avg, min_avg;
1955 u8 new_freq;
1956
1957 spin_lock(&mchdev_lock);
1958
1959 intel_uncore_write16(uncore,
1960 MEMINTRSTS,
1961 intel_uncore_read(uncore, MEMINTRSTS));
1962
1963 intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1964 busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1965 busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1966 max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1967 min_avg = intel_uncore_read(uncore, RCBMINAVG);
1968
1969 /* Handle RCS change request from hw */
1970 new_freq = rps->cur_freq;
1971 if (busy_up > max_avg)
1972 new_freq++;
1973 else if (busy_down < min_avg)
1974 new_freq--;
1975 new_freq = clamp(new_freq,
1976 rps->min_freq_softlimit,
1977 rps->max_freq_softlimit);
1978
1979 if (new_freq != rps->cur_freq && !__gen5_rps_set(rps, new_freq))
1980 rps->cur_freq = new_freq;
1981
1982 spin_unlock(&mchdev_lock);
1983 }
1984
intel_rps_init_early(struct intel_rps * rps)1985 void intel_rps_init_early(struct intel_rps *rps)
1986 {
1987 mutex_init(&rps->lock);
1988 mutex_init(&rps->power.mutex);
1989
1990 INIT_WORK(&rps->work, rps_work);
1991 timer_setup(&rps->timer, rps_timer, 0);
1992
1993 atomic_set(&rps->num_waiters, 0);
1994 }
1995
intel_rps_init(struct intel_rps * rps)1996 void intel_rps_init(struct intel_rps *rps)
1997 {
1998 struct drm_i915_private *i915 = rps_to_i915(rps);
1999
2000 if (rps_uses_slpc(rps))
2001 return;
2002
2003 if (IS_CHERRYVIEW(i915))
2004 chv_rps_init(rps);
2005 else if (IS_VALLEYVIEW(i915))
2006 vlv_rps_init(rps);
2007 else if (GRAPHICS_VER(i915) >= 6)
2008 gen6_rps_init(rps);
2009 else if (IS_IRONLAKE_M(i915))
2010 gen5_rps_init(rps);
2011
2012 /* Derive initial user preferences/limits from the hardware limits */
2013 rps->max_freq_softlimit = rps->max_freq;
2014 rps_to_gt(rps)->defaults.max_freq = rps->max_freq_softlimit;
2015 rps->min_freq_softlimit = rps->min_freq;
2016 rps_to_gt(rps)->defaults.min_freq = rps->min_freq_softlimit;
2017
2018 /* After setting max-softlimit, find the overclock max freq */
2019 if (GRAPHICS_VER(i915) == 6 || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
2020 u32 params = 0;
2021
2022 snb_pcode_read(rps_to_gt(rps)->uncore, GEN6_READ_OC_PARAMS, ¶ms, NULL);
2023 if (params & BIT(31)) { /* OC supported */
2024 drm_dbg(&i915->drm,
2025 "Overclocking supported, max: %dMHz, overclock: %dMHz\n",
2026 (rps->max_freq & 0xff) * 50,
2027 (params & 0xff) * 50);
2028 rps->max_freq = params & 0xff;
2029 }
2030 }
2031
2032 /* Set default thresholds in % */
2033 rps->power.up_threshold = 95;
2034 rps_to_gt(rps)->defaults.rps_up_threshold = rps->power.up_threshold;
2035 rps->power.down_threshold = 85;
2036 rps_to_gt(rps)->defaults.rps_down_threshold = rps->power.down_threshold;
2037
2038 /* Finally allow us to boost to max by default */
2039 rps->boost_freq = rps->max_freq;
2040 rps->idle_freq = rps->min_freq;
2041
2042 /* Start in the middle, from here we will autotune based on workload */
2043 rps->cur_freq = rps->efficient_freq;
2044
2045 rps->pm_intrmsk_mbz = 0;
2046
2047 /*
2048 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
2049 * if GEN6_PM_UP_EI_EXPIRED is masked.
2050 *
2051 * TODO: verify if this can be reproduced on VLV,CHV.
2052 */
2053 if (GRAPHICS_VER(i915) <= 7)
2054 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
2055
2056 if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) < 11)
2057 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
2058
2059 /* GuC needs ARAT expired interrupt unmasked */
2060 if (intel_uc_uses_guc_submission(&rps_to_gt(rps)->uc))
2061 rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
2062 }
2063
intel_rps_sanitize(struct intel_rps * rps)2064 void intel_rps_sanitize(struct intel_rps *rps)
2065 {
2066 if (rps_uses_slpc(rps))
2067 return;
2068
2069 if (GRAPHICS_VER(rps_to_i915(rps)) >= 6)
2070 rps_disable_interrupts(rps);
2071 }
2072
intel_rps_read_rpstat(struct intel_rps * rps)2073 u32 intel_rps_read_rpstat(struct intel_rps *rps)
2074 {
2075 struct drm_i915_private *i915 = rps_to_i915(rps);
2076 i915_reg_t rpstat;
2077
2078 rpstat = (GRAPHICS_VER(i915) >= 12) ? GEN12_RPSTAT1 : GEN6_RPSTAT1;
2079
2080 return intel_uncore_read(rps_to_gt(rps)->uncore, rpstat);
2081 }
2082
intel_rps_get_cagf(struct intel_rps * rps,u32 rpstat)2083 static u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
2084 {
2085 struct drm_i915_private *i915 = rps_to_i915(rps);
2086 u32 cagf;
2087
2088 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
2089 cagf = REG_FIELD_GET(MTL_CAGF_MASK, rpstat);
2090 else if (GRAPHICS_VER(i915) >= 12)
2091 cagf = REG_FIELD_GET(GEN12_CAGF_MASK, rpstat);
2092 else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
2093 cagf = REG_FIELD_GET(RPE_MASK, rpstat);
2094 else if (GRAPHICS_VER(i915) >= 9)
2095 cagf = REG_FIELD_GET(GEN9_CAGF_MASK, rpstat);
2096 else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
2097 cagf = REG_FIELD_GET(HSW_CAGF_MASK, rpstat);
2098 else if (GRAPHICS_VER(i915) >= 6)
2099 cagf = REG_FIELD_GET(GEN6_CAGF_MASK, rpstat);
2100 else
2101 cagf = gen5_invert_freq(rps, REG_FIELD_GET(MEMSTAT_PSTATE_MASK, rpstat));
2102
2103 return cagf;
2104 }
2105
__read_cagf(struct intel_rps * rps,bool take_fw)2106 static u32 __read_cagf(struct intel_rps *rps, bool take_fw)
2107 {
2108 struct drm_i915_private *i915 = rps_to_i915(rps);
2109 struct intel_uncore *uncore = rps_to_uncore(rps);
2110 i915_reg_t r = INVALID_MMIO_REG;
2111 u32 freq;
2112
2113 /*
2114 * For Gen12+ reading freq from HW does not need a forcewake and
2115 * registers will return 0 freq when GT is in RC6
2116 */
2117 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) {
2118 r = MTL_MIRROR_TARGET_WP1;
2119 } else if (GRAPHICS_VER(i915) >= 12) {
2120 r = GEN12_RPSTAT1;
2121 } else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
2122 vlv_punit_get(i915);
2123 freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
2124 vlv_punit_put(i915);
2125 } else if (GRAPHICS_VER(i915) >= 6) {
2126 r = GEN6_RPSTAT1;
2127 } else {
2128 r = MEMSTAT_ILK;
2129 }
2130
2131 if (i915_mmio_reg_valid(r))
2132 freq = take_fw ? intel_uncore_read(uncore, r) : intel_uncore_read_fw(uncore, r);
2133
2134 return intel_rps_get_cagf(rps, freq);
2135 }
2136
read_cagf(struct intel_rps * rps)2137 static u32 read_cagf(struct intel_rps *rps)
2138 {
2139 return __read_cagf(rps, true);
2140 }
2141
intel_rps_read_actual_frequency(struct intel_rps * rps)2142 u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
2143 {
2144 struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2145 intel_wakeref_t wakeref;
2146 u32 freq = 0;
2147
2148 with_intel_runtime_pm_if_in_use(rpm, wakeref)
2149 freq = intel_gpu_freq(rps, read_cagf(rps));
2150
2151 return freq;
2152 }
2153
intel_rps_read_actual_frequency_fw(struct intel_rps * rps)2154 u32 intel_rps_read_actual_frequency_fw(struct intel_rps *rps)
2155 {
2156 return intel_gpu_freq(rps, __read_cagf(rps, false));
2157 }
2158
intel_rps_read_punit_req(struct intel_rps * rps)2159 static u32 intel_rps_read_punit_req(struct intel_rps *rps)
2160 {
2161 struct intel_uncore *uncore = rps_to_uncore(rps);
2162 struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2163 intel_wakeref_t wakeref;
2164 u32 freq = 0;
2165
2166 with_intel_runtime_pm_if_in_use(rpm, wakeref)
2167 freq = intel_uncore_read(uncore, GEN6_RPNSWREQ);
2168
2169 return freq;
2170 }
2171
intel_rps_get_req(u32 pureq)2172 static u32 intel_rps_get_req(u32 pureq)
2173 {
2174 u32 req = pureq >> GEN9_SW_REQ_UNSLICE_RATIO_SHIFT;
2175
2176 return req;
2177 }
2178
intel_rps_read_punit_req_frequency(struct intel_rps * rps)2179 u32 intel_rps_read_punit_req_frequency(struct intel_rps *rps)
2180 {
2181 u32 freq = intel_rps_get_req(intel_rps_read_punit_req(rps));
2182
2183 return intel_gpu_freq(rps, freq);
2184 }
2185
intel_rps_get_requested_frequency(struct intel_rps * rps)2186 u32 intel_rps_get_requested_frequency(struct intel_rps *rps)
2187 {
2188 if (rps_uses_slpc(rps))
2189 return intel_rps_read_punit_req_frequency(rps);
2190 else
2191 return intel_gpu_freq(rps, rps->cur_freq);
2192 }
2193
intel_rps_get_max_frequency(struct intel_rps * rps)2194 u32 intel_rps_get_max_frequency(struct intel_rps *rps)
2195 {
2196 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2197
2198 if (rps_uses_slpc(rps))
2199 return slpc->max_freq_softlimit;
2200 else
2201 return intel_gpu_freq(rps, rps->max_freq_softlimit);
2202 }
2203
2204 /**
2205 * intel_rps_get_max_raw_freq - returns the max frequency in some raw format.
2206 * @rps: the intel_rps structure
2207 *
2208 * Returns the max frequency in a raw format. In newer platforms raw is in
2209 * units of 50 MHz.
2210 */
intel_rps_get_max_raw_freq(struct intel_rps * rps)2211 u32 intel_rps_get_max_raw_freq(struct intel_rps *rps)
2212 {
2213 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2214 u32 freq;
2215
2216 if (rps_uses_slpc(rps)) {
2217 return DIV_ROUND_CLOSEST(slpc->rp0_freq,
2218 GT_FREQUENCY_MULTIPLIER);
2219 } else {
2220 freq = rps->max_freq;
2221 if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
2222 /* Convert GT frequency to 50 MHz units */
2223 freq /= GEN9_FREQ_SCALER;
2224 }
2225 return freq;
2226 }
2227 }
2228
intel_rps_get_rp0_frequency(struct intel_rps * rps)2229 u32 intel_rps_get_rp0_frequency(struct intel_rps *rps)
2230 {
2231 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2232
2233 if (rps_uses_slpc(rps))
2234 return slpc->rp0_freq;
2235 else
2236 return intel_gpu_freq(rps, rps->rp0_freq);
2237 }
2238
intel_rps_get_rp1_frequency(struct intel_rps * rps)2239 u32 intel_rps_get_rp1_frequency(struct intel_rps *rps)
2240 {
2241 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2242
2243 if (rps_uses_slpc(rps))
2244 return slpc->rp1_freq;
2245 else
2246 return intel_gpu_freq(rps, rps->rp1_freq);
2247 }
2248
intel_rps_get_rpn_frequency(struct intel_rps * rps)2249 u32 intel_rps_get_rpn_frequency(struct intel_rps *rps)
2250 {
2251 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2252
2253 if (rps_uses_slpc(rps))
2254 return slpc->min_freq;
2255 else
2256 return intel_gpu_freq(rps, rps->min_freq);
2257 }
2258
rps_frequency_dump(struct intel_rps * rps,struct drm_printer * p)2259 static void rps_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2260 {
2261 struct intel_gt *gt = rps_to_gt(rps);
2262 struct drm_i915_private *i915 = gt->i915;
2263 struct intel_uncore *uncore = gt->uncore;
2264 struct intel_rps_freq_caps caps;
2265 u32 rp_state_limits;
2266 u32 gt_perf_status;
2267 u32 rpmodectl, rpinclimit, rpdeclimit;
2268 u32 rpstat, cagf, reqf;
2269 u32 rpcurupei, rpcurup, rpprevup;
2270 u32 rpcurdownei, rpcurdown, rpprevdown;
2271 u32 rpupei, rpupt, rpdownei, rpdownt;
2272 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
2273
2274 rp_state_limits = intel_uncore_read(uncore, GEN6_RP_STATE_LIMITS);
2275 gen6_rps_get_freq_caps(rps, &caps);
2276 if (IS_GEN9_LP(i915))
2277 gt_perf_status = intel_uncore_read(uncore, BXT_GT_PERF_STATUS);
2278 else
2279 gt_perf_status = intel_uncore_read(uncore, GEN6_GT_PERF_STATUS);
2280
2281 /* RPSTAT1 is in the GT power well */
2282 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
2283
2284 reqf = intel_uncore_read(uncore, GEN6_RPNSWREQ);
2285 if (GRAPHICS_VER(i915) >= 9) {
2286 reqf >>= 23;
2287 } else {
2288 reqf &= ~GEN6_TURBO_DISABLE;
2289 if (IS_HASWELL(i915) || IS_BROADWELL(i915))
2290 reqf >>= 24;
2291 else
2292 reqf >>= 25;
2293 }
2294 reqf = intel_gpu_freq(rps, reqf);
2295
2296 rpmodectl = intel_uncore_read(uncore, GEN6_RP_CONTROL);
2297 rpinclimit = intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD);
2298 rpdeclimit = intel_uncore_read(uncore, GEN6_RP_DOWN_THRESHOLD);
2299
2300 rpstat = intel_rps_read_rpstat(rps);
2301 rpcurupei = intel_uncore_read(uncore, GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
2302 rpcurup = intel_uncore_read(uncore, GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
2303 rpprevup = intel_uncore_read(uncore, GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
2304 rpcurdownei = intel_uncore_read(uncore, GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
2305 rpcurdown = intel_uncore_read(uncore, GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
2306 rpprevdown = intel_uncore_read(uncore, GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
2307
2308 rpupei = intel_uncore_read(uncore, GEN6_RP_UP_EI);
2309 rpupt = intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD);
2310
2311 rpdownei = intel_uncore_read(uncore, GEN6_RP_DOWN_EI);
2312 rpdownt = intel_uncore_read(uncore, GEN6_RP_DOWN_THRESHOLD);
2313
2314 cagf = intel_rps_read_actual_frequency(rps);
2315
2316 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
2317
2318 if (GRAPHICS_VER(i915) >= 11) {
2319 pm_ier = intel_uncore_read(uncore, GEN11_GPM_WGBOXPERF_INTR_ENABLE);
2320 pm_imr = intel_uncore_read(uncore, GEN11_GPM_WGBOXPERF_INTR_MASK);
2321 /*
2322 * The equivalent to the PM ISR & IIR cannot be read
2323 * without affecting the current state of the system
2324 */
2325 pm_isr = 0;
2326 pm_iir = 0;
2327 } else if (GRAPHICS_VER(i915) >= 8) {
2328 pm_ier = intel_uncore_read(uncore, GEN8_GT_IER(2));
2329 pm_imr = intel_uncore_read(uncore, GEN8_GT_IMR(2));
2330 pm_isr = intel_uncore_read(uncore, GEN8_GT_ISR(2));
2331 pm_iir = intel_uncore_read(uncore, GEN8_GT_IIR(2));
2332 } else {
2333 pm_ier = intel_uncore_read(uncore, GEN6_PMIER);
2334 pm_imr = intel_uncore_read(uncore, GEN6_PMIMR);
2335 pm_isr = intel_uncore_read(uncore, GEN6_PMISR);
2336 pm_iir = intel_uncore_read(uncore, GEN6_PMIIR);
2337 }
2338 pm_mask = intel_uncore_read(uncore, GEN6_PMINTRMSK);
2339
2340 drm_printf(p, "Video Turbo Mode: %s\n",
2341 str_yes_no(rpmodectl & GEN6_RP_MEDIA_TURBO));
2342 drm_printf(p, "HW control enabled: %s\n",
2343 str_yes_no(rpmodectl & GEN6_RP_ENABLE));
2344 drm_printf(p, "SW control enabled: %s\n",
2345 str_yes_no((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) == GEN6_RP_MEDIA_SW_MODE));
2346
2347 drm_printf(p, "PM IER=0x%08x IMR=0x%08x, MASK=0x%08x\n",
2348 pm_ier, pm_imr, pm_mask);
2349 if (GRAPHICS_VER(i915) <= 10)
2350 drm_printf(p, "PM ISR=0x%08x IIR=0x%08x\n",
2351 pm_isr, pm_iir);
2352 drm_printf(p, "pm_intrmsk_mbz: 0x%08x\n",
2353 rps->pm_intrmsk_mbz);
2354 drm_printf(p, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
2355 drm_printf(p, "Render p-state ratio: %d\n",
2356 (gt_perf_status & (GRAPHICS_VER(i915) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
2357 drm_printf(p, "Render p-state VID: %d\n",
2358 gt_perf_status & 0xff);
2359 drm_printf(p, "Render p-state limit: %d\n",
2360 rp_state_limits & 0xff);
2361 drm_printf(p, "RPSTAT1: 0x%08x\n", rpstat);
2362 drm_printf(p, "RPMODECTL: 0x%08x\n", rpmodectl);
2363 drm_printf(p, "RPINCLIMIT: 0x%08x\n", rpinclimit);
2364 drm_printf(p, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
2365 drm_printf(p, "RPNSWREQ: %dMHz\n", reqf);
2366 drm_printf(p, "CAGF: %dMHz\n", cagf);
2367 drm_printf(p, "RP CUR UP EI: %d (%lldns)\n",
2368 rpcurupei,
2369 intel_gt_pm_interval_to_ns(gt, rpcurupei));
2370 drm_printf(p, "RP CUR UP: %d (%lldns)\n",
2371 rpcurup, intel_gt_pm_interval_to_ns(gt, rpcurup));
2372 drm_printf(p, "RP PREV UP: %d (%lldns)\n",
2373 rpprevup, intel_gt_pm_interval_to_ns(gt, rpprevup));
2374 drm_printf(p, "Up threshold: %d%%\n",
2375 rps->power.up_threshold);
2376 drm_printf(p, "RP UP EI: %d (%lldns)\n",
2377 rpupei, intel_gt_pm_interval_to_ns(gt, rpupei));
2378 drm_printf(p, "RP UP THRESHOLD: %d (%lldns)\n",
2379 rpupt, intel_gt_pm_interval_to_ns(gt, rpupt));
2380
2381 drm_printf(p, "RP CUR DOWN EI: %d (%lldns)\n",
2382 rpcurdownei,
2383 intel_gt_pm_interval_to_ns(gt, rpcurdownei));
2384 drm_printf(p, "RP CUR DOWN: %d (%lldns)\n",
2385 rpcurdown,
2386 intel_gt_pm_interval_to_ns(gt, rpcurdown));
2387 drm_printf(p, "RP PREV DOWN: %d (%lldns)\n",
2388 rpprevdown,
2389 intel_gt_pm_interval_to_ns(gt, rpprevdown));
2390 drm_printf(p, "Down threshold: %d%%\n",
2391 rps->power.down_threshold);
2392 drm_printf(p, "RP DOWN EI: %d (%lldns)\n",
2393 rpdownei, intel_gt_pm_interval_to_ns(gt, rpdownei));
2394 drm_printf(p, "RP DOWN THRESHOLD: %d (%lldns)\n",
2395 rpdownt, intel_gt_pm_interval_to_ns(gt, rpdownt));
2396
2397 drm_printf(p, "Lowest (RPN) frequency: %dMHz\n",
2398 intel_gpu_freq(rps, caps.min_freq));
2399 drm_printf(p, "Nominal (RP1) frequency: %dMHz\n",
2400 intel_gpu_freq(rps, caps.rp1_freq));
2401 drm_printf(p, "Max non-overclocked (RP0) frequency: %dMHz\n",
2402 intel_gpu_freq(rps, caps.rp0_freq));
2403 drm_printf(p, "Max overclocked frequency: %dMHz\n",
2404 intel_gpu_freq(rps, rps->max_freq));
2405
2406 drm_printf(p, "Current freq: %d MHz\n",
2407 intel_gpu_freq(rps, rps->cur_freq));
2408 drm_printf(p, "Actual freq: %d MHz\n", cagf);
2409 drm_printf(p, "Idle freq: %d MHz\n",
2410 intel_gpu_freq(rps, rps->idle_freq));
2411 drm_printf(p, "Min freq: %d MHz\n",
2412 intel_gpu_freq(rps, rps->min_freq));
2413 drm_printf(p, "Boost freq: %d MHz\n",
2414 intel_gpu_freq(rps, rps->boost_freq));
2415 drm_printf(p, "Max freq: %d MHz\n",
2416 intel_gpu_freq(rps, rps->max_freq));
2417 drm_printf(p,
2418 "efficient (RPe) frequency: %d MHz\n",
2419 intel_gpu_freq(rps, rps->efficient_freq));
2420 }
2421
slpc_frequency_dump(struct intel_rps * rps,struct drm_printer * p)2422 static void slpc_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2423 {
2424 struct intel_gt *gt = rps_to_gt(rps);
2425 struct intel_uncore *uncore = gt->uncore;
2426 struct intel_rps_freq_caps caps;
2427 u32 pm_mask;
2428
2429 gen6_rps_get_freq_caps(rps, &caps);
2430 pm_mask = intel_uncore_read(uncore, GEN6_PMINTRMSK);
2431
2432 drm_printf(p, "PM MASK=0x%08x\n", pm_mask);
2433 drm_printf(p, "pm_intrmsk_mbz: 0x%08x\n",
2434 rps->pm_intrmsk_mbz);
2435 drm_printf(p, "RPSTAT1: 0x%08x\n", intel_rps_read_rpstat(rps));
2436 drm_printf(p, "RPNSWREQ: %dMHz\n", intel_rps_get_requested_frequency(rps));
2437 drm_printf(p, "Lowest (RPN) frequency: %dMHz\n",
2438 intel_gpu_freq(rps, caps.min_freq));
2439 drm_printf(p, "Nominal (RP1) frequency: %dMHz\n",
2440 intel_gpu_freq(rps, caps.rp1_freq));
2441 drm_printf(p, "Max non-overclocked (RP0) frequency: %dMHz\n",
2442 intel_gpu_freq(rps, caps.rp0_freq));
2443 drm_printf(p, "Current freq: %d MHz\n",
2444 intel_rps_get_requested_frequency(rps));
2445 drm_printf(p, "Actual freq: %d MHz\n",
2446 intel_rps_read_actual_frequency(rps));
2447 drm_printf(p, "Min freq: %d MHz\n",
2448 intel_rps_get_min_frequency(rps));
2449 drm_printf(p, "Boost freq: %d MHz\n",
2450 intel_rps_get_boost_frequency(rps));
2451 drm_printf(p, "Max freq: %d MHz\n",
2452 intel_rps_get_max_frequency(rps));
2453 drm_printf(p,
2454 "efficient (RPe) frequency: %d MHz\n",
2455 intel_gpu_freq(rps, caps.rp1_freq));
2456 }
2457
gen6_rps_frequency_dump(struct intel_rps * rps,struct drm_printer * p)2458 void gen6_rps_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2459 {
2460 if (rps_uses_slpc(rps))
2461 return slpc_frequency_dump(rps, p);
2462 else
2463 return rps_frequency_dump(rps, p);
2464 }
2465
set_max_freq(struct intel_rps * rps,u32 val)2466 static int set_max_freq(struct intel_rps *rps, u32 val)
2467 {
2468 struct drm_i915_private *i915 = rps_to_i915(rps);
2469 int ret = 0;
2470
2471 mutex_lock(&rps->lock);
2472
2473 val = intel_freq_opcode(rps, val);
2474 if (val < rps->min_freq ||
2475 val > rps->max_freq ||
2476 val < rps->min_freq_softlimit) {
2477 ret = -EINVAL;
2478 goto unlock;
2479 }
2480
2481 if (val > rps->rp0_freq)
2482 drm_dbg(&i915->drm, "User requested overclocking to %d\n",
2483 intel_gpu_freq(rps, val));
2484
2485 rps->max_freq_softlimit = val;
2486
2487 val = clamp_t(int, rps->cur_freq,
2488 rps->min_freq_softlimit,
2489 rps->max_freq_softlimit);
2490
2491 /*
2492 * We still need *_set_rps to process the new max_delay and
2493 * update the interrupt limits and PMINTRMSK even though
2494 * frequency request may be unchanged.
2495 */
2496 intel_rps_set(rps, val);
2497
2498 unlock:
2499 mutex_unlock(&rps->lock);
2500
2501 return ret;
2502 }
2503
intel_rps_set_max_frequency(struct intel_rps * rps,u32 val)2504 int intel_rps_set_max_frequency(struct intel_rps *rps, u32 val)
2505 {
2506 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2507
2508 if (rps_uses_slpc(rps))
2509 return intel_guc_slpc_set_max_freq(slpc, val);
2510 else
2511 return set_max_freq(rps, val);
2512 }
2513
intel_rps_get_min_frequency(struct intel_rps * rps)2514 u32 intel_rps_get_min_frequency(struct intel_rps *rps)
2515 {
2516 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2517
2518 if (rps_uses_slpc(rps))
2519 return slpc->min_freq_softlimit;
2520 else
2521 return intel_gpu_freq(rps, rps->min_freq_softlimit);
2522 }
2523
2524 /**
2525 * intel_rps_get_min_raw_freq - returns the min frequency in some raw format.
2526 * @rps: the intel_rps structure
2527 *
2528 * Returns the min frequency in a raw format. In newer platforms raw is in
2529 * units of 50 MHz.
2530 */
intel_rps_get_min_raw_freq(struct intel_rps * rps)2531 u32 intel_rps_get_min_raw_freq(struct intel_rps *rps)
2532 {
2533 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2534 u32 freq;
2535
2536 if (rps_uses_slpc(rps)) {
2537 return DIV_ROUND_CLOSEST(slpc->min_freq,
2538 GT_FREQUENCY_MULTIPLIER);
2539 } else {
2540 freq = rps->min_freq;
2541 if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
2542 /* Convert GT frequency to 50 MHz units */
2543 freq /= GEN9_FREQ_SCALER;
2544 }
2545 return freq;
2546 }
2547 }
2548
set_min_freq(struct intel_rps * rps,u32 val)2549 static int set_min_freq(struct intel_rps *rps, u32 val)
2550 {
2551 int ret = 0;
2552
2553 mutex_lock(&rps->lock);
2554
2555 val = intel_freq_opcode(rps, val);
2556 if (val < rps->min_freq ||
2557 val > rps->max_freq ||
2558 val > rps->max_freq_softlimit) {
2559 ret = -EINVAL;
2560 goto unlock;
2561 }
2562
2563 rps->min_freq_softlimit = val;
2564
2565 val = clamp_t(int, rps->cur_freq,
2566 rps->min_freq_softlimit,
2567 rps->max_freq_softlimit);
2568
2569 /*
2570 * We still need *_set_rps to process the new min_delay and
2571 * update the interrupt limits and PMINTRMSK even though
2572 * frequency request may be unchanged.
2573 */
2574 intel_rps_set(rps, val);
2575
2576 unlock:
2577 mutex_unlock(&rps->lock);
2578
2579 return ret;
2580 }
2581
intel_rps_set_min_frequency(struct intel_rps * rps,u32 val)2582 int intel_rps_set_min_frequency(struct intel_rps *rps, u32 val)
2583 {
2584 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2585
2586 if (rps_uses_slpc(rps))
2587 return intel_guc_slpc_set_min_freq(slpc, val);
2588 else
2589 return set_min_freq(rps, val);
2590 }
2591
intel_rps_get_up_threshold(struct intel_rps * rps)2592 u8 intel_rps_get_up_threshold(struct intel_rps *rps)
2593 {
2594 return rps->power.up_threshold;
2595 }
2596
rps_set_threshold(struct intel_rps * rps,u8 * threshold,u8 val)2597 static int rps_set_threshold(struct intel_rps *rps, u8 *threshold, u8 val)
2598 {
2599 int ret;
2600
2601 if (val > 100)
2602 return -EINVAL;
2603
2604 ret = mutex_lock_interruptible(&rps->lock);
2605 if (ret)
2606 return ret;
2607
2608 if (*threshold == val)
2609 goto out_unlock;
2610
2611 *threshold = val;
2612
2613 /* Force reset. */
2614 rps->last_freq = -1;
2615 mutex_lock(&rps->power.mutex);
2616 rps->power.mode = -1;
2617 mutex_unlock(&rps->power.mutex);
2618
2619 intel_rps_set(rps, clamp(rps->cur_freq,
2620 rps->min_freq_softlimit,
2621 rps->max_freq_softlimit));
2622
2623 out_unlock:
2624 mutex_unlock(&rps->lock);
2625
2626 return ret;
2627 }
2628
intel_rps_set_up_threshold(struct intel_rps * rps,u8 threshold)2629 int intel_rps_set_up_threshold(struct intel_rps *rps, u8 threshold)
2630 {
2631 return rps_set_threshold(rps, &rps->power.up_threshold, threshold);
2632 }
2633
intel_rps_get_down_threshold(struct intel_rps * rps)2634 u8 intel_rps_get_down_threshold(struct intel_rps *rps)
2635 {
2636 return rps->power.down_threshold;
2637 }
2638
intel_rps_set_down_threshold(struct intel_rps * rps,u8 threshold)2639 int intel_rps_set_down_threshold(struct intel_rps *rps, u8 threshold)
2640 {
2641 return rps_set_threshold(rps, &rps->power.down_threshold, threshold);
2642 }
2643
intel_rps_set_manual(struct intel_rps * rps,bool enable)2644 static void intel_rps_set_manual(struct intel_rps *rps, bool enable)
2645 {
2646 struct intel_uncore *uncore = rps_to_uncore(rps);
2647 u32 state = enable ? GEN9_RPSWCTL_ENABLE : GEN9_RPSWCTL_DISABLE;
2648
2649 /* Allow punit to process software requests */
2650 intel_uncore_write(uncore, GEN6_RP_CONTROL, state);
2651 }
2652
intel_rps_raise_unslice(struct intel_rps * rps)2653 void intel_rps_raise_unslice(struct intel_rps *rps)
2654 {
2655 struct intel_uncore *uncore = rps_to_uncore(rps);
2656
2657 mutex_lock(&rps->lock);
2658
2659 if (rps_uses_slpc(rps)) {
2660 /* RP limits have not been initialized yet for SLPC path */
2661 struct intel_rps_freq_caps caps;
2662
2663 gen6_rps_get_freq_caps(rps, &caps);
2664
2665 intel_rps_set_manual(rps, true);
2666 intel_uncore_write(uncore, GEN6_RPNSWREQ,
2667 ((caps.rp0_freq <<
2668 GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2669 GEN9_IGNORE_SLICE_RATIO));
2670 intel_rps_set_manual(rps, false);
2671 } else {
2672 intel_rps_set(rps, rps->rp0_freq);
2673 }
2674
2675 mutex_unlock(&rps->lock);
2676 }
2677
intel_rps_lower_unslice(struct intel_rps * rps)2678 void intel_rps_lower_unslice(struct intel_rps *rps)
2679 {
2680 struct intel_uncore *uncore = rps_to_uncore(rps);
2681
2682 mutex_lock(&rps->lock);
2683
2684 if (rps_uses_slpc(rps)) {
2685 /* RP limits have not been initialized yet for SLPC path */
2686 struct intel_rps_freq_caps caps;
2687
2688 gen6_rps_get_freq_caps(rps, &caps);
2689
2690 intel_rps_set_manual(rps, true);
2691 intel_uncore_write(uncore, GEN6_RPNSWREQ,
2692 ((caps.min_freq <<
2693 GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2694 GEN9_IGNORE_SLICE_RATIO));
2695 intel_rps_set_manual(rps, false);
2696 } else {
2697 intel_rps_set(rps, rps->min_freq);
2698 }
2699
2700 mutex_unlock(&rps->lock);
2701 }
2702
rps_read_mmio(struct intel_rps * rps,i915_reg_t reg32)2703 static u32 rps_read_mmio(struct intel_rps *rps, i915_reg_t reg32)
2704 {
2705 struct intel_gt *gt = rps_to_gt(rps);
2706 intel_wakeref_t wakeref;
2707 u32 val;
2708
2709 with_intel_runtime_pm(gt->uncore->rpm, wakeref)
2710 val = intel_uncore_read(gt->uncore, reg32);
2711
2712 return val;
2713 }
2714
rps_read_mask_mmio(struct intel_rps * rps,i915_reg_t reg32,u32 mask)2715 bool rps_read_mask_mmio(struct intel_rps *rps,
2716 i915_reg_t reg32, u32 mask)
2717 {
2718 return rps_read_mmio(rps, reg32) & mask;
2719 }
2720
2721 /* External interface for intel_ips.ko */
2722
2723 static struct drm_i915_private __rcu *ips_mchdev;
2724
2725 /*
2726 * Tells the intel_ips driver that the i915 driver is now loaded, if
2727 * IPS got loaded first.
2728 *
2729 * This awkward dance is so that neither module has to depend on the
2730 * other in order for IPS to do the appropriate communication of
2731 * GPU turbo limits to i915.
2732 */
2733 static void
ips_ping_for_i915_load(void)2734 ips_ping_for_i915_load(void)
2735 {
2736 void (*link)(void);
2737
2738 link = symbol_get(ips_link_to_i915_driver);
2739 if (link) {
2740 link();
2741 symbol_put(ips_link_to_i915_driver);
2742 }
2743 }
2744
intel_rps_driver_register(struct intel_rps * rps)2745 void intel_rps_driver_register(struct intel_rps *rps)
2746 {
2747 struct intel_gt *gt = rps_to_gt(rps);
2748
2749 /*
2750 * We only register the i915 ips part with intel-ips once everything is
2751 * set up, to avoid intel-ips sneaking in and reading bogus values.
2752 */
2753 if (GRAPHICS_VER(gt->i915) == 5) {
2754 GEM_BUG_ON(ips_mchdev);
2755 rcu_assign_pointer(ips_mchdev, gt->i915);
2756 ips_ping_for_i915_load();
2757 }
2758 }
2759
intel_rps_driver_unregister(struct intel_rps * rps)2760 void intel_rps_driver_unregister(struct intel_rps *rps)
2761 {
2762 if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
2763 rcu_assign_pointer(ips_mchdev, NULL);
2764 }
2765
mchdev_get(void)2766 static struct drm_i915_private *mchdev_get(void)
2767 {
2768 struct drm_i915_private *i915;
2769
2770 rcu_read_lock();
2771 i915 = rcu_dereference(ips_mchdev);
2772 if (i915 && !kref_get_unless_zero(&i915->drm.ref))
2773 i915 = NULL;
2774 rcu_read_unlock();
2775
2776 return i915;
2777 }
2778
2779 /**
2780 * i915_read_mch_val - return value for IPS use
2781 *
2782 * Calculate and return a value for the IPS driver to use when deciding whether
2783 * we have thermal and power headroom to increase CPU or GPU power budget.
2784 */
i915_read_mch_val(void)2785 unsigned long i915_read_mch_val(void)
2786 {
2787 struct drm_i915_private *i915;
2788 unsigned long chipset_val = 0;
2789 unsigned long graphics_val = 0;
2790 intel_wakeref_t wakeref;
2791
2792 i915 = mchdev_get();
2793 if (!i915)
2794 return 0;
2795
2796 with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2797 struct intel_ips *ips = &to_gt(i915)->rps.ips;
2798
2799 spin_lock_irq(&mchdev_lock);
2800 chipset_val = __ips_chipset_val(ips);
2801 graphics_val = __ips_gfx_val(ips);
2802 spin_unlock_irq(&mchdev_lock);
2803 }
2804
2805 drm_dev_put(&i915->drm);
2806 return chipset_val + graphics_val;
2807 }
2808 EXPORT_SYMBOL_GPL(i915_read_mch_val);
2809
2810 /**
2811 * i915_gpu_raise - raise GPU frequency limit
2812 *
2813 * Raise the limit; IPS indicates we have thermal headroom.
2814 */
i915_gpu_raise(void)2815 bool i915_gpu_raise(void)
2816 {
2817 struct drm_i915_private *i915;
2818 struct intel_rps *rps;
2819
2820 i915 = mchdev_get();
2821 if (!i915)
2822 return false;
2823
2824 rps = &to_gt(i915)->rps;
2825
2826 spin_lock_irq(&mchdev_lock);
2827 if (rps->max_freq_softlimit < rps->max_freq)
2828 rps->max_freq_softlimit++;
2829 spin_unlock_irq(&mchdev_lock);
2830
2831 drm_dev_put(&i915->drm);
2832 return true;
2833 }
2834 EXPORT_SYMBOL_GPL(i915_gpu_raise);
2835
2836 /**
2837 * i915_gpu_lower - lower GPU frequency limit
2838 *
2839 * IPS indicates we're close to a thermal limit, so throttle back the GPU
2840 * frequency maximum.
2841 */
i915_gpu_lower(void)2842 bool i915_gpu_lower(void)
2843 {
2844 struct drm_i915_private *i915;
2845 struct intel_rps *rps;
2846
2847 i915 = mchdev_get();
2848 if (!i915)
2849 return false;
2850
2851 rps = &to_gt(i915)->rps;
2852
2853 spin_lock_irq(&mchdev_lock);
2854 if (rps->max_freq_softlimit > rps->min_freq)
2855 rps->max_freq_softlimit--;
2856 spin_unlock_irq(&mchdev_lock);
2857
2858 drm_dev_put(&i915->drm);
2859 return true;
2860 }
2861 EXPORT_SYMBOL_GPL(i915_gpu_lower);
2862
2863 /**
2864 * i915_gpu_busy - indicate GPU business to IPS
2865 *
2866 * Tell the IPS driver whether or not the GPU is busy.
2867 */
i915_gpu_busy(void)2868 bool i915_gpu_busy(void)
2869 {
2870 struct drm_i915_private *i915;
2871 bool ret;
2872
2873 i915 = mchdev_get();
2874 if (!i915)
2875 return false;
2876
2877 ret = to_gt(i915)->awake;
2878
2879 drm_dev_put(&i915->drm);
2880 return ret;
2881 }
2882 EXPORT_SYMBOL_GPL(i915_gpu_busy);
2883
2884 /**
2885 * i915_gpu_turbo_disable - disable graphics turbo
2886 *
2887 * Disable graphics turbo by resetting the max frequency and setting the
2888 * current frequency to the default.
2889 */
i915_gpu_turbo_disable(void)2890 bool i915_gpu_turbo_disable(void)
2891 {
2892 struct drm_i915_private *i915;
2893 struct intel_rps *rps;
2894 bool ret;
2895
2896 i915 = mchdev_get();
2897 if (!i915)
2898 return false;
2899
2900 rps = &to_gt(i915)->rps;
2901
2902 spin_lock_irq(&mchdev_lock);
2903 rps->max_freq_softlimit = rps->min_freq;
2904 ret = !__gen5_rps_set(&to_gt(i915)->rps, rps->min_freq);
2905 spin_unlock_irq(&mchdev_lock);
2906
2907 drm_dev_put(&i915->drm);
2908 return ret;
2909 }
2910 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
2911
2912 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2913 #include "selftest_rps.c"
2914 #include "selftest_slpc.c"
2915 #endif
2916