1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/string_helpers.h> 8 9 #include "i915_drv.h" 10 #include "i915_reg.h" 11 #include "intel_atomic.h" 12 #include "intel_crtc.h" 13 #include "intel_cx0_phy.h" 14 #include "intel_de.h" 15 #include "intel_display.h" 16 #include "intel_display_types.h" 17 #include "intel_dpio_phy.h" 18 #include "intel_dpll.h" 19 #include "intel_lvds.h" 20 #include "intel_lvds_regs.h" 21 #include "intel_panel.h" 22 #include "intel_pps.h" 23 #include "intel_snps_phy.h" 24 #include "vlv_dpio_phy_regs.h" 25 #include "vlv_sideband.h" 26 27 struct intel_dpll_funcs { 28 int (*crtc_compute_clock)(struct intel_atomic_state *state, 29 struct intel_crtc *crtc); 30 int (*crtc_get_shared_dpll)(struct intel_atomic_state *state, 31 struct intel_crtc *crtc); 32 }; 33 34 struct intel_limit { 35 struct { 36 int min, max; 37 } dot, vco, n, m, m1, m2, p, p1; 38 39 struct { 40 int dot_limit; 41 int p2_slow, p2_fast; 42 } p2; 43 }; 44 static const struct intel_limit intel_limits_i8xx_dac = { 45 .dot = { .min = 25000, .max = 350000 }, 46 .vco = { .min = 908000, .max = 1512000 }, 47 .n = { .min = 2, .max = 16 }, 48 .m = { .min = 96, .max = 140 }, 49 .m1 = { .min = 18, .max = 26 }, 50 .m2 = { .min = 6, .max = 16 }, 51 .p = { .min = 4, .max = 128 }, 52 .p1 = { .min = 2, .max = 33 }, 53 .p2 = { .dot_limit = 165000, 54 .p2_slow = 4, .p2_fast = 2 }, 55 }; 56 57 static const struct intel_limit intel_limits_i8xx_dvo = { 58 .dot = { .min = 25000, .max = 350000 }, 59 .vco = { .min = 908000, .max = 1512000 }, 60 .n = { .min = 2, .max = 16 }, 61 .m = { .min = 96, .max = 140 }, 62 .m1 = { .min = 18, .max = 26 }, 63 .m2 = { .min = 6, .max = 16 }, 64 .p = { .min = 4, .max = 128 }, 65 .p1 = { .min = 2, .max = 33 }, 66 .p2 = { .dot_limit = 165000, 67 .p2_slow = 4, .p2_fast = 4 }, 68 }; 69 70 static const struct intel_limit intel_limits_i8xx_lvds = { 71 .dot = { .min = 25000, .max = 350000 }, 72 .vco = { .min = 908000, .max = 1512000 }, 73 .n = { .min = 2, .max = 16 }, 74 .m = { .min = 96, .max = 140 }, 75 .m1 = { .min = 18, .max = 26 }, 76 .m2 = { .min = 6, .max = 16 }, 77 .p = { .min = 4, .max = 128 }, 78 .p1 = { .min = 1, .max = 6 }, 79 .p2 = { .dot_limit = 165000, 80 .p2_slow = 14, .p2_fast = 7 }, 81 }; 82 83 static const struct intel_limit intel_limits_i9xx_sdvo = { 84 .dot = { .min = 20000, .max = 400000 }, 85 .vco = { .min = 1400000, .max = 2800000 }, 86 .n = { .min = 1, .max = 6 }, 87 .m = { .min = 70, .max = 120 }, 88 .m1 = { .min = 8, .max = 18 }, 89 .m2 = { .min = 3, .max = 7 }, 90 .p = { .min = 5, .max = 80 }, 91 .p1 = { .min = 1, .max = 8 }, 92 .p2 = { .dot_limit = 200000, 93 .p2_slow = 10, .p2_fast = 5 }, 94 }; 95 96 static const struct intel_limit intel_limits_i9xx_lvds = { 97 .dot = { .min = 20000, .max = 400000 }, 98 .vco = { .min = 1400000, .max = 2800000 }, 99 .n = { .min = 1, .max = 6 }, 100 .m = { .min = 70, .max = 120 }, 101 .m1 = { .min = 8, .max = 18 }, 102 .m2 = { .min = 3, .max = 7 }, 103 .p = { .min = 7, .max = 98 }, 104 .p1 = { .min = 1, .max = 8 }, 105 .p2 = { .dot_limit = 112000, 106 .p2_slow = 14, .p2_fast = 7 }, 107 }; 108 109 110 static const struct intel_limit intel_limits_g4x_sdvo = { 111 .dot = { .min = 25000, .max = 270000 }, 112 .vco = { .min = 1750000, .max = 3500000}, 113 .n = { .min = 1, .max = 4 }, 114 .m = { .min = 104, .max = 138 }, 115 .m1 = { .min = 17, .max = 23 }, 116 .m2 = { .min = 5, .max = 11 }, 117 .p = { .min = 10, .max = 30 }, 118 .p1 = { .min = 1, .max = 3}, 119 .p2 = { .dot_limit = 270000, 120 .p2_slow = 10, 121 .p2_fast = 10 122 }, 123 }; 124 125 static const struct intel_limit intel_limits_g4x_hdmi = { 126 .dot = { .min = 22000, .max = 400000 }, 127 .vco = { .min = 1750000, .max = 3500000}, 128 .n = { .min = 1, .max = 4 }, 129 .m = { .min = 104, .max = 138 }, 130 .m1 = { .min = 16, .max = 23 }, 131 .m2 = { .min = 5, .max = 11 }, 132 .p = { .min = 5, .max = 80 }, 133 .p1 = { .min = 1, .max = 8}, 134 .p2 = { .dot_limit = 165000, 135 .p2_slow = 10, .p2_fast = 5 }, 136 }; 137 138 static const struct intel_limit intel_limits_g4x_single_channel_lvds = { 139 .dot = { .min = 20000, .max = 115000 }, 140 .vco = { .min = 1750000, .max = 3500000 }, 141 .n = { .min = 1, .max = 3 }, 142 .m = { .min = 104, .max = 138 }, 143 .m1 = { .min = 17, .max = 23 }, 144 .m2 = { .min = 5, .max = 11 }, 145 .p = { .min = 28, .max = 112 }, 146 .p1 = { .min = 2, .max = 8 }, 147 .p2 = { .dot_limit = 0, 148 .p2_slow = 14, .p2_fast = 14 149 }, 150 }; 151 152 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = { 153 .dot = { .min = 80000, .max = 224000 }, 154 .vco = { .min = 1750000, .max = 3500000 }, 155 .n = { .min = 1, .max = 3 }, 156 .m = { .min = 104, .max = 138 }, 157 .m1 = { .min = 17, .max = 23 }, 158 .m2 = { .min = 5, .max = 11 }, 159 .p = { .min = 14, .max = 42 }, 160 .p1 = { .min = 2, .max = 6 }, 161 .p2 = { .dot_limit = 0, 162 .p2_slow = 7, .p2_fast = 7 163 }, 164 }; 165 166 static const struct intel_limit pnv_limits_sdvo = { 167 .dot = { .min = 20000, .max = 400000}, 168 .vco = { .min = 1700000, .max = 3500000 }, 169 /* Pineview's Ncounter is a ring counter */ 170 .n = { .min = 3, .max = 6 }, 171 .m = { .min = 2, .max = 256 }, 172 /* Pineview only has one combined m divider, which we treat as m2. */ 173 .m1 = { .min = 0, .max = 0 }, 174 .m2 = { .min = 0, .max = 254 }, 175 .p = { .min = 5, .max = 80 }, 176 .p1 = { .min = 1, .max = 8 }, 177 .p2 = { .dot_limit = 200000, 178 .p2_slow = 10, .p2_fast = 5 }, 179 }; 180 181 static const struct intel_limit pnv_limits_lvds = { 182 .dot = { .min = 20000, .max = 400000 }, 183 .vco = { .min = 1700000, .max = 3500000 }, 184 .n = { .min = 3, .max = 6 }, 185 .m = { .min = 2, .max = 256 }, 186 .m1 = { .min = 0, .max = 0 }, 187 .m2 = { .min = 0, .max = 254 }, 188 .p = { .min = 7, .max = 112 }, 189 .p1 = { .min = 1, .max = 8 }, 190 .p2 = { .dot_limit = 112000, 191 .p2_slow = 14, .p2_fast = 14 }, 192 }; 193 194 /* Ironlake / Sandybridge 195 * 196 * We calculate clock using (register_value + 2) for N/M1/M2, so here 197 * the range value for them is (actual_value - 2). 198 */ 199 static const struct intel_limit ilk_limits_dac = { 200 .dot = { .min = 25000, .max = 350000 }, 201 .vco = { .min = 1760000, .max = 3510000 }, 202 .n = { .min = 1, .max = 5 }, 203 .m = { .min = 79, .max = 127 }, 204 .m1 = { .min = 12, .max = 22 }, 205 .m2 = { .min = 5, .max = 9 }, 206 .p = { .min = 5, .max = 80 }, 207 .p1 = { .min = 1, .max = 8 }, 208 .p2 = { .dot_limit = 225000, 209 .p2_slow = 10, .p2_fast = 5 }, 210 }; 211 212 static const struct intel_limit ilk_limits_single_lvds = { 213 .dot = { .min = 25000, .max = 350000 }, 214 .vco = { .min = 1760000, .max = 3510000 }, 215 .n = { .min = 1, .max = 3 }, 216 .m = { .min = 79, .max = 118 }, 217 .m1 = { .min = 12, .max = 22 }, 218 .m2 = { .min = 5, .max = 9 }, 219 .p = { .min = 28, .max = 112 }, 220 .p1 = { .min = 2, .max = 8 }, 221 .p2 = { .dot_limit = 225000, 222 .p2_slow = 14, .p2_fast = 14 }, 223 }; 224 225 static const struct intel_limit ilk_limits_dual_lvds = { 226 .dot = { .min = 25000, .max = 350000 }, 227 .vco = { .min = 1760000, .max = 3510000 }, 228 .n = { .min = 1, .max = 3 }, 229 .m = { .min = 79, .max = 127 }, 230 .m1 = { .min = 12, .max = 22 }, 231 .m2 = { .min = 5, .max = 9 }, 232 .p = { .min = 14, .max = 56 }, 233 .p1 = { .min = 2, .max = 8 }, 234 .p2 = { .dot_limit = 225000, 235 .p2_slow = 7, .p2_fast = 7 }, 236 }; 237 238 /* LVDS 100mhz refclk limits. */ 239 static const struct intel_limit ilk_limits_single_lvds_100m = { 240 .dot = { .min = 25000, .max = 350000 }, 241 .vco = { .min = 1760000, .max = 3510000 }, 242 .n = { .min = 1, .max = 2 }, 243 .m = { .min = 79, .max = 126 }, 244 .m1 = { .min = 12, .max = 22 }, 245 .m2 = { .min = 5, .max = 9 }, 246 .p = { .min = 28, .max = 112 }, 247 .p1 = { .min = 2, .max = 8 }, 248 .p2 = { .dot_limit = 225000, 249 .p2_slow = 14, .p2_fast = 14 }, 250 }; 251 252 static const struct intel_limit ilk_limits_dual_lvds_100m = { 253 .dot = { .min = 25000, .max = 350000 }, 254 .vco = { .min = 1760000, .max = 3510000 }, 255 .n = { .min = 1, .max = 3 }, 256 .m = { .min = 79, .max = 126 }, 257 .m1 = { .min = 12, .max = 22 }, 258 .m2 = { .min = 5, .max = 9 }, 259 .p = { .min = 14, .max = 42 }, 260 .p1 = { .min = 2, .max = 6 }, 261 .p2 = { .dot_limit = 225000, 262 .p2_slow = 7, .p2_fast = 7 }, 263 }; 264 265 static const struct intel_limit intel_limits_vlv = { 266 /* 267 * These are based on the data rate limits (measured in fast clocks) 268 * since those are the strictest limits we have. The fast 269 * clock and actual rate limits are more relaxed, so checking 270 * them would make no difference. 271 */ 272 .dot = { .min = 25000, .max = 270000 }, 273 .vco = { .min = 4000000, .max = 6000000 }, 274 .n = { .min = 1, .max = 7 }, 275 .m1 = { .min = 2, .max = 3 }, 276 .m2 = { .min = 11, .max = 156 }, 277 .p1 = { .min = 2, .max = 3 }, 278 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */ 279 }; 280 281 static const struct intel_limit intel_limits_chv = { 282 /* 283 * These are based on the data rate limits (measured in fast clocks) 284 * since those are the strictest limits we have. The fast 285 * clock and actual rate limits are more relaxed, so checking 286 * them would make no difference. 287 */ 288 .dot = { .min = 25000, .max = 540000 }, 289 .vco = { .min = 4800000, .max = 6480000 }, 290 .n = { .min = 1, .max = 1 }, 291 .m1 = { .min = 2, .max = 2 }, 292 .m2 = { .min = 24 << 22, .max = 175 << 22 }, 293 .p1 = { .min = 2, .max = 4 }, 294 .p2 = { .p2_slow = 1, .p2_fast = 14 }, 295 }; 296 297 static const struct intel_limit intel_limits_bxt = { 298 .dot = { .min = 25000, .max = 594000 }, 299 .vco = { .min = 4800000, .max = 6700000 }, 300 .n = { .min = 1, .max = 1 }, 301 .m1 = { .min = 2, .max = 2 }, 302 /* FIXME: find real m2 limits */ 303 .m2 = { .min = 2 << 22, .max = 255 << 22 }, 304 .p1 = { .min = 2, .max = 4 }, 305 .p2 = { .p2_slow = 1, .p2_fast = 20 }, 306 }; 307 308 /* 309 * Platform specific helpers to calculate the port PLL loopback- (clock.m), 310 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast 311 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic. 312 * The helpers' return value is the rate of the clock that is fed to the 313 * display engine's pipe which can be the above fast dot clock rate or a 314 * divided-down version of it. 315 */ 316 /* m1 is reserved as 0 in Pineview, n is a ring counter */ 317 static int pnv_calc_dpll_params(int refclk, struct dpll *clock) 318 { 319 clock->m = clock->m2 + 2; 320 clock->p = clock->p1 * clock->p2; 321 322 clock->vco = clock->n == 0 ? 0 : 323 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 324 clock->dot = clock->p == 0 ? 0 : 325 DIV_ROUND_CLOSEST(clock->vco, clock->p); 326 327 return clock->dot; 328 } 329 330 static u32 i9xx_dpll_compute_m(const struct dpll *dpll) 331 { 332 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2); 333 } 334 335 int i9xx_calc_dpll_params(int refclk, struct dpll *clock) 336 { 337 clock->m = i9xx_dpll_compute_m(clock); 338 clock->p = clock->p1 * clock->p2; 339 340 clock->vco = clock->n + 2 == 0 ? 0 : 341 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2); 342 clock->dot = clock->p == 0 ? 0 : 343 DIV_ROUND_CLOSEST(clock->vco, clock->p); 344 345 return clock->dot; 346 } 347 348 static int vlv_calc_dpll_params(int refclk, struct dpll *clock) 349 { 350 clock->m = clock->m1 * clock->m2; 351 clock->p = clock->p1 * clock->p2 * 5; 352 353 clock->vco = clock->n == 0 ? 0 : 354 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 355 clock->dot = clock->p == 0 ? 0 : 356 DIV_ROUND_CLOSEST(clock->vco, clock->p); 357 358 return clock->dot; 359 } 360 361 int chv_calc_dpll_params(int refclk, struct dpll *clock) 362 { 363 clock->m = clock->m1 * clock->m2; 364 clock->p = clock->p1 * clock->p2 * 5; 365 366 clock->vco = clock->n == 0 ? 0 : 367 DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), clock->n << 22); 368 clock->dot = clock->p == 0 ? 0 : 369 DIV_ROUND_CLOSEST(clock->vco, clock->p); 370 371 return clock->dot; 372 } 373 374 static int i9xx_pll_refclk(const struct intel_crtc_state *crtc_state) 375 { 376 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 377 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 378 379 if ((hw_state->dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) 380 return i915->display.vbt.lvds_ssc_freq; 381 else if (HAS_PCH_SPLIT(i915)) 382 return 120000; 383 else if (DISPLAY_VER(i915) != 2) 384 return 96000; 385 else 386 return 48000; 387 } 388 389 void i9xx_dpll_get_hw_state(struct intel_crtc *crtc, 390 struct intel_dpll_hw_state *dpll_hw_state) 391 { 392 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 393 struct i9xx_dpll_hw_state *hw_state = &dpll_hw_state->i9xx; 394 395 if (DISPLAY_VER(dev_priv) >= 4) { 396 u32 tmp; 397 398 /* No way to read it out on pipes B and C */ 399 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A) 400 tmp = dev_priv->display.state.chv_dpll_md[crtc->pipe]; 401 else 402 tmp = intel_de_read(dev_priv, 403 DPLL_MD(dev_priv, crtc->pipe)); 404 405 hw_state->dpll_md = tmp; 406 } 407 408 hw_state->dpll = intel_de_read(dev_priv, DPLL(dev_priv, crtc->pipe)); 409 410 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) { 411 hw_state->fp0 = intel_de_read(dev_priv, FP0(crtc->pipe)); 412 hw_state->fp1 = intel_de_read(dev_priv, FP1(crtc->pipe)); 413 } else { 414 /* Mask out read-only status bits. */ 415 hw_state->dpll &= ~(DPLL_LOCK_VLV | 416 DPLL_PORTC_READY_MASK | 417 DPLL_PORTB_READY_MASK); 418 } 419 } 420 421 /* Returns the clock of the currently programmed mode of the given pipe. */ 422 void i9xx_crtc_clock_get(struct intel_crtc_state *crtc_state) 423 { 424 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 425 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 426 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 427 u32 dpll = hw_state->dpll; 428 u32 fp; 429 struct dpll clock; 430 int port_clock; 431 int refclk = i9xx_pll_refclk(crtc_state); 432 433 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 434 fp = hw_state->fp0; 435 else 436 fp = hw_state->fp1; 437 438 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 439 if (IS_PINEVIEW(dev_priv)) { 440 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; 441 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; 442 } else { 443 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 444 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 445 } 446 447 if (DISPLAY_VER(dev_priv) != 2) { 448 if (IS_PINEVIEW(dev_priv)) 449 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> 450 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); 451 else 452 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> 453 DPLL_FPA01_P1_POST_DIV_SHIFT); 454 455 switch (dpll & DPLL_MODE_MASK) { 456 case DPLLB_MODE_DAC_SERIAL: 457 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 458 5 : 10; 459 break; 460 case DPLLB_MODE_LVDS: 461 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 462 7 : 14; 463 break; 464 default: 465 drm_dbg_kms(&dev_priv->drm, 466 "Unknown DPLL mode %08x in programmed " 467 "mode\n", (int)(dpll & DPLL_MODE_MASK)); 468 return; 469 } 470 471 if (IS_PINEVIEW(dev_priv)) 472 port_clock = pnv_calc_dpll_params(refclk, &clock); 473 else 474 port_clock = i9xx_calc_dpll_params(refclk, &clock); 475 } else { 476 enum pipe lvds_pipe; 477 478 if (IS_I85X(dev_priv) && 479 intel_lvds_port_enabled(dev_priv, LVDS, &lvds_pipe) && 480 lvds_pipe == crtc->pipe) { 481 u32 lvds = intel_de_read(dev_priv, LVDS); 482 483 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 484 DPLL_FPA01_P1_POST_DIV_SHIFT); 485 486 if (lvds & LVDS_CLKB_POWER_UP) 487 clock.p2 = 7; 488 else 489 clock.p2 = 14; 490 } else { 491 if (dpll & PLL_P1_DIVIDE_BY_TWO) 492 clock.p1 = 2; 493 else { 494 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 495 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 496 } 497 if (dpll & PLL_P2_DIVIDE_BY_4) 498 clock.p2 = 4; 499 else 500 clock.p2 = 2; 501 } 502 503 port_clock = i9xx_calc_dpll_params(refclk, &clock); 504 } 505 506 /* 507 * This value includes pixel_multiplier. We will use 508 * port_clock to compute adjusted_mode.crtc_clock in the 509 * encoder's get_config() function. 510 */ 511 crtc_state->port_clock = port_clock; 512 } 513 514 void vlv_crtc_clock_get(struct intel_crtc_state *crtc_state) 515 { 516 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 517 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 518 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); 519 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 520 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 521 int refclk = 100000; 522 struct dpll clock; 523 u32 tmp; 524 525 /* In case of DSI, DPLL will not be used */ 526 if ((hw_state->dpll & DPLL_VCO_ENABLE) == 0) 527 return; 528 529 vlv_dpio_get(dev_priv); 530 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW3(ch)); 531 vlv_dpio_put(dev_priv); 532 533 clock.m1 = REG_FIELD_GET(DPIO_M1_DIV_MASK, tmp); 534 clock.m2 = REG_FIELD_GET(DPIO_M2_DIV_MASK, tmp); 535 clock.n = REG_FIELD_GET(DPIO_N_DIV_MASK, tmp); 536 clock.p1 = REG_FIELD_GET(DPIO_P1_DIV_MASK, tmp); 537 clock.p2 = REG_FIELD_GET(DPIO_P2_DIV_MASK, tmp); 538 539 crtc_state->port_clock = vlv_calc_dpll_params(refclk, &clock); 540 } 541 542 void chv_crtc_clock_get(struct intel_crtc_state *crtc_state) 543 { 544 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 545 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 546 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); 547 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 548 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 549 struct dpll clock; 550 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; 551 int refclk = 100000; 552 553 /* In case of DSI, DPLL will not be used */ 554 if ((hw_state->dpll & DPLL_VCO_ENABLE) == 0) 555 return; 556 557 vlv_dpio_get(dev_priv); 558 cmn_dw13 = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW13(ch)); 559 pll_dw0 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW0(ch)); 560 pll_dw1 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW1(ch)); 561 pll_dw2 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW2(ch)); 562 pll_dw3 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(ch)); 563 vlv_dpio_put(dev_priv); 564 565 clock.m1 = REG_FIELD_GET(DPIO_CHV_M1_DIV_MASK, pll_dw1) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; 566 clock.m2 = REG_FIELD_GET(DPIO_CHV_M2_DIV_MASK, pll_dw0) << 22; 567 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) 568 clock.m2 |= REG_FIELD_GET(DPIO_CHV_M2_FRAC_DIV_MASK, pll_dw2); 569 clock.n = REG_FIELD_GET(DPIO_CHV_N_DIV_MASK, pll_dw1); 570 clock.p1 = REG_FIELD_GET(DPIO_CHV_P1_DIV_MASK, cmn_dw13); 571 clock.p2 = REG_FIELD_GET(DPIO_CHV_P2_DIV_MASK, cmn_dw13); 572 573 crtc_state->port_clock = chv_calc_dpll_params(refclk, &clock); 574 } 575 576 /* 577 * Returns whether the given set of divisors are valid for a given refclk with 578 * the given connectors. 579 */ 580 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv, 581 const struct intel_limit *limit, 582 const struct dpll *clock) 583 { 584 if (clock->n < limit->n.min || limit->n.max < clock->n) 585 return false; 586 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) 587 return false; 588 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) 589 return false; 590 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) 591 return false; 592 593 if (!IS_PINEVIEW(dev_priv) && 594 !IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 595 !IS_BROXTON(dev_priv) && !IS_GEMINILAKE(dev_priv)) 596 if (clock->m1 <= clock->m2) 597 return false; 598 599 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 600 !IS_BROXTON(dev_priv) && !IS_GEMINILAKE(dev_priv)) { 601 if (clock->p < limit->p.min || limit->p.max < clock->p) 602 return false; 603 if (clock->m < limit->m.min || limit->m.max < clock->m) 604 return false; 605 } 606 607 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) 608 return false; 609 /* XXX: We may need to be checking "Dot clock" depending on the multiplier, 610 * connector, etc., rather than just a single range. 611 */ 612 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) 613 return false; 614 615 return true; 616 } 617 618 static int 619 i9xx_select_p2_div(const struct intel_limit *limit, 620 const struct intel_crtc_state *crtc_state, 621 int target) 622 { 623 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 624 625 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 626 /* 627 * For LVDS just rely on its current settings for dual-channel. 628 * We haven't figured out how to reliably set up different 629 * single/dual channel state, if we even can. 630 */ 631 if (intel_is_dual_link_lvds(dev_priv)) 632 return limit->p2.p2_fast; 633 else 634 return limit->p2.p2_slow; 635 } else { 636 if (target < limit->p2.dot_limit) 637 return limit->p2.p2_slow; 638 else 639 return limit->p2.p2_fast; 640 } 641 } 642 643 /* 644 * Returns a set of divisors for the desired target clock with the given 645 * refclk, or FALSE. 646 * 647 * Target and reference clocks are specified in kHz. 648 * 649 * If match_clock is provided, then best_clock P divider must match the P 650 * divider from @match_clock used for LVDS downclocking. 651 */ 652 static bool 653 i9xx_find_best_dpll(const struct intel_limit *limit, 654 struct intel_crtc_state *crtc_state, 655 int target, int refclk, 656 const struct dpll *match_clock, 657 struct dpll *best_clock) 658 { 659 struct drm_device *dev = crtc_state->uapi.crtc->dev; 660 struct dpll clock; 661 int err = target; 662 663 memset(best_clock, 0, sizeof(*best_clock)); 664 665 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 666 667 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 668 clock.m1++) { 669 for (clock.m2 = limit->m2.min; 670 clock.m2 <= limit->m2.max; clock.m2++) { 671 if (clock.m2 >= clock.m1) 672 break; 673 for (clock.n = limit->n.min; 674 clock.n <= limit->n.max; clock.n++) { 675 for (clock.p1 = limit->p1.min; 676 clock.p1 <= limit->p1.max; clock.p1++) { 677 int this_err; 678 679 i9xx_calc_dpll_params(refclk, &clock); 680 if (!intel_pll_is_valid(to_i915(dev), 681 limit, 682 &clock)) 683 continue; 684 if (match_clock && 685 clock.p != match_clock->p) 686 continue; 687 688 this_err = abs(clock.dot - target); 689 if (this_err < err) { 690 *best_clock = clock; 691 err = this_err; 692 } 693 } 694 } 695 } 696 } 697 698 return (err != target); 699 } 700 701 /* 702 * Returns a set of divisors for the desired target clock with the given 703 * refclk, or FALSE. 704 * 705 * Target and reference clocks are specified in kHz. 706 * 707 * If match_clock is provided, then best_clock P divider must match the P 708 * divider from @match_clock used for LVDS downclocking. 709 */ 710 static bool 711 pnv_find_best_dpll(const struct intel_limit *limit, 712 struct intel_crtc_state *crtc_state, 713 int target, int refclk, 714 const struct dpll *match_clock, 715 struct dpll *best_clock) 716 { 717 struct drm_device *dev = crtc_state->uapi.crtc->dev; 718 struct dpll clock; 719 int err = target; 720 721 memset(best_clock, 0, sizeof(*best_clock)); 722 723 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 724 725 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 726 clock.m1++) { 727 for (clock.m2 = limit->m2.min; 728 clock.m2 <= limit->m2.max; clock.m2++) { 729 for (clock.n = limit->n.min; 730 clock.n <= limit->n.max; clock.n++) { 731 for (clock.p1 = limit->p1.min; 732 clock.p1 <= limit->p1.max; clock.p1++) { 733 int this_err; 734 735 pnv_calc_dpll_params(refclk, &clock); 736 if (!intel_pll_is_valid(to_i915(dev), 737 limit, 738 &clock)) 739 continue; 740 if (match_clock && 741 clock.p != match_clock->p) 742 continue; 743 744 this_err = abs(clock.dot - target); 745 if (this_err < err) { 746 *best_clock = clock; 747 err = this_err; 748 } 749 } 750 } 751 } 752 } 753 754 return (err != target); 755 } 756 757 /* 758 * Returns a set of divisors for the desired target clock with the given 759 * refclk, or FALSE. 760 * 761 * Target and reference clocks are specified in kHz. 762 * 763 * If match_clock is provided, then best_clock P divider must match the P 764 * divider from @match_clock used for LVDS downclocking. 765 */ 766 static bool 767 g4x_find_best_dpll(const struct intel_limit *limit, 768 struct intel_crtc_state *crtc_state, 769 int target, int refclk, 770 const struct dpll *match_clock, 771 struct dpll *best_clock) 772 { 773 struct drm_device *dev = crtc_state->uapi.crtc->dev; 774 struct dpll clock; 775 int max_n; 776 bool found = false; 777 /* approximately equals target * 0.00585 */ 778 int err_most = (target >> 8) + (target >> 9); 779 780 memset(best_clock, 0, sizeof(*best_clock)); 781 782 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 783 784 max_n = limit->n.max; 785 /* based on hardware requirement, prefer smaller n to precision */ 786 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 787 /* based on hardware requirement, prefer larger m1,m2 */ 788 for (clock.m1 = limit->m1.max; 789 clock.m1 >= limit->m1.min; clock.m1--) { 790 for (clock.m2 = limit->m2.max; 791 clock.m2 >= limit->m2.min; clock.m2--) { 792 for (clock.p1 = limit->p1.max; 793 clock.p1 >= limit->p1.min; clock.p1--) { 794 int this_err; 795 796 i9xx_calc_dpll_params(refclk, &clock); 797 if (!intel_pll_is_valid(to_i915(dev), 798 limit, 799 &clock)) 800 continue; 801 802 this_err = abs(clock.dot - target); 803 if (this_err < err_most) { 804 *best_clock = clock; 805 err_most = this_err; 806 max_n = clock.n; 807 found = true; 808 } 809 } 810 } 811 } 812 } 813 return found; 814 } 815 816 /* 817 * Check if the calculated PLL configuration is more optimal compared to the 818 * best configuration and error found so far. Return the calculated error. 819 */ 820 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq, 821 const struct dpll *calculated_clock, 822 const struct dpll *best_clock, 823 unsigned int best_error_ppm, 824 unsigned int *error_ppm) 825 { 826 /* 827 * For CHV ignore the error and consider only the P value. 828 * Prefer a bigger P value based on HW requirements. 829 */ 830 if (IS_CHERRYVIEW(to_i915(dev))) { 831 *error_ppm = 0; 832 833 return calculated_clock->p > best_clock->p; 834 } 835 836 if (drm_WARN_ON_ONCE(dev, !target_freq)) 837 return false; 838 839 *error_ppm = div_u64(1000000ULL * 840 abs(target_freq - calculated_clock->dot), 841 target_freq); 842 /* 843 * Prefer a better P value over a better (smaller) error if the error 844 * is small. Ensure this preference for future configurations too by 845 * setting the error to 0. 846 */ 847 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) { 848 *error_ppm = 0; 849 850 return true; 851 } 852 853 return *error_ppm + 10 < best_error_ppm; 854 } 855 856 /* 857 * Returns a set of divisors for the desired target clock with the given 858 * refclk, or FALSE. 859 */ 860 static bool 861 vlv_find_best_dpll(const struct intel_limit *limit, 862 struct intel_crtc_state *crtc_state, 863 int target, int refclk, 864 const struct dpll *match_clock, 865 struct dpll *best_clock) 866 { 867 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 868 struct drm_device *dev = crtc->base.dev; 869 struct dpll clock; 870 unsigned int bestppm = 1000000; 871 /* min update 19.2 MHz */ 872 int max_n = min(limit->n.max, refclk / 19200); 873 bool found = false; 874 875 memset(best_clock, 0, sizeof(*best_clock)); 876 877 /* based on hardware requirement, prefer smaller n to precision */ 878 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 879 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 880 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow; 881 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 882 clock.p = clock.p1 * clock.p2 * 5; 883 /* based on hardware requirement, prefer bigger m1,m2 values */ 884 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { 885 unsigned int ppm; 886 887 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n, 888 refclk * clock.m1); 889 890 vlv_calc_dpll_params(refclk, &clock); 891 892 if (!intel_pll_is_valid(to_i915(dev), 893 limit, 894 &clock)) 895 continue; 896 897 if (!vlv_PLL_is_optimal(dev, target, 898 &clock, 899 best_clock, 900 bestppm, &ppm)) 901 continue; 902 903 *best_clock = clock; 904 bestppm = ppm; 905 found = true; 906 } 907 } 908 } 909 } 910 911 return found; 912 } 913 914 /* 915 * Returns a set of divisors for the desired target clock with the given 916 * refclk, or FALSE. 917 */ 918 static bool 919 chv_find_best_dpll(const struct intel_limit *limit, 920 struct intel_crtc_state *crtc_state, 921 int target, int refclk, 922 const struct dpll *match_clock, 923 struct dpll *best_clock) 924 { 925 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 926 struct drm_device *dev = crtc->base.dev; 927 unsigned int best_error_ppm; 928 struct dpll clock; 929 u64 m2; 930 int found = false; 931 932 memset(best_clock, 0, sizeof(*best_clock)); 933 best_error_ppm = 1000000; 934 935 /* 936 * Based on hardware doc, the n always set to 1, and m1 always 937 * set to 2. If requires to support 200Mhz refclk, we need to 938 * revisit this because n may not 1 anymore. 939 */ 940 clock.n = 1; 941 clock.m1 = 2; 942 943 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 944 for (clock.p2 = limit->p2.p2_fast; 945 clock.p2 >= limit->p2.p2_slow; 946 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 947 unsigned int error_ppm; 948 949 clock.p = clock.p1 * clock.p2 * 5; 950 951 m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22, 952 refclk * clock.m1); 953 954 if (m2 > INT_MAX/clock.m1) 955 continue; 956 957 clock.m2 = m2; 958 959 chv_calc_dpll_params(refclk, &clock); 960 961 if (!intel_pll_is_valid(to_i915(dev), limit, &clock)) 962 continue; 963 964 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock, 965 best_error_ppm, &error_ppm)) 966 continue; 967 968 *best_clock = clock; 969 best_error_ppm = error_ppm; 970 found = true; 971 } 972 } 973 974 return found; 975 } 976 977 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, 978 struct dpll *best_clock) 979 { 980 const struct intel_limit *limit = &intel_limits_bxt; 981 int refclk = 100000; 982 983 return chv_find_best_dpll(limit, crtc_state, 984 crtc_state->port_clock, refclk, 985 NULL, best_clock); 986 } 987 988 u32 i9xx_dpll_compute_fp(const struct dpll *dpll) 989 { 990 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2; 991 } 992 993 static u32 pnv_dpll_compute_fp(const struct dpll *dpll) 994 { 995 return (1 << dpll->n) << 16 | dpll->m2; 996 } 997 998 static u32 i965_dpll_md(const struct intel_crtc_state *crtc_state) 999 { 1000 return (crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; 1001 } 1002 1003 static u32 i9xx_dpll(const struct intel_crtc_state *crtc_state, 1004 const struct dpll *clock, 1005 const struct dpll *reduced_clock) 1006 { 1007 struct intel_display *display = to_intel_display(crtc_state); 1008 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1009 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1010 u32 dpll; 1011 1012 dpll = DPLL_VCO_ENABLE | DPLL_VGA_MODE_DIS; 1013 1014 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 1015 dpll |= DPLLB_MODE_LVDS; 1016 else 1017 dpll |= DPLLB_MODE_DAC_SERIAL; 1018 1019 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 1020 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 1021 dpll |= (crtc_state->pixel_multiplier - 1) 1022 << SDVO_MULTIPLIER_SHIFT_HIRES; 1023 } 1024 1025 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 1026 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 1027 dpll |= DPLL_SDVO_HIGH_SPEED; 1028 1029 if (intel_crtc_has_dp_encoder(crtc_state)) 1030 dpll |= DPLL_SDVO_HIGH_SPEED; 1031 1032 /* compute bitmask from p1 value */ 1033 if (IS_G4X(dev_priv)) { 1034 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 1035 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 1036 } else if (IS_PINEVIEW(dev_priv)) { 1037 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; 1038 WARN_ON(reduced_clock->p1 != clock->p1); 1039 } else { 1040 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 1041 WARN_ON(reduced_clock->p1 != clock->p1); 1042 } 1043 1044 switch (clock->p2) { 1045 case 5: 1046 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 1047 break; 1048 case 7: 1049 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 1050 break; 1051 case 10: 1052 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 1053 break; 1054 case 14: 1055 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 1056 break; 1057 } 1058 WARN_ON(reduced_clock->p2 != clock->p2); 1059 1060 if (DISPLAY_VER(dev_priv) >= 4) 1061 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); 1062 1063 if (crtc_state->sdvo_tv_clock) 1064 dpll |= PLL_REF_INPUT_TVCLKINBC; 1065 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 1066 intel_panel_use_ssc(display)) 1067 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 1068 else 1069 dpll |= PLL_REF_INPUT_DREFCLK; 1070 1071 return dpll; 1072 } 1073 1074 static void i9xx_compute_dpll(struct intel_crtc_state *crtc_state, 1075 const struct dpll *clock, 1076 const struct dpll *reduced_clock) 1077 { 1078 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1079 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1080 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1081 1082 if (IS_PINEVIEW(dev_priv)) { 1083 hw_state->fp0 = pnv_dpll_compute_fp(clock); 1084 hw_state->fp1 = pnv_dpll_compute_fp(reduced_clock); 1085 } else { 1086 hw_state->fp0 = i9xx_dpll_compute_fp(clock); 1087 hw_state->fp1 = i9xx_dpll_compute_fp(reduced_clock); 1088 } 1089 1090 hw_state->dpll = i9xx_dpll(crtc_state, clock, reduced_clock); 1091 1092 if (DISPLAY_VER(dev_priv) >= 4) 1093 hw_state->dpll_md = i965_dpll_md(crtc_state); 1094 } 1095 1096 static u32 i8xx_dpll(const struct intel_crtc_state *crtc_state, 1097 const struct dpll *clock, 1098 const struct dpll *reduced_clock) 1099 { 1100 struct intel_display *display = to_intel_display(crtc_state); 1101 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1102 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1103 u32 dpll; 1104 1105 dpll = DPLL_VCO_ENABLE | DPLL_VGA_MODE_DIS; 1106 1107 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1108 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 1109 } else { 1110 if (clock->p1 == 2) 1111 dpll |= PLL_P1_DIVIDE_BY_TWO; 1112 else 1113 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; 1114 if (clock->p2 == 4) 1115 dpll |= PLL_P2_DIVIDE_BY_4; 1116 } 1117 WARN_ON(reduced_clock->p1 != clock->p1); 1118 WARN_ON(reduced_clock->p2 != clock->p2); 1119 1120 /* 1121 * Bspec: 1122 * "[Almador Errata}: For the correct operation of the muxed DVO pins 1123 * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data, 1124 * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock 1125 * Enable) must be set to “1” in both the DPLL A Control Register 1126 * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)." 1127 * 1128 * For simplicity We simply keep both bits always enabled in 1129 * both DPLLS. The spec says we should disable the DVO 2X clock 1130 * when not needed, but this seems to work fine in practice. 1131 */ 1132 if (IS_I830(dev_priv) || 1133 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) 1134 dpll |= DPLL_DVO_2X_MODE; 1135 1136 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 1137 intel_panel_use_ssc(display)) 1138 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 1139 else 1140 dpll |= PLL_REF_INPUT_DREFCLK; 1141 1142 return dpll; 1143 } 1144 1145 static void i8xx_compute_dpll(struct intel_crtc_state *crtc_state, 1146 const struct dpll *clock, 1147 const struct dpll *reduced_clock) 1148 { 1149 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1150 1151 hw_state->fp0 = i9xx_dpll_compute_fp(clock); 1152 hw_state->fp1 = i9xx_dpll_compute_fp(reduced_clock); 1153 1154 hw_state->dpll = i8xx_dpll(crtc_state, clock, reduced_clock); 1155 } 1156 1157 static int hsw_crtc_compute_clock(struct intel_atomic_state *state, 1158 struct intel_crtc *crtc) 1159 { 1160 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 1161 struct intel_crtc_state *crtc_state = 1162 intel_atomic_get_new_crtc_state(state, crtc); 1163 struct intel_encoder *encoder = 1164 intel_get_crtc_new_encoder(state, crtc_state); 1165 int ret; 1166 1167 if (DISPLAY_VER(dev_priv) < 11 && 1168 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1169 return 0; 1170 1171 ret = intel_compute_shared_dplls(state, crtc, encoder); 1172 if (ret) 1173 return ret; 1174 1175 /* FIXME this is a mess */ 1176 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1177 return 0; 1178 1179 /* CRT dotclock is determined via other means */ 1180 if (!crtc_state->has_pch_encoder) 1181 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1182 1183 return 0; 1184 } 1185 1186 static int hsw_crtc_get_shared_dpll(struct intel_atomic_state *state, 1187 struct intel_crtc *crtc) 1188 { 1189 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 1190 struct intel_crtc_state *crtc_state = 1191 intel_atomic_get_new_crtc_state(state, crtc); 1192 struct intel_encoder *encoder = 1193 intel_get_crtc_new_encoder(state, crtc_state); 1194 1195 if (DISPLAY_VER(dev_priv) < 11 && 1196 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1197 return 0; 1198 1199 return intel_reserve_shared_dplls(state, crtc, encoder); 1200 } 1201 1202 static int dg2_crtc_compute_clock(struct intel_atomic_state *state, 1203 struct intel_crtc *crtc) 1204 { 1205 struct intel_crtc_state *crtc_state = 1206 intel_atomic_get_new_crtc_state(state, crtc); 1207 struct intel_encoder *encoder = 1208 intel_get_crtc_new_encoder(state, crtc_state); 1209 int ret; 1210 1211 ret = intel_mpllb_calc_state(crtc_state, encoder); 1212 if (ret) 1213 return ret; 1214 1215 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1216 1217 return 0; 1218 } 1219 1220 static int mtl_crtc_compute_clock(struct intel_atomic_state *state, 1221 struct intel_crtc *crtc) 1222 { 1223 struct intel_crtc_state *crtc_state = 1224 intel_atomic_get_new_crtc_state(state, crtc); 1225 struct intel_encoder *encoder = 1226 intel_get_crtc_new_encoder(state, crtc_state); 1227 int ret; 1228 1229 ret = intel_cx0pll_calc_state(crtc_state, encoder); 1230 if (ret) 1231 return ret; 1232 1233 /* TODO: Do the readback via intel_compute_shared_dplls() */ 1234 crtc_state->port_clock = intel_cx0pll_calc_port_clock(encoder, &crtc_state->dpll_hw_state.cx0pll); 1235 1236 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1237 1238 return 0; 1239 } 1240 1241 static int ilk_fb_cb_factor(const struct intel_crtc_state *crtc_state) 1242 { 1243 struct intel_display *display = to_intel_display(crtc_state); 1244 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1245 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 1246 1247 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 1248 ((intel_panel_use_ssc(display) && i915->display.vbt.lvds_ssc_freq == 100000) || 1249 (HAS_PCH_IBX(i915) && intel_is_dual_link_lvds(i915)))) 1250 return 25; 1251 1252 if (crtc_state->sdvo_tv_clock) 1253 return 20; 1254 1255 return 21; 1256 } 1257 1258 static bool ilk_needs_fb_cb_tune(const struct dpll *dpll, int factor) 1259 { 1260 return dpll->m < factor * dpll->n; 1261 } 1262 1263 static u32 ilk_dpll_compute_fp(const struct dpll *clock, int factor) 1264 { 1265 u32 fp; 1266 1267 fp = i9xx_dpll_compute_fp(clock); 1268 if (ilk_needs_fb_cb_tune(clock, factor)) 1269 fp |= FP_CB_TUNE; 1270 1271 return fp; 1272 } 1273 1274 static u32 ilk_dpll(const struct intel_crtc_state *crtc_state, 1275 const struct dpll *clock, 1276 const struct dpll *reduced_clock) 1277 { 1278 struct intel_display *display = to_intel_display(crtc_state); 1279 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1280 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1281 u32 dpll; 1282 1283 dpll = DPLL_VCO_ENABLE; 1284 1285 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 1286 dpll |= DPLLB_MODE_LVDS; 1287 else 1288 dpll |= DPLLB_MODE_DAC_SERIAL; 1289 1290 dpll |= (crtc_state->pixel_multiplier - 1) 1291 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; 1292 1293 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 1294 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 1295 dpll |= DPLL_SDVO_HIGH_SPEED; 1296 1297 if (intel_crtc_has_dp_encoder(crtc_state)) 1298 dpll |= DPLL_SDVO_HIGH_SPEED; 1299 1300 /* 1301 * The high speed IO clock is only really required for 1302 * SDVO/HDMI/DP, but we also enable it for CRT to make it 1303 * possible to share the DPLL between CRT and HDMI. Enabling 1304 * the clock needlessly does no real harm, except use up a 1305 * bit of power potentially. 1306 * 1307 * We'll limit this to IVB with 3 pipes, since it has only two 1308 * DPLLs and so DPLL sharing is the only way to get three pipes 1309 * driving PCH ports at the same time. On SNB we could do this, 1310 * and potentially avoid enabling the second DPLL, but it's not 1311 * clear if it''s a win or loss power wise. No point in doing 1312 * this on ILK at all since it has a fixed DPLL<->pipe mapping. 1313 */ 1314 if (INTEL_NUM_PIPES(dev_priv) == 3 && 1315 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) 1316 dpll |= DPLL_SDVO_HIGH_SPEED; 1317 1318 /* compute bitmask from p1 value */ 1319 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 1320 /* also FPA1 */ 1321 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 1322 1323 switch (clock->p2) { 1324 case 5: 1325 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 1326 break; 1327 case 7: 1328 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 1329 break; 1330 case 10: 1331 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 1332 break; 1333 case 14: 1334 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 1335 break; 1336 } 1337 WARN_ON(reduced_clock->p2 != clock->p2); 1338 1339 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 1340 intel_panel_use_ssc(display)) 1341 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 1342 else 1343 dpll |= PLL_REF_INPUT_DREFCLK; 1344 1345 return dpll; 1346 } 1347 1348 static void ilk_compute_dpll(struct intel_crtc_state *crtc_state, 1349 const struct dpll *clock, 1350 const struct dpll *reduced_clock) 1351 { 1352 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1353 int factor = ilk_fb_cb_factor(crtc_state); 1354 1355 hw_state->fp0 = ilk_dpll_compute_fp(clock, factor); 1356 hw_state->fp1 = ilk_dpll_compute_fp(reduced_clock, factor); 1357 1358 hw_state->dpll = ilk_dpll(crtc_state, clock, reduced_clock); 1359 } 1360 1361 static int ilk_crtc_compute_clock(struct intel_atomic_state *state, 1362 struct intel_crtc *crtc) 1363 { 1364 struct intel_display *display = to_intel_display(state); 1365 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 1366 struct intel_crtc_state *crtc_state = 1367 intel_atomic_get_new_crtc_state(state, crtc); 1368 const struct intel_limit *limit; 1369 int refclk = 120000; 1370 int ret; 1371 1372 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ 1373 if (!crtc_state->has_pch_encoder) 1374 return 0; 1375 1376 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1377 if (intel_panel_use_ssc(display)) { 1378 drm_dbg_kms(&dev_priv->drm, 1379 "using SSC reference clock of %d kHz\n", 1380 dev_priv->display.vbt.lvds_ssc_freq); 1381 refclk = dev_priv->display.vbt.lvds_ssc_freq; 1382 } 1383 1384 if (intel_is_dual_link_lvds(dev_priv)) { 1385 if (refclk == 100000) 1386 limit = &ilk_limits_dual_lvds_100m; 1387 else 1388 limit = &ilk_limits_dual_lvds; 1389 } else { 1390 if (refclk == 100000) 1391 limit = &ilk_limits_single_lvds_100m; 1392 else 1393 limit = &ilk_limits_single_lvds; 1394 } 1395 } else { 1396 limit = &ilk_limits_dac; 1397 } 1398 1399 if (!crtc_state->clock_set && 1400 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1401 refclk, NULL, &crtc_state->dpll)) 1402 return -EINVAL; 1403 1404 i9xx_calc_dpll_params(refclk, &crtc_state->dpll); 1405 1406 ilk_compute_dpll(crtc_state, &crtc_state->dpll, 1407 &crtc_state->dpll); 1408 1409 ret = intel_compute_shared_dplls(state, crtc, NULL); 1410 if (ret) 1411 return ret; 1412 1413 crtc_state->port_clock = crtc_state->dpll.dot; 1414 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1415 1416 return ret; 1417 } 1418 1419 static int ilk_crtc_get_shared_dpll(struct intel_atomic_state *state, 1420 struct intel_crtc *crtc) 1421 { 1422 struct intel_crtc_state *crtc_state = 1423 intel_atomic_get_new_crtc_state(state, crtc); 1424 1425 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ 1426 if (!crtc_state->has_pch_encoder) 1427 return 0; 1428 1429 return intel_reserve_shared_dplls(state, crtc, NULL); 1430 } 1431 1432 static u32 vlv_dpll(const struct intel_crtc_state *crtc_state) 1433 { 1434 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1435 u32 dpll; 1436 1437 dpll = DPLL_INTEGRATED_REF_CLK_VLV | 1438 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1439 1440 if (crtc->pipe != PIPE_A) 1441 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 1442 1443 /* DPLL not used with DSI, but still need the rest set up */ 1444 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1445 dpll |= DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV; 1446 1447 return dpll; 1448 } 1449 1450 void vlv_compute_dpll(struct intel_crtc_state *crtc_state) 1451 { 1452 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1453 1454 hw_state->dpll = vlv_dpll(crtc_state); 1455 hw_state->dpll_md = i965_dpll_md(crtc_state); 1456 } 1457 1458 static u32 chv_dpll(const struct intel_crtc_state *crtc_state) 1459 { 1460 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1461 u32 dpll; 1462 1463 dpll = DPLL_SSC_REF_CLK_CHV | 1464 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1465 1466 if (crtc->pipe != PIPE_A) 1467 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 1468 1469 /* DPLL not used with DSI, but still need the rest set up */ 1470 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1471 dpll |= DPLL_VCO_ENABLE; 1472 1473 return dpll; 1474 } 1475 1476 void chv_compute_dpll(struct intel_crtc_state *crtc_state) 1477 { 1478 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1479 1480 hw_state->dpll = chv_dpll(crtc_state); 1481 hw_state->dpll_md = i965_dpll_md(crtc_state); 1482 } 1483 1484 static int chv_crtc_compute_clock(struct intel_atomic_state *state, 1485 struct intel_crtc *crtc) 1486 { 1487 struct intel_crtc_state *crtc_state = 1488 intel_atomic_get_new_crtc_state(state, crtc); 1489 const struct intel_limit *limit = &intel_limits_chv; 1490 int refclk = 100000; 1491 1492 if (!crtc_state->clock_set && 1493 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1494 refclk, NULL, &crtc_state->dpll)) 1495 return -EINVAL; 1496 1497 chv_calc_dpll_params(refclk, &crtc_state->dpll); 1498 1499 chv_compute_dpll(crtc_state); 1500 1501 /* FIXME this is a mess */ 1502 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1503 return 0; 1504 1505 crtc_state->port_clock = crtc_state->dpll.dot; 1506 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1507 1508 return 0; 1509 } 1510 1511 static int vlv_crtc_compute_clock(struct intel_atomic_state *state, 1512 struct intel_crtc *crtc) 1513 { 1514 struct intel_crtc_state *crtc_state = 1515 intel_atomic_get_new_crtc_state(state, crtc); 1516 const struct intel_limit *limit = &intel_limits_vlv; 1517 int refclk = 100000; 1518 1519 if (!crtc_state->clock_set && 1520 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1521 refclk, NULL, &crtc_state->dpll)) 1522 return -EINVAL; 1523 1524 vlv_calc_dpll_params(refclk, &crtc_state->dpll); 1525 1526 vlv_compute_dpll(crtc_state); 1527 1528 /* FIXME this is a mess */ 1529 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1530 return 0; 1531 1532 crtc_state->port_clock = crtc_state->dpll.dot; 1533 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1534 1535 return 0; 1536 } 1537 1538 static int g4x_crtc_compute_clock(struct intel_atomic_state *state, 1539 struct intel_crtc *crtc) 1540 { 1541 struct intel_display *display = to_intel_display(state); 1542 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 1543 struct intel_crtc_state *crtc_state = 1544 intel_atomic_get_new_crtc_state(state, crtc); 1545 const struct intel_limit *limit; 1546 int refclk = 96000; 1547 1548 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1549 if (intel_panel_use_ssc(display)) { 1550 refclk = dev_priv->display.vbt.lvds_ssc_freq; 1551 drm_dbg_kms(&dev_priv->drm, 1552 "using SSC reference clock of %d kHz\n", 1553 refclk); 1554 } 1555 1556 if (intel_is_dual_link_lvds(dev_priv)) 1557 limit = &intel_limits_g4x_dual_channel_lvds; 1558 else 1559 limit = &intel_limits_g4x_single_channel_lvds; 1560 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) || 1561 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) { 1562 limit = &intel_limits_g4x_hdmi; 1563 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) { 1564 limit = &intel_limits_g4x_sdvo; 1565 } else { 1566 /* The option is for other outputs */ 1567 limit = &intel_limits_i9xx_sdvo; 1568 } 1569 1570 if (!crtc_state->clock_set && 1571 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1572 refclk, NULL, &crtc_state->dpll)) 1573 return -EINVAL; 1574 1575 i9xx_calc_dpll_params(refclk, &crtc_state->dpll); 1576 1577 i9xx_compute_dpll(crtc_state, &crtc_state->dpll, 1578 &crtc_state->dpll); 1579 1580 crtc_state->port_clock = crtc_state->dpll.dot; 1581 /* FIXME this is a mess */ 1582 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT)) 1583 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1584 1585 return 0; 1586 } 1587 1588 static int pnv_crtc_compute_clock(struct intel_atomic_state *state, 1589 struct intel_crtc *crtc) 1590 { 1591 struct intel_display *display = to_intel_display(state); 1592 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 1593 struct intel_crtc_state *crtc_state = 1594 intel_atomic_get_new_crtc_state(state, crtc); 1595 const struct intel_limit *limit; 1596 int refclk = 96000; 1597 1598 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1599 if (intel_panel_use_ssc(display)) { 1600 refclk = dev_priv->display.vbt.lvds_ssc_freq; 1601 drm_dbg_kms(&dev_priv->drm, 1602 "using SSC reference clock of %d kHz\n", 1603 refclk); 1604 } 1605 1606 limit = &pnv_limits_lvds; 1607 } else { 1608 limit = &pnv_limits_sdvo; 1609 } 1610 1611 if (!crtc_state->clock_set && 1612 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1613 refclk, NULL, &crtc_state->dpll)) 1614 return -EINVAL; 1615 1616 pnv_calc_dpll_params(refclk, &crtc_state->dpll); 1617 1618 i9xx_compute_dpll(crtc_state, &crtc_state->dpll, 1619 &crtc_state->dpll); 1620 1621 crtc_state->port_clock = crtc_state->dpll.dot; 1622 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1623 1624 return 0; 1625 } 1626 1627 static int i9xx_crtc_compute_clock(struct intel_atomic_state *state, 1628 struct intel_crtc *crtc) 1629 { 1630 struct intel_display *display = to_intel_display(state); 1631 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 1632 struct intel_crtc_state *crtc_state = 1633 intel_atomic_get_new_crtc_state(state, crtc); 1634 const struct intel_limit *limit; 1635 int refclk = 96000; 1636 1637 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1638 if (intel_panel_use_ssc(display)) { 1639 refclk = dev_priv->display.vbt.lvds_ssc_freq; 1640 drm_dbg_kms(&dev_priv->drm, 1641 "using SSC reference clock of %d kHz\n", 1642 refclk); 1643 } 1644 1645 limit = &intel_limits_i9xx_lvds; 1646 } else { 1647 limit = &intel_limits_i9xx_sdvo; 1648 } 1649 1650 if (!crtc_state->clock_set && 1651 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1652 refclk, NULL, &crtc_state->dpll)) 1653 return -EINVAL; 1654 1655 i9xx_calc_dpll_params(refclk, &crtc_state->dpll); 1656 1657 i9xx_compute_dpll(crtc_state, &crtc_state->dpll, 1658 &crtc_state->dpll); 1659 1660 crtc_state->port_clock = crtc_state->dpll.dot; 1661 /* FIXME this is a mess */ 1662 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT)) 1663 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1664 1665 return 0; 1666 } 1667 1668 static int i8xx_crtc_compute_clock(struct intel_atomic_state *state, 1669 struct intel_crtc *crtc) 1670 { 1671 struct intel_display *display = to_intel_display(state); 1672 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 1673 struct intel_crtc_state *crtc_state = 1674 intel_atomic_get_new_crtc_state(state, crtc); 1675 const struct intel_limit *limit; 1676 int refclk = 48000; 1677 1678 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1679 if (intel_panel_use_ssc(display)) { 1680 refclk = dev_priv->display.vbt.lvds_ssc_freq; 1681 drm_dbg_kms(&dev_priv->drm, 1682 "using SSC reference clock of %d kHz\n", 1683 refclk); 1684 } 1685 1686 limit = &intel_limits_i8xx_lvds; 1687 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) { 1688 limit = &intel_limits_i8xx_dvo; 1689 } else { 1690 limit = &intel_limits_i8xx_dac; 1691 } 1692 1693 if (!crtc_state->clock_set && 1694 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1695 refclk, NULL, &crtc_state->dpll)) 1696 return -EINVAL; 1697 1698 i9xx_calc_dpll_params(refclk, &crtc_state->dpll); 1699 1700 i8xx_compute_dpll(crtc_state, &crtc_state->dpll, 1701 &crtc_state->dpll); 1702 1703 crtc_state->port_clock = crtc_state->dpll.dot; 1704 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1705 1706 return 0; 1707 } 1708 1709 static const struct intel_dpll_funcs mtl_dpll_funcs = { 1710 .crtc_compute_clock = mtl_crtc_compute_clock, 1711 }; 1712 1713 static const struct intel_dpll_funcs dg2_dpll_funcs = { 1714 .crtc_compute_clock = dg2_crtc_compute_clock, 1715 }; 1716 1717 static const struct intel_dpll_funcs hsw_dpll_funcs = { 1718 .crtc_compute_clock = hsw_crtc_compute_clock, 1719 .crtc_get_shared_dpll = hsw_crtc_get_shared_dpll, 1720 }; 1721 1722 static const struct intel_dpll_funcs ilk_dpll_funcs = { 1723 .crtc_compute_clock = ilk_crtc_compute_clock, 1724 .crtc_get_shared_dpll = ilk_crtc_get_shared_dpll, 1725 }; 1726 1727 static const struct intel_dpll_funcs chv_dpll_funcs = { 1728 .crtc_compute_clock = chv_crtc_compute_clock, 1729 }; 1730 1731 static const struct intel_dpll_funcs vlv_dpll_funcs = { 1732 .crtc_compute_clock = vlv_crtc_compute_clock, 1733 }; 1734 1735 static const struct intel_dpll_funcs g4x_dpll_funcs = { 1736 .crtc_compute_clock = g4x_crtc_compute_clock, 1737 }; 1738 1739 static const struct intel_dpll_funcs pnv_dpll_funcs = { 1740 .crtc_compute_clock = pnv_crtc_compute_clock, 1741 }; 1742 1743 static const struct intel_dpll_funcs i9xx_dpll_funcs = { 1744 .crtc_compute_clock = i9xx_crtc_compute_clock, 1745 }; 1746 1747 static const struct intel_dpll_funcs i8xx_dpll_funcs = { 1748 .crtc_compute_clock = i8xx_crtc_compute_clock, 1749 }; 1750 1751 int intel_dpll_crtc_compute_clock(struct intel_atomic_state *state, 1752 struct intel_crtc *crtc) 1753 { 1754 struct drm_i915_private *i915 = to_i915(state->base.dev); 1755 struct intel_crtc_state *crtc_state = 1756 intel_atomic_get_new_crtc_state(state, crtc); 1757 int ret; 1758 1759 drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state)); 1760 1761 memset(&crtc_state->dpll_hw_state, 0, 1762 sizeof(crtc_state->dpll_hw_state)); 1763 1764 if (!crtc_state->hw.enable) 1765 return 0; 1766 1767 ret = i915->display.funcs.dpll->crtc_compute_clock(state, crtc); 1768 if (ret) { 1769 drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't calculate DPLL settings\n", 1770 crtc->base.base.id, crtc->base.name); 1771 return ret; 1772 } 1773 1774 return 0; 1775 } 1776 1777 int intel_dpll_crtc_get_shared_dpll(struct intel_atomic_state *state, 1778 struct intel_crtc *crtc) 1779 { 1780 struct drm_i915_private *i915 = to_i915(state->base.dev); 1781 struct intel_crtc_state *crtc_state = 1782 intel_atomic_get_new_crtc_state(state, crtc); 1783 int ret; 1784 1785 drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state)); 1786 drm_WARN_ON(&i915->drm, !crtc_state->hw.enable && crtc_state->shared_dpll); 1787 1788 if (!crtc_state->hw.enable || crtc_state->shared_dpll) 1789 return 0; 1790 1791 if (!i915->display.funcs.dpll->crtc_get_shared_dpll) 1792 return 0; 1793 1794 ret = i915->display.funcs.dpll->crtc_get_shared_dpll(state, crtc); 1795 if (ret) { 1796 drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't get a shared DPLL\n", 1797 crtc->base.base.id, crtc->base.name); 1798 return ret; 1799 } 1800 1801 return 0; 1802 } 1803 1804 void 1805 intel_dpll_init_clock_hook(struct drm_i915_private *dev_priv) 1806 { 1807 if (DISPLAY_VER(dev_priv) >= 14) 1808 dev_priv->display.funcs.dpll = &mtl_dpll_funcs; 1809 else if (IS_DG2(dev_priv)) 1810 dev_priv->display.funcs.dpll = &dg2_dpll_funcs; 1811 else if (DISPLAY_VER(dev_priv) >= 9 || HAS_DDI(dev_priv)) 1812 dev_priv->display.funcs.dpll = &hsw_dpll_funcs; 1813 else if (HAS_PCH_SPLIT(dev_priv)) 1814 dev_priv->display.funcs.dpll = &ilk_dpll_funcs; 1815 else if (IS_CHERRYVIEW(dev_priv)) 1816 dev_priv->display.funcs.dpll = &chv_dpll_funcs; 1817 else if (IS_VALLEYVIEW(dev_priv)) 1818 dev_priv->display.funcs.dpll = &vlv_dpll_funcs; 1819 else if (IS_G4X(dev_priv)) 1820 dev_priv->display.funcs.dpll = &g4x_dpll_funcs; 1821 else if (IS_PINEVIEW(dev_priv)) 1822 dev_priv->display.funcs.dpll = &pnv_dpll_funcs; 1823 else if (DISPLAY_VER(dev_priv) != 2) 1824 dev_priv->display.funcs.dpll = &i9xx_dpll_funcs; 1825 else 1826 dev_priv->display.funcs.dpll = &i8xx_dpll_funcs; 1827 } 1828 1829 static bool i9xx_has_pps(struct drm_i915_private *dev_priv) 1830 { 1831 if (IS_I830(dev_priv)) 1832 return false; 1833 1834 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 1835 } 1836 1837 void i9xx_enable_pll(const struct intel_crtc_state *crtc_state) 1838 { 1839 struct intel_display *display = to_intel_display(crtc_state); 1840 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1841 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1842 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1843 enum pipe pipe = crtc->pipe; 1844 int i; 1845 1846 assert_transcoder_disabled(display, crtc_state->cpu_transcoder); 1847 1848 /* PLL is protected by panel, make sure we can write it */ 1849 if (i9xx_has_pps(dev_priv)) 1850 assert_pps_unlocked(display, pipe); 1851 1852 intel_de_write(dev_priv, FP0(pipe), hw_state->fp0); 1853 intel_de_write(dev_priv, FP1(pipe), hw_state->fp1); 1854 1855 /* 1856 * Apparently we need to have VGA mode enabled prior to changing 1857 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 1858 * dividers, even though the register value does change. 1859 */ 1860 intel_de_write(dev_priv, DPLL(dev_priv, pipe), 1861 hw_state->dpll & ~DPLL_VGA_MODE_DIS); 1862 intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll); 1863 1864 /* Wait for the clocks to stabilize. */ 1865 intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe)); 1866 udelay(150); 1867 1868 if (DISPLAY_VER(dev_priv) >= 4) { 1869 intel_de_write(dev_priv, DPLL_MD(dev_priv, pipe), 1870 hw_state->dpll_md); 1871 } else { 1872 /* The pixel multiplier can only be updated once the 1873 * DPLL is enabled and the clocks are stable. 1874 * 1875 * So write it again. 1876 */ 1877 intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll); 1878 } 1879 1880 /* We do this three times for luck */ 1881 for (i = 0; i < 3; i++) { 1882 intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll); 1883 intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe)); 1884 udelay(150); /* wait for warmup */ 1885 } 1886 } 1887 1888 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, 1889 enum dpio_phy phy, enum dpio_channel ch) 1890 { 1891 u32 tmp; 1892 1893 /* 1894 * PLLB opamp always calibrates to max value of 0x3f, force enable it 1895 * and set it to a reasonable value instead. 1896 */ 1897 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW17(ch)); 1898 tmp &= 0xffffff00; 1899 tmp |= 0x00000030; 1900 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW17(ch), tmp); 1901 1902 tmp = vlv_dpio_read(dev_priv, phy, VLV_REF_DW11); 1903 tmp &= 0x00ffffff; 1904 tmp |= 0x8c000000; 1905 vlv_dpio_write(dev_priv, phy, VLV_REF_DW11, tmp); 1906 1907 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW17(ch)); 1908 tmp &= 0xffffff00; 1909 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW17(ch), tmp); 1910 1911 tmp = vlv_dpio_read(dev_priv, phy, VLV_REF_DW11); 1912 tmp &= 0x00ffffff; 1913 tmp |= 0xb0000000; 1914 vlv_dpio_write(dev_priv, phy, VLV_REF_DW11, tmp); 1915 } 1916 1917 static void vlv_prepare_pll(const struct intel_crtc_state *crtc_state) 1918 { 1919 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1920 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1921 const struct dpll *clock = &crtc_state->dpll; 1922 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); 1923 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 1924 enum pipe pipe = crtc->pipe; 1925 u32 tmp, coreclk; 1926 1927 vlv_dpio_get(dev_priv); 1928 1929 /* See eDP HDMI DPIO driver vbios notes doc */ 1930 1931 /* PLL B needs special handling */ 1932 if (pipe == PIPE_B) 1933 vlv_pllb_recal_opamp(dev_priv, phy, ch); 1934 1935 /* Set up Tx target for periodic Rcomp update */ 1936 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW17_BCAST, 0x0100000f); 1937 1938 /* Disable target IRef on PLL */ 1939 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW16(ch)); 1940 tmp &= 0x00ffffff; 1941 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW16(ch), tmp); 1942 1943 /* Disable fast lock */ 1944 vlv_dpio_write(dev_priv, phy, VLV_CMN_DW0, 0x610); 1945 1946 /* Set idtafcrecal before PLL is enabled */ 1947 tmp = DPIO_M1_DIV(clock->m1) | 1948 DPIO_M2_DIV(clock->m2) | 1949 DPIO_P1_DIV(clock->p1) | 1950 DPIO_P2_DIV(clock->p2) | 1951 DPIO_N_DIV(clock->n) | 1952 DPIO_K_DIV(1); 1953 1954 /* 1955 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS, 1956 * but we don't support that). 1957 * Note: don't use the DAC post divider as it seems unstable. 1958 */ 1959 tmp |= DPIO_S1_DIV(DPIO_S1_DIV_HDMIDP); 1960 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(ch), tmp); 1961 1962 tmp |= DPIO_ENABLE_CALIBRATION; 1963 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(ch), tmp); 1964 1965 /* Set HBR and RBR LPF coefficients */ 1966 if (crtc_state->port_clock == 162000 || 1967 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG) || 1968 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 1969 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW18(ch), 1970 0x009f0003); 1971 else 1972 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW18(ch), 1973 0x00d0000f); 1974 1975 if (intel_crtc_has_dp_encoder(crtc_state)) { 1976 /* Use SSC source */ 1977 if (pipe == PIPE_A) 1978 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch), 1979 0x0df40000); 1980 else 1981 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch), 1982 0x0df70000); 1983 } else { /* HDMI or VGA */ 1984 /* Use bend source */ 1985 if (pipe == PIPE_A) 1986 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch), 1987 0x0df70000); 1988 else 1989 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch), 1990 0x0df40000); 1991 } 1992 1993 coreclk = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW7(ch)); 1994 coreclk = (coreclk & 0x0000ff00) | 0x01c00000; 1995 if (intel_crtc_has_dp_encoder(crtc_state)) 1996 coreclk |= 0x01000000; 1997 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW7(ch), coreclk); 1998 1999 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW19(ch), 0x87871000); 2000 2001 vlv_dpio_put(dev_priv); 2002 } 2003 2004 static void _vlv_enable_pll(const struct intel_crtc_state *crtc_state) 2005 { 2006 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2007 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2008 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 2009 enum pipe pipe = crtc->pipe; 2010 2011 intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll); 2012 intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe)); 2013 udelay(150); 2014 2015 if (intel_de_wait_for_set(dev_priv, DPLL(dev_priv, pipe), DPLL_LOCK_VLV, 1)) 2016 drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe); 2017 } 2018 2019 void vlv_enable_pll(const struct intel_crtc_state *crtc_state) 2020 { 2021 struct intel_display *display = to_intel_display(crtc_state); 2022 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2023 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2024 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 2025 enum pipe pipe = crtc->pipe; 2026 2027 assert_transcoder_disabled(display, crtc_state->cpu_transcoder); 2028 2029 /* PLL is protected by panel, make sure we can write it */ 2030 assert_pps_unlocked(display, pipe); 2031 2032 /* Enable Refclk */ 2033 intel_de_write(dev_priv, DPLL(dev_priv, pipe), 2034 hw_state->dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV)); 2035 2036 if (hw_state->dpll & DPLL_VCO_ENABLE) { 2037 vlv_prepare_pll(crtc_state); 2038 _vlv_enable_pll(crtc_state); 2039 } 2040 2041 intel_de_write(dev_priv, DPLL_MD(dev_priv, pipe), hw_state->dpll_md); 2042 intel_de_posting_read(dev_priv, DPLL_MD(dev_priv, pipe)); 2043 } 2044 2045 static void chv_prepare_pll(const struct intel_crtc_state *crtc_state) 2046 { 2047 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2048 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2049 const struct dpll *clock = &crtc_state->dpll; 2050 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); 2051 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 2052 u32 tmp, loopfilter, tribuf_calcntr; 2053 u32 m2_frac; 2054 2055 m2_frac = clock->m2 & 0x3fffff; 2056 2057 vlv_dpio_get(dev_priv); 2058 2059 /* p1 and p2 divider */ 2060 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW13(ch), 2061 DPIO_CHV_S1_DIV(5) | 2062 DPIO_CHV_P1_DIV(clock->p1) | 2063 DPIO_CHV_P2_DIV(clock->p2) | 2064 DPIO_CHV_K_DIV(1)); 2065 2066 /* Feedback post-divider - m2 */ 2067 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW0(ch), 2068 DPIO_CHV_M2_DIV(clock->m2 >> 22)); 2069 2070 /* Feedback refclk divider - n and m1 */ 2071 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW1(ch), 2072 DPIO_CHV_M1_DIV(DPIO_CHV_M1_DIV_BY_2) | 2073 DPIO_CHV_N_DIV(1)); 2074 2075 /* M2 fraction division */ 2076 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW2(ch), 2077 DPIO_CHV_M2_FRAC_DIV(m2_frac)); 2078 2079 /* M2 fraction division enable */ 2080 tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(ch)); 2081 tmp &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN); 2082 tmp |= DPIO_CHV_FEEDFWD_GAIN(2); 2083 if (m2_frac) 2084 tmp |= DPIO_CHV_FRAC_DIV_EN; 2085 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW3(ch), tmp); 2086 2087 /* Program digital lock detect threshold */ 2088 tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW9(ch)); 2089 tmp &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK | 2090 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE); 2091 tmp |= DPIO_CHV_INT_LOCK_THRESHOLD(0x5); 2092 if (!m2_frac) 2093 tmp |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE; 2094 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW9(ch), tmp); 2095 2096 /* Loop filter */ 2097 if (clock->vco == 5400000) { 2098 loopfilter = DPIO_CHV_PROP_COEFF(0x3) | 2099 DPIO_CHV_INT_COEFF(0x8) | 2100 DPIO_CHV_GAIN_CTRL(0x1); 2101 tribuf_calcntr = 0x9; 2102 } else if (clock->vco <= 6200000) { 2103 loopfilter = DPIO_CHV_PROP_COEFF(0x5) | 2104 DPIO_CHV_INT_COEFF(0xB) | 2105 DPIO_CHV_GAIN_CTRL(0x3); 2106 tribuf_calcntr = 0x9; 2107 } else if (clock->vco <= 6480000) { 2108 loopfilter = DPIO_CHV_PROP_COEFF(0x4) | 2109 DPIO_CHV_INT_COEFF(0x9) | 2110 DPIO_CHV_GAIN_CTRL(0x3); 2111 tribuf_calcntr = 0x8; 2112 } else { 2113 /* Not supported. Apply the same limits as in the max case */ 2114 loopfilter = DPIO_CHV_PROP_COEFF(0x4) | 2115 DPIO_CHV_INT_COEFF(0x9) | 2116 DPIO_CHV_GAIN_CTRL(0x3); 2117 tribuf_calcntr = 0; 2118 } 2119 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW6(ch), loopfilter); 2120 2121 tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW8(ch)); 2122 tmp &= ~DPIO_CHV_TDC_TARGET_CNT_MASK; 2123 tmp |= DPIO_CHV_TDC_TARGET_CNT(tribuf_calcntr); 2124 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW8(ch), tmp); 2125 2126 /* AFC Recal */ 2127 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), 2128 vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch)) | 2129 DPIO_AFC_RECAL); 2130 2131 vlv_dpio_put(dev_priv); 2132 } 2133 2134 static void _chv_enable_pll(const struct intel_crtc_state *crtc_state) 2135 { 2136 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2137 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2138 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 2139 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); 2140 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 2141 enum pipe pipe = crtc->pipe; 2142 u32 tmp; 2143 2144 vlv_dpio_get(dev_priv); 2145 2146 /* Enable back the 10bit clock to display controller */ 2147 tmp = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch)); 2148 tmp |= DPIO_DCLKP_EN; 2149 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), tmp); 2150 2151 vlv_dpio_put(dev_priv); 2152 2153 /* 2154 * Need to wait > 100ns between dclkp clock enable bit and PLL enable. 2155 */ 2156 udelay(1); 2157 2158 /* Enable PLL */ 2159 intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll); 2160 2161 /* Check PLL is locked */ 2162 if (intel_de_wait_for_set(dev_priv, DPLL(dev_priv, pipe), DPLL_LOCK_VLV, 1)) 2163 drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe); 2164 } 2165 2166 void chv_enable_pll(const struct intel_crtc_state *crtc_state) 2167 { 2168 struct intel_display *display = to_intel_display(crtc_state); 2169 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2170 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2171 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 2172 enum pipe pipe = crtc->pipe; 2173 2174 assert_transcoder_disabled(display, crtc_state->cpu_transcoder); 2175 2176 /* PLL is protected by panel, make sure we can write it */ 2177 assert_pps_unlocked(display, pipe); 2178 2179 /* Enable Refclk and SSC */ 2180 intel_de_write(dev_priv, DPLL(dev_priv, pipe), 2181 hw_state->dpll & ~DPLL_VCO_ENABLE); 2182 2183 if (hw_state->dpll & DPLL_VCO_ENABLE) { 2184 chv_prepare_pll(crtc_state); 2185 _chv_enable_pll(crtc_state); 2186 } 2187 2188 if (pipe != PIPE_A) { 2189 /* 2190 * WaPixelRepeatModeFixForC0:chv 2191 * 2192 * DPLLCMD is AWOL. Use chicken bits to propagate 2193 * the value from DPLLBMD to either pipe B or C. 2194 */ 2195 intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe)); 2196 intel_de_write(dev_priv, DPLL_MD(dev_priv, PIPE_B), 2197 hw_state->dpll_md); 2198 intel_de_write(dev_priv, CBR4_VLV, 0); 2199 dev_priv->display.state.chv_dpll_md[pipe] = hw_state->dpll_md; 2200 2201 /* 2202 * DPLLB VGA mode also seems to cause problems. 2203 * We should always have it disabled. 2204 */ 2205 drm_WARN_ON(&dev_priv->drm, 2206 (intel_de_read(dev_priv, DPLL(dev_priv, PIPE_B)) & 2207 DPLL_VGA_MODE_DIS) == 0); 2208 } else { 2209 intel_de_write(dev_priv, DPLL_MD(dev_priv, pipe), 2210 hw_state->dpll_md); 2211 intel_de_posting_read(dev_priv, DPLL_MD(dev_priv, pipe)); 2212 } 2213 } 2214 2215 /** 2216 * vlv_force_pll_on - forcibly enable just the PLL 2217 * @dev_priv: i915 private structure 2218 * @pipe: pipe PLL to enable 2219 * @dpll: PLL configuration 2220 * 2221 * Enable the PLL for @pipe using the supplied @dpll config. To be used 2222 * in cases where we need the PLL enabled even when @pipe is not going to 2223 * be enabled. 2224 */ 2225 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe, 2226 const struct dpll *dpll) 2227 { 2228 struct intel_display *display = &dev_priv->display; 2229 struct intel_crtc *crtc = intel_crtc_for_pipe(display, pipe); 2230 struct intel_crtc_state *crtc_state; 2231 2232 crtc_state = intel_crtc_state_alloc(crtc); 2233 if (!crtc_state) 2234 return -ENOMEM; 2235 2236 crtc_state->cpu_transcoder = (enum transcoder)pipe; 2237 crtc_state->pixel_multiplier = 1; 2238 crtc_state->dpll = *dpll; 2239 crtc_state->output_types = BIT(INTEL_OUTPUT_EDP); 2240 2241 if (IS_CHERRYVIEW(dev_priv)) { 2242 chv_compute_dpll(crtc_state); 2243 chv_enable_pll(crtc_state); 2244 } else { 2245 vlv_compute_dpll(crtc_state); 2246 vlv_enable_pll(crtc_state); 2247 } 2248 2249 intel_crtc_destroy_state(&crtc->base, &crtc_state->uapi); 2250 2251 return 0; 2252 } 2253 2254 void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 2255 { 2256 struct intel_display *display = &dev_priv->display; 2257 u32 val; 2258 2259 /* Make sure the pipe isn't still relying on us */ 2260 assert_transcoder_disabled(display, (enum transcoder)pipe); 2261 2262 val = DPLL_INTEGRATED_REF_CLK_VLV | 2263 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 2264 if (pipe != PIPE_A) 2265 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 2266 2267 intel_de_write(display, DPLL(display, pipe), val); 2268 intel_de_posting_read(display, DPLL(display, pipe)); 2269 } 2270 2271 void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 2272 { 2273 struct intel_display *display = &dev_priv->display; 2274 enum dpio_channel ch = vlv_pipe_to_channel(pipe); 2275 enum dpio_phy phy = vlv_pipe_to_phy(pipe); 2276 u32 val; 2277 2278 /* Make sure the pipe isn't still relying on us */ 2279 assert_transcoder_disabled(display, (enum transcoder)pipe); 2280 2281 val = DPLL_SSC_REF_CLK_CHV | 2282 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 2283 if (pipe != PIPE_A) 2284 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 2285 2286 intel_de_write(display, DPLL(display, pipe), val); 2287 intel_de_posting_read(display, DPLL(display, pipe)); 2288 2289 vlv_dpio_get(dev_priv); 2290 2291 /* Disable 10bit clock to display controller */ 2292 val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch)); 2293 val &= ~DPIO_DCLKP_EN; 2294 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), val); 2295 2296 vlv_dpio_put(dev_priv); 2297 } 2298 2299 void i9xx_disable_pll(const struct intel_crtc_state *crtc_state) 2300 { 2301 struct intel_display *display = to_intel_display(crtc_state); 2302 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2303 enum pipe pipe = crtc->pipe; 2304 2305 /* Don't disable pipe or pipe PLLs if needed */ 2306 if (display->platform.i830) 2307 return; 2308 2309 /* Make sure the pipe isn't still relying on us */ 2310 assert_transcoder_disabled(display, crtc_state->cpu_transcoder); 2311 2312 intel_de_write(display, DPLL(display, pipe), DPLL_VGA_MODE_DIS); 2313 intel_de_posting_read(display, DPLL(display, pipe)); 2314 } 2315 2316 2317 /** 2318 * vlv_force_pll_off - forcibly disable just the PLL 2319 * @dev_priv: i915 private structure 2320 * @pipe: pipe PLL to disable 2321 * 2322 * Disable the PLL for @pipe. To be used in cases where we need 2323 * the PLL enabled even when @pipe is not going to be enabled. 2324 */ 2325 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe) 2326 { 2327 if (IS_CHERRYVIEW(dev_priv)) 2328 chv_disable_pll(dev_priv, pipe); 2329 else 2330 vlv_disable_pll(dev_priv, pipe); 2331 } 2332 2333 /* Only for pre-ILK configs */ 2334 static void assert_pll(struct intel_display *display, 2335 enum pipe pipe, bool state) 2336 { 2337 bool cur_state; 2338 2339 cur_state = intel_de_read(display, DPLL(display, pipe)) & DPLL_VCO_ENABLE; 2340 INTEL_DISPLAY_STATE_WARN(display, cur_state != state, 2341 "PLL state assertion failure (expected %s, current %s)\n", 2342 str_on_off(state), str_on_off(cur_state)); 2343 } 2344 2345 void assert_pll_enabled(struct intel_display *display, enum pipe pipe) 2346 { 2347 assert_pll(display, pipe, true); 2348 } 2349 2350 void assert_pll_disabled(struct intel_display *display, enum pipe pipe) 2351 { 2352 assert_pll(display, pipe, false); 2353 } 2354