1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Keith Packard <keithp@keithp.com> 25 * 26 */ 27 28 #include <linux/export.h> 29 #include <linux/i2c.h> 30 #include <linux/notifier.h> 31 #include <linux/seq_buf.h> 32 #include <linux/slab.h> 33 #include <linux/sort.h> 34 #include <linux/string_helpers.h> 35 #include <linux/timekeeping.h> 36 #include <linux/types.h> 37 38 #include <asm/byteorder.h> 39 40 #include <drm/display/drm_dp_helper.h> 41 #include <drm/display/drm_dp_tunnel.h> 42 #include <drm/display/drm_dsc_helper.h> 43 #include <drm/display/drm_hdmi_helper.h> 44 #include <drm/drm_atomic_helper.h> 45 #include <drm/drm_crtc.h> 46 #include <drm/drm_edid.h> 47 #include <drm/drm_fixed.h> 48 #include <drm/drm_probe_helper.h> 49 50 #include "g4x_dp.h" 51 #include "i915_drv.h" 52 #include "i915_irq.h" 53 #include "i915_reg.h" 54 #include "intel_alpm.h" 55 #include "intel_atomic.h" 56 #include "intel_audio.h" 57 #include "intel_backlight.h" 58 #include "intel_combo_phy_regs.h" 59 #include "intel_connector.h" 60 #include "intel_crtc.h" 61 #include "intel_cx0_phy.h" 62 #include "intel_ddi.h" 63 #include "intel_de.h" 64 #include "intel_display_driver.h" 65 #include "intel_display_types.h" 66 #include "intel_dp.h" 67 #include "intel_dp_aux.h" 68 #include "intel_dp_hdcp.h" 69 #include "intel_dp_link_training.h" 70 #include "intel_dp_mst.h" 71 #include "intel_dp_test.h" 72 #include "intel_dp_tunnel.h" 73 #include "intel_dpio_phy.h" 74 #include "intel_dpll.h" 75 #include "intel_drrs.h" 76 #include "intel_encoder.h" 77 #include "intel_fifo_underrun.h" 78 #include "intel_hdcp.h" 79 #include "intel_hdmi.h" 80 #include "intel_hotplug.h" 81 #include "intel_hotplug_irq.h" 82 #include "intel_lspcon.h" 83 #include "intel_lvds.h" 84 #include "intel_modeset_lock.h" 85 #include "intel_panel.h" 86 #include "intel_pch_display.h" 87 #include "intel_pfit.h" 88 #include "intel_pps.h" 89 #include "intel_psr.h" 90 #include "intel_runtime_pm.h" 91 #include "intel_quirks.h" 92 #include "intel_tc.h" 93 #include "intel_vdsc.h" 94 #include "intel_vrr.h" 95 #include "intel_crtc_state_dump.h" 96 97 /* DP DSC throughput values used for slice count calculations KPixels/s */ 98 #define DP_DSC_PEAK_PIXEL_RATE 2720000 99 #define DP_DSC_MAX_ENC_THROUGHPUT_0 340000 100 #define DP_DSC_MAX_ENC_THROUGHPUT_1 400000 101 102 /* Max DSC line buffer depth supported by HW. */ 103 #define INTEL_DP_DSC_MAX_LINE_BUF_DEPTH 13 104 105 /* DP DSC FEC Overhead factor in ppm = 1/(0.972261) = 1.028530 */ 106 #define DP_DSC_FEC_OVERHEAD_FACTOR 1028530 107 108 /* Constants for DP DSC configurations */ 109 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15}; 110 111 /* 112 * With Single pipe configuration, HW is capable of supporting maximum of: 113 * 2 slices per line for ICL, BMG 114 * 4 slices per line for other platforms. 115 * For now consider a max of 2 slices per line, which works for all platforms. 116 * With this we can have max of 4 DSC Slices per pipe. 117 * 118 * For higher resolutions where 12 slice support is required with 119 * ultrajoiner, only then each pipe can support 3 slices. 120 * 121 * #TODO Split this better to use 4 slices/dsc engine where supported. 122 */ 123 static const u8 valid_dsc_slicecount[] = {1, 2, 3, 4}; 124 125 /** 126 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH) 127 * @intel_dp: DP struct 128 * 129 * If a CPU or PCH DP output is attached to an eDP panel, this function 130 * will return true, and false otherwise. 131 * 132 * This function is not safe to use prior to encoder type being set. 133 */ 134 bool intel_dp_is_edp(struct intel_dp *intel_dp) 135 { 136 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 137 138 return dig_port->base.type == INTEL_OUTPUT_EDP; 139 } 140 141 static void intel_dp_unset_edid(struct intel_dp *intel_dp); 142 143 /* Is link rate UHBR and thus 128b/132b? */ 144 bool intel_dp_is_uhbr(const struct intel_crtc_state *crtc_state) 145 { 146 return drm_dp_is_uhbr_rate(crtc_state->port_clock); 147 } 148 149 /** 150 * intel_dp_link_symbol_size - get the link symbol size for a given link rate 151 * @rate: link rate in 10kbit/s units 152 * 153 * Returns the link symbol size in bits/symbol units depending on the link 154 * rate -> channel coding. 155 */ 156 int intel_dp_link_symbol_size(int rate) 157 { 158 return drm_dp_is_uhbr_rate(rate) ? 32 : 10; 159 } 160 161 /** 162 * intel_dp_link_symbol_clock - convert link rate to link symbol clock 163 * @rate: link rate in 10kbit/s units 164 * 165 * Returns the link symbol clock frequency in kHz units depending on the 166 * link rate and channel coding. 167 */ 168 int intel_dp_link_symbol_clock(int rate) 169 { 170 return DIV_ROUND_CLOSEST(rate * 10, intel_dp_link_symbol_size(rate)); 171 } 172 173 static int max_dprx_rate(struct intel_dp *intel_dp) 174 { 175 if (intel_dp_tunnel_bw_alloc_is_enabled(intel_dp)) 176 return drm_dp_tunnel_max_dprx_rate(intel_dp->tunnel); 177 178 return drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]); 179 } 180 181 static int max_dprx_lane_count(struct intel_dp *intel_dp) 182 { 183 if (intel_dp_tunnel_bw_alloc_is_enabled(intel_dp)) 184 return drm_dp_tunnel_max_dprx_lane_count(intel_dp->tunnel); 185 186 return drm_dp_max_lane_count(intel_dp->dpcd); 187 } 188 189 static void intel_dp_set_default_sink_rates(struct intel_dp *intel_dp) 190 { 191 intel_dp->sink_rates[0] = 162000; 192 intel_dp->num_sink_rates = 1; 193 } 194 195 /* update sink rates from dpcd */ 196 static void intel_dp_set_dpcd_sink_rates(struct intel_dp *intel_dp) 197 { 198 static const int dp_rates[] = { 199 162000, 270000, 540000, 810000 200 }; 201 int i, max_rate; 202 int max_lttpr_rate; 203 204 if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)) { 205 /* Needed, e.g., for Apple MBP 2017, 15 inch eDP Retina panel */ 206 static const int quirk_rates[] = { 162000, 270000, 324000 }; 207 208 memcpy(intel_dp->sink_rates, quirk_rates, sizeof(quirk_rates)); 209 intel_dp->num_sink_rates = ARRAY_SIZE(quirk_rates); 210 211 return; 212 } 213 214 /* 215 * Sink rates for 8b/10b. 216 */ 217 max_rate = max_dprx_rate(intel_dp); 218 max_lttpr_rate = drm_dp_lttpr_max_link_rate(intel_dp->lttpr_common_caps); 219 if (max_lttpr_rate) 220 max_rate = min(max_rate, max_lttpr_rate); 221 222 for (i = 0; i < ARRAY_SIZE(dp_rates); i++) { 223 if (dp_rates[i] > max_rate) 224 break; 225 intel_dp->sink_rates[i] = dp_rates[i]; 226 } 227 228 /* 229 * Sink rates for 128b/132b. If set, sink should support all 8b/10b 230 * rates and 10 Gbps. 231 */ 232 if (drm_dp_128b132b_supported(intel_dp->dpcd)) { 233 u8 uhbr_rates = 0; 234 235 BUILD_BUG_ON(ARRAY_SIZE(intel_dp->sink_rates) < ARRAY_SIZE(dp_rates) + 3); 236 237 drm_dp_dpcd_readb(&intel_dp->aux, 238 DP_128B132B_SUPPORTED_LINK_RATES, &uhbr_rates); 239 240 if (drm_dp_lttpr_count(intel_dp->lttpr_common_caps)) { 241 /* We have a repeater */ 242 if (intel_dp->lttpr_common_caps[0] >= 0x20 && 243 intel_dp->lttpr_common_caps[DP_MAIN_LINK_CHANNEL_CODING_PHY_REPEATER - 244 DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV] & 245 DP_PHY_REPEATER_128B132B_SUPPORTED) { 246 /* Repeater supports 128b/132b, valid UHBR rates */ 247 uhbr_rates &= intel_dp->lttpr_common_caps[DP_PHY_REPEATER_128B132B_RATES - 248 DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV]; 249 } else { 250 /* Does not support 128b/132b */ 251 uhbr_rates = 0; 252 } 253 } 254 255 if (uhbr_rates & DP_UHBR10) 256 intel_dp->sink_rates[i++] = 1000000; 257 if (uhbr_rates & DP_UHBR13_5) 258 intel_dp->sink_rates[i++] = 1350000; 259 if (uhbr_rates & DP_UHBR20) 260 intel_dp->sink_rates[i++] = 2000000; 261 } 262 263 intel_dp->num_sink_rates = i; 264 } 265 266 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp) 267 { 268 struct intel_display *display = to_intel_display(intel_dp); 269 struct intel_connector *connector = intel_dp->attached_connector; 270 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 271 struct intel_encoder *encoder = &intel_dig_port->base; 272 273 intel_dp_set_dpcd_sink_rates(intel_dp); 274 275 if (intel_dp->num_sink_rates) 276 return; 277 278 drm_err(display->drm, 279 "[CONNECTOR:%d:%s][ENCODER:%d:%s] Invalid DPCD with no link rates, using defaults\n", 280 connector->base.base.id, connector->base.name, 281 encoder->base.base.id, encoder->base.name); 282 283 intel_dp_set_default_sink_rates(intel_dp); 284 } 285 286 static void intel_dp_set_default_max_sink_lane_count(struct intel_dp *intel_dp) 287 { 288 intel_dp->max_sink_lane_count = 1; 289 } 290 291 static void intel_dp_set_max_sink_lane_count(struct intel_dp *intel_dp) 292 { 293 struct intel_display *display = to_intel_display(intel_dp); 294 struct intel_connector *connector = intel_dp->attached_connector; 295 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 296 struct intel_encoder *encoder = &intel_dig_port->base; 297 298 intel_dp->max_sink_lane_count = max_dprx_lane_count(intel_dp); 299 300 switch (intel_dp->max_sink_lane_count) { 301 case 1: 302 case 2: 303 case 4: 304 return; 305 } 306 307 drm_err(display->drm, 308 "[CONNECTOR:%d:%s][ENCODER:%d:%s] Invalid DPCD max lane count (%d), using default\n", 309 connector->base.base.id, connector->base.name, 310 encoder->base.base.id, encoder->base.name, 311 intel_dp->max_sink_lane_count); 312 313 intel_dp_set_default_max_sink_lane_count(intel_dp); 314 } 315 316 /* Get length of rates array potentially limited by max_rate. */ 317 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate) 318 { 319 int i; 320 321 /* Limit results by potentially reduced max rate */ 322 for (i = 0; i < len; i++) { 323 if (rates[len - i - 1] <= max_rate) 324 return len - i; 325 } 326 327 return 0; 328 } 329 330 /* Get length of common rates array potentially limited by max_rate. */ 331 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp, 332 int max_rate) 333 { 334 return intel_dp_rate_limit_len(intel_dp->common_rates, 335 intel_dp->num_common_rates, max_rate); 336 } 337 338 int intel_dp_common_rate(struct intel_dp *intel_dp, int index) 339 { 340 struct intel_display *display = to_intel_display(intel_dp); 341 342 if (drm_WARN_ON(display->drm, 343 index < 0 || index >= intel_dp->num_common_rates)) 344 return 162000; 345 346 return intel_dp->common_rates[index]; 347 } 348 349 /* Theoretical max between source and sink */ 350 int intel_dp_max_common_rate(struct intel_dp *intel_dp) 351 { 352 return intel_dp_common_rate(intel_dp, intel_dp->num_common_rates - 1); 353 } 354 355 int intel_dp_max_source_lane_count(struct intel_digital_port *dig_port) 356 { 357 int vbt_max_lanes = intel_bios_dp_max_lane_count(dig_port->base.devdata); 358 int max_lanes = dig_port->max_lanes; 359 360 if (vbt_max_lanes) 361 max_lanes = min(max_lanes, vbt_max_lanes); 362 363 return max_lanes; 364 } 365 366 /* Theoretical max between source and sink */ 367 int intel_dp_max_common_lane_count(struct intel_dp *intel_dp) 368 { 369 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 370 int source_max = intel_dp_max_source_lane_count(dig_port); 371 int sink_max = intel_dp->max_sink_lane_count; 372 int lane_max = intel_tc_port_max_lane_count(dig_port); 373 int lttpr_max = drm_dp_lttpr_max_lane_count(intel_dp->lttpr_common_caps); 374 375 if (lttpr_max) 376 sink_max = min(sink_max, lttpr_max); 377 378 return min3(source_max, sink_max, lane_max); 379 } 380 381 static int forced_lane_count(struct intel_dp *intel_dp) 382 { 383 return clamp(intel_dp->link.force_lane_count, 1, intel_dp_max_common_lane_count(intel_dp)); 384 } 385 386 int intel_dp_max_lane_count(struct intel_dp *intel_dp) 387 { 388 int lane_count; 389 390 if (intel_dp->link.force_lane_count) 391 lane_count = forced_lane_count(intel_dp); 392 else 393 lane_count = intel_dp->link.max_lane_count; 394 395 switch (lane_count) { 396 case 1: 397 case 2: 398 case 4: 399 return lane_count; 400 default: 401 MISSING_CASE(lane_count); 402 return 1; 403 } 404 } 405 406 static int intel_dp_min_lane_count(struct intel_dp *intel_dp) 407 { 408 if (intel_dp->link.force_lane_count) 409 return forced_lane_count(intel_dp); 410 411 return 1; 412 } 413 414 /* 415 * The required data bandwidth for a mode with given pixel clock and bpp. This 416 * is the required net bandwidth independent of the data bandwidth efficiency. 417 * 418 * TODO: check if callers of this functions should use 419 * intel_dp_effective_data_rate() instead. 420 */ 421 int 422 intel_dp_link_required(int pixel_clock, int bpp) 423 { 424 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */ 425 return DIV_ROUND_UP(pixel_clock * bpp, 8); 426 } 427 428 /** 429 * intel_dp_effective_data_rate - Return the pixel data rate accounting for BW allocation overhead 430 * @pixel_clock: pixel clock in kHz 431 * @bpp_x16: bits per pixel .4 fixed point format 432 * @bw_overhead: BW allocation overhead in 1ppm units 433 * 434 * Return the effective pixel data rate in kB/sec units taking into account 435 * the provided SSC, FEC, DSC BW allocation overhead. 436 */ 437 int intel_dp_effective_data_rate(int pixel_clock, int bpp_x16, 438 int bw_overhead) 439 { 440 return DIV_ROUND_UP_ULL(mul_u32_u32(pixel_clock * bpp_x16, bw_overhead), 441 1000000 * 16 * 8); 442 } 443 444 /** 445 * intel_dp_max_link_data_rate: Calculate the maximum rate for the given link params 446 * @intel_dp: Intel DP object 447 * @max_dprx_rate: Maximum data rate of the DPRX 448 * @max_dprx_lanes: Maximum lane count of the DPRX 449 * 450 * Calculate the maximum data rate for the provided link parameters taking into 451 * account any BW limitations by a DP tunnel attached to @intel_dp. 452 * 453 * Returns the maximum data rate in kBps units. 454 */ 455 int intel_dp_max_link_data_rate(struct intel_dp *intel_dp, 456 int max_dprx_rate, int max_dprx_lanes) 457 { 458 int max_rate = drm_dp_max_dprx_data_rate(max_dprx_rate, max_dprx_lanes); 459 460 if (intel_dp_tunnel_bw_alloc_is_enabled(intel_dp)) 461 max_rate = min(max_rate, 462 drm_dp_tunnel_available_bw(intel_dp->tunnel)); 463 464 return max_rate; 465 } 466 467 bool intel_dp_has_joiner(struct intel_dp *intel_dp) 468 { 469 struct intel_display *display = to_intel_display(intel_dp); 470 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 471 struct intel_encoder *encoder = &intel_dig_port->base; 472 473 /* eDP MSO is not compatible with joiner */ 474 if (intel_dp->mso_link_count) 475 return false; 476 477 return DISPLAY_VER(display) >= 12 || 478 (DISPLAY_VER(display) == 11 && 479 encoder->port != PORT_A); 480 } 481 482 static int dg2_max_source_rate(struct intel_dp *intel_dp) 483 { 484 return intel_dp_is_edp(intel_dp) ? 810000 : 1350000; 485 } 486 487 static int icl_max_source_rate(struct intel_dp *intel_dp) 488 { 489 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 490 491 if (intel_encoder_is_combo(encoder) && !intel_dp_is_edp(intel_dp)) 492 return 540000; 493 494 return 810000; 495 } 496 497 static int ehl_max_source_rate(struct intel_dp *intel_dp) 498 { 499 if (intel_dp_is_edp(intel_dp)) 500 return 540000; 501 502 return 810000; 503 } 504 505 static int mtl_max_source_rate(struct intel_dp *intel_dp) 506 { 507 struct intel_display *display = to_intel_display(intel_dp); 508 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 509 510 if (intel_encoder_is_c10phy(encoder)) 511 return 810000; 512 513 if (DISPLAY_VERx100(display) == 1401) 514 return 1350000; 515 516 return 2000000; 517 } 518 519 static int vbt_max_link_rate(struct intel_dp *intel_dp) 520 { 521 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 522 int max_rate; 523 524 max_rate = intel_bios_dp_max_link_rate(encoder->devdata); 525 526 if (intel_dp_is_edp(intel_dp)) { 527 struct intel_connector *connector = intel_dp->attached_connector; 528 int edp_max_rate = connector->panel.vbt.edp.max_link_rate; 529 530 if (max_rate && edp_max_rate) 531 max_rate = min(max_rate, edp_max_rate); 532 else if (edp_max_rate) 533 max_rate = edp_max_rate; 534 } 535 536 return max_rate; 537 } 538 539 static void 540 intel_dp_set_source_rates(struct intel_dp *intel_dp) 541 { 542 /* The values must be in increasing order */ 543 static const int bmg_rates[] = { 544 162000, 216000, 243000, 270000, 324000, 432000, 540000, 675000, 545 810000, 1000000, 1350000, 546 }; 547 static const int mtl_rates[] = { 548 162000, 216000, 243000, 270000, 324000, 432000, 540000, 675000, 549 810000, 1000000, 2000000, 550 }; 551 static const int icl_rates[] = { 552 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000, 553 1000000, 1350000, 554 }; 555 static const int bxt_rates[] = { 556 162000, 216000, 243000, 270000, 324000, 432000, 540000 557 }; 558 static const int skl_rates[] = { 559 162000, 216000, 270000, 324000, 432000, 540000 560 }; 561 static const int hsw_rates[] = { 562 162000, 270000, 540000 563 }; 564 static const int g4x_rates[] = { 565 162000, 270000 566 }; 567 struct intel_display *display = to_intel_display(intel_dp); 568 const int *source_rates; 569 int size, max_rate = 0, vbt_max_rate; 570 571 /* This should only be done once */ 572 drm_WARN_ON(display->drm, 573 intel_dp->source_rates || intel_dp->num_source_rates); 574 575 if (DISPLAY_VER(display) >= 14) { 576 if (display->platform.battlemage) { 577 source_rates = bmg_rates; 578 size = ARRAY_SIZE(bmg_rates); 579 } else { 580 source_rates = mtl_rates; 581 size = ARRAY_SIZE(mtl_rates); 582 } 583 max_rate = mtl_max_source_rate(intel_dp); 584 } else if (DISPLAY_VER(display) >= 11) { 585 source_rates = icl_rates; 586 size = ARRAY_SIZE(icl_rates); 587 if (display->platform.dg2) 588 max_rate = dg2_max_source_rate(intel_dp); 589 else if (display->platform.alderlake_p || display->platform.alderlake_s || 590 display->platform.dg1 || display->platform.rocketlake) 591 max_rate = 810000; 592 else if (display->platform.jasperlake || display->platform.elkhartlake) 593 max_rate = ehl_max_source_rate(intel_dp); 594 else 595 max_rate = icl_max_source_rate(intel_dp); 596 } else if (display->platform.geminilake || display->platform.broxton) { 597 source_rates = bxt_rates; 598 size = ARRAY_SIZE(bxt_rates); 599 } else if (DISPLAY_VER(display) == 9) { 600 source_rates = skl_rates; 601 size = ARRAY_SIZE(skl_rates); 602 } else if ((display->platform.haswell && !display->platform.haswell_ulx) || 603 display->platform.broadwell) { 604 source_rates = hsw_rates; 605 size = ARRAY_SIZE(hsw_rates); 606 } else { 607 source_rates = g4x_rates; 608 size = ARRAY_SIZE(g4x_rates); 609 } 610 611 vbt_max_rate = vbt_max_link_rate(intel_dp); 612 if (max_rate && vbt_max_rate) 613 max_rate = min(max_rate, vbt_max_rate); 614 else if (vbt_max_rate) 615 max_rate = vbt_max_rate; 616 617 if (max_rate) 618 size = intel_dp_rate_limit_len(source_rates, size, max_rate); 619 620 intel_dp->source_rates = source_rates; 621 intel_dp->num_source_rates = size; 622 } 623 624 static int intersect_rates(const int *source_rates, int source_len, 625 const int *sink_rates, int sink_len, 626 int *common_rates) 627 { 628 int i = 0, j = 0, k = 0; 629 630 while (i < source_len && j < sink_len) { 631 if (source_rates[i] == sink_rates[j]) { 632 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES)) 633 return k; 634 common_rates[k] = source_rates[i]; 635 ++k; 636 ++i; 637 ++j; 638 } else if (source_rates[i] < sink_rates[j]) { 639 ++i; 640 } else { 641 ++j; 642 } 643 } 644 return k; 645 } 646 647 /* return index of rate in rates array, or -1 if not found */ 648 int intel_dp_rate_index(const int *rates, int len, int rate) 649 { 650 int i; 651 652 for (i = 0; i < len; i++) 653 if (rate == rates[i]) 654 return i; 655 656 return -1; 657 } 658 659 static int intel_dp_link_config_rate(struct intel_dp *intel_dp, 660 const struct intel_dp_link_config *lc) 661 { 662 return intel_dp_common_rate(intel_dp, lc->link_rate_idx); 663 } 664 665 static int intel_dp_link_config_lane_count(const struct intel_dp_link_config *lc) 666 { 667 return 1 << lc->lane_count_exp; 668 } 669 670 static int intel_dp_link_config_bw(struct intel_dp *intel_dp, 671 const struct intel_dp_link_config *lc) 672 { 673 return drm_dp_max_dprx_data_rate(intel_dp_link_config_rate(intel_dp, lc), 674 intel_dp_link_config_lane_count(lc)); 675 } 676 677 static int link_config_cmp_by_bw(const void *a, const void *b, const void *p) 678 { 679 struct intel_dp *intel_dp = (struct intel_dp *)p; /* remove const */ 680 const struct intel_dp_link_config *lc_a = a; 681 const struct intel_dp_link_config *lc_b = b; 682 int bw_a = intel_dp_link_config_bw(intel_dp, lc_a); 683 int bw_b = intel_dp_link_config_bw(intel_dp, lc_b); 684 685 if (bw_a != bw_b) 686 return bw_a - bw_b; 687 688 return intel_dp_link_config_rate(intel_dp, lc_a) - 689 intel_dp_link_config_rate(intel_dp, lc_b); 690 } 691 692 static void intel_dp_link_config_init(struct intel_dp *intel_dp) 693 { 694 struct intel_display *display = to_intel_display(intel_dp); 695 struct intel_dp_link_config *lc; 696 int num_common_lane_configs; 697 int i; 698 int j; 699 700 if (drm_WARN_ON(display->drm, !is_power_of_2(intel_dp_max_common_lane_count(intel_dp)))) 701 return; 702 703 num_common_lane_configs = ilog2(intel_dp_max_common_lane_count(intel_dp)) + 1; 704 705 if (drm_WARN_ON(display->drm, intel_dp->num_common_rates * num_common_lane_configs > 706 ARRAY_SIZE(intel_dp->link.configs))) 707 return; 708 709 intel_dp->link.num_configs = intel_dp->num_common_rates * num_common_lane_configs; 710 711 lc = &intel_dp->link.configs[0]; 712 for (i = 0; i < intel_dp->num_common_rates; i++) { 713 for (j = 0; j < num_common_lane_configs; j++) { 714 lc->lane_count_exp = j; 715 lc->link_rate_idx = i; 716 717 lc++; 718 } 719 } 720 721 sort_r(intel_dp->link.configs, intel_dp->link.num_configs, 722 sizeof(intel_dp->link.configs[0]), 723 link_config_cmp_by_bw, NULL, 724 intel_dp); 725 } 726 727 void intel_dp_link_config_get(struct intel_dp *intel_dp, int idx, int *link_rate, int *lane_count) 728 { 729 struct intel_display *display = to_intel_display(intel_dp); 730 const struct intel_dp_link_config *lc; 731 732 if (drm_WARN_ON(display->drm, idx < 0 || idx >= intel_dp->link.num_configs)) 733 idx = 0; 734 735 lc = &intel_dp->link.configs[idx]; 736 737 *link_rate = intel_dp_link_config_rate(intel_dp, lc); 738 *lane_count = intel_dp_link_config_lane_count(lc); 739 } 740 741 int intel_dp_link_config_index(struct intel_dp *intel_dp, int link_rate, int lane_count) 742 { 743 int link_rate_idx = intel_dp_rate_index(intel_dp->common_rates, intel_dp->num_common_rates, 744 link_rate); 745 int lane_count_exp = ilog2(lane_count); 746 int i; 747 748 for (i = 0; i < intel_dp->link.num_configs; i++) { 749 const struct intel_dp_link_config *lc = &intel_dp->link.configs[i]; 750 751 if (lc->lane_count_exp == lane_count_exp && 752 lc->link_rate_idx == link_rate_idx) 753 return i; 754 } 755 756 return -1; 757 } 758 759 static void intel_dp_set_common_rates(struct intel_dp *intel_dp) 760 { 761 struct intel_display *display = to_intel_display(intel_dp); 762 763 drm_WARN_ON(display->drm, 764 !intel_dp->num_source_rates || !intel_dp->num_sink_rates); 765 766 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates, 767 intel_dp->num_source_rates, 768 intel_dp->sink_rates, 769 intel_dp->num_sink_rates, 770 intel_dp->common_rates); 771 772 /* Paranoia, there should always be something in common. */ 773 if (drm_WARN_ON(display->drm, intel_dp->num_common_rates == 0)) { 774 intel_dp->common_rates[0] = 162000; 775 intel_dp->num_common_rates = 1; 776 } 777 778 intel_dp_link_config_init(intel_dp); 779 } 780 781 bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate, 782 u8 lane_count) 783 { 784 /* 785 * FIXME: we need to synchronize the current link parameters with 786 * hardware readout. Currently fast link training doesn't work on 787 * boot-up. 788 */ 789 if (link_rate == 0 || 790 link_rate > intel_dp->link.max_rate) 791 return false; 792 793 if (lane_count == 0 || 794 lane_count > intel_dp_max_lane_count(intel_dp)) 795 return false; 796 797 return true; 798 } 799 800 u32 intel_dp_mode_to_fec_clock(u32 mode_clock) 801 { 802 return div_u64(mul_u32_u32(mode_clock, DP_DSC_FEC_OVERHEAD_FACTOR), 803 1000000U); 804 } 805 806 int intel_dp_bw_fec_overhead(bool fec_enabled) 807 { 808 /* 809 * TODO: Calculate the actual overhead for a given mode. 810 * The hard-coded 1/0.972261=2.853% overhead factor 811 * corresponds (for instance) to the 8b/10b DP FEC 2.4% + 812 * 0.453% DSC overhead. This is enough for a 3840 width mode, 813 * which has a DSC overhead of up to ~0.2%, but may not be 814 * enough for a 1024 width mode where this is ~0.8% (on a 4 815 * lane DP link, with 2 DSC slices and 8 bpp color depth). 816 */ 817 return fec_enabled ? DP_DSC_FEC_OVERHEAD_FACTOR : 1000000; 818 } 819 820 static int 821 small_joiner_ram_size_bits(struct intel_display *display) 822 { 823 if (DISPLAY_VER(display) >= 13) 824 return 17280 * 8; 825 else if (DISPLAY_VER(display) >= 11) 826 return 7680 * 8; 827 else 828 return 6144 * 8; 829 } 830 831 u32 intel_dp_dsc_nearest_valid_bpp(struct intel_display *display, u32 bpp, u32 pipe_bpp) 832 { 833 u32 bits_per_pixel = bpp; 834 int i; 835 836 /* Error out if the max bpp is less than smallest allowed valid bpp */ 837 if (bits_per_pixel < valid_dsc_bpp[0]) { 838 drm_dbg_kms(display->drm, "Unsupported BPP %u, min %u\n", 839 bits_per_pixel, valid_dsc_bpp[0]); 840 return 0; 841 } 842 843 /* From XE_LPD onwards we support from bpc upto uncompressed bpp-1 BPPs */ 844 if (DISPLAY_VER(display) >= 13) { 845 bits_per_pixel = min(bits_per_pixel, pipe_bpp - 1); 846 847 /* 848 * According to BSpec, 27 is the max DSC output bpp, 849 * 8 is the min DSC output bpp. 850 * While we can still clamp higher bpp values to 27, saving bandwidth, 851 * if it is required to oompress up to bpp < 8, means we can't do 852 * that and probably means we can't fit the required mode, even with 853 * DSC enabled. 854 */ 855 if (bits_per_pixel < 8) { 856 drm_dbg_kms(display->drm, 857 "Unsupported BPP %u, min 8\n", 858 bits_per_pixel); 859 return 0; 860 } 861 bits_per_pixel = min_t(u32, bits_per_pixel, 27); 862 } else { 863 /* Find the nearest match in the array of known BPPs from VESA */ 864 for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) { 865 if (bits_per_pixel < valid_dsc_bpp[i + 1]) 866 break; 867 } 868 drm_dbg_kms(display->drm, "Set dsc bpp from %d to VESA %d\n", 869 bits_per_pixel, valid_dsc_bpp[i]); 870 871 bits_per_pixel = valid_dsc_bpp[i]; 872 } 873 874 return bits_per_pixel; 875 } 876 877 static int bigjoiner_interface_bits(struct intel_display *display) 878 { 879 return DISPLAY_VER(display) >= 14 ? 36 : 24; 880 } 881 882 static u32 bigjoiner_bw_max_bpp(struct intel_display *display, u32 mode_clock, 883 int num_joined_pipes) 884 { 885 u32 max_bpp; 886 /* With bigjoiner multiple dsc engines are used in parallel so PPC is 2 */ 887 int ppc = 2; 888 int num_big_joiners = num_joined_pipes / 2; 889 890 max_bpp = display->cdclk.max_cdclk_freq * ppc * bigjoiner_interface_bits(display) / 891 intel_dp_mode_to_fec_clock(mode_clock); 892 893 max_bpp *= num_big_joiners; 894 895 return max_bpp; 896 897 } 898 899 static u32 small_joiner_ram_max_bpp(struct intel_display *display, 900 u32 mode_hdisplay, 901 int num_joined_pipes) 902 { 903 u32 max_bpp; 904 905 /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */ 906 max_bpp = small_joiner_ram_size_bits(display) / mode_hdisplay; 907 908 max_bpp *= num_joined_pipes; 909 910 return max_bpp; 911 } 912 913 static int ultrajoiner_ram_bits(void) 914 { 915 return 4 * 72 * 512; 916 } 917 918 static u32 ultrajoiner_ram_max_bpp(u32 mode_hdisplay) 919 { 920 return ultrajoiner_ram_bits() / mode_hdisplay; 921 } 922 923 static 924 u32 get_max_compressed_bpp_with_joiner(struct intel_display *display, 925 u32 mode_clock, u32 mode_hdisplay, 926 int num_joined_pipes) 927 { 928 u32 max_bpp = small_joiner_ram_max_bpp(display, mode_hdisplay, num_joined_pipes); 929 930 if (num_joined_pipes > 1) 931 max_bpp = min(max_bpp, bigjoiner_bw_max_bpp(display, mode_clock, 932 num_joined_pipes)); 933 if (num_joined_pipes == 4) 934 max_bpp = min(max_bpp, ultrajoiner_ram_max_bpp(mode_hdisplay)); 935 936 return max_bpp; 937 } 938 939 u16 intel_dp_dsc_get_max_compressed_bpp(struct intel_display *display, 940 u32 link_clock, u32 lane_count, 941 u32 mode_clock, u32 mode_hdisplay, 942 int num_joined_pipes, 943 enum intel_output_format output_format, 944 u32 pipe_bpp, 945 u32 timeslots) 946 { 947 u32 bits_per_pixel, joiner_max_bpp; 948 949 /* 950 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)* 951 * (LinkSymbolClock)* 8 * (TimeSlots / 64) 952 * for SST -> TimeSlots is 64(i.e all TimeSlots that are available) 953 * for MST -> TimeSlots has to be calculated, based on mode requirements 954 * 955 * Due to FEC overhead, the available bw is reduced to 97.2261%. 956 * To support the given mode: 957 * Bandwidth required should be <= Available link Bandwidth * FEC Overhead 958 * =>ModeClock * bits_per_pixel <= Available Link Bandwidth * FEC Overhead 959 * =>bits_per_pixel <= Available link Bandwidth * FEC Overhead / ModeClock 960 * =>bits_per_pixel <= (NumberOfLanes * LinkSymbolClock) * 8 (TimeSlots / 64) / 961 * (ModeClock / FEC Overhead) 962 * =>bits_per_pixel <= (NumberOfLanes * LinkSymbolClock * TimeSlots) / 963 * (ModeClock / FEC Overhead * 8) 964 */ 965 bits_per_pixel = ((link_clock * lane_count) * timeslots) / 966 (intel_dp_mode_to_fec_clock(mode_clock) * 8); 967 968 /* Bandwidth required for 420 is half, that of 444 format */ 969 if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 970 bits_per_pixel *= 2; 971 972 /* 973 * According to DSC 1.2a Section 4.1.1 Table 4.1 the maximum 974 * supported PPS value can be 63.9375 and with the further 975 * mention that for 420, 422 formats, bpp should be programmed double 976 * the target bpp restricting our target bpp to be 31.9375 at max. 977 */ 978 if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 979 bits_per_pixel = min_t(u32, bits_per_pixel, 31); 980 981 drm_dbg_kms(display->drm, "Max link bpp is %u for %u timeslots " 982 "total bw %u pixel clock %u\n", 983 bits_per_pixel, timeslots, 984 (link_clock * lane_count * 8), 985 intel_dp_mode_to_fec_clock(mode_clock)); 986 987 joiner_max_bpp = get_max_compressed_bpp_with_joiner(display, mode_clock, 988 mode_hdisplay, num_joined_pipes); 989 bits_per_pixel = min(bits_per_pixel, joiner_max_bpp); 990 991 bits_per_pixel = intel_dp_dsc_nearest_valid_bpp(display, bits_per_pixel, pipe_bpp); 992 993 return bits_per_pixel; 994 } 995 996 u8 intel_dp_dsc_get_slice_count(const struct intel_connector *connector, 997 int mode_clock, int mode_hdisplay, 998 int num_joined_pipes) 999 { 1000 struct intel_display *display = to_intel_display(connector); 1001 u8 min_slice_count, i; 1002 int max_slice_width; 1003 1004 if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE) 1005 min_slice_count = DIV_ROUND_UP(mode_clock, 1006 DP_DSC_MAX_ENC_THROUGHPUT_0); 1007 else 1008 min_slice_count = DIV_ROUND_UP(mode_clock, 1009 DP_DSC_MAX_ENC_THROUGHPUT_1); 1010 1011 /* 1012 * Due to some DSC engine BW limitations, we need to enable second 1013 * slice and VDSC engine, whenever we approach close enough to max CDCLK 1014 */ 1015 if (mode_clock >= ((display->cdclk.max_cdclk_freq * 85) / 100)) 1016 min_slice_count = max_t(u8, min_slice_count, 2); 1017 1018 max_slice_width = drm_dp_dsc_sink_max_slice_width(connector->dp.dsc_dpcd); 1019 if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) { 1020 drm_dbg_kms(display->drm, 1021 "Unsupported slice width %d by DP DSC Sink device\n", 1022 max_slice_width); 1023 return 0; 1024 } 1025 /* Also take into account max slice width */ 1026 min_slice_count = max_t(u8, min_slice_count, 1027 DIV_ROUND_UP(mode_hdisplay, 1028 max_slice_width)); 1029 1030 /* Find the closest match to the valid slice count values */ 1031 for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) { 1032 u8 test_slice_count = valid_dsc_slicecount[i] * num_joined_pipes; 1033 1034 /* 1035 * 3 DSC Slices per pipe need 3 DSC engines, 1036 * which is supported only with Ultrajoiner. 1037 */ 1038 if (valid_dsc_slicecount[i] == 3 && num_joined_pipes != 4) 1039 continue; 1040 1041 if (test_slice_count > 1042 drm_dp_dsc_sink_max_slice_count(connector->dp.dsc_dpcd, false)) 1043 break; 1044 1045 /* 1046 * Bigjoiner needs small joiner to be enabled. 1047 * So there should be at least 2 dsc slices per pipe, 1048 * whenever bigjoiner is enabled. 1049 */ 1050 if (num_joined_pipes > 1 && valid_dsc_slicecount[i] < 2) 1051 continue; 1052 1053 if (mode_hdisplay % test_slice_count) 1054 continue; 1055 1056 if (min_slice_count <= test_slice_count) 1057 return test_slice_count; 1058 } 1059 1060 drm_dbg_kms(display->drm, "Unsupported Slice Count %d\n", 1061 min_slice_count); 1062 return 0; 1063 } 1064 1065 static bool source_can_output(struct intel_dp *intel_dp, 1066 enum intel_output_format format) 1067 { 1068 struct intel_display *display = to_intel_display(intel_dp); 1069 1070 switch (format) { 1071 case INTEL_OUTPUT_FORMAT_RGB: 1072 return true; 1073 1074 case INTEL_OUTPUT_FORMAT_YCBCR444: 1075 /* 1076 * No YCbCr output support on gmch platforms. 1077 * Also, ILK doesn't seem capable of DP YCbCr output. 1078 * The displayed image is severely corrupted. SNB+ is fine. 1079 */ 1080 return !HAS_GMCH(display) && !display->platform.ironlake; 1081 1082 case INTEL_OUTPUT_FORMAT_YCBCR420: 1083 /* Platform < Gen 11 cannot output YCbCr420 format */ 1084 return DISPLAY_VER(display) >= 11; 1085 1086 default: 1087 MISSING_CASE(format); 1088 return false; 1089 } 1090 } 1091 1092 static bool 1093 dfp_can_convert_from_rgb(struct intel_dp *intel_dp, 1094 enum intel_output_format sink_format) 1095 { 1096 if (!drm_dp_is_branch(intel_dp->dpcd)) 1097 return false; 1098 1099 if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR444) 1100 return intel_dp->dfp.rgb_to_ycbcr; 1101 1102 if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420) 1103 return intel_dp->dfp.rgb_to_ycbcr && 1104 intel_dp->dfp.ycbcr_444_to_420; 1105 1106 return false; 1107 } 1108 1109 static bool 1110 dfp_can_convert_from_ycbcr444(struct intel_dp *intel_dp, 1111 enum intel_output_format sink_format) 1112 { 1113 if (!drm_dp_is_branch(intel_dp->dpcd)) 1114 return false; 1115 1116 if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420) 1117 return intel_dp->dfp.ycbcr_444_to_420; 1118 1119 return false; 1120 } 1121 1122 static bool 1123 dfp_can_convert(struct intel_dp *intel_dp, 1124 enum intel_output_format output_format, 1125 enum intel_output_format sink_format) 1126 { 1127 switch (output_format) { 1128 case INTEL_OUTPUT_FORMAT_RGB: 1129 return dfp_can_convert_from_rgb(intel_dp, sink_format); 1130 case INTEL_OUTPUT_FORMAT_YCBCR444: 1131 return dfp_can_convert_from_ycbcr444(intel_dp, sink_format); 1132 default: 1133 MISSING_CASE(output_format); 1134 return false; 1135 } 1136 1137 return false; 1138 } 1139 1140 static enum intel_output_format 1141 intel_dp_output_format(struct intel_connector *connector, 1142 enum intel_output_format sink_format) 1143 { 1144 struct intel_display *display = to_intel_display(connector); 1145 struct intel_dp *intel_dp = intel_attached_dp(connector); 1146 enum intel_output_format force_dsc_output_format = 1147 intel_dp->force_dsc_output_format; 1148 enum intel_output_format output_format; 1149 if (force_dsc_output_format) { 1150 if (source_can_output(intel_dp, force_dsc_output_format) && 1151 (!drm_dp_is_branch(intel_dp->dpcd) || 1152 sink_format != force_dsc_output_format || 1153 dfp_can_convert(intel_dp, force_dsc_output_format, sink_format))) 1154 return force_dsc_output_format; 1155 1156 drm_dbg_kms(display->drm, "Cannot force DSC output format\n"); 1157 } 1158 1159 if (sink_format == INTEL_OUTPUT_FORMAT_RGB || 1160 dfp_can_convert_from_rgb(intel_dp, sink_format)) 1161 output_format = INTEL_OUTPUT_FORMAT_RGB; 1162 1163 else if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR444 || 1164 dfp_can_convert_from_ycbcr444(intel_dp, sink_format)) 1165 output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 1166 1167 else 1168 output_format = INTEL_OUTPUT_FORMAT_YCBCR420; 1169 1170 drm_WARN_ON(display->drm, !source_can_output(intel_dp, output_format)); 1171 1172 return output_format; 1173 } 1174 1175 int intel_dp_min_bpp(enum intel_output_format output_format) 1176 { 1177 if (output_format == INTEL_OUTPUT_FORMAT_RGB) 1178 return 6 * 3; 1179 else 1180 return 8 * 3; 1181 } 1182 1183 int intel_dp_output_bpp(enum intel_output_format output_format, int bpp) 1184 { 1185 /* 1186 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output 1187 * format of the number of bytes per pixel will be half the number 1188 * of bytes of RGB pixel. 1189 */ 1190 if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 1191 bpp /= 2; 1192 1193 return bpp; 1194 } 1195 1196 static enum intel_output_format 1197 intel_dp_sink_format(struct intel_connector *connector, 1198 const struct drm_display_mode *mode) 1199 { 1200 const struct drm_display_info *info = &connector->base.display_info; 1201 1202 if (drm_mode_is_420_only(info, mode)) 1203 return INTEL_OUTPUT_FORMAT_YCBCR420; 1204 1205 return INTEL_OUTPUT_FORMAT_RGB; 1206 } 1207 1208 static int 1209 intel_dp_mode_min_output_bpp(struct intel_connector *connector, 1210 const struct drm_display_mode *mode) 1211 { 1212 enum intel_output_format output_format, sink_format; 1213 1214 sink_format = intel_dp_sink_format(connector, mode); 1215 1216 output_format = intel_dp_output_format(connector, sink_format); 1217 1218 return intel_dp_output_bpp(output_format, intel_dp_min_bpp(output_format)); 1219 } 1220 1221 static bool intel_dp_hdisplay_bad(struct intel_display *display, 1222 int hdisplay) 1223 { 1224 /* 1225 * Older platforms don't like hdisplay==4096 with DP. 1226 * 1227 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline 1228 * and frame counter increment), but we don't get vblank interrupts, 1229 * and the pipe underruns immediately. The link also doesn't seem 1230 * to get trained properly. 1231 * 1232 * On CHV the vblank interrupts don't seem to disappear but 1233 * otherwise the symptoms are similar. 1234 * 1235 * TODO: confirm the behaviour on HSW+ 1236 */ 1237 return hdisplay == 4096 && !HAS_DDI(display); 1238 } 1239 1240 static int intel_dp_max_tmds_clock(struct intel_dp *intel_dp) 1241 { 1242 struct intel_connector *connector = intel_dp->attached_connector; 1243 const struct drm_display_info *info = &connector->base.display_info; 1244 int max_tmds_clock = intel_dp->dfp.max_tmds_clock; 1245 1246 /* Only consider the sink's max TMDS clock if we know this is a HDMI DFP */ 1247 if (max_tmds_clock && info->max_tmds_clock) 1248 max_tmds_clock = min(max_tmds_clock, info->max_tmds_clock); 1249 1250 return max_tmds_clock; 1251 } 1252 1253 static enum drm_mode_status 1254 intel_dp_tmds_clock_valid(struct intel_dp *intel_dp, 1255 int clock, int bpc, 1256 enum intel_output_format sink_format, 1257 bool respect_downstream_limits) 1258 { 1259 int tmds_clock, min_tmds_clock, max_tmds_clock; 1260 1261 if (!respect_downstream_limits) 1262 return MODE_OK; 1263 1264 tmds_clock = intel_hdmi_tmds_clock(clock, bpc, sink_format); 1265 1266 min_tmds_clock = intel_dp->dfp.min_tmds_clock; 1267 max_tmds_clock = intel_dp_max_tmds_clock(intel_dp); 1268 1269 if (min_tmds_clock && tmds_clock < min_tmds_clock) 1270 return MODE_CLOCK_LOW; 1271 1272 if (max_tmds_clock && tmds_clock > max_tmds_clock) 1273 return MODE_CLOCK_HIGH; 1274 1275 return MODE_OK; 1276 } 1277 1278 static enum drm_mode_status 1279 intel_dp_mode_valid_downstream(struct intel_connector *connector, 1280 const struct drm_display_mode *mode, 1281 int target_clock) 1282 { 1283 struct intel_dp *intel_dp = intel_attached_dp(connector); 1284 const struct drm_display_info *info = &connector->base.display_info; 1285 enum drm_mode_status status; 1286 enum intel_output_format sink_format; 1287 1288 /* If PCON supports FRL MODE, check FRL bandwidth constraints */ 1289 if (intel_dp->dfp.pcon_max_frl_bw) { 1290 int target_bw; 1291 int max_frl_bw; 1292 int bpp = intel_dp_mode_min_output_bpp(connector, mode); 1293 1294 target_bw = bpp * target_clock; 1295 1296 max_frl_bw = intel_dp->dfp.pcon_max_frl_bw; 1297 1298 /* converting bw from Gbps to Kbps*/ 1299 max_frl_bw = max_frl_bw * 1000000; 1300 1301 if (target_bw > max_frl_bw) 1302 return MODE_CLOCK_HIGH; 1303 1304 return MODE_OK; 1305 } 1306 1307 if (intel_dp->dfp.max_dotclock && 1308 target_clock > intel_dp->dfp.max_dotclock) 1309 return MODE_CLOCK_HIGH; 1310 1311 sink_format = intel_dp_sink_format(connector, mode); 1312 1313 /* Assume 8bpc for the DP++/HDMI/DVI TMDS clock check */ 1314 status = intel_dp_tmds_clock_valid(intel_dp, target_clock, 1315 8, sink_format, true); 1316 1317 if (status != MODE_OK) { 1318 if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 1319 !connector->base.ycbcr_420_allowed || 1320 !drm_mode_is_420_also(info, mode)) 1321 return status; 1322 sink_format = INTEL_OUTPUT_FORMAT_YCBCR420; 1323 status = intel_dp_tmds_clock_valid(intel_dp, target_clock, 1324 8, sink_format, true); 1325 if (status != MODE_OK) 1326 return status; 1327 } 1328 1329 return MODE_OK; 1330 } 1331 1332 static 1333 bool intel_dp_needs_joiner(struct intel_dp *intel_dp, 1334 struct intel_connector *connector, 1335 int hdisplay, int clock, 1336 int num_joined_pipes) 1337 { 1338 struct intel_display *display = to_intel_display(intel_dp); 1339 int hdisplay_limit; 1340 1341 if (!intel_dp_has_joiner(intel_dp)) 1342 return false; 1343 1344 num_joined_pipes /= 2; 1345 1346 hdisplay_limit = DISPLAY_VER(display) >= 30 ? 6144 : 5120; 1347 1348 return clock > num_joined_pipes * display->cdclk.max_dotclk_freq || 1349 hdisplay > num_joined_pipes * hdisplay_limit; 1350 } 1351 1352 int intel_dp_num_joined_pipes(struct intel_dp *intel_dp, 1353 struct intel_connector *connector, 1354 int hdisplay, int clock) 1355 { 1356 struct intel_display *display = to_intel_display(intel_dp); 1357 1358 if (connector->force_joined_pipes) 1359 return connector->force_joined_pipes; 1360 1361 if (HAS_ULTRAJOINER(display) && 1362 intel_dp_needs_joiner(intel_dp, connector, hdisplay, clock, 4)) 1363 return 4; 1364 1365 if ((HAS_BIGJOINER(display) || HAS_UNCOMPRESSED_JOINER(display)) && 1366 intel_dp_needs_joiner(intel_dp, connector, hdisplay, clock, 2)) 1367 return 2; 1368 1369 return 1; 1370 } 1371 1372 bool intel_dp_has_dsc(const struct intel_connector *connector) 1373 { 1374 struct intel_display *display = to_intel_display(connector); 1375 1376 if (!HAS_DSC(display)) 1377 return false; 1378 1379 if (connector->mst.dp && !HAS_DSC_MST(display)) 1380 return false; 1381 1382 if (connector->base.connector_type == DRM_MODE_CONNECTOR_eDP && 1383 connector->panel.vbt.edp.dsc_disable) 1384 return false; 1385 1386 if (!drm_dp_sink_supports_dsc(connector->dp.dsc_dpcd)) 1387 return false; 1388 1389 return true; 1390 } 1391 1392 static enum drm_mode_status 1393 intel_dp_mode_valid(struct drm_connector *_connector, 1394 const struct drm_display_mode *mode) 1395 { 1396 struct intel_display *display = to_intel_display(_connector->dev); 1397 struct intel_connector *connector = to_intel_connector(_connector); 1398 struct intel_dp *intel_dp = intel_attached_dp(connector); 1399 const struct drm_display_mode *fixed_mode; 1400 int target_clock = mode->clock; 1401 int max_rate, mode_rate, max_lanes, max_link_clock; 1402 int max_dotclk = display->cdclk.max_dotclk_freq; 1403 u16 dsc_max_compressed_bpp = 0; 1404 u8 dsc_slice_count = 0; 1405 enum drm_mode_status status; 1406 bool dsc = false; 1407 int num_joined_pipes; 1408 1409 status = intel_cpu_transcoder_mode_valid(display, mode); 1410 if (status != MODE_OK) 1411 return status; 1412 1413 if (mode->flags & DRM_MODE_FLAG_DBLCLK) 1414 return MODE_H_ILLEGAL; 1415 1416 if (mode->clock < 10000) 1417 return MODE_CLOCK_LOW; 1418 1419 fixed_mode = intel_panel_fixed_mode(connector, mode); 1420 if (intel_dp_is_edp(intel_dp) && fixed_mode) { 1421 status = intel_panel_mode_valid(connector, mode); 1422 if (status != MODE_OK) 1423 return status; 1424 1425 target_clock = fixed_mode->clock; 1426 } 1427 1428 num_joined_pipes = intel_dp_num_joined_pipes(intel_dp, connector, 1429 mode->hdisplay, target_clock); 1430 max_dotclk *= num_joined_pipes; 1431 1432 if (target_clock > max_dotclk) 1433 return MODE_CLOCK_HIGH; 1434 1435 if (intel_dp_hdisplay_bad(display, mode->hdisplay)) 1436 return MODE_H_ILLEGAL; 1437 1438 max_link_clock = intel_dp_max_link_rate(intel_dp); 1439 max_lanes = intel_dp_max_lane_count(intel_dp); 1440 1441 max_rate = intel_dp_max_link_data_rate(intel_dp, max_link_clock, max_lanes); 1442 1443 mode_rate = intel_dp_link_required(target_clock, 1444 intel_dp_mode_min_output_bpp(connector, mode)); 1445 1446 if (intel_dp_has_dsc(connector)) { 1447 enum intel_output_format sink_format, output_format; 1448 int pipe_bpp; 1449 1450 sink_format = intel_dp_sink_format(connector, mode); 1451 output_format = intel_dp_output_format(connector, sink_format); 1452 /* 1453 * TBD pass the connector BPC, 1454 * for now U8_MAX so that max BPC on that platform would be picked 1455 */ 1456 pipe_bpp = intel_dp_dsc_compute_max_bpp(connector, U8_MAX); 1457 1458 /* 1459 * Output bpp is stored in 6.4 format so right shift by 4 to get the 1460 * integer value since we support only integer values of bpp. 1461 */ 1462 if (intel_dp_is_edp(intel_dp)) { 1463 dsc_max_compressed_bpp = 1464 drm_edp_dsc_sink_output_bpp(connector->dp.dsc_dpcd) >> 4; 1465 dsc_slice_count = 1466 drm_dp_dsc_sink_max_slice_count(connector->dp.dsc_dpcd, 1467 true); 1468 } else if (drm_dp_sink_supports_fec(connector->dp.fec_capability)) { 1469 dsc_max_compressed_bpp = 1470 intel_dp_dsc_get_max_compressed_bpp(display, 1471 max_link_clock, 1472 max_lanes, 1473 target_clock, 1474 mode->hdisplay, 1475 num_joined_pipes, 1476 output_format, 1477 pipe_bpp, 64); 1478 dsc_slice_count = 1479 intel_dp_dsc_get_slice_count(connector, 1480 target_clock, 1481 mode->hdisplay, 1482 num_joined_pipes); 1483 } 1484 1485 dsc = dsc_max_compressed_bpp && dsc_slice_count; 1486 } 1487 1488 if (intel_dp_joiner_needs_dsc(display, num_joined_pipes) && !dsc) 1489 return MODE_CLOCK_HIGH; 1490 1491 if (mode_rate > max_rate && !dsc) 1492 return MODE_CLOCK_HIGH; 1493 1494 status = intel_dp_mode_valid_downstream(connector, mode, target_clock); 1495 if (status != MODE_OK) 1496 return status; 1497 1498 return intel_mode_valid_max_plane_size(display, mode, num_joined_pipes); 1499 } 1500 1501 bool intel_dp_source_supports_tps3(struct intel_display *display) 1502 { 1503 return DISPLAY_VER(display) >= 9 || 1504 display->platform.broadwell || display->platform.haswell; 1505 } 1506 1507 bool intel_dp_source_supports_tps4(struct intel_display *display) 1508 { 1509 return DISPLAY_VER(display) >= 10; 1510 } 1511 1512 static void seq_buf_print_array(struct seq_buf *s, const int *array, int nelem) 1513 { 1514 int i; 1515 1516 for (i = 0; i < nelem; i++) 1517 seq_buf_printf(s, "%s%d", i ? ", " : "", array[i]); 1518 } 1519 1520 static void intel_dp_print_rates(struct intel_dp *intel_dp) 1521 { 1522 struct intel_display *display = to_intel_display(intel_dp); 1523 DECLARE_SEQ_BUF(s, 128); /* FIXME: too big for stack? */ 1524 1525 if (!drm_debug_enabled(DRM_UT_KMS)) 1526 return; 1527 1528 seq_buf_print_array(&s, intel_dp->source_rates, intel_dp->num_source_rates); 1529 drm_dbg_kms(display->drm, "source rates: %s\n", seq_buf_str(&s)); 1530 1531 seq_buf_clear(&s); 1532 seq_buf_print_array(&s, intel_dp->sink_rates, intel_dp->num_sink_rates); 1533 drm_dbg_kms(display->drm, "sink rates: %s\n", seq_buf_str(&s)); 1534 1535 seq_buf_clear(&s); 1536 seq_buf_print_array(&s, intel_dp->common_rates, intel_dp->num_common_rates); 1537 drm_dbg_kms(display->drm, "common rates: %s\n", seq_buf_str(&s)); 1538 } 1539 1540 static int forced_link_rate(struct intel_dp *intel_dp) 1541 { 1542 int len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->link.force_rate); 1543 1544 if (len == 0) 1545 return intel_dp_common_rate(intel_dp, 0); 1546 1547 return intel_dp_common_rate(intel_dp, len - 1); 1548 } 1549 1550 int 1551 intel_dp_max_link_rate(struct intel_dp *intel_dp) 1552 { 1553 int len; 1554 1555 if (intel_dp->link.force_rate) 1556 return forced_link_rate(intel_dp); 1557 1558 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->link.max_rate); 1559 1560 return intel_dp_common_rate(intel_dp, len - 1); 1561 } 1562 1563 static int 1564 intel_dp_min_link_rate(struct intel_dp *intel_dp) 1565 { 1566 if (intel_dp->link.force_rate) 1567 return forced_link_rate(intel_dp); 1568 1569 return intel_dp_common_rate(intel_dp, 0); 1570 } 1571 1572 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate) 1573 { 1574 struct intel_display *display = to_intel_display(intel_dp); 1575 int i = intel_dp_rate_index(intel_dp->sink_rates, 1576 intel_dp->num_sink_rates, rate); 1577 1578 if (drm_WARN_ON(display->drm, i < 0)) 1579 i = 0; 1580 1581 return i; 1582 } 1583 1584 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock, 1585 u8 *link_bw, u8 *rate_select) 1586 { 1587 /* eDP 1.4 rate select method. */ 1588 if (intel_dp->use_rate_select) { 1589 *link_bw = 0; 1590 *rate_select = 1591 intel_dp_rate_select(intel_dp, port_clock); 1592 } else { 1593 *link_bw = drm_dp_link_rate_to_bw_code(port_clock); 1594 *rate_select = 0; 1595 } 1596 } 1597 1598 bool intel_dp_has_hdmi_sink(struct intel_dp *intel_dp) 1599 { 1600 struct intel_connector *connector = intel_dp->attached_connector; 1601 1602 return connector->base.display_info.is_hdmi; 1603 } 1604 1605 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp, 1606 const struct intel_crtc_state *pipe_config) 1607 { 1608 struct intel_display *display = to_intel_display(intel_dp); 1609 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 1610 1611 if (DISPLAY_VER(display) >= 12) 1612 return true; 1613 1614 if (DISPLAY_VER(display) == 11 && encoder->port != PORT_A && 1615 !intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) 1616 return true; 1617 1618 return false; 1619 } 1620 1621 bool intel_dp_supports_fec(struct intel_dp *intel_dp, 1622 const struct intel_connector *connector, 1623 const struct intel_crtc_state *pipe_config) 1624 { 1625 return intel_dp_source_supports_fec(intel_dp, pipe_config) && 1626 drm_dp_sink_supports_fec(connector->dp.fec_capability); 1627 } 1628 1629 bool intel_dp_supports_dsc(struct intel_dp *intel_dp, 1630 const struct intel_connector *connector, 1631 const struct intel_crtc_state *crtc_state) 1632 { 1633 if (!intel_dp_has_dsc(connector)) 1634 return false; 1635 1636 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP) && 1637 !intel_dp_supports_fec(intel_dp, connector, crtc_state)) 1638 return false; 1639 1640 return intel_dsc_source_support(crtc_state); 1641 } 1642 1643 static int intel_dp_hdmi_compute_bpc(struct intel_dp *intel_dp, 1644 const struct intel_crtc_state *crtc_state, 1645 int bpc, bool respect_downstream_limits) 1646 { 1647 int clock = crtc_state->hw.adjusted_mode.crtc_clock; 1648 1649 /* 1650 * Current bpc could already be below 8bpc due to 1651 * FDI bandwidth constraints or other limits. 1652 * HDMI minimum is 8bpc however. 1653 */ 1654 bpc = max(bpc, 8); 1655 1656 /* 1657 * We will never exceed downstream TMDS clock limits while 1658 * attempting deep color. If the user insists on forcing an 1659 * out of spec mode they will have to be satisfied with 8bpc. 1660 */ 1661 if (!respect_downstream_limits) 1662 bpc = 8; 1663 1664 for (; bpc >= 8; bpc -= 2) { 1665 if (intel_hdmi_bpc_possible(crtc_state, bpc, 1666 intel_dp_has_hdmi_sink(intel_dp)) && 1667 intel_dp_tmds_clock_valid(intel_dp, clock, bpc, crtc_state->sink_format, 1668 respect_downstream_limits) == MODE_OK) 1669 return bpc; 1670 } 1671 1672 return -EINVAL; 1673 } 1674 1675 static int intel_dp_max_bpp(struct intel_dp *intel_dp, 1676 const struct intel_crtc_state *crtc_state, 1677 bool respect_downstream_limits) 1678 { 1679 struct intel_display *display = to_intel_display(intel_dp); 1680 struct intel_connector *connector = intel_dp->attached_connector; 1681 int bpp, bpc; 1682 1683 bpc = crtc_state->pipe_bpp / 3; 1684 1685 if (intel_dp->dfp.max_bpc) 1686 bpc = min_t(int, bpc, intel_dp->dfp.max_bpc); 1687 1688 if (intel_dp->dfp.min_tmds_clock) { 1689 int max_hdmi_bpc; 1690 1691 max_hdmi_bpc = intel_dp_hdmi_compute_bpc(intel_dp, crtc_state, bpc, 1692 respect_downstream_limits); 1693 if (max_hdmi_bpc < 0) 1694 return 0; 1695 1696 bpc = min(bpc, max_hdmi_bpc); 1697 } 1698 1699 bpp = bpc * 3; 1700 if (intel_dp_is_edp(intel_dp)) { 1701 /* Get bpp from vbt only for panels that dont have bpp in edid */ 1702 if (connector->base.display_info.bpc == 0 && 1703 connector->panel.vbt.edp.bpp && 1704 connector->panel.vbt.edp.bpp < bpp) { 1705 drm_dbg_kms(display->drm, 1706 "clamping bpp for eDP panel to BIOS-provided %i\n", 1707 connector->panel.vbt.edp.bpp); 1708 bpp = connector->panel.vbt.edp.bpp; 1709 } 1710 } 1711 1712 return bpp; 1713 } 1714 1715 static bool has_seamless_m_n(struct intel_connector *connector) 1716 { 1717 struct intel_display *display = to_intel_display(connector); 1718 1719 /* 1720 * Seamless M/N reprogramming only implemented 1721 * for BDW+ double buffered M/N registers so far. 1722 */ 1723 return HAS_DOUBLE_BUFFERED_M_N(display) && 1724 intel_panel_drrs_type(connector) == DRRS_TYPE_SEAMLESS; 1725 } 1726 1727 static int intel_dp_mode_clock(const struct intel_crtc_state *crtc_state, 1728 const struct drm_connector_state *conn_state) 1729 { 1730 struct intel_connector *connector = to_intel_connector(conn_state->connector); 1731 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 1732 1733 /* FIXME a bit of a mess wrt clock vs. crtc_clock */ 1734 if (has_seamless_m_n(connector)) 1735 return intel_panel_highest_mode(connector, adjusted_mode)->clock; 1736 else 1737 return adjusted_mode->crtc_clock; 1738 } 1739 1740 /* Optimize link config in order: max bpp, min clock, min lanes */ 1741 static int 1742 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp, 1743 struct intel_crtc_state *pipe_config, 1744 const struct drm_connector_state *conn_state, 1745 const struct link_config_limits *limits) 1746 { 1747 int bpp, i, lane_count, clock = intel_dp_mode_clock(pipe_config, conn_state); 1748 int mode_rate, link_rate, link_avail; 1749 1750 for (bpp = fxp_q4_to_int(limits->link.max_bpp_x16); 1751 bpp >= fxp_q4_to_int(limits->link.min_bpp_x16); 1752 bpp -= 2 * 3) { 1753 int link_bpp = intel_dp_output_bpp(pipe_config->output_format, bpp); 1754 1755 mode_rate = intel_dp_link_required(clock, link_bpp); 1756 1757 for (i = 0; i < intel_dp->num_common_rates; i++) { 1758 link_rate = intel_dp_common_rate(intel_dp, i); 1759 if (link_rate < limits->min_rate || 1760 link_rate > limits->max_rate) 1761 continue; 1762 1763 for (lane_count = limits->min_lane_count; 1764 lane_count <= limits->max_lane_count; 1765 lane_count <<= 1) { 1766 link_avail = intel_dp_max_link_data_rate(intel_dp, 1767 link_rate, 1768 lane_count); 1769 1770 1771 if (mode_rate <= link_avail) { 1772 pipe_config->lane_count = lane_count; 1773 pipe_config->pipe_bpp = bpp; 1774 pipe_config->port_clock = link_rate; 1775 1776 return 0; 1777 } 1778 } 1779 } 1780 } 1781 1782 return -EINVAL; 1783 } 1784 1785 int intel_dp_dsc_max_src_input_bpc(struct intel_display *display) 1786 { 1787 /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */ 1788 if (DISPLAY_VER(display) >= 12) 1789 return 12; 1790 if (DISPLAY_VER(display) == 11) 1791 return 10; 1792 1793 return intel_dp_dsc_min_src_input_bpc(); 1794 } 1795 1796 int intel_dp_dsc_compute_max_bpp(const struct intel_connector *connector, 1797 u8 max_req_bpc) 1798 { 1799 struct intel_display *display = to_intel_display(connector); 1800 int i, num_bpc; 1801 u8 dsc_bpc[3] = {}; 1802 int dsc_max_bpc; 1803 1804 dsc_max_bpc = intel_dp_dsc_max_src_input_bpc(display); 1805 1806 if (!dsc_max_bpc) 1807 return dsc_max_bpc; 1808 1809 dsc_max_bpc = min(dsc_max_bpc, max_req_bpc); 1810 1811 num_bpc = drm_dp_dsc_sink_supported_input_bpcs(connector->dp.dsc_dpcd, 1812 dsc_bpc); 1813 for (i = 0; i < num_bpc; i++) { 1814 if (dsc_max_bpc >= dsc_bpc[i]) 1815 return dsc_bpc[i] * 3; 1816 } 1817 1818 return 0; 1819 } 1820 1821 static int intel_dp_source_dsc_version_minor(struct intel_display *display) 1822 { 1823 return DISPLAY_VER(display) >= 14 ? 2 : 1; 1824 } 1825 1826 static int intel_dp_sink_dsc_version_minor(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE]) 1827 { 1828 return (dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] & DP_DSC_MINOR_MASK) >> 1829 DP_DSC_MINOR_SHIFT; 1830 } 1831 1832 static int intel_dp_get_slice_height(int vactive) 1833 { 1834 int slice_height; 1835 1836 /* 1837 * VDSC 1.2a spec in Section 3.8 Options for Slices implies that 108 1838 * lines is an optimal slice height, but any size can be used as long as 1839 * vertical active integer multiple and maximum vertical slice count 1840 * requirements are met. 1841 */ 1842 for (slice_height = 108; slice_height <= vactive; slice_height += 2) 1843 if (vactive % slice_height == 0) 1844 return slice_height; 1845 1846 /* 1847 * Highly unlikely we reach here as most of the resolutions will end up 1848 * finding appropriate slice_height in above loop but returning 1849 * slice_height as 2 here as it should work with all resolutions. 1850 */ 1851 return 2; 1852 } 1853 1854 static int intel_dp_dsc_compute_params(const struct intel_connector *connector, 1855 struct intel_crtc_state *crtc_state) 1856 { 1857 struct intel_display *display = to_intel_display(connector); 1858 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; 1859 int ret; 1860 1861 /* 1862 * RC_MODEL_SIZE is currently a constant across all configurations. 1863 * 1864 * FIXME: Look into using sink defined DPCD DP_DSC_RC_BUF_BLK_SIZE and 1865 * DP_DSC_RC_BUF_SIZE for this. 1866 */ 1867 vdsc_cfg->rc_model_size = DSC_RC_MODEL_SIZE_CONST; 1868 vdsc_cfg->pic_height = crtc_state->hw.adjusted_mode.crtc_vdisplay; 1869 1870 vdsc_cfg->slice_height = intel_dp_get_slice_height(vdsc_cfg->pic_height); 1871 1872 ret = intel_dsc_compute_params(crtc_state); 1873 if (ret) 1874 return ret; 1875 1876 vdsc_cfg->dsc_version_major = 1877 (connector->dp.dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] & 1878 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT; 1879 vdsc_cfg->dsc_version_minor = 1880 min(intel_dp_source_dsc_version_minor(display), 1881 intel_dp_sink_dsc_version_minor(connector->dp.dsc_dpcd)); 1882 if (vdsc_cfg->convert_rgb) 1883 vdsc_cfg->convert_rgb = 1884 connector->dp.dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] & 1885 DP_DSC_RGB; 1886 1887 vdsc_cfg->line_buf_depth = min(INTEL_DP_DSC_MAX_LINE_BUF_DEPTH, 1888 drm_dp_dsc_sink_line_buf_depth(connector->dp.dsc_dpcd)); 1889 if (!vdsc_cfg->line_buf_depth) { 1890 drm_dbg_kms(display->drm, 1891 "DSC Sink Line Buffer Depth invalid\n"); 1892 return -EINVAL; 1893 } 1894 1895 vdsc_cfg->block_pred_enable = 1896 connector->dp.dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] & 1897 DP_DSC_BLK_PREDICTION_IS_SUPPORTED; 1898 1899 return drm_dsc_compute_rc_parameters(vdsc_cfg); 1900 } 1901 1902 static bool intel_dp_dsc_supports_format(const struct intel_connector *connector, 1903 enum intel_output_format output_format) 1904 { 1905 struct intel_display *display = to_intel_display(connector); 1906 u8 sink_dsc_format; 1907 1908 switch (output_format) { 1909 case INTEL_OUTPUT_FORMAT_RGB: 1910 sink_dsc_format = DP_DSC_RGB; 1911 break; 1912 case INTEL_OUTPUT_FORMAT_YCBCR444: 1913 sink_dsc_format = DP_DSC_YCbCr444; 1914 break; 1915 case INTEL_OUTPUT_FORMAT_YCBCR420: 1916 if (min(intel_dp_source_dsc_version_minor(display), 1917 intel_dp_sink_dsc_version_minor(connector->dp.dsc_dpcd)) < 2) 1918 return false; 1919 sink_dsc_format = DP_DSC_YCbCr420_Native; 1920 break; 1921 default: 1922 return false; 1923 } 1924 1925 return drm_dp_dsc_sink_supports_format(connector->dp.dsc_dpcd, sink_dsc_format); 1926 } 1927 1928 static bool is_bw_sufficient_for_dsc_config(int dsc_bpp_x16, u32 link_clock, 1929 u32 lane_count, u32 mode_clock, 1930 enum intel_output_format output_format, 1931 int timeslots) 1932 { 1933 u32 available_bw, required_bw; 1934 1935 available_bw = (link_clock * lane_count * timeslots * 16) / 8; 1936 required_bw = dsc_bpp_x16 * (intel_dp_mode_to_fec_clock(mode_clock)); 1937 1938 return available_bw > required_bw; 1939 } 1940 1941 static int dsc_compute_link_config(struct intel_dp *intel_dp, 1942 struct intel_crtc_state *pipe_config, 1943 struct drm_connector_state *conn_state, 1944 const struct link_config_limits *limits, 1945 int dsc_bpp_x16, 1946 int timeslots) 1947 { 1948 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 1949 int link_rate, lane_count; 1950 int i; 1951 1952 for (i = 0; i < intel_dp->num_common_rates; i++) { 1953 link_rate = intel_dp_common_rate(intel_dp, i); 1954 if (link_rate < limits->min_rate || link_rate > limits->max_rate) 1955 continue; 1956 1957 for (lane_count = limits->min_lane_count; 1958 lane_count <= limits->max_lane_count; 1959 lane_count <<= 1) { 1960 1961 /* 1962 * FIXME: intel_dp_mtp_tu_compute_config() requires 1963 * ->lane_count and ->port_clock set before we know 1964 * they'll work. If we end up failing altogether, 1965 * they'll remain in crtc state. This shouldn't matter, 1966 * as we'd then bail out from compute config, but it's 1967 * just ugly. 1968 */ 1969 pipe_config->lane_count = lane_count; 1970 pipe_config->port_clock = link_rate; 1971 1972 if (drm_dp_is_uhbr_rate(link_rate)) { 1973 int ret; 1974 1975 ret = intel_dp_mtp_tu_compute_config(intel_dp, 1976 pipe_config, 1977 conn_state, 1978 dsc_bpp_x16, 1979 dsc_bpp_x16, 1980 0, true); 1981 if (ret) 1982 continue; 1983 } else { 1984 if (!is_bw_sufficient_for_dsc_config(dsc_bpp_x16, link_rate, 1985 lane_count, adjusted_mode->clock, 1986 pipe_config->output_format, 1987 timeslots)) 1988 continue; 1989 } 1990 1991 return 0; 1992 } 1993 } 1994 1995 return -EINVAL; 1996 } 1997 1998 static 1999 u16 intel_dp_dsc_max_sink_compressed_bppx16(const struct intel_connector *connector, 2000 const struct intel_crtc_state *pipe_config, 2001 int bpc) 2002 { 2003 u16 max_bppx16 = drm_edp_dsc_sink_output_bpp(connector->dp.dsc_dpcd); 2004 2005 if (max_bppx16) 2006 return max_bppx16; 2007 /* 2008 * If support not given in DPCD 67h, 68h use the Maximum Allowed bit rate 2009 * values as given in spec Table 2-157 DP v2.0 2010 */ 2011 switch (pipe_config->output_format) { 2012 case INTEL_OUTPUT_FORMAT_RGB: 2013 case INTEL_OUTPUT_FORMAT_YCBCR444: 2014 return (3 * bpc) << 4; 2015 case INTEL_OUTPUT_FORMAT_YCBCR420: 2016 return (3 * (bpc / 2)) << 4; 2017 default: 2018 MISSING_CASE(pipe_config->output_format); 2019 break; 2020 } 2021 2022 return 0; 2023 } 2024 2025 int intel_dp_dsc_sink_min_compressed_bpp(const struct intel_crtc_state *pipe_config) 2026 { 2027 /* From Mandatory bit rate range Support Table 2-157 (DP v2.0) */ 2028 switch (pipe_config->output_format) { 2029 case INTEL_OUTPUT_FORMAT_RGB: 2030 case INTEL_OUTPUT_FORMAT_YCBCR444: 2031 return 8; 2032 case INTEL_OUTPUT_FORMAT_YCBCR420: 2033 return 6; 2034 default: 2035 MISSING_CASE(pipe_config->output_format); 2036 break; 2037 } 2038 2039 return 0; 2040 } 2041 2042 int intel_dp_dsc_sink_max_compressed_bpp(const struct intel_connector *connector, 2043 const struct intel_crtc_state *pipe_config, 2044 int bpc) 2045 { 2046 return intel_dp_dsc_max_sink_compressed_bppx16(connector, 2047 pipe_config, bpc) >> 4; 2048 } 2049 2050 static int dsc_src_min_compressed_bpp(void) 2051 { 2052 /* Min Compressed bpp supported by source is 8 */ 2053 return 8; 2054 } 2055 2056 static int dsc_src_max_compressed_bpp(struct intel_dp *intel_dp) 2057 { 2058 struct intel_display *display = to_intel_display(intel_dp); 2059 2060 /* 2061 * Forcing DSC and using the platform's max compressed bpp is seen to cause 2062 * underruns. Since DSC isn't needed in these cases, limit the 2063 * max compressed bpp to 18, which is a safe value across platforms with different 2064 * pipe bpps. 2065 */ 2066 if (intel_dp->force_dsc_en) 2067 return 18; 2068 2069 /* 2070 * Max Compressed bpp for Gen 13+ is 27bpp. 2071 * For earlier platform is 23bpp. (Bspec:49259). 2072 */ 2073 if (DISPLAY_VER(display) < 13) 2074 return 23; 2075 else 2076 return 27; 2077 } 2078 2079 /* 2080 * Note: for pre-13 display you still need to check the validity of each step. 2081 */ 2082 static int intel_dp_dsc_bpp_step_x16(const struct intel_connector *connector) 2083 { 2084 struct intel_display *display = to_intel_display(connector); 2085 u8 incr = drm_dp_dsc_sink_bpp_incr(connector->dp.dsc_dpcd); 2086 2087 if (DISPLAY_VER(display) < 14 || !incr) 2088 return fxp_q4_from_int(1); 2089 2090 /* fxp q4 */ 2091 return fxp_q4_from_int(1) / incr; 2092 } 2093 2094 /* Note: This is not universally usable! */ 2095 static bool intel_dp_dsc_valid_bpp(struct intel_dp *intel_dp, int bpp_x16) 2096 { 2097 struct intel_display *display = to_intel_display(intel_dp); 2098 int i; 2099 2100 if (DISPLAY_VER(display) >= 13) { 2101 if (intel_dp->force_dsc_fractional_bpp_en && !fxp_q4_to_frac(bpp_x16)) 2102 return false; 2103 2104 return true; 2105 } 2106 2107 if (fxp_q4_to_frac(bpp_x16)) 2108 return false; 2109 2110 for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp); i++) { 2111 if (fxp_q4_to_int(bpp_x16) == valid_dsc_bpp[i]) 2112 return true; 2113 } 2114 2115 return false; 2116 } 2117 2118 /* 2119 * Find the max compressed BPP we can find a link configuration for. The BPPs to 2120 * try depend on the source (platform) and sink. 2121 */ 2122 static int dsc_compute_compressed_bpp(struct intel_dp *intel_dp, 2123 struct intel_crtc_state *pipe_config, 2124 struct drm_connector_state *conn_state, 2125 const struct link_config_limits *limits, 2126 int pipe_bpp, 2127 int timeslots) 2128 { 2129 struct intel_display *display = to_intel_display(intel_dp); 2130 const struct intel_connector *connector = to_intel_connector(conn_state->connector); 2131 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2132 int output_bpp; 2133 int dsc_min_bpp; 2134 int dsc_max_bpp; 2135 int min_bpp_x16, max_bpp_x16, bpp_step_x16; 2136 int dsc_joiner_max_bpp; 2137 int num_joined_pipes = intel_crtc_num_joined_pipes(pipe_config); 2138 int bpp_x16; 2139 int ret; 2140 2141 dsc_min_bpp = fxp_q4_to_int_roundup(limits->link.min_bpp_x16); 2142 2143 dsc_joiner_max_bpp = get_max_compressed_bpp_with_joiner(display, adjusted_mode->clock, 2144 adjusted_mode->hdisplay, 2145 num_joined_pipes); 2146 dsc_max_bpp = min(dsc_joiner_max_bpp, fxp_q4_to_int(limits->link.max_bpp_x16)); 2147 2148 /* FIXME: remove the round trip via integers */ 2149 min_bpp_x16 = fxp_q4_from_int(dsc_min_bpp); 2150 max_bpp_x16 = fxp_q4_from_int(dsc_max_bpp); 2151 2152 bpp_step_x16 = intel_dp_dsc_bpp_step_x16(connector); 2153 2154 /* Compressed BPP should be less than the Input DSC bpp */ 2155 output_bpp = intel_dp_output_bpp(pipe_config->output_format, pipe_bpp); 2156 max_bpp_x16 = min(max_bpp_x16, fxp_q4_from_int(output_bpp) - bpp_step_x16); 2157 2158 for (bpp_x16 = max_bpp_x16; bpp_x16 >= min_bpp_x16; bpp_x16 -= bpp_step_x16) { 2159 if (!intel_dp_dsc_valid_bpp(intel_dp, bpp_x16)) 2160 continue; 2161 2162 ret = dsc_compute_link_config(intel_dp, 2163 pipe_config, 2164 conn_state, 2165 limits, 2166 bpp_x16, 2167 timeslots); 2168 if (ret == 0) { 2169 pipe_config->dsc.compressed_bpp_x16 = bpp_x16; 2170 if (intel_dp->force_dsc_fractional_bpp_en && 2171 fxp_q4_to_frac(bpp_x16)) 2172 drm_dbg_kms(display->drm, 2173 "Forcing DSC fractional bpp\n"); 2174 2175 return 0; 2176 } 2177 } 2178 2179 return -EINVAL; 2180 } 2181 2182 int intel_dp_dsc_min_src_input_bpc(void) 2183 { 2184 /* Min DSC Input BPC for ICL+ is 8 */ 2185 return 8; 2186 } 2187 2188 static 2189 bool is_dsc_pipe_bpp_sufficient(const struct link_config_limits *limits, 2190 int pipe_bpp) 2191 { 2192 return pipe_bpp >= limits->pipe.min_bpp && 2193 pipe_bpp <= limits->pipe.max_bpp; 2194 } 2195 2196 static 2197 int intel_dp_force_dsc_pipe_bpp(struct intel_dp *intel_dp, 2198 const struct link_config_limits *limits) 2199 { 2200 struct intel_display *display = to_intel_display(intel_dp); 2201 int forced_bpp; 2202 2203 if (!intel_dp->force_dsc_bpc) 2204 return 0; 2205 2206 forced_bpp = intel_dp->force_dsc_bpc * 3; 2207 2208 if (is_dsc_pipe_bpp_sufficient(limits, forced_bpp)) { 2209 drm_dbg_kms(display->drm, "Input DSC BPC forced to %d\n", 2210 intel_dp->force_dsc_bpc); 2211 return forced_bpp; 2212 } 2213 2214 drm_dbg_kms(display->drm, 2215 "Cannot force DSC BPC:%d, due to DSC BPC limits\n", 2216 intel_dp->force_dsc_bpc); 2217 2218 return 0; 2219 } 2220 2221 static int intel_dp_dsc_compute_pipe_bpp(struct intel_dp *intel_dp, 2222 struct intel_crtc_state *pipe_config, 2223 struct drm_connector_state *conn_state, 2224 const struct link_config_limits *limits, 2225 int timeslots) 2226 { 2227 const struct intel_connector *connector = 2228 to_intel_connector(conn_state->connector); 2229 u8 dsc_bpc[3] = {}; 2230 int forced_bpp, pipe_bpp; 2231 int num_bpc, i, ret; 2232 2233 forced_bpp = intel_dp_force_dsc_pipe_bpp(intel_dp, limits); 2234 2235 if (forced_bpp) { 2236 ret = dsc_compute_compressed_bpp(intel_dp, pipe_config, conn_state, 2237 limits, forced_bpp, timeslots); 2238 if (ret == 0) { 2239 pipe_config->pipe_bpp = forced_bpp; 2240 return 0; 2241 } 2242 } 2243 2244 /* 2245 * Get the maximum DSC bpc that will be supported by any valid 2246 * link configuration and compressed bpp. 2247 */ 2248 num_bpc = drm_dp_dsc_sink_supported_input_bpcs(connector->dp.dsc_dpcd, dsc_bpc); 2249 for (i = 0; i < num_bpc; i++) { 2250 pipe_bpp = dsc_bpc[i] * 3; 2251 if (pipe_bpp < limits->pipe.min_bpp || pipe_bpp > limits->pipe.max_bpp) 2252 continue; 2253 2254 ret = dsc_compute_compressed_bpp(intel_dp, pipe_config, conn_state, 2255 limits, pipe_bpp, timeslots); 2256 if (ret == 0) { 2257 pipe_config->pipe_bpp = pipe_bpp; 2258 return 0; 2259 } 2260 } 2261 2262 return -EINVAL; 2263 } 2264 2265 static int intel_edp_dsc_compute_pipe_bpp(struct intel_dp *intel_dp, 2266 struct intel_crtc_state *pipe_config, 2267 struct drm_connector_state *conn_state, 2268 const struct link_config_limits *limits) 2269 { 2270 struct intel_display *display = to_intel_display(intel_dp); 2271 struct intel_connector *connector = 2272 to_intel_connector(conn_state->connector); 2273 int pipe_bpp, forced_bpp; 2274 int dsc_min_bpp; 2275 int dsc_max_bpp; 2276 2277 forced_bpp = intel_dp_force_dsc_pipe_bpp(intel_dp, limits); 2278 2279 if (forced_bpp) { 2280 pipe_bpp = forced_bpp; 2281 } else { 2282 int max_bpc = limits->pipe.max_bpp / 3; 2283 2284 /* For eDP use max bpp that can be supported with DSC. */ 2285 pipe_bpp = intel_dp_dsc_compute_max_bpp(connector, max_bpc); 2286 if (!is_dsc_pipe_bpp_sufficient(limits, pipe_bpp)) { 2287 drm_dbg_kms(display->drm, 2288 "Computed BPC is not in DSC BPC limits\n"); 2289 return -EINVAL; 2290 } 2291 } 2292 pipe_config->port_clock = limits->max_rate; 2293 pipe_config->lane_count = limits->max_lane_count; 2294 2295 dsc_min_bpp = fxp_q4_to_int_roundup(limits->link.min_bpp_x16); 2296 2297 dsc_max_bpp = fxp_q4_to_int(limits->link.max_bpp_x16); 2298 2299 /* Compressed BPP should be less than the Input DSC bpp */ 2300 dsc_max_bpp = min(dsc_max_bpp, pipe_bpp - 1); 2301 2302 pipe_config->dsc.compressed_bpp_x16 = 2303 fxp_q4_from_int(max(dsc_min_bpp, dsc_max_bpp)); 2304 2305 pipe_config->pipe_bpp = pipe_bpp; 2306 2307 return 0; 2308 } 2309 2310 static void intel_dp_fec_compute_config(struct intel_dp *intel_dp, 2311 struct intel_crtc_state *crtc_state) 2312 { 2313 if (crtc_state->fec_enable) 2314 return; 2315 2316 /* 2317 * Though eDP v1.5 supports FEC with DSC, unlike DP, it is optional. 2318 * Since, FEC is a bandwidth overhead, continue to not enable it for 2319 * eDP. Until, there is a good reason to do so. 2320 */ 2321 if (intel_dp_is_edp(intel_dp)) 2322 return; 2323 2324 if (intel_dp_is_uhbr(crtc_state)) 2325 return; 2326 2327 crtc_state->fec_enable = true; 2328 } 2329 2330 int intel_dp_dsc_compute_config(struct intel_dp *intel_dp, 2331 struct intel_crtc_state *pipe_config, 2332 struct drm_connector_state *conn_state, 2333 const struct link_config_limits *limits, 2334 int timeslots) 2335 { 2336 struct intel_display *display = to_intel_display(intel_dp); 2337 const struct intel_connector *connector = 2338 to_intel_connector(conn_state->connector); 2339 const struct drm_display_mode *adjusted_mode = 2340 &pipe_config->hw.adjusted_mode; 2341 int num_joined_pipes = intel_crtc_num_joined_pipes(pipe_config); 2342 bool is_mst = intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST); 2343 int ret; 2344 2345 intel_dp_fec_compute_config(intel_dp, pipe_config); 2346 2347 if (!intel_dp_dsc_supports_format(connector, pipe_config->output_format)) 2348 return -EINVAL; 2349 2350 /* 2351 * Link parameters, pipe bpp and compressed bpp have already been 2352 * figured out for DP MST DSC. 2353 */ 2354 if (!is_mst) { 2355 if (intel_dp_is_edp(intel_dp)) 2356 ret = intel_edp_dsc_compute_pipe_bpp(intel_dp, pipe_config, 2357 conn_state, limits); 2358 else 2359 ret = intel_dp_dsc_compute_pipe_bpp(intel_dp, pipe_config, 2360 conn_state, limits, timeslots); 2361 if (ret) { 2362 drm_dbg_kms(display->drm, 2363 "No Valid pipe bpp for given mode ret = %d\n", ret); 2364 return ret; 2365 } 2366 } 2367 2368 /* Calculate Slice count */ 2369 if (intel_dp_is_edp(intel_dp)) { 2370 pipe_config->dsc.slice_count = 2371 drm_dp_dsc_sink_max_slice_count(connector->dp.dsc_dpcd, 2372 true); 2373 if (!pipe_config->dsc.slice_count) { 2374 drm_dbg_kms(display->drm, 2375 "Unsupported Slice Count %d\n", 2376 pipe_config->dsc.slice_count); 2377 return -EINVAL; 2378 } 2379 } else { 2380 u8 dsc_dp_slice_count; 2381 2382 dsc_dp_slice_count = 2383 intel_dp_dsc_get_slice_count(connector, 2384 adjusted_mode->crtc_clock, 2385 adjusted_mode->crtc_hdisplay, 2386 num_joined_pipes); 2387 if (!dsc_dp_slice_count) { 2388 drm_dbg_kms(display->drm, 2389 "Compressed Slice Count not supported\n"); 2390 return -EINVAL; 2391 } 2392 2393 pipe_config->dsc.slice_count = dsc_dp_slice_count; 2394 } 2395 /* 2396 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate 2397 * is greater than the maximum Cdclock and if slice count is even 2398 * then we need to use 2 VDSC instances. 2399 * In case of Ultrajoiner along with 12 slices we need to use 3 2400 * VDSC instances. 2401 */ 2402 if (pipe_config->joiner_pipes && num_joined_pipes == 4 && 2403 pipe_config->dsc.slice_count == 12) 2404 pipe_config->dsc.num_streams = 3; 2405 else if (pipe_config->joiner_pipes || pipe_config->dsc.slice_count > 1) 2406 pipe_config->dsc.num_streams = 2; 2407 else 2408 pipe_config->dsc.num_streams = 1; 2409 2410 ret = intel_dp_dsc_compute_params(connector, pipe_config); 2411 if (ret < 0) { 2412 drm_dbg_kms(display->drm, 2413 "Cannot compute valid DSC parameters for Input Bpp = %d" 2414 "Compressed BPP = " FXP_Q4_FMT "\n", 2415 pipe_config->pipe_bpp, 2416 FXP_Q4_ARGS(pipe_config->dsc.compressed_bpp_x16)); 2417 return ret; 2418 } 2419 2420 pipe_config->dsc.compression_enable = true; 2421 drm_dbg_kms(display->drm, "DP DSC computed with Input Bpp = %d " 2422 "Compressed Bpp = " FXP_Q4_FMT " Slice Count = %d\n", 2423 pipe_config->pipe_bpp, 2424 FXP_Q4_ARGS(pipe_config->dsc.compressed_bpp_x16), 2425 pipe_config->dsc.slice_count); 2426 2427 return 0; 2428 } 2429 2430 /* 2431 * Calculate the output link min, max bpp values in limits based on the pipe bpp 2432 * range, crtc_state and dsc mode. Return true on success. 2433 */ 2434 static bool 2435 intel_dp_compute_config_link_bpp_limits(struct intel_dp *intel_dp, 2436 const struct intel_connector *connector, 2437 const struct intel_crtc_state *crtc_state, 2438 bool dsc, 2439 struct link_config_limits *limits) 2440 { 2441 struct intel_display *display = to_intel_display(intel_dp); 2442 const struct drm_display_mode *adjusted_mode = 2443 &crtc_state->hw.adjusted_mode; 2444 const struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2445 const struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 2446 int max_link_bpp_x16; 2447 2448 max_link_bpp_x16 = min(crtc_state->max_link_bpp_x16, 2449 fxp_q4_from_int(limits->pipe.max_bpp)); 2450 2451 if (!dsc) { 2452 max_link_bpp_x16 = rounddown(max_link_bpp_x16, fxp_q4_from_int(2 * 3)); 2453 2454 if (max_link_bpp_x16 < fxp_q4_from_int(limits->pipe.min_bpp)) 2455 return false; 2456 2457 limits->link.min_bpp_x16 = fxp_q4_from_int(limits->pipe.min_bpp); 2458 } else { 2459 int dsc_src_min_bpp, dsc_sink_min_bpp, dsc_min_bpp; 2460 int dsc_src_max_bpp, dsc_sink_max_bpp, dsc_max_bpp; 2461 2462 dsc_src_min_bpp = dsc_src_min_compressed_bpp(); 2463 dsc_sink_min_bpp = intel_dp_dsc_sink_min_compressed_bpp(crtc_state); 2464 dsc_min_bpp = max(dsc_src_min_bpp, dsc_sink_min_bpp); 2465 limits->link.min_bpp_x16 = fxp_q4_from_int(dsc_min_bpp); 2466 2467 dsc_src_max_bpp = dsc_src_max_compressed_bpp(intel_dp); 2468 dsc_sink_max_bpp = intel_dp_dsc_sink_max_compressed_bpp(connector, 2469 crtc_state, 2470 limits->pipe.max_bpp / 3); 2471 dsc_max_bpp = dsc_sink_max_bpp ? 2472 min(dsc_sink_max_bpp, dsc_src_max_bpp) : dsc_src_max_bpp; 2473 2474 max_link_bpp_x16 = min(max_link_bpp_x16, fxp_q4_from_int(dsc_max_bpp)); 2475 } 2476 2477 limits->link.max_bpp_x16 = max_link_bpp_x16; 2478 2479 drm_dbg_kms(display->drm, 2480 "[ENCODER:%d:%s][CRTC:%d:%s] DP link limits: pixel clock %d kHz DSC %s max lanes %d max rate %d max pipe_bpp %d max link_bpp " FXP_Q4_FMT "\n", 2481 encoder->base.base.id, encoder->base.name, 2482 crtc->base.base.id, crtc->base.name, 2483 adjusted_mode->crtc_clock, 2484 str_on_off(dsc), 2485 limits->max_lane_count, 2486 limits->max_rate, 2487 limits->pipe.max_bpp, 2488 FXP_Q4_ARGS(limits->link.max_bpp_x16)); 2489 2490 return true; 2491 } 2492 2493 static void 2494 intel_dp_dsc_compute_pipe_bpp_limits(struct intel_dp *intel_dp, 2495 struct link_config_limits *limits) 2496 { 2497 struct intel_display *display = to_intel_display(intel_dp); 2498 int dsc_min_bpc = intel_dp_dsc_min_src_input_bpc(); 2499 int dsc_max_bpc = intel_dp_dsc_max_src_input_bpc(display); 2500 2501 limits->pipe.max_bpp = clamp(limits->pipe.max_bpp, dsc_min_bpc * 3, dsc_max_bpc * 3); 2502 limits->pipe.min_bpp = clamp(limits->pipe.min_bpp, dsc_min_bpc * 3, dsc_max_bpc * 3); 2503 } 2504 2505 bool 2506 intel_dp_compute_config_limits(struct intel_dp *intel_dp, 2507 struct intel_crtc_state *crtc_state, 2508 bool respect_downstream_limits, 2509 bool dsc, 2510 struct link_config_limits *limits) 2511 { 2512 bool is_mst = intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST); 2513 2514 limits->min_rate = intel_dp_min_link_rate(intel_dp); 2515 limits->max_rate = intel_dp_max_link_rate(intel_dp); 2516 2517 limits->min_rate = min(limits->min_rate, limits->max_rate); 2518 2519 limits->min_lane_count = intel_dp_min_lane_count(intel_dp); 2520 limits->max_lane_count = intel_dp_max_lane_count(intel_dp); 2521 2522 limits->pipe.min_bpp = intel_dp_min_bpp(crtc_state->output_format); 2523 if (is_mst) { 2524 /* 2525 * FIXME: If all the streams can't fit into the link with their 2526 * current pipe_bpp we should reduce pipe_bpp across the board 2527 * until things start to fit. Until then we limit to <= 8bpc 2528 * since that's what was hardcoded for all MST streams 2529 * previously. This hack should be removed once we have the 2530 * proper retry logic in place. 2531 */ 2532 limits->pipe.max_bpp = min(crtc_state->pipe_bpp, 24); 2533 } else { 2534 limits->pipe.max_bpp = intel_dp_max_bpp(intel_dp, crtc_state, 2535 respect_downstream_limits); 2536 } 2537 2538 if (dsc) 2539 intel_dp_dsc_compute_pipe_bpp_limits(intel_dp, limits); 2540 2541 if (is_mst || intel_dp->use_max_params) { 2542 /* 2543 * For MST we always configure max link bw - the spec doesn't 2544 * seem to suggest we should do otherwise. 2545 * 2546 * Use the maximum clock and number of lanes the eDP panel 2547 * advertizes being capable of in case the initial fast 2548 * optimal params failed us. The panels are generally 2549 * designed to support only a single clock and lane 2550 * configuration, and typically on older panels these 2551 * values correspond to the native resolution of the panel. 2552 */ 2553 limits->min_lane_count = limits->max_lane_count; 2554 limits->min_rate = limits->max_rate; 2555 } 2556 2557 intel_dp_test_compute_config(intel_dp, crtc_state, limits); 2558 2559 return intel_dp_compute_config_link_bpp_limits(intel_dp, 2560 intel_dp->attached_connector, 2561 crtc_state, 2562 dsc, 2563 limits); 2564 } 2565 2566 int intel_dp_config_required_rate(const struct intel_crtc_state *crtc_state) 2567 { 2568 const struct drm_display_mode *adjusted_mode = 2569 &crtc_state->hw.adjusted_mode; 2570 int bpp = crtc_state->dsc.compression_enable ? 2571 fxp_q4_to_int_roundup(crtc_state->dsc.compressed_bpp_x16) : 2572 crtc_state->pipe_bpp; 2573 2574 return intel_dp_link_required(adjusted_mode->crtc_clock, bpp); 2575 } 2576 2577 bool intel_dp_joiner_needs_dsc(struct intel_display *display, 2578 int num_joined_pipes) 2579 { 2580 /* 2581 * Pipe joiner needs compression up to display 12 due to bandwidth 2582 * limitation. DG2 onwards pipe joiner can be enabled without 2583 * compression. 2584 * Ultrajoiner always needs compression. 2585 */ 2586 return (!HAS_UNCOMPRESSED_JOINER(display) && num_joined_pipes == 2) || 2587 num_joined_pipes == 4; 2588 } 2589 2590 static int 2591 intel_dp_compute_link_config(struct intel_encoder *encoder, 2592 struct intel_crtc_state *pipe_config, 2593 struct drm_connector_state *conn_state, 2594 bool respect_downstream_limits) 2595 { 2596 struct intel_display *display = to_intel_display(encoder); 2597 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 2598 struct intel_connector *connector = 2599 to_intel_connector(conn_state->connector); 2600 const struct drm_display_mode *adjusted_mode = 2601 &pipe_config->hw.adjusted_mode; 2602 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2603 struct link_config_limits limits; 2604 bool dsc_needed, joiner_needs_dsc; 2605 int num_joined_pipes; 2606 int ret = 0; 2607 2608 if (pipe_config->fec_enable && 2609 !intel_dp_supports_fec(intel_dp, connector, pipe_config)) 2610 return -EINVAL; 2611 2612 num_joined_pipes = intel_dp_num_joined_pipes(intel_dp, connector, 2613 adjusted_mode->crtc_hdisplay, 2614 adjusted_mode->crtc_clock); 2615 if (num_joined_pipes > 1) 2616 pipe_config->joiner_pipes = GENMASK(crtc->pipe + num_joined_pipes - 1, crtc->pipe); 2617 2618 joiner_needs_dsc = intel_dp_joiner_needs_dsc(display, num_joined_pipes); 2619 2620 dsc_needed = joiner_needs_dsc || intel_dp->force_dsc_en || 2621 !intel_dp_compute_config_limits(intel_dp, pipe_config, 2622 respect_downstream_limits, 2623 false, 2624 &limits); 2625 2626 if (!dsc_needed) { 2627 /* 2628 * Optimize for slow and wide for everything, because there are some 2629 * eDP 1.3 and 1.4 panels don't work well with fast and narrow. 2630 */ 2631 ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, 2632 conn_state, &limits); 2633 if (!ret && intel_dp_is_uhbr(pipe_config)) 2634 ret = intel_dp_mtp_tu_compute_config(intel_dp, 2635 pipe_config, 2636 conn_state, 2637 fxp_q4_from_int(pipe_config->pipe_bpp), 2638 fxp_q4_from_int(pipe_config->pipe_bpp), 2639 0, false); 2640 if (ret) 2641 dsc_needed = true; 2642 } 2643 2644 if (dsc_needed && !intel_dp_supports_dsc(intel_dp, connector, pipe_config)) { 2645 drm_dbg_kms(display->drm, "DSC required but not available\n"); 2646 return -EINVAL; 2647 } 2648 2649 if (dsc_needed) { 2650 drm_dbg_kms(display->drm, 2651 "Try DSC (fallback=%s, joiner=%s, force=%s)\n", 2652 str_yes_no(ret), str_yes_no(joiner_needs_dsc), 2653 str_yes_no(intel_dp->force_dsc_en)); 2654 2655 if (!intel_dp_compute_config_limits(intel_dp, pipe_config, 2656 respect_downstream_limits, 2657 true, 2658 &limits)) 2659 return -EINVAL; 2660 2661 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config, 2662 conn_state, &limits, 64); 2663 if (ret < 0) 2664 return ret; 2665 } 2666 2667 drm_dbg_kms(display->drm, 2668 "DP lane count %d clock %d bpp input %d compressed " FXP_Q4_FMT " link rate required %d available %d\n", 2669 pipe_config->lane_count, pipe_config->port_clock, 2670 pipe_config->pipe_bpp, 2671 FXP_Q4_ARGS(pipe_config->dsc.compressed_bpp_x16), 2672 intel_dp_config_required_rate(pipe_config), 2673 intel_dp_max_link_data_rate(intel_dp, 2674 pipe_config->port_clock, 2675 pipe_config->lane_count)); 2676 2677 return 0; 2678 } 2679 2680 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state, 2681 const struct drm_connector_state *conn_state) 2682 { 2683 const struct intel_digital_connector_state *intel_conn_state = 2684 to_intel_digital_connector_state(conn_state); 2685 const struct drm_display_mode *adjusted_mode = 2686 &crtc_state->hw.adjusted_mode; 2687 2688 /* 2689 * Our YCbCr output is always limited range. 2690 * crtc_state->limited_color_range only applies to RGB, 2691 * and it must never be set for YCbCr or we risk setting 2692 * some conflicting bits in TRANSCONF which will mess up 2693 * the colors on the monitor. 2694 */ 2695 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 2696 return false; 2697 2698 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { 2699 /* 2700 * See: 2701 * CEA-861-E - 5.1 Default Encoding Parameters 2702 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry 2703 */ 2704 return crtc_state->pipe_bpp != 18 && 2705 drm_default_rgb_quant_range(adjusted_mode) == 2706 HDMI_QUANTIZATION_RANGE_LIMITED; 2707 } else { 2708 return intel_conn_state->broadcast_rgb == 2709 INTEL_BROADCAST_RGB_LIMITED; 2710 } 2711 } 2712 2713 static bool intel_dp_port_has_audio(struct intel_display *display, enum port port) 2714 { 2715 if (display->platform.g4x) 2716 return false; 2717 if (DISPLAY_VER(display) < 12 && port == PORT_A) 2718 return false; 2719 2720 return true; 2721 } 2722 2723 static void intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state *crtc_state, 2724 const struct drm_connector_state *conn_state, 2725 struct drm_dp_vsc_sdp *vsc) 2726 { 2727 struct intel_display *display = to_intel_display(crtc_state); 2728 2729 if (crtc_state->has_panel_replay) { 2730 /* 2731 * Prepare VSC Header for SU as per DP 2.0 spec, Table 2-223 2732 * VSC SDP supporting 3D stereo, Panel Replay, and Pixel 2733 * Encoding/Colorimetry Format indication. 2734 */ 2735 vsc->revision = 0x7; 2736 } else { 2737 /* 2738 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118 2739 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/ 2740 * Colorimetry Format indication. 2741 */ 2742 vsc->revision = 0x5; 2743 } 2744 2745 vsc->length = 0x13; 2746 2747 /* DP 1.4a spec, Table 2-120 */ 2748 switch (crtc_state->output_format) { 2749 case INTEL_OUTPUT_FORMAT_YCBCR444: 2750 vsc->pixelformat = DP_PIXELFORMAT_YUV444; 2751 break; 2752 case INTEL_OUTPUT_FORMAT_YCBCR420: 2753 vsc->pixelformat = DP_PIXELFORMAT_YUV420; 2754 break; 2755 case INTEL_OUTPUT_FORMAT_RGB: 2756 default: 2757 vsc->pixelformat = DP_PIXELFORMAT_RGB; 2758 } 2759 2760 switch (conn_state->colorspace) { 2761 case DRM_MODE_COLORIMETRY_BT709_YCC: 2762 vsc->colorimetry = DP_COLORIMETRY_BT709_YCC; 2763 break; 2764 case DRM_MODE_COLORIMETRY_XVYCC_601: 2765 vsc->colorimetry = DP_COLORIMETRY_XVYCC_601; 2766 break; 2767 case DRM_MODE_COLORIMETRY_XVYCC_709: 2768 vsc->colorimetry = DP_COLORIMETRY_XVYCC_709; 2769 break; 2770 case DRM_MODE_COLORIMETRY_SYCC_601: 2771 vsc->colorimetry = DP_COLORIMETRY_SYCC_601; 2772 break; 2773 case DRM_MODE_COLORIMETRY_OPYCC_601: 2774 vsc->colorimetry = DP_COLORIMETRY_OPYCC_601; 2775 break; 2776 case DRM_MODE_COLORIMETRY_BT2020_CYCC: 2777 vsc->colorimetry = DP_COLORIMETRY_BT2020_CYCC; 2778 break; 2779 case DRM_MODE_COLORIMETRY_BT2020_RGB: 2780 vsc->colorimetry = DP_COLORIMETRY_BT2020_RGB; 2781 break; 2782 case DRM_MODE_COLORIMETRY_BT2020_YCC: 2783 vsc->colorimetry = DP_COLORIMETRY_BT2020_YCC; 2784 break; 2785 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65: 2786 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER: 2787 vsc->colorimetry = DP_COLORIMETRY_DCI_P3_RGB; 2788 break; 2789 default: 2790 /* 2791 * RGB->YCBCR color conversion uses the BT.709 2792 * color space. 2793 */ 2794 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 2795 vsc->colorimetry = DP_COLORIMETRY_BT709_YCC; 2796 else 2797 vsc->colorimetry = DP_COLORIMETRY_DEFAULT; 2798 break; 2799 } 2800 2801 vsc->bpc = crtc_state->pipe_bpp / 3; 2802 2803 /* only RGB pixelformat supports 6 bpc */ 2804 drm_WARN_ON(display->drm, 2805 vsc->bpc == 6 && vsc->pixelformat != DP_PIXELFORMAT_RGB); 2806 2807 /* all YCbCr are always limited range */ 2808 vsc->dynamic_range = DP_DYNAMIC_RANGE_CTA; 2809 vsc->content_type = DP_CONTENT_TYPE_NOT_DEFINED; 2810 } 2811 2812 static void intel_dp_compute_as_sdp(struct intel_dp *intel_dp, 2813 struct intel_crtc_state *crtc_state) 2814 { 2815 struct drm_dp_as_sdp *as_sdp = &crtc_state->infoframes.as_sdp; 2816 const struct drm_display_mode *adjusted_mode = 2817 &crtc_state->hw.adjusted_mode; 2818 2819 if (!crtc_state->vrr.enable || !intel_dp->as_sdp_supported) 2820 return; 2821 2822 crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_ADAPTIVE_SYNC); 2823 2824 as_sdp->sdp_type = DP_SDP_ADAPTIVE_SYNC; 2825 as_sdp->length = 0x9; 2826 as_sdp->duration_incr_ms = 0; 2827 as_sdp->vtotal = intel_vrr_vmin_vtotal(crtc_state); 2828 2829 if (crtc_state->cmrr.enable) { 2830 as_sdp->mode = DP_AS_SDP_FAVT_TRR_REACHED; 2831 as_sdp->target_rr = drm_mode_vrefresh(adjusted_mode); 2832 as_sdp->target_rr_divider = true; 2833 } else { 2834 as_sdp->mode = DP_AS_SDP_AVT_DYNAMIC_VTOTAL; 2835 as_sdp->target_rr = 0; 2836 } 2837 } 2838 2839 static void intel_dp_compute_vsc_sdp(struct intel_dp *intel_dp, 2840 struct intel_crtc_state *crtc_state, 2841 const struct drm_connector_state *conn_state) 2842 { 2843 struct drm_dp_vsc_sdp *vsc; 2844 2845 if ((!intel_dp->colorimetry_support || 2846 !intel_dp_needs_vsc_sdp(crtc_state, conn_state)) && 2847 !crtc_state->has_psr) 2848 return; 2849 2850 vsc = &crtc_state->infoframes.vsc; 2851 2852 crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC); 2853 vsc->sdp_type = DP_SDP_VSC; 2854 2855 /* Needs colorimetry */ 2856 if (intel_dp_needs_vsc_sdp(crtc_state, conn_state)) { 2857 intel_dp_compute_vsc_colorimetry(crtc_state, conn_state, 2858 vsc); 2859 } else if (crtc_state->has_panel_replay) { 2860 /* 2861 * [Panel Replay without colorimetry info] 2862 * Prepare VSC Header for SU as per DP 2.0 spec, Table 2-223 2863 * VSC SDP supporting 3D stereo + Panel Replay. 2864 */ 2865 vsc->revision = 0x6; 2866 vsc->length = 0x10; 2867 } else if (crtc_state->has_sel_update) { 2868 /* 2869 * [PSR2 without colorimetry] 2870 * Prepare VSC Header for SU as per eDP 1.4 spec, Table 6-11 2871 * 3D stereo + PSR/PSR2 + Y-coordinate. 2872 */ 2873 vsc->revision = 0x4; 2874 vsc->length = 0xe; 2875 } else { 2876 /* 2877 * [PSR1] 2878 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118 2879 * VSC SDP supporting 3D stereo + PSR (applies to eDP v1.3 or 2880 * higher). 2881 */ 2882 vsc->revision = 0x2; 2883 vsc->length = 0x8; 2884 } 2885 } 2886 2887 static void 2888 intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp, 2889 struct intel_crtc_state *crtc_state, 2890 const struct drm_connector_state *conn_state) 2891 { 2892 struct intel_display *display = to_intel_display(intel_dp); 2893 int ret; 2894 struct hdmi_drm_infoframe *drm_infoframe = &crtc_state->infoframes.drm.drm; 2895 2896 if (!conn_state->hdr_output_metadata) 2897 return; 2898 2899 ret = drm_hdmi_infoframe_set_hdr_metadata(drm_infoframe, conn_state); 2900 2901 if (ret) { 2902 drm_dbg_kms(display->drm, 2903 "couldn't set HDR metadata in infoframe\n"); 2904 return; 2905 } 2906 2907 crtc_state->infoframes.enable |= 2908 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA); 2909 } 2910 2911 static bool can_enable_drrs(struct intel_connector *connector, 2912 const struct intel_crtc_state *pipe_config, 2913 const struct drm_display_mode *downclock_mode) 2914 { 2915 struct intel_display *display = to_intel_display(connector); 2916 2917 if (pipe_config->vrr.enable) 2918 return false; 2919 2920 /* 2921 * DRRS and PSR can't be enable together, so giving preference to PSR 2922 * as it allows more power-savings by complete shutting down display, 2923 * so to guarantee this, intel_drrs_compute_config() must be called 2924 * after intel_psr_compute_config(). 2925 */ 2926 if (pipe_config->has_psr) 2927 return false; 2928 2929 /* FIXME missing FDI M2/N2 etc. */ 2930 if (pipe_config->has_pch_encoder) 2931 return false; 2932 2933 if (!intel_cpu_transcoder_has_drrs(display, pipe_config->cpu_transcoder)) 2934 return false; 2935 2936 return downclock_mode && 2937 intel_panel_drrs_type(connector) == DRRS_TYPE_SEAMLESS; 2938 } 2939 2940 static void 2941 intel_dp_drrs_compute_config(struct intel_connector *connector, 2942 struct intel_crtc_state *pipe_config, 2943 int link_bpp_x16) 2944 { 2945 struct intel_display *display = to_intel_display(connector); 2946 const struct drm_display_mode *downclock_mode = 2947 intel_panel_downclock_mode(connector, &pipe_config->hw.adjusted_mode); 2948 int pixel_clock; 2949 2950 /* 2951 * FIXME all joined pipes share the same transcoder. 2952 * Need to account for that when updating M/N live. 2953 */ 2954 if (has_seamless_m_n(connector) && !pipe_config->joiner_pipes) 2955 pipe_config->update_m_n = true; 2956 2957 if (!can_enable_drrs(connector, pipe_config, downclock_mode)) { 2958 if (intel_cpu_transcoder_has_m2_n2(display, pipe_config->cpu_transcoder)) 2959 intel_zero_m_n(&pipe_config->dp_m2_n2); 2960 return; 2961 } 2962 2963 if (display->platform.ironlake || display->platform.sandybridge || 2964 display->platform.ivybridge) 2965 pipe_config->msa_timing_delay = connector->panel.vbt.edp.drrs_msa_timing_delay; 2966 2967 pipe_config->has_drrs = true; 2968 2969 pixel_clock = downclock_mode->clock; 2970 if (pipe_config->splitter.enable) 2971 pixel_clock /= pipe_config->splitter.link_count; 2972 2973 intel_link_compute_m_n(link_bpp_x16, pipe_config->lane_count, pixel_clock, 2974 pipe_config->port_clock, 2975 intel_dp_bw_fec_overhead(pipe_config->fec_enable), 2976 &pipe_config->dp_m2_n2); 2977 2978 /* FIXME: abstract this better */ 2979 if (pipe_config->splitter.enable) 2980 pipe_config->dp_m2_n2.data_m *= pipe_config->splitter.link_count; 2981 } 2982 2983 static bool intel_dp_has_audio(struct intel_encoder *encoder, 2984 const struct drm_connector_state *conn_state) 2985 { 2986 struct intel_display *display = to_intel_display(encoder); 2987 const struct intel_digital_connector_state *intel_conn_state = 2988 to_intel_digital_connector_state(conn_state); 2989 struct intel_connector *connector = 2990 to_intel_connector(conn_state->connector); 2991 2992 if (!intel_dp_port_has_audio(display, encoder->port)) 2993 return false; 2994 2995 if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO) 2996 return connector->base.display_info.has_audio; 2997 else 2998 return intel_conn_state->force_audio == HDMI_AUDIO_ON; 2999 } 3000 3001 static int 3002 intel_dp_compute_output_format(struct intel_encoder *encoder, 3003 struct intel_crtc_state *crtc_state, 3004 struct drm_connector_state *conn_state, 3005 bool respect_downstream_limits) 3006 { 3007 struct intel_display *display = to_intel_display(encoder); 3008 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3009 struct intel_connector *connector = intel_dp->attached_connector; 3010 const struct drm_display_info *info = &connector->base.display_info; 3011 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 3012 bool ycbcr_420_only; 3013 int ret; 3014 3015 ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode); 3016 3017 if (ycbcr_420_only && !connector->base.ycbcr_420_allowed) { 3018 drm_dbg_kms(display->drm, 3019 "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n"); 3020 crtc_state->sink_format = INTEL_OUTPUT_FORMAT_RGB; 3021 } else { 3022 crtc_state->sink_format = intel_dp_sink_format(connector, adjusted_mode); 3023 } 3024 3025 crtc_state->output_format = intel_dp_output_format(connector, crtc_state->sink_format); 3026 3027 ret = intel_dp_compute_link_config(encoder, crtc_state, conn_state, 3028 respect_downstream_limits); 3029 if (ret) { 3030 if (crtc_state->sink_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 3031 !connector->base.ycbcr_420_allowed || 3032 !drm_mode_is_420_also(info, adjusted_mode)) 3033 return ret; 3034 3035 crtc_state->sink_format = INTEL_OUTPUT_FORMAT_YCBCR420; 3036 crtc_state->output_format = intel_dp_output_format(connector, 3037 crtc_state->sink_format); 3038 ret = intel_dp_compute_link_config(encoder, crtc_state, conn_state, 3039 respect_downstream_limits); 3040 } 3041 3042 return ret; 3043 } 3044 3045 void 3046 intel_dp_audio_compute_config(struct intel_encoder *encoder, 3047 struct intel_crtc_state *pipe_config, 3048 struct drm_connector_state *conn_state) 3049 { 3050 pipe_config->has_audio = 3051 intel_dp_has_audio(encoder, conn_state) && 3052 intel_audio_compute_config(encoder, pipe_config, conn_state); 3053 3054 pipe_config->sdp_split_enable = pipe_config->has_audio && 3055 intel_dp_is_uhbr(pipe_config); 3056 } 3057 3058 void 3059 intel_dp_queue_modeset_retry_for_link(struct intel_atomic_state *state, 3060 struct intel_encoder *encoder, 3061 const struct intel_crtc_state *crtc_state) 3062 { 3063 struct intel_connector *connector; 3064 struct intel_digital_connector_state *conn_state; 3065 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3066 int i; 3067 3068 if (intel_dp->needs_modeset_retry) 3069 return; 3070 3071 intel_dp->needs_modeset_retry = true; 3072 3073 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST)) { 3074 intel_connector_queue_modeset_retry_work(intel_dp->attached_connector); 3075 3076 return; 3077 } 3078 3079 for_each_new_intel_connector_in_state(state, connector, conn_state, i) { 3080 if (!conn_state->base.crtc) 3081 continue; 3082 3083 if (connector->mst.dp == intel_dp) 3084 intel_connector_queue_modeset_retry_work(connector); 3085 } 3086 } 3087 3088 int 3089 intel_dp_compute_config(struct intel_encoder *encoder, 3090 struct intel_crtc_state *pipe_config, 3091 struct drm_connector_state *conn_state) 3092 { 3093 struct intel_display *display = to_intel_display(encoder); 3094 struct intel_atomic_state *state = to_intel_atomic_state(conn_state->state); 3095 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 3096 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3097 const struct drm_display_mode *fixed_mode; 3098 struct intel_connector *connector = intel_dp->attached_connector; 3099 int ret = 0, link_bpp_x16; 3100 3101 fixed_mode = intel_panel_fixed_mode(connector, adjusted_mode); 3102 if (intel_dp_is_edp(intel_dp) && fixed_mode) { 3103 ret = intel_panel_compute_config(connector, adjusted_mode); 3104 if (ret) 3105 return ret; 3106 } 3107 3108 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) 3109 return -EINVAL; 3110 3111 if (!connector->base.interlace_allowed && 3112 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 3113 return -EINVAL; 3114 3115 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) 3116 return -EINVAL; 3117 3118 if (intel_dp_hdisplay_bad(display, adjusted_mode->crtc_hdisplay)) 3119 return -EINVAL; 3120 3121 /* 3122 * Try to respect downstream TMDS clock limits first, if 3123 * that fails assume the user might know something we don't. 3124 */ 3125 ret = intel_dp_compute_output_format(encoder, pipe_config, conn_state, true); 3126 if (ret) 3127 ret = intel_dp_compute_output_format(encoder, pipe_config, conn_state, false); 3128 if (ret) 3129 return ret; 3130 3131 if ((intel_dp_is_edp(intel_dp) && fixed_mode) || 3132 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) { 3133 ret = intel_pfit_compute_config(pipe_config, conn_state); 3134 if (ret) 3135 return ret; 3136 } 3137 3138 pipe_config->limited_color_range = 3139 intel_dp_limited_color_range(pipe_config, conn_state); 3140 3141 if (intel_dp_is_uhbr(pipe_config)) { 3142 /* 128b/132b SST also needs this */ 3143 pipe_config->mst_master_transcoder = pipe_config->cpu_transcoder; 3144 } else { 3145 pipe_config->enhanced_framing = 3146 drm_dp_enhanced_frame_cap(intel_dp->dpcd); 3147 } 3148 3149 if (pipe_config->dsc.compression_enable) 3150 link_bpp_x16 = pipe_config->dsc.compressed_bpp_x16; 3151 else 3152 link_bpp_x16 = fxp_q4_from_int(intel_dp_output_bpp(pipe_config->output_format, 3153 pipe_config->pipe_bpp)); 3154 3155 if (intel_dp->mso_link_count) { 3156 int n = intel_dp->mso_link_count; 3157 int overlap = intel_dp->mso_pixel_overlap; 3158 3159 pipe_config->splitter.enable = true; 3160 pipe_config->splitter.link_count = n; 3161 pipe_config->splitter.pixel_overlap = overlap; 3162 3163 drm_dbg_kms(display->drm, 3164 "MSO link count %d, pixel overlap %d\n", 3165 n, overlap); 3166 3167 adjusted_mode->crtc_hdisplay = adjusted_mode->crtc_hdisplay / n + overlap; 3168 adjusted_mode->crtc_hblank_start = adjusted_mode->crtc_hblank_start / n + overlap; 3169 adjusted_mode->crtc_hblank_end = adjusted_mode->crtc_hblank_end / n + overlap; 3170 adjusted_mode->crtc_hsync_start = adjusted_mode->crtc_hsync_start / n + overlap; 3171 adjusted_mode->crtc_hsync_end = adjusted_mode->crtc_hsync_end / n + overlap; 3172 adjusted_mode->crtc_htotal = adjusted_mode->crtc_htotal / n + overlap; 3173 adjusted_mode->crtc_clock /= n; 3174 } 3175 3176 intel_dp_audio_compute_config(encoder, pipe_config, conn_state); 3177 3178 if (!intel_dp_is_uhbr(pipe_config)) { 3179 intel_link_compute_m_n(link_bpp_x16, 3180 pipe_config->lane_count, 3181 adjusted_mode->crtc_clock, 3182 pipe_config->port_clock, 3183 intel_dp_bw_fec_overhead(pipe_config->fec_enable), 3184 &pipe_config->dp_m_n); 3185 } 3186 3187 /* FIXME: abstract this better */ 3188 if (pipe_config->splitter.enable) 3189 pipe_config->dp_m_n.data_m *= pipe_config->splitter.link_count; 3190 3191 intel_vrr_compute_config(pipe_config, conn_state); 3192 intel_dp_compute_as_sdp(intel_dp, pipe_config); 3193 intel_psr_compute_config(intel_dp, pipe_config, conn_state); 3194 intel_alpm_lobf_compute_config(intel_dp, pipe_config, conn_state); 3195 intel_dp_drrs_compute_config(connector, pipe_config, link_bpp_x16); 3196 intel_dp_compute_vsc_sdp(intel_dp, pipe_config, conn_state); 3197 intel_dp_compute_hdr_metadata_infoframe_sdp(intel_dp, pipe_config, conn_state); 3198 3199 return intel_dp_tunnel_atomic_compute_stream_bw(state, intel_dp, connector, 3200 pipe_config); 3201 } 3202 3203 void intel_dp_set_link_params(struct intel_dp *intel_dp, 3204 int link_rate, int lane_count) 3205 { 3206 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set)); 3207 intel_dp->link_trained = false; 3208 intel_dp->needs_modeset_retry = false; 3209 intel_dp->link_rate = link_rate; 3210 intel_dp->lane_count = lane_count; 3211 } 3212 3213 void intel_dp_reset_link_params(struct intel_dp *intel_dp) 3214 { 3215 intel_dp->link.max_lane_count = intel_dp_max_common_lane_count(intel_dp); 3216 intel_dp->link.max_rate = intel_dp_max_common_rate(intel_dp); 3217 intel_dp->link.mst_probed_lane_count = 0; 3218 intel_dp->link.mst_probed_rate = 0; 3219 intel_dp->link.retrain_disabled = false; 3220 intel_dp->link.seq_train_failures = 0; 3221 } 3222 3223 /* Enable backlight PWM and backlight PP control. */ 3224 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state, 3225 const struct drm_connector_state *conn_state) 3226 { 3227 struct intel_display *display = to_intel_display(crtc_state); 3228 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder)); 3229 3230 if (!intel_dp_is_edp(intel_dp)) 3231 return; 3232 3233 drm_dbg_kms(display->drm, "\n"); 3234 3235 intel_backlight_enable(crtc_state, conn_state); 3236 intel_pps_backlight_on(intel_dp); 3237 } 3238 3239 /* Disable backlight PP control and backlight PWM. */ 3240 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state) 3241 { 3242 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder)); 3243 struct intel_display *display = to_intel_display(intel_dp); 3244 3245 if (!intel_dp_is_edp(intel_dp)) 3246 return; 3247 3248 drm_dbg_kms(display->drm, "\n"); 3249 3250 intel_pps_backlight_off(intel_dp); 3251 intel_backlight_disable(old_conn_state); 3252 } 3253 3254 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp) 3255 { 3256 /* 3257 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus 3258 * be capable of signalling downstream hpd with a long pulse. 3259 * Whether or not that means D3 is safe to use is not clear, 3260 * but let's assume so until proven otherwise. 3261 * 3262 * FIXME should really check all downstream ports... 3263 */ 3264 return intel_dp->dpcd[DP_DPCD_REV] == 0x11 && 3265 drm_dp_is_branch(intel_dp->dpcd) && 3266 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD; 3267 } 3268 3269 static int 3270 write_dsc_decompression_flag(struct drm_dp_aux *aux, u8 flag, bool set) 3271 { 3272 int err; 3273 u8 val; 3274 3275 err = drm_dp_dpcd_readb(aux, DP_DSC_ENABLE, &val); 3276 if (err < 0) 3277 return err; 3278 3279 if (set) 3280 val |= flag; 3281 else 3282 val &= ~flag; 3283 3284 return drm_dp_dpcd_writeb(aux, DP_DSC_ENABLE, val); 3285 } 3286 3287 static void 3288 intel_dp_sink_set_dsc_decompression(struct intel_connector *connector, 3289 bool enable) 3290 { 3291 struct intel_display *display = to_intel_display(connector); 3292 3293 if (write_dsc_decompression_flag(connector->dp.dsc_decompression_aux, 3294 DP_DECOMPRESSION_EN, enable) < 0) 3295 drm_dbg_kms(display->drm, 3296 "Failed to %s sink decompression state\n", 3297 str_enable_disable(enable)); 3298 } 3299 3300 static void 3301 intel_dp_sink_set_dsc_passthrough(const struct intel_connector *connector, 3302 bool enable) 3303 { 3304 struct intel_display *display = to_intel_display(connector); 3305 struct drm_dp_aux *aux = connector->mst.port ? 3306 connector->mst.port->passthrough_aux : NULL; 3307 3308 if (!aux) 3309 return; 3310 3311 if (write_dsc_decompression_flag(aux, 3312 DP_DSC_PASSTHROUGH_EN, enable) < 0) 3313 drm_dbg_kms(display->drm, 3314 "Failed to %s sink compression passthrough state\n", 3315 str_enable_disable(enable)); 3316 } 3317 3318 static int intel_dp_dsc_aux_ref_count(struct intel_atomic_state *state, 3319 const struct intel_connector *connector, 3320 bool for_get_ref) 3321 { 3322 struct intel_display *display = to_intel_display(state); 3323 struct drm_connector *_connector_iter; 3324 struct drm_connector_state *old_conn_state; 3325 struct drm_connector_state *new_conn_state; 3326 int ref_count = 0; 3327 int i; 3328 3329 /* 3330 * On SST the decompression AUX device won't be shared, each connector 3331 * uses for this its own AUX targeting the sink device. 3332 */ 3333 if (!connector->mst.dp) 3334 return connector->dp.dsc_decompression_enabled ? 1 : 0; 3335 3336 for_each_oldnew_connector_in_state(&state->base, _connector_iter, 3337 old_conn_state, new_conn_state, i) { 3338 const struct intel_connector * 3339 connector_iter = to_intel_connector(_connector_iter); 3340 3341 if (connector_iter->mst.dp != connector->mst.dp) 3342 continue; 3343 3344 if (!connector_iter->dp.dsc_decompression_enabled) 3345 continue; 3346 3347 drm_WARN_ON(display->drm, 3348 (for_get_ref && !new_conn_state->crtc) || 3349 (!for_get_ref && !old_conn_state->crtc)); 3350 3351 if (connector_iter->dp.dsc_decompression_aux == 3352 connector->dp.dsc_decompression_aux) 3353 ref_count++; 3354 } 3355 3356 return ref_count; 3357 } 3358 3359 static bool intel_dp_dsc_aux_get_ref(struct intel_atomic_state *state, 3360 struct intel_connector *connector) 3361 { 3362 bool ret = intel_dp_dsc_aux_ref_count(state, connector, true) == 0; 3363 3364 connector->dp.dsc_decompression_enabled = true; 3365 3366 return ret; 3367 } 3368 3369 static bool intel_dp_dsc_aux_put_ref(struct intel_atomic_state *state, 3370 struct intel_connector *connector) 3371 { 3372 connector->dp.dsc_decompression_enabled = false; 3373 3374 return intel_dp_dsc_aux_ref_count(state, connector, false) == 0; 3375 } 3376 3377 /** 3378 * intel_dp_sink_enable_decompression - Enable DSC decompression in sink/last branch device 3379 * @state: atomic state 3380 * @connector: connector to enable the decompression for 3381 * @new_crtc_state: new state for the CRTC driving @connector 3382 * 3383 * Enable the DSC decompression if required in the %DP_DSC_ENABLE DPCD 3384 * register of the appropriate sink/branch device. On SST this is always the 3385 * sink device, whereas on MST based on each device's DSC capabilities it's 3386 * either the last branch device (enabling decompression in it) or both the 3387 * last branch device (enabling passthrough in it) and the sink device 3388 * (enabling decompression in it). 3389 */ 3390 void intel_dp_sink_enable_decompression(struct intel_atomic_state *state, 3391 struct intel_connector *connector, 3392 const struct intel_crtc_state *new_crtc_state) 3393 { 3394 struct intel_display *display = to_intel_display(state); 3395 3396 if (!new_crtc_state->dsc.compression_enable) 3397 return; 3398 3399 if (drm_WARN_ON(display->drm, 3400 !connector->dp.dsc_decompression_aux || 3401 connector->dp.dsc_decompression_enabled)) 3402 return; 3403 3404 if (!intel_dp_dsc_aux_get_ref(state, connector)) 3405 return; 3406 3407 intel_dp_sink_set_dsc_passthrough(connector, true); 3408 intel_dp_sink_set_dsc_decompression(connector, true); 3409 } 3410 3411 /** 3412 * intel_dp_sink_disable_decompression - Disable DSC decompression in sink/last branch device 3413 * @state: atomic state 3414 * @connector: connector to disable the decompression for 3415 * @old_crtc_state: old state for the CRTC driving @connector 3416 * 3417 * Disable the DSC decompression if required in the %DP_DSC_ENABLE DPCD 3418 * register of the appropriate sink/branch device, corresponding to the 3419 * sequence in intel_dp_sink_enable_decompression(). 3420 */ 3421 void intel_dp_sink_disable_decompression(struct intel_atomic_state *state, 3422 struct intel_connector *connector, 3423 const struct intel_crtc_state *old_crtc_state) 3424 { 3425 struct intel_display *display = to_intel_display(state); 3426 3427 if (!old_crtc_state->dsc.compression_enable) 3428 return; 3429 3430 if (drm_WARN_ON(display->drm, 3431 !connector->dp.dsc_decompression_aux || 3432 !connector->dp.dsc_decompression_enabled)) 3433 return; 3434 3435 if (!intel_dp_dsc_aux_put_ref(state, connector)) 3436 return; 3437 3438 intel_dp_sink_set_dsc_decompression(connector, false); 3439 intel_dp_sink_set_dsc_passthrough(connector, false); 3440 } 3441 3442 static void 3443 intel_dp_init_source_oui(struct intel_dp *intel_dp) 3444 { 3445 struct intel_display *display = to_intel_display(intel_dp); 3446 u8 oui[] = { 0x00, 0xaa, 0x01 }; 3447 u8 buf[3] = {}; 3448 3449 if (READ_ONCE(intel_dp->oui_valid)) 3450 return; 3451 3452 WRITE_ONCE(intel_dp->oui_valid, true); 3453 3454 /* 3455 * During driver init, we want to be careful and avoid changing the source OUI if it's 3456 * already set to what we want, so as to avoid clearing any state by accident 3457 */ 3458 if (drm_dp_dpcd_read(&intel_dp->aux, DP_SOURCE_OUI, buf, sizeof(buf)) < 0) 3459 drm_dbg_kms(display->drm, "Failed to read source OUI\n"); 3460 3461 if (memcmp(oui, buf, sizeof(oui)) == 0) { 3462 /* Assume the OUI was written now. */ 3463 intel_dp->last_oui_write = jiffies; 3464 return; 3465 } 3466 3467 if (drm_dp_dpcd_write(&intel_dp->aux, DP_SOURCE_OUI, oui, sizeof(oui)) < 0) { 3468 drm_dbg_kms(display->drm, "Failed to write source OUI\n"); 3469 WRITE_ONCE(intel_dp->oui_valid, false); 3470 } 3471 3472 intel_dp->last_oui_write = jiffies; 3473 } 3474 3475 void intel_dp_invalidate_source_oui(struct intel_dp *intel_dp) 3476 { 3477 WRITE_ONCE(intel_dp->oui_valid, false); 3478 } 3479 3480 void intel_dp_wait_source_oui(struct intel_dp *intel_dp) 3481 { 3482 struct intel_display *display = to_intel_display(intel_dp); 3483 struct intel_connector *connector = intel_dp->attached_connector; 3484 3485 drm_dbg_kms(display->drm, 3486 "[CONNECTOR:%d:%s] Performing OUI wait (%u ms)\n", 3487 connector->base.base.id, connector->base.name, 3488 connector->panel.vbt.backlight.hdr_dpcd_refresh_timeout); 3489 3490 wait_remaining_ms_from_jiffies(intel_dp->last_oui_write, 3491 connector->panel.vbt.backlight.hdr_dpcd_refresh_timeout); 3492 } 3493 3494 /* If the device supports it, try to set the power state appropriately */ 3495 void intel_dp_set_power(struct intel_dp *intel_dp, u8 mode) 3496 { 3497 struct intel_display *display = to_intel_display(intel_dp); 3498 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3499 int ret, i; 3500 3501 /* Should have a valid DPCD by this point */ 3502 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 3503 return; 3504 3505 if (mode != DP_SET_POWER_D0) { 3506 if (downstream_hpd_needs_d0(intel_dp)) 3507 return; 3508 3509 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, mode); 3510 } else { 3511 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 3512 3513 intel_lspcon_resume(dig_port); 3514 3515 /* Write the source OUI as early as possible */ 3516 intel_dp_init_source_oui(intel_dp); 3517 3518 /* 3519 * When turning on, we need to retry for 1ms to give the sink 3520 * time to wake up. 3521 */ 3522 for (i = 0; i < 3; i++) { 3523 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, mode); 3524 if (ret == 1) 3525 break; 3526 msleep(1); 3527 } 3528 3529 if (ret == 1 && intel_lspcon_active(dig_port)) 3530 intel_lspcon_wait_pcon_mode(dig_port); 3531 } 3532 3533 if (ret != 1) 3534 drm_dbg_kms(display->drm, 3535 "[ENCODER:%d:%s] Set power to %s failed\n", 3536 encoder->base.base.id, encoder->base.name, 3537 mode == DP_SET_POWER_D0 ? "D0" : "D3"); 3538 } 3539 3540 static bool 3541 intel_dp_get_dpcd(struct intel_dp *intel_dp); 3542 3543 /** 3544 * intel_dp_sync_state - sync the encoder state during init/resume 3545 * @encoder: intel encoder to sync 3546 * @crtc_state: state for the CRTC connected to the encoder 3547 * 3548 * Sync any state stored in the encoder wrt. HW state during driver init 3549 * and system resume. 3550 */ 3551 void intel_dp_sync_state(struct intel_encoder *encoder, 3552 const struct intel_crtc_state *crtc_state) 3553 { 3554 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3555 bool dpcd_updated = false; 3556 3557 /* 3558 * Don't clobber DPCD if it's been already read out during output 3559 * setup (eDP) or detect. 3560 */ 3561 if (crtc_state && intel_dp->dpcd[DP_DPCD_REV] == 0) { 3562 intel_dp_get_dpcd(intel_dp); 3563 dpcd_updated = true; 3564 } 3565 3566 intel_dp_tunnel_resume(intel_dp, crtc_state, dpcd_updated); 3567 3568 if (crtc_state) { 3569 intel_dp_reset_link_params(intel_dp); 3570 intel_dp_set_link_params(intel_dp, crtc_state->port_clock, crtc_state->lane_count); 3571 intel_dp->link_trained = true; 3572 } 3573 } 3574 3575 bool intel_dp_initial_fastset_check(struct intel_encoder *encoder, 3576 struct intel_crtc_state *crtc_state) 3577 { 3578 struct intel_display *display = to_intel_display(encoder); 3579 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3580 bool fastset = true; 3581 3582 /* 3583 * If BIOS has set an unsupported or non-standard link rate for some 3584 * reason force an encoder recompute and full modeset. 3585 */ 3586 if (intel_dp_rate_index(intel_dp->source_rates, intel_dp->num_source_rates, 3587 crtc_state->port_clock) < 0) { 3588 drm_dbg_kms(display->drm, 3589 "[ENCODER:%d:%s] Forcing full modeset due to unsupported link rate\n", 3590 encoder->base.base.id, encoder->base.name); 3591 crtc_state->uapi.connectors_changed = true; 3592 fastset = false; 3593 } 3594 3595 /* 3596 * FIXME hack to force full modeset when DSC is being used. 3597 * 3598 * As long as we do not have full state readout and config comparison 3599 * of crtc_state->dsc, we have no way to ensure reliable fastset. 3600 * Remove once we have readout for DSC. 3601 */ 3602 if (crtc_state->dsc.compression_enable) { 3603 drm_dbg_kms(display->drm, 3604 "[ENCODER:%d:%s] Forcing full modeset due to DSC being enabled\n", 3605 encoder->base.base.id, encoder->base.name); 3606 crtc_state->uapi.mode_changed = true; 3607 fastset = false; 3608 } 3609 3610 if (CAN_PANEL_REPLAY(intel_dp)) { 3611 drm_dbg_kms(display->drm, 3612 "[ENCODER:%d:%s] Forcing full modeset to compute panel replay state\n", 3613 encoder->base.base.id, encoder->base.name); 3614 crtc_state->uapi.mode_changed = true; 3615 fastset = false; 3616 } 3617 3618 return fastset; 3619 } 3620 3621 static void intel_dp_get_pcon_dsc_cap(struct intel_dp *intel_dp) 3622 { 3623 struct intel_display *display = to_intel_display(intel_dp); 3624 3625 /* Clear the cached register set to avoid using stale values */ 3626 3627 memset(intel_dp->pcon_dsc_dpcd, 0, sizeof(intel_dp->pcon_dsc_dpcd)); 3628 3629 if (drm_dp_dpcd_read(&intel_dp->aux, DP_PCON_DSC_ENCODER, 3630 intel_dp->pcon_dsc_dpcd, 3631 sizeof(intel_dp->pcon_dsc_dpcd)) < 0) 3632 drm_err(display->drm, "Failed to read DPCD register 0x%x\n", 3633 DP_PCON_DSC_ENCODER); 3634 3635 drm_dbg_kms(display->drm, "PCON ENCODER DSC DPCD: %*ph\n", 3636 (int)sizeof(intel_dp->pcon_dsc_dpcd), intel_dp->pcon_dsc_dpcd); 3637 } 3638 3639 static int intel_dp_pcon_get_frl_mask(u8 frl_bw_mask) 3640 { 3641 static const int bw_gbps[] = {9, 18, 24, 32, 40, 48}; 3642 int i; 3643 3644 for (i = ARRAY_SIZE(bw_gbps) - 1; i >= 0; i--) { 3645 if (frl_bw_mask & (1 << i)) 3646 return bw_gbps[i]; 3647 } 3648 return 0; 3649 } 3650 3651 static int intel_dp_pcon_set_frl_mask(int max_frl) 3652 { 3653 switch (max_frl) { 3654 case 48: 3655 return DP_PCON_FRL_BW_MASK_48GBPS; 3656 case 40: 3657 return DP_PCON_FRL_BW_MASK_40GBPS; 3658 case 32: 3659 return DP_PCON_FRL_BW_MASK_32GBPS; 3660 case 24: 3661 return DP_PCON_FRL_BW_MASK_24GBPS; 3662 case 18: 3663 return DP_PCON_FRL_BW_MASK_18GBPS; 3664 case 9: 3665 return DP_PCON_FRL_BW_MASK_9GBPS; 3666 } 3667 3668 return 0; 3669 } 3670 3671 static int intel_dp_hdmi_sink_max_frl(struct intel_dp *intel_dp) 3672 { 3673 struct intel_connector *connector = intel_dp->attached_connector; 3674 const struct drm_display_info *info = &connector->base.display_info; 3675 int max_frl_rate; 3676 int max_lanes, rate_per_lane; 3677 int max_dsc_lanes, dsc_rate_per_lane; 3678 3679 max_lanes = info->hdmi.max_lanes; 3680 rate_per_lane = info->hdmi.max_frl_rate_per_lane; 3681 max_frl_rate = max_lanes * rate_per_lane; 3682 3683 if (info->hdmi.dsc_cap.v_1p2) { 3684 max_dsc_lanes = info->hdmi.dsc_cap.max_lanes; 3685 dsc_rate_per_lane = info->hdmi.dsc_cap.max_frl_rate_per_lane; 3686 if (max_dsc_lanes && dsc_rate_per_lane) 3687 max_frl_rate = min(max_frl_rate, max_dsc_lanes * dsc_rate_per_lane); 3688 } 3689 3690 return max_frl_rate; 3691 } 3692 3693 static bool 3694 intel_dp_pcon_is_frl_trained(struct intel_dp *intel_dp, 3695 u8 max_frl_bw_mask, u8 *frl_trained_mask) 3696 { 3697 if (drm_dp_pcon_hdmi_link_active(&intel_dp->aux) && 3698 drm_dp_pcon_hdmi_link_mode(&intel_dp->aux, frl_trained_mask) == DP_PCON_HDMI_MODE_FRL && 3699 *frl_trained_mask >= max_frl_bw_mask) 3700 return true; 3701 3702 return false; 3703 } 3704 3705 static int intel_dp_pcon_start_frl_training(struct intel_dp *intel_dp) 3706 { 3707 struct intel_display *display = to_intel_display(intel_dp); 3708 #define TIMEOUT_FRL_READY_MS 500 3709 #define TIMEOUT_HDMI_LINK_ACTIVE_MS 1000 3710 int max_frl_bw, max_pcon_frl_bw, max_edid_frl_bw, ret; 3711 u8 max_frl_bw_mask = 0, frl_trained_mask; 3712 bool is_active; 3713 3714 max_pcon_frl_bw = intel_dp->dfp.pcon_max_frl_bw; 3715 drm_dbg(display->drm, "PCON max rate = %d Gbps\n", max_pcon_frl_bw); 3716 3717 max_edid_frl_bw = intel_dp_hdmi_sink_max_frl(intel_dp); 3718 drm_dbg(display->drm, "Sink max rate from EDID = %d Gbps\n", 3719 max_edid_frl_bw); 3720 3721 max_frl_bw = min(max_edid_frl_bw, max_pcon_frl_bw); 3722 3723 if (max_frl_bw <= 0) 3724 return -EINVAL; 3725 3726 max_frl_bw_mask = intel_dp_pcon_set_frl_mask(max_frl_bw); 3727 drm_dbg(display->drm, "MAX_FRL_BW_MASK = %u\n", max_frl_bw_mask); 3728 3729 if (intel_dp_pcon_is_frl_trained(intel_dp, max_frl_bw_mask, &frl_trained_mask)) 3730 goto frl_trained; 3731 3732 ret = drm_dp_pcon_frl_prepare(&intel_dp->aux, false); 3733 if (ret < 0) 3734 return ret; 3735 /* Wait for PCON to be FRL Ready */ 3736 wait_for(is_active = drm_dp_pcon_is_frl_ready(&intel_dp->aux) == true, TIMEOUT_FRL_READY_MS); 3737 3738 if (!is_active) 3739 return -ETIMEDOUT; 3740 3741 ret = drm_dp_pcon_frl_configure_1(&intel_dp->aux, max_frl_bw, 3742 DP_PCON_ENABLE_SEQUENTIAL_LINK); 3743 if (ret < 0) 3744 return ret; 3745 ret = drm_dp_pcon_frl_configure_2(&intel_dp->aux, max_frl_bw_mask, 3746 DP_PCON_FRL_LINK_TRAIN_NORMAL); 3747 if (ret < 0) 3748 return ret; 3749 ret = drm_dp_pcon_frl_enable(&intel_dp->aux); 3750 if (ret < 0) 3751 return ret; 3752 /* 3753 * Wait for FRL to be completed 3754 * Check if the HDMI Link is up and active. 3755 */ 3756 wait_for(is_active = 3757 intel_dp_pcon_is_frl_trained(intel_dp, max_frl_bw_mask, &frl_trained_mask), 3758 TIMEOUT_HDMI_LINK_ACTIVE_MS); 3759 3760 if (!is_active) 3761 return -ETIMEDOUT; 3762 3763 frl_trained: 3764 drm_dbg(display->drm, "FRL_TRAINED_MASK = %u\n", frl_trained_mask); 3765 intel_dp->frl.trained_rate_gbps = intel_dp_pcon_get_frl_mask(frl_trained_mask); 3766 intel_dp->frl.is_trained = true; 3767 drm_dbg(display->drm, "FRL trained with : %d Gbps\n", 3768 intel_dp->frl.trained_rate_gbps); 3769 3770 return 0; 3771 } 3772 3773 static bool intel_dp_is_hdmi_2_1_sink(struct intel_dp *intel_dp) 3774 { 3775 if (drm_dp_is_branch(intel_dp->dpcd) && 3776 intel_dp_has_hdmi_sink(intel_dp) && 3777 intel_dp_hdmi_sink_max_frl(intel_dp) > 0) 3778 return true; 3779 3780 return false; 3781 } 3782 3783 static 3784 int intel_dp_pcon_set_tmds_mode(struct intel_dp *intel_dp) 3785 { 3786 int ret; 3787 u8 buf = 0; 3788 3789 /* Set PCON source control mode */ 3790 buf |= DP_PCON_ENABLE_SOURCE_CTL_MODE; 3791 3792 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_PCON_HDMI_LINK_CONFIG_1, buf); 3793 if (ret < 0) 3794 return ret; 3795 3796 /* Set HDMI LINK ENABLE */ 3797 buf |= DP_PCON_ENABLE_HDMI_LINK; 3798 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_PCON_HDMI_LINK_CONFIG_1, buf); 3799 if (ret < 0) 3800 return ret; 3801 3802 return 0; 3803 } 3804 3805 void intel_dp_check_frl_training(struct intel_dp *intel_dp) 3806 { 3807 struct intel_display *display = to_intel_display(intel_dp); 3808 3809 /* 3810 * Always go for FRL training if: 3811 * -PCON supports SRC_CTL_MODE (VESA DP2.0-HDMI2.1 PCON Spec Draft-1 Sec-7) 3812 * -sink is HDMI2.1 3813 */ 3814 if (!(intel_dp->downstream_ports[2] & DP_PCON_SOURCE_CTL_MODE) || 3815 !intel_dp_is_hdmi_2_1_sink(intel_dp) || 3816 intel_dp->frl.is_trained) 3817 return; 3818 3819 if (intel_dp_pcon_start_frl_training(intel_dp) < 0) { 3820 int ret, mode; 3821 3822 drm_dbg(display->drm, 3823 "Couldn't set FRL mode, continuing with TMDS mode\n"); 3824 ret = intel_dp_pcon_set_tmds_mode(intel_dp); 3825 mode = drm_dp_pcon_hdmi_link_mode(&intel_dp->aux, NULL); 3826 3827 if (ret < 0 || mode != DP_PCON_HDMI_MODE_TMDS) 3828 drm_dbg(display->drm, 3829 "Issue with PCON, cannot set TMDS mode\n"); 3830 } else { 3831 drm_dbg(display->drm, "FRL training Completed\n"); 3832 } 3833 } 3834 3835 static int 3836 intel_dp_pcon_dsc_enc_slice_height(const struct intel_crtc_state *crtc_state) 3837 { 3838 int vactive = crtc_state->hw.adjusted_mode.vdisplay; 3839 3840 return intel_hdmi_dsc_get_slice_height(vactive); 3841 } 3842 3843 static int 3844 intel_dp_pcon_dsc_enc_slices(struct intel_dp *intel_dp, 3845 const struct intel_crtc_state *crtc_state) 3846 { 3847 struct intel_connector *connector = intel_dp->attached_connector; 3848 const struct drm_display_info *info = &connector->base.display_info; 3849 int hdmi_throughput = info->hdmi.dsc_cap.clk_per_slice; 3850 int hdmi_max_slices = info->hdmi.dsc_cap.max_slices; 3851 int pcon_max_slices = drm_dp_pcon_dsc_max_slices(intel_dp->pcon_dsc_dpcd); 3852 int pcon_max_slice_width = drm_dp_pcon_dsc_max_slice_width(intel_dp->pcon_dsc_dpcd); 3853 3854 return intel_hdmi_dsc_get_num_slices(crtc_state, pcon_max_slices, 3855 pcon_max_slice_width, 3856 hdmi_max_slices, hdmi_throughput); 3857 } 3858 3859 static int 3860 intel_dp_pcon_dsc_enc_bpp(struct intel_dp *intel_dp, 3861 const struct intel_crtc_state *crtc_state, 3862 int num_slices, int slice_width) 3863 { 3864 struct intel_connector *connector = intel_dp->attached_connector; 3865 const struct drm_display_info *info = &connector->base.display_info; 3866 int output_format = crtc_state->output_format; 3867 bool hdmi_all_bpp = info->hdmi.dsc_cap.all_bpp; 3868 int pcon_fractional_bpp = drm_dp_pcon_dsc_bpp_incr(intel_dp->pcon_dsc_dpcd); 3869 int hdmi_max_chunk_bytes = 3870 info->hdmi.dsc_cap.total_chunk_kbytes * 1024; 3871 3872 return intel_hdmi_dsc_get_bpp(pcon_fractional_bpp, slice_width, 3873 num_slices, output_format, hdmi_all_bpp, 3874 hdmi_max_chunk_bytes); 3875 } 3876 3877 void 3878 intel_dp_pcon_dsc_configure(struct intel_dp *intel_dp, 3879 const struct intel_crtc_state *crtc_state) 3880 { 3881 struct intel_display *display = to_intel_display(intel_dp); 3882 struct intel_connector *connector = intel_dp->attached_connector; 3883 const struct drm_display_info *info; 3884 u8 pps_param[6]; 3885 int slice_height; 3886 int slice_width; 3887 int num_slices; 3888 int bits_per_pixel; 3889 int ret; 3890 bool hdmi_is_dsc_1_2; 3891 3892 if (!intel_dp_is_hdmi_2_1_sink(intel_dp)) 3893 return; 3894 3895 if (!connector) 3896 return; 3897 3898 info = &connector->base.display_info; 3899 3900 hdmi_is_dsc_1_2 = info->hdmi.dsc_cap.v_1p2; 3901 3902 if (!drm_dp_pcon_enc_is_dsc_1_2(intel_dp->pcon_dsc_dpcd) || 3903 !hdmi_is_dsc_1_2) 3904 return; 3905 3906 slice_height = intel_dp_pcon_dsc_enc_slice_height(crtc_state); 3907 if (!slice_height) 3908 return; 3909 3910 num_slices = intel_dp_pcon_dsc_enc_slices(intel_dp, crtc_state); 3911 if (!num_slices) 3912 return; 3913 3914 slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, 3915 num_slices); 3916 3917 bits_per_pixel = intel_dp_pcon_dsc_enc_bpp(intel_dp, crtc_state, 3918 num_slices, slice_width); 3919 if (!bits_per_pixel) 3920 return; 3921 3922 pps_param[0] = slice_height & 0xFF; 3923 pps_param[1] = slice_height >> 8; 3924 pps_param[2] = slice_width & 0xFF; 3925 pps_param[3] = slice_width >> 8; 3926 pps_param[4] = bits_per_pixel & 0xFF; 3927 pps_param[5] = (bits_per_pixel >> 8) & 0x3; 3928 3929 ret = drm_dp_pcon_pps_override_param(&intel_dp->aux, pps_param); 3930 if (ret < 0) 3931 drm_dbg_kms(display->drm, "Failed to set pcon DSC\n"); 3932 } 3933 3934 void intel_dp_configure_protocol_converter(struct intel_dp *intel_dp, 3935 const struct intel_crtc_state *crtc_state) 3936 { 3937 struct intel_display *display = to_intel_display(intel_dp); 3938 bool ycbcr444_to_420 = false; 3939 bool rgb_to_ycbcr = false; 3940 u8 tmp; 3941 3942 if (intel_dp->dpcd[DP_DPCD_REV] < 0x13) 3943 return; 3944 3945 if (!drm_dp_is_branch(intel_dp->dpcd)) 3946 return; 3947 3948 tmp = intel_dp_has_hdmi_sink(intel_dp) ? DP_HDMI_DVI_OUTPUT_CONFIG : 0; 3949 3950 if (drm_dp_dpcd_writeb(&intel_dp->aux, 3951 DP_PROTOCOL_CONVERTER_CONTROL_0, tmp) != 1) 3952 drm_dbg_kms(display->drm, 3953 "Failed to %s protocol converter HDMI mode\n", 3954 str_enable_disable(intel_dp_has_hdmi_sink(intel_dp))); 3955 3956 if (crtc_state->sink_format == INTEL_OUTPUT_FORMAT_YCBCR420) { 3957 switch (crtc_state->output_format) { 3958 case INTEL_OUTPUT_FORMAT_YCBCR420: 3959 break; 3960 case INTEL_OUTPUT_FORMAT_YCBCR444: 3961 ycbcr444_to_420 = true; 3962 break; 3963 case INTEL_OUTPUT_FORMAT_RGB: 3964 rgb_to_ycbcr = true; 3965 ycbcr444_to_420 = true; 3966 break; 3967 default: 3968 MISSING_CASE(crtc_state->output_format); 3969 break; 3970 } 3971 } else if (crtc_state->sink_format == INTEL_OUTPUT_FORMAT_YCBCR444) { 3972 switch (crtc_state->output_format) { 3973 case INTEL_OUTPUT_FORMAT_YCBCR444: 3974 break; 3975 case INTEL_OUTPUT_FORMAT_RGB: 3976 rgb_to_ycbcr = true; 3977 break; 3978 default: 3979 MISSING_CASE(crtc_state->output_format); 3980 break; 3981 } 3982 } 3983 3984 tmp = ycbcr444_to_420 ? DP_CONVERSION_TO_YCBCR420_ENABLE : 0; 3985 3986 if (drm_dp_dpcd_writeb(&intel_dp->aux, 3987 DP_PROTOCOL_CONVERTER_CONTROL_1, tmp) != 1) 3988 drm_dbg_kms(display->drm, 3989 "Failed to %s protocol converter YCbCr 4:2:0 conversion mode\n", 3990 str_enable_disable(intel_dp->dfp.ycbcr_444_to_420)); 3991 3992 tmp = rgb_to_ycbcr ? DP_CONVERSION_BT709_RGB_YCBCR_ENABLE : 0; 3993 3994 if (drm_dp_pcon_convert_rgb_to_ycbcr(&intel_dp->aux, tmp) < 0) 3995 drm_dbg_kms(display->drm, 3996 "Failed to %s protocol converter RGB->YCbCr conversion mode\n", 3997 str_enable_disable(tmp)); 3998 } 3999 4000 static bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp) 4001 { 4002 u8 dprx = 0; 4003 4004 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST, 4005 &dprx) != 1) 4006 return false; 4007 return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED; 4008 } 4009 4010 static void intel_dp_read_dsc_dpcd(struct drm_dp_aux *aux, 4011 u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE]) 4012 { 4013 if (drm_dp_dpcd_read(aux, DP_DSC_SUPPORT, dsc_dpcd, 4014 DP_DSC_RECEIVER_CAP_SIZE) < 0) { 4015 drm_err(aux->drm_dev, 4016 "Failed to read DPCD register 0x%x\n", 4017 DP_DSC_SUPPORT); 4018 return; 4019 } 4020 4021 drm_dbg_kms(aux->drm_dev, "DSC DPCD: %*ph\n", 4022 DP_DSC_RECEIVER_CAP_SIZE, 4023 dsc_dpcd); 4024 } 4025 4026 void intel_dp_get_dsc_sink_cap(u8 dpcd_rev, struct intel_connector *connector) 4027 { 4028 struct intel_display *display = to_intel_display(connector); 4029 4030 /* 4031 * Clear the cached register set to avoid using stale values 4032 * for the sinks that do not support DSC. 4033 */ 4034 memset(connector->dp.dsc_dpcd, 0, sizeof(connector->dp.dsc_dpcd)); 4035 4036 /* Clear fec_capable to avoid using stale values */ 4037 connector->dp.fec_capability = 0; 4038 4039 if (dpcd_rev < DP_DPCD_REV_14) 4040 return; 4041 4042 intel_dp_read_dsc_dpcd(connector->dp.dsc_decompression_aux, 4043 connector->dp.dsc_dpcd); 4044 4045 if (drm_dp_dpcd_readb(connector->dp.dsc_decompression_aux, DP_FEC_CAPABILITY, 4046 &connector->dp.fec_capability) < 0) { 4047 drm_err(display->drm, "Failed to read FEC DPCD register\n"); 4048 return; 4049 } 4050 4051 drm_dbg_kms(display->drm, "FEC CAPABILITY: %x\n", 4052 connector->dp.fec_capability); 4053 } 4054 4055 static void intel_edp_get_dsc_sink_cap(u8 edp_dpcd_rev, struct intel_connector *connector) 4056 { 4057 if (edp_dpcd_rev < DP_EDP_14) 4058 return; 4059 4060 intel_dp_read_dsc_dpcd(connector->dp.dsc_decompression_aux, connector->dp.dsc_dpcd); 4061 } 4062 4063 static void 4064 intel_dp_detect_dsc_caps(struct intel_dp *intel_dp, struct intel_connector *connector) 4065 { 4066 struct intel_display *display = to_intel_display(intel_dp); 4067 4068 /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */ 4069 if (!HAS_DSC(display)) 4070 return; 4071 4072 if (intel_dp_is_edp(intel_dp)) 4073 intel_edp_get_dsc_sink_cap(intel_dp->edp_dpcd[0], 4074 connector); 4075 else 4076 intel_dp_get_dsc_sink_cap(intel_dp->dpcd[DP_DPCD_REV], 4077 connector); 4078 } 4079 4080 static void intel_edp_mso_mode_fixup(struct intel_connector *connector, 4081 struct drm_display_mode *mode) 4082 { 4083 struct intel_display *display = to_intel_display(connector); 4084 struct intel_dp *intel_dp = intel_attached_dp(connector); 4085 int n = intel_dp->mso_link_count; 4086 int overlap = intel_dp->mso_pixel_overlap; 4087 4088 if (!mode || !n) 4089 return; 4090 4091 mode->hdisplay = (mode->hdisplay - overlap) * n; 4092 mode->hsync_start = (mode->hsync_start - overlap) * n; 4093 mode->hsync_end = (mode->hsync_end - overlap) * n; 4094 mode->htotal = (mode->htotal - overlap) * n; 4095 mode->clock *= n; 4096 4097 drm_mode_set_name(mode); 4098 4099 drm_dbg_kms(display->drm, 4100 "[CONNECTOR:%d:%s] using generated MSO mode: " DRM_MODE_FMT "\n", 4101 connector->base.base.id, connector->base.name, 4102 DRM_MODE_ARG(mode)); 4103 } 4104 4105 void intel_edp_fixup_vbt_bpp(struct intel_encoder *encoder, int pipe_bpp) 4106 { 4107 struct intel_display *display = to_intel_display(encoder); 4108 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 4109 struct intel_connector *connector = intel_dp->attached_connector; 4110 4111 if (connector->panel.vbt.edp.bpp && pipe_bpp > connector->panel.vbt.edp.bpp) { 4112 /* 4113 * This is a big fat ugly hack. 4114 * 4115 * Some machines in UEFI boot mode provide us a VBT that has 18 4116 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons 4117 * unknown we fail to light up. Yet the same BIOS boots up with 4118 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as 4119 * max, not what it tells us to use. 4120 * 4121 * Note: This will still be broken if the eDP panel is not lit 4122 * up by the BIOS, and thus we can't get the mode at module 4123 * load. 4124 */ 4125 drm_dbg_kms(display->drm, 4126 "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", 4127 pipe_bpp, connector->panel.vbt.edp.bpp); 4128 connector->panel.vbt.edp.bpp = pipe_bpp; 4129 } 4130 } 4131 4132 static void intel_edp_mso_init(struct intel_dp *intel_dp) 4133 { 4134 struct intel_display *display = to_intel_display(intel_dp); 4135 struct intel_connector *connector = intel_dp->attached_connector; 4136 struct drm_display_info *info = &connector->base.display_info; 4137 u8 mso; 4138 4139 if (intel_dp->edp_dpcd[0] < DP_EDP_14) 4140 return; 4141 4142 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_EDP_MSO_LINK_CAPABILITIES, &mso) != 1) { 4143 drm_err(display->drm, "Failed to read MSO cap\n"); 4144 return; 4145 } 4146 4147 /* Valid configurations are SST or MSO 2x1, 2x2, 4x1 */ 4148 mso &= DP_EDP_MSO_NUMBER_OF_LINKS_MASK; 4149 if (mso % 2 || mso > drm_dp_max_lane_count(intel_dp->dpcd)) { 4150 drm_err(display->drm, "Invalid MSO link count cap %u\n", mso); 4151 mso = 0; 4152 } 4153 4154 if (mso) { 4155 drm_dbg_kms(display->drm, 4156 "Sink MSO %ux%u configuration, pixel overlap %u\n", 4157 mso, drm_dp_max_lane_count(intel_dp->dpcd) / mso, 4158 info->mso_pixel_overlap); 4159 if (!HAS_MSO(display)) { 4160 drm_err(display->drm, 4161 "No source MSO support, disabling\n"); 4162 mso = 0; 4163 } 4164 } 4165 4166 intel_dp->mso_link_count = mso; 4167 intel_dp->mso_pixel_overlap = mso ? info->mso_pixel_overlap : 0; 4168 } 4169 4170 static void 4171 intel_edp_set_sink_rates(struct intel_dp *intel_dp) 4172 { 4173 intel_dp->num_sink_rates = 0; 4174 4175 if (intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4176 __le16 sink_rates[DP_MAX_SUPPORTED_RATES]; 4177 int i; 4178 4179 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES, 4180 sink_rates, sizeof(sink_rates)); 4181 4182 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) { 4183 int val = le16_to_cpu(sink_rates[i]); 4184 4185 if (val == 0) 4186 break; 4187 4188 /* Value read multiplied by 200kHz gives the per-lane 4189 * link rate in kHz. The source rates are, however, 4190 * stored in terms of LS_Clk kHz. The full conversion 4191 * back to symbols is 4192 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte) 4193 */ 4194 intel_dp->sink_rates[i] = (val * 200) / 10; 4195 } 4196 intel_dp->num_sink_rates = i; 4197 } 4198 4199 /* 4200 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available, 4201 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise. 4202 */ 4203 if (intel_dp->num_sink_rates) 4204 intel_dp->use_rate_select = true; 4205 else 4206 intel_dp_set_sink_rates(intel_dp); 4207 } 4208 4209 static bool 4210 intel_edp_init_dpcd(struct intel_dp *intel_dp, struct intel_connector *connector) 4211 { 4212 struct intel_display *display = to_intel_display(intel_dp); 4213 4214 /* this function is meant to be called only once */ 4215 drm_WARN_ON(display->drm, intel_dp->dpcd[DP_DPCD_REV] != 0); 4216 4217 if (drm_dp_read_dpcd_caps(&intel_dp->aux, intel_dp->dpcd) != 0) 4218 return false; 4219 4220 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4221 drm_dp_is_branch(intel_dp->dpcd)); 4222 intel_init_dpcd_quirks(intel_dp, &intel_dp->desc.ident); 4223 4224 intel_dp->colorimetry_support = 4225 intel_dp_get_colorimetry_status(intel_dp); 4226 4227 /* 4228 * Read the eDP display control registers. 4229 * 4230 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in 4231 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it 4232 * set, but require eDP 1.4+ detection (e.g. for supported link rates 4233 * method). The display control registers should read zero if they're 4234 * not supported anyway. 4235 */ 4236 if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV, 4237 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) == 4238 sizeof(intel_dp->edp_dpcd)) { 4239 drm_dbg_kms(display->drm, "eDP DPCD: %*ph\n", 4240 (int)sizeof(intel_dp->edp_dpcd), 4241 intel_dp->edp_dpcd); 4242 4243 intel_dp->use_max_params = intel_dp->edp_dpcd[0] < DP_EDP_14; 4244 } 4245 4246 /* 4247 * If needed, program our source OUI so we can make various Intel-specific AUX services 4248 * available (such as HDR backlight controls) 4249 */ 4250 intel_dp_init_source_oui(intel_dp); 4251 4252 /* 4253 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks 4254 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1] 4255 */ 4256 intel_psr_init_dpcd(intel_dp); 4257 4258 intel_edp_set_sink_rates(intel_dp); 4259 intel_dp_set_max_sink_lane_count(intel_dp); 4260 4261 /* Read the eDP DSC DPCD registers */ 4262 intel_dp_detect_dsc_caps(intel_dp, connector); 4263 4264 return true; 4265 } 4266 4267 static bool 4268 intel_dp_has_sink_count(struct intel_dp *intel_dp) 4269 { 4270 if (!intel_dp->attached_connector) 4271 return false; 4272 4273 return drm_dp_read_sink_count_cap(&intel_dp->attached_connector->base, 4274 intel_dp->dpcd, 4275 &intel_dp->desc); 4276 } 4277 4278 void intel_dp_update_sink_caps(struct intel_dp *intel_dp) 4279 { 4280 intel_dp_set_sink_rates(intel_dp); 4281 intel_dp_set_max_sink_lane_count(intel_dp); 4282 intel_dp_set_common_rates(intel_dp); 4283 } 4284 4285 static bool 4286 intel_dp_get_dpcd(struct intel_dp *intel_dp) 4287 { 4288 int ret; 4289 4290 if (intel_dp_init_lttpr_and_dprx_caps(intel_dp) < 0) 4291 return false; 4292 4293 /* 4294 * Don't clobber cached eDP rates. Also skip re-reading 4295 * the OUI/ID since we know it won't change. 4296 */ 4297 if (!intel_dp_is_edp(intel_dp)) { 4298 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4299 drm_dp_is_branch(intel_dp->dpcd)); 4300 4301 intel_init_dpcd_quirks(intel_dp, &intel_dp->desc.ident); 4302 4303 intel_dp->colorimetry_support = 4304 intel_dp_get_colorimetry_status(intel_dp); 4305 4306 intel_dp_update_sink_caps(intel_dp); 4307 } 4308 4309 if (intel_dp_has_sink_count(intel_dp)) { 4310 ret = drm_dp_read_sink_count(&intel_dp->aux); 4311 if (ret < 0) 4312 return false; 4313 4314 /* 4315 * Sink count can change between short pulse hpd hence 4316 * a member variable in intel_dp will track any changes 4317 * between short pulse interrupts. 4318 */ 4319 intel_dp->sink_count = ret; 4320 4321 /* 4322 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that 4323 * a dongle is present but no display. Unless we require to know 4324 * if a dongle is present or not, we don't need to update 4325 * downstream port information. So, an early return here saves 4326 * time from performing other operations which are not required. 4327 */ 4328 if (!intel_dp->sink_count) 4329 return false; 4330 } 4331 4332 return drm_dp_read_downstream_info(&intel_dp->aux, intel_dp->dpcd, 4333 intel_dp->downstream_ports) == 0; 4334 } 4335 4336 static const char *intel_dp_mst_mode_str(enum drm_dp_mst_mode mst_mode) 4337 { 4338 if (mst_mode == DRM_DP_MST) 4339 return "MST"; 4340 else if (mst_mode == DRM_DP_SST_SIDEBAND_MSG) 4341 return "SST w/ sideband messaging"; 4342 else 4343 return "SST"; 4344 } 4345 4346 static enum drm_dp_mst_mode 4347 intel_dp_mst_mode_choose(struct intel_dp *intel_dp, 4348 enum drm_dp_mst_mode sink_mst_mode) 4349 { 4350 struct intel_display *display = to_intel_display(intel_dp); 4351 4352 if (!display->params.enable_dp_mst) 4353 return DRM_DP_SST; 4354 4355 if (!intel_dp_mst_source_support(intel_dp)) 4356 return DRM_DP_SST; 4357 4358 if (sink_mst_mode == DRM_DP_SST_SIDEBAND_MSG && 4359 !(intel_dp->dpcd[DP_MAIN_LINK_CHANNEL_CODING] & DP_CAP_ANSI_128B132B)) 4360 return DRM_DP_SST; 4361 4362 return sink_mst_mode; 4363 } 4364 4365 static enum drm_dp_mst_mode 4366 intel_dp_mst_detect(struct intel_dp *intel_dp) 4367 { 4368 struct intel_display *display = to_intel_display(intel_dp); 4369 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 4370 enum drm_dp_mst_mode sink_mst_mode; 4371 enum drm_dp_mst_mode mst_detect; 4372 4373 sink_mst_mode = drm_dp_read_mst_cap(&intel_dp->aux, intel_dp->dpcd); 4374 4375 mst_detect = intel_dp_mst_mode_choose(intel_dp, sink_mst_mode); 4376 4377 drm_dbg_kms(display->drm, 4378 "[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s -> enable: %s\n", 4379 encoder->base.base.id, encoder->base.name, 4380 str_yes_no(intel_dp_mst_source_support(intel_dp)), 4381 intel_dp_mst_mode_str(sink_mst_mode), 4382 str_yes_no(display->params.enable_dp_mst), 4383 intel_dp_mst_mode_str(mst_detect)); 4384 4385 return mst_detect; 4386 } 4387 4388 static void 4389 intel_dp_mst_configure(struct intel_dp *intel_dp) 4390 { 4391 if (!intel_dp_mst_source_support(intel_dp)) 4392 return; 4393 4394 intel_dp->is_mst = intel_dp->mst_detect != DRM_DP_SST; 4395 4396 if (intel_dp->is_mst) 4397 intel_dp_mst_prepare_probe(intel_dp); 4398 4399 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst.mgr, intel_dp->is_mst); 4400 4401 /* Avoid stale info on the next detect cycle. */ 4402 intel_dp->mst_detect = DRM_DP_SST; 4403 } 4404 4405 static void 4406 intel_dp_mst_disconnect(struct intel_dp *intel_dp) 4407 { 4408 struct intel_display *display = to_intel_display(intel_dp); 4409 4410 if (!intel_dp->is_mst) 4411 return; 4412 4413 drm_dbg_kms(display->drm, 4414 "MST device may have disappeared %d vs %d\n", 4415 intel_dp->is_mst, intel_dp->mst.mgr.mst_state); 4416 intel_dp->is_mst = false; 4417 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst.mgr, intel_dp->is_mst); 4418 } 4419 4420 static bool 4421 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *esi) 4422 { 4423 return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI, esi, 4) == 4; 4424 } 4425 4426 static bool intel_dp_ack_sink_irq_esi(struct intel_dp *intel_dp, u8 esi[4]) 4427 { 4428 int retry; 4429 4430 for (retry = 0; retry < 3; retry++) { 4431 if (drm_dp_dpcd_write(&intel_dp->aux, DP_SINK_COUNT_ESI + 1, 4432 &esi[1], 3) == 3) 4433 return true; 4434 } 4435 4436 return false; 4437 } 4438 4439 bool 4440 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state, 4441 const struct drm_connector_state *conn_state) 4442 { 4443 /* 4444 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication 4445 * of Color Encoding Format and Content Color Gamut], in order to 4446 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP. 4447 */ 4448 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 4449 return true; 4450 4451 switch (conn_state->colorspace) { 4452 case DRM_MODE_COLORIMETRY_SYCC_601: 4453 case DRM_MODE_COLORIMETRY_OPYCC_601: 4454 case DRM_MODE_COLORIMETRY_BT2020_YCC: 4455 case DRM_MODE_COLORIMETRY_BT2020_RGB: 4456 case DRM_MODE_COLORIMETRY_BT2020_CYCC: 4457 return true; 4458 default: 4459 break; 4460 } 4461 4462 return false; 4463 } 4464 4465 static ssize_t intel_dp_as_sdp_pack(const struct drm_dp_as_sdp *as_sdp, 4466 struct dp_sdp *sdp, size_t size) 4467 { 4468 size_t length = sizeof(struct dp_sdp); 4469 4470 if (size < length) 4471 return -ENOSPC; 4472 4473 memset(sdp, 0, size); 4474 4475 /* Prepare AS (Adaptive Sync) SDP Header */ 4476 sdp->sdp_header.HB0 = 0; 4477 sdp->sdp_header.HB1 = as_sdp->sdp_type; 4478 sdp->sdp_header.HB2 = 0x02; 4479 sdp->sdp_header.HB3 = as_sdp->length; 4480 4481 /* Fill AS (Adaptive Sync) SDP Payload */ 4482 sdp->db[0] = as_sdp->mode; 4483 sdp->db[1] = as_sdp->vtotal & 0xFF; 4484 sdp->db[2] = (as_sdp->vtotal >> 8) & 0xFF; 4485 sdp->db[3] = as_sdp->target_rr & 0xFF; 4486 sdp->db[4] = (as_sdp->target_rr >> 8) & 0x3; 4487 4488 if (as_sdp->target_rr_divider) 4489 sdp->db[4] |= 0x20; 4490 4491 return length; 4492 } 4493 4494 static ssize_t 4495 intel_dp_hdr_metadata_infoframe_sdp_pack(struct intel_display *display, 4496 const struct hdmi_drm_infoframe *drm_infoframe, 4497 struct dp_sdp *sdp, 4498 size_t size) 4499 { 4500 size_t length = sizeof(struct dp_sdp); 4501 const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE; 4502 unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE]; 4503 ssize_t len; 4504 4505 if (size < length) 4506 return -ENOSPC; 4507 4508 memset(sdp, 0, size); 4509 4510 len = hdmi_drm_infoframe_pack_only(drm_infoframe, buf, sizeof(buf)); 4511 if (len < 0) { 4512 drm_dbg_kms(display->drm, 4513 "buffer size is smaller than hdr metadata infoframe\n"); 4514 return -ENOSPC; 4515 } 4516 4517 if (len != infoframe_size) { 4518 drm_dbg_kms(display->drm, "wrong static hdr metadata size\n"); 4519 return -ENOSPC; 4520 } 4521 4522 /* 4523 * Set up the infoframe sdp packet for HDR static metadata. 4524 * Prepare VSC Header for SU as per DP 1.4a spec, 4525 * Table 2-100 and Table 2-101 4526 */ 4527 4528 /* Secondary-Data Packet ID, 00h for non-Audio INFOFRAME */ 4529 sdp->sdp_header.HB0 = 0; 4530 /* 4531 * Packet Type 80h + Non-audio INFOFRAME Type value 4532 * HDMI_INFOFRAME_TYPE_DRM: 0x87 4533 * - 80h + Non-audio INFOFRAME Type value 4534 * - InfoFrame Type: 0x07 4535 * [CTA-861-G Table-42 Dynamic Range and Mastering InfoFrame] 4536 */ 4537 sdp->sdp_header.HB1 = drm_infoframe->type; 4538 /* 4539 * Least Significant Eight Bits of (Data Byte Count – 1) 4540 * infoframe_size - 1 4541 */ 4542 sdp->sdp_header.HB2 = 0x1D; 4543 /* INFOFRAME SDP Version Number */ 4544 sdp->sdp_header.HB3 = (0x13 << 2); 4545 /* CTA Header Byte 2 (INFOFRAME Version Number) */ 4546 sdp->db[0] = drm_infoframe->version; 4547 /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */ 4548 sdp->db[1] = drm_infoframe->length; 4549 /* 4550 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after 4551 * HDMI_INFOFRAME_HEADER_SIZE 4552 */ 4553 BUILD_BUG_ON(sizeof(sdp->db) < HDMI_DRM_INFOFRAME_SIZE + 2); 4554 memcpy(&sdp->db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE], 4555 HDMI_DRM_INFOFRAME_SIZE); 4556 4557 /* 4558 * Size of DP infoframe sdp packet for HDR static metadata consists of 4559 * - DP SDP Header(struct dp_sdp_header): 4 bytes 4560 * - Two Data Blocks: 2 bytes 4561 * CTA Header Byte2 (INFOFRAME Version Number) 4562 * CTA Header Byte3 (Length of INFOFRAME) 4563 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes 4564 * 4565 * Prior to GEN11's GMP register size is identical to DP HDR static metadata 4566 * infoframe size. But GEN11+ has larger than that size, write_infoframe 4567 * will pad rest of the size. 4568 */ 4569 return sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE; 4570 } 4571 4572 static void intel_write_dp_sdp(struct intel_encoder *encoder, 4573 const struct intel_crtc_state *crtc_state, 4574 unsigned int type) 4575 { 4576 struct intel_display *display = to_intel_display(encoder); 4577 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 4578 struct dp_sdp sdp = {}; 4579 ssize_t len; 4580 4581 if ((crtc_state->infoframes.enable & 4582 intel_hdmi_infoframe_enable(type)) == 0) 4583 return; 4584 4585 switch (type) { 4586 case DP_SDP_VSC: 4587 len = drm_dp_vsc_sdp_pack(&crtc_state->infoframes.vsc, &sdp); 4588 break; 4589 case HDMI_PACKET_TYPE_GAMUT_METADATA: 4590 len = intel_dp_hdr_metadata_infoframe_sdp_pack(display, 4591 &crtc_state->infoframes.drm.drm, 4592 &sdp, sizeof(sdp)); 4593 break; 4594 case DP_SDP_ADAPTIVE_SYNC: 4595 len = intel_dp_as_sdp_pack(&crtc_state->infoframes.as_sdp, &sdp, 4596 sizeof(sdp)); 4597 break; 4598 default: 4599 MISSING_CASE(type); 4600 return; 4601 } 4602 4603 if (drm_WARN_ON(display->drm, len < 0)) 4604 return; 4605 4606 dig_port->write_infoframe(encoder, crtc_state, type, &sdp, len); 4607 } 4608 4609 void intel_dp_set_infoframes(struct intel_encoder *encoder, 4610 bool enable, 4611 const struct intel_crtc_state *crtc_state, 4612 const struct drm_connector_state *conn_state) 4613 { 4614 struct intel_display *display = to_intel_display(encoder); 4615 i915_reg_t reg = HSW_TVIDEO_DIP_CTL(display, crtc_state->cpu_transcoder); 4616 u32 dip_enable = VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW | 4617 VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW | 4618 VIDEO_DIP_ENABLE_SPD_HSW | VIDEO_DIP_ENABLE_DRM_GLK; 4619 4620 if (HAS_AS_SDP(display)) 4621 dip_enable |= VIDEO_DIP_ENABLE_AS_ADL; 4622 4623 u32 val = intel_de_read(display, reg) & ~dip_enable; 4624 4625 /* TODO: Sanitize DSC enabling wrt. intel_dsc_dp_pps_write(). */ 4626 if (!enable && HAS_DSC(display)) 4627 val &= ~VDIP_ENABLE_PPS; 4628 4629 /* 4630 * This routine disables VSC DIP if the function is called 4631 * to disable SDP or if it does not have PSR 4632 */ 4633 if (!enable || !crtc_state->has_psr) 4634 val &= ~VIDEO_DIP_ENABLE_VSC_HSW; 4635 4636 intel_de_write(display, reg, val); 4637 intel_de_posting_read(display, reg); 4638 4639 if (!enable) 4640 return; 4641 4642 intel_write_dp_sdp(encoder, crtc_state, DP_SDP_VSC); 4643 intel_write_dp_sdp(encoder, crtc_state, DP_SDP_ADAPTIVE_SYNC); 4644 4645 intel_write_dp_sdp(encoder, crtc_state, HDMI_PACKET_TYPE_GAMUT_METADATA); 4646 } 4647 4648 static 4649 int intel_dp_as_sdp_unpack(struct drm_dp_as_sdp *as_sdp, 4650 const void *buffer, size_t size) 4651 { 4652 const struct dp_sdp *sdp = buffer; 4653 4654 if (size < sizeof(struct dp_sdp)) 4655 return -EINVAL; 4656 4657 memset(as_sdp, 0, sizeof(*as_sdp)); 4658 4659 if (sdp->sdp_header.HB0 != 0) 4660 return -EINVAL; 4661 4662 if (sdp->sdp_header.HB1 != DP_SDP_ADAPTIVE_SYNC) 4663 return -EINVAL; 4664 4665 if (sdp->sdp_header.HB2 != 0x02) 4666 return -EINVAL; 4667 4668 if ((sdp->sdp_header.HB3 & 0x3F) != 9) 4669 return -EINVAL; 4670 4671 as_sdp->length = sdp->sdp_header.HB3 & DP_ADAPTIVE_SYNC_SDP_LENGTH; 4672 as_sdp->mode = sdp->db[0] & DP_ADAPTIVE_SYNC_SDP_OPERATION_MODE; 4673 as_sdp->vtotal = (sdp->db[2] << 8) | sdp->db[1]; 4674 as_sdp->target_rr = (u64)sdp->db[3] | ((u64)sdp->db[4] & 0x3); 4675 as_sdp->target_rr_divider = sdp->db[4] & 0x20 ? true : false; 4676 4677 return 0; 4678 } 4679 4680 static int intel_dp_vsc_sdp_unpack(struct drm_dp_vsc_sdp *vsc, 4681 const void *buffer, size_t size) 4682 { 4683 const struct dp_sdp *sdp = buffer; 4684 4685 if (size < sizeof(struct dp_sdp)) 4686 return -EINVAL; 4687 4688 memset(vsc, 0, sizeof(*vsc)); 4689 4690 if (sdp->sdp_header.HB0 != 0) 4691 return -EINVAL; 4692 4693 if (sdp->sdp_header.HB1 != DP_SDP_VSC) 4694 return -EINVAL; 4695 4696 vsc->sdp_type = sdp->sdp_header.HB1; 4697 vsc->revision = sdp->sdp_header.HB2; 4698 vsc->length = sdp->sdp_header.HB3; 4699 4700 if ((sdp->sdp_header.HB2 == 0x2 && sdp->sdp_header.HB3 == 0x8) || 4701 (sdp->sdp_header.HB2 == 0x4 && sdp->sdp_header.HB3 == 0xe) || 4702 (sdp->sdp_header.HB2 == 0x6 && sdp->sdp_header.HB3 == 0x10)) { 4703 /* 4704 * - HB2 = 0x2, HB3 = 0x8 4705 * VSC SDP supporting 3D stereo + PSR 4706 * - HB2 = 0x4, HB3 = 0xe 4707 * VSC SDP supporting 3D stereo + PSR2 with Y-coordinate of 4708 * first scan line of the SU region (applies to eDP v1.4b 4709 * and higher). 4710 * - HB2 = 0x6, HB3 = 0x10 4711 * VSC SDP supporting 3D stereo + Panel Replay. 4712 */ 4713 return 0; 4714 } else if (sdp->sdp_header.HB2 == 0x5 && sdp->sdp_header.HB3 == 0x13) { 4715 /* 4716 * - HB2 = 0x5, HB3 = 0x13 4717 * VSC SDP supporting 3D stereo + PSR2 + Pixel Encoding/Colorimetry 4718 * Format. 4719 */ 4720 vsc->pixelformat = (sdp->db[16] >> 4) & 0xf; 4721 vsc->colorimetry = sdp->db[16] & 0xf; 4722 vsc->dynamic_range = (sdp->db[17] >> 7) & 0x1; 4723 4724 switch (sdp->db[17] & 0x7) { 4725 case 0x0: 4726 vsc->bpc = 6; 4727 break; 4728 case 0x1: 4729 vsc->bpc = 8; 4730 break; 4731 case 0x2: 4732 vsc->bpc = 10; 4733 break; 4734 case 0x3: 4735 vsc->bpc = 12; 4736 break; 4737 case 0x4: 4738 vsc->bpc = 16; 4739 break; 4740 default: 4741 MISSING_CASE(sdp->db[17] & 0x7); 4742 return -EINVAL; 4743 } 4744 4745 vsc->content_type = sdp->db[18] & 0x7; 4746 } else { 4747 return -EINVAL; 4748 } 4749 4750 return 0; 4751 } 4752 4753 static void 4754 intel_read_dp_as_sdp(struct intel_encoder *encoder, 4755 struct intel_crtc_state *crtc_state, 4756 struct drm_dp_as_sdp *as_sdp) 4757 { 4758 struct intel_display *display = to_intel_display(encoder); 4759 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 4760 unsigned int type = DP_SDP_ADAPTIVE_SYNC; 4761 struct dp_sdp sdp = {}; 4762 int ret; 4763 4764 if ((crtc_state->infoframes.enable & 4765 intel_hdmi_infoframe_enable(type)) == 0) 4766 return; 4767 4768 dig_port->read_infoframe(encoder, crtc_state, type, &sdp, 4769 sizeof(sdp)); 4770 4771 ret = intel_dp_as_sdp_unpack(as_sdp, &sdp, sizeof(sdp)); 4772 if (ret) 4773 drm_dbg_kms(display->drm, "Failed to unpack DP AS SDP\n"); 4774 } 4775 4776 static int 4777 intel_dp_hdr_metadata_infoframe_sdp_unpack(struct hdmi_drm_infoframe *drm_infoframe, 4778 const void *buffer, size_t size) 4779 { 4780 int ret; 4781 4782 const struct dp_sdp *sdp = buffer; 4783 4784 if (size < sizeof(struct dp_sdp)) 4785 return -EINVAL; 4786 4787 if (sdp->sdp_header.HB0 != 0) 4788 return -EINVAL; 4789 4790 if (sdp->sdp_header.HB1 != HDMI_INFOFRAME_TYPE_DRM) 4791 return -EINVAL; 4792 4793 /* 4794 * Least Significant Eight Bits of (Data Byte Count – 1) 4795 * 1Dh (i.e., Data Byte Count = 30 bytes). 4796 */ 4797 if (sdp->sdp_header.HB2 != 0x1D) 4798 return -EINVAL; 4799 4800 /* Most Significant Two Bits of (Data Byte Count – 1), Clear to 00b. */ 4801 if ((sdp->sdp_header.HB3 & 0x3) != 0) 4802 return -EINVAL; 4803 4804 /* INFOFRAME SDP Version Number */ 4805 if (((sdp->sdp_header.HB3 >> 2) & 0x3f) != 0x13) 4806 return -EINVAL; 4807 4808 /* CTA Header Byte 2 (INFOFRAME Version Number) */ 4809 if (sdp->db[0] != 1) 4810 return -EINVAL; 4811 4812 /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */ 4813 if (sdp->db[1] != HDMI_DRM_INFOFRAME_SIZE) 4814 return -EINVAL; 4815 4816 ret = hdmi_drm_infoframe_unpack_only(drm_infoframe, &sdp->db[2], 4817 HDMI_DRM_INFOFRAME_SIZE); 4818 4819 return ret; 4820 } 4821 4822 static void intel_read_dp_vsc_sdp(struct intel_encoder *encoder, 4823 struct intel_crtc_state *crtc_state, 4824 struct drm_dp_vsc_sdp *vsc) 4825 { 4826 struct intel_display *display = to_intel_display(encoder); 4827 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 4828 unsigned int type = DP_SDP_VSC; 4829 struct dp_sdp sdp = {}; 4830 int ret; 4831 4832 if ((crtc_state->infoframes.enable & 4833 intel_hdmi_infoframe_enable(type)) == 0) 4834 return; 4835 4836 dig_port->read_infoframe(encoder, crtc_state, type, &sdp, sizeof(sdp)); 4837 4838 ret = intel_dp_vsc_sdp_unpack(vsc, &sdp, sizeof(sdp)); 4839 4840 if (ret) 4841 drm_dbg_kms(display->drm, "Failed to unpack DP VSC SDP\n"); 4842 } 4843 4844 static void intel_read_dp_hdr_metadata_infoframe_sdp(struct intel_encoder *encoder, 4845 struct intel_crtc_state *crtc_state, 4846 struct hdmi_drm_infoframe *drm_infoframe) 4847 { 4848 struct intel_display *display = to_intel_display(encoder); 4849 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 4850 unsigned int type = HDMI_PACKET_TYPE_GAMUT_METADATA; 4851 struct dp_sdp sdp = {}; 4852 int ret; 4853 4854 if ((crtc_state->infoframes.enable & 4855 intel_hdmi_infoframe_enable(type)) == 0) 4856 return; 4857 4858 dig_port->read_infoframe(encoder, crtc_state, type, &sdp, 4859 sizeof(sdp)); 4860 4861 ret = intel_dp_hdr_metadata_infoframe_sdp_unpack(drm_infoframe, &sdp, 4862 sizeof(sdp)); 4863 4864 if (ret) 4865 drm_dbg_kms(display->drm, 4866 "Failed to unpack DP HDR Metadata Infoframe SDP\n"); 4867 } 4868 4869 void intel_read_dp_sdp(struct intel_encoder *encoder, 4870 struct intel_crtc_state *crtc_state, 4871 unsigned int type) 4872 { 4873 switch (type) { 4874 case DP_SDP_VSC: 4875 intel_read_dp_vsc_sdp(encoder, crtc_state, 4876 &crtc_state->infoframes.vsc); 4877 break; 4878 case HDMI_PACKET_TYPE_GAMUT_METADATA: 4879 intel_read_dp_hdr_metadata_infoframe_sdp(encoder, crtc_state, 4880 &crtc_state->infoframes.drm.drm); 4881 break; 4882 case DP_SDP_ADAPTIVE_SYNC: 4883 intel_read_dp_as_sdp(encoder, crtc_state, 4884 &crtc_state->infoframes.as_sdp); 4885 break; 4886 default: 4887 MISSING_CASE(type); 4888 break; 4889 } 4890 } 4891 4892 static bool intel_dp_link_ok(struct intel_dp *intel_dp, 4893 u8 link_status[DP_LINK_STATUS_SIZE]) 4894 { 4895 struct intel_display *display = to_intel_display(intel_dp); 4896 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 4897 bool uhbr = intel_dp->link_rate >= 1000000; 4898 bool ok; 4899 4900 if (uhbr) 4901 ok = drm_dp_128b132b_lane_channel_eq_done(link_status, 4902 intel_dp->lane_count); 4903 else 4904 ok = drm_dp_channel_eq_ok(link_status, intel_dp->lane_count); 4905 4906 if (ok) 4907 return true; 4908 4909 intel_dp_dump_link_status(intel_dp, DP_PHY_DPRX, link_status); 4910 drm_dbg_kms(display->drm, 4911 "[ENCODER:%d:%s] %s link not ok, retraining\n", 4912 encoder->base.base.id, encoder->base.name, 4913 uhbr ? "128b/132b" : "8b/10b"); 4914 4915 return false; 4916 } 4917 4918 static void 4919 intel_dp_mst_hpd_irq(struct intel_dp *intel_dp, u8 *esi, u8 *ack) 4920 { 4921 bool handled = false; 4922 4923 drm_dp_mst_hpd_irq_handle_event(&intel_dp->mst.mgr, esi, ack, &handled); 4924 4925 if (esi[1] & DP_CP_IRQ) { 4926 intel_hdcp_handle_cp_irq(intel_dp->attached_connector); 4927 ack[1] |= DP_CP_IRQ; 4928 } 4929 } 4930 4931 static bool intel_dp_mst_link_status(struct intel_dp *intel_dp) 4932 { 4933 struct intel_display *display = to_intel_display(intel_dp); 4934 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 4935 u8 link_status[DP_LINK_STATUS_SIZE] = {}; 4936 const size_t esi_link_status_size = DP_LINK_STATUS_SIZE - 2; 4937 4938 if (drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS_ESI, link_status, 4939 esi_link_status_size) != esi_link_status_size) { 4940 drm_err(display->drm, 4941 "[ENCODER:%d:%s] Failed to read link status\n", 4942 encoder->base.base.id, encoder->base.name); 4943 return false; 4944 } 4945 4946 return intel_dp_link_ok(intel_dp, link_status); 4947 } 4948 4949 /** 4950 * intel_dp_check_mst_status - service any pending MST interrupts, check link status 4951 * @intel_dp: Intel DP struct 4952 * 4953 * Read any pending MST interrupts, call MST core to handle these and ack the 4954 * interrupts. Check if the main and AUX link state is ok. 4955 * 4956 * Returns: 4957 * - %true if pending interrupts were serviced (or no interrupts were 4958 * pending) w/o detecting an error condition. 4959 * - %false if an error condition - like AUX failure or a loss of link - is 4960 * detected, or another condition - like a DP tunnel BW state change - needs 4961 * servicing from the hotplug work. 4962 */ 4963 static bool 4964 intel_dp_check_mst_status(struct intel_dp *intel_dp) 4965 { 4966 struct intel_display *display = to_intel_display(intel_dp); 4967 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 4968 struct intel_encoder *encoder = &dig_port->base; 4969 bool link_ok = true; 4970 bool reprobe_needed = false; 4971 4972 drm_WARN_ON_ONCE(display->drm, intel_dp->mst.active_links < 0); 4973 4974 for (;;) { 4975 u8 esi[4] = {}; 4976 u8 ack[4] = {}; 4977 4978 if (!intel_dp_get_sink_irq_esi(intel_dp, esi)) { 4979 drm_dbg_kms(display->drm, 4980 "failed to get ESI - device may have failed\n"); 4981 link_ok = false; 4982 4983 break; 4984 } 4985 4986 drm_dbg_kms(display->drm, "DPRX ESI: %4ph\n", esi); 4987 4988 if (intel_dp->mst.active_links > 0 && link_ok && 4989 esi[3] & LINK_STATUS_CHANGED) { 4990 if (!intel_dp_mst_link_status(intel_dp)) 4991 link_ok = false; 4992 ack[3] |= LINK_STATUS_CHANGED; 4993 } 4994 4995 intel_dp_mst_hpd_irq(intel_dp, esi, ack); 4996 4997 if (esi[3] & DP_TUNNELING_IRQ) { 4998 if (drm_dp_tunnel_handle_irq(display->dp_tunnel_mgr, 4999 &intel_dp->aux)) 5000 reprobe_needed = true; 5001 ack[3] |= DP_TUNNELING_IRQ; 5002 } 5003 5004 if (mem_is_zero(ack, sizeof(ack))) 5005 break; 5006 5007 if (!intel_dp_ack_sink_irq_esi(intel_dp, ack)) 5008 drm_dbg_kms(display->drm, "Failed to ack ESI\n"); 5009 5010 if (ack[1] & (DP_DOWN_REP_MSG_RDY | DP_UP_REQ_MSG_RDY)) 5011 drm_dp_mst_hpd_irq_send_new_request(&intel_dp->mst.mgr); 5012 } 5013 5014 if (!link_ok || intel_dp->link.force_retrain) 5015 intel_encoder_link_check_queue_work(encoder, 0); 5016 5017 return !reprobe_needed; 5018 } 5019 5020 static void 5021 intel_dp_handle_hdmi_link_status_change(struct intel_dp *intel_dp) 5022 { 5023 bool is_active; 5024 u8 buf = 0; 5025 5026 is_active = drm_dp_pcon_hdmi_link_active(&intel_dp->aux); 5027 if (intel_dp->frl.is_trained && !is_active) { 5028 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf) < 0) 5029 return; 5030 5031 buf &= ~DP_PCON_ENABLE_HDMI_LINK; 5032 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_PCON_HDMI_LINK_CONFIG_1, buf) < 0) 5033 return; 5034 5035 drm_dp_pcon_hdmi_frl_link_error_count(&intel_dp->aux, &intel_dp->attached_connector->base); 5036 5037 intel_dp->frl.is_trained = false; 5038 5039 /* Restart FRL training or fall back to TMDS mode */ 5040 intel_dp_check_frl_training(intel_dp); 5041 } 5042 } 5043 5044 static bool 5045 intel_dp_needs_link_retrain(struct intel_dp *intel_dp) 5046 { 5047 u8 link_status[DP_LINK_STATUS_SIZE]; 5048 5049 if (!intel_dp->link_trained) 5050 return false; 5051 5052 /* 5053 * While PSR source HW is enabled, it will control main-link sending 5054 * frames, enabling and disabling it so trying to do a retrain will fail 5055 * as the link would or not be on or it could mix training patterns 5056 * and frame data at the same time causing retrain to fail. 5057 * Also when exiting PSR, HW will retrain the link anyways fixing 5058 * any link status error. 5059 */ 5060 if (intel_psr_enabled(intel_dp)) 5061 return false; 5062 5063 if (intel_dp->link.force_retrain) 5064 return true; 5065 5066 if (drm_dp_dpcd_read_phy_link_status(&intel_dp->aux, DP_PHY_DPRX, 5067 link_status) < 0) 5068 return false; 5069 5070 /* 5071 * Validate the cached values of intel_dp->link_rate and 5072 * intel_dp->lane_count before attempting to retrain. 5073 * 5074 * FIXME would be nice to user the crtc state here, but since 5075 * we need to call this from the short HPD handler that seems 5076 * a bit hard. 5077 */ 5078 if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate, 5079 intel_dp->lane_count)) 5080 return false; 5081 5082 if (intel_dp->link.retrain_disabled) 5083 return false; 5084 5085 if (intel_dp->link.seq_train_failures) 5086 return true; 5087 5088 /* Retrain if link not ok */ 5089 return !intel_dp_link_ok(intel_dp, link_status) && 5090 !intel_psr_link_ok(intel_dp); 5091 } 5092 5093 bool intel_dp_has_connector(struct intel_dp *intel_dp, 5094 const struct drm_connector_state *conn_state) 5095 { 5096 struct intel_display *display = to_intel_display(intel_dp); 5097 struct intel_encoder *encoder; 5098 enum pipe pipe; 5099 5100 if (!conn_state->best_encoder) 5101 return false; 5102 5103 /* SST */ 5104 encoder = &dp_to_dig_port(intel_dp)->base; 5105 if (conn_state->best_encoder == &encoder->base) 5106 return true; 5107 5108 /* MST */ 5109 for_each_pipe(display, pipe) { 5110 encoder = &intel_dp->mst.stream_encoders[pipe]->base; 5111 if (conn_state->best_encoder == &encoder->base) 5112 return true; 5113 } 5114 5115 return false; 5116 } 5117 5118 static void wait_for_connector_hw_done(const struct drm_connector_state *conn_state) 5119 { 5120 struct intel_connector *connector = to_intel_connector(conn_state->connector); 5121 struct intel_display *display = to_intel_display(connector); 5122 5123 drm_modeset_lock_assert_held(&display->drm->mode_config.connection_mutex); 5124 5125 if (!conn_state->commit) 5126 return; 5127 5128 drm_WARN_ON(display->drm, 5129 !wait_for_completion_timeout(&conn_state->commit->hw_done, 5130 msecs_to_jiffies(5000))); 5131 } 5132 5133 int intel_dp_get_active_pipes(struct intel_dp *intel_dp, 5134 struct drm_modeset_acquire_ctx *ctx, 5135 u8 *pipe_mask) 5136 { 5137 struct intel_display *display = to_intel_display(intel_dp); 5138 struct drm_connector_list_iter conn_iter; 5139 struct intel_connector *connector; 5140 int ret = 0; 5141 5142 *pipe_mask = 0; 5143 5144 drm_connector_list_iter_begin(display->drm, &conn_iter); 5145 for_each_intel_connector_iter(connector, &conn_iter) { 5146 struct drm_connector_state *conn_state = 5147 connector->base.state; 5148 struct intel_crtc_state *crtc_state; 5149 struct intel_crtc *crtc; 5150 5151 if (!intel_dp_has_connector(intel_dp, conn_state)) 5152 continue; 5153 5154 crtc = to_intel_crtc(conn_state->crtc); 5155 if (!crtc) 5156 continue; 5157 5158 ret = drm_modeset_lock(&crtc->base.mutex, ctx); 5159 if (ret) 5160 break; 5161 5162 crtc_state = to_intel_crtc_state(crtc->base.state); 5163 5164 drm_WARN_ON(display->drm, 5165 !intel_crtc_has_dp_encoder(crtc_state)); 5166 5167 if (!crtc_state->hw.active) 5168 continue; 5169 5170 wait_for_connector_hw_done(conn_state); 5171 5172 *pipe_mask |= BIT(crtc->pipe); 5173 } 5174 drm_connector_list_iter_end(&conn_iter); 5175 5176 return ret; 5177 } 5178 5179 void intel_dp_flush_connector_commits(struct intel_connector *connector) 5180 { 5181 wait_for_connector_hw_done(connector->base.state); 5182 } 5183 5184 static bool intel_dp_is_connected(struct intel_dp *intel_dp) 5185 { 5186 struct intel_connector *connector = intel_dp->attached_connector; 5187 5188 return connector->base.status == connector_status_connected || 5189 intel_dp->is_mst; 5190 } 5191 5192 static int intel_dp_retrain_link(struct intel_encoder *encoder, 5193 struct drm_modeset_acquire_ctx *ctx) 5194 { 5195 struct intel_display *display = to_intel_display(encoder); 5196 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 5197 u8 pipe_mask; 5198 int ret; 5199 5200 if (!intel_dp_is_connected(intel_dp)) 5201 return 0; 5202 5203 ret = drm_modeset_lock(&display->drm->mode_config.connection_mutex, 5204 ctx); 5205 if (ret) 5206 return ret; 5207 5208 if (!intel_dp_needs_link_retrain(intel_dp)) 5209 return 0; 5210 5211 ret = intel_dp_get_active_pipes(intel_dp, ctx, &pipe_mask); 5212 if (ret) 5213 return ret; 5214 5215 if (pipe_mask == 0) 5216 return 0; 5217 5218 if (!intel_dp_needs_link_retrain(intel_dp)) 5219 return 0; 5220 5221 drm_dbg_kms(display->drm, 5222 "[ENCODER:%d:%s] retraining link (forced %s)\n", 5223 encoder->base.base.id, encoder->base.name, 5224 str_yes_no(intel_dp->link.force_retrain)); 5225 5226 ret = intel_modeset_commit_pipes(display, pipe_mask, ctx); 5227 if (ret == -EDEADLK) 5228 return ret; 5229 5230 intel_dp->link.force_retrain = false; 5231 5232 if (ret) 5233 drm_dbg_kms(display->drm, 5234 "[ENCODER:%d:%s] link retraining failed: %pe\n", 5235 encoder->base.base.id, encoder->base.name, 5236 ERR_PTR(ret)); 5237 5238 return ret; 5239 } 5240 5241 void intel_dp_link_check(struct intel_encoder *encoder) 5242 { 5243 struct drm_modeset_acquire_ctx ctx; 5244 int ret; 5245 5246 intel_modeset_lock_ctx_retry(&ctx, NULL, 0, ret) 5247 ret = intel_dp_retrain_link(encoder, &ctx); 5248 } 5249 5250 void intel_dp_check_link_state(struct intel_dp *intel_dp) 5251 { 5252 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5253 struct intel_encoder *encoder = &dig_port->base; 5254 5255 if (!intel_dp_is_connected(intel_dp)) 5256 return; 5257 5258 if (!intel_dp_needs_link_retrain(intel_dp)) 5259 return; 5260 5261 intel_encoder_link_check_queue_work(encoder, 0); 5262 } 5263 5264 static void intel_dp_check_device_service_irq(struct intel_dp *intel_dp) 5265 { 5266 struct intel_display *display = to_intel_display(intel_dp); 5267 u8 val; 5268 5269 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 5270 return; 5271 5272 if (drm_dp_dpcd_readb(&intel_dp->aux, 5273 DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val) 5274 return; 5275 5276 drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val); 5277 5278 if (val & DP_AUTOMATED_TEST_REQUEST) 5279 intel_dp_test_request(intel_dp); 5280 5281 if (val & DP_CP_IRQ) 5282 intel_hdcp_handle_cp_irq(intel_dp->attached_connector); 5283 5284 if (val & DP_SINK_SPECIFIC_IRQ) 5285 drm_dbg_kms(display->drm, "Sink specific irq unhandled\n"); 5286 } 5287 5288 static bool intel_dp_check_link_service_irq(struct intel_dp *intel_dp) 5289 { 5290 struct intel_display *display = to_intel_display(intel_dp); 5291 bool reprobe_needed = false; 5292 u8 val; 5293 5294 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 5295 return false; 5296 5297 if (drm_dp_dpcd_readb(&intel_dp->aux, 5298 DP_LINK_SERVICE_IRQ_VECTOR_ESI0, &val) != 1 || !val) 5299 return false; 5300 5301 if ((val & DP_TUNNELING_IRQ) && 5302 drm_dp_tunnel_handle_irq(display->dp_tunnel_mgr, 5303 &intel_dp->aux)) 5304 reprobe_needed = true; 5305 5306 if (drm_dp_dpcd_writeb(&intel_dp->aux, 5307 DP_LINK_SERVICE_IRQ_VECTOR_ESI0, val) != 1) 5308 return reprobe_needed; 5309 5310 if (val & HDMI_LINK_STATUS_CHANGED) 5311 intel_dp_handle_hdmi_link_status_change(intel_dp); 5312 5313 return reprobe_needed; 5314 } 5315 5316 /* 5317 * According to DP spec 5318 * 5.1.2: 5319 * 1. Read DPCD 5320 * 2. Configure link according to Receiver Capabilities 5321 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3 5322 * 4. Check link status on receipt of hot-plug interrupt 5323 * 5324 * intel_dp_short_pulse - handles short pulse interrupts 5325 * when full detection is not required. 5326 * Returns %true if short pulse is handled and full detection 5327 * is NOT required and %false otherwise. 5328 */ 5329 static bool 5330 intel_dp_short_pulse(struct intel_dp *intel_dp) 5331 { 5332 u8 old_sink_count = intel_dp->sink_count; 5333 bool reprobe_needed = false; 5334 bool ret; 5335 5336 intel_dp_test_reset(intel_dp); 5337 5338 /* 5339 * Now read the DPCD to see if it's actually running 5340 * If the current value of sink count doesn't match with 5341 * the value that was stored earlier or dpcd read failed 5342 * we need to do full detection 5343 */ 5344 ret = intel_dp_get_dpcd(intel_dp); 5345 5346 if ((old_sink_count != intel_dp->sink_count) || !ret) { 5347 /* No need to proceed if we are going to do full detect */ 5348 return false; 5349 } 5350 5351 intel_dp_check_device_service_irq(intel_dp); 5352 reprobe_needed = intel_dp_check_link_service_irq(intel_dp); 5353 5354 /* Handle CEC interrupts, if any */ 5355 drm_dp_cec_irq(&intel_dp->aux); 5356 5357 intel_dp_check_link_state(intel_dp); 5358 5359 intel_psr_short_pulse(intel_dp); 5360 5361 if (intel_dp_test_short_pulse(intel_dp)) 5362 reprobe_needed = true; 5363 5364 return !reprobe_needed; 5365 } 5366 5367 /* XXX this is probably wrong for multiple downstream ports */ 5368 static enum drm_connector_status 5369 intel_dp_detect_dpcd(struct intel_dp *intel_dp) 5370 { 5371 struct intel_display *display = to_intel_display(intel_dp); 5372 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5373 u8 *dpcd = intel_dp->dpcd; 5374 u8 type; 5375 5376 if (drm_WARN_ON(display->drm, intel_dp_is_edp(intel_dp))) 5377 return connector_status_connected; 5378 5379 intel_lspcon_resume(dig_port); 5380 5381 if (!intel_dp_get_dpcd(intel_dp)) 5382 return connector_status_disconnected; 5383 5384 intel_dp->mst_detect = intel_dp_mst_detect(intel_dp); 5385 5386 /* if there's no downstream port, we're done */ 5387 if (!drm_dp_is_branch(dpcd)) 5388 return connector_status_connected; 5389 5390 /* If we're HPD-aware, SINK_COUNT changes dynamically */ 5391 if (intel_dp_has_sink_count(intel_dp) && 5392 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) { 5393 return intel_dp->sink_count ? 5394 connector_status_connected : connector_status_disconnected; 5395 } 5396 5397 if (intel_dp->mst_detect == DRM_DP_MST) 5398 return connector_status_connected; 5399 5400 /* If no HPD, poke DDC gently */ 5401 if (drm_probe_ddc(&intel_dp->aux.ddc)) 5402 return connector_status_connected; 5403 5404 /* Well we tried, say unknown for unreliable port types */ 5405 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { 5406 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; 5407 if (type == DP_DS_PORT_TYPE_VGA || 5408 type == DP_DS_PORT_TYPE_NON_EDID) 5409 return connector_status_unknown; 5410 } else { 5411 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & 5412 DP_DWN_STRM_PORT_TYPE_MASK; 5413 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG || 5414 type == DP_DWN_STRM_PORT_TYPE_OTHER) 5415 return connector_status_unknown; 5416 } 5417 5418 /* Anything else is out of spec, warn and ignore */ 5419 drm_dbg_kms(display->drm, "Broken DP branch device, ignoring\n"); 5420 return connector_status_disconnected; 5421 } 5422 5423 static enum drm_connector_status 5424 edp_detect(struct intel_dp *intel_dp) 5425 { 5426 return connector_status_connected; 5427 } 5428 5429 void intel_digital_port_lock(struct intel_encoder *encoder) 5430 { 5431 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 5432 5433 if (dig_port->lock) 5434 dig_port->lock(dig_port); 5435 } 5436 5437 void intel_digital_port_unlock(struct intel_encoder *encoder) 5438 { 5439 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 5440 5441 if (dig_port->unlock) 5442 dig_port->unlock(dig_port); 5443 } 5444 5445 /* 5446 * intel_digital_port_connected_locked - is the specified port connected? 5447 * @encoder: intel_encoder 5448 * 5449 * In cases where there's a connector physically connected but it can't be used 5450 * by our hardware we also return false, since the rest of the driver should 5451 * pretty much treat the port as disconnected. This is relevant for type-C 5452 * (starting on ICL) where there's ownership involved. 5453 * 5454 * The caller must hold the lock acquired by calling intel_digital_port_lock() 5455 * when calling this function. 5456 * 5457 * Return %true if port is connected, %false otherwise. 5458 */ 5459 bool intel_digital_port_connected_locked(struct intel_encoder *encoder) 5460 { 5461 struct intel_display *display = to_intel_display(encoder); 5462 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 5463 bool is_glitch_free = intel_tc_port_handles_hpd_glitches(dig_port); 5464 bool is_connected = false; 5465 intel_wakeref_t wakeref; 5466 5467 with_intel_display_power(display, POWER_DOMAIN_DISPLAY_CORE, wakeref) { 5468 unsigned long wait_expires = jiffies + msecs_to_jiffies_timeout(4); 5469 5470 do { 5471 is_connected = dig_port->connected(encoder); 5472 if (is_connected || is_glitch_free) 5473 break; 5474 usleep_range(10, 30); 5475 } while (time_before(jiffies, wait_expires)); 5476 } 5477 5478 return is_connected; 5479 } 5480 5481 bool intel_digital_port_connected(struct intel_encoder *encoder) 5482 { 5483 bool ret; 5484 5485 intel_digital_port_lock(encoder); 5486 ret = intel_digital_port_connected_locked(encoder); 5487 intel_digital_port_unlock(encoder); 5488 5489 return ret; 5490 } 5491 5492 static const struct drm_edid * 5493 intel_dp_get_edid(struct intel_dp *intel_dp) 5494 { 5495 struct intel_connector *connector = intel_dp->attached_connector; 5496 const struct drm_edid *fixed_edid = connector->panel.fixed_edid; 5497 5498 /* Use panel fixed edid if we have one */ 5499 if (fixed_edid) { 5500 /* invalid edid */ 5501 if (IS_ERR(fixed_edid)) 5502 return NULL; 5503 5504 return drm_edid_dup(fixed_edid); 5505 } 5506 5507 return drm_edid_read_ddc(&connector->base, &intel_dp->aux.ddc); 5508 } 5509 5510 static void 5511 intel_dp_update_dfp(struct intel_dp *intel_dp, 5512 const struct drm_edid *drm_edid) 5513 { 5514 struct intel_display *display = to_intel_display(intel_dp); 5515 struct intel_connector *connector = intel_dp->attached_connector; 5516 5517 intel_dp->dfp.max_bpc = 5518 drm_dp_downstream_max_bpc(intel_dp->dpcd, 5519 intel_dp->downstream_ports, drm_edid); 5520 5521 intel_dp->dfp.max_dotclock = 5522 drm_dp_downstream_max_dotclock(intel_dp->dpcd, 5523 intel_dp->downstream_ports); 5524 5525 intel_dp->dfp.min_tmds_clock = 5526 drm_dp_downstream_min_tmds_clock(intel_dp->dpcd, 5527 intel_dp->downstream_ports, 5528 drm_edid); 5529 intel_dp->dfp.max_tmds_clock = 5530 drm_dp_downstream_max_tmds_clock(intel_dp->dpcd, 5531 intel_dp->downstream_ports, 5532 drm_edid); 5533 5534 intel_dp->dfp.pcon_max_frl_bw = 5535 drm_dp_get_pcon_max_frl_bw(intel_dp->dpcd, 5536 intel_dp->downstream_ports); 5537 5538 drm_dbg_kms(display->drm, 5539 "[CONNECTOR:%d:%s] DFP max bpc %d, max dotclock %d, TMDS clock %d-%d, PCON Max FRL BW %dGbps\n", 5540 connector->base.base.id, connector->base.name, 5541 intel_dp->dfp.max_bpc, 5542 intel_dp->dfp.max_dotclock, 5543 intel_dp->dfp.min_tmds_clock, 5544 intel_dp->dfp.max_tmds_clock, 5545 intel_dp->dfp.pcon_max_frl_bw); 5546 5547 intel_dp_get_pcon_dsc_cap(intel_dp); 5548 } 5549 5550 static bool 5551 intel_dp_can_ycbcr420(struct intel_dp *intel_dp) 5552 { 5553 if (source_can_output(intel_dp, INTEL_OUTPUT_FORMAT_YCBCR420) && 5554 (!drm_dp_is_branch(intel_dp->dpcd) || intel_dp->dfp.ycbcr420_passthrough)) 5555 return true; 5556 5557 if (source_can_output(intel_dp, INTEL_OUTPUT_FORMAT_RGB) && 5558 dfp_can_convert_from_rgb(intel_dp, INTEL_OUTPUT_FORMAT_YCBCR420)) 5559 return true; 5560 5561 if (source_can_output(intel_dp, INTEL_OUTPUT_FORMAT_YCBCR444) && 5562 dfp_can_convert_from_ycbcr444(intel_dp, INTEL_OUTPUT_FORMAT_YCBCR420)) 5563 return true; 5564 5565 return false; 5566 } 5567 5568 static void 5569 intel_dp_update_420(struct intel_dp *intel_dp) 5570 { 5571 struct intel_display *display = to_intel_display(intel_dp); 5572 struct intel_connector *connector = intel_dp->attached_connector; 5573 5574 intel_dp->dfp.ycbcr420_passthrough = 5575 drm_dp_downstream_420_passthrough(intel_dp->dpcd, 5576 intel_dp->downstream_ports); 5577 /* on-board LSPCON always assumed to support 4:4:4->4:2:0 conversion */ 5578 intel_dp->dfp.ycbcr_444_to_420 = 5579 intel_lspcon_active(dp_to_dig_port(intel_dp)) || 5580 drm_dp_downstream_444_to_420_conversion(intel_dp->dpcd, 5581 intel_dp->downstream_ports); 5582 intel_dp->dfp.rgb_to_ycbcr = 5583 drm_dp_downstream_rgb_to_ycbcr_conversion(intel_dp->dpcd, 5584 intel_dp->downstream_ports, 5585 DP_DS_HDMI_BT709_RGB_YCBCR_CONV); 5586 5587 connector->base.ycbcr_420_allowed = intel_dp_can_ycbcr420(intel_dp); 5588 5589 drm_dbg_kms(display->drm, 5590 "[CONNECTOR:%d:%s] RGB->YcbCr conversion? %s, YCbCr 4:2:0 allowed? %s, YCbCr 4:4:4->4:2:0 conversion? %s\n", 5591 connector->base.base.id, connector->base.name, 5592 str_yes_no(intel_dp->dfp.rgb_to_ycbcr), 5593 str_yes_no(connector->base.ycbcr_420_allowed), 5594 str_yes_no(intel_dp->dfp.ycbcr_444_to_420)); 5595 } 5596 5597 static void 5598 intel_dp_set_edid(struct intel_dp *intel_dp) 5599 { 5600 struct intel_display *display = to_intel_display(intel_dp); 5601 struct intel_connector *connector = intel_dp->attached_connector; 5602 const struct drm_edid *drm_edid; 5603 bool vrr_capable; 5604 5605 intel_dp_unset_edid(intel_dp); 5606 drm_edid = intel_dp_get_edid(intel_dp); 5607 connector->detect_edid = drm_edid; 5608 5609 /* Below we depend on display info having been updated */ 5610 drm_edid_connector_update(&connector->base, drm_edid); 5611 5612 vrr_capable = intel_vrr_is_capable(connector); 5613 drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] VRR capable: %s\n", 5614 connector->base.base.id, connector->base.name, str_yes_no(vrr_capable)); 5615 drm_connector_set_vrr_capable_property(&connector->base, vrr_capable); 5616 5617 intel_dp_update_dfp(intel_dp, drm_edid); 5618 intel_dp_update_420(intel_dp); 5619 5620 drm_dp_cec_attach(&intel_dp->aux, 5621 connector->base.display_info.source_physical_address); 5622 } 5623 5624 static void 5625 intel_dp_unset_edid(struct intel_dp *intel_dp) 5626 { 5627 struct intel_connector *connector = intel_dp->attached_connector; 5628 5629 drm_dp_cec_unset_edid(&intel_dp->aux); 5630 drm_edid_free(connector->detect_edid); 5631 connector->detect_edid = NULL; 5632 5633 intel_dp->dfp.max_bpc = 0; 5634 intel_dp->dfp.max_dotclock = 0; 5635 intel_dp->dfp.min_tmds_clock = 0; 5636 intel_dp->dfp.max_tmds_clock = 0; 5637 5638 intel_dp->dfp.pcon_max_frl_bw = 0; 5639 5640 intel_dp->dfp.ycbcr_444_to_420 = false; 5641 connector->base.ycbcr_420_allowed = false; 5642 5643 drm_connector_set_vrr_capable_property(&connector->base, 5644 false); 5645 } 5646 5647 static void 5648 intel_dp_detect_sdp_caps(struct intel_dp *intel_dp) 5649 { 5650 struct intel_display *display = to_intel_display(intel_dp); 5651 5652 intel_dp->as_sdp_supported = HAS_AS_SDP(display) && 5653 drm_dp_as_sdp_supported(&intel_dp->aux, intel_dp->dpcd); 5654 } 5655 5656 static int 5657 intel_dp_detect(struct drm_connector *_connector, 5658 struct drm_modeset_acquire_ctx *ctx, 5659 bool force) 5660 { 5661 struct intel_display *display = to_intel_display(_connector->dev); 5662 struct intel_connector *connector = to_intel_connector(_connector); 5663 struct intel_dp *intel_dp = intel_attached_dp(connector); 5664 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5665 struct intel_encoder *encoder = &dig_port->base; 5666 enum drm_connector_status status; 5667 int ret; 5668 5669 drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s]\n", 5670 connector->base.base.id, connector->base.name); 5671 drm_WARN_ON(display->drm, 5672 !drm_modeset_is_locked(&display->drm->mode_config.connection_mutex)); 5673 5674 if (!intel_display_device_enabled(display)) 5675 return connector_status_disconnected; 5676 5677 if (!intel_display_driver_check_access(display)) 5678 return connector->base.status; 5679 5680 intel_dp_flush_connector_commits(connector); 5681 5682 intel_pps_vdd_on(intel_dp); 5683 5684 /* Can't disconnect eDP */ 5685 if (intel_dp_is_edp(intel_dp)) 5686 status = edp_detect(intel_dp); 5687 else if (intel_digital_port_connected(encoder)) 5688 status = intel_dp_detect_dpcd(intel_dp); 5689 else 5690 status = connector_status_disconnected; 5691 5692 if (status != connector_status_disconnected && 5693 !intel_dp_mst_verify_dpcd_state(intel_dp)) 5694 /* 5695 * This requires retrying detection for instance to re-enable 5696 * the MST mode that got reset via a long HPD pulse. The retry 5697 * will happen either via the hotplug handler's retry logic, 5698 * ensured by setting the connector here to SST/disconnected, 5699 * or via a userspace connector probing in response to the 5700 * hotplug uevent sent when removing the MST connectors. 5701 */ 5702 status = connector_status_disconnected; 5703 5704 if (status == connector_status_disconnected) { 5705 intel_dp_test_reset(intel_dp); 5706 memset(connector->dp.dsc_dpcd, 0, sizeof(connector->dp.dsc_dpcd)); 5707 intel_dp->psr.sink_panel_replay_support = false; 5708 intel_dp->psr.sink_panel_replay_su_support = false; 5709 5710 intel_dp_mst_disconnect(intel_dp); 5711 5712 intel_dp_tunnel_disconnect(intel_dp); 5713 5714 goto out_unset_edid; 5715 } 5716 5717 intel_dp_init_source_oui(intel_dp); 5718 5719 ret = intel_dp_tunnel_detect(intel_dp, ctx); 5720 if (ret == -EDEADLK) { 5721 status = ret; 5722 5723 goto out_vdd_off; 5724 } 5725 5726 if (ret == 1) 5727 connector->base.epoch_counter++; 5728 5729 if (!intel_dp_is_edp(intel_dp)) 5730 intel_psr_init_dpcd(intel_dp); 5731 5732 intel_dp_detect_dsc_caps(intel_dp, connector); 5733 5734 intel_dp_detect_sdp_caps(intel_dp); 5735 5736 if (intel_dp->reset_link_params) { 5737 intel_dp_reset_link_params(intel_dp); 5738 intel_dp->reset_link_params = false; 5739 } 5740 5741 intel_dp_mst_configure(intel_dp); 5742 5743 intel_dp_print_rates(intel_dp); 5744 5745 if (intel_dp->is_mst) { 5746 /* 5747 * If we are in MST mode then this connector 5748 * won't appear connected or have anything 5749 * with EDID on it 5750 */ 5751 status = connector_status_disconnected; 5752 goto out_unset_edid; 5753 } 5754 5755 /* 5756 * Some external monitors do not signal loss of link synchronization 5757 * with an IRQ_HPD, so force a link status check. 5758 * 5759 * TODO: this probably became redundant, so remove it: the link state 5760 * is rechecked/recovered now after modesets, where the loss of 5761 * synchronization tends to occur. 5762 */ 5763 if (!intel_dp_is_edp(intel_dp)) 5764 intel_dp_check_link_state(intel_dp); 5765 5766 /* 5767 * Clearing NACK and defer counts to get their exact values 5768 * while reading EDID which are required by Compliance tests 5769 * 4.2.2.4 and 4.2.2.5 5770 */ 5771 intel_dp->aux.i2c_nack_count = 0; 5772 intel_dp->aux.i2c_defer_count = 0; 5773 5774 intel_dp_set_edid(intel_dp); 5775 if (intel_dp_is_edp(intel_dp) || connector->detect_edid) 5776 status = connector_status_connected; 5777 5778 intel_dp_check_device_service_irq(intel_dp); 5779 5780 out_unset_edid: 5781 if (status != connector_status_connected && !intel_dp->is_mst) 5782 intel_dp_unset_edid(intel_dp); 5783 5784 if (!intel_dp_is_edp(intel_dp)) 5785 drm_dp_set_subconnector_property(&connector->base, 5786 status, 5787 intel_dp->dpcd, 5788 intel_dp->downstream_ports); 5789 out_vdd_off: 5790 intel_pps_vdd_off(intel_dp); 5791 5792 return status; 5793 } 5794 5795 static void 5796 intel_dp_force(struct drm_connector *connector) 5797 { 5798 struct intel_display *display = to_intel_display(connector->dev); 5799 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 5800 5801 drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s]\n", 5802 connector->base.id, connector->name); 5803 5804 if (!intel_display_driver_check_access(display)) 5805 return; 5806 5807 intel_dp_unset_edid(intel_dp); 5808 5809 if (connector->status != connector_status_connected) 5810 return; 5811 5812 intel_dp_set_edid(intel_dp); 5813 } 5814 5815 static int intel_dp_get_modes(struct drm_connector *_connector) 5816 { 5817 struct intel_display *display = to_intel_display(_connector->dev); 5818 struct intel_connector *connector = to_intel_connector(_connector); 5819 struct intel_dp *intel_dp = intel_attached_dp(connector); 5820 int num_modes; 5821 5822 /* drm_edid_connector_update() done in ->detect() or ->force() */ 5823 num_modes = drm_edid_connector_add_modes(&connector->base); 5824 5825 /* Also add fixed mode, which may or may not be present in EDID */ 5826 if (intel_dp_is_edp(intel_dp)) 5827 num_modes += intel_panel_get_modes(connector); 5828 5829 if (num_modes) 5830 return num_modes; 5831 5832 if (!connector->detect_edid) { 5833 struct drm_display_mode *mode; 5834 5835 mode = drm_dp_downstream_mode(display->drm, 5836 intel_dp->dpcd, 5837 intel_dp->downstream_ports); 5838 if (mode) { 5839 drm_mode_probed_add(&connector->base, mode); 5840 num_modes++; 5841 } 5842 } 5843 5844 return num_modes; 5845 } 5846 5847 static int 5848 intel_dp_connector_register(struct drm_connector *connector) 5849 { 5850 struct intel_display *display = to_intel_display(connector->dev); 5851 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 5852 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5853 int ret; 5854 5855 ret = intel_connector_register(connector); 5856 if (ret) 5857 return ret; 5858 5859 drm_dbg_kms(display->drm, "registering %s bus for %s\n", 5860 intel_dp->aux.name, connector->kdev->kobj.name); 5861 5862 intel_dp->aux.dev = connector->kdev; 5863 ret = drm_dp_aux_register(&intel_dp->aux); 5864 if (!ret) 5865 drm_dp_cec_register_connector(&intel_dp->aux, connector); 5866 5867 if (!intel_bios_encoder_is_lspcon(dig_port->base.devdata)) 5868 return ret; 5869 5870 /* 5871 * ToDo: Clean this up to handle lspcon init and resume more 5872 * efficiently and streamlined. 5873 */ 5874 if (intel_lspcon_init(dig_port)) { 5875 if (intel_lspcon_detect_hdr_capability(dig_port)) 5876 drm_connector_attach_hdr_output_metadata_property(connector); 5877 } 5878 5879 return ret; 5880 } 5881 5882 static void 5883 intel_dp_connector_unregister(struct drm_connector *connector) 5884 { 5885 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 5886 5887 drm_dp_cec_unregister_connector(&intel_dp->aux); 5888 drm_dp_aux_unregister(&intel_dp->aux); 5889 intel_connector_unregister(connector); 5890 } 5891 5892 void intel_dp_connector_sync_state(struct intel_connector *connector, 5893 const struct intel_crtc_state *crtc_state) 5894 { 5895 struct intel_display *display = to_intel_display(connector); 5896 5897 if (crtc_state && crtc_state->dsc.compression_enable) { 5898 drm_WARN_ON(display->drm, 5899 !connector->dp.dsc_decompression_aux); 5900 connector->dp.dsc_decompression_enabled = true; 5901 } else { 5902 connector->dp.dsc_decompression_enabled = false; 5903 } 5904 } 5905 5906 void intel_dp_encoder_flush_work(struct drm_encoder *_encoder) 5907 { 5908 struct intel_encoder *encoder = to_intel_encoder(_encoder); 5909 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 5910 struct intel_dp *intel_dp = &dig_port->dp; 5911 5912 intel_encoder_link_check_flush_work(encoder); 5913 5914 intel_dp_mst_encoder_cleanup(dig_port); 5915 5916 intel_dp_tunnel_destroy(intel_dp); 5917 5918 intel_pps_vdd_off_sync(intel_dp); 5919 5920 /* 5921 * Ensure power off delay is respected on module remove, so that we can 5922 * reduce delays at driver probe. See pps_init_timestamps(). 5923 */ 5924 intel_pps_wait_power_cycle(intel_dp); 5925 5926 intel_dp_aux_fini(intel_dp); 5927 } 5928 5929 void intel_dp_encoder_suspend(struct intel_encoder *encoder) 5930 { 5931 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 5932 5933 intel_pps_vdd_off_sync(intel_dp); 5934 5935 intel_dp_tunnel_suspend(intel_dp); 5936 } 5937 5938 void intel_dp_encoder_shutdown(struct intel_encoder *encoder) 5939 { 5940 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 5941 5942 intel_pps_wait_power_cycle(intel_dp); 5943 } 5944 5945 static int intel_modeset_tile_group(struct intel_atomic_state *state, 5946 int tile_group_id) 5947 { 5948 struct intel_display *display = to_intel_display(state); 5949 struct drm_connector_list_iter conn_iter; 5950 struct drm_connector *connector; 5951 int ret = 0; 5952 5953 drm_connector_list_iter_begin(display->drm, &conn_iter); 5954 drm_for_each_connector_iter(connector, &conn_iter) { 5955 struct drm_connector_state *conn_state; 5956 struct intel_crtc_state *crtc_state; 5957 struct intel_crtc *crtc; 5958 5959 if (!connector->has_tile || 5960 connector->tile_group->id != tile_group_id) 5961 continue; 5962 5963 conn_state = drm_atomic_get_connector_state(&state->base, 5964 connector); 5965 if (IS_ERR(conn_state)) { 5966 ret = PTR_ERR(conn_state); 5967 break; 5968 } 5969 5970 crtc = to_intel_crtc(conn_state->crtc); 5971 5972 if (!crtc) 5973 continue; 5974 5975 crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 5976 crtc_state->uapi.mode_changed = true; 5977 5978 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base); 5979 if (ret) 5980 break; 5981 } 5982 drm_connector_list_iter_end(&conn_iter); 5983 5984 return ret; 5985 } 5986 5987 static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders) 5988 { 5989 struct intel_display *display = to_intel_display(state); 5990 struct intel_crtc *crtc; 5991 5992 if (transcoders == 0) 5993 return 0; 5994 5995 for_each_intel_crtc(display->drm, crtc) { 5996 struct intel_crtc_state *crtc_state; 5997 int ret; 5998 5999 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 6000 if (IS_ERR(crtc_state)) 6001 return PTR_ERR(crtc_state); 6002 6003 if (!crtc_state->hw.enable) 6004 continue; 6005 6006 if (!(transcoders & BIT(crtc_state->cpu_transcoder))) 6007 continue; 6008 6009 crtc_state->uapi.mode_changed = true; 6010 6011 ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base); 6012 if (ret) 6013 return ret; 6014 6015 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base); 6016 if (ret) 6017 return ret; 6018 6019 transcoders &= ~BIT(crtc_state->cpu_transcoder); 6020 } 6021 6022 drm_WARN_ON(display->drm, transcoders != 0); 6023 6024 return 0; 6025 } 6026 6027 static int intel_modeset_synced_crtcs(struct intel_atomic_state *state, 6028 struct drm_connector *connector) 6029 { 6030 const struct drm_connector_state *old_conn_state = 6031 drm_atomic_get_old_connector_state(&state->base, connector); 6032 const struct intel_crtc_state *old_crtc_state; 6033 struct intel_crtc *crtc; 6034 u8 transcoders; 6035 6036 crtc = to_intel_crtc(old_conn_state->crtc); 6037 if (!crtc) 6038 return 0; 6039 6040 old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); 6041 6042 if (!old_crtc_state->hw.active) 6043 return 0; 6044 6045 transcoders = old_crtc_state->sync_mode_slaves_mask; 6046 if (old_crtc_state->master_transcoder != INVALID_TRANSCODER) 6047 transcoders |= BIT(old_crtc_state->master_transcoder); 6048 6049 return intel_modeset_affected_transcoders(state, 6050 transcoders); 6051 } 6052 6053 static int intel_dp_connector_atomic_check(struct drm_connector *conn, 6054 struct drm_atomic_state *_state) 6055 { 6056 struct intel_display *display = to_intel_display(conn->dev); 6057 struct intel_atomic_state *state = to_intel_atomic_state(_state); 6058 struct drm_connector_state *conn_state = drm_atomic_get_new_connector_state(_state, conn); 6059 struct intel_connector *intel_conn = to_intel_connector(conn); 6060 struct intel_dp *intel_dp = enc_to_intel_dp(intel_conn->encoder); 6061 int ret; 6062 6063 ret = intel_digital_connector_atomic_check(conn, &state->base); 6064 if (ret) 6065 return ret; 6066 6067 if (intel_dp_mst_source_support(intel_dp)) { 6068 ret = drm_dp_mst_root_conn_atomic_check(conn_state, &intel_dp->mst.mgr); 6069 if (ret) 6070 return ret; 6071 } 6072 6073 if (!intel_connector_needs_modeset(state, conn)) 6074 return 0; 6075 6076 ret = intel_dp_tunnel_atomic_check_state(state, 6077 intel_dp, 6078 intel_conn); 6079 if (ret) 6080 return ret; 6081 6082 /* 6083 * We don't enable port sync on BDW due to missing w/as and 6084 * due to not having adjusted the modeset sequence appropriately. 6085 */ 6086 if (DISPLAY_VER(display) < 9) 6087 return 0; 6088 6089 if (conn->has_tile) { 6090 ret = intel_modeset_tile_group(state, conn->tile_group->id); 6091 if (ret) 6092 return ret; 6093 } 6094 6095 return intel_modeset_synced_crtcs(state, conn); 6096 } 6097 6098 static void intel_dp_oob_hotplug_event(struct drm_connector *connector, 6099 enum drm_connector_status hpd_state) 6100 { 6101 struct intel_display *display = to_intel_display(connector->dev); 6102 struct intel_encoder *encoder = intel_attached_encoder(to_intel_connector(connector)); 6103 struct drm_i915_private *i915 = to_i915(connector->dev); 6104 bool hpd_high = hpd_state == connector_status_connected; 6105 unsigned int hpd_pin = encoder->hpd_pin; 6106 bool need_work = false; 6107 6108 spin_lock_irq(&i915->irq_lock); 6109 if (hpd_high != test_bit(hpd_pin, &display->hotplug.oob_hotplug_last_state)) { 6110 display->hotplug.event_bits |= BIT(hpd_pin); 6111 6112 __assign_bit(hpd_pin, 6113 &display->hotplug.oob_hotplug_last_state, 6114 hpd_high); 6115 need_work = true; 6116 } 6117 spin_unlock_irq(&i915->irq_lock); 6118 6119 if (need_work) 6120 intel_hpd_schedule_detection(i915); 6121 } 6122 6123 static const struct drm_connector_funcs intel_dp_connector_funcs = { 6124 .force = intel_dp_force, 6125 .fill_modes = drm_helper_probe_single_connector_modes, 6126 .atomic_get_property = intel_digital_connector_atomic_get_property, 6127 .atomic_set_property = intel_digital_connector_atomic_set_property, 6128 .late_register = intel_dp_connector_register, 6129 .early_unregister = intel_dp_connector_unregister, 6130 .destroy = intel_connector_destroy, 6131 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 6132 .atomic_duplicate_state = intel_digital_connector_duplicate_state, 6133 .oob_hotplug_event = intel_dp_oob_hotplug_event, 6134 }; 6135 6136 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = { 6137 .detect_ctx = intel_dp_detect, 6138 .get_modes = intel_dp_get_modes, 6139 .mode_valid = intel_dp_mode_valid, 6140 .atomic_check = intel_dp_connector_atomic_check, 6141 }; 6142 6143 enum irqreturn 6144 intel_dp_hpd_pulse(struct intel_digital_port *dig_port, bool long_hpd) 6145 { 6146 struct intel_display *display = to_intel_display(dig_port); 6147 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 6148 struct intel_dp *intel_dp = &dig_port->dp; 6149 u8 dpcd[DP_RECEIVER_CAP_SIZE]; 6150 6151 if (dig_port->base.type == INTEL_OUTPUT_EDP && 6152 (long_hpd || 6153 intel_runtime_pm_suspended(&i915->runtime_pm) || 6154 !intel_pps_have_panel_power_or_vdd(intel_dp))) { 6155 /* 6156 * vdd off can generate a long/short pulse on eDP which 6157 * would require vdd on to handle it, and thus we 6158 * would end up in an endless cycle of 6159 * "vdd off -> long/short hpd -> vdd on -> detect -> vdd off -> ..." 6160 */ 6161 drm_dbg_kms(display->drm, 6162 "ignoring %s hpd on eDP [ENCODER:%d:%s]\n", 6163 long_hpd ? "long" : "short", 6164 dig_port->base.base.base.id, 6165 dig_port->base.base.name); 6166 return IRQ_HANDLED; 6167 } 6168 6169 drm_dbg_kms(display->drm, "got hpd irq on [ENCODER:%d:%s] - %s\n", 6170 dig_port->base.base.base.id, 6171 dig_port->base.base.name, 6172 long_hpd ? "long" : "short"); 6173 6174 /* 6175 * TBT DP tunnels require the GFX driver to read out the DPRX caps in 6176 * response to long HPD pulses. The DP hotplug handler does that, 6177 * however the hotplug handler may be blocked by another 6178 * connector's/encoder's hotplug handler. Since the TBT CM may not 6179 * complete the DP tunnel BW request for the latter connector/encoder 6180 * waiting for this encoder's DPRX read, perform a dummy read here. 6181 */ 6182 if (long_hpd) 6183 intel_dp_read_dprx_caps(intel_dp, dpcd); 6184 6185 if (long_hpd) { 6186 intel_dp->reset_link_params = true; 6187 intel_dp_invalidate_source_oui(intel_dp); 6188 6189 return IRQ_NONE; 6190 } 6191 6192 if (intel_dp->is_mst) { 6193 if (!intel_dp_check_mst_status(intel_dp)) 6194 return IRQ_NONE; 6195 } else if (!intel_dp_short_pulse(intel_dp)) { 6196 return IRQ_NONE; 6197 } 6198 6199 return IRQ_HANDLED; 6200 } 6201 6202 static bool _intel_dp_is_port_edp(struct intel_display *display, 6203 const struct intel_bios_encoder_data *devdata, 6204 enum port port) 6205 { 6206 /* 6207 * eDP not supported on g4x. so bail out early just 6208 * for a bit extra safety in case the VBT is bonkers. 6209 */ 6210 if (DISPLAY_VER(display) < 5) 6211 return false; 6212 6213 if (DISPLAY_VER(display) < 9 && port == PORT_A) 6214 return true; 6215 6216 return devdata && intel_bios_encoder_supports_edp(devdata); 6217 } 6218 6219 bool intel_dp_is_port_edp(struct intel_display *display, enum port port) 6220 { 6221 const struct intel_bios_encoder_data *devdata = 6222 intel_bios_encoder_data_lookup(display, port); 6223 6224 return _intel_dp_is_port_edp(display, devdata, port); 6225 } 6226 6227 bool 6228 intel_dp_has_gamut_metadata_dip(struct intel_encoder *encoder) 6229 { 6230 struct intel_display *display = to_intel_display(encoder); 6231 enum port port = encoder->port; 6232 6233 if (intel_bios_encoder_is_lspcon(encoder->devdata)) 6234 return false; 6235 6236 if (DISPLAY_VER(display) >= 11) 6237 return true; 6238 6239 if (port == PORT_A) 6240 return false; 6241 6242 if (display->platform.haswell || display->platform.broadwell || 6243 DISPLAY_VER(display) >= 9) 6244 return true; 6245 6246 return false; 6247 } 6248 6249 static void 6250 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector) 6251 { 6252 struct intel_display *display = to_intel_display(intel_dp); 6253 enum port port = dp_to_dig_port(intel_dp)->base.port; 6254 6255 if (!intel_dp_is_edp(intel_dp)) 6256 drm_connector_attach_dp_subconnector_property(connector); 6257 6258 if (!display->platform.g4x && port != PORT_A) 6259 intel_attach_force_audio_property(connector); 6260 6261 intel_attach_broadcast_rgb_property(connector); 6262 if (HAS_GMCH(display)) 6263 drm_connector_attach_max_bpc_property(connector, 6, 10); 6264 else if (DISPLAY_VER(display) >= 5) 6265 drm_connector_attach_max_bpc_property(connector, 6, 12); 6266 6267 /* Register HDMI colorspace for case of lspcon */ 6268 if (intel_bios_encoder_is_lspcon(dp_to_dig_port(intel_dp)->base.devdata)) { 6269 drm_connector_attach_content_type_property(connector); 6270 intel_attach_hdmi_colorspace_property(connector); 6271 } else { 6272 intel_attach_dp_colorspace_property(connector); 6273 } 6274 6275 if (intel_dp_has_gamut_metadata_dip(&dp_to_dig_port(intel_dp)->base)) 6276 drm_connector_attach_hdr_output_metadata_property(connector); 6277 6278 if (HAS_VRR(display)) 6279 drm_connector_attach_vrr_capable_property(connector); 6280 } 6281 6282 static void 6283 intel_edp_add_properties(struct intel_dp *intel_dp) 6284 { 6285 struct intel_display *display = to_intel_display(intel_dp); 6286 struct intel_connector *connector = intel_dp->attached_connector; 6287 const struct drm_display_mode *fixed_mode = 6288 intel_panel_preferred_fixed_mode(connector); 6289 6290 intel_attach_scaling_mode_property(&connector->base); 6291 6292 drm_connector_set_panel_orientation_with_quirk(&connector->base, 6293 display->vbt.orientation, 6294 fixed_mode->hdisplay, 6295 fixed_mode->vdisplay); 6296 } 6297 6298 static void intel_edp_backlight_setup(struct intel_dp *intel_dp, 6299 struct intel_connector *connector) 6300 { 6301 struct intel_display *display = to_intel_display(intel_dp); 6302 enum pipe pipe = INVALID_PIPE; 6303 6304 if (display->platform.valleyview || display->platform.cherryview) 6305 pipe = vlv_pps_backlight_initial_pipe(intel_dp); 6306 6307 intel_backlight_setup(connector, pipe); 6308 } 6309 6310 static bool intel_edp_init_connector(struct intel_dp *intel_dp, 6311 struct intel_connector *connector) 6312 { 6313 struct intel_display *display = to_intel_display(intel_dp); 6314 struct drm_i915_private *dev_priv = to_i915(display->drm); 6315 struct drm_display_mode *fixed_mode; 6316 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 6317 bool has_dpcd; 6318 const struct drm_edid *drm_edid; 6319 6320 if (!intel_dp_is_edp(intel_dp)) 6321 return true; 6322 6323 /* 6324 * On IBX/CPT we may get here with LVDS already registered. Since the 6325 * driver uses the only internal power sequencer available for both 6326 * eDP and LVDS bail out early in this case to prevent interfering 6327 * with an already powered-on LVDS power sequencer. 6328 */ 6329 if (intel_get_lvds_encoder(dev_priv)) { 6330 drm_WARN_ON(display->drm, 6331 !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))); 6332 drm_info(display->drm, 6333 "LVDS was detected, not registering eDP\n"); 6334 6335 return false; 6336 } 6337 6338 intel_bios_init_panel_early(display, &connector->panel, 6339 encoder->devdata); 6340 6341 if (!intel_pps_init(intel_dp)) { 6342 drm_info(display->drm, 6343 "[ENCODER:%d:%s] unusable PPS, disabling eDP\n", 6344 encoder->base.base.id, encoder->base.name); 6345 /* 6346 * The BIOS may have still enabled VDD on the PPS even 6347 * though it's unusable. Make sure we turn it back off 6348 * and to release the power domain references/etc. 6349 */ 6350 goto out_vdd_off; 6351 } 6352 6353 /* 6354 * Enable HPD sense for live status check. 6355 * intel_hpd_irq_setup() will turn it off again 6356 * if it's no longer needed later. 6357 * 6358 * The DPCD probe below will make sure VDD is on. 6359 */ 6360 intel_hpd_enable_detection(encoder); 6361 6362 intel_alpm_init_dpcd(intel_dp); 6363 6364 /* Cache DPCD and EDID for edp. */ 6365 has_dpcd = intel_edp_init_dpcd(intel_dp, connector); 6366 6367 if (!has_dpcd) { 6368 /* if this fails, presume the device is a ghost */ 6369 drm_info(display->drm, 6370 "[ENCODER:%d:%s] failed to retrieve link info, disabling eDP\n", 6371 encoder->base.base.id, encoder->base.name); 6372 goto out_vdd_off; 6373 } 6374 6375 /* 6376 * VBT and straps are liars. Also check HPD as that seems 6377 * to be the most reliable piece of information available. 6378 * 6379 * ... expect on devices that forgot to hook HPD up for eDP 6380 * (eg. Acer Chromebook C710), so we'll check it only if multiple 6381 * ports are attempting to use the same AUX CH, according to VBT. 6382 */ 6383 if (intel_bios_dp_has_shared_aux_ch(encoder->devdata)) { 6384 /* 6385 * If this fails, presume the DPCD answer came 6386 * from some other port using the same AUX CH. 6387 * 6388 * FIXME maybe cleaner to check this before the 6389 * DPCD read? Would need sort out the VDD handling... 6390 */ 6391 if (!intel_digital_port_connected(encoder)) { 6392 drm_info(display->drm, 6393 "[ENCODER:%d:%s] HPD is down, disabling eDP\n", 6394 encoder->base.base.id, encoder->base.name); 6395 goto out_vdd_off; 6396 } 6397 6398 /* 6399 * Unfortunately even the HPD based detection fails on 6400 * eg. Asus B360M-A (CFL+CNP), so as a last resort fall 6401 * back to checking for a VGA branch device. Only do this 6402 * on known affected platforms to minimize false positives. 6403 */ 6404 if (DISPLAY_VER(display) == 9 && drm_dp_is_branch(intel_dp->dpcd) && 6405 (intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) == 6406 DP_DWN_STRM_PORT_TYPE_ANALOG) { 6407 drm_info(display->drm, 6408 "[ENCODER:%d:%s] VGA converter detected, disabling eDP\n", 6409 encoder->base.base.id, encoder->base.name); 6410 goto out_vdd_off; 6411 } 6412 } 6413 6414 mutex_lock(&display->drm->mode_config.mutex); 6415 drm_edid = drm_edid_read_ddc(&connector->base, connector->base.ddc); 6416 if (!drm_edid) { 6417 /* Fallback to EDID from ACPI OpRegion, if any */ 6418 drm_edid = intel_opregion_get_edid(connector); 6419 if (drm_edid) 6420 drm_dbg_kms(display->drm, 6421 "[CONNECTOR:%d:%s] Using OpRegion EDID\n", 6422 connector->base.base.id, connector->base.name); 6423 } 6424 if (drm_edid) { 6425 if (drm_edid_connector_update(&connector->base, drm_edid) || 6426 !drm_edid_connector_add_modes(&connector->base)) { 6427 drm_edid_connector_update(&connector->base, NULL); 6428 drm_edid_free(drm_edid); 6429 drm_edid = ERR_PTR(-EINVAL); 6430 } 6431 } else { 6432 drm_edid = ERR_PTR(-ENOENT); 6433 } 6434 6435 intel_bios_init_panel_late(display, &connector->panel, encoder->devdata, 6436 IS_ERR(drm_edid) ? NULL : drm_edid); 6437 6438 intel_panel_add_edid_fixed_modes(connector, true); 6439 6440 /* MSO requires information from the EDID */ 6441 intel_edp_mso_init(intel_dp); 6442 6443 /* multiply the mode clock and horizontal timings for MSO */ 6444 list_for_each_entry(fixed_mode, &connector->panel.fixed_modes, head) 6445 intel_edp_mso_mode_fixup(connector, fixed_mode); 6446 6447 /* fallback to VBT if available for eDP */ 6448 if (!intel_panel_preferred_fixed_mode(connector)) 6449 intel_panel_add_vbt_lfp_fixed_mode(connector); 6450 6451 mutex_unlock(&display->drm->mode_config.mutex); 6452 6453 if (!intel_panel_preferred_fixed_mode(connector)) { 6454 drm_info(display->drm, 6455 "[ENCODER:%d:%s] failed to find fixed mode for the panel, disabling eDP\n", 6456 encoder->base.base.id, encoder->base.name); 6457 goto out_vdd_off; 6458 } 6459 6460 intel_panel_init(connector, drm_edid); 6461 6462 intel_edp_backlight_setup(intel_dp, connector); 6463 6464 intel_edp_add_properties(intel_dp); 6465 6466 intel_pps_init_late(intel_dp); 6467 6468 return true; 6469 6470 out_vdd_off: 6471 intel_pps_vdd_off_sync(intel_dp); 6472 intel_bios_fini_panel(&connector->panel); 6473 6474 return false; 6475 } 6476 6477 bool 6478 intel_dp_init_connector(struct intel_digital_port *dig_port, 6479 struct intel_connector *connector) 6480 { 6481 struct intel_display *display = to_intel_display(dig_port); 6482 struct intel_dp *intel_dp = &dig_port->dp; 6483 struct intel_encoder *encoder = &dig_port->base; 6484 struct drm_device *dev = encoder->base.dev; 6485 enum port port = encoder->port; 6486 int type; 6487 6488 if (drm_WARN(dev, dig_port->max_lanes < 1, 6489 "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n", 6490 dig_port->max_lanes, encoder->base.base.id, 6491 encoder->base.name)) 6492 return false; 6493 6494 intel_dp->reset_link_params = true; 6495 6496 /* Preserve the current hw state. */ 6497 intel_dp->DP = intel_de_read(display, intel_dp->output_reg); 6498 intel_dp->attached_connector = connector; 6499 6500 if (_intel_dp_is_port_edp(display, encoder->devdata, port)) { 6501 /* 6502 * Currently we don't support eDP on TypeC ports for DISPLAY_VER < 30, 6503 * although in theory it could work on TypeC legacy ports. 6504 */ 6505 drm_WARN_ON(dev, intel_encoder_is_tc(encoder) && 6506 DISPLAY_VER(display) < 30); 6507 type = DRM_MODE_CONNECTOR_eDP; 6508 encoder->type = INTEL_OUTPUT_EDP; 6509 6510 /* eDP only on port B and/or C on vlv/chv */ 6511 if (drm_WARN_ON(dev, (display->platform.valleyview || 6512 display->platform.cherryview) && 6513 port != PORT_B && port != PORT_C)) 6514 return false; 6515 } else { 6516 type = DRM_MODE_CONNECTOR_DisplayPort; 6517 } 6518 6519 intel_dp_set_default_sink_rates(intel_dp); 6520 intel_dp_set_default_max_sink_lane_count(intel_dp); 6521 6522 if (display->platform.valleyview || display->platform.cherryview) 6523 vlv_pps_pipe_init(intel_dp); 6524 6525 intel_dp_aux_init(intel_dp); 6526 connector->dp.dsc_decompression_aux = &intel_dp->aux; 6527 6528 drm_dbg_kms(display->drm, 6529 "Adding %s connector on [ENCODER:%d:%s]\n", 6530 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP", 6531 encoder->base.base.id, encoder->base.name); 6532 6533 drm_connector_init_with_ddc(dev, &connector->base, &intel_dp_connector_funcs, 6534 type, &intel_dp->aux.ddc); 6535 drm_connector_helper_add(&connector->base, &intel_dp_connector_helper_funcs); 6536 6537 if (!HAS_GMCH(display) && DISPLAY_VER(display) < 12) 6538 connector->base.interlace_allowed = true; 6539 6540 if (type != DRM_MODE_CONNECTOR_eDP) 6541 connector->polled = DRM_CONNECTOR_POLL_HPD; 6542 connector->base.polled = connector->polled; 6543 6544 intel_connector_attach_encoder(connector, encoder); 6545 6546 if (HAS_DDI(display)) 6547 connector->get_hw_state = intel_ddi_connector_get_hw_state; 6548 else 6549 connector->get_hw_state = intel_connector_get_hw_state; 6550 connector->sync_state = intel_dp_connector_sync_state; 6551 6552 if (!intel_edp_init_connector(intel_dp, connector)) { 6553 intel_dp_aux_fini(intel_dp); 6554 goto fail; 6555 } 6556 6557 intel_dp_set_source_rates(intel_dp); 6558 intel_dp_set_common_rates(intel_dp); 6559 intel_dp_reset_link_params(intel_dp); 6560 6561 /* init MST on ports that can support it */ 6562 intel_dp_mst_encoder_init(dig_port, connector->base.base.id); 6563 6564 intel_dp_add_properties(intel_dp, &connector->base); 6565 6566 if (is_hdcp_supported(display, port) && !intel_dp_is_edp(intel_dp)) { 6567 int ret = intel_dp_hdcp_init(dig_port, connector); 6568 if (ret) 6569 drm_dbg_kms(display->drm, 6570 "HDCP init failed, skipping.\n"); 6571 } 6572 6573 intel_dp->frl.is_trained = false; 6574 intel_dp->frl.trained_rate_gbps = 0; 6575 6576 intel_psr_init(intel_dp); 6577 6578 return true; 6579 6580 fail: 6581 intel_display_power_flush_work(display); 6582 drm_connector_cleanup(&connector->base); 6583 6584 return false; 6585 } 6586 6587 void intel_dp_mst_suspend(struct intel_display *display) 6588 { 6589 struct intel_encoder *encoder; 6590 6591 if (!HAS_DISPLAY(display)) 6592 return; 6593 6594 for_each_intel_encoder(display->drm, encoder) { 6595 struct intel_dp *intel_dp; 6596 6597 if (encoder->type != INTEL_OUTPUT_DDI) 6598 continue; 6599 6600 intel_dp = enc_to_intel_dp(encoder); 6601 6602 if (!intel_dp_mst_source_support(intel_dp)) 6603 continue; 6604 6605 if (intel_dp->is_mst) 6606 drm_dp_mst_topology_mgr_suspend(&intel_dp->mst.mgr); 6607 } 6608 } 6609 6610 void intel_dp_mst_resume(struct intel_display *display) 6611 { 6612 struct intel_encoder *encoder; 6613 6614 if (!HAS_DISPLAY(display)) 6615 return; 6616 6617 for_each_intel_encoder(display->drm, encoder) { 6618 struct intel_dp *intel_dp; 6619 int ret; 6620 6621 if (encoder->type != INTEL_OUTPUT_DDI) 6622 continue; 6623 6624 intel_dp = enc_to_intel_dp(encoder); 6625 6626 if (!intel_dp_mst_source_support(intel_dp)) 6627 continue; 6628 6629 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst.mgr, true); 6630 if (ret) { 6631 intel_dp->is_mst = false; 6632 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst.mgr, false); 6633 } 6634 } 6635 } 6636