1 /*
2 * Copyright © 2006 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <linux/debugfs.h>
29 #include <linux/firmware.h>
30
31 #include <drm/display/drm_dp_helper.h>
32 #include <drm/display/drm_dsc_helper.h>
33 #include <drm/drm_edid.h>
34 #include <drm/drm_fixed.h>
35
36 #include "soc/intel_rom.h"
37
38 #include "i915_drv.h"
39 #include "intel_display.h"
40 #include "intel_display_rpm.h"
41 #include "intel_display_types.h"
42 #include "intel_gmbus.h"
43
44 #define _INTEL_BIOS_PRIVATE
45 #include "intel_vbt_defs.h"
46
47 /**
48 * DOC: Video BIOS Table (VBT)
49 *
50 * The Video BIOS Table, or VBT, provides platform and board specific
51 * configuration information to the driver that is not discoverable or available
52 * through other means. The configuration is mostly related to display
53 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
54 * the PCI ROM.
55 *
56 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
57 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
58 * contain the actual configuration information. The VBT Header, and thus the
59 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
60 * BDB Header. The data blocks are concatenated after the BDB Header. The data
61 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
62 * data. (Block 53, the MIPI Sequence Block is an exception.)
63 *
64 * The driver parses the VBT during load. The relevant information is stored in
65 * driver private data for ease of use, and the actual VBT is not read after
66 * that.
67 */
68
69 /* Wrapper for VBT child device config */
70 struct intel_bios_encoder_data {
71 struct intel_display *display;
72
73 struct child_device_config child;
74 struct dsc_compression_parameters_entry *dsc;
75 struct list_head node;
76 };
77
78 #define TARGET_ADDR1 0x70
79 #define TARGET_ADDR2 0x72
80
81 /* Get BDB block size given a pointer to Block ID. */
_get_blocksize(const u8 * block_base)82 static u32 _get_blocksize(const u8 *block_base)
83 {
84 /* The MIPI Sequence Block v3+ has a separate size field. */
85 if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
86 return *((const u32 *)(block_base + 4));
87 else
88 return *((const u16 *)(block_base + 1));
89 }
90
91 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
get_blocksize(const void * block_data)92 static u32 get_blocksize(const void *block_data)
93 {
94 return _get_blocksize(block_data - 3);
95 }
96
97 static const void *
find_raw_section(const void * _bdb,enum bdb_block_id section_id)98 find_raw_section(const void *_bdb, enum bdb_block_id section_id)
99 {
100 const struct bdb_header *bdb = _bdb;
101 const u8 *base = _bdb;
102 int index = 0;
103 u32 total, current_size;
104 enum bdb_block_id current_id;
105
106 /* skip to first section */
107 index += bdb->header_size;
108 total = bdb->bdb_size;
109
110 /* walk the sections looking for section_id */
111 while (index + 3 < total) {
112 current_id = *(base + index);
113 current_size = _get_blocksize(base + index);
114 index += 3;
115
116 if (index + current_size > total)
117 return NULL;
118
119 if (current_id == section_id)
120 return base + index;
121
122 index += current_size;
123 }
124
125 return NULL;
126 }
127
128 /*
129 * Offset from the start of BDB to the start of the
130 * block data (just past the block header).
131 */
raw_block_offset(const void * bdb,enum bdb_block_id section_id)132 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id)
133 {
134 const void *block;
135
136 block = find_raw_section(bdb, section_id);
137 if (!block)
138 return 0;
139
140 return block - bdb;
141 }
142
143 struct bdb_block_entry {
144 struct list_head node;
145 enum bdb_block_id section_id;
146 u8 data[];
147 };
148
149 static const void *
bdb_find_section(struct intel_display * display,enum bdb_block_id section_id)150 bdb_find_section(struct intel_display *display,
151 enum bdb_block_id section_id)
152 {
153 struct bdb_block_entry *entry;
154
155 list_for_each_entry(entry, &display->vbt.bdb_blocks, node) {
156 if (entry->section_id == section_id)
157 return entry->data + 3;
158 }
159
160 return NULL;
161 }
162
163 static const struct {
164 enum bdb_block_id section_id;
165 size_t min_size;
166 } bdb_blocks[] = {
167 { .section_id = BDB_GENERAL_FEATURES,
168 .min_size = sizeof(struct bdb_general_features), },
169 { .section_id = BDB_GENERAL_DEFINITIONS,
170 .min_size = sizeof(struct bdb_general_definitions), },
171 { .section_id = BDB_PSR,
172 .min_size = sizeof(struct bdb_psr), },
173 { .section_id = BDB_DRIVER_FEATURES,
174 .min_size = sizeof(struct bdb_driver_features), },
175 { .section_id = BDB_SDVO_LVDS_OPTIONS,
176 .min_size = sizeof(struct bdb_sdvo_lvds_options), },
177 { .section_id = BDB_SDVO_LVDS_DTD,
178 .min_size = sizeof(struct bdb_sdvo_lvds_dtd), },
179 { .section_id = BDB_EDP,
180 .min_size = sizeof(struct bdb_edp), },
181 { .section_id = BDB_LFP_OPTIONS,
182 .min_size = sizeof(struct bdb_lfp_options), },
183 /*
184 * BDB_LFP_DATA depends on BDB_LFP_DATA_PTRS,
185 * so keep the two ordered.
186 */
187 { .section_id = BDB_LFP_DATA_PTRS,
188 .min_size = sizeof(struct bdb_lfp_data_ptrs), },
189 { .section_id = BDB_LFP_DATA,
190 .min_size = 0, /* special case */ },
191 { .section_id = BDB_LFP_BACKLIGHT,
192 .min_size = sizeof(struct bdb_lfp_backlight), },
193 { .section_id = BDB_LFP_POWER,
194 .min_size = sizeof(struct bdb_lfp_power), },
195 { .section_id = BDB_MIPI_CONFIG,
196 .min_size = sizeof(struct bdb_mipi_config), },
197 { .section_id = BDB_MIPI_SEQUENCE,
198 .min_size = sizeof(struct bdb_mipi_sequence) },
199 { .section_id = BDB_COMPRESSION_PARAMETERS,
200 .min_size = sizeof(struct bdb_compression_parameters), },
201 { .section_id = BDB_GENERIC_DTD,
202 .min_size = sizeof(struct bdb_generic_dtd), },
203 };
204
lfp_data_min_size(struct intel_display * display)205 static size_t lfp_data_min_size(struct intel_display *display)
206 {
207 const struct bdb_lfp_data_ptrs *ptrs;
208 size_t size;
209
210 ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS);
211 if (!ptrs)
212 return 0;
213
214 size = sizeof(struct bdb_lfp_data);
215 if (ptrs->panel_name.table_size)
216 size = max(size, ptrs->panel_name.offset +
217 sizeof(struct bdb_lfp_data_tail));
218
219 return size;
220 }
221
validate_lfp_data_ptrs(const void * bdb,const struct bdb_lfp_data_ptrs * ptrs)222 static bool validate_lfp_data_ptrs(const void *bdb,
223 const struct bdb_lfp_data_ptrs *ptrs)
224 {
225 int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size;
226 int data_block_size, lfp_data_size;
227 const void *data_block;
228 int i;
229
230 data_block = find_raw_section(bdb, BDB_LFP_DATA);
231 if (!data_block)
232 return false;
233
234 data_block_size = get_blocksize(data_block);
235 if (data_block_size == 0)
236 return false;
237
238 /* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */
239 if (ptrs->num_entries != 3)
240 return false;
241
242 fp_timing_size = ptrs->ptr[0].fp_timing.table_size;
243 dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size;
244 panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size;
245 panel_name_size = ptrs->panel_name.table_size;
246
247 /* fp_timing has variable size */
248 if (fp_timing_size < 32 ||
249 dvo_timing_size != sizeof(struct bdb_edid_dtd) ||
250 panel_pnp_id_size != sizeof(struct bdb_edid_pnp_id))
251 return false;
252
253 /* panel_name is not present in old VBTs */
254 if (panel_name_size != 0 &&
255 panel_name_size != sizeof(struct bdb_edid_product_name))
256 return false;
257
258 lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset;
259 if (16 * lfp_data_size > data_block_size)
260 return false;
261
262 /* make sure the table entries have uniform size */
263 for (i = 1; i < 16; i++) {
264 if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size ||
265 ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size ||
266 ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size)
267 return false;
268
269 if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size ||
270 ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size ||
271 ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size)
272 return false;
273 }
274
275 /*
276 * Except for vlv/chv machines all real VBTs seem to have 6
277 * unaccounted bytes in the fp_timing table. And it doesn't
278 * appear to be a really intentional hole as the fp_timing
279 * 0xffff terminator is always within those 6 missing bytes.
280 */
281 if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size)
282 fp_timing_size += 6;
283
284 if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size)
285 return false;
286
287 if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset ||
288 ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset ||
289 ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size)
290 return false;
291
292 /* make sure the tables fit inside the data block */
293 for (i = 0; i < 16; i++) {
294 if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size ||
295 ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size ||
296 ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size)
297 return false;
298 }
299
300 if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size)
301 return false;
302
303 /* make sure fp_timing terminators are present at expected locations */
304 for (i = 0; i < 16; i++) {
305 const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset +
306 fp_timing_size - 2;
307
308 if (*t != 0xffff)
309 return false;
310 }
311
312 return true;
313 }
314
315 /* make the data table offsets relative to the data block */
fixup_lfp_data_ptrs(const void * bdb,void * ptrs_block)316 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block)
317 {
318 struct bdb_lfp_data_ptrs *ptrs = ptrs_block;
319 u32 offset;
320 int i;
321
322 offset = raw_block_offset(bdb, BDB_LFP_DATA);
323
324 for (i = 0; i < 16; i++) {
325 if (ptrs->ptr[i].fp_timing.offset < offset ||
326 ptrs->ptr[i].dvo_timing.offset < offset ||
327 ptrs->ptr[i].panel_pnp_id.offset < offset)
328 return false;
329
330 ptrs->ptr[i].fp_timing.offset -= offset;
331 ptrs->ptr[i].dvo_timing.offset -= offset;
332 ptrs->ptr[i].panel_pnp_id.offset -= offset;
333 }
334
335 if (ptrs->panel_name.table_size) {
336 if (ptrs->panel_name.offset < offset)
337 return false;
338
339 ptrs->panel_name.offset -= offset;
340 }
341
342 return validate_lfp_data_ptrs(bdb, ptrs);
343 }
344
make_lfp_data_ptr(struct lfp_data_ptr_table * table,int table_size,int total_size)345 static int make_lfp_data_ptr(struct lfp_data_ptr_table *table,
346 int table_size, int total_size)
347 {
348 if (total_size < table_size)
349 return total_size;
350
351 table->table_size = table_size;
352 table->offset = total_size - table_size;
353
354 return total_size - table_size;
355 }
356
next_lfp_data_ptr(struct lfp_data_ptr_table * next,const struct lfp_data_ptr_table * prev,int size)357 static void next_lfp_data_ptr(struct lfp_data_ptr_table *next,
358 const struct lfp_data_ptr_table *prev,
359 int size)
360 {
361 next->table_size = prev->table_size;
362 next->offset = prev->offset + size;
363 }
364
generate_lfp_data_ptrs(struct intel_display * display,const void * bdb)365 static void *generate_lfp_data_ptrs(struct intel_display *display,
366 const void *bdb)
367 {
368 int i, size, table_size, block_size, offset, fp_timing_size;
369 struct bdb_lfp_data_ptrs *ptrs;
370 const void *block;
371 void *ptrs_block;
372
373 /*
374 * The hardcoded fp_timing_size is only valid for
375 * modernish VBTs. All older VBTs definitely should
376 * include block 41 and thus we don't need to
377 * generate one.
378 */
379 if (display->vbt.version < 155)
380 return NULL;
381
382 fp_timing_size = 38;
383
384 block = find_raw_section(bdb, BDB_LFP_DATA);
385 if (!block)
386 return NULL;
387
388 drm_dbg_kms(display->drm, "Generating LFP data table pointers\n");
389
390 block_size = get_blocksize(block);
391
392 size = fp_timing_size + sizeof(struct bdb_edid_dtd) +
393 sizeof(struct bdb_edid_pnp_id);
394 if (size * 16 > block_size)
395 return NULL;
396
397 ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL);
398 if (!ptrs_block)
399 return NULL;
400
401 *(u8 *)(ptrs_block + 0) = BDB_LFP_DATA_PTRS;
402 *(u16 *)(ptrs_block + 1) = sizeof(*ptrs);
403 ptrs = ptrs_block + 3;
404
405 table_size = sizeof(struct bdb_edid_pnp_id);
406 size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size);
407
408 table_size = sizeof(struct bdb_edid_dtd);
409 size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size);
410
411 table_size = fp_timing_size;
412 size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size);
413
414 if (ptrs->ptr[0].fp_timing.table_size)
415 ptrs->num_entries++;
416 if (ptrs->ptr[0].dvo_timing.table_size)
417 ptrs->num_entries++;
418 if (ptrs->ptr[0].panel_pnp_id.table_size)
419 ptrs->num_entries++;
420
421 if (size != 0 || ptrs->num_entries != 3) {
422 kfree(ptrs_block);
423 return NULL;
424 }
425
426 size = fp_timing_size + sizeof(struct bdb_edid_dtd) +
427 sizeof(struct bdb_edid_pnp_id);
428 for (i = 1; i < 16; i++) {
429 next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size);
430 next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size);
431 next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size);
432 }
433
434 table_size = sizeof(struct bdb_edid_product_name);
435
436 if (16 * (size + table_size) <= block_size) {
437 ptrs->panel_name.table_size = table_size;
438 ptrs->panel_name.offset = size * 16;
439 }
440
441 offset = block - bdb;
442
443 for (i = 0; i < 16; i++) {
444 ptrs->ptr[i].fp_timing.offset += offset;
445 ptrs->ptr[i].dvo_timing.offset += offset;
446 ptrs->ptr[i].panel_pnp_id.offset += offset;
447 }
448
449 if (ptrs->panel_name.table_size)
450 ptrs->panel_name.offset += offset;
451
452 return ptrs_block;
453 }
454
455 static void
init_bdb_block(struct intel_display * display,const void * bdb,enum bdb_block_id section_id,size_t min_size)456 init_bdb_block(struct intel_display *display,
457 const void *bdb, enum bdb_block_id section_id,
458 size_t min_size)
459 {
460 struct bdb_block_entry *entry;
461 void *temp_block = NULL;
462 const void *block;
463 size_t block_size;
464
465 block = find_raw_section(bdb, section_id);
466
467 /* Modern VBTs lack the LFP data table pointers block, make one up */
468 if (!block && section_id == BDB_LFP_DATA_PTRS) {
469 temp_block = generate_lfp_data_ptrs(display, bdb);
470 if (temp_block)
471 block = temp_block + 3;
472 }
473 if (!block)
474 return;
475
476 drm_WARN(display->drm, min_size == 0,
477 "Block %d min_size is zero\n", section_id);
478
479 block_size = get_blocksize(block);
480
481 /*
482 * Version number and new block size are considered
483 * part of the header for MIPI sequenece block v3+.
484 */
485 if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3)
486 block_size += 5;
487
488 entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3),
489 GFP_KERNEL);
490 if (!entry) {
491 kfree(temp_block);
492 return;
493 }
494
495 entry->section_id = section_id;
496 memcpy(entry->data, block - 3, block_size + 3);
497
498 kfree(temp_block);
499
500 drm_dbg_kms(display->drm,
501 "Found BDB block %d (size %zu, min size %zu)\n",
502 section_id, block_size, min_size);
503
504 if (section_id == BDB_LFP_DATA_PTRS &&
505 !fixup_lfp_data_ptrs(bdb, entry->data + 3)) {
506 drm_err(display->drm,
507 "VBT has malformed LFP data table pointers\n");
508 kfree(entry);
509 return;
510 }
511
512 list_add_tail(&entry->node, &display->vbt.bdb_blocks);
513 }
514
init_bdb_blocks(struct intel_display * display,const void * bdb)515 static void init_bdb_blocks(struct intel_display *display,
516 const void *bdb)
517 {
518 int i;
519
520 for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) {
521 enum bdb_block_id section_id = bdb_blocks[i].section_id;
522 size_t min_size = bdb_blocks[i].min_size;
523
524 if (section_id == BDB_LFP_DATA)
525 min_size = lfp_data_min_size(display);
526
527 init_bdb_block(display, bdb, section_id, min_size);
528 }
529 }
530
531 static void
fill_detail_timing_data(struct intel_display * display,struct drm_display_mode * panel_fixed_mode,const struct bdb_edid_dtd * dvo_timing)532 fill_detail_timing_data(struct intel_display *display,
533 struct drm_display_mode *panel_fixed_mode,
534 const struct bdb_edid_dtd *dvo_timing)
535 {
536 panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
537 dvo_timing->hactive_lo;
538 panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
539 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
540 panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
541 ((dvo_timing->hsync_pulse_width_hi << 8) |
542 dvo_timing->hsync_pulse_width_lo);
543 panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
544 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
545
546 panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
547 dvo_timing->vactive_lo;
548 panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
549 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
550 panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
551 ((dvo_timing->vsync_pulse_width_hi << 4) |
552 dvo_timing->vsync_pulse_width_lo);
553 panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
554 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
555 panel_fixed_mode->clock = dvo_timing->clock * 10;
556 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
557
558 if (dvo_timing->hsync_positive)
559 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
560 else
561 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
562
563 if (dvo_timing->vsync_positive)
564 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
565 else
566 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
567
568 panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
569 dvo_timing->himage_lo;
570 panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
571 dvo_timing->vimage_lo;
572
573 /* Some VBTs have bogus h/vsync_end values */
574 if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) {
575 drm_dbg_kms(display->drm, "reducing hsync_end %d->%d\n",
576 panel_fixed_mode->hsync_end, panel_fixed_mode->htotal);
577 panel_fixed_mode->hsync_end = panel_fixed_mode->htotal;
578 }
579 if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) {
580 drm_dbg_kms(display->drm, "reducing vsync_end %d->%d\n",
581 panel_fixed_mode->vsync_end, panel_fixed_mode->vtotal);
582 panel_fixed_mode->vsync_end = panel_fixed_mode->vtotal;
583 }
584
585 drm_mode_set_name(panel_fixed_mode);
586 }
587
588 static const struct bdb_edid_dtd *
get_lfp_dvo_timing(const struct bdb_lfp_data * data,const struct bdb_lfp_data_ptrs * ptrs,int index)589 get_lfp_dvo_timing(const struct bdb_lfp_data *data,
590 const struct bdb_lfp_data_ptrs *ptrs,
591 int index)
592 {
593 return (const void *)data + ptrs->ptr[index].dvo_timing.offset;
594 }
595
596 static const struct fp_timing *
get_lfp_fp_timing(const struct bdb_lfp_data * data,const struct bdb_lfp_data_ptrs * ptrs,int index)597 get_lfp_fp_timing(const struct bdb_lfp_data *data,
598 const struct bdb_lfp_data_ptrs *ptrs,
599 int index)
600 {
601 return (const void *)data + ptrs->ptr[index].fp_timing.offset;
602 }
603
604 static const struct drm_edid_product_id *
get_lfp_pnp_id(const struct bdb_lfp_data * data,const struct bdb_lfp_data_ptrs * ptrs,int index)605 get_lfp_pnp_id(const struct bdb_lfp_data *data,
606 const struct bdb_lfp_data_ptrs *ptrs,
607 int index)
608 {
609 /* These two are supposed to have the same layout in memory. */
610 BUILD_BUG_ON(sizeof(struct bdb_edid_pnp_id) != sizeof(struct drm_edid_product_id));
611
612 return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset;
613 }
614
615 static const struct bdb_lfp_data_tail *
get_lfp_data_tail(const struct bdb_lfp_data * data,const struct bdb_lfp_data_ptrs * ptrs)616 get_lfp_data_tail(const struct bdb_lfp_data *data,
617 const struct bdb_lfp_data_ptrs *ptrs)
618 {
619 if (ptrs->panel_name.table_size)
620 return (const void *)data + ptrs->panel_name.offset;
621 else
622 return NULL;
623 }
624
opregion_get_panel_type(struct intel_display * display,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)625 static int opregion_get_panel_type(struct intel_display *display,
626 const struct intel_bios_encoder_data *devdata,
627 const struct drm_edid *drm_edid, bool use_fallback)
628 {
629 return intel_opregion_get_panel_type(display);
630 }
631
vbt_get_panel_type(struct intel_display * display,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)632 static int vbt_get_panel_type(struct intel_display *display,
633 const struct intel_bios_encoder_data *devdata,
634 const struct drm_edid *drm_edid, bool use_fallback)
635 {
636 const struct bdb_lfp_options *lfp_options;
637
638 lfp_options = bdb_find_section(display, BDB_LFP_OPTIONS);
639 if (!lfp_options)
640 return -1;
641
642 if (lfp_options->panel_type > 0xf &&
643 lfp_options->panel_type != 0xff) {
644 drm_dbg_kms(display->drm, "Invalid VBT panel type 0x%x\n",
645 lfp_options->panel_type);
646 return -1;
647 }
648
649 if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2)
650 return lfp_options->panel_type2;
651
652 drm_WARN_ON(display->drm,
653 devdata && devdata->child.handle != DEVICE_HANDLE_LFP1);
654
655 return lfp_options->panel_type;
656 }
657
pnpid_get_panel_type(struct intel_display * display,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)658 static int pnpid_get_panel_type(struct intel_display *display,
659 const struct intel_bios_encoder_data *devdata,
660 const struct drm_edid *drm_edid, bool use_fallback)
661 {
662 const struct bdb_lfp_data *data;
663 const struct bdb_lfp_data_ptrs *ptrs;
664 struct drm_edid_product_id product_id, product_id_nodate;
665 struct drm_printer p;
666 int i, best = -1;
667
668 if (!drm_edid)
669 return -1;
670
671 drm_edid_get_product_id(drm_edid, &product_id);
672
673 product_id_nodate = product_id;
674 product_id_nodate.week_of_manufacture = 0;
675 product_id_nodate.year_of_manufacture = 0;
676
677 p = drm_dbg_printer(display->drm, DRM_UT_KMS, "EDID");
678 drm_edid_print_product_id(&p, &product_id, true);
679
680 ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS);
681 if (!ptrs)
682 return -1;
683
684 data = bdb_find_section(display, BDB_LFP_DATA);
685 if (!data)
686 return -1;
687
688 for (i = 0; i < 16; i++) {
689 const struct drm_edid_product_id *vbt_id =
690 get_lfp_pnp_id(data, ptrs, i);
691
692 /* full match? */
693 if (!memcmp(vbt_id, &product_id, sizeof(*vbt_id)))
694 return i;
695
696 /*
697 * Accept a match w/o date if no full match is found,
698 * and the VBT entry does not specify a date.
699 */
700 if (best < 0 &&
701 !memcmp(vbt_id, &product_id_nodate, sizeof(*vbt_id)))
702 best = i;
703 }
704
705 return best;
706 }
707
fallback_get_panel_type(struct intel_display * display,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)708 static int fallback_get_panel_type(struct intel_display *display,
709 const struct intel_bios_encoder_data *devdata,
710 const struct drm_edid *drm_edid, bool use_fallback)
711 {
712 return use_fallback ? 0 : -1;
713 }
714
715 enum panel_type {
716 PANEL_TYPE_OPREGION,
717 PANEL_TYPE_VBT,
718 PANEL_TYPE_PNPID,
719 PANEL_TYPE_FALLBACK,
720 };
721
get_panel_type(struct intel_display * display,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)722 static int get_panel_type(struct intel_display *display,
723 const struct intel_bios_encoder_data *devdata,
724 const struct drm_edid *drm_edid, bool use_fallback)
725 {
726 struct {
727 const char *name;
728 int (*get_panel_type)(struct intel_display *display,
729 const struct intel_bios_encoder_data *devdata,
730 const struct drm_edid *drm_edid, bool use_fallback);
731 int panel_type;
732 } panel_types[] = {
733 [PANEL_TYPE_OPREGION] = {
734 .name = "OpRegion",
735 .get_panel_type = opregion_get_panel_type,
736 },
737 [PANEL_TYPE_VBT] = {
738 .name = "VBT",
739 .get_panel_type = vbt_get_panel_type,
740 },
741 [PANEL_TYPE_PNPID] = {
742 .name = "PNPID",
743 .get_panel_type = pnpid_get_panel_type,
744 },
745 [PANEL_TYPE_FALLBACK] = {
746 .name = "fallback",
747 .get_panel_type = fallback_get_panel_type,
748 },
749 };
750 int i;
751
752 for (i = 0; i < ARRAY_SIZE(panel_types); i++) {
753 panel_types[i].panel_type = panel_types[i].get_panel_type(display, devdata,
754 drm_edid, use_fallback);
755
756 drm_WARN_ON(display->drm, panel_types[i].panel_type > 0xf &&
757 panel_types[i].panel_type != 0xff);
758
759 if (panel_types[i].panel_type >= 0)
760 drm_dbg_kms(display->drm, "Panel type (%s): %d\n",
761 panel_types[i].name, panel_types[i].panel_type);
762 }
763
764 if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0)
765 i = PANEL_TYPE_OPREGION;
766 else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff &&
767 panel_types[PANEL_TYPE_PNPID].panel_type >= 0)
768 i = PANEL_TYPE_PNPID;
769 else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff &&
770 panel_types[PANEL_TYPE_VBT].panel_type >= 0)
771 i = PANEL_TYPE_VBT;
772 else
773 i = PANEL_TYPE_FALLBACK;
774
775 drm_dbg_kms(display->drm, "Selected panel type (%s): %d\n",
776 panel_types[i].name, panel_types[i].panel_type);
777
778 return panel_types[i].panel_type;
779 }
780
panel_bits(unsigned int value,int panel_type,int num_bits)781 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits)
782 {
783 return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1);
784 }
785
panel_bool(unsigned int value,int panel_type)786 static bool panel_bool(unsigned int value, int panel_type)
787 {
788 return panel_bits(value, panel_type, 1);
789 }
790
791 /* Parse general panel options */
792 static void
parse_panel_options(struct intel_display * display,struct intel_panel * panel)793 parse_panel_options(struct intel_display *display,
794 struct intel_panel *panel)
795 {
796 const struct bdb_lfp_options *lfp_options;
797 int panel_type = panel->vbt.panel_type;
798 int drrs_mode;
799
800 lfp_options = bdb_find_section(display, BDB_LFP_OPTIONS);
801 if (!lfp_options)
802 return;
803
804 panel->vbt.lvds_dither = lfp_options->pixel_dither;
805
806 /*
807 * Empirical evidence indicates the block size can be
808 * either 4,14,16,24+ bytes. For older VBTs no clear
809 * relationship between the block size vs. BDB version.
810 */
811 if (get_blocksize(lfp_options) < 16)
812 return;
813
814 drrs_mode = panel_bits(lfp_options->dps_panel_type_bits,
815 panel_type, 2);
816 /*
817 * VBT has static DRRS = 0 and seamless DRRS = 2.
818 * The below piece of code is required to adjust vbt.drrs_type
819 * to match the enum drrs_support_type.
820 */
821 switch (drrs_mode) {
822 case 0:
823 panel->vbt.drrs_type = DRRS_TYPE_STATIC;
824 drm_dbg_kms(display->drm, "DRRS supported mode is static\n");
825 break;
826 case 2:
827 panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS;
828 drm_dbg_kms(display->drm,
829 "DRRS supported mode is seamless\n");
830 break;
831 default:
832 panel->vbt.drrs_type = DRRS_TYPE_NONE;
833 drm_dbg_kms(display->drm,
834 "DRRS not supported (VBT input)\n");
835 break;
836 }
837 }
838
839 static void
parse_lfp_panel_dtd(struct intel_display * display,struct intel_panel * panel,const struct bdb_lfp_data * lfp_data,const struct bdb_lfp_data_ptrs * lfp_data_ptrs)840 parse_lfp_panel_dtd(struct intel_display *display,
841 struct intel_panel *panel,
842 const struct bdb_lfp_data *lfp_data,
843 const struct bdb_lfp_data_ptrs *lfp_data_ptrs)
844 {
845 const struct bdb_edid_dtd *panel_dvo_timing;
846 const struct fp_timing *fp_timing;
847 struct drm_display_mode *panel_fixed_mode;
848 int panel_type = panel->vbt.panel_type;
849
850 panel_dvo_timing = get_lfp_dvo_timing(lfp_data,
851 lfp_data_ptrs,
852 panel_type);
853
854 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
855 if (!panel_fixed_mode)
856 return;
857
858 fill_detail_timing_data(display, panel_fixed_mode, panel_dvo_timing);
859
860 panel->vbt.lfp_vbt_mode = panel_fixed_mode;
861
862 drm_dbg_kms(display->drm,
863 "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n",
864 DRM_MODE_ARG(panel_fixed_mode));
865
866 fp_timing = get_lfp_fp_timing(lfp_data,
867 lfp_data_ptrs,
868 panel_type);
869
870 /* check the resolution, just to be sure */
871 if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
872 fp_timing->y_res == panel_fixed_mode->vdisplay) {
873 panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
874 drm_dbg_kms(display->drm,
875 "VBT initial LVDS value %x\n",
876 panel->vbt.bios_lvds_val);
877 }
878 }
879
880 static void
parse_lfp_data(struct intel_display * display,struct intel_panel * panel)881 parse_lfp_data(struct intel_display *display,
882 struct intel_panel *panel)
883 {
884 const struct bdb_lfp_data *data;
885 const struct bdb_lfp_data_tail *tail;
886 const struct bdb_lfp_data_ptrs *ptrs;
887 const struct drm_edid_product_id *pnp_id;
888 struct drm_printer p;
889 int panel_type = panel->vbt.panel_type;
890
891 ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS);
892 if (!ptrs)
893 return;
894
895 data = bdb_find_section(display, BDB_LFP_DATA);
896 if (!data)
897 return;
898
899 if (!panel->vbt.lfp_vbt_mode)
900 parse_lfp_panel_dtd(display, panel, data, ptrs);
901
902 pnp_id = get_lfp_pnp_id(data, ptrs, panel_type);
903
904 p = drm_dbg_printer(display->drm, DRM_UT_KMS, "Panel");
905 drm_edid_print_product_id(&p, pnp_id, false);
906
907 tail = get_lfp_data_tail(data, ptrs);
908 if (!tail)
909 return;
910
911 drm_dbg_kms(display->drm, "Panel name: %.*s\n",
912 (int)sizeof(tail->panel_name[0].name),
913 tail->panel_name[panel_type].name);
914
915 if (display->vbt.version >= 188) {
916 panel->vbt.seamless_drrs_min_refresh_rate =
917 tail->seamless_drrs_min_refresh_rate[panel_type];
918 drm_dbg_kms(display->drm,
919 "Seamless DRRS min refresh rate: %d Hz\n",
920 panel->vbt.seamless_drrs_min_refresh_rate);
921 }
922 }
923
924 static void
parse_generic_dtd(struct intel_display * display,struct intel_panel * panel)925 parse_generic_dtd(struct intel_display *display,
926 struct intel_panel *panel)
927 {
928 const struct bdb_generic_dtd *generic_dtd;
929 const struct generic_dtd_entry *dtd;
930 struct drm_display_mode *panel_fixed_mode;
931 int num_dtd;
932
933 /*
934 * Older VBTs provided DTD information for internal displays through
935 * the "LFP panel tables" block (42). As of VBT revision 229 the
936 * DTD information should be provided via a newer "generic DTD"
937 * block (58). Just to be safe, we'll try the new generic DTD block
938 * first on VBT >= 229, but still fall back to trying the old LFP
939 * block if that fails.
940 */
941 if (display->vbt.version < 229)
942 return;
943
944 generic_dtd = bdb_find_section(display, BDB_GENERIC_DTD);
945 if (!generic_dtd)
946 return;
947
948 if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
949 drm_err(display->drm, "GDTD size %u is too small.\n",
950 generic_dtd->gdtd_size);
951 return;
952 } else if (generic_dtd->gdtd_size !=
953 sizeof(struct generic_dtd_entry)) {
954 drm_err(display->drm, "Unexpected GDTD size %u\n",
955 generic_dtd->gdtd_size);
956 /* DTD has unknown fields, but keep going */
957 }
958
959 num_dtd = (get_blocksize(generic_dtd) -
960 sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
961 if (panel->vbt.panel_type >= num_dtd) {
962 drm_err(display->drm,
963 "Panel type %d not found in table of %d DTD's\n",
964 panel->vbt.panel_type, num_dtd);
965 return;
966 }
967
968 dtd = &generic_dtd->dtd[panel->vbt.panel_type];
969
970 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
971 if (!panel_fixed_mode)
972 return;
973
974 panel_fixed_mode->hdisplay = dtd->hactive;
975 panel_fixed_mode->hsync_start =
976 panel_fixed_mode->hdisplay + dtd->hfront_porch;
977 panel_fixed_mode->hsync_end =
978 panel_fixed_mode->hsync_start + dtd->hsync;
979 panel_fixed_mode->htotal =
980 panel_fixed_mode->hdisplay + dtd->hblank;
981
982 panel_fixed_mode->vdisplay = dtd->vactive;
983 panel_fixed_mode->vsync_start =
984 panel_fixed_mode->vdisplay + dtd->vfront_porch;
985 panel_fixed_mode->vsync_end =
986 panel_fixed_mode->vsync_start + dtd->vsync;
987 panel_fixed_mode->vtotal =
988 panel_fixed_mode->vdisplay + dtd->vblank;
989
990 panel_fixed_mode->clock = dtd->pixel_clock;
991 panel_fixed_mode->width_mm = dtd->width_mm;
992 panel_fixed_mode->height_mm = dtd->height_mm;
993
994 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
995 drm_mode_set_name(panel_fixed_mode);
996
997 if (dtd->hsync_positive_polarity)
998 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
999 else
1000 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
1001
1002 if (dtd->vsync_positive_polarity)
1003 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
1004 else
1005 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
1006
1007 drm_dbg_kms(display->drm,
1008 "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n",
1009 DRM_MODE_ARG(panel_fixed_mode));
1010
1011 panel->vbt.lfp_vbt_mode = panel_fixed_mode;
1012 }
1013
1014 static void
parse_lfp_backlight(struct intel_display * display,struct intel_panel * panel)1015 parse_lfp_backlight(struct intel_display *display,
1016 struct intel_panel *panel)
1017 {
1018 const struct bdb_lfp_backlight *backlight_data;
1019 const struct lfp_backlight_data_entry *entry;
1020 int panel_type = panel->vbt.panel_type;
1021 u16 level;
1022
1023 backlight_data = bdb_find_section(display, BDB_LFP_BACKLIGHT);
1024 if (!backlight_data)
1025 return;
1026
1027 if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
1028 drm_dbg_kms(display->drm,
1029 "Unsupported backlight data entry size %u\n",
1030 backlight_data->entry_size);
1031 return;
1032 }
1033
1034 entry = &backlight_data->data[panel_type];
1035
1036 panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
1037 if (!panel->vbt.backlight.present) {
1038 drm_dbg_kms(display->drm,
1039 "PWM backlight not present in VBT (type %u)\n",
1040 entry->type);
1041 return;
1042 }
1043
1044 panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
1045 panel->vbt.backlight.controller = 0;
1046 if (display->vbt.version >= 191) {
1047 const struct lfp_backlight_control_method *method;
1048
1049 method = &backlight_data->backlight_control[panel_type];
1050 panel->vbt.backlight.type = method->type;
1051 panel->vbt.backlight.controller = method->controller;
1052 }
1053
1054 panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
1055 panel->vbt.backlight.active_low_pwm = entry->active_low_pwm;
1056
1057 if (display->vbt.version >= 234) {
1058 u16 min_level;
1059 bool scale;
1060
1061 level = backlight_data->brightness_level[panel_type].level;
1062 min_level = backlight_data->brightness_min_level[panel_type].level;
1063
1064 if (display->vbt.version >= 236)
1065 scale = backlight_data->brightness_precision_bits[panel_type] == 16;
1066 else
1067 scale = level > 255;
1068
1069 if (scale)
1070 min_level = min_level / 255;
1071
1072 if (min_level > 255) {
1073 drm_warn(display->drm, "Brightness min level > 255\n");
1074 level = 255;
1075 }
1076 panel->vbt.backlight.min_brightness = min_level;
1077
1078 panel->vbt.backlight.brightness_precision_bits =
1079 backlight_data->brightness_precision_bits[panel_type];
1080 } else {
1081 level = backlight_data->level[panel_type];
1082 panel->vbt.backlight.min_brightness = entry->min_brightness;
1083 }
1084
1085 if (display->vbt.version >= 239)
1086 panel->vbt.backlight.hdr_dpcd_refresh_timeout =
1087 DIV_ROUND_UP(backlight_data->hdr_dpcd_refresh_timeout[panel_type], 100);
1088 else
1089 panel->vbt.backlight.hdr_dpcd_refresh_timeout = 30;
1090
1091 drm_dbg_kms(display->drm,
1092 "VBT backlight PWM modulation frequency %u Hz, "
1093 "active %s, min brightness %u, level %u, controller %u\n",
1094 panel->vbt.backlight.pwm_freq_hz,
1095 panel->vbt.backlight.active_low_pwm ? "low" : "high",
1096 panel->vbt.backlight.min_brightness,
1097 level,
1098 panel->vbt.backlight.controller);
1099 }
1100
1101 static void
parse_sdvo_lvds_data(struct intel_display * display,struct intel_panel * panel)1102 parse_sdvo_lvds_data(struct intel_display *display,
1103 struct intel_panel *panel)
1104 {
1105 const struct bdb_sdvo_lvds_dtd *dtd;
1106 struct drm_display_mode *panel_fixed_mode;
1107 int index;
1108
1109 index = display->params.vbt_sdvo_panel_type;
1110 if (index == -2) {
1111 drm_dbg_kms(display->drm,
1112 "Ignore SDVO LVDS mode from BIOS VBT tables.\n");
1113 return;
1114 }
1115
1116 if (index == -1) {
1117 const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
1118
1119 sdvo_lvds_options = bdb_find_section(display, BDB_SDVO_LVDS_OPTIONS);
1120 if (!sdvo_lvds_options)
1121 return;
1122
1123 index = sdvo_lvds_options->panel_type;
1124 }
1125
1126 dtd = bdb_find_section(display, BDB_SDVO_LVDS_DTD);
1127 if (!dtd)
1128 return;
1129
1130 /*
1131 * This should not happen, as long as the panel_type
1132 * enumeration doesn't grow over 4 items. But if it does, it
1133 * could lead to hard-to-detect bugs, so better double-check
1134 * it here to be sure.
1135 */
1136 if (index >= ARRAY_SIZE(dtd->dtd)) {
1137 drm_err(display->drm,
1138 "index %d is larger than dtd->dtd[4] array\n",
1139 index);
1140 return;
1141 }
1142
1143 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
1144 if (!panel_fixed_mode)
1145 return;
1146
1147 fill_detail_timing_data(display, panel_fixed_mode, &dtd->dtd[index]);
1148
1149 panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
1150
1151 drm_dbg_kms(display->drm,
1152 "Found SDVO LVDS mode in BIOS VBT tables: " DRM_MODE_FMT "\n",
1153 DRM_MODE_ARG(panel_fixed_mode));
1154 }
1155
intel_bios_ssc_frequency(struct intel_display * display,bool alternate)1156 static int intel_bios_ssc_frequency(struct intel_display *display,
1157 bool alternate)
1158 {
1159 switch (DISPLAY_VER(display)) {
1160 case 2:
1161 return alternate ? 66667 : 48000;
1162 case 3:
1163 case 4:
1164 return alternate ? 100000 : 96000;
1165 default:
1166 return alternate ? 100000 : 120000;
1167 }
1168 }
1169
1170 static void
parse_general_features(struct intel_display * display)1171 parse_general_features(struct intel_display *display)
1172 {
1173 const struct bdb_general_features *general;
1174
1175 general = bdb_find_section(display, BDB_GENERAL_FEATURES);
1176 if (!general)
1177 return;
1178
1179 display->vbt.int_tv_support = general->int_tv_support;
1180 /* int_crt_support can't be trusted on earlier platforms */
1181 if (display->vbt.version >= 155 &&
1182 (HAS_DDI(display) || display->platform.valleyview))
1183 display->vbt.int_crt_support = general->int_crt_support;
1184 display->vbt.lvds_use_ssc = general->enable_ssc;
1185 display->vbt.lvds_ssc_freq =
1186 intel_bios_ssc_frequency(display, general->ssc_freq);
1187 display->vbt.display_clock_mode = general->display_clock_mode;
1188 display->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
1189 if (display->vbt.version >= 181) {
1190 display->vbt.orientation = general->rotate_180 ?
1191 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
1192 DRM_MODE_PANEL_ORIENTATION_NORMAL;
1193 } else {
1194 display->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1195 }
1196
1197 if (display->vbt.version >= 249 && general->afc_startup_config) {
1198 display->vbt.override_afc_startup = true;
1199 display->vbt.override_afc_startup_val = general->afc_startup_config == 1 ? 0 : 7;
1200 }
1201
1202 drm_dbg_kms(display->drm,
1203 "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
1204 display->vbt.int_tv_support,
1205 display->vbt.int_crt_support,
1206 display->vbt.lvds_use_ssc,
1207 display->vbt.lvds_ssc_freq,
1208 display->vbt.display_clock_mode,
1209 display->vbt.fdi_rx_polarity_inverted);
1210 }
1211
1212 static const struct child_device_config *
child_device_ptr(const struct bdb_general_definitions * defs,int i)1213 child_device_ptr(const struct bdb_general_definitions *defs, int i)
1214 {
1215 return (const void *) &defs->devices[i * defs->child_dev_size];
1216 }
1217
1218 static void
parse_sdvo_device_mapping(struct intel_display * display)1219 parse_sdvo_device_mapping(struct intel_display *display)
1220 {
1221 const struct intel_bios_encoder_data *devdata;
1222 int count = 0;
1223
1224 /*
1225 * Only parse SDVO mappings on gens that could have SDVO. This isn't
1226 * accurate and doesn't have to be, as long as it's not too strict.
1227 */
1228 if (!IS_DISPLAY_VER(display, 3, 7)) {
1229 drm_dbg_kms(display->drm, "Skipping SDVO device mapping\n");
1230 return;
1231 }
1232
1233 list_for_each_entry(devdata, &display->vbt.display_devices, node) {
1234 const struct child_device_config *child = &devdata->child;
1235 struct sdvo_device_mapping *mapping;
1236
1237 if (child->target_addr != TARGET_ADDR1 &&
1238 child->target_addr != TARGET_ADDR2) {
1239 /*
1240 * If the target address is neither 0x70 nor 0x72,
1241 * it is not a SDVO device. Skip it.
1242 */
1243 continue;
1244 }
1245 if (child->dvo_port != DEVICE_PORT_DVOB &&
1246 child->dvo_port != DEVICE_PORT_DVOC) {
1247 /* skip the incorrect SDVO port */
1248 drm_dbg_kms(display->drm,
1249 "Incorrect SDVO port. Skip it\n");
1250 continue;
1251 }
1252 drm_dbg_kms(display->drm,
1253 "the SDVO device with target addr %2x is found on"
1254 " %s port\n",
1255 child->target_addr,
1256 (child->dvo_port == DEVICE_PORT_DVOB) ?
1257 "SDVOB" : "SDVOC");
1258 mapping = &display->vbt.sdvo_mappings[child->dvo_port - 1];
1259 if (!mapping->initialized) {
1260 mapping->dvo_port = child->dvo_port;
1261 mapping->target_addr = child->target_addr;
1262 mapping->dvo_wiring = child->dvo_wiring;
1263 mapping->ddc_pin = child->ddc_pin;
1264 mapping->i2c_pin = child->i2c_pin;
1265 mapping->initialized = 1;
1266 drm_dbg_kms(display->drm,
1267 "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
1268 mapping->dvo_port, mapping->target_addr,
1269 mapping->dvo_wiring, mapping->ddc_pin,
1270 mapping->i2c_pin);
1271 } else {
1272 drm_dbg_kms(display->drm,
1273 "Maybe one SDVO port is shared by "
1274 "two SDVO device.\n");
1275 }
1276 if (child->target2_addr) {
1277 /* Maybe this is a SDVO device with multiple inputs */
1278 /* And the mapping info is not added */
1279 drm_dbg_kms(display->drm,
1280 "there exists the target2_addr. Maybe this"
1281 " is a SDVO device with multiple inputs.\n");
1282 }
1283 count++;
1284 }
1285
1286 if (!count) {
1287 /* No SDVO device info is found */
1288 drm_dbg_kms(display->drm,
1289 "No SDVO device info is found in VBT\n");
1290 }
1291 }
1292
1293 static void
parse_driver_features(struct intel_display * display)1294 parse_driver_features(struct intel_display *display)
1295 {
1296 const struct bdb_driver_features *driver;
1297
1298 driver = bdb_find_section(display, BDB_DRIVER_FEATURES);
1299 if (!driver)
1300 return;
1301
1302 if (DISPLAY_VER(display) >= 5) {
1303 /*
1304 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
1305 * to mean "eDP". The VBT spec doesn't agree with that
1306 * interpretation, but real world VBTs seem to.
1307 */
1308 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
1309 display->vbt.int_lvds_support = 0;
1310 } else {
1311 /*
1312 * FIXME it's not clear which BDB version has the LVDS config
1313 * bits defined. Revision history in the VBT spec says:
1314 * "0.92 | Add two definitions for VBT value of LVDS Active
1315 * Config (00b and 11b values defined) | 06/13/2005"
1316 * but does not the specify the BDB version.
1317 *
1318 * So far version 134 (on i945gm) is the oldest VBT observed
1319 * in the wild with the bits correctly populated. Version
1320 * 108 (on i85x) does not have the bits correctly populated.
1321 */
1322 if (display->vbt.version >= 134 &&
1323 driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
1324 driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
1325 display->vbt.int_lvds_support = 0;
1326 }
1327 }
1328
1329 static void
parse_panel_driver_features(struct intel_display * display,struct intel_panel * panel)1330 parse_panel_driver_features(struct intel_display *display,
1331 struct intel_panel *panel)
1332 {
1333 const struct bdb_driver_features *driver;
1334
1335 driver = bdb_find_section(display, BDB_DRIVER_FEATURES);
1336 if (!driver)
1337 return;
1338
1339 if (display->vbt.version < 228) {
1340 drm_dbg_kms(display->drm, "DRRS State Enabled:%d\n",
1341 driver->drrs_enabled);
1342 /*
1343 * If DRRS is not supported, drrs_type has to be set to 0.
1344 * This is because, VBT is configured in such a way that
1345 * static DRRS is 0 and DRRS not supported is represented by
1346 * driver->drrs_enabled=false
1347 */
1348 if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1349 /*
1350 * FIXME Should DMRRS perhaps be treated as seamless
1351 * but without the automatic downclocking?
1352 */
1353 if (driver->dmrrs_enabled)
1354 panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1355 else
1356 panel->vbt.drrs_type = DRRS_TYPE_NONE;
1357 }
1358
1359 panel->vbt.psr.enable = driver->psr_enabled;
1360 }
1361 }
1362
1363 static void
parse_power_conservation_features(struct intel_display * display,struct intel_panel * panel)1364 parse_power_conservation_features(struct intel_display *display,
1365 struct intel_panel *panel)
1366 {
1367 const struct bdb_lfp_power *power;
1368 u8 panel_type = panel->vbt.panel_type;
1369
1370 panel->vbt.vrr = true; /* matches Windows behaviour */
1371
1372 if (display->vbt.version < 228)
1373 return;
1374
1375 power = bdb_find_section(display, BDB_LFP_POWER);
1376 if (!power)
1377 return;
1378
1379 panel->vbt.psr.enable = panel_bool(power->psr, panel_type);
1380
1381 /*
1382 * If DRRS is not supported, drrs_type has to be set to 0.
1383 * This is because, VBT is configured in such a way that
1384 * static DRRS is 0 and DRRS not supported is represented by
1385 * power->drrs & BIT(panel_type)=false
1386 */
1387 if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1388 /*
1389 * FIXME Should DMRRS perhaps be treated as seamless
1390 * but without the automatic downclocking?
1391 */
1392 if (panel_bool(power->dmrrs, panel_type))
1393 panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1394 else
1395 panel->vbt.drrs_type = DRRS_TYPE_NONE;
1396 }
1397
1398 if (display->vbt.version >= 232)
1399 panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type);
1400
1401 if (display->vbt.version >= 233)
1402 panel->vbt.vrr = panel_bool(power->vrr_feature_enabled,
1403 panel_type);
1404 }
1405
vbt_edp_to_pps_delays(struct intel_pps_delays * pps,const struct edp_power_seq * edp_pps)1406 static void vbt_edp_to_pps_delays(struct intel_pps_delays *pps,
1407 const struct edp_power_seq *edp_pps)
1408 {
1409 pps->power_up = edp_pps->t1_t3;
1410 pps->backlight_on = edp_pps->t8;
1411 pps->backlight_off = edp_pps->t9;
1412 pps->power_down = edp_pps->t10;
1413 pps->power_cycle = edp_pps->t11_t12;
1414 }
1415
1416 static void
parse_edp(struct intel_display * display,struct intel_panel * panel)1417 parse_edp(struct intel_display *display,
1418 struct intel_panel *panel)
1419 {
1420 const struct bdb_edp *edp;
1421 const struct edp_fast_link_params *edp_link_params;
1422 int panel_type = panel->vbt.panel_type;
1423
1424 edp = bdb_find_section(display, BDB_EDP);
1425 if (!edp)
1426 return;
1427
1428 switch (panel_bits(edp->color_depth, panel_type, 2)) {
1429 case EDP_18BPP:
1430 panel->vbt.edp.bpp = 18;
1431 break;
1432 case EDP_24BPP:
1433 panel->vbt.edp.bpp = 24;
1434 break;
1435 case EDP_30BPP:
1436 panel->vbt.edp.bpp = 30;
1437 break;
1438 }
1439
1440 /* Get the eDP sequencing and link info */
1441 edp_link_params = &edp->fast_link_params[panel_type];
1442
1443 vbt_edp_to_pps_delays(&panel->vbt.edp.pps,
1444 &edp->power_seqs[panel_type]);
1445
1446 if (display->vbt.version >= 224) {
1447 panel->vbt.edp.rate =
1448 edp->edp_fast_link_training_rate[panel_type] * 20;
1449 } else {
1450 switch (edp_link_params->rate) {
1451 case EDP_RATE_1_62:
1452 panel->vbt.edp.rate = 162000;
1453 break;
1454 case EDP_RATE_2_7:
1455 panel->vbt.edp.rate = 270000;
1456 break;
1457 case EDP_RATE_5_4:
1458 panel->vbt.edp.rate = 540000;
1459 break;
1460 default:
1461 drm_dbg_kms(display->drm,
1462 "VBT has unknown eDP link rate value %u\n",
1463 edp_link_params->rate);
1464 break;
1465 }
1466 }
1467
1468 switch (edp_link_params->lanes) {
1469 case EDP_LANE_1:
1470 panel->vbt.edp.lanes = 1;
1471 break;
1472 case EDP_LANE_2:
1473 panel->vbt.edp.lanes = 2;
1474 break;
1475 case EDP_LANE_4:
1476 panel->vbt.edp.lanes = 4;
1477 break;
1478 default:
1479 drm_dbg_kms(display->drm,
1480 "VBT has unknown eDP lane count value %u\n",
1481 edp_link_params->lanes);
1482 break;
1483 }
1484
1485 switch (edp_link_params->preemphasis) {
1486 case EDP_PREEMPHASIS_NONE:
1487 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
1488 break;
1489 case EDP_PREEMPHASIS_3_5dB:
1490 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
1491 break;
1492 case EDP_PREEMPHASIS_6dB:
1493 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
1494 break;
1495 case EDP_PREEMPHASIS_9_5dB:
1496 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
1497 break;
1498 default:
1499 drm_dbg_kms(display->drm,
1500 "VBT has unknown eDP pre-emphasis value %u\n",
1501 edp_link_params->preemphasis);
1502 break;
1503 }
1504
1505 switch (edp_link_params->vswing) {
1506 case EDP_VSWING_0_4V:
1507 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
1508 break;
1509 case EDP_VSWING_0_6V:
1510 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
1511 break;
1512 case EDP_VSWING_0_8V:
1513 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
1514 break;
1515 case EDP_VSWING_1_2V:
1516 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
1517 break;
1518 default:
1519 drm_dbg_kms(display->drm,
1520 "VBT has unknown eDP voltage swing value %u\n",
1521 edp_link_params->vswing);
1522 break;
1523 }
1524
1525 if (display->vbt.version >= 173) {
1526 u8 vswing;
1527
1528 /* Don't read from VBT if module parameter has valid value*/
1529 if (display->params.edp_vswing) {
1530 panel->vbt.edp.low_vswing =
1531 display->params.edp_vswing == 1;
1532 } else {
1533 vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
1534 panel->vbt.edp.low_vswing = vswing == 0;
1535 }
1536 }
1537
1538 panel->vbt.edp.drrs_msa_timing_delay =
1539 panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2);
1540
1541 if (display->vbt.version >= 244)
1542 panel->vbt.edp.max_link_rate =
1543 edp->edp_max_port_link_rate[panel_type] * 20;
1544
1545 if (display->vbt.version >= 251)
1546 panel->vbt.edp.dsc_disable =
1547 panel_bool(edp->edp_dsc_disable, panel_type);
1548 }
1549
1550 static void
parse_psr(struct intel_display * display,struct intel_panel * panel)1551 parse_psr(struct intel_display *display,
1552 struct intel_panel *panel)
1553 {
1554 const struct bdb_psr *psr;
1555 const struct psr_table *psr_table;
1556 int panel_type = panel->vbt.panel_type;
1557
1558 psr = bdb_find_section(display, BDB_PSR);
1559 if (!psr) {
1560 drm_dbg_kms(display->drm, "No PSR BDB found.\n");
1561 return;
1562 }
1563
1564 psr_table = &psr->psr_table[panel_type];
1565
1566 panel->vbt.psr.full_link = psr_table->full_link;
1567 panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
1568
1569 /* Allowed VBT values goes from 0 to 15 */
1570 panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
1571 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
1572
1573 /*
1574 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
1575 * Old decimal value is wake up time in multiples of 100 us.
1576 */
1577 if (display->vbt.version >= 205 &&
1578 (DISPLAY_VER(display) >= 9 && !display->platform.broxton)) {
1579 switch (psr_table->tp1_wakeup_time) {
1580 case 0:
1581 panel->vbt.psr.tp1_wakeup_time_us = 500;
1582 break;
1583 case 1:
1584 panel->vbt.psr.tp1_wakeup_time_us = 100;
1585 break;
1586 case 3:
1587 panel->vbt.psr.tp1_wakeup_time_us = 0;
1588 break;
1589 default:
1590 drm_dbg_kms(display->drm,
1591 "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1592 psr_table->tp1_wakeup_time);
1593 fallthrough;
1594 case 2:
1595 panel->vbt.psr.tp1_wakeup_time_us = 2500;
1596 break;
1597 }
1598
1599 switch (psr_table->tp2_tp3_wakeup_time) {
1600 case 0:
1601 panel->vbt.psr.tp2_tp3_wakeup_time_us = 500;
1602 break;
1603 case 1:
1604 panel->vbt.psr.tp2_tp3_wakeup_time_us = 100;
1605 break;
1606 case 3:
1607 panel->vbt.psr.tp2_tp3_wakeup_time_us = 0;
1608 break;
1609 default:
1610 drm_dbg_kms(display->drm,
1611 "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1612 psr_table->tp2_tp3_wakeup_time);
1613 fallthrough;
1614 case 2:
1615 panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
1616 break;
1617 }
1618 } else {
1619 panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
1620 panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
1621 }
1622
1623 if (display->vbt.version >= 226) {
1624 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
1625
1626 wakeup_time = panel_bits(wakeup_time, panel_type, 2);
1627 switch (wakeup_time) {
1628 case 0:
1629 wakeup_time = 500;
1630 break;
1631 case 1:
1632 wakeup_time = 100;
1633 break;
1634 case 3:
1635 wakeup_time = 50;
1636 break;
1637 default:
1638 case 2:
1639 wakeup_time = 2500;
1640 break;
1641 }
1642 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
1643 } else {
1644 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */
1645 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us;
1646 }
1647 }
1648
parse_dsi_backlight_ports(struct intel_display * display,struct intel_panel * panel,enum port port)1649 static void parse_dsi_backlight_ports(struct intel_display *display,
1650 struct intel_panel *panel,
1651 enum port port)
1652 {
1653 enum port port_bc = DISPLAY_VER(display) >= 11 ? PORT_B : PORT_C;
1654
1655 if (!panel->vbt.dsi.config->dual_link || display->vbt.version < 197) {
1656 panel->vbt.dsi.bl_ports = BIT(port);
1657 if (panel->vbt.dsi.config->cabc_supported)
1658 panel->vbt.dsi.cabc_ports = BIT(port);
1659
1660 return;
1661 }
1662
1663 switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) {
1664 case DL_DCS_PORT_A:
1665 panel->vbt.dsi.bl_ports = BIT(PORT_A);
1666 break;
1667 case DL_DCS_PORT_C:
1668 panel->vbt.dsi.bl_ports = BIT(port_bc);
1669 break;
1670 default:
1671 case DL_DCS_PORT_A_AND_C:
1672 panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc);
1673 break;
1674 }
1675
1676 if (!panel->vbt.dsi.config->cabc_supported)
1677 return;
1678
1679 switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) {
1680 case DL_DCS_PORT_A:
1681 panel->vbt.dsi.cabc_ports = BIT(PORT_A);
1682 break;
1683 case DL_DCS_PORT_C:
1684 panel->vbt.dsi.cabc_ports = BIT(port_bc);
1685 break;
1686 default:
1687 case DL_DCS_PORT_A_AND_C:
1688 panel->vbt.dsi.cabc_ports =
1689 BIT(PORT_A) | BIT(port_bc);
1690 break;
1691 }
1692 }
1693
1694 static void
parse_mipi_config(struct intel_display * display,struct intel_panel * panel)1695 parse_mipi_config(struct intel_display *display,
1696 struct intel_panel *panel)
1697 {
1698 const struct bdb_mipi_config *start;
1699 const struct mipi_config *config;
1700 const struct mipi_pps_data *pps;
1701 int panel_type = panel->vbt.panel_type;
1702 enum port port;
1703
1704 /* parse MIPI blocks only if LFP type is MIPI */
1705 if (!intel_bios_is_dsi_present(display, &port))
1706 return;
1707
1708 /* Initialize this to undefined indicating no generic MIPI support */
1709 panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1710
1711 start = bdb_find_section(display, BDB_MIPI_CONFIG);
1712 if (!start) {
1713 drm_dbg_kms(display->drm, "No MIPI config BDB found");
1714 return;
1715 }
1716
1717 drm_dbg_kms(display->drm, "Found MIPI Config block, panel index = %d\n",
1718 panel_type);
1719
1720 /*
1721 * get hold of the correct configuration block and pps data as per
1722 * the panel_type as index
1723 */
1724 config = &start->config[panel_type];
1725 pps = &start->pps[panel_type];
1726
1727 /* store as of now full data. Trim when we realise all is not needed */
1728 panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1729 if (!panel->vbt.dsi.config)
1730 return;
1731
1732 panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1733 if (!panel->vbt.dsi.pps) {
1734 kfree(panel->vbt.dsi.config);
1735 return;
1736 }
1737
1738 parse_dsi_backlight_ports(display, panel, port);
1739
1740 /* FIXME is the 90 vs. 270 correct? */
1741 switch (config->rotation) {
1742 case ENABLE_ROTATION_0:
1743 /*
1744 * Most (all?) VBTs claim 0 degrees despite having
1745 * an upside down panel, thus we do not trust this.
1746 */
1747 panel->vbt.dsi.orientation =
1748 DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1749 break;
1750 case ENABLE_ROTATION_90:
1751 panel->vbt.dsi.orientation =
1752 DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1753 break;
1754 case ENABLE_ROTATION_180:
1755 panel->vbt.dsi.orientation =
1756 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1757 break;
1758 case ENABLE_ROTATION_270:
1759 panel->vbt.dsi.orientation =
1760 DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1761 break;
1762 }
1763
1764 /* We have mandatory mipi config blocks. Initialize as generic panel */
1765 panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1766 }
1767
1768 /* Find the sequence block and size for the given panel. */
1769 static const u8 *
find_panel_sequence_block(struct intel_display * display,const struct bdb_mipi_sequence * sequence,u16 panel_id,u32 * seq_size)1770 find_panel_sequence_block(struct intel_display *display,
1771 const struct bdb_mipi_sequence *sequence,
1772 u16 panel_id, u32 *seq_size)
1773 {
1774 u32 total = get_blocksize(sequence);
1775 const u8 *data = &sequence->data[0];
1776 u8 current_id;
1777 u32 current_size;
1778 int header_size = sequence->version >= 3 ? 5 : 3;
1779 int index = 0;
1780 int i;
1781
1782 /* skip new block size */
1783 if (sequence->version >= 3)
1784 data += 4;
1785
1786 for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1787 if (index + header_size > total) {
1788 drm_err(display->drm,
1789 "Invalid sequence block (header)\n");
1790 return NULL;
1791 }
1792
1793 current_id = *(data + index);
1794 if (sequence->version >= 3)
1795 current_size = *((const u32 *)(data + index + 1));
1796 else
1797 current_size = *((const u16 *)(data + index + 1));
1798
1799 index += header_size;
1800
1801 if (index + current_size > total) {
1802 drm_err(display->drm, "Invalid sequence block\n");
1803 return NULL;
1804 }
1805
1806 if (current_id == panel_id) {
1807 *seq_size = current_size;
1808 return data + index;
1809 }
1810
1811 index += current_size;
1812 }
1813
1814 drm_err(display->drm,
1815 "Sequence block detected but no valid configuration\n");
1816
1817 return NULL;
1818 }
1819
goto_next_sequence(struct intel_display * display,const u8 * data,int index,int total)1820 static int goto_next_sequence(struct intel_display *display,
1821 const u8 *data, int index, int total)
1822 {
1823 u16 len;
1824
1825 /* Skip Sequence Byte. */
1826 for (index = index + 1; index < total; index += len) {
1827 u8 operation_byte = *(data + index);
1828 index++;
1829
1830 switch (operation_byte) {
1831 case MIPI_SEQ_ELEM_END:
1832 return index;
1833 case MIPI_SEQ_ELEM_SEND_PKT:
1834 if (index + 4 > total)
1835 return 0;
1836
1837 len = *((const u16 *)(data + index + 2)) + 4;
1838 break;
1839 case MIPI_SEQ_ELEM_DELAY:
1840 len = 4;
1841 break;
1842 case MIPI_SEQ_ELEM_GPIO:
1843 len = 2;
1844 break;
1845 case MIPI_SEQ_ELEM_I2C:
1846 if (index + 7 > total)
1847 return 0;
1848 len = *(data + index + 6) + 7;
1849 break;
1850 default:
1851 drm_err(display->drm, "Unknown operation byte\n");
1852 return 0;
1853 }
1854 }
1855
1856 return 0;
1857 }
1858
goto_next_sequence_v3(struct intel_display * display,const u8 * data,int index,int total)1859 static int goto_next_sequence_v3(struct intel_display *display,
1860 const u8 *data, int index, int total)
1861 {
1862 int seq_end;
1863 u16 len;
1864 u32 size_of_sequence;
1865
1866 /*
1867 * Could skip sequence based on Size of Sequence alone, but also do some
1868 * checking on the structure.
1869 */
1870 if (total < 5) {
1871 drm_err(display->drm, "Too small sequence size\n");
1872 return 0;
1873 }
1874
1875 /* Skip Sequence Byte. */
1876 index++;
1877
1878 /*
1879 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1880 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1881 * byte.
1882 */
1883 size_of_sequence = *((const u32 *)(data + index));
1884 index += 4;
1885
1886 seq_end = index + size_of_sequence;
1887 if (seq_end > total) {
1888 drm_err(display->drm, "Invalid sequence size\n");
1889 return 0;
1890 }
1891
1892 for (; index < total; index += len) {
1893 u8 operation_byte = *(data + index);
1894 index++;
1895
1896 if (operation_byte == MIPI_SEQ_ELEM_END) {
1897 if (index != seq_end) {
1898 drm_err(display->drm,
1899 "Invalid element structure\n");
1900 return 0;
1901 }
1902 return index;
1903 }
1904
1905 len = *(data + index);
1906 index++;
1907
1908 /*
1909 * FIXME: Would be nice to check elements like for v1/v2 in
1910 * goto_next_sequence() above.
1911 */
1912 switch (operation_byte) {
1913 case MIPI_SEQ_ELEM_SEND_PKT:
1914 case MIPI_SEQ_ELEM_DELAY:
1915 case MIPI_SEQ_ELEM_GPIO:
1916 case MIPI_SEQ_ELEM_I2C:
1917 case MIPI_SEQ_ELEM_SPI:
1918 case MIPI_SEQ_ELEM_PMIC:
1919 break;
1920 default:
1921 drm_err(display->drm, "Unknown operation byte %u\n",
1922 operation_byte);
1923 break;
1924 }
1925 }
1926
1927 return 0;
1928 }
1929
1930 /*
1931 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1932 * skip all delay + gpio operands and stop at the first DSI packet op.
1933 */
get_init_otp_deassert_fragment_len(struct intel_display * display,struct intel_panel * panel)1934 static int get_init_otp_deassert_fragment_len(struct intel_display *display,
1935 struct intel_panel *panel)
1936 {
1937 const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1938 int index, len;
1939
1940 if (drm_WARN_ON(display->drm,
1941 !data || panel->vbt.dsi.seq_version >= 3))
1942 return 0;
1943
1944 /* index = 1 to skip sequence byte */
1945 for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1946 switch (data[index]) {
1947 case MIPI_SEQ_ELEM_SEND_PKT:
1948 return index == 1 ? 0 : index;
1949 case MIPI_SEQ_ELEM_DELAY:
1950 len = 5; /* 1 byte for operand + uint32 */
1951 break;
1952 case MIPI_SEQ_ELEM_GPIO:
1953 len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1954 break;
1955 default:
1956 return 0;
1957 }
1958 }
1959
1960 return 0;
1961 }
1962
1963 /*
1964 * Some v1/v2 VBT MIPI sequences do the deassert in the init OTP sequence.
1965 * The deassert must be done before calling intel_dsi_device_ready, so for
1966 * these devices we split the init OTP sequence into a deassert sequence and
1967 * the actual init OTP part.
1968 */
vlv_fixup_mipi_sequences(struct intel_display * display,struct intel_panel * panel)1969 static void vlv_fixup_mipi_sequences(struct intel_display *display,
1970 struct intel_panel *panel)
1971 {
1972 u8 *init_otp;
1973 int len;
1974
1975 /* Limit this to v1/v2 vid-mode sequences */
1976 if (panel->vbt.dsi.config->is_cmd_mode ||
1977 panel->vbt.dsi.seq_version >= 3)
1978 return;
1979
1980 /* Only do this if there are otp and assert seqs and no deassert seq */
1981 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1982 !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1983 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1984 return;
1985
1986 /* The deassert-sequence ends at the first DSI packet */
1987 len = get_init_otp_deassert_fragment_len(display, panel);
1988 if (!len)
1989 return;
1990
1991 drm_dbg_kms(display->drm,
1992 "Using init OTP fragment to deassert reset\n");
1993
1994 /* Copy the fragment, update seq byte and terminate it */
1995 init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1996 panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1997 if (!panel->vbt.dsi.deassert_seq)
1998 return;
1999 panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
2000 panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
2001 /* Use the copy for deassert */
2002 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
2003 panel->vbt.dsi.deassert_seq;
2004 /* Replace the last byte of the fragment with init OTP seq byte */
2005 init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
2006 /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
2007 panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
2008 }
2009
2010 /*
2011 * Some machines (eg. Lenovo 82TQ) appear to have broken
2012 * VBT sequences:
2013 * - INIT_OTP is not present at all
2014 * - what should be in INIT_OTP is in DISPLAY_ON
2015 * - what should be in DISPLAY_ON is in BACKLIGHT_ON
2016 * (along with the actual backlight stuff)
2017 *
2018 * To make those work we simply swap DISPLAY_ON and INIT_OTP.
2019 *
2020 * TODO: Do we need to limit this to specific machines,
2021 * or examine the contents of the sequences to
2022 * avoid false positives?
2023 */
icl_fixup_mipi_sequences(struct intel_display * display,struct intel_panel * panel)2024 static void icl_fixup_mipi_sequences(struct intel_display *display,
2025 struct intel_panel *panel)
2026 {
2027 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] &&
2028 panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]) {
2029 drm_dbg_kms(display->drm,
2030 "Broken VBT: Swapping INIT_OTP and DISPLAY_ON sequences\n");
2031
2032 swap(panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP],
2033 panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]);
2034 }
2035 }
2036
fixup_mipi_sequences(struct intel_display * display,struct intel_panel * panel)2037 static void fixup_mipi_sequences(struct intel_display *display,
2038 struct intel_panel *panel)
2039 {
2040 if (DISPLAY_VER(display) >= 11)
2041 icl_fixup_mipi_sequences(display, panel);
2042 else if (display->platform.valleyview)
2043 vlv_fixup_mipi_sequences(display, panel);
2044 }
2045
2046 static void
parse_mipi_sequence(struct intel_display * display,struct intel_panel * panel)2047 parse_mipi_sequence(struct intel_display *display,
2048 struct intel_panel *panel)
2049 {
2050 int panel_type = panel->vbt.panel_type;
2051 const struct bdb_mipi_sequence *sequence;
2052 const u8 *seq_data;
2053 u32 seq_size;
2054 u8 *data;
2055 int index = 0;
2056
2057 /* Only our generic panel driver uses the sequence block. */
2058 if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
2059 return;
2060
2061 sequence = bdb_find_section(display, BDB_MIPI_SEQUENCE);
2062 if (!sequence) {
2063 drm_dbg_kms(display->drm,
2064 "No MIPI Sequence found, parsing complete\n");
2065 return;
2066 }
2067
2068 /* Fail gracefully for forward incompatible sequence block. */
2069 if (sequence->version >= 4) {
2070 drm_err(display->drm,
2071 "Unable to parse MIPI Sequence Block v%u\n",
2072 sequence->version);
2073 return;
2074 }
2075
2076 drm_dbg_kms(display->drm, "Found MIPI sequence block v%u\n",
2077 sequence->version);
2078
2079 seq_data = find_panel_sequence_block(display, sequence, panel_type, &seq_size);
2080 if (!seq_data)
2081 return;
2082
2083 data = kmemdup(seq_data, seq_size, GFP_KERNEL);
2084 if (!data)
2085 return;
2086
2087 /* Parse the sequences, store pointers to each sequence. */
2088 for (;;) {
2089 u8 seq_id = *(data + index);
2090 if (seq_id == MIPI_SEQ_END)
2091 break;
2092
2093 if (seq_id >= MIPI_SEQ_MAX) {
2094 drm_err(display->drm, "Unknown sequence %u\n",
2095 seq_id);
2096 goto err;
2097 }
2098
2099 /* Log about presence of sequences we won't run. */
2100 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
2101 drm_dbg_kms(display->drm,
2102 "Unsupported sequence %u\n", seq_id);
2103
2104 panel->vbt.dsi.sequence[seq_id] = data + index;
2105
2106 if (sequence->version >= 3)
2107 index = goto_next_sequence_v3(display, data, index, seq_size);
2108 else
2109 index = goto_next_sequence(display, data, index, seq_size);
2110 if (!index) {
2111 drm_err(display->drm, "Invalid sequence %u\n",
2112 seq_id);
2113 goto err;
2114 }
2115 }
2116
2117 panel->vbt.dsi.data = data;
2118 panel->vbt.dsi.size = seq_size;
2119 panel->vbt.dsi.seq_version = sequence->version;
2120
2121 fixup_mipi_sequences(display, panel);
2122
2123 drm_dbg_kms(display->drm, "MIPI related VBT parsing complete\n");
2124 return;
2125
2126 err:
2127 kfree(data);
2128 memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence));
2129 }
2130
2131 static void
parse_compression_parameters(struct intel_display * display)2132 parse_compression_parameters(struct intel_display *display)
2133 {
2134 const struct bdb_compression_parameters *params;
2135 struct intel_bios_encoder_data *devdata;
2136 u16 block_size;
2137 int index;
2138
2139 if (display->vbt.version < 198)
2140 return;
2141
2142 params = bdb_find_section(display, BDB_COMPRESSION_PARAMETERS);
2143 if (params) {
2144 /* Sanity checks */
2145 if (params->entry_size != sizeof(params->data[0])) {
2146 drm_dbg_kms(display->drm,
2147 "VBT: unsupported compression param entry size\n");
2148 return;
2149 }
2150
2151 block_size = get_blocksize(params);
2152 if (block_size < sizeof(*params)) {
2153 drm_dbg_kms(display->drm,
2154 "VBT: expected 16 compression param entries\n");
2155 return;
2156 }
2157 }
2158
2159 list_for_each_entry(devdata, &display->vbt.display_devices, node) {
2160 const struct child_device_config *child = &devdata->child;
2161
2162 if (!child->compression_enable)
2163 continue;
2164
2165 if (!params) {
2166 drm_dbg_kms(display->drm,
2167 "VBT: compression params not available\n");
2168 continue;
2169 }
2170
2171 if (child->compression_method_cps) {
2172 drm_dbg_kms(display->drm,
2173 "VBT: CPS compression not supported\n");
2174 continue;
2175 }
2176
2177 index = child->compression_structure_index;
2178
2179 devdata->dsc = kmemdup(¶ms->data[index],
2180 sizeof(*devdata->dsc), GFP_KERNEL);
2181 }
2182 }
2183
translate_iboost(struct intel_display * display,u8 val)2184 static u8 translate_iboost(struct intel_display *display, u8 val)
2185 {
2186 static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
2187
2188 if (val >= ARRAY_SIZE(mapping)) {
2189 drm_dbg_kms(display->drm,
2190 "Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
2191 return 0;
2192 }
2193 return mapping[val];
2194 }
2195
2196 static const u8 cnp_ddc_pin_map[] = {
2197 [0] = 0, /* N/A */
2198 [GMBUS_PIN_1_BXT] = DDC_BUS_DDI_B,
2199 [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_C,
2200 [GMBUS_PIN_4_CNP] = DDC_BUS_DDI_D, /* sic */
2201 [GMBUS_PIN_3_BXT] = DDC_BUS_DDI_F, /* sic */
2202 };
2203
2204 static const u8 icp_ddc_pin_map[] = {
2205 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2206 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2207 [GMBUS_PIN_3_BXT] = TGL_DDC_BUS_DDI_C,
2208 [GMBUS_PIN_9_TC1_ICP] = ICL_DDC_BUS_PORT_1,
2209 [GMBUS_PIN_10_TC2_ICP] = ICL_DDC_BUS_PORT_2,
2210 [GMBUS_PIN_11_TC3_ICP] = ICL_DDC_BUS_PORT_3,
2211 [GMBUS_PIN_12_TC4_ICP] = ICL_DDC_BUS_PORT_4,
2212 [GMBUS_PIN_13_TC5_TGP] = TGL_DDC_BUS_PORT_5,
2213 [GMBUS_PIN_14_TC6_TGP] = TGL_DDC_BUS_PORT_6,
2214 };
2215
2216 static const u8 rkl_pch_tgp_ddc_pin_map[] = {
2217 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2218 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2219 [GMBUS_PIN_9_TC1_ICP] = RKL_DDC_BUS_DDI_D,
2220 [GMBUS_PIN_10_TC2_ICP] = RKL_DDC_BUS_DDI_E,
2221 };
2222
2223 static const u8 adls_ddc_pin_map[] = {
2224 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2225 [GMBUS_PIN_9_TC1_ICP] = ADLS_DDC_BUS_PORT_TC1,
2226 [GMBUS_PIN_10_TC2_ICP] = ADLS_DDC_BUS_PORT_TC2,
2227 [GMBUS_PIN_11_TC3_ICP] = ADLS_DDC_BUS_PORT_TC3,
2228 [GMBUS_PIN_12_TC4_ICP] = ADLS_DDC_BUS_PORT_TC4,
2229 };
2230
2231 static const u8 gen9bc_tgp_ddc_pin_map[] = {
2232 [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_B,
2233 [GMBUS_PIN_9_TC1_ICP] = DDC_BUS_DDI_C,
2234 [GMBUS_PIN_10_TC2_ICP] = DDC_BUS_DDI_D,
2235 };
2236
2237 static const u8 adlp_ddc_pin_map[] = {
2238 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2239 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2240 [GMBUS_PIN_9_TC1_ICP] = ADLP_DDC_BUS_PORT_TC1,
2241 [GMBUS_PIN_10_TC2_ICP] = ADLP_DDC_BUS_PORT_TC2,
2242 [GMBUS_PIN_11_TC3_ICP] = ADLP_DDC_BUS_PORT_TC3,
2243 [GMBUS_PIN_12_TC4_ICP] = ADLP_DDC_BUS_PORT_TC4,
2244 };
2245
map_ddc_pin(struct intel_display * display,u8 vbt_pin)2246 static u8 map_ddc_pin(struct intel_display *display, u8 vbt_pin)
2247 {
2248 const u8 *ddc_pin_map;
2249 int i, n_entries;
2250
2251 if (INTEL_PCH_TYPE(display) >= PCH_MTL || display->platform.alderlake_p) {
2252 ddc_pin_map = adlp_ddc_pin_map;
2253 n_entries = ARRAY_SIZE(adlp_ddc_pin_map);
2254 } else if (display->platform.alderlake_s) {
2255 ddc_pin_map = adls_ddc_pin_map;
2256 n_entries = ARRAY_SIZE(adls_ddc_pin_map);
2257 } else if (INTEL_PCH_TYPE(display) >= PCH_DG1) {
2258 return vbt_pin;
2259 } else if (display->platform.rocketlake && INTEL_PCH_TYPE(display) == PCH_TGP) {
2260 ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
2261 n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
2262 } else if (HAS_PCH_TGP(display) && DISPLAY_VER(display) == 9) {
2263 ddc_pin_map = gen9bc_tgp_ddc_pin_map;
2264 n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
2265 } else if (INTEL_PCH_TYPE(display) >= PCH_ICP) {
2266 ddc_pin_map = icp_ddc_pin_map;
2267 n_entries = ARRAY_SIZE(icp_ddc_pin_map);
2268 } else if (HAS_PCH_CNP(display)) {
2269 ddc_pin_map = cnp_ddc_pin_map;
2270 n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
2271 } else {
2272 /* Assuming direct map */
2273 return vbt_pin;
2274 }
2275
2276 for (i = 0; i < n_entries; i++) {
2277 if (ddc_pin_map[i] == vbt_pin)
2278 return i;
2279 }
2280
2281 drm_dbg_kms(display->drm,
2282 "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
2283 vbt_pin);
2284 return 0;
2285 }
2286
dvo_port_type(u8 dvo_port)2287 static u8 dvo_port_type(u8 dvo_port)
2288 {
2289 switch (dvo_port) {
2290 case DVO_PORT_HDMIA:
2291 case DVO_PORT_HDMIB:
2292 case DVO_PORT_HDMIC:
2293 case DVO_PORT_HDMID:
2294 case DVO_PORT_HDMIE:
2295 case DVO_PORT_HDMIF:
2296 case DVO_PORT_HDMIG:
2297 case DVO_PORT_HDMIH:
2298 case DVO_PORT_HDMII:
2299 return DVO_PORT_HDMIA;
2300 case DVO_PORT_DPA:
2301 case DVO_PORT_DPB:
2302 case DVO_PORT_DPC:
2303 case DVO_PORT_DPD:
2304 case DVO_PORT_DPE:
2305 case DVO_PORT_DPF:
2306 case DVO_PORT_DPG:
2307 case DVO_PORT_DPH:
2308 case DVO_PORT_DPI:
2309 return DVO_PORT_DPA;
2310 case DVO_PORT_MIPIA:
2311 case DVO_PORT_MIPIB:
2312 case DVO_PORT_MIPIC:
2313 case DVO_PORT_MIPID:
2314 return DVO_PORT_MIPIA;
2315 default:
2316 return dvo_port;
2317 }
2318 }
2319
__dvo_port_to_port(int n_ports,int n_dvo,const int port_mapping[][3],u8 dvo_port)2320 static enum port __dvo_port_to_port(int n_ports, int n_dvo,
2321 const int port_mapping[][3], u8 dvo_port)
2322 {
2323 enum port port;
2324 int i;
2325
2326 for (port = PORT_A; port < n_ports; port++) {
2327 for (i = 0; i < n_dvo; i++) {
2328 if (port_mapping[port][i] == -1)
2329 break;
2330
2331 if (dvo_port == port_mapping[port][i])
2332 return port;
2333 }
2334 }
2335
2336 return PORT_NONE;
2337 }
2338
dvo_port_to_port(struct intel_display * display,u8 dvo_port)2339 static enum port dvo_port_to_port(struct intel_display *display,
2340 u8 dvo_port)
2341 {
2342 /*
2343 * Each DDI port can have more than one value on the "DVO Port" field,
2344 * so look for all the possible values for each port.
2345 */
2346 static const int port_mapping[][3] = {
2347 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2348 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2349 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2350 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2351 [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
2352 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2353 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2354 [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2355 [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2356 };
2357 /*
2358 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
2359 * map to DDI A,B,TC1,TC2 respectively.
2360 */
2361 static const int rkl_port_mapping[][3] = {
2362 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2363 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2364 [PORT_C] = { -1 },
2365 [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2366 [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2367 };
2368 /*
2369 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
2370 * PORT_F and PORT_G, we need to map that to correct VBT sections.
2371 */
2372 static const int adls_port_mapping[][3] = {
2373 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2374 [PORT_B] = { -1 },
2375 [PORT_C] = { -1 },
2376 [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2377 [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2378 [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2379 [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2380 };
2381 static const int xelpd_port_mapping[][3] = {
2382 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2383 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2384 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2385 [PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2386 [PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2387 [PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2388 [PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2389 [PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2390 [PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2391 };
2392
2393 if (DISPLAY_VER(display) >= 13)
2394 return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
2395 ARRAY_SIZE(xelpd_port_mapping[0]),
2396 xelpd_port_mapping,
2397 dvo_port);
2398 else if (display->platform.alderlake_s)
2399 return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
2400 ARRAY_SIZE(adls_port_mapping[0]),
2401 adls_port_mapping,
2402 dvo_port);
2403 else if (display->platform.dg1 || display->platform.rocketlake)
2404 return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
2405 ARRAY_SIZE(rkl_port_mapping[0]),
2406 rkl_port_mapping,
2407 dvo_port);
2408 else
2409 return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
2410 ARRAY_SIZE(port_mapping[0]),
2411 port_mapping,
2412 dvo_port);
2413 }
2414
2415 static enum port
dsi_dvo_port_to_port(struct intel_display * display,u8 dvo_port)2416 dsi_dvo_port_to_port(struct intel_display *display, u8 dvo_port)
2417 {
2418 switch (dvo_port) {
2419 case DVO_PORT_MIPIA:
2420 return PORT_A;
2421 case DVO_PORT_MIPIC:
2422 if (DISPLAY_VER(display) >= 11)
2423 return PORT_B;
2424 else
2425 return PORT_C;
2426 default:
2427 return PORT_NONE;
2428 }
2429 }
2430
intel_bios_encoder_port(const struct intel_bios_encoder_data * devdata)2431 enum port intel_bios_encoder_port(const struct intel_bios_encoder_data *devdata)
2432 {
2433 struct intel_display *display = devdata->display;
2434 const struct child_device_config *child = &devdata->child;
2435 enum port port;
2436
2437 port = dvo_port_to_port(display, child->dvo_port);
2438 if (port == PORT_NONE && DISPLAY_VER(display) >= 11)
2439 port = dsi_dvo_port_to_port(display, child->dvo_port);
2440
2441 return port;
2442 }
2443
parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)2444 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
2445 {
2446 switch (vbt_max_link_rate) {
2447 default:
2448 case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
2449 return 0;
2450 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
2451 return 2000000;
2452 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
2453 return 1350000;
2454 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
2455 return 1000000;
2456 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
2457 return 810000;
2458 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
2459 return 540000;
2460 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
2461 return 270000;
2462 case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
2463 return 162000;
2464 }
2465 }
2466
parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)2467 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
2468 {
2469 switch (vbt_max_link_rate) {
2470 default:
2471 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
2472 return 810000;
2473 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
2474 return 540000;
2475 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
2476 return 270000;
2477 case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
2478 return 162000;
2479 }
2480 }
2481
intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data * devdata)2482 int intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
2483 {
2484 if (!devdata || devdata->display->vbt.version < 216)
2485 return 0;
2486
2487 if (devdata->display->vbt.version >= 230)
2488 return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
2489 else
2490 return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
2491 }
2492
intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data * devdata)2493 int intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata)
2494 {
2495 if (!devdata || devdata->display->vbt.version < 244)
2496 return 0;
2497
2498 return devdata->child.dp_max_lane_count + 1;
2499 }
2500
sanitize_device_type(struct intel_bios_encoder_data * devdata,enum port port)2501 static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
2502 enum port port)
2503 {
2504 struct intel_display *display = devdata->display;
2505 bool is_hdmi;
2506
2507 if (port != PORT_A || DISPLAY_VER(display) >= 12)
2508 return;
2509
2510 if (!intel_bios_encoder_supports_dvi(devdata))
2511 return;
2512
2513 is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2514
2515 drm_dbg_kms(display->drm, "VBT claims port A supports DVI%s, ignoring\n",
2516 is_hdmi ? "/HDMI" : "");
2517
2518 devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2519 devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2520 }
2521
sanitize_hdmi_level_shift(struct intel_bios_encoder_data * devdata,enum port port)2522 static void sanitize_hdmi_level_shift(struct intel_bios_encoder_data *devdata,
2523 enum port port)
2524 {
2525 struct intel_display *display = devdata->display;
2526
2527 if (!intel_bios_encoder_supports_dvi(devdata))
2528 return;
2529
2530 /*
2531 * Some BDW machines (eg. HP Pavilion 15-ab) shipped
2532 * with a HSW VBT where the level shifter value goes
2533 * up to 11, whereas the BDW max is 9.
2534 */
2535 if (display->platform.broadwell && devdata->child.hdmi_level_shifter_value > 9) {
2536 drm_dbg_kms(display->drm,
2537 "Bogus port %c VBT HDMI level shift %d, adjusting to %d\n",
2538 port_name(port), devdata->child.hdmi_level_shifter_value, 9);
2539
2540 devdata->child.hdmi_level_shifter_value = 9;
2541 }
2542 }
2543
2544 static bool
intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data * devdata)2545 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
2546 {
2547 return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
2548 }
2549
2550 bool
intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data * devdata)2551 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
2552 {
2553 return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
2554 }
2555
2556 bool
intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data * devdata)2557 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
2558 {
2559 return intel_bios_encoder_supports_dvi(devdata) &&
2560 (devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
2561 }
2562
2563 bool
intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data * devdata)2564 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
2565 {
2566 return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2567 }
2568
2569 bool
intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data * devdata)2570 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
2571 {
2572 return intel_bios_encoder_supports_dp(devdata) &&
2573 devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
2574 }
2575
2576 bool
intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data * devdata)2577 intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata)
2578 {
2579 return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT;
2580 }
2581
2582 bool
intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data * devdata)2583 intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data *devdata)
2584 {
2585 return devdata && HAS_LSPCON(devdata->display) && devdata->child.lspcon;
2586 }
2587
2588 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data * devdata)2589 int intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
2590 {
2591 if (!devdata || devdata->display->vbt.version < 158 ||
2592 DISPLAY_VER(devdata->display) >= 14)
2593 return -1;
2594
2595 return devdata->child.hdmi_level_shifter_value;
2596 }
2597
intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data * devdata)2598 int intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
2599 {
2600 if (!devdata || devdata->display->vbt.version < 204)
2601 return 0;
2602
2603 switch (devdata->child.hdmi_max_data_rate) {
2604 default:
2605 MISSING_CASE(devdata->child.hdmi_max_data_rate);
2606 fallthrough;
2607 case HDMI_MAX_DATA_RATE_PLATFORM:
2608 return 0;
2609 case HDMI_MAX_DATA_RATE_594:
2610 return 594000;
2611 case HDMI_MAX_DATA_RATE_340:
2612 return 340000;
2613 case HDMI_MAX_DATA_RATE_300:
2614 return 300000;
2615 case HDMI_MAX_DATA_RATE_297:
2616 return 297000;
2617 case HDMI_MAX_DATA_RATE_165:
2618 return 165000;
2619 }
2620 }
2621
is_port_valid(struct intel_display * display,enum port port)2622 static bool is_port_valid(struct intel_display *display, enum port port)
2623 {
2624 /*
2625 * On some ICL SKUs port F is not present, but broken VBTs mark
2626 * the port as present. Only try to initialize port F for the
2627 * SKUs that may actually have it.
2628 */
2629 if (port == PORT_F && display->platform.icelake)
2630 return display->platform.icelake_port_f;
2631
2632 return true;
2633 }
2634
print_ddi_port(const struct intel_bios_encoder_data * devdata)2635 static void print_ddi_port(const struct intel_bios_encoder_data *devdata)
2636 {
2637 struct intel_display *display = devdata->display;
2638 const struct child_device_config *child = &devdata->child;
2639 bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt;
2640 int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
2641 enum port port;
2642
2643 port = intel_bios_encoder_port(devdata);
2644 if (port == PORT_NONE)
2645 return;
2646
2647 is_dvi = intel_bios_encoder_supports_dvi(devdata);
2648 is_dp = intel_bios_encoder_supports_dp(devdata);
2649 is_crt = intel_bios_encoder_supports_crt(devdata);
2650 is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2651 is_edp = intel_bios_encoder_supports_edp(devdata);
2652 is_dsi = intel_bios_encoder_supports_dsi(devdata);
2653
2654 supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
2655 supports_tbt = intel_bios_encoder_supports_tbt(devdata);
2656
2657 drm_dbg_kms(display->drm,
2658 "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d DP++:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
2659 port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi,
2660 intel_bios_encoder_supports_dp_dual_mode(devdata),
2661 intel_bios_encoder_is_lspcon(devdata),
2662 supports_typec_usb, supports_tbt,
2663 devdata->dsc != NULL);
2664
2665 hdmi_level_shift = intel_bios_hdmi_level_shift(devdata);
2666 if (hdmi_level_shift >= 0) {
2667 drm_dbg_kms(display->drm,
2668 "Port %c VBT HDMI level shift: %d\n",
2669 port_name(port), hdmi_level_shift);
2670 }
2671
2672 max_tmds_clock = intel_bios_hdmi_max_tmds_clock(devdata);
2673 if (max_tmds_clock)
2674 drm_dbg_kms(display->drm,
2675 "Port %c VBT HDMI max TMDS clock: %d kHz\n",
2676 port_name(port), max_tmds_clock);
2677
2678 /* I_boost config for SKL and above */
2679 dp_boost_level = intel_bios_dp_boost_level(devdata);
2680 if (dp_boost_level)
2681 drm_dbg_kms(display->drm,
2682 "Port %c VBT (e)DP boost level: %d\n",
2683 port_name(port), dp_boost_level);
2684
2685 hdmi_boost_level = intel_bios_hdmi_boost_level(devdata);
2686 if (hdmi_boost_level)
2687 drm_dbg_kms(display->drm,
2688 "Port %c VBT HDMI boost level: %d\n",
2689 port_name(port), hdmi_boost_level);
2690
2691 dp_max_link_rate = intel_bios_dp_max_link_rate(devdata);
2692 if (dp_max_link_rate)
2693 drm_dbg_kms(display->drm,
2694 "Port %c VBT DP max link rate: %d\n",
2695 port_name(port), dp_max_link_rate);
2696
2697 /*
2698 * FIXME need to implement support for VBT
2699 * vswing/preemph tables should this ever trigger.
2700 */
2701 drm_WARN(display->drm, child->use_vbt_vswing,
2702 "Port %c asks to use VBT vswing/preemph tables\n",
2703 port_name(port));
2704 }
2705
parse_ddi_port(struct intel_bios_encoder_data * devdata)2706 static void parse_ddi_port(struct intel_bios_encoder_data *devdata)
2707 {
2708 struct intel_display *display = devdata->display;
2709 enum port port;
2710
2711 port = intel_bios_encoder_port(devdata);
2712 if (port == PORT_NONE)
2713 return;
2714
2715 if (!is_port_valid(display, port)) {
2716 drm_dbg_kms(display->drm,
2717 "VBT reports port %c as supported, but that can't be true: skipping\n",
2718 port_name(port));
2719 return;
2720 }
2721
2722 sanitize_device_type(devdata, port);
2723 sanitize_hdmi_level_shift(devdata, port);
2724 }
2725
has_ddi_port_info(struct intel_display * display)2726 static bool has_ddi_port_info(struct intel_display *display)
2727 {
2728 return DISPLAY_VER(display) >= 5 || display->platform.g4x;
2729 }
2730
parse_ddi_ports(struct intel_display * display)2731 static void parse_ddi_ports(struct intel_display *display)
2732 {
2733 struct intel_bios_encoder_data *devdata;
2734
2735 if (!has_ddi_port_info(display))
2736 return;
2737
2738 list_for_each_entry(devdata, &display->vbt.display_devices, node)
2739 parse_ddi_port(devdata);
2740
2741 list_for_each_entry(devdata, &display->vbt.display_devices, node)
2742 print_ddi_port(devdata);
2743 }
2744
child_device_expected_size(u16 version)2745 static int child_device_expected_size(u16 version)
2746 {
2747 BUILD_BUG_ON(sizeof(struct child_device_config) < 40);
2748
2749 if (version > 256)
2750 return -ENOENT;
2751 else if (version >= 256)
2752 return 40;
2753 else if (version >= 216)
2754 return 39;
2755 else if (version >= 196)
2756 return 38;
2757 else if (version >= 195)
2758 return 37;
2759 else if (version >= 111)
2760 return LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2761 else if (version >= 106)
2762 return 27;
2763 else
2764 return 22;
2765 }
2766
child_device_size_valid(struct intel_display * display,int size)2767 static bool child_device_size_valid(struct intel_display *display, int size)
2768 {
2769 int expected_size;
2770
2771 expected_size = child_device_expected_size(display->vbt.version);
2772 if (expected_size < 0) {
2773 expected_size = sizeof(struct child_device_config);
2774 drm_dbg_kms(display->drm,
2775 "Expected child device config size for VBT version %u not known; assuming %d\n",
2776 display->vbt.version, expected_size);
2777 }
2778
2779 /* Flag an error for unexpected size, but continue anyway. */
2780 if (size != expected_size)
2781 drm_err(display->drm,
2782 "Unexpected child device config size %d (expected %d for VBT version %u)\n",
2783 size, expected_size, display->vbt.version);
2784
2785 /* The legacy sized child device config is the minimum we need. */
2786 if (size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2787 drm_dbg_kms(display->drm,
2788 "Child device config size %d is too small.\n",
2789 size);
2790 return false;
2791 }
2792
2793 return true;
2794 }
2795
2796 static void
parse_general_definitions(struct intel_display * display)2797 parse_general_definitions(struct intel_display *display)
2798 {
2799 const struct bdb_general_definitions *defs;
2800 struct intel_bios_encoder_data *devdata;
2801 const struct child_device_config *child;
2802 int i, child_device_num;
2803 u16 block_size;
2804 int bus_pin;
2805
2806 defs = bdb_find_section(display, BDB_GENERAL_DEFINITIONS);
2807 if (!defs) {
2808 drm_dbg_kms(display->drm,
2809 "No general definition block is found, no devices defined.\n");
2810 return;
2811 }
2812
2813 block_size = get_blocksize(defs);
2814 if (block_size < sizeof(*defs)) {
2815 drm_dbg_kms(display->drm,
2816 "General definitions block too small (%u)\n",
2817 block_size);
2818 return;
2819 }
2820
2821 bus_pin = defs->crt_ddc_gmbus_pin;
2822 drm_dbg_kms(display->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2823 if (intel_gmbus_is_valid_pin(display, bus_pin))
2824 display->vbt.crt_ddc_pin = bus_pin;
2825
2826 if (!child_device_size_valid(display, defs->child_dev_size))
2827 return;
2828
2829 /* get the number of child device */
2830 child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2831
2832 for (i = 0; i < child_device_num; i++) {
2833 child = child_device_ptr(defs, i);
2834 if (!child->device_type)
2835 continue;
2836
2837 drm_dbg_kms(display->drm,
2838 "Found VBT child device with type 0x%x\n",
2839 child->device_type);
2840
2841 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2842 if (!devdata)
2843 break;
2844
2845 devdata->display = display;
2846
2847 /*
2848 * Copy as much as we know (sizeof) and is available
2849 * (child_dev_size) of the child device config. Accessing the
2850 * data must depend on VBT version.
2851 */
2852 memcpy(&devdata->child, child,
2853 min_t(size_t, defs->child_dev_size, sizeof(*child)));
2854
2855 list_add_tail(&devdata->node, &display->vbt.display_devices);
2856 }
2857
2858 if (list_empty(&display->vbt.display_devices))
2859 drm_dbg_kms(display->drm,
2860 "no child dev is parsed from VBT\n");
2861 }
2862
2863 /* Common defaults which may be overridden by VBT. */
2864 static void
init_vbt_defaults(struct intel_display * display)2865 init_vbt_defaults(struct intel_display *display)
2866 {
2867 display->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2868
2869 /* general features */
2870 display->vbt.int_tv_support = 1;
2871 display->vbt.int_crt_support = 1;
2872
2873 /* driver features */
2874 display->vbt.int_lvds_support = 1;
2875
2876 /* Default to using SSC */
2877 display->vbt.lvds_use_ssc = 1;
2878 /*
2879 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2880 * clock for LVDS.
2881 */
2882 display->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(display,
2883 !HAS_PCH_SPLIT(display));
2884 drm_dbg_kms(display->drm, "Set default to SSC at %d kHz\n",
2885 display->vbt.lvds_ssc_freq);
2886 }
2887
2888 /* Common defaults which may be overridden by VBT. */
2889 static void
init_vbt_panel_defaults(struct intel_panel * panel)2890 init_vbt_panel_defaults(struct intel_panel *panel)
2891 {
2892 /* Default to having backlight */
2893 panel->vbt.backlight.present = true;
2894
2895 /* LFP panel data */
2896 panel->vbt.lvds_dither = true;
2897 }
2898
2899 /* Defaults to initialize only if there is no VBT. */
2900 static void
init_vbt_missing_defaults(struct intel_display * display)2901 init_vbt_missing_defaults(struct intel_display *display)
2902 {
2903 unsigned int ports = DISPLAY_RUNTIME_INFO(display)->port_mask;
2904 enum port port;
2905
2906 if (!HAS_DDI(display) && !display->platform.cherryview)
2907 return;
2908
2909 for_each_port_masked(port, ports) {
2910 struct intel_bios_encoder_data *devdata;
2911 struct child_device_config *child;
2912 enum phy phy = intel_port_to_phy(display, port);
2913
2914 /*
2915 * VBT has the TypeC mode (native,TBT/USB) and we don't want
2916 * to detect it.
2917 */
2918 if (intel_phy_is_tc(display, phy))
2919 continue;
2920
2921 /* Create fake child device config */
2922 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2923 if (!devdata)
2924 break;
2925
2926 devdata->display = display;
2927 child = &devdata->child;
2928
2929 if (port == PORT_F)
2930 child->dvo_port = DVO_PORT_HDMIF;
2931 else if (port == PORT_E)
2932 child->dvo_port = DVO_PORT_HDMIE;
2933 else
2934 child->dvo_port = DVO_PORT_HDMIA + port;
2935
2936 if (port != PORT_A && port != PORT_E)
2937 child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2938
2939 if (port != PORT_E)
2940 child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2941
2942 if (port == PORT_A)
2943 child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2944
2945 list_add_tail(&devdata->node, &display->vbt.display_devices);
2946
2947 drm_dbg_kms(display->drm,
2948 "Generating default VBT child device with type 0x%04x on port %c\n",
2949 child->device_type, port_name(port));
2950 }
2951
2952 /* Bypass some minimum baseline VBT version checks */
2953 display->vbt.version = 155;
2954 }
2955
get_bdb_header(const struct vbt_header * vbt)2956 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2957 {
2958 const void *_vbt = vbt;
2959
2960 return _vbt + vbt->bdb_offset;
2961 }
2962
2963 static const char vbt_signature[] = "$VBT";
2964 static const int vbt_signature_len = 4;
2965
2966 /**
2967 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2968 * @display: display device
2969 * @buf: pointer to a buffer to validate
2970 * @size: size of the buffer
2971 *
2972 * Returns true on valid VBT.
2973 */
intel_bios_is_valid_vbt(struct intel_display * display,const void * buf,size_t size)2974 bool intel_bios_is_valid_vbt(struct intel_display *display,
2975 const void *buf, size_t size)
2976 {
2977 const struct vbt_header *vbt = buf;
2978 const struct bdb_header *bdb;
2979
2980 if (!vbt)
2981 return false;
2982
2983 if (sizeof(struct vbt_header) > size) {
2984 drm_dbg_kms(display->drm, "VBT header incomplete\n");
2985 return false;
2986 }
2987
2988 if (memcmp(vbt->signature, vbt_signature, vbt_signature_len)) {
2989 drm_dbg_kms(display->drm, "VBT invalid signature\n");
2990 return false;
2991 }
2992
2993 if (vbt->vbt_size > size) {
2994 drm_dbg_kms(display->drm,
2995 "VBT incomplete (vbt_size overflows)\n");
2996 return false;
2997 }
2998
2999 size = vbt->vbt_size;
3000
3001 if (range_overflows_t(size_t,
3002 vbt->bdb_offset,
3003 sizeof(struct bdb_header),
3004 size)) {
3005 drm_dbg_kms(display->drm, "BDB header incomplete\n");
3006 return false;
3007 }
3008
3009 bdb = get_bdb_header(vbt);
3010 if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
3011 drm_dbg_kms(display->drm, "BDB incomplete\n");
3012 return false;
3013 }
3014
3015 return vbt;
3016 }
3017
firmware_get_vbt(struct intel_display * display,size_t * size)3018 static struct vbt_header *firmware_get_vbt(struct intel_display *display,
3019 size_t *size)
3020 {
3021 struct vbt_header *vbt = NULL;
3022 const struct firmware *fw = NULL;
3023 const char *name = display->params.vbt_firmware;
3024 int ret;
3025
3026 if (!name || !*name)
3027 return NULL;
3028
3029 ret = request_firmware(&fw, name, display->drm->dev);
3030 if (ret) {
3031 drm_err(display->drm,
3032 "Requesting VBT firmware \"%s\" failed (%d)\n",
3033 name, ret);
3034 return NULL;
3035 }
3036
3037 if (intel_bios_is_valid_vbt(display, fw->data, fw->size)) {
3038 vbt = kmemdup(fw->data, fw->size, GFP_KERNEL);
3039 if (vbt) {
3040 drm_dbg_kms(display->drm,
3041 "Found valid VBT firmware \"%s\"\n", name);
3042 if (size)
3043 *size = fw->size;
3044 }
3045 } else {
3046 drm_dbg_kms(display->drm, "Invalid VBT firmware \"%s\"\n",
3047 name);
3048 }
3049
3050 release_firmware(fw);
3051
3052 return vbt;
3053 }
3054
oprom_get_vbt(struct intel_display * display,struct intel_rom * rom,size_t * size,const char * type)3055 static struct vbt_header *oprom_get_vbt(struct intel_display *display,
3056 struct intel_rom *rom,
3057 size_t *size, const char *type)
3058 {
3059 struct vbt_header *vbt;
3060 size_t vbt_size;
3061 loff_t offset;
3062
3063 if (!rom)
3064 return NULL;
3065
3066 BUILD_BUG_ON(vbt_signature_len != sizeof(vbt_signature) - 1);
3067 BUILD_BUG_ON(vbt_signature_len != sizeof(u32));
3068
3069 offset = intel_rom_find(rom, *(const u32 *)vbt_signature);
3070 if (offset < 0)
3071 goto err_free_rom;
3072
3073 if (sizeof(struct vbt_header) > intel_rom_size(rom) - offset) {
3074 drm_dbg_kms(display->drm, "VBT header incomplete\n");
3075 goto err_free_rom;
3076 }
3077
3078 BUILD_BUG_ON(sizeof(vbt->vbt_size) != sizeof(u16));
3079
3080 vbt_size = intel_rom_read16(rom, offset + offsetof(struct vbt_header, vbt_size));
3081 if (vbt_size > intel_rom_size(rom) - offset) {
3082 drm_dbg_kms(display->drm, "VBT incomplete (vbt_size overflows)\n");
3083 goto err_free_rom;
3084 }
3085
3086 vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL);
3087 if (!vbt)
3088 goto err_free_rom;
3089
3090 intel_rom_read_block(rom, vbt, offset, vbt_size);
3091
3092 if (!intel_bios_is_valid_vbt(display, vbt, vbt_size))
3093 goto err_free_vbt;
3094
3095 drm_dbg_kms(display->drm, "Found valid VBT in %s\n", type);
3096
3097 if (size)
3098 *size = vbt_size;
3099
3100 intel_rom_free(rom);
3101
3102 return vbt;
3103
3104 err_free_vbt:
3105 kfree(vbt);
3106 err_free_rom:
3107 intel_rom_free(rom);
3108 return NULL;
3109 }
3110
intel_bios_get_vbt(struct intel_display * display,size_t * sizep)3111 static const struct vbt_header *intel_bios_get_vbt(struct intel_display *display,
3112 size_t *sizep)
3113 {
3114 struct drm_i915_private *i915 = to_i915(display->drm);
3115 const struct vbt_header *vbt = NULL;
3116
3117 vbt = firmware_get_vbt(display, sizep);
3118
3119 if (!vbt)
3120 vbt = intel_opregion_get_vbt(display, sizep);
3121
3122 /*
3123 * If the OpRegion does not have VBT, look in SPI flash
3124 * through MMIO or PCI mapping
3125 */
3126 if (!vbt && display->platform.dgfx)
3127 with_intel_display_rpm(display)
3128 vbt = oprom_get_vbt(display, intel_rom_spi(i915), sizep, "SPI flash");
3129
3130 if (!vbt)
3131 with_intel_display_rpm(display)
3132 vbt = oprom_get_vbt(display, intel_rom_pci(i915), sizep, "PCI ROM");
3133
3134 return vbt;
3135 }
3136
3137 /**
3138 * intel_bios_init - find VBT and initialize settings from the BIOS
3139 * @display: display device instance
3140 *
3141 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
3142 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
3143 * initialize some defaults if the VBT is not present at all.
3144 */
intel_bios_init(struct intel_display * display)3145 void intel_bios_init(struct intel_display *display)
3146 {
3147 const struct vbt_header *vbt;
3148 const struct bdb_header *bdb;
3149
3150 INIT_LIST_HEAD(&display->vbt.display_devices);
3151 INIT_LIST_HEAD(&display->vbt.bdb_blocks);
3152
3153 if (!HAS_DISPLAY(display)) {
3154 drm_dbg_kms(display->drm,
3155 "Skipping VBT init due to disabled display.\n");
3156 return;
3157 }
3158
3159 init_vbt_defaults(display);
3160
3161 vbt = intel_bios_get_vbt(display, NULL);
3162
3163 if (!vbt)
3164 goto out;
3165
3166 bdb = get_bdb_header(vbt);
3167 display->vbt.version = bdb->version;
3168
3169 drm_dbg_kms(display->drm,
3170 "VBT signature \"%.*s\", BDB version %d\n",
3171 (int)sizeof(vbt->signature), vbt->signature,
3172 display->vbt.version);
3173
3174 init_bdb_blocks(display, bdb);
3175
3176 /* Grab useful general definitions */
3177 parse_general_features(display);
3178 parse_general_definitions(display);
3179 parse_driver_features(display);
3180
3181 /* Depends on child device list */
3182 parse_compression_parameters(display);
3183
3184 out:
3185 if (!vbt) {
3186 drm_info(display->drm,
3187 "Failed to find VBIOS tables (VBT)\n");
3188 init_vbt_missing_defaults(display);
3189 }
3190
3191 /* Further processing on pre-parsed or generated child device data */
3192 parse_sdvo_device_mapping(display);
3193 parse_ddi_ports(display);
3194
3195 kfree(vbt);
3196 }
3197
intel_bios_init_panel(struct intel_display * display,struct intel_panel * panel,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)3198 static void intel_bios_init_panel(struct intel_display *display,
3199 struct intel_panel *panel,
3200 const struct intel_bios_encoder_data *devdata,
3201 const struct drm_edid *drm_edid,
3202 bool use_fallback)
3203 {
3204 /* already have it? */
3205 if (panel->vbt.panel_type >= 0) {
3206 drm_WARN_ON(display->drm, !use_fallback);
3207 return;
3208 }
3209
3210 panel->vbt.panel_type = get_panel_type(display, devdata,
3211 drm_edid, use_fallback);
3212 if (panel->vbt.panel_type < 0) {
3213 drm_WARN_ON(display->drm, use_fallback);
3214 return;
3215 }
3216
3217 init_vbt_panel_defaults(panel);
3218
3219 parse_panel_options(display, panel);
3220 parse_generic_dtd(display, panel);
3221 parse_lfp_data(display, panel);
3222 parse_lfp_backlight(display, panel);
3223 parse_sdvo_lvds_data(display, panel);
3224 parse_panel_driver_features(display, panel);
3225 parse_power_conservation_features(display, panel);
3226 parse_edp(display, panel);
3227 parse_psr(display, panel);
3228 parse_mipi_config(display, panel);
3229 parse_mipi_sequence(display, panel);
3230 }
3231
intel_bios_init_panel_early(struct intel_display * display,struct intel_panel * panel,const struct intel_bios_encoder_data * devdata)3232 void intel_bios_init_panel_early(struct intel_display *display,
3233 struct intel_panel *panel,
3234 const struct intel_bios_encoder_data *devdata)
3235 {
3236 intel_bios_init_panel(display, panel, devdata, NULL, false);
3237 }
3238
intel_bios_init_panel_late(struct intel_display * display,struct intel_panel * panel,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid)3239 void intel_bios_init_panel_late(struct intel_display *display,
3240 struct intel_panel *panel,
3241 const struct intel_bios_encoder_data *devdata,
3242 const struct drm_edid *drm_edid)
3243 {
3244 intel_bios_init_panel(display, panel, devdata, drm_edid, true);
3245 }
3246
3247 /**
3248 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
3249 * @display: display device instance
3250 */
intel_bios_driver_remove(struct intel_display * display)3251 void intel_bios_driver_remove(struct intel_display *display)
3252 {
3253 struct intel_bios_encoder_data *devdata, *nd;
3254 struct bdb_block_entry *entry, *ne;
3255
3256 list_for_each_entry_safe(devdata, nd, &display->vbt.display_devices,
3257 node) {
3258 list_del(&devdata->node);
3259 kfree(devdata->dsc);
3260 kfree(devdata);
3261 }
3262
3263 list_for_each_entry_safe(entry, ne, &display->vbt.bdb_blocks, node) {
3264 list_del(&entry->node);
3265 kfree(entry);
3266 }
3267 }
3268
intel_bios_fini_panel(struct intel_panel * panel)3269 void intel_bios_fini_panel(struct intel_panel *panel)
3270 {
3271 kfree(panel->vbt.sdvo_lvds_vbt_mode);
3272 panel->vbt.sdvo_lvds_vbt_mode = NULL;
3273 kfree(panel->vbt.lfp_vbt_mode);
3274 panel->vbt.lfp_vbt_mode = NULL;
3275 kfree(panel->vbt.dsi.data);
3276 panel->vbt.dsi.data = NULL;
3277 kfree(panel->vbt.dsi.pps);
3278 panel->vbt.dsi.pps = NULL;
3279 kfree(panel->vbt.dsi.config);
3280 panel->vbt.dsi.config = NULL;
3281 kfree(panel->vbt.dsi.deassert_seq);
3282 panel->vbt.dsi.deassert_seq = NULL;
3283 }
3284
3285 /**
3286 * intel_bios_is_tv_present - is integrated TV present in VBT
3287 * @display: display device instance
3288 *
3289 * Return true if TV is present. If no child devices were parsed from VBT,
3290 * assume TV is present.
3291 */
intel_bios_is_tv_present(struct intel_display * display)3292 bool intel_bios_is_tv_present(struct intel_display *display)
3293 {
3294 const struct intel_bios_encoder_data *devdata;
3295
3296 if (!display->vbt.int_tv_support)
3297 return false;
3298
3299 if (list_empty(&display->vbt.display_devices))
3300 return true;
3301
3302 list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3303 const struct child_device_config *child = &devdata->child;
3304
3305 /*
3306 * If the device type is not TV, continue.
3307 */
3308 switch (child->device_type) {
3309 case DEVICE_TYPE_INT_TV:
3310 case DEVICE_TYPE_TV:
3311 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
3312 break;
3313 default:
3314 continue;
3315 }
3316 /* Only when the addin_offset is non-zero, it is regarded
3317 * as present.
3318 */
3319 if (child->addin_offset)
3320 return true;
3321 }
3322
3323 return false;
3324 }
3325
3326 /**
3327 * intel_bios_is_lvds_present - is LVDS present in VBT
3328 * @display: display device instance
3329 * @i2c_pin: i2c pin for LVDS if present
3330 *
3331 * Return true if LVDS is present. If no child devices were parsed from VBT,
3332 * assume LVDS is present.
3333 */
intel_bios_is_lvds_present(struct intel_display * display,u8 * i2c_pin)3334 bool intel_bios_is_lvds_present(struct intel_display *display, u8 *i2c_pin)
3335 {
3336 const struct intel_bios_encoder_data *devdata;
3337
3338 if (list_empty(&display->vbt.display_devices))
3339 return true;
3340
3341 list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3342 const struct child_device_config *child = &devdata->child;
3343
3344 /* If the device type is not LFP, continue.
3345 * We have to check both the new identifiers as well as the
3346 * old for compatibility with some BIOSes.
3347 */
3348 if (child->device_type != DEVICE_TYPE_INT_LFP &&
3349 child->device_type != DEVICE_TYPE_LFP)
3350 continue;
3351
3352 if (intel_gmbus_is_valid_pin(display, child->i2c_pin))
3353 *i2c_pin = child->i2c_pin;
3354
3355 /* However, we cannot trust the BIOS writers to populate
3356 * the VBT correctly. Since LVDS requires additional
3357 * information from AIM blocks, a non-zero addin offset is
3358 * a good indicator that the LVDS is actually present.
3359 */
3360 if (child->addin_offset)
3361 return true;
3362
3363 /* But even then some BIOS writers perform some black magic
3364 * and instantiate the device without reference to any
3365 * additional data. Trust that if the VBT was written into
3366 * the OpRegion then they have validated the LVDS's existence.
3367 */
3368 return intel_opregion_vbt_present(display);
3369 }
3370
3371 return false;
3372 }
3373
3374 /**
3375 * intel_bios_is_port_present - is the specified digital port present
3376 * @display: display device instance
3377 * @port: port to check
3378 *
3379 * Return true if the device in %port is present.
3380 */
intel_bios_is_port_present(struct intel_display * display,enum port port)3381 bool intel_bios_is_port_present(struct intel_display *display, enum port port)
3382 {
3383 const struct intel_bios_encoder_data *devdata;
3384
3385 if (WARN_ON(!has_ddi_port_info(display)))
3386 return true;
3387
3388 if (!is_port_valid(display, port))
3389 return false;
3390
3391 list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3392 const struct child_device_config *child = &devdata->child;
3393
3394 if (dvo_port_to_port(display, child->dvo_port) == port)
3395 return true;
3396 }
3397
3398 return false;
3399 }
3400
intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data * devdata)3401 bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata)
3402 {
3403 const struct child_device_config *child = &devdata->child;
3404
3405 if (!devdata)
3406 return false;
3407
3408 if (!intel_bios_encoder_supports_dp(devdata) ||
3409 !intel_bios_encoder_supports_hdmi(devdata))
3410 return false;
3411
3412 if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
3413 return true;
3414
3415 /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
3416 if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
3417 child->aux_channel != 0)
3418 return true;
3419
3420 return false;
3421 }
3422
3423 /**
3424 * intel_bios_is_dsi_present - is DSI present in VBT
3425 * @display: display device instance
3426 * @port: port for DSI if present
3427 *
3428 * Return true if DSI is present, and return the port in %port.
3429 */
intel_bios_is_dsi_present(struct intel_display * display,enum port * port)3430 bool intel_bios_is_dsi_present(struct intel_display *display,
3431 enum port *port)
3432 {
3433 const struct intel_bios_encoder_data *devdata;
3434
3435 list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3436 const struct child_device_config *child = &devdata->child;
3437 u8 dvo_port = child->dvo_port;
3438
3439 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3440 continue;
3441
3442 if (dsi_dvo_port_to_port(display, dvo_port) == PORT_NONE) {
3443 drm_dbg_kms(display->drm,
3444 "VBT has unsupported DSI port %c\n",
3445 port_name(dvo_port - DVO_PORT_MIPIA));
3446 continue;
3447 }
3448
3449 if (port)
3450 *port = dsi_dvo_port_to_port(display, dvo_port);
3451 return true;
3452 }
3453
3454 return false;
3455 }
3456
fill_dsc(struct intel_crtc_state * crtc_state,struct dsc_compression_parameters_entry * dsc,int dsc_max_bpc)3457 static void fill_dsc(struct intel_crtc_state *crtc_state,
3458 struct dsc_compression_parameters_entry *dsc,
3459 int dsc_max_bpc)
3460 {
3461 struct intel_display *display = to_intel_display(crtc_state);
3462 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
3463 int bpc = 8;
3464
3465 vdsc_cfg->dsc_version_major = dsc->version_major;
3466 vdsc_cfg->dsc_version_minor = dsc->version_minor;
3467
3468 if (dsc->support_12bpc && dsc_max_bpc >= 12)
3469 bpc = 12;
3470 else if (dsc->support_10bpc && dsc_max_bpc >= 10)
3471 bpc = 10;
3472 else if (dsc->support_8bpc && dsc_max_bpc >= 8)
3473 bpc = 8;
3474 else
3475 drm_dbg_kms(display->drm, "VBT: Unsupported BPC %d for DCS\n",
3476 dsc_max_bpc);
3477
3478 crtc_state->pipe_bpp = bpc * 3;
3479
3480 crtc_state->dsc.compressed_bpp_x16 = fxp_q4_from_int(min(crtc_state->pipe_bpp,
3481 VBT_DSC_MAX_BPP(dsc->max_bpp)));
3482
3483 /*
3484 * FIXME: This is ugly, and slice count should take DSC engine
3485 * throughput etc. into account.
3486 *
3487 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
3488 */
3489 if (dsc->slices_per_line & BIT(2)) {
3490 crtc_state->dsc.slice_count = 4;
3491 } else if (dsc->slices_per_line & BIT(1)) {
3492 crtc_state->dsc.slice_count = 2;
3493 } else {
3494 /* FIXME */
3495 if (!(dsc->slices_per_line & BIT(0)))
3496 drm_dbg_kms(display->drm,
3497 "VBT: Unsupported DSC slice count for DSI\n");
3498
3499 crtc_state->dsc.slice_count = 1;
3500 }
3501
3502 if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
3503 crtc_state->dsc.slice_count != 0)
3504 drm_dbg_kms(display->drm,
3505 "VBT: DSC hdisplay %d not divisible by slice count %d\n",
3506 crtc_state->hw.adjusted_mode.crtc_hdisplay,
3507 crtc_state->dsc.slice_count);
3508
3509 /*
3510 * The VBT rc_buffer_block_size and rc_buffer_size definitions
3511 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
3512 */
3513 vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
3514 dsc->rc_buffer_size);
3515
3516 /* FIXME: DSI spec says bpc + 1 for this one */
3517 vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
3518
3519 vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
3520
3521 vdsc_cfg->slice_height = dsc->slice_height;
3522 }
3523
3524 /* FIXME: initially DSI specific */
intel_bios_get_dsc_params(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,int dsc_max_bpc)3525 bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
3526 struct intel_crtc_state *crtc_state,
3527 int dsc_max_bpc)
3528 {
3529 struct intel_display *display = to_intel_display(encoder);
3530 const struct intel_bios_encoder_data *devdata;
3531
3532 list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3533 const struct child_device_config *child = &devdata->child;
3534
3535 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3536 continue;
3537
3538 if (dsi_dvo_port_to_port(display, child->dvo_port) == encoder->port) {
3539 if (!devdata->dsc)
3540 return false;
3541
3542 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
3543
3544 return true;
3545 }
3546 }
3547
3548 return false;
3549 }
3550
3551 static const u8 adlp_aux_ch_map[] = {
3552 [AUX_CH_A] = DP_AUX_A,
3553 [AUX_CH_B] = DP_AUX_B,
3554 [AUX_CH_C] = DP_AUX_C,
3555 [AUX_CH_D_XELPD] = DP_AUX_D,
3556 [AUX_CH_E_XELPD] = DP_AUX_E,
3557 [AUX_CH_USBC1] = DP_AUX_F,
3558 [AUX_CH_USBC2] = DP_AUX_G,
3559 [AUX_CH_USBC3] = DP_AUX_H,
3560 [AUX_CH_USBC4] = DP_AUX_I,
3561 };
3562
3563 /*
3564 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
3565 * map to DDI A,TC1,TC2,TC3,TC4 respectively.
3566 */
3567 static const u8 adls_aux_ch_map[] = {
3568 [AUX_CH_A] = DP_AUX_A,
3569 [AUX_CH_USBC1] = DP_AUX_B,
3570 [AUX_CH_USBC2] = DP_AUX_C,
3571 [AUX_CH_USBC3] = DP_AUX_D,
3572 [AUX_CH_USBC4] = DP_AUX_E,
3573 };
3574
3575 /*
3576 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
3577 * map to DDI A,B,TC1,TC2 respectively.
3578 */
3579 static const u8 rkl_aux_ch_map[] = {
3580 [AUX_CH_A] = DP_AUX_A,
3581 [AUX_CH_B] = DP_AUX_B,
3582 [AUX_CH_USBC1] = DP_AUX_C,
3583 [AUX_CH_USBC2] = DP_AUX_D,
3584 };
3585
3586 static const u8 direct_aux_ch_map[] = {
3587 [AUX_CH_A] = DP_AUX_A,
3588 [AUX_CH_B] = DP_AUX_B,
3589 [AUX_CH_C] = DP_AUX_C,
3590 [AUX_CH_D] = DP_AUX_D, /* aka AUX_CH_USBC1 */
3591 [AUX_CH_E] = DP_AUX_E, /* aka AUX_CH_USBC2 */
3592 [AUX_CH_F] = DP_AUX_F, /* aka AUX_CH_USBC3 */
3593 [AUX_CH_G] = DP_AUX_G, /* aka AUX_CH_USBC4 */
3594 [AUX_CH_H] = DP_AUX_H, /* aka AUX_CH_USBC5 */
3595 [AUX_CH_I] = DP_AUX_I, /* aka AUX_CH_USBC6 */
3596 };
3597
map_aux_ch(struct intel_display * display,u8 aux_channel)3598 static enum aux_ch map_aux_ch(struct intel_display *display, u8 aux_channel)
3599 {
3600 const u8 *aux_ch_map;
3601 int i, n_entries;
3602
3603 if (DISPLAY_VER(display) >= 13) {
3604 aux_ch_map = adlp_aux_ch_map;
3605 n_entries = ARRAY_SIZE(adlp_aux_ch_map);
3606 } else if (display->platform.alderlake_s) {
3607 aux_ch_map = adls_aux_ch_map;
3608 n_entries = ARRAY_SIZE(adls_aux_ch_map);
3609 } else if (display->platform.dg1 || display->platform.rocketlake) {
3610 aux_ch_map = rkl_aux_ch_map;
3611 n_entries = ARRAY_SIZE(rkl_aux_ch_map);
3612 } else {
3613 aux_ch_map = direct_aux_ch_map;
3614 n_entries = ARRAY_SIZE(direct_aux_ch_map);
3615 }
3616
3617 for (i = 0; i < n_entries; i++) {
3618 if (aux_ch_map[i] == aux_channel)
3619 return i;
3620 }
3621
3622 drm_dbg_kms(display->drm,
3623 "Ignoring alternate AUX CH: VBT claims AUX 0x%x, which is not valid for this platform\n",
3624 aux_channel);
3625
3626 return AUX_CH_NONE;
3627 }
3628
intel_bios_dp_aux_ch(const struct intel_bios_encoder_data * devdata)3629 enum aux_ch intel_bios_dp_aux_ch(const struct intel_bios_encoder_data *devdata)
3630 {
3631 if (!devdata || !devdata->child.aux_channel)
3632 return AUX_CH_NONE;
3633
3634 return map_aux_ch(devdata->display, devdata->child.aux_channel);
3635 }
3636
intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data * devdata)3637 bool intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data *devdata)
3638 {
3639 struct intel_display *display;
3640 u8 aux_channel;
3641 int count = 0;
3642
3643 if (!devdata || !devdata->child.aux_channel)
3644 return false;
3645
3646 display = devdata->display;
3647 aux_channel = devdata->child.aux_channel;
3648
3649 list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3650 if (intel_bios_encoder_supports_dp(devdata) &&
3651 aux_channel == devdata->child.aux_channel)
3652 count++;
3653 }
3654
3655 return count > 1;
3656 }
3657
intel_bios_dp_boost_level(const struct intel_bios_encoder_data * devdata)3658 int intel_bios_dp_boost_level(const struct intel_bios_encoder_data *devdata)
3659 {
3660 if (!devdata || devdata->display->vbt.version < 196 || !devdata->child.iboost)
3661 return 0;
3662
3663 return translate_iboost(devdata->display, devdata->child.dp_iboost_level);
3664 }
3665
intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data * devdata)3666 int intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
3667 {
3668 if (!devdata || devdata->display->vbt.version < 196 || !devdata->child.iboost)
3669 return 0;
3670
3671 return translate_iboost(devdata->display, devdata->child.hdmi_iboost_level);
3672 }
3673
intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data * devdata)3674 int intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data *devdata)
3675 {
3676 if (!devdata || !devdata->child.ddc_pin)
3677 return 0;
3678
3679 return map_ddc_pin(devdata->display, devdata->child.ddc_pin);
3680 }
3681
intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data * devdata)3682 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
3683 {
3684 return devdata->display->vbt.version >= 195 && devdata->child.dp_usb_type_c;
3685 }
3686
intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data * devdata)3687 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
3688 {
3689 return devdata->display->vbt.version >= 209 && devdata->child.tbt;
3690 }
3691
intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data * devdata)3692 bool intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data *devdata)
3693 {
3694 return devdata && devdata->child.lane_reversal;
3695 }
3696
intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data * devdata)3697 bool intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data *devdata)
3698 {
3699 return devdata && devdata->child.hpd_invert;
3700 }
3701
3702 const struct intel_bios_encoder_data *
intel_bios_encoder_data_lookup(struct intel_display * display,enum port port)3703 intel_bios_encoder_data_lookup(struct intel_display *display, enum port port)
3704 {
3705 struct intel_bios_encoder_data *devdata;
3706
3707 list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3708 if (intel_bios_encoder_port(devdata) == port)
3709 return devdata;
3710 }
3711
3712 return NULL;
3713 }
3714
intel_bios_for_each_encoder(struct intel_display * display,void (* func)(struct intel_display * display,const struct intel_bios_encoder_data * devdata))3715 void intel_bios_for_each_encoder(struct intel_display *display,
3716 void (*func)(struct intel_display *display,
3717 const struct intel_bios_encoder_data *devdata))
3718 {
3719 struct intel_bios_encoder_data *devdata;
3720
3721 list_for_each_entry(devdata, &display->vbt.display_devices, node)
3722 func(display, devdata);
3723 }
3724
intel_bios_vbt_show(struct seq_file * m,void * unused)3725 static int intel_bios_vbt_show(struct seq_file *m, void *unused)
3726 {
3727 struct intel_display *display = m->private;
3728 const void *vbt;
3729 size_t vbt_size;
3730
3731 vbt = intel_bios_get_vbt(display, &vbt_size);
3732
3733 if (vbt) {
3734 seq_write(m, vbt, vbt_size);
3735 kfree(vbt);
3736 }
3737
3738 return 0;
3739 }
3740
3741 DEFINE_SHOW_ATTRIBUTE(intel_bios_vbt);
3742
intel_bios_debugfs_register(struct intel_display * display)3743 void intel_bios_debugfs_register(struct intel_display *display)
3744 {
3745 struct drm_minor *minor = display->drm->primary;
3746
3747 debugfs_create_file("i915_vbt", 0444, minor->debugfs_root,
3748 display, &intel_bios_vbt_fops);
3749 }
3750