1 /* 2 * Copyright © 2006 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <linux/debugfs.h> 29 #include <linux/firmware.h> 30 31 #include <drm/display/drm_dp_helper.h> 32 #include <drm/display/drm_dsc_helper.h> 33 #include <drm/drm_edid.h> 34 #include <drm/drm_fixed.h> 35 36 #include "soc/intel_rom.h" 37 38 #include "i915_drv.h" 39 #include "intel_display.h" 40 #include "intel_display_types.h" 41 #include "intel_gmbus.h" 42 43 #define _INTEL_BIOS_PRIVATE 44 #include "intel_vbt_defs.h" 45 46 /** 47 * DOC: Video BIOS Table (VBT) 48 * 49 * The Video BIOS Table, or VBT, provides platform and board specific 50 * configuration information to the driver that is not discoverable or available 51 * through other means. The configuration is mostly related to display 52 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in 53 * the PCI ROM. 54 * 55 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB 56 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that 57 * contain the actual configuration information. The VBT Header, and thus the 58 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the 59 * BDB Header. The data blocks are concatenated after the BDB Header. The data 60 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of 61 * data. (Block 53, the MIPI Sequence Block is an exception.) 62 * 63 * The driver parses the VBT during load. The relevant information is stored in 64 * driver private data for ease of use, and the actual VBT is not read after 65 * that. 66 */ 67 68 /* Wrapper for VBT child device config */ 69 struct intel_bios_encoder_data { 70 struct intel_display *display; 71 72 struct child_device_config child; 73 struct dsc_compression_parameters_entry *dsc; 74 struct list_head node; 75 }; 76 77 #define TARGET_ADDR1 0x70 78 #define TARGET_ADDR2 0x72 79 80 /* Get BDB block size given a pointer to Block ID. */ 81 static u32 _get_blocksize(const u8 *block_base) 82 { 83 /* The MIPI Sequence Block v3+ has a separate size field. */ 84 if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3) 85 return *((const u32 *)(block_base + 4)); 86 else 87 return *((const u16 *)(block_base + 1)); 88 } 89 90 /* Get BDB block size give a pointer to data after Block ID and Block Size. */ 91 static u32 get_blocksize(const void *block_data) 92 { 93 return _get_blocksize(block_data - 3); 94 } 95 96 static const void * 97 find_raw_section(const void *_bdb, enum bdb_block_id section_id) 98 { 99 const struct bdb_header *bdb = _bdb; 100 const u8 *base = _bdb; 101 int index = 0; 102 u32 total, current_size; 103 enum bdb_block_id current_id; 104 105 /* skip to first section */ 106 index += bdb->header_size; 107 total = bdb->bdb_size; 108 109 /* walk the sections looking for section_id */ 110 while (index + 3 < total) { 111 current_id = *(base + index); 112 current_size = _get_blocksize(base + index); 113 index += 3; 114 115 if (index + current_size > total) 116 return NULL; 117 118 if (current_id == section_id) 119 return base + index; 120 121 index += current_size; 122 } 123 124 return NULL; 125 } 126 127 /* 128 * Offset from the start of BDB to the start of the 129 * block data (just past the block header). 130 */ 131 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id) 132 { 133 const void *block; 134 135 block = find_raw_section(bdb, section_id); 136 if (!block) 137 return 0; 138 139 return block - bdb; 140 } 141 142 struct bdb_block_entry { 143 struct list_head node; 144 enum bdb_block_id section_id; 145 u8 data[]; 146 }; 147 148 static const void * 149 bdb_find_section(struct intel_display *display, 150 enum bdb_block_id section_id) 151 { 152 struct bdb_block_entry *entry; 153 154 list_for_each_entry(entry, &display->vbt.bdb_blocks, node) { 155 if (entry->section_id == section_id) 156 return entry->data + 3; 157 } 158 159 return NULL; 160 } 161 162 static const struct { 163 enum bdb_block_id section_id; 164 size_t min_size; 165 } bdb_blocks[] = { 166 { .section_id = BDB_GENERAL_FEATURES, 167 .min_size = sizeof(struct bdb_general_features), }, 168 { .section_id = BDB_GENERAL_DEFINITIONS, 169 .min_size = sizeof(struct bdb_general_definitions), }, 170 { .section_id = BDB_PSR, 171 .min_size = sizeof(struct bdb_psr), }, 172 { .section_id = BDB_DRIVER_FEATURES, 173 .min_size = sizeof(struct bdb_driver_features), }, 174 { .section_id = BDB_SDVO_LVDS_OPTIONS, 175 .min_size = sizeof(struct bdb_sdvo_lvds_options), }, 176 { .section_id = BDB_SDVO_LVDS_DTD, 177 .min_size = sizeof(struct bdb_sdvo_lvds_dtd), }, 178 { .section_id = BDB_EDP, 179 .min_size = sizeof(struct bdb_edp), }, 180 { .section_id = BDB_LFP_OPTIONS, 181 .min_size = sizeof(struct bdb_lfp_options), }, 182 /* 183 * BDB_LFP_DATA depends on BDB_LFP_DATA_PTRS, 184 * so keep the two ordered. 185 */ 186 { .section_id = BDB_LFP_DATA_PTRS, 187 .min_size = sizeof(struct bdb_lfp_data_ptrs), }, 188 { .section_id = BDB_LFP_DATA, 189 .min_size = 0, /* special case */ }, 190 { .section_id = BDB_LFP_BACKLIGHT, 191 .min_size = sizeof(struct bdb_lfp_backlight), }, 192 { .section_id = BDB_LFP_POWER, 193 .min_size = sizeof(struct bdb_lfp_power), }, 194 { .section_id = BDB_MIPI_CONFIG, 195 .min_size = sizeof(struct bdb_mipi_config), }, 196 { .section_id = BDB_MIPI_SEQUENCE, 197 .min_size = sizeof(struct bdb_mipi_sequence) }, 198 { .section_id = BDB_COMPRESSION_PARAMETERS, 199 .min_size = sizeof(struct bdb_compression_parameters), }, 200 { .section_id = BDB_GENERIC_DTD, 201 .min_size = sizeof(struct bdb_generic_dtd), }, 202 }; 203 204 static size_t lfp_data_min_size(struct intel_display *display) 205 { 206 const struct bdb_lfp_data_ptrs *ptrs; 207 size_t size; 208 209 ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS); 210 if (!ptrs) 211 return 0; 212 213 size = sizeof(struct bdb_lfp_data); 214 if (ptrs->panel_name.table_size) 215 size = max(size, ptrs->panel_name.offset + 216 sizeof(struct bdb_lfp_data_tail)); 217 218 return size; 219 } 220 221 static bool validate_lfp_data_ptrs(const void *bdb, 222 const struct bdb_lfp_data_ptrs *ptrs) 223 { 224 int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size; 225 int data_block_size, lfp_data_size; 226 const void *data_block; 227 int i; 228 229 data_block = find_raw_section(bdb, BDB_LFP_DATA); 230 if (!data_block) 231 return false; 232 233 data_block_size = get_blocksize(data_block); 234 if (data_block_size == 0) 235 return false; 236 237 /* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */ 238 if (ptrs->num_entries != 3) 239 return false; 240 241 fp_timing_size = ptrs->ptr[0].fp_timing.table_size; 242 dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size; 243 panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size; 244 panel_name_size = ptrs->panel_name.table_size; 245 246 /* fp_timing has variable size */ 247 if (fp_timing_size < 32 || 248 dvo_timing_size != sizeof(struct bdb_edid_dtd) || 249 panel_pnp_id_size != sizeof(struct bdb_edid_pnp_id)) 250 return false; 251 252 /* panel_name is not present in old VBTs */ 253 if (panel_name_size != 0 && 254 panel_name_size != sizeof(struct bdb_edid_product_name)) 255 return false; 256 257 lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset; 258 if (16 * lfp_data_size > data_block_size) 259 return false; 260 261 /* make sure the table entries have uniform size */ 262 for (i = 1; i < 16; i++) { 263 if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size || 264 ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size || 265 ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size) 266 return false; 267 268 if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size || 269 ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size || 270 ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size) 271 return false; 272 } 273 274 /* 275 * Except for vlv/chv machines all real VBTs seem to have 6 276 * unaccounted bytes in the fp_timing table. And it doesn't 277 * appear to be a really intentional hole as the fp_timing 278 * 0xffff terminator is always within those 6 missing bytes. 279 */ 280 if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size) 281 fp_timing_size += 6; 282 283 if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size) 284 return false; 285 286 if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset || 287 ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset || 288 ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size) 289 return false; 290 291 /* make sure the tables fit inside the data block */ 292 for (i = 0; i < 16; i++) { 293 if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size || 294 ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size || 295 ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size) 296 return false; 297 } 298 299 if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size) 300 return false; 301 302 /* make sure fp_timing terminators are present at expected locations */ 303 for (i = 0; i < 16; i++) { 304 const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset + 305 fp_timing_size - 2; 306 307 if (*t != 0xffff) 308 return false; 309 } 310 311 return true; 312 } 313 314 /* make the data table offsets relative to the data block */ 315 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block) 316 { 317 struct bdb_lfp_data_ptrs *ptrs = ptrs_block; 318 u32 offset; 319 int i; 320 321 offset = raw_block_offset(bdb, BDB_LFP_DATA); 322 323 for (i = 0; i < 16; i++) { 324 if (ptrs->ptr[i].fp_timing.offset < offset || 325 ptrs->ptr[i].dvo_timing.offset < offset || 326 ptrs->ptr[i].panel_pnp_id.offset < offset) 327 return false; 328 329 ptrs->ptr[i].fp_timing.offset -= offset; 330 ptrs->ptr[i].dvo_timing.offset -= offset; 331 ptrs->ptr[i].panel_pnp_id.offset -= offset; 332 } 333 334 if (ptrs->panel_name.table_size) { 335 if (ptrs->panel_name.offset < offset) 336 return false; 337 338 ptrs->panel_name.offset -= offset; 339 } 340 341 return validate_lfp_data_ptrs(bdb, ptrs); 342 } 343 344 static int make_lfp_data_ptr(struct lfp_data_ptr_table *table, 345 int table_size, int total_size) 346 { 347 if (total_size < table_size) 348 return total_size; 349 350 table->table_size = table_size; 351 table->offset = total_size - table_size; 352 353 return total_size - table_size; 354 } 355 356 static void next_lfp_data_ptr(struct lfp_data_ptr_table *next, 357 const struct lfp_data_ptr_table *prev, 358 int size) 359 { 360 next->table_size = prev->table_size; 361 next->offset = prev->offset + size; 362 } 363 364 static void *generate_lfp_data_ptrs(struct intel_display *display, 365 const void *bdb) 366 { 367 int i, size, table_size, block_size, offset, fp_timing_size; 368 struct bdb_lfp_data_ptrs *ptrs; 369 const void *block; 370 void *ptrs_block; 371 372 /* 373 * The hardcoded fp_timing_size is only valid for 374 * modernish VBTs. All older VBTs definitely should 375 * include block 41 and thus we don't need to 376 * generate one. 377 */ 378 if (display->vbt.version < 155) 379 return NULL; 380 381 fp_timing_size = 38; 382 383 block = find_raw_section(bdb, BDB_LFP_DATA); 384 if (!block) 385 return NULL; 386 387 drm_dbg_kms(display->drm, "Generating LFP data table pointers\n"); 388 389 block_size = get_blocksize(block); 390 391 size = fp_timing_size + sizeof(struct bdb_edid_dtd) + 392 sizeof(struct bdb_edid_pnp_id); 393 if (size * 16 > block_size) 394 return NULL; 395 396 ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL); 397 if (!ptrs_block) 398 return NULL; 399 400 *(u8 *)(ptrs_block + 0) = BDB_LFP_DATA_PTRS; 401 *(u16 *)(ptrs_block + 1) = sizeof(*ptrs); 402 ptrs = ptrs_block + 3; 403 404 table_size = sizeof(struct bdb_edid_pnp_id); 405 size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size); 406 407 table_size = sizeof(struct bdb_edid_dtd); 408 size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size); 409 410 table_size = fp_timing_size; 411 size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size); 412 413 if (ptrs->ptr[0].fp_timing.table_size) 414 ptrs->num_entries++; 415 if (ptrs->ptr[0].dvo_timing.table_size) 416 ptrs->num_entries++; 417 if (ptrs->ptr[0].panel_pnp_id.table_size) 418 ptrs->num_entries++; 419 420 if (size != 0 || ptrs->num_entries != 3) { 421 kfree(ptrs_block); 422 return NULL; 423 } 424 425 size = fp_timing_size + sizeof(struct bdb_edid_dtd) + 426 sizeof(struct bdb_edid_pnp_id); 427 for (i = 1; i < 16; i++) { 428 next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size); 429 next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size); 430 next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size); 431 } 432 433 table_size = sizeof(struct bdb_edid_product_name); 434 435 if (16 * (size + table_size) <= block_size) { 436 ptrs->panel_name.table_size = table_size; 437 ptrs->panel_name.offset = size * 16; 438 } 439 440 offset = block - bdb; 441 442 for (i = 0; i < 16; i++) { 443 ptrs->ptr[i].fp_timing.offset += offset; 444 ptrs->ptr[i].dvo_timing.offset += offset; 445 ptrs->ptr[i].panel_pnp_id.offset += offset; 446 } 447 448 if (ptrs->panel_name.table_size) 449 ptrs->panel_name.offset += offset; 450 451 return ptrs_block; 452 } 453 454 static void 455 init_bdb_block(struct intel_display *display, 456 const void *bdb, enum bdb_block_id section_id, 457 size_t min_size) 458 { 459 struct bdb_block_entry *entry; 460 void *temp_block = NULL; 461 const void *block; 462 size_t block_size; 463 464 block = find_raw_section(bdb, section_id); 465 466 /* Modern VBTs lack the LFP data table pointers block, make one up */ 467 if (!block && section_id == BDB_LFP_DATA_PTRS) { 468 temp_block = generate_lfp_data_ptrs(display, bdb); 469 if (temp_block) 470 block = temp_block + 3; 471 } 472 if (!block) 473 return; 474 475 drm_WARN(display->drm, min_size == 0, 476 "Block %d min_size is zero\n", section_id); 477 478 block_size = get_blocksize(block); 479 480 /* 481 * Version number and new block size are considered 482 * part of the header for MIPI sequenece block v3+. 483 */ 484 if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3) 485 block_size += 5; 486 487 entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3), 488 GFP_KERNEL); 489 if (!entry) { 490 kfree(temp_block); 491 return; 492 } 493 494 entry->section_id = section_id; 495 memcpy(entry->data, block - 3, block_size + 3); 496 497 kfree(temp_block); 498 499 drm_dbg_kms(display->drm, 500 "Found BDB block %d (size %zu, min size %zu)\n", 501 section_id, block_size, min_size); 502 503 if (section_id == BDB_LFP_DATA_PTRS && 504 !fixup_lfp_data_ptrs(bdb, entry->data + 3)) { 505 drm_err(display->drm, 506 "VBT has malformed LFP data table pointers\n"); 507 kfree(entry); 508 return; 509 } 510 511 list_add_tail(&entry->node, &display->vbt.bdb_blocks); 512 } 513 514 static void init_bdb_blocks(struct intel_display *display, 515 const void *bdb) 516 { 517 int i; 518 519 for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) { 520 enum bdb_block_id section_id = bdb_blocks[i].section_id; 521 size_t min_size = bdb_blocks[i].min_size; 522 523 if (section_id == BDB_LFP_DATA) 524 min_size = lfp_data_min_size(display); 525 526 init_bdb_block(display, bdb, section_id, min_size); 527 } 528 } 529 530 static void 531 fill_detail_timing_data(struct intel_display *display, 532 struct drm_display_mode *panel_fixed_mode, 533 const struct bdb_edid_dtd *dvo_timing) 534 { 535 panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) | 536 dvo_timing->hactive_lo; 537 panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay + 538 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo); 539 panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start + 540 ((dvo_timing->hsync_pulse_width_hi << 8) | 541 dvo_timing->hsync_pulse_width_lo); 542 panel_fixed_mode->htotal = panel_fixed_mode->hdisplay + 543 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo); 544 545 panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) | 546 dvo_timing->vactive_lo; 547 panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay + 548 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo); 549 panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start + 550 ((dvo_timing->vsync_pulse_width_hi << 4) | 551 dvo_timing->vsync_pulse_width_lo); 552 panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay + 553 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo); 554 panel_fixed_mode->clock = dvo_timing->clock * 10; 555 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 556 557 if (dvo_timing->hsync_positive) 558 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 559 else 560 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 561 562 if (dvo_timing->vsync_positive) 563 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 564 else 565 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 566 567 panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) | 568 dvo_timing->himage_lo; 569 panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) | 570 dvo_timing->vimage_lo; 571 572 /* Some VBTs have bogus h/vsync_end values */ 573 if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) { 574 drm_dbg_kms(display->drm, "reducing hsync_end %d->%d\n", 575 panel_fixed_mode->hsync_end, panel_fixed_mode->htotal); 576 panel_fixed_mode->hsync_end = panel_fixed_mode->htotal; 577 } 578 if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) { 579 drm_dbg_kms(display->drm, "reducing vsync_end %d->%d\n", 580 panel_fixed_mode->vsync_end, panel_fixed_mode->vtotal); 581 panel_fixed_mode->vsync_end = panel_fixed_mode->vtotal; 582 } 583 584 drm_mode_set_name(panel_fixed_mode); 585 } 586 587 static const struct bdb_edid_dtd * 588 get_lfp_dvo_timing(const struct bdb_lfp_data *data, 589 const struct bdb_lfp_data_ptrs *ptrs, 590 int index) 591 { 592 return (const void *)data + ptrs->ptr[index].dvo_timing.offset; 593 } 594 595 static const struct fp_timing * 596 get_lfp_fp_timing(const struct bdb_lfp_data *data, 597 const struct bdb_lfp_data_ptrs *ptrs, 598 int index) 599 { 600 return (const void *)data + ptrs->ptr[index].fp_timing.offset; 601 } 602 603 static const struct drm_edid_product_id * 604 get_lfp_pnp_id(const struct bdb_lfp_data *data, 605 const struct bdb_lfp_data_ptrs *ptrs, 606 int index) 607 { 608 /* These two are supposed to have the same layout in memory. */ 609 BUILD_BUG_ON(sizeof(struct bdb_edid_pnp_id) != sizeof(struct drm_edid_product_id)); 610 611 return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset; 612 } 613 614 static const struct bdb_lfp_data_tail * 615 get_lfp_data_tail(const struct bdb_lfp_data *data, 616 const struct bdb_lfp_data_ptrs *ptrs) 617 { 618 if (ptrs->panel_name.table_size) 619 return (const void *)data + ptrs->panel_name.offset; 620 else 621 return NULL; 622 } 623 624 static int opregion_get_panel_type(struct intel_display *display, 625 const struct intel_bios_encoder_data *devdata, 626 const struct drm_edid *drm_edid, bool use_fallback) 627 { 628 return intel_opregion_get_panel_type(display); 629 } 630 631 static int vbt_get_panel_type(struct intel_display *display, 632 const struct intel_bios_encoder_data *devdata, 633 const struct drm_edid *drm_edid, bool use_fallback) 634 { 635 const struct bdb_lfp_options *lfp_options; 636 637 lfp_options = bdb_find_section(display, BDB_LFP_OPTIONS); 638 if (!lfp_options) 639 return -1; 640 641 if (lfp_options->panel_type > 0xf && 642 lfp_options->panel_type != 0xff) { 643 drm_dbg_kms(display->drm, "Invalid VBT panel type 0x%x\n", 644 lfp_options->panel_type); 645 return -1; 646 } 647 648 if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2) 649 return lfp_options->panel_type2; 650 651 drm_WARN_ON(display->drm, 652 devdata && devdata->child.handle != DEVICE_HANDLE_LFP1); 653 654 return lfp_options->panel_type; 655 } 656 657 static int pnpid_get_panel_type(struct intel_display *display, 658 const struct intel_bios_encoder_data *devdata, 659 const struct drm_edid *drm_edid, bool use_fallback) 660 { 661 const struct bdb_lfp_data *data; 662 const struct bdb_lfp_data_ptrs *ptrs; 663 struct drm_edid_product_id product_id, product_id_nodate; 664 struct drm_printer p; 665 int i, best = -1; 666 667 if (!drm_edid) 668 return -1; 669 670 drm_edid_get_product_id(drm_edid, &product_id); 671 672 product_id_nodate = product_id; 673 product_id_nodate.week_of_manufacture = 0; 674 product_id_nodate.year_of_manufacture = 0; 675 676 p = drm_dbg_printer(display->drm, DRM_UT_KMS, "EDID"); 677 drm_edid_print_product_id(&p, &product_id, true); 678 679 ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS); 680 if (!ptrs) 681 return -1; 682 683 data = bdb_find_section(display, BDB_LFP_DATA); 684 if (!data) 685 return -1; 686 687 for (i = 0; i < 16; i++) { 688 const struct drm_edid_product_id *vbt_id = 689 get_lfp_pnp_id(data, ptrs, i); 690 691 /* full match? */ 692 if (!memcmp(vbt_id, &product_id, sizeof(*vbt_id))) 693 return i; 694 695 /* 696 * Accept a match w/o date if no full match is found, 697 * and the VBT entry does not specify a date. 698 */ 699 if (best < 0 && 700 !memcmp(vbt_id, &product_id_nodate, sizeof(*vbt_id))) 701 best = i; 702 } 703 704 return best; 705 } 706 707 static int fallback_get_panel_type(struct intel_display *display, 708 const struct intel_bios_encoder_data *devdata, 709 const struct drm_edid *drm_edid, bool use_fallback) 710 { 711 return use_fallback ? 0 : -1; 712 } 713 714 enum panel_type { 715 PANEL_TYPE_OPREGION, 716 PANEL_TYPE_VBT, 717 PANEL_TYPE_PNPID, 718 PANEL_TYPE_FALLBACK, 719 }; 720 721 static int get_panel_type(struct intel_display *display, 722 const struct intel_bios_encoder_data *devdata, 723 const struct drm_edid *drm_edid, bool use_fallback) 724 { 725 struct { 726 const char *name; 727 int (*get_panel_type)(struct intel_display *display, 728 const struct intel_bios_encoder_data *devdata, 729 const struct drm_edid *drm_edid, bool use_fallback); 730 int panel_type; 731 } panel_types[] = { 732 [PANEL_TYPE_OPREGION] = { 733 .name = "OpRegion", 734 .get_panel_type = opregion_get_panel_type, 735 }, 736 [PANEL_TYPE_VBT] = { 737 .name = "VBT", 738 .get_panel_type = vbt_get_panel_type, 739 }, 740 [PANEL_TYPE_PNPID] = { 741 .name = "PNPID", 742 .get_panel_type = pnpid_get_panel_type, 743 }, 744 [PANEL_TYPE_FALLBACK] = { 745 .name = "fallback", 746 .get_panel_type = fallback_get_panel_type, 747 }, 748 }; 749 int i; 750 751 for (i = 0; i < ARRAY_SIZE(panel_types); i++) { 752 panel_types[i].panel_type = panel_types[i].get_panel_type(display, devdata, 753 drm_edid, use_fallback); 754 755 drm_WARN_ON(display->drm, panel_types[i].panel_type > 0xf && 756 panel_types[i].panel_type != 0xff); 757 758 if (panel_types[i].panel_type >= 0) 759 drm_dbg_kms(display->drm, "Panel type (%s): %d\n", 760 panel_types[i].name, panel_types[i].panel_type); 761 } 762 763 if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0) 764 i = PANEL_TYPE_OPREGION; 765 else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff && 766 panel_types[PANEL_TYPE_PNPID].panel_type >= 0) 767 i = PANEL_TYPE_PNPID; 768 else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff && 769 panel_types[PANEL_TYPE_VBT].panel_type >= 0) 770 i = PANEL_TYPE_VBT; 771 else 772 i = PANEL_TYPE_FALLBACK; 773 774 drm_dbg_kms(display->drm, "Selected panel type (%s): %d\n", 775 panel_types[i].name, panel_types[i].panel_type); 776 777 return panel_types[i].panel_type; 778 } 779 780 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits) 781 { 782 return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1); 783 } 784 785 static bool panel_bool(unsigned int value, int panel_type) 786 { 787 return panel_bits(value, panel_type, 1); 788 } 789 790 /* Parse general panel options */ 791 static void 792 parse_panel_options(struct intel_display *display, 793 struct intel_panel *panel) 794 { 795 const struct bdb_lfp_options *lfp_options; 796 int panel_type = panel->vbt.panel_type; 797 int drrs_mode; 798 799 lfp_options = bdb_find_section(display, BDB_LFP_OPTIONS); 800 if (!lfp_options) 801 return; 802 803 panel->vbt.lvds_dither = lfp_options->pixel_dither; 804 805 /* 806 * Empirical evidence indicates the block size can be 807 * either 4,14,16,24+ bytes. For older VBTs no clear 808 * relationship between the block size vs. BDB version. 809 */ 810 if (get_blocksize(lfp_options) < 16) 811 return; 812 813 drrs_mode = panel_bits(lfp_options->dps_panel_type_bits, 814 panel_type, 2); 815 /* 816 * VBT has static DRRS = 0 and seamless DRRS = 2. 817 * The below piece of code is required to adjust vbt.drrs_type 818 * to match the enum drrs_support_type. 819 */ 820 switch (drrs_mode) { 821 case 0: 822 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 823 drm_dbg_kms(display->drm, "DRRS supported mode is static\n"); 824 break; 825 case 2: 826 panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS; 827 drm_dbg_kms(display->drm, 828 "DRRS supported mode is seamless\n"); 829 break; 830 default: 831 panel->vbt.drrs_type = DRRS_TYPE_NONE; 832 drm_dbg_kms(display->drm, 833 "DRRS not supported (VBT input)\n"); 834 break; 835 } 836 } 837 838 static void 839 parse_lfp_panel_dtd(struct intel_display *display, 840 struct intel_panel *panel, 841 const struct bdb_lfp_data *lfp_data, 842 const struct bdb_lfp_data_ptrs *lfp_data_ptrs) 843 { 844 const struct bdb_edid_dtd *panel_dvo_timing; 845 const struct fp_timing *fp_timing; 846 struct drm_display_mode *panel_fixed_mode; 847 int panel_type = panel->vbt.panel_type; 848 849 panel_dvo_timing = get_lfp_dvo_timing(lfp_data, 850 lfp_data_ptrs, 851 panel_type); 852 853 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 854 if (!panel_fixed_mode) 855 return; 856 857 fill_detail_timing_data(display, panel_fixed_mode, panel_dvo_timing); 858 859 panel->vbt.lfp_vbt_mode = panel_fixed_mode; 860 861 drm_dbg_kms(display->drm, 862 "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n", 863 DRM_MODE_ARG(panel_fixed_mode)); 864 865 fp_timing = get_lfp_fp_timing(lfp_data, 866 lfp_data_ptrs, 867 panel_type); 868 869 /* check the resolution, just to be sure */ 870 if (fp_timing->x_res == panel_fixed_mode->hdisplay && 871 fp_timing->y_res == panel_fixed_mode->vdisplay) { 872 panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val; 873 drm_dbg_kms(display->drm, 874 "VBT initial LVDS value %x\n", 875 panel->vbt.bios_lvds_val); 876 } 877 } 878 879 static void 880 parse_lfp_data(struct intel_display *display, 881 struct intel_panel *panel) 882 { 883 const struct bdb_lfp_data *data; 884 const struct bdb_lfp_data_tail *tail; 885 const struct bdb_lfp_data_ptrs *ptrs; 886 const struct drm_edid_product_id *pnp_id; 887 struct drm_printer p; 888 int panel_type = panel->vbt.panel_type; 889 890 ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS); 891 if (!ptrs) 892 return; 893 894 data = bdb_find_section(display, BDB_LFP_DATA); 895 if (!data) 896 return; 897 898 if (!panel->vbt.lfp_vbt_mode) 899 parse_lfp_panel_dtd(display, panel, data, ptrs); 900 901 pnp_id = get_lfp_pnp_id(data, ptrs, panel_type); 902 903 p = drm_dbg_printer(display->drm, DRM_UT_KMS, "Panel"); 904 drm_edid_print_product_id(&p, pnp_id, false); 905 906 tail = get_lfp_data_tail(data, ptrs); 907 if (!tail) 908 return; 909 910 drm_dbg_kms(display->drm, "Panel name: %.*s\n", 911 (int)sizeof(tail->panel_name[0].name), 912 tail->panel_name[panel_type].name); 913 914 if (display->vbt.version >= 188) { 915 panel->vbt.seamless_drrs_min_refresh_rate = 916 tail->seamless_drrs_min_refresh_rate[panel_type]; 917 drm_dbg_kms(display->drm, 918 "Seamless DRRS min refresh rate: %d Hz\n", 919 panel->vbt.seamless_drrs_min_refresh_rate); 920 } 921 } 922 923 static void 924 parse_generic_dtd(struct intel_display *display, 925 struct intel_panel *panel) 926 { 927 const struct bdb_generic_dtd *generic_dtd; 928 const struct generic_dtd_entry *dtd; 929 struct drm_display_mode *panel_fixed_mode; 930 int num_dtd; 931 932 /* 933 * Older VBTs provided DTD information for internal displays through 934 * the "LFP panel tables" block (42). As of VBT revision 229 the 935 * DTD information should be provided via a newer "generic DTD" 936 * block (58). Just to be safe, we'll try the new generic DTD block 937 * first on VBT >= 229, but still fall back to trying the old LFP 938 * block if that fails. 939 */ 940 if (display->vbt.version < 229) 941 return; 942 943 generic_dtd = bdb_find_section(display, BDB_GENERIC_DTD); 944 if (!generic_dtd) 945 return; 946 947 if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) { 948 drm_err(display->drm, "GDTD size %u is too small.\n", 949 generic_dtd->gdtd_size); 950 return; 951 } else if (generic_dtd->gdtd_size != 952 sizeof(struct generic_dtd_entry)) { 953 drm_err(display->drm, "Unexpected GDTD size %u\n", 954 generic_dtd->gdtd_size); 955 /* DTD has unknown fields, but keep going */ 956 } 957 958 num_dtd = (get_blocksize(generic_dtd) - 959 sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size; 960 if (panel->vbt.panel_type >= num_dtd) { 961 drm_err(display->drm, 962 "Panel type %d not found in table of %d DTD's\n", 963 panel->vbt.panel_type, num_dtd); 964 return; 965 } 966 967 dtd = &generic_dtd->dtd[panel->vbt.panel_type]; 968 969 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 970 if (!panel_fixed_mode) 971 return; 972 973 panel_fixed_mode->hdisplay = dtd->hactive; 974 panel_fixed_mode->hsync_start = 975 panel_fixed_mode->hdisplay + dtd->hfront_porch; 976 panel_fixed_mode->hsync_end = 977 panel_fixed_mode->hsync_start + dtd->hsync; 978 panel_fixed_mode->htotal = 979 panel_fixed_mode->hdisplay + dtd->hblank; 980 981 panel_fixed_mode->vdisplay = dtd->vactive; 982 panel_fixed_mode->vsync_start = 983 panel_fixed_mode->vdisplay + dtd->vfront_porch; 984 panel_fixed_mode->vsync_end = 985 panel_fixed_mode->vsync_start + dtd->vsync; 986 panel_fixed_mode->vtotal = 987 panel_fixed_mode->vdisplay + dtd->vblank; 988 989 panel_fixed_mode->clock = dtd->pixel_clock; 990 panel_fixed_mode->width_mm = dtd->width_mm; 991 panel_fixed_mode->height_mm = dtd->height_mm; 992 993 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 994 drm_mode_set_name(panel_fixed_mode); 995 996 if (dtd->hsync_positive_polarity) 997 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 998 else 999 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 1000 1001 if (dtd->vsync_positive_polarity) 1002 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 1003 else 1004 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 1005 1006 drm_dbg_kms(display->drm, 1007 "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n", 1008 DRM_MODE_ARG(panel_fixed_mode)); 1009 1010 panel->vbt.lfp_vbt_mode = panel_fixed_mode; 1011 } 1012 1013 static void 1014 parse_lfp_backlight(struct intel_display *display, 1015 struct intel_panel *panel) 1016 { 1017 const struct bdb_lfp_backlight *backlight_data; 1018 const struct lfp_backlight_data_entry *entry; 1019 int panel_type = panel->vbt.panel_type; 1020 u16 level; 1021 1022 backlight_data = bdb_find_section(display, BDB_LFP_BACKLIGHT); 1023 if (!backlight_data) 1024 return; 1025 1026 if (backlight_data->entry_size != sizeof(backlight_data->data[0])) { 1027 drm_dbg_kms(display->drm, 1028 "Unsupported backlight data entry size %u\n", 1029 backlight_data->entry_size); 1030 return; 1031 } 1032 1033 entry = &backlight_data->data[panel_type]; 1034 1035 panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM; 1036 if (!panel->vbt.backlight.present) { 1037 drm_dbg_kms(display->drm, 1038 "PWM backlight not present in VBT (type %u)\n", 1039 entry->type); 1040 return; 1041 } 1042 1043 panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI; 1044 panel->vbt.backlight.controller = 0; 1045 if (display->vbt.version >= 191) { 1046 const struct lfp_backlight_control_method *method; 1047 1048 method = &backlight_data->backlight_control[panel_type]; 1049 panel->vbt.backlight.type = method->type; 1050 panel->vbt.backlight.controller = method->controller; 1051 } 1052 1053 panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz; 1054 panel->vbt.backlight.active_low_pwm = entry->active_low_pwm; 1055 1056 if (display->vbt.version >= 234) { 1057 u16 min_level; 1058 bool scale; 1059 1060 level = backlight_data->brightness_level[panel_type].level; 1061 min_level = backlight_data->brightness_min_level[panel_type].level; 1062 1063 if (display->vbt.version >= 236) 1064 scale = backlight_data->brightness_precision_bits[panel_type] == 16; 1065 else 1066 scale = level > 255; 1067 1068 if (scale) 1069 min_level = min_level / 255; 1070 1071 if (min_level > 255) { 1072 drm_warn(display->drm, "Brightness min level > 255\n"); 1073 level = 255; 1074 } 1075 panel->vbt.backlight.min_brightness = min_level; 1076 1077 panel->vbt.backlight.brightness_precision_bits = 1078 backlight_data->brightness_precision_bits[panel_type]; 1079 } else { 1080 level = backlight_data->level[panel_type]; 1081 panel->vbt.backlight.min_brightness = entry->min_brightness; 1082 } 1083 1084 if (display->vbt.version >= 239) 1085 panel->vbt.backlight.hdr_dpcd_refresh_timeout = 1086 DIV_ROUND_UP(backlight_data->hdr_dpcd_refresh_timeout[panel_type], 100); 1087 else 1088 panel->vbt.backlight.hdr_dpcd_refresh_timeout = 30; 1089 1090 drm_dbg_kms(display->drm, 1091 "VBT backlight PWM modulation frequency %u Hz, " 1092 "active %s, min brightness %u, level %u, controller %u\n", 1093 panel->vbt.backlight.pwm_freq_hz, 1094 panel->vbt.backlight.active_low_pwm ? "low" : "high", 1095 panel->vbt.backlight.min_brightness, 1096 level, 1097 panel->vbt.backlight.controller); 1098 } 1099 1100 static void 1101 parse_sdvo_lvds_data(struct intel_display *display, 1102 struct intel_panel *panel) 1103 { 1104 const struct bdb_sdvo_lvds_dtd *dtd; 1105 struct drm_display_mode *panel_fixed_mode; 1106 int index; 1107 1108 index = display->params.vbt_sdvo_panel_type; 1109 if (index == -2) { 1110 drm_dbg_kms(display->drm, 1111 "Ignore SDVO LVDS mode from BIOS VBT tables.\n"); 1112 return; 1113 } 1114 1115 if (index == -1) { 1116 const struct bdb_sdvo_lvds_options *sdvo_lvds_options; 1117 1118 sdvo_lvds_options = bdb_find_section(display, BDB_SDVO_LVDS_OPTIONS); 1119 if (!sdvo_lvds_options) 1120 return; 1121 1122 index = sdvo_lvds_options->panel_type; 1123 } 1124 1125 dtd = bdb_find_section(display, BDB_SDVO_LVDS_DTD); 1126 if (!dtd) 1127 return; 1128 1129 /* 1130 * This should not happen, as long as the panel_type 1131 * enumeration doesn't grow over 4 items. But if it does, it 1132 * could lead to hard-to-detect bugs, so better double-check 1133 * it here to be sure. 1134 */ 1135 if (index >= ARRAY_SIZE(dtd->dtd)) { 1136 drm_err(display->drm, 1137 "index %d is larger than dtd->dtd[4] array\n", 1138 index); 1139 return; 1140 } 1141 1142 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 1143 if (!panel_fixed_mode) 1144 return; 1145 1146 fill_detail_timing_data(display, panel_fixed_mode, &dtd->dtd[index]); 1147 1148 panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode; 1149 1150 drm_dbg_kms(display->drm, 1151 "Found SDVO LVDS mode in BIOS VBT tables: " DRM_MODE_FMT "\n", 1152 DRM_MODE_ARG(panel_fixed_mode)); 1153 } 1154 1155 static int intel_bios_ssc_frequency(struct intel_display *display, 1156 bool alternate) 1157 { 1158 switch (DISPLAY_VER(display)) { 1159 case 2: 1160 return alternate ? 66667 : 48000; 1161 case 3: 1162 case 4: 1163 return alternate ? 100000 : 96000; 1164 default: 1165 return alternate ? 100000 : 120000; 1166 } 1167 } 1168 1169 static void 1170 parse_general_features(struct intel_display *display) 1171 { 1172 const struct bdb_general_features *general; 1173 1174 general = bdb_find_section(display, BDB_GENERAL_FEATURES); 1175 if (!general) 1176 return; 1177 1178 display->vbt.int_tv_support = general->int_tv_support; 1179 /* int_crt_support can't be trusted on earlier platforms */ 1180 if (display->vbt.version >= 155 && 1181 (HAS_DDI(display) || display->platform.valleyview)) 1182 display->vbt.int_crt_support = general->int_crt_support; 1183 display->vbt.lvds_use_ssc = general->enable_ssc; 1184 display->vbt.lvds_ssc_freq = 1185 intel_bios_ssc_frequency(display, general->ssc_freq); 1186 display->vbt.display_clock_mode = general->display_clock_mode; 1187 display->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted; 1188 if (display->vbt.version >= 181) { 1189 display->vbt.orientation = general->rotate_180 ? 1190 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP : 1191 DRM_MODE_PANEL_ORIENTATION_NORMAL; 1192 } else { 1193 display->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1194 } 1195 1196 if (display->vbt.version >= 249 && general->afc_startup_config) { 1197 display->vbt.override_afc_startup = true; 1198 display->vbt.override_afc_startup_val = general->afc_startup_config == 1 ? 0 : 7; 1199 } 1200 1201 drm_dbg_kms(display->drm, 1202 "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n", 1203 display->vbt.int_tv_support, 1204 display->vbt.int_crt_support, 1205 display->vbt.lvds_use_ssc, 1206 display->vbt.lvds_ssc_freq, 1207 display->vbt.display_clock_mode, 1208 display->vbt.fdi_rx_polarity_inverted); 1209 } 1210 1211 static const struct child_device_config * 1212 child_device_ptr(const struct bdb_general_definitions *defs, int i) 1213 { 1214 return (const void *) &defs->devices[i * defs->child_dev_size]; 1215 } 1216 1217 static void 1218 parse_sdvo_device_mapping(struct intel_display *display) 1219 { 1220 const struct intel_bios_encoder_data *devdata; 1221 int count = 0; 1222 1223 /* 1224 * Only parse SDVO mappings on gens that could have SDVO. This isn't 1225 * accurate and doesn't have to be, as long as it's not too strict. 1226 */ 1227 if (!IS_DISPLAY_VER(display, 3, 7)) { 1228 drm_dbg_kms(display->drm, "Skipping SDVO device mapping\n"); 1229 return; 1230 } 1231 1232 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 1233 const struct child_device_config *child = &devdata->child; 1234 struct sdvo_device_mapping *mapping; 1235 1236 if (child->target_addr != TARGET_ADDR1 && 1237 child->target_addr != TARGET_ADDR2) { 1238 /* 1239 * If the target address is neither 0x70 nor 0x72, 1240 * it is not a SDVO device. Skip it. 1241 */ 1242 continue; 1243 } 1244 if (child->dvo_port != DEVICE_PORT_DVOB && 1245 child->dvo_port != DEVICE_PORT_DVOC) { 1246 /* skip the incorrect SDVO port */ 1247 drm_dbg_kms(display->drm, 1248 "Incorrect SDVO port. Skip it\n"); 1249 continue; 1250 } 1251 drm_dbg_kms(display->drm, 1252 "the SDVO device with target addr %2x is found on" 1253 " %s port\n", 1254 child->target_addr, 1255 (child->dvo_port == DEVICE_PORT_DVOB) ? 1256 "SDVOB" : "SDVOC"); 1257 mapping = &display->vbt.sdvo_mappings[child->dvo_port - 1]; 1258 if (!mapping->initialized) { 1259 mapping->dvo_port = child->dvo_port; 1260 mapping->target_addr = child->target_addr; 1261 mapping->dvo_wiring = child->dvo_wiring; 1262 mapping->ddc_pin = child->ddc_pin; 1263 mapping->i2c_pin = child->i2c_pin; 1264 mapping->initialized = 1; 1265 drm_dbg_kms(display->drm, 1266 "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n", 1267 mapping->dvo_port, mapping->target_addr, 1268 mapping->dvo_wiring, mapping->ddc_pin, 1269 mapping->i2c_pin); 1270 } else { 1271 drm_dbg_kms(display->drm, 1272 "Maybe one SDVO port is shared by " 1273 "two SDVO device.\n"); 1274 } 1275 if (child->target2_addr) { 1276 /* Maybe this is a SDVO device with multiple inputs */ 1277 /* And the mapping info is not added */ 1278 drm_dbg_kms(display->drm, 1279 "there exists the target2_addr. Maybe this" 1280 " is a SDVO device with multiple inputs.\n"); 1281 } 1282 count++; 1283 } 1284 1285 if (!count) { 1286 /* No SDVO device info is found */ 1287 drm_dbg_kms(display->drm, 1288 "No SDVO device info is found in VBT\n"); 1289 } 1290 } 1291 1292 static void 1293 parse_driver_features(struct intel_display *display) 1294 { 1295 const struct bdb_driver_features *driver; 1296 1297 driver = bdb_find_section(display, BDB_DRIVER_FEATURES); 1298 if (!driver) 1299 return; 1300 1301 if (DISPLAY_VER(display) >= 5) { 1302 /* 1303 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS 1304 * to mean "eDP". The VBT spec doesn't agree with that 1305 * interpretation, but real world VBTs seem to. 1306 */ 1307 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS) 1308 display->vbt.int_lvds_support = 0; 1309 } else { 1310 /* 1311 * FIXME it's not clear which BDB version has the LVDS config 1312 * bits defined. Revision history in the VBT spec says: 1313 * "0.92 | Add two definitions for VBT value of LVDS Active 1314 * Config (00b and 11b values defined) | 06/13/2005" 1315 * but does not the specify the BDB version. 1316 * 1317 * So far version 134 (on i945gm) is the oldest VBT observed 1318 * in the wild with the bits correctly populated. Version 1319 * 108 (on i85x) does not have the bits correctly populated. 1320 */ 1321 if (display->vbt.version >= 134 && 1322 driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS && 1323 driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS) 1324 display->vbt.int_lvds_support = 0; 1325 } 1326 } 1327 1328 static void 1329 parse_panel_driver_features(struct intel_display *display, 1330 struct intel_panel *panel) 1331 { 1332 const struct bdb_driver_features *driver; 1333 1334 driver = bdb_find_section(display, BDB_DRIVER_FEATURES); 1335 if (!driver) 1336 return; 1337 1338 if (display->vbt.version < 228) { 1339 drm_dbg_kms(display->drm, "DRRS State Enabled:%d\n", 1340 driver->drrs_enabled); 1341 /* 1342 * If DRRS is not supported, drrs_type has to be set to 0. 1343 * This is because, VBT is configured in such a way that 1344 * static DRRS is 0 and DRRS not supported is represented by 1345 * driver->drrs_enabled=false 1346 */ 1347 if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) { 1348 /* 1349 * FIXME Should DMRRS perhaps be treated as seamless 1350 * but without the automatic downclocking? 1351 */ 1352 if (driver->dmrrs_enabled) 1353 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 1354 else 1355 panel->vbt.drrs_type = DRRS_TYPE_NONE; 1356 } 1357 1358 panel->vbt.psr.enable = driver->psr_enabled; 1359 } 1360 } 1361 1362 static void 1363 parse_power_conservation_features(struct intel_display *display, 1364 struct intel_panel *panel) 1365 { 1366 const struct bdb_lfp_power *power; 1367 u8 panel_type = panel->vbt.panel_type; 1368 1369 panel->vbt.vrr = true; /* matches Windows behaviour */ 1370 1371 if (display->vbt.version < 228) 1372 return; 1373 1374 power = bdb_find_section(display, BDB_LFP_POWER); 1375 if (!power) 1376 return; 1377 1378 panel->vbt.psr.enable = panel_bool(power->psr, panel_type); 1379 1380 /* 1381 * If DRRS is not supported, drrs_type has to be set to 0. 1382 * This is because, VBT is configured in such a way that 1383 * static DRRS is 0 and DRRS not supported is represented by 1384 * power->drrs & BIT(panel_type)=false 1385 */ 1386 if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) { 1387 /* 1388 * FIXME Should DMRRS perhaps be treated as seamless 1389 * but without the automatic downclocking? 1390 */ 1391 if (panel_bool(power->dmrrs, panel_type)) 1392 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 1393 else 1394 panel->vbt.drrs_type = DRRS_TYPE_NONE; 1395 } 1396 1397 if (display->vbt.version >= 232) 1398 panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type); 1399 1400 if (display->vbt.version >= 233) 1401 panel->vbt.vrr = panel_bool(power->vrr_feature_enabled, 1402 panel_type); 1403 } 1404 1405 static void vbt_edp_to_pps_delays(struct intel_pps_delays *pps, 1406 const struct edp_power_seq *edp_pps) 1407 { 1408 pps->power_up = edp_pps->t1_t3; 1409 pps->backlight_on = edp_pps->t8; 1410 pps->backlight_off = edp_pps->t9; 1411 pps->power_down = edp_pps->t10; 1412 pps->power_cycle = edp_pps->t11_t12; 1413 } 1414 1415 static void 1416 parse_edp(struct intel_display *display, 1417 struct intel_panel *panel) 1418 { 1419 const struct bdb_edp *edp; 1420 const struct edp_fast_link_params *edp_link_params; 1421 int panel_type = panel->vbt.panel_type; 1422 1423 edp = bdb_find_section(display, BDB_EDP); 1424 if (!edp) 1425 return; 1426 1427 switch (panel_bits(edp->color_depth, panel_type, 2)) { 1428 case EDP_18BPP: 1429 panel->vbt.edp.bpp = 18; 1430 break; 1431 case EDP_24BPP: 1432 panel->vbt.edp.bpp = 24; 1433 break; 1434 case EDP_30BPP: 1435 panel->vbt.edp.bpp = 30; 1436 break; 1437 } 1438 1439 /* Get the eDP sequencing and link info */ 1440 edp_link_params = &edp->fast_link_params[panel_type]; 1441 1442 vbt_edp_to_pps_delays(&panel->vbt.edp.pps, 1443 &edp->power_seqs[panel_type]); 1444 1445 if (display->vbt.version >= 224) { 1446 panel->vbt.edp.rate = 1447 edp->edp_fast_link_training_rate[panel_type] * 20; 1448 } else { 1449 switch (edp_link_params->rate) { 1450 case EDP_RATE_1_62: 1451 panel->vbt.edp.rate = 162000; 1452 break; 1453 case EDP_RATE_2_7: 1454 panel->vbt.edp.rate = 270000; 1455 break; 1456 case EDP_RATE_5_4: 1457 panel->vbt.edp.rate = 540000; 1458 break; 1459 default: 1460 drm_dbg_kms(display->drm, 1461 "VBT has unknown eDP link rate value %u\n", 1462 edp_link_params->rate); 1463 break; 1464 } 1465 } 1466 1467 switch (edp_link_params->lanes) { 1468 case EDP_LANE_1: 1469 panel->vbt.edp.lanes = 1; 1470 break; 1471 case EDP_LANE_2: 1472 panel->vbt.edp.lanes = 2; 1473 break; 1474 case EDP_LANE_4: 1475 panel->vbt.edp.lanes = 4; 1476 break; 1477 default: 1478 drm_dbg_kms(display->drm, 1479 "VBT has unknown eDP lane count value %u\n", 1480 edp_link_params->lanes); 1481 break; 1482 } 1483 1484 switch (edp_link_params->preemphasis) { 1485 case EDP_PREEMPHASIS_NONE: 1486 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0; 1487 break; 1488 case EDP_PREEMPHASIS_3_5dB: 1489 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1; 1490 break; 1491 case EDP_PREEMPHASIS_6dB: 1492 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2; 1493 break; 1494 case EDP_PREEMPHASIS_9_5dB: 1495 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3; 1496 break; 1497 default: 1498 drm_dbg_kms(display->drm, 1499 "VBT has unknown eDP pre-emphasis value %u\n", 1500 edp_link_params->preemphasis); 1501 break; 1502 } 1503 1504 switch (edp_link_params->vswing) { 1505 case EDP_VSWING_0_4V: 1506 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0; 1507 break; 1508 case EDP_VSWING_0_6V: 1509 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1; 1510 break; 1511 case EDP_VSWING_0_8V: 1512 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 1513 break; 1514 case EDP_VSWING_1_2V: 1515 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 1516 break; 1517 default: 1518 drm_dbg_kms(display->drm, 1519 "VBT has unknown eDP voltage swing value %u\n", 1520 edp_link_params->vswing); 1521 break; 1522 } 1523 1524 if (display->vbt.version >= 173) { 1525 u8 vswing; 1526 1527 /* Don't read from VBT if module parameter has valid value*/ 1528 if (display->params.edp_vswing) { 1529 panel->vbt.edp.low_vswing = 1530 display->params.edp_vswing == 1; 1531 } else { 1532 vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF; 1533 panel->vbt.edp.low_vswing = vswing == 0; 1534 } 1535 } 1536 1537 panel->vbt.edp.drrs_msa_timing_delay = 1538 panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2); 1539 1540 if (display->vbt.version >= 244) 1541 panel->vbt.edp.max_link_rate = 1542 edp->edp_max_port_link_rate[panel_type] * 20; 1543 1544 if (display->vbt.version >= 251) 1545 panel->vbt.edp.dsc_disable = 1546 panel_bool(edp->edp_dsc_disable, panel_type); 1547 } 1548 1549 static void 1550 parse_psr(struct intel_display *display, 1551 struct intel_panel *panel) 1552 { 1553 const struct bdb_psr *psr; 1554 const struct psr_table *psr_table; 1555 int panel_type = panel->vbt.panel_type; 1556 1557 psr = bdb_find_section(display, BDB_PSR); 1558 if (!psr) { 1559 drm_dbg_kms(display->drm, "No PSR BDB found.\n"); 1560 return; 1561 } 1562 1563 psr_table = &psr->psr_table[panel_type]; 1564 1565 panel->vbt.psr.full_link = psr_table->full_link; 1566 panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup; 1567 1568 /* Allowed VBT values goes from 0 to 15 */ 1569 panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 : 1570 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames; 1571 1572 /* 1573 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us 1574 * Old decimal value is wake up time in multiples of 100 us. 1575 */ 1576 if (display->vbt.version >= 205 && 1577 (DISPLAY_VER(display) >= 9 && !display->platform.broxton)) { 1578 switch (psr_table->tp1_wakeup_time) { 1579 case 0: 1580 panel->vbt.psr.tp1_wakeup_time_us = 500; 1581 break; 1582 case 1: 1583 panel->vbt.psr.tp1_wakeup_time_us = 100; 1584 break; 1585 case 3: 1586 panel->vbt.psr.tp1_wakeup_time_us = 0; 1587 break; 1588 default: 1589 drm_dbg_kms(display->drm, 1590 "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 1591 psr_table->tp1_wakeup_time); 1592 fallthrough; 1593 case 2: 1594 panel->vbt.psr.tp1_wakeup_time_us = 2500; 1595 break; 1596 } 1597 1598 switch (psr_table->tp2_tp3_wakeup_time) { 1599 case 0: 1600 panel->vbt.psr.tp2_tp3_wakeup_time_us = 500; 1601 break; 1602 case 1: 1603 panel->vbt.psr.tp2_tp3_wakeup_time_us = 100; 1604 break; 1605 case 3: 1606 panel->vbt.psr.tp2_tp3_wakeup_time_us = 0; 1607 break; 1608 default: 1609 drm_dbg_kms(display->drm, 1610 "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 1611 psr_table->tp2_tp3_wakeup_time); 1612 fallthrough; 1613 case 2: 1614 panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500; 1615 break; 1616 } 1617 } else { 1618 panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100; 1619 panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100; 1620 } 1621 1622 if (display->vbt.version >= 226) { 1623 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time; 1624 1625 wakeup_time = panel_bits(wakeup_time, panel_type, 2); 1626 switch (wakeup_time) { 1627 case 0: 1628 wakeup_time = 500; 1629 break; 1630 case 1: 1631 wakeup_time = 100; 1632 break; 1633 case 3: 1634 wakeup_time = 50; 1635 break; 1636 default: 1637 case 2: 1638 wakeup_time = 2500; 1639 break; 1640 } 1641 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time; 1642 } else { 1643 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */ 1644 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us; 1645 } 1646 } 1647 1648 static void parse_dsi_backlight_ports(struct intel_display *display, 1649 struct intel_panel *panel, 1650 enum port port) 1651 { 1652 enum port port_bc = DISPLAY_VER(display) >= 11 ? PORT_B : PORT_C; 1653 1654 if (!panel->vbt.dsi.config->dual_link || display->vbt.version < 197) { 1655 panel->vbt.dsi.bl_ports = BIT(port); 1656 if (panel->vbt.dsi.config->cabc_supported) 1657 panel->vbt.dsi.cabc_ports = BIT(port); 1658 1659 return; 1660 } 1661 1662 switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) { 1663 case DL_DCS_PORT_A: 1664 panel->vbt.dsi.bl_ports = BIT(PORT_A); 1665 break; 1666 case DL_DCS_PORT_C: 1667 panel->vbt.dsi.bl_ports = BIT(port_bc); 1668 break; 1669 default: 1670 case DL_DCS_PORT_A_AND_C: 1671 panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc); 1672 break; 1673 } 1674 1675 if (!panel->vbt.dsi.config->cabc_supported) 1676 return; 1677 1678 switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) { 1679 case DL_DCS_PORT_A: 1680 panel->vbt.dsi.cabc_ports = BIT(PORT_A); 1681 break; 1682 case DL_DCS_PORT_C: 1683 panel->vbt.dsi.cabc_ports = BIT(port_bc); 1684 break; 1685 default: 1686 case DL_DCS_PORT_A_AND_C: 1687 panel->vbt.dsi.cabc_ports = 1688 BIT(PORT_A) | BIT(port_bc); 1689 break; 1690 } 1691 } 1692 1693 static void 1694 parse_mipi_config(struct intel_display *display, 1695 struct intel_panel *panel) 1696 { 1697 const struct bdb_mipi_config *start; 1698 const struct mipi_config *config; 1699 const struct mipi_pps_data *pps; 1700 int panel_type = panel->vbt.panel_type; 1701 enum port port; 1702 1703 /* parse MIPI blocks only if LFP type is MIPI */ 1704 if (!intel_bios_is_dsi_present(display, &port)) 1705 return; 1706 1707 /* Initialize this to undefined indicating no generic MIPI support */ 1708 panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID; 1709 1710 start = bdb_find_section(display, BDB_MIPI_CONFIG); 1711 if (!start) { 1712 drm_dbg_kms(display->drm, "No MIPI config BDB found"); 1713 return; 1714 } 1715 1716 drm_dbg_kms(display->drm, "Found MIPI Config block, panel index = %d\n", 1717 panel_type); 1718 1719 /* 1720 * get hold of the correct configuration block and pps data as per 1721 * the panel_type as index 1722 */ 1723 config = &start->config[panel_type]; 1724 pps = &start->pps[panel_type]; 1725 1726 /* store as of now full data. Trim when we realise all is not needed */ 1727 panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL); 1728 if (!panel->vbt.dsi.config) 1729 return; 1730 1731 panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL); 1732 if (!panel->vbt.dsi.pps) { 1733 kfree(panel->vbt.dsi.config); 1734 return; 1735 } 1736 1737 parse_dsi_backlight_ports(display, panel, port); 1738 1739 /* FIXME is the 90 vs. 270 correct? */ 1740 switch (config->rotation) { 1741 case ENABLE_ROTATION_0: 1742 /* 1743 * Most (all?) VBTs claim 0 degrees despite having 1744 * an upside down panel, thus we do not trust this. 1745 */ 1746 panel->vbt.dsi.orientation = 1747 DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1748 break; 1749 case ENABLE_ROTATION_90: 1750 panel->vbt.dsi.orientation = 1751 DRM_MODE_PANEL_ORIENTATION_RIGHT_UP; 1752 break; 1753 case ENABLE_ROTATION_180: 1754 panel->vbt.dsi.orientation = 1755 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP; 1756 break; 1757 case ENABLE_ROTATION_270: 1758 panel->vbt.dsi.orientation = 1759 DRM_MODE_PANEL_ORIENTATION_LEFT_UP; 1760 break; 1761 } 1762 1763 /* We have mandatory mipi config blocks. Initialize as generic panel */ 1764 panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID; 1765 } 1766 1767 /* Find the sequence block and size for the given panel. */ 1768 static const u8 * 1769 find_panel_sequence_block(struct intel_display *display, 1770 const struct bdb_mipi_sequence *sequence, 1771 u16 panel_id, u32 *seq_size) 1772 { 1773 u32 total = get_blocksize(sequence); 1774 const u8 *data = &sequence->data[0]; 1775 u8 current_id; 1776 u32 current_size; 1777 int header_size = sequence->version >= 3 ? 5 : 3; 1778 int index = 0; 1779 int i; 1780 1781 /* skip new block size */ 1782 if (sequence->version >= 3) 1783 data += 4; 1784 1785 for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) { 1786 if (index + header_size > total) { 1787 drm_err(display->drm, 1788 "Invalid sequence block (header)\n"); 1789 return NULL; 1790 } 1791 1792 current_id = *(data + index); 1793 if (sequence->version >= 3) 1794 current_size = *((const u32 *)(data + index + 1)); 1795 else 1796 current_size = *((const u16 *)(data + index + 1)); 1797 1798 index += header_size; 1799 1800 if (index + current_size > total) { 1801 drm_err(display->drm, "Invalid sequence block\n"); 1802 return NULL; 1803 } 1804 1805 if (current_id == panel_id) { 1806 *seq_size = current_size; 1807 return data + index; 1808 } 1809 1810 index += current_size; 1811 } 1812 1813 drm_err(display->drm, 1814 "Sequence block detected but no valid configuration\n"); 1815 1816 return NULL; 1817 } 1818 1819 static int goto_next_sequence(struct intel_display *display, 1820 const u8 *data, int index, int total) 1821 { 1822 u16 len; 1823 1824 /* Skip Sequence Byte. */ 1825 for (index = index + 1; index < total; index += len) { 1826 u8 operation_byte = *(data + index); 1827 index++; 1828 1829 switch (operation_byte) { 1830 case MIPI_SEQ_ELEM_END: 1831 return index; 1832 case MIPI_SEQ_ELEM_SEND_PKT: 1833 if (index + 4 > total) 1834 return 0; 1835 1836 len = *((const u16 *)(data + index + 2)) + 4; 1837 break; 1838 case MIPI_SEQ_ELEM_DELAY: 1839 len = 4; 1840 break; 1841 case MIPI_SEQ_ELEM_GPIO: 1842 len = 2; 1843 break; 1844 case MIPI_SEQ_ELEM_I2C: 1845 if (index + 7 > total) 1846 return 0; 1847 len = *(data + index + 6) + 7; 1848 break; 1849 default: 1850 drm_err(display->drm, "Unknown operation byte\n"); 1851 return 0; 1852 } 1853 } 1854 1855 return 0; 1856 } 1857 1858 static int goto_next_sequence_v3(struct intel_display *display, 1859 const u8 *data, int index, int total) 1860 { 1861 int seq_end; 1862 u16 len; 1863 u32 size_of_sequence; 1864 1865 /* 1866 * Could skip sequence based on Size of Sequence alone, but also do some 1867 * checking on the structure. 1868 */ 1869 if (total < 5) { 1870 drm_err(display->drm, "Too small sequence size\n"); 1871 return 0; 1872 } 1873 1874 /* Skip Sequence Byte. */ 1875 index++; 1876 1877 /* 1878 * Size of Sequence. Excludes the Sequence Byte and the size itself, 1879 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END 1880 * byte. 1881 */ 1882 size_of_sequence = *((const u32 *)(data + index)); 1883 index += 4; 1884 1885 seq_end = index + size_of_sequence; 1886 if (seq_end > total) { 1887 drm_err(display->drm, "Invalid sequence size\n"); 1888 return 0; 1889 } 1890 1891 for (; index < total; index += len) { 1892 u8 operation_byte = *(data + index); 1893 index++; 1894 1895 if (operation_byte == MIPI_SEQ_ELEM_END) { 1896 if (index != seq_end) { 1897 drm_err(display->drm, 1898 "Invalid element structure\n"); 1899 return 0; 1900 } 1901 return index; 1902 } 1903 1904 len = *(data + index); 1905 index++; 1906 1907 /* 1908 * FIXME: Would be nice to check elements like for v1/v2 in 1909 * goto_next_sequence() above. 1910 */ 1911 switch (operation_byte) { 1912 case MIPI_SEQ_ELEM_SEND_PKT: 1913 case MIPI_SEQ_ELEM_DELAY: 1914 case MIPI_SEQ_ELEM_GPIO: 1915 case MIPI_SEQ_ELEM_I2C: 1916 case MIPI_SEQ_ELEM_SPI: 1917 case MIPI_SEQ_ELEM_PMIC: 1918 break; 1919 default: 1920 drm_err(display->drm, "Unknown operation byte %u\n", 1921 operation_byte); 1922 break; 1923 } 1924 } 1925 1926 return 0; 1927 } 1928 1929 /* 1930 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence, 1931 * skip all delay + gpio operands and stop at the first DSI packet op. 1932 */ 1933 static int get_init_otp_deassert_fragment_len(struct intel_display *display, 1934 struct intel_panel *panel) 1935 { 1936 const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1937 int index, len; 1938 1939 if (drm_WARN_ON(display->drm, 1940 !data || panel->vbt.dsi.seq_version != 1)) 1941 return 0; 1942 1943 /* index = 1 to skip sequence byte */ 1944 for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) { 1945 switch (data[index]) { 1946 case MIPI_SEQ_ELEM_SEND_PKT: 1947 return index == 1 ? 0 : index; 1948 case MIPI_SEQ_ELEM_DELAY: 1949 len = 5; /* 1 byte for operand + uint32 */ 1950 break; 1951 case MIPI_SEQ_ELEM_GPIO: 1952 len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */ 1953 break; 1954 default: 1955 return 0; 1956 } 1957 } 1958 1959 return 0; 1960 } 1961 1962 /* 1963 * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence. 1964 * The deassert must be done before calling intel_dsi_device_ready, so for 1965 * these devices we split the init OTP sequence into a deassert sequence and 1966 * the actual init OTP part. 1967 */ 1968 static void vlv_fixup_mipi_sequences(struct intel_display *display, 1969 struct intel_panel *panel) 1970 { 1971 u8 *init_otp; 1972 int len; 1973 1974 /* Limit this to v1 vid-mode sequences */ 1975 if (panel->vbt.dsi.config->is_cmd_mode || 1976 panel->vbt.dsi.seq_version != 1) 1977 return; 1978 1979 /* Only do this if there are otp and assert seqs and no deassert seq */ 1980 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] || 1981 !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] || 1982 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET]) 1983 return; 1984 1985 /* The deassert-sequence ends at the first DSI packet */ 1986 len = get_init_otp_deassert_fragment_len(display, panel); 1987 if (!len) 1988 return; 1989 1990 drm_dbg_kms(display->drm, 1991 "Using init OTP fragment to deassert reset\n"); 1992 1993 /* Copy the fragment, update seq byte and terminate it */ 1994 init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1995 panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL); 1996 if (!panel->vbt.dsi.deassert_seq) 1997 return; 1998 panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET; 1999 panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END; 2000 /* Use the copy for deassert */ 2001 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] = 2002 panel->vbt.dsi.deassert_seq; 2003 /* Replace the last byte of the fragment with init OTP seq byte */ 2004 init_otp[len - 1] = MIPI_SEQ_INIT_OTP; 2005 /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */ 2006 panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1; 2007 } 2008 2009 /* 2010 * Some machines (eg. Lenovo 82TQ) appear to have broken 2011 * VBT sequences: 2012 * - INIT_OTP is not present at all 2013 * - what should be in INIT_OTP is in DISPLAY_ON 2014 * - what should be in DISPLAY_ON is in BACKLIGHT_ON 2015 * (along with the actual backlight stuff) 2016 * 2017 * To make those work we simply swap DISPLAY_ON and INIT_OTP. 2018 * 2019 * TODO: Do we need to limit this to specific machines, 2020 * or examine the contents of the sequences to 2021 * avoid false positives? 2022 */ 2023 static void icl_fixup_mipi_sequences(struct intel_display *display, 2024 struct intel_panel *panel) 2025 { 2026 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] && 2027 panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]) { 2028 drm_dbg_kms(display->drm, 2029 "Broken VBT: Swapping INIT_OTP and DISPLAY_ON sequences\n"); 2030 2031 swap(panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP], 2032 panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]); 2033 } 2034 } 2035 2036 static void fixup_mipi_sequences(struct intel_display *display, 2037 struct intel_panel *panel) 2038 { 2039 if (DISPLAY_VER(display) >= 11) 2040 icl_fixup_mipi_sequences(display, panel); 2041 else if (display->platform.valleyview) 2042 vlv_fixup_mipi_sequences(display, panel); 2043 } 2044 2045 static void 2046 parse_mipi_sequence(struct intel_display *display, 2047 struct intel_panel *panel) 2048 { 2049 int panel_type = panel->vbt.panel_type; 2050 const struct bdb_mipi_sequence *sequence; 2051 const u8 *seq_data; 2052 u32 seq_size; 2053 u8 *data; 2054 int index = 0; 2055 2056 /* Only our generic panel driver uses the sequence block. */ 2057 if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID) 2058 return; 2059 2060 sequence = bdb_find_section(display, BDB_MIPI_SEQUENCE); 2061 if (!sequence) { 2062 drm_dbg_kms(display->drm, 2063 "No MIPI Sequence found, parsing complete\n"); 2064 return; 2065 } 2066 2067 /* Fail gracefully for forward incompatible sequence block. */ 2068 if (sequence->version >= 4) { 2069 drm_err(display->drm, 2070 "Unable to parse MIPI Sequence Block v%u\n", 2071 sequence->version); 2072 return; 2073 } 2074 2075 drm_dbg_kms(display->drm, "Found MIPI sequence block v%u\n", 2076 sequence->version); 2077 2078 seq_data = find_panel_sequence_block(display, sequence, panel_type, &seq_size); 2079 if (!seq_data) 2080 return; 2081 2082 data = kmemdup(seq_data, seq_size, GFP_KERNEL); 2083 if (!data) 2084 return; 2085 2086 /* Parse the sequences, store pointers to each sequence. */ 2087 for (;;) { 2088 u8 seq_id = *(data + index); 2089 if (seq_id == MIPI_SEQ_END) 2090 break; 2091 2092 if (seq_id >= MIPI_SEQ_MAX) { 2093 drm_err(display->drm, "Unknown sequence %u\n", 2094 seq_id); 2095 goto err; 2096 } 2097 2098 /* Log about presence of sequences we won't run. */ 2099 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF) 2100 drm_dbg_kms(display->drm, 2101 "Unsupported sequence %u\n", seq_id); 2102 2103 panel->vbt.dsi.sequence[seq_id] = data + index; 2104 2105 if (sequence->version >= 3) 2106 index = goto_next_sequence_v3(display, data, index, seq_size); 2107 else 2108 index = goto_next_sequence(display, data, index, seq_size); 2109 if (!index) { 2110 drm_err(display->drm, "Invalid sequence %u\n", 2111 seq_id); 2112 goto err; 2113 } 2114 } 2115 2116 panel->vbt.dsi.data = data; 2117 panel->vbt.dsi.size = seq_size; 2118 panel->vbt.dsi.seq_version = sequence->version; 2119 2120 fixup_mipi_sequences(display, panel); 2121 2122 drm_dbg_kms(display->drm, "MIPI related VBT parsing complete\n"); 2123 return; 2124 2125 err: 2126 kfree(data); 2127 memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence)); 2128 } 2129 2130 static void 2131 parse_compression_parameters(struct intel_display *display) 2132 { 2133 const struct bdb_compression_parameters *params; 2134 struct intel_bios_encoder_data *devdata; 2135 u16 block_size; 2136 int index; 2137 2138 if (display->vbt.version < 198) 2139 return; 2140 2141 params = bdb_find_section(display, BDB_COMPRESSION_PARAMETERS); 2142 if (params) { 2143 /* Sanity checks */ 2144 if (params->entry_size != sizeof(params->data[0])) { 2145 drm_dbg_kms(display->drm, 2146 "VBT: unsupported compression param entry size\n"); 2147 return; 2148 } 2149 2150 block_size = get_blocksize(params); 2151 if (block_size < sizeof(*params)) { 2152 drm_dbg_kms(display->drm, 2153 "VBT: expected 16 compression param entries\n"); 2154 return; 2155 } 2156 } 2157 2158 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 2159 const struct child_device_config *child = &devdata->child; 2160 2161 if (!child->compression_enable) 2162 continue; 2163 2164 if (!params) { 2165 drm_dbg_kms(display->drm, 2166 "VBT: compression params not available\n"); 2167 continue; 2168 } 2169 2170 if (child->compression_method_cps) { 2171 drm_dbg_kms(display->drm, 2172 "VBT: CPS compression not supported\n"); 2173 continue; 2174 } 2175 2176 index = child->compression_structure_index; 2177 2178 devdata->dsc = kmemdup(¶ms->data[index], 2179 sizeof(*devdata->dsc), GFP_KERNEL); 2180 } 2181 } 2182 2183 static u8 translate_iboost(struct intel_display *display, u8 val) 2184 { 2185 static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */ 2186 2187 if (val >= ARRAY_SIZE(mapping)) { 2188 drm_dbg_kms(display->drm, 2189 "Unsupported I_boost value found in VBT (%d), display may not work properly\n", val); 2190 return 0; 2191 } 2192 return mapping[val]; 2193 } 2194 2195 static const u8 cnp_ddc_pin_map[] = { 2196 [0] = 0, /* N/A */ 2197 [GMBUS_PIN_1_BXT] = DDC_BUS_DDI_B, 2198 [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_C, 2199 [GMBUS_PIN_4_CNP] = DDC_BUS_DDI_D, /* sic */ 2200 [GMBUS_PIN_3_BXT] = DDC_BUS_DDI_F, /* sic */ 2201 }; 2202 2203 static const u8 icp_ddc_pin_map[] = { 2204 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2205 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, 2206 [GMBUS_PIN_3_BXT] = TGL_DDC_BUS_DDI_C, 2207 [GMBUS_PIN_9_TC1_ICP] = ICL_DDC_BUS_PORT_1, 2208 [GMBUS_PIN_10_TC2_ICP] = ICL_DDC_BUS_PORT_2, 2209 [GMBUS_PIN_11_TC3_ICP] = ICL_DDC_BUS_PORT_3, 2210 [GMBUS_PIN_12_TC4_ICP] = ICL_DDC_BUS_PORT_4, 2211 [GMBUS_PIN_13_TC5_TGP] = TGL_DDC_BUS_PORT_5, 2212 [GMBUS_PIN_14_TC6_TGP] = TGL_DDC_BUS_PORT_6, 2213 }; 2214 2215 static const u8 rkl_pch_tgp_ddc_pin_map[] = { 2216 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2217 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, 2218 [GMBUS_PIN_9_TC1_ICP] = RKL_DDC_BUS_DDI_D, 2219 [GMBUS_PIN_10_TC2_ICP] = RKL_DDC_BUS_DDI_E, 2220 }; 2221 2222 static const u8 adls_ddc_pin_map[] = { 2223 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2224 [GMBUS_PIN_9_TC1_ICP] = ADLS_DDC_BUS_PORT_TC1, 2225 [GMBUS_PIN_10_TC2_ICP] = ADLS_DDC_BUS_PORT_TC2, 2226 [GMBUS_PIN_11_TC3_ICP] = ADLS_DDC_BUS_PORT_TC3, 2227 [GMBUS_PIN_12_TC4_ICP] = ADLS_DDC_BUS_PORT_TC4, 2228 }; 2229 2230 static const u8 gen9bc_tgp_ddc_pin_map[] = { 2231 [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_B, 2232 [GMBUS_PIN_9_TC1_ICP] = DDC_BUS_DDI_C, 2233 [GMBUS_PIN_10_TC2_ICP] = DDC_BUS_DDI_D, 2234 }; 2235 2236 static const u8 adlp_ddc_pin_map[] = { 2237 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A, 2238 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B, 2239 [GMBUS_PIN_9_TC1_ICP] = ADLP_DDC_BUS_PORT_TC1, 2240 [GMBUS_PIN_10_TC2_ICP] = ADLP_DDC_BUS_PORT_TC2, 2241 [GMBUS_PIN_11_TC3_ICP] = ADLP_DDC_BUS_PORT_TC3, 2242 [GMBUS_PIN_12_TC4_ICP] = ADLP_DDC_BUS_PORT_TC4, 2243 }; 2244 2245 static u8 map_ddc_pin(struct intel_display *display, u8 vbt_pin) 2246 { 2247 struct drm_i915_private *i915 = to_i915(display->drm); 2248 const u8 *ddc_pin_map; 2249 int i, n_entries; 2250 2251 if (INTEL_PCH_TYPE(i915) >= PCH_MTL || display->platform.alderlake_p) { 2252 ddc_pin_map = adlp_ddc_pin_map; 2253 n_entries = ARRAY_SIZE(adlp_ddc_pin_map); 2254 } else if (display->platform.alderlake_s) { 2255 ddc_pin_map = adls_ddc_pin_map; 2256 n_entries = ARRAY_SIZE(adls_ddc_pin_map); 2257 } else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) { 2258 return vbt_pin; 2259 } else if (display->platform.rocketlake && INTEL_PCH_TYPE(i915) == PCH_TGP) { 2260 ddc_pin_map = rkl_pch_tgp_ddc_pin_map; 2261 n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map); 2262 } else if (HAS_PCH_TGP(i915) && DISPLAY_VER(display) == 9) { 2263 ddc_pin_map = gen9bc_tgp_ddc_pin_map; 2264 n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map); 2265 } else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) { 2266 ddc_pin_map = icp_ddc_pin_map; 2267 n_entries = ARRAY_SIZE(icp_ddc_pin_map); 2268 } else if (HAS_PCH_CNP(i915)) { 2269 ddc_pin_map = cnp_ddc_pin_map; 2270 n_entries = ARRAY_SIZE(cnp_ddc_pin_map); 2271 } else { 2272 /* Assuming direct map */ 2273 return vbt_pin; 2274 } 2275 2276 for (i = 0; i < n_entries; i++) { 2277 if (ddc_pin_map[i] == vbt_pin) 2278 return i; 2279 } 2280 2281 drm_dbg_kms(display->drm, 2282 "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n", 2283 vbt_pin); 2284 return 0; 2285 } 2286 2287 static u8 dvo_port_type(u8 dvo_port) 2288 { 2289 switch (dvo_port) { 2290 case DVO_PORT_HDMIA: 2291 case DVO_PORT_HDMIB: 2292 case DVO_PORT_HDMIC: 2293 case DVO_PORT_HDMID: 2294 case DVO_PORT_HDMIE: 2295 case DVO_PORT_HDMIF: 2296 case DVO_PORT_HDMIG: 2297 case DVO_PORT_HDMIH: 2298 case DVO_PORT_HDMII: 2299 return DVO_PORT_HDMIA; 2300 case DVO_PORT_DPA: 2301 case DVO_PORT_DPB: 2302 case DVO_PORT_DPC: 2303 case DVO_PORT_DPD: 2304 case DVO_PORT_DPE: 2305 case DVO_PORT_DPF: 2306 case DVO_PORT_DPG: 2307 case DVO_PORT_DPH: 2308 case DVO_PORT_DPI: 2309 return DVO_PORT_DPA; 2310 case DVO_PORT_MIPIA: 2311 case DVO_PORT_MIPIB: 2312 case DVO_PORT_MIPIC: 2313 case DVO_PORT_MIPID: 2314 return DVO_PORT_MIPIA; 2315 default: 2316 return dvo_port; 2317 } 2318 } 2319 2320 static enum port __dvo_port_to_port(int n_ports, int n_dvo, 2321 const int port_mapping[][3], u8 dvo_port) 2322 { 2323 enum port port; 2324 int i; 2325 2326 for (port = PORT_A; port < n_ports; port++) { 2327 for (i = 0; i < n_dvo; i++) { 2328 if (port_mapping[port][i] == -1) 2329 break; 2330 2331 if (dvo_port == port_mapping[port][i]) 2332 return port; 2333 } 2334 } 2335 2336 return PORT_NONE; 2337 } 2338 2339 static enum port dvo_port_to_port(struct intel_display *display, 2340 u8 dvo_port) 2341 { 2342 /* 2343 * Each DDI port can have more than one value on the "DVO Port" field, 2344 * so look for all the possible values for each port. 2345 */ 2346 static const int port_mapping[][3] = { 2347 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2348 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2349 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2350 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2351 [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT }, 2352 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 2353 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 2354 [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 2355 [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 2356 }; 2357 /* 2358 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D 2359 * map to DDI A,B,TC1,TC2 respectively. 2360 */ 2361 static const int rkl_port_mapping[][3] = { 2362 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2363 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2364 [PORT_C] = { -1 }, 2365 [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2366 [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2367 }; 2368 /* 2369 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E, 2370 * PORT_F and PORT_G, we need to map that to correct VBT sections. 2371 */ 2372 static const int adls_port_mapping[][3] = { 2373 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2374 [PORT_B] = { -1 }, 2375 [PORT_C] = { -1 }, 2376 [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2377 [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2378 [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2379 [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 2380 }; 2381 static const int xelpd_port_mapping[][3] = { 2382 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2383 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2384 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2385 [PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2386 [PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 2387 [PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 2388 [PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 2389 [PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 2390 [PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 2391 }; 2392 2393 if (DISPLAY_VER(display) >= 13) 2394 return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping), 2395 ARRAY_SIZE(xelpd_port_mapping[0]), 2396 xelpd_port_mapping, 2397 dvo_port); 2398 else if (display->platform.alderlake_s) 2399 return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping), 2400 ARRAY_SIZE(adls_port_mapping[0]), 2401 adls_port_mapping, 2402 dvo_port); 2403 else if (display->platform.dg1 || display->platform.rocketlake) 2404 return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping), 2405 ARRAY_SIZE(rkl_port_mapping[0]), 2406 rkl_port_mapping, 2407 dvo_port); 2408 else 2409 return __dvo_port_to_port(ARRAY_SIZE(port_mapping), 2410 ARRAY_SIZE(port_mapping[0]), 2411 port_mapping, 2412 dvo_port); 2413 } 2414 2415 static enum port 2416 dsi_dvo_port_to_port(struct intel_display *display, u8 dvo_port) 2417 { 2418 switch (dvo_port) { 2419 case DVO_PORT_MIPIA: 2420 return PORT_A; 2421 case DVO_PORT_MIPIC: 2422 if (DISPLAY_VER(display) >= 11) 2423 return PORT_B; 2424 else 2425 return PORT_C; 2426 default: 2427 return PORT_NONE; 2428 } 2429 } 2430 2431 enum port intel_bios_encoder_port(const struct intel_bios_encoder_data *devdata) 2432 { 2433 struct intel_display *display = devdata->display; 2434 const struct child_device_config *child = &devdata->child; 2435 enum port port; 2436 2437 port = dvo_port_to_port(display, child->dvo_port); 2438 if (port == PORT_NONE && DISPLAY_VER(display) >= 11) 2439 port = dsi_dvo_port_to_port(display, child->dvo_port); 2440 2441 return port; 2442 } 2443 2444 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate) 2445 { 2446 switch (vbt_max_link_rate) { 2447 default: 2448 case BDB_230_VBT_DP_MAX_LINK_RATE_DEF: 2449 return 0; 2450 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20: 2451 return 2000000; 2452 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5: 2453 return 1350000; 2454 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10: 2455 return 1000000; 2456 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3: 2457 return 810000; 2458 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2: 2459 return 540000; 2460 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR: 2461 return 270000; 2462 case BDB_230_VBT_DP_MAX_LINK_RATE_LBR: 2463 return 162000; 2464 } 2465 } 2466 2467 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate) 2468 { 2469 switch (vbt_max_link_rate) { 2470 default: 2471 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3: 2472 return 810000; 2473 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2: 2474 return 540000; 2475 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR: 2476 return 270000; 2477 case BDB_216_VBT_DP_MAX_LINK_RATE_LBR: 2478 return 162000; 2479 } 2480 } 2481 2482 int intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata) 2483 { 2484 if (!devdata || devdata->display->vbt.version < 216) 2485 return 0; 2486 2487 if (devdata->display->vbt.version >= 230) 2488 return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate); 2489 else 2490 return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate); 2491 } 2492 2493 int intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata) 2494 { 2495 if (!devdata || devdata->display->vbt.version < 244) 2496 return 0; 2497 2498 return devdata->child.dp_max_lane_count + 1; 2499 } 2500 2501 static void sanitize_device_type(struct intel_bios_encoder_data *devdata, 2502 enum port port) 2503 { 2504 struct intel_display *display = devdata->display; 2505 bool is_hdmi; 2506 2507 if (port != PORT_A || DISPLAY_VER(display) >= 12) 2508 return; 2509 2510 if (!intel_bios_encoder_supports_dvi(devdata)) 2511 return; 2512 2513 is_hdmi = intel_bios_encoder_supports_hdmi(devdata); 2514 2515 drm_dbg_kms(display->drm, "VBT claims port A supports DVI%s, ignoring\n", 2516 is_hdmi ? "/HDMI" : ""); 2517 2518 devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING; 2519 devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT; 2520 } 2521 2522 static void sanitize_hdmi_level_shift(struct intel_bios_encoder_data *devdata, 2523 enum port port) 2524 { 2525 struct intel_display *display = devdata->display; 2526 2527 if (!intel_bios_encoder_supports_dvi(devdata)) 2528 return; 2529 2530 /* 2531 * Some BDW machines (eg. HP Pavilion 15-ab) shipped 2532 * with a HSW VBT where the level shifter value goes 2533 * up to 11, whereas the BDW max is 9. 2534 */ 2535 if (display->platform.broadwell && devdata->child.hdmi_level_shifter_value > 9) { 2536 drm_dbg_kms(display->drm, 2537 "Bogus port %c VBT HDMI level shift %d, adjusting to %d\n", 2538 port_name(port), devdata->child.hdmi_level_shifter_value, 9); 2539 2540 devdata->child.hdmi_level_shifter_value = 9; 2541 } 2542 } 2543 2544 static bool 2545 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata) 2546 { 2547 return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT; 2548 } 2549 2550 bool 2551 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata) 2552 { 2553 return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING; 2554 } 2555 2556 bool 2557 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata) 2558 { 2559 return intel_bios_encoder_supports_dvi(devdata) && 2560 (devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0; 2561 } 2562 2563 bool 2564 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata) 2565 { 2566 return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2567 } 2568 2569 bool 2570 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata) 2571 { 2572 return intel_bios_encoder_supports_dp(devdata) && 2573 devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR; 2574 } 2575 2576 bool 2577 intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata) 2578 { 2579 return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT; 2580 } 2581 2582 bool 2583 intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data *devdata) 2584 { 2585 return devdata && HAS_LSPCON(devdata->display) && devdata->child.lspcon; 2586 } 2587 2588 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */ 2589 int intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata) 2590 { 2591 if (!devdata || devdata->display->vbt.version < 158 || 2592 DISPLAY_VER(devdata->display) >= 14) 2593 return -1; 2594 2595 return devdata->child.hdmi_level_shifter_value; 2596 } 2597 2598 int intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data *devdata) 2599 { 2600 if (!devdata || devdata->display->vbt.version < 204) 2601 return 0; 2602 2603 switch (devdata->child.hdmi_max_data_rate) { 2604 default: 2605 MISSING_CASE(devdata->child.hdmi_max_data_rate); 2606 fallthrough; 2607 case HDMI_MAX_DATA_RATE_PLATFORM: 2608 return 0; 2609 case HDMI_MAX_DATA_RATE_594: 2610 return 594000; 2611 case HDMI_MAX_DATA_RATE_340: 2612 return 340000; 2613 case HDMI_MAX_DATA_RATE_300: 2614 return 300000; 2615 case HDMI_MAX_DATA_RATE_297: 2616 return 297000; 2617 case HDMI_MAX_DATA_RATE_165: 2618 return 165000; 2619 } 2620 } 2621 2622 static bool is_port_valid(struct intel_display *display, enum port port) 2623 { 2624 /* 2625 * On some ICL SKUs port F is not present, but broken VBTs mark 2626 * the port as present. Only try to initialize port F for the 2627 * SKUs that may actually have it. 2628 */ 2629 if (port == PORT_F && display->platform.icelake) 2630 return display->platform.icelake_port_f; 2631 2632 return true; 2633 } 2634 2635 static void print_ddi_port(const struct intel_bios_encoder_data *devdata) 2636 { 2637 struct intel_display *display = devdata->display; 2638 const struct child_device_config *child = &devdata->child; 2639 bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt; 2640 int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock; 2641 enum port port; 2642 2643 port = intel_bios_encoder_port(devdata); 2644 if (port == PORT_NONE) 2645 return; 2646 2647 is_dvi = intel_bios_encoder_supports_dvi(devdata); 2648 is_dp = intel_bios_encoder_supports_dp(devdata); 2649 is_crt = intel_bios_encoder_supports_crt(devdata); 2650 is_hdmi = intel_bios_encoder_supports_hdmi(devdata); 2651 is_edp = intel_bios_encoder_supports_edp(devdata); 2652 is_dsi = intel_bios_encoder_supports_dsi(devdata); 2653 2654 supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata); 2655 supports_tbt = intel_bios_encoder_supports_tbt(devdata); 2656 2657 drm_dbg_kms(display->drm, 2658 "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d DP++:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n", 2659 port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi, 2660 intel_bios_encoder_supports_dp_dual_mode(devdata), 2661 intel_bios_encoder_is_lspcon(devdata), 2662 supports_typec_usb, supports_tbt, 2663 devdata->dsc != NULL); 2664 2665 hdmi_level_shift = intel_bios_hdmi_level_shift(devdata); 2666 if (hdmi_level_shift >= 0) { 2667 drm_dbg_kms(display->drm, 2668 "Port %c VBT HDMI level shift: %d\n", 2669 port_name(port), hdmi_level_shift); 2670 } 2671 2672 max_tmds_clock = intel_bios_hdmi_max_tmds_clock(devdata); 2673 if (max_tmds_clock) 2674 drm_dbg_kms(display->drm, 2675 "Port %c VBT HDMI max TMDS clock: %d kHz\n", 2676 port_name(port), max_tmds_clock); 2677 2678 /* I_boost config for SKL and above */ 2679 dp_boost_level = intel_bios_dp_boost_level(devdata); 2680 if (dp_boost_level) 2681 drm_dbg_kms(display->drm, 2682 "Port %c VBT (e)DP boost level: %d\n", 2683 port_name(port), dp_boost_level); 2684 2685 hdmi_boost_level = intel_bios_hdmi_boost_level(devdata); 2686 if (hdmi_boost_level) 2687 drm_dbg_kms(display->drm, 2688 "Port %c VBT HDMI boost level: %d\n", 2689 port_name(port), hdmi_boost_level); 2690 2691 dp_max_link_rate = intel_bios_dp_max_link_rate(devdata); 2692 if (dp_max_link_rate) 2693 drm_dbg_kms(display->drm, 2694 "Port %c VBT DP max link rate: %d\n", 2695 port_name(port), dp_max_link_rate); 2696 2697 /* 2698 * FIXME need to implement support for VBT 2699 * vswing/preemph tables should this ever trigger. 2700 */ 2701 drm_WARN(display->drm, child->use_vbt_vswing, 2702 "Port %c asks to use VBT vswing/preemph tables\n", 2703 port_name(port)); 2704 } 2705 2706 static void parse_ddi_port(struct intel_bios_encoder_data *devdata) 2707 { 2708 struct intel_display *display = devdata->display; 2709 enum port port; 2710 2711 port = intel_bios_encoder_port(devdata); 2712 if (port == PORT_NONE) 2713 return; 2714 2715 if (!is_port_valid(display, port)) { 2716 drm_dbg_kms(display->drm, 2717 "VBT reports port %c as supported, but that can't be true: skipping\n", 2718 port_name(port)); 2719 return; 2720 } 2721 2722 sanitize_device_type(devdata, port); 2723 sanitize_hdmi_level_shift(devdata, port); 2724 } 2725 2726 static bool has_ddi_port_info(struct intel_display *display) 2727 { 2728 return DISPLAY_VER(display) >= 5 || display->platform.g4x; 2729 } 2730 2731 static void parse_ddi_ports(struct intel_display *display) 2732 { 2733 struct intel_bios_encoder_data *devdata; 2734 2735 if (!has_ddi_port_info(display)) 2736 return; 2737 2738 list_for_each_entry(devdata, &display->vbt.display_devices, node) 2739 parse_ddi_port(devdata); 2740 2741 list_for_each_entry(devdata, &display->vbt.display_devices, node) 2742 print_ddi_port(devdata); 2743 } 2744 2745 static int child_device_expected_size(u16 version) 2746 { 2747 BUILD_BUG_ON(sizeof(struct child_device_config) < 40); 2748 2749 if (version > 256) 2750 return -ENOENT; 2751 else if (version >= 256) 2752 return 40; 2753 else if (version >= 216) 2754 return 39; 2755 else if (version >= 196) 2756 return 38; 2757 else if (version >= 195) 2758 return 37; 2759 else if (version >= 111) 2760 return LEGACY_CHILD_DEVICE_CONFIG_SIZE; 2761 else if (version >= 106) 2762 return 27; 2763 else 2764 return 22; 2765 } 2766 2767 static bool child_device_size_valid(struct intel_display *display, int size) 2768 { 2769 int expected_size; 2770 2771 expected_size = child_device_expected_size(display->vbt.version); 2772 if (expected_size < 0) { 2773 expected_size = sizeof(struct child_device_config); 2774 drm_dbg_kms(display->drm, 2775 "Expected child device config size for VBT version %u not known; assuming %d\n", 2776 display->vbt.version, expected_size); 2777 } 2778 2779 /* Flag an error for unexpected size, but continue anyway. */ 2780 if (size != expected_size) 2781 drm_err(display->drm, 2782 "Unexpected child device config size %d (expected %d for VBT version %u)\n", 2783 size, expected_size, display->vbt.version); 2784 2785 /* The legacy sized child device config is the minimum we need. */ 2786 if (size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) { 2787 drm_dbg_kms(display->drm, 2788 "Child device config size %d is too small.\n", 2789 size); 2790 return false; 2791 } 2792 2793 return true; 2794 } 2795 2796 static void 2797 parse_general_definitions(struct intel_display *display) 2798 { 2799 const struct bdb_general_definitions *defs; 2800 struct intel_bios_encoder_data *devdata; 2801 const struct child_device_config *child; 2802 int i, child_device_num; 2803 u16 block_size; 2804 int bus_pin; 2805 2806 defs = bdb_find_section(display, BDB_GENERAL_DEFINITIONS); 2807 if (!defs) { 2808 drm_dbg_kms(display->drm, 2809 "No general definition block is found, no devices defined.\n"); 2810 return; 2811 } 2812 2813 block_size = get_blocksize(defs); 2814 if (block_size < sizeof(*defs)) { 2815 drm_dbg_kms(display->drm, 2816 "General definitions block too small (%u)\n", 2817 block_size); 2818 return; 2819 } 2820 2821 bus_pin = defs->crt_ddc_gmbus_pin; 2822 drm_dbg_kms(display->drm, "crt_ddc_bus_pin: %d\n", bus_pin); 2823 if (intel_gmbus_is_valid_pin(display, bus_pin)) 2824 display->vbt.crt_ddc_pin = bus_pin; 2825 2826 if (!child_device_size_valid(display, defs->child_dev_size)) 2827 return; 2828 2829 /* get the number of child device */ 2830 child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size; 2831 2832 for (i = 0; i < child_device_num; i++) { 2833 child = child_device_ptr(defs, i); 2834 if (!child->device_type) 2835 continue; 2836 2837 drm_dbg_kms(display->drm, 2838 "Found VBT child device with type 0x%x\n", 2839 child->device_type); 2840 2841 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2842 if (!devdata) 2843 break; 2844 2845 devdata->display = display; 2846 2847 /* 2848 * Copy as much as we know (sizeof) and is available 2849 * (child_dev_size) of the child device config. Accessing the 2850 * data must depend on VBT version. 2851 */ 2852 memcpy(&devdata->child, child, 2853 min_t(size_t, defs->child_dev_size, sizeof(*child))); 2854 2855 list_add_tail(&devdata->node, &display->vbt.display_devices); 2856 } 2857 2858 if (list_empty(&display->vbt.display_devices)) 2859 drm_dbg_kms(display->drm, 2860 "no child dev is parsed from VBT\n"); 2861 } 2862 2863 /* Common defaults which may be overridden by VBT. */ 2864 static void 2865 init_vbt_defaults(struct intel_display *display) 2866 { 2867 struct drm_i915_private *i915 = to_i915(display->drm); 2868 2869 display->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC; 2870 2871 /* general features */ 2872 display->vbt.int_tv_support = 1; 2873 display->vbt.int_crt_support = 1; 2874 2875 /* driver features */ 2876 display->vbt.int_lvds_support = 1; 2877 2878 /* Default to using SSC */ 2879 display->vbt.lvds_use_ssc = 1; 2880 /* 2881 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference 2882 * clock for LVDS. 2883 */ 2884 display->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(display, 2885 !HAS_PCH_SPLIT(i915)); 2886 drm_dbg_kms(display->drm, "Set default to SSC at %d kHz\n", 2887 display->vbt.lvds_ssc_freq); 2888 } 2889 2890 /* Common defaults which may be overridden by VBT. */ 2891 static void 2892 init_vbt_panel_defaults(struct intel_panel *panel) 2893 { 2894 /* Default to having backlight */ 2895 panel->vbt.backlight.present = true; 2896 2897 /* LFP panel data */ 2898 panel->vbt.lvds_dither = true; 2899 } 2900 2901 /* Defaults to initialize only if there is no VBT. */ 2902 static void 2903 init_vbt_missing_defaults(struct intel_display *display) 2904 { 2905 unsigned int ports = DISPLAY_RUNTIME_INFO(display)->port_mask; 2906 enum port port; 2907 2908 if (!HAS_DDI(display) && !display->platform.cherryview) 2909 return; 2910 2911 for_each_port_masked(port, ports) { 2912 struct intel_bios_encoder_data *devdata; 2913 struct child_device_config *child; 2914 enum phy phy = intel_port_to_phy(display, port); 2915 2916 /* 2917 * VBT has the TypeC mode (native,TBT/USB) and we don't want 2918 * to detect it. 2919 */ 2920 if (intel_phy_is_tc(display, phy)) 2921 continue; 2922 2923 /* Create fake child device config */ 2924 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2925 if (!devdata) 2926 break; 2927 2928 devdata->display = display; 2929 child = &devdata->child; 2930 2931 if (port == PORT_F) 2932 child->dvo_port = DVO_PORT_HDMIF; 2933 else if (port == PORT_E) 2934 child->dvo_port = DVO_PORT_HDMIE; 2935 else 2936 child->dvo_port = DVO_PORT_HDMIA + port; 2937 2938 if (port != PORT_A && port != PORT_E) 2939 child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING; 2940 2941 if (port != PORT_E) 2942 child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2943 2944 if (port == PORT_A) 2945 child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR; 2946 2947 list_add_tail(&devdata->node, &display->vbt.display_devices); 2948 2949 drm_dbg_kms(display->drm, 2950 "Generating default VBT child device with type 0x%04x on port %c\n", 2951 child->device_type, port_name(port)); 2952 } 2953 2954 /* Bypass some minimum baseline VBT version checks */ 2955 display->vbt.version = 155; 2956 } 2957 2958 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt) 2959 { 2960 const void *_vbt = vbt; 2961 2962 return _vbt + vbt->bdb_offset; 2963 } 2964 2965 static const char vbt_signature[] = "$VBT"; 2966 static const int vbt_signature_len = 4; 2967 2968 /** 2969 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT 2970 * @display: display device 2971 * @buf: pointer to a buffer to validate 2972 * @size: size of the buffer 2973 * 2974 * Returns true on valid VBT. 2975 */ 2976 bool intel_bios_is_valid_vbt(struct intel_display *display, 2977 const void *buf, size_t size) 2978 { 2979 const struct vbt_header *vbt = buf; 2980 const struct bdb_header *bdb; 2981 2982 if (!vbt) 2983 return false; 2984 2985 if (sizeof(struct vbt_header) > size) { 2986 drm_dbg_kms(display->drm, "VBT header incomplete\n"); 2987 return false; 2988 } 2989 2990 if (memcmp(vbt->signature, vbt_signature, vbt_signature_len)) { 2991 drm_dbg_kms(display->drm, "VBT invalid signature\n"); 2992 return false; 2993 } 2994 2995 if (vbt->vbt_size > size) { 2996 drm_dbg_kms(display->drm, 2997 "VBT incomplete (vbt_size overflows)\n"); 2998 return false; 2999 } 3000 3001 size = vbt->vbt_size; 3002 3003 if (range_overflows_t(size_t, 3004 vbt->bdb_offset, 3005 sizeof(struct bdb_header), 3006 size)) { 3007 drm_dbg_kms(display->drm, "BDB header incomplete\n"); 3008 return false; 3009 } 3010 3011 bdb = get_bdb_header(vbt); 3012 if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) { 3013 drm_dbg_kms(display->drm, "BDB incomplete\n"); 3014 return false; 3015 } 3016 3017 return vbt; 3018 } 3019 3020 static struct vbt_header *firmware_get_vbt(struct intel_display *display, 3021 size_t *size) 3022 { 3023 struct vbt_header *vbt = NULL; 3024 const struct firmware *fw = NULL; 3025 const char *name = display->params.vbt_firmware; 3026 int ret; 3027 3028 if (!name || !*name) 3029 return NULL; 3030 3031 ret = request_firmware(&fw, name, display->drm->dev); 3032 if (ret) { 3033 drm_err(display->drm, 3034 "Requesting VBT firmware \"%s\" failed (%d)\n", 3035 name, ret); 3036 return NULL; 3037 } 3038 3039 if (intel_bios_is_valid_vbt(display, fw->data, fw->size)) { 3040 vbt = kmemdup(fw->data, fw->size, GFP_KERNEL); 3041 if (vbt) { 3042 drm_dbg_kms(display->drm, 3043 "Found valid VBT firmware \"%s\"\n", name); 3044 if (size) 3045 *size = fw->size; 3046 } 3047 } else { 3048 drm_dbg_kms(display->drm, "Invalid VBT firmware \"%s\"\n", 3049 name); 3050 } 3051 3052 release_firmware(fw); 3053 3054 return vbt; 3055 } 3056 3057 static struct vbt_header *oprom_get_vbt(struct intel_display *display, 3058 struct intel_rom *rom, 3059 size_t *size, const char *type) 3060 { 3061 struct vbt_header *vbt; 3062 size_t vbt_size; 3063 loff_t offset; 3064 3065 if (!rom) 3066 return NULL; 3067 3068 BUILD_BUG_ON(vbt_signature_len != sizeof(vbt_signature) - 1); 3069 BUILD_BUG_ON(vbt_signature_len != sizeof(u32)); 3070 3071 offset = intel_rom_find(rom, *(const u32 *)vbt_signature); 3072 if (offset < 0) 3073 goto err_free_rom; 3074 3075 if (sizeof(struct vbt_header) > intel_rom_size(rom) - offset) { 3076 drm_dbg_kms(display->drm, "VBT header incomplete\n"); 3077 goto err_free_rom; 3078 } 3079 3080 BUILD_BUG_ON(sizeof(vbt->vbt_size) != sizeof(u16)); 3081 3082 vbt_size = intel_rom_read16(rom, offset + offsetof(struct vbt_header, vbt_size)); 3083 if (vbt_size > intel_rom_size(rom) - offset) { 3084 drm_dbg_kms(display->drm, "VBT incomplete (vbt_size overflows)\n"); 3085 goto err_free_rom; 3086 } 3087 3088 vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL); 3089 if (!vbt) 3090 goto err_free_rom; 3091 3092 intel_rom_read_block(rom, vbt, offset, vbt_size); 3093 3094 if (!intel_bios_is_valid_vbt(display, vbt, vbt_size)) 3095 goto err_free_vbt; 3096 3097 drm_dbg_kms(display->drm, "Found valid VBT in %s\n", type); 3098 3099 if (size) 3100 *size = vbt_size; 3101 3102 intel_rom_free(rom); 3103 3104 return vbt; 3105 3106 err_free_vbt: 3107 kfree(vbt); 3108 err_free_rom: 3109 intel_rom_free(rom); 3110 return NULL; 3111 } 3112 3113 static const struct vbt_header *intel_bios_get_vbt(struct intel_display *display, 3114 size_t *sizep) 3115 { 3116 struct drm_i915_private *i915 = to_i915(display->drm); 3117 const struct vbt_header *vbt = NULL; 3118 intel_wakeref_t wakeref; 3119 3120 vbt = firmware_get_vbt(display, sizep); 3121 3122 if (!vbt) 3123 vbt = intel_opregion_get_vbt(display, sizep); 3124 3125 /* 3126 * If the OpRegion does not have VBT, look in SPI flash 3127 * through MMIO or PCI mapping 3128 */ 3129 if (!vbt && IS_DGFX(i915)) 3130 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 3131 vbt = oprom_get_vbt(display, intel_rom_spi(i915), sizep, "SPI flash"); 3132 3133 if (!vbt) 3134 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 3135 vbt = oprom_get_vbt(display, intel_rom_pci(i915), sizep, "PCI ROM"); 3136 3137 return vbt; 3138 } 3139 3140 /** 3141 * intel_bios_init - find VBT and initialize settings from the BIOS 3142 * @display: display device instance 3143 * 3144 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT 3145 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also 3146 * initialize some defaults if the VBT is not present at all. 3147 */ 3148 void intel_bios_init(struct intel_display *display) 3149 { 3150 const struct vbt_header *vbt; 3151 const struct bdb_header *bdb; 3152 3153 INIT_LIST_HEAD(&display->vbt.display_devices); 3154 INIT_LIST_HEAD(&display->vbt.bdb_blocks); 3155 3156 if (!HAS_DISPLAY(display)) { 3157 drm_dbg_kms(display->drm, 3158 "Skipping VBT init due to disabled display.\n"); 3159 return; 3160 } 3161 3162 init_vbt_defaults(display); 3163 3164 vbt = intel_bios_get_vbt(display, NULL); 3165 3166 if (!vbt) 3167 goto out; 3168 3169 bdb = get_bdb_header(vbt); 3170 display->vbt.version = bdb->version; 3171 3172 drm_dbg_kms(display->drm, 3173 "VBT signature \"%.*s\", BDB version %d\n", 3174 (int)sizeof(vbt->signature), vbt->signature, 3175 display->vbt.version); 3176 3177 init_bdb_blocks(display, bdb); 3178 3179 /* Grab useful general definitions */ 3180 parse_general_features(display); 3181 parse_general_definitions(display); 3182 parse_driver_features(display); 3183 3184 /* Depends on child device list */ 3185 parse_compression_parameters(display); 3186 3187 out: 3188 if (!vbt) { 3189 drm_info(display->drm, 3190 "Failed to find VBIOS tables (VBT)\n"); 3191 init_vbt_missing_defaults(display); 3192 } 3193 3194 /* Further processing on pre-parsed or generated child device data */ 3195 parse_sdvo_device_mapping(display); 3196 parse_ddi_ports(display); 3197 3198 kfree(vbt); 3199 } 3200 3201 static void intel_bios_init_panel(struct intel_display *display, 3202 struct intel_panel *panel, 3203 const struct intel_bios_encoder_data *devdata, 3204 const struct drm_edid *drm_edid, 3205 bool use_fallback) 3206 { 3207 /* already have it? */ 3208 if (panel->vbt.panel_type >= 0) { 3209 drm_WARN_ON(display->drm, !use_fallback); 3210 return; 3211 } 3212 3213 panel->vbt.panel_type = get_panel_type(display, devdata, 3214 drm_edid, use_fallback); 3215 if (panel->vbt.panel_type < 0) { 3216 drm_WARN_ON(display->drm, use_fallback); 3217 return; 3218 } 3219 3220 init_vbt_panel_defaults(panel); 3221 3222 parse_panel_options(display, panel); 3223 parse_generic_dtd(display, panel); 3224 parse_lfp_data(display, panel); 3225 parse_lfp_backlight(display, panel); 3226 parse_sdvo_lvds_data(display, panel); 3227 parse_panel_driver_features(display, panel); 3228 parse_power_conservation_features(display, panel); 3229 parse_edp(display, panel); 3230 parse_psr(display, panel); 3231 parse_mipi_config(display, panel); 3232 parse_mipi_sequence(display, panel); 3233 } 3234 3235 void intel_bios_init_panel_early(struct intel_display *display, 3236 struct intel_panel *panel, 3237 const struct intel_bios_encoder_data *devdata) 3238 { 3239 intel_bios_init_panel(display, panel, devdata, NULL, false); 3240 } 3241 3242 void intel_bios_init_panel_late(struct intel_display *display, 3243 struct intel_panel *panel, 3244 const struct intel_bios_encoder_data *devdata, 3245 const struct drm_edid *drm_edid) 3246 { 3247 intel_bios_init_panel(display, panel, devdata, drm_edid, true); 3248 } 3249 3250 /** 3251 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init() 3252 * @display: display device instance 3253 */ 3254 void intel_bios_driver_remove(struct intel_display *display) 3255 { 3256 struct intel_bios_encoder_data *devdata, *nd; 3257 struct bdb_block_entry *entry, *ne; 3258 3259 list_for_each_entry_safe(devdata, nd, &display->vbt.display_devices, 3260 node) { 3261 list_del(&devdata->node); 3262 kfree(devdata->dsc); 3263 kfree(devdata); 3264 } 3265 3266 list_for_each_entry_safe(entry, ne, &display->vbt.bdb_blocks, node) { 3267 list_del(&entry->node); 3268 kfree(entry); 3269 } 3270 } 3271 3272 void intel_bios_fini_panel(struct intel_panel *panel) 3273 { 3274 kfree(panel->vbt.sdvo_lvds_vbt_mode); 3275 panel->vbt.sdvo_lvds_vbt_mode = NULL; 3276 kfree(panel->vbt.lfp_vbt_mode); 3277 panel->vbt.lfp_vbt_mode = NULL; 3278 kfree(panel->vbt.dsi.data); 3279 panel->vbt.dsi.data = NULL; 3280 kfree(panel->vbt.dsi.pps); 3281 panel->vbt.dsi.pps = NULL; 3282 kfree(panel->vbt.dsi.config); 3283 panel->vbt.dsi.config = NULL; 3284 kfree(panel->vbt.dsi.deassert_seq); 3285 panel->vbt.dsi.deassert_seq = NULL; 3286 } 3287 3288 /** 3289 * intel_bios_is_tv_present - is integrated TV present in VBT 3290 * @display: display device instance 3291 * 3292 * Return true if TV is present. If no child devices were parsed from VBT, 3293 * assume TV is present. 3294 */ 3295 bool intel_bios_is_tv_present(struct intel_display *display) 3296 { 3297 const struct intel_bios_encoder_data *devdata; 3298 3299 if (!display->vbt.int_tv_support) 3300 return false; 3301 3302 if (list_empty(&display->vbt.display_devices)) 3303 return true; 3304 3305 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3306 const struct child_device_config *child = &devdata->child; 3307 3308 /* 3309 * If the device type is not TV, continue. 3310 */ 3311 switch (child->device_type) { 3312 case DEVICE_TYPE_INT_TV: 3313 case DEVICE_TYPE_TV: 3314 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE: 3315 break; 3316 default: 3317 continue; 3318 } 3319 /* Only when the addin_offset is non-zero, it is regarded 3320 * as present. 3321 */ 3322 if (child->addin_offset) 3323 return true; 3324 } 3325 3326 return false; 3327 } 3328 3329 /** 3330 * intel_bios_is_lvds_present - is LVDS present in VBT 3331 * @display: display device instance 3332 * @i2c_pin: i2c pin for LVDS if present 3333 * 3334 * Return true if LVDS is present. If no child devices were parsed from VBT, 3335 * assume LVDS is present. 3336 */ 3337 bool intel_bios_is_lvds_present(struct intel_display *display, u8 *i2c_pin) 3338 { 3339 const struct intel_bios_encoder_data *devdata; 3340 3341 if (list_empty(&display->vbt.display_devices)) 3342 return true; 3343 3344 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3345 const struct child_device_config *child = &devdata->child; 3346 3347 /* If the device type is not LFP, continue. 3348 * We have to check both the new identifiers as well as the 3349 * old for compatibility with some BIOSes. 3350 */ 3351 if (child->device_type != DEVICE_TYPE_INT_LFP && 3352 child->device_type != DEVICE_TYPE_LFP) 3353 continue; 3354 3355 if (intel_gmbus_is_valid_pin(display, child->i2c_pin)) 3356 *i2c_pin = child->i2c_pin; 3357 3358 /* However, we cannot trust the BIOS writers to populate 3359 * the VBT correctly. Since LVDS requires additional 3360 * information from AIM blocks, a non-zero addin offset is 3361 * a good indicator that the LVDS is actually present. 3362 */ 3363 if (child->addin_offset) 3364 return true; 3365 3366 /* But even then some BIOS writers perform some black magic 3367 * and instantiate the device without reference to any 3368 * additional data. Trust that if the VBT was written into 3369 * the OpRegion then they have validated the LVDS's existence. 3370 */ 3371 return intel_opregion_vbt_present(display); 3372 } 3373 3374 return false; 3375 } 3376 3377 /** 3378 * intel_bios_is_port_present - is the specified digital port present 3379 * @display: display device instance 3380 * @port: port to check 3381 * 3382 * Return true if the device in %port is present. 3383 */ 3384 bool intel_bios_is_port_present(struct intel_display *display, enum port port) 3385 { 3386 const struct intel_bios_encoder_data *devdata; 3387 3388 if (WARN_ON(!has_ddi_port_info(display))) 3389 return true; 3390 3391 if (!is_port_valid(display, port)) 3392 return false; 3393 3394 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3395 const struct child_device_config *child = &devdata->child; 3396 3397 if (dvo_port_to_port(display, child->dvo_port) == port) 3398 return true; 3399 } 3400 3401 return false; 3402 } 3403 3404 bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata) 3405 { 3406 const struct child_device_config *child = &devdata->child; 3407 3408 if (!devdata) 3409 return false; 3410 3411 if (!intel_bios_encoder_supports_dp(devdata) || 3412 !intel_bios_encoder_supports_hdmi(devdata)) 3413 return false; 3414 3415 if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA) 3416 return true; 3417 3418 /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */ 3419 if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA && 3420 child->aux_channel != 0) 3421 return true; 3422 3423 return false; 3424 } 3425 3426 /** 3427 * intel_bios_is_dsi_present - is DSI present in VBT 3428 * @display: display device instance 3429 * @port: port for DSI if present 3430 * 3431 * Return true if DSI is present, and return the port in %port. 3432 */ 3433 bool intel_bios_is_dsi_present(struct intel_display *display, 3434 enum port *port) 3435 { 3436 const struct intel_bios_encoder_data *devdata; 3437 3438 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3439 const struct child_device_config *child = &devdata->child; 3440 u8 dvo_port = child->dvo_port; 3441 3442 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 3443 continue; 3444 3445 if (dsi_dvo_port_to_port(display, dvo_port) == PORT_NONE) { 3446 drm_dbg_kms(display->drm, 3447 "VBT has unsupported DSI port %c\n", 3448 port_name(dvo_port - DVO_PORT_MIPIA)); 3449 continue; 3450 } 3451 3452 if (port) 3453 *port = dsi_dvo_port_to_port(display, dvo_port); 3454 return true; 3455 } 3456 3457 return false; 3458 } 3459 3460 static void fill_dsc(struct intel_crtc_state *crtc_state, 3461 struct dsc_compression_parameters_entry *dsc, 3462 int dsc_max_bpc) 3463 { 3464 struct intel_display *display = to_intel_display(crtc_state); 3465 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; 3466 int bpc = 8; 3467 3468 vdsc_cfg->dsc_version_major = dsc->version_major; 3469 vdsc_cfg->dsc_version_minor = dsc->version_minor; 3470 3471 if (dsc->support_12bpc && dsc_max_bpc >= 12) 3472 bpc = 12; 3473 else if (dsc->support_10bpc && dsc_max_bpc >= 10) 3474 bpc = 10; 3475 else if (dsc->support_8bpc && dsc_max_bpc >= 8) 3476 bpc = 8; 3477 else 3478 drm_dbg_kms(display->drm, "VBT: Unsupported BPC %d for DCS\n", 3479 dsc_max_bpc); 3480 3481 crtc_state->pipe_bpp = bpc * 3; 3482 3483 crtc_state->dsc.compressed_bpp_x16 = fxp_q4_from_int(min(crtc_state->pipe_bpp, 3484 VBT_DSC_MAX_BPP(dsc->max_bpp))); 3485 3486 /* 3487 * FIXME: This is ugly, and slice count should take DSC engine 3488 * throughput etc. into account. 3489 * 3490 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices. 3491 */ 3492 if (dsc->slices_per_line & BIT(2)) { 3493 crtc_state->dsc.slice_count = 4; 3494 } else if (dsc->slices_per_line & BIT(1)) { 3495 crtc_state->dsc.slice_count = 2; 3496 } else { 3497 /* FIXME */ 3498 if (!(dsc->slices_per_line & BIT(0))) 3499 drm_dbg_kms(display->drm, 3500 "VBT: Unsupported DSC slice count for DSI\n"); 3501 3502 crtc_state->dsc.slice_count = 1; 3503 } 3504 3505 if (crtc_state->hw.adjusted_mode.crtc_hdisplay % 3506 crtc_state->dsc.slice_count != 0) 3507 drm_dbg_kms(display->drm, 3508 "VBT: DSC hdisplay %d not divisible by slice count %d\n", 3509 crtc_state->hw.adjusted_mode.crtc_hdisplay, 3510 crtc_state->dsc.slice_count); 3511 3512 /* 3513 * The VBT rc_buffer_block_size and rc_buffer_size definitions 3514 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63. 3515 */ 3516 vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size, 3517 dsc->rc_buffer_size); 3518 3519 /* FIXME: DSI spec says bpc + 1 for this one */ 3520 vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth); 3521 3522 vdsc_cfg->block_pred_enable = dsc->block_prediction_enable; 3523 3524 vdsc_cfg->slice_height = dsc->slice_height; 3525 } 3526 3527 /* FIXME: initially DSI specific */ 3528 bool intel_bios_get_dsc_params(struct intel_encoder *encoder, 3529 struct intel_crtc_state *crtc_state, 3530 int dsc_max_bpc) 3531 { 3532 struct intel_display *display = to_intel_display(encoder); 3533 const struct intel_bios_encoder_data *devdata; 3534 3535 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3536 const struct child_device_config *child = &devdata->child; 3537 3538 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 3539 continue; 3540 3541 if (dsi_dvo_port_to_port(display, child->dvo_port) == encoder->port) { 3542 if (!devdata->dsc) 3543 return false; 3544 3545 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc); 3546 3547 return true; 3548 } 3549 } 3550 3551 return false; 3552 } 3553 3554 static const u8 adlp_aux_ch_map[] = { 3555 [AUX_CH_A] = DP_AUX_A, 3556 [AUX_CH_B] = DP_AUX_B, 3557 [AUX_CH_C] = DP_AUX_C, 3558 [AUX_CH_D_XELPD] = DP_AUX_D, 3559 [AUX_CH_E_XELPD] = DP_AUX_E, 3560 [AUX_CH_USBC1] = DP_AUX_F, 3561 [AUX_CH_USBC2] = DP_AUX_G, 3562 [AUX_CH_USBC3] = DP_AUX_H, 3563 [AUX_CH_USBC4] = DP_AUX_I, 3564 }; 3565 3566 /* 3567 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E 3568 * map to DDI A,TC1,TC2,TC3,TC4 respectively. 3569 */ 3570 static const u8 adls_aux_ch_map[] = { 3571 [AUX_CH_A] = DP_AUX_A, 3572 [AUX_CH_USBC1] = DP_AUX_B, 3573 [AUX_CH_USBC2] = DP_AUX_C, 3574 [AUX_CH_USBC3] = DP_AUX_D, 3575 [AUX_CH_USBC4] = DP_AUX_E, 3576 }; 3577 3578 /* 3579 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D 3580 * map to DDI A,B,TC1,TC2 respectively. 3581 */ 3582 static const u8 rkl_aux_ch_map[] = { 3583 [AUX_CH_A] = DP_AUX_A, 3584 [AUX_CH_B] = DP_AUX_B, 3585 [AUX_CH_USBC1] = DP_AUX_C, 3586 [AUX_CH_USBC2] = DP_AUX_D, 3587 }; 3588 3589 static const u8 direct_aux_ch_map[] = { 3590 [AUX_CH_A] = DP_AUX_A, 3591 [AUX_CH_B] = DP_AUX_B, 3592 [AUX_CH_C] = DP_AUX_C, 3593 [AUX_CH_D] = DP_AUX_D, /* aka AUX_CH_USBC1 */ 3594 [AUX_CH_E] = DP_AUX_E, /* aka AUX_CH_USBC2 */ 3595 [AUX_CH_F] = DP_AUX_F, /* aka AUX_CH_USBC3 */ 3596 [AUX_CH_G] = DP_AUX_G, /* aka AUX_CH_USBC4 */ 3597 [AUX_CH_H] = DP_AUX_H, /* aka AUX_CH_USBC5 */ 3598 [AUX_CH_I] = DP_AUX_I, /* aka AUX_CH_USBC6 */ 3599 }; 3600 3601 static enum aux_ch map_aux_ch(struct intel_display *display, u8 aux_channel) 3602 { 3603 const u8 *aux_ch_map; 3604 int i, n_entries; 3605 3606 if (DISPLAY_VER(display) >= 13) { 3607 aux_ch_map = adlp_aux_ch_map; 3608 n_entries = ARRAY_SIZE(adlp_aux_ch_map); 3609 } else if (display->platform.alderlake_s) { 3610 aux_ch_map = adls_aux_ch_map; 3611 n_entries = ARRAY_SIZE(adls_aux_ch_map); 3612 } else if (display->platform.dg1 || display->platform.rocketlake) { 3613 aux_ch_map = rkl_aux_ch_map; 3614 n_entries = ARRAY_SIZE(rkl_aux_ch_map); 3615 } else { 3616 aux_ch_map = direct_aux_ch_map; 3617 n_entries = ARRAY_SIZE(direct_aux_ch_map); 3618 } 3619 3620 for (i = 0; i < n_entries; i++) { 3621 if (aux_ch_map[i] == aux_channel) 3622 return i; 3623 } 3624 3625 drm_dbg_kms(display->drm, 3626 "Ignoring alternate AUX CH: VBT claims AUX 0x%x, which is not valid for this platform\n", 3627 aux_channel); 3628 3629 return AUX_CH_NONE; 3630 } 3631 3632 enum aux_ch intel_bios_dp_aux_ch(const struct intel_bios_encoder_data *devdata) 3633 { 3634 if (!devdata || !devdata->child.aux_channel) 3635 return AUX_CH_NONE; 3636 3637 return map_aux_ch(devdata->display, devdata->child.aux_channel); 3638 } 3639 3640 bool intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data *devdata) 3641 { 3642 struct intel_display *display; 3643 u8 aux_channel; 3644 int count = 0; 3645 3646 if (!devdata || !devdata->child.aux_channel) 3647 return false; 3648 3649 display = devdata->display; 3650 aux_channel = devdata->child.aux_channel; 3651 3652 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3653 if (intel_bios_encoder_supports_dp(devdata) && 3654 aux_channel == devdata->child.aux_channel) 3655 count++; 3656 } 3657 3658 return count > 1; 3659 } 3660 3661 int intel_bios_dp_boost_level(const struct intel_bios_encoder_data *devdata) 3662 { 3663 if (!devdata || devdata->display->vbt.version < 196 || !devdata->child.iboost) 3664 return 0; 3665 3666 return translate_iboost(devdata->display, devdata->child.dp_iboost_level); 3667 } 3668 3669 int intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data *devdata) 3670 { 3671 if (!devdata || devdata->display->vbt.version < 196 || !devdata->child.iboost) 3672 return 0; 3673 3674 return translate_iboost(devdata->display, devdata->child.hdmi_iboost_level); 3675 } 3676 3677 int intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data *devdata) 3678 { 3679 if (!devdata || !devdata->child.ddc_pin) 3680 return 0; 3681 3682 return map_ddc_pin(devdata->display, devdata->child.ddc_pin); 3683 } 3684 3685 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata) 3686 { 3687 return devdata->display->vbt.version >= 195 && devdata->child.dp_usb_type_c; 3688 } 3689 3690 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata) 3691 { 3692 return devdata->display->vbt.version >= 209 && devdata->child.tbt; 3693 } 3694 3695 bool intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data *devdata) 3696 { 3697 return devdata && devdata->child.lane_reversal; 3698 } 3699 3700 bool intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data *devdata) 3701 { 3702 return devdata && devdata->child.hpd_invert; 3703 } 3704 3705 const struct intel_bios_encoder_data * 3706 intel_bios_encoder_data_lookup(struct intel_display *display, enum port port) 3707 { 3708 struct intel_bios_encoder_data *devdata; 3709 3710 list_for_each_entry(devdata, &display->vbt.display_devices, node) { 3711 if (intel_bios_encoder_port(devdata) == port) 3712 return devdata; 3713 } 3714 3715 return NULL; 3716 } 3717 3718 void intel_bios_for_each_encoder(struct intel_display *display, 3719 void (*func)(struct intel_display *display, 3720 const struct intel_bios_encoder_data *devdata)) 3721 { 3722 struct intel_bios_encoder_data *devdata; 3723 3724 list_for_each_entry(devdata, &display->vbt.display_devices, node) 3725 func(display, devdata); 3726 } 3727 3728 static int intel_bios_vbt_show(struct seq_file *m, void *unused) 3729 { 3730 struct intel_display *display = m->private; 3731 const void *vbt; 3732 size_t vbt_size; 3733 3734 vbt = intel_bios_get_vbt(display, &vbt_size); 3735 3736 if (vbt) { 3737 seq_write(m, vbt, vbt_size); 3738 kfree(vbt); 3739 } 3740 3741 return 0; 3742 } 3743 3744 DEFINE_SHOW_ATTRIBUTE(intel_bios_vbt); 3745 3746 void intel_bios_debugfs_register(struct intel_display *display) 3747 { 3748 struct drm_minor *minor = display->drm->primary; 3749 3750 debugfs_create_file("i915_vbt", 0444, minor->debugfs_root, 3751 display, &intel_bios_vbt_fops); 3752 } 3753