1 /*
2 * Copyright © 2006 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <linux/firmware.h>
29
30 #include <drm/display/drm_dp_helper.h>
31 #include <drm/display/drm_dsc_helper.h>
32 #include <drm/drm_edid.h>
33 #include <drm/drm_fixed.h>
34
35 #include "i915_drv.h"
36 #include "i915_reg.h"
37 #include "intel_display.h"
38 #include "intel_display_types.h"
39 #include "intel_gmbus.h"
40 #include "intel_uncore.h"
41
42 #define _INTEL_BIOS_PRIVATE
43 #include "intel_vbt_defs.h"
44
45 /**
46 * DOC: Video BIOS Table (VBT)
47 *
48 * The Video BIOS Table, or VBT, provides platform and board specific
49 * configuration information to the driver that is not discoverable or available
50 * through other means. The configuration is mostly related to display
51 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
52 * the PCI ROM.
53 *
54 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
55 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
56 * contain the actual configuration information. The VBT Header, and thus the
57 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
58 * BDB Header. The data blocks are concatenated after the BDB Header. The data
59 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
60 * data. (Block 53, the MIPI Sequence Block is an exception.)
61 *
62 * The driver parses the VBT during load. The relevant information is stored in
63 * driver private data for ease of use, and the actual VBT is not read after
64 * that.
65 */
66
67 /* Wrapper for VBT child device config */
68 struct intel_bios_encoder_data {
69 struct intel_display *display;
70
71 struct child_device_config child;
72 struct dsc_compression_parameters_entry *dsc;
73 struct list_head node;
74 };
75
76 #define TARGET_ADDR1 0x70
77 #define TARGET_ADDR2 0x72
78
79 /* Get BDB block size given a pointer to Block ID. */
_get_blocksize(const u8 * block_base)80 static u32 _get_blocksize(const u8 *block_base)
81 {
82 /* The MIPI Sequence Block v3+ has a separate size field. */
83 if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
84 return *((const u32 *)(block_base + 4));
85 else
86 return *((const u16 *)(block_base + 1));
87 }
88
89 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
get_blocksize(const void * block_data)90 static u32 get_blocksize(const void *block_data)
91 {
92 return _get_blocksize(block_data - 3);
93 }
94
95 static const void *
find_raw_section(const void * _bdb,enum bdb_block_id section_id)96 find_raw_section(const void *_bdb, enum bdb_block_id section_id)
97 {
98 const struct bdb_header *bdb = _bdb;
99 const u8 *base = _bdb;
100 int index = 0;
101 u32 total, current_size;
102 enum bdb_block_id current_id;
103
104 /* skip to first section */
105 index += bdb->header_size;
106 total = bdb->bdb_size;
107
108 /* walk the sections looking for section_id */
109 while (index + 3 < total) {
110 current_id = *(base + index);
111 current_size = _get_blocksize(base + index);
112 index += 3;
113
114 if (index + current_size > total)
115 return NULL;
116
117 if (current_id == section_id)
118 return base + index;
119
120 index += current_size;
121 }
122
123 return NULL;
124 }
125
126 /*
127 * Offset from the start of BDB to the start of the
128 * block data (just past the block header).
129 */
raw_block_offset(const void * bdb,enum bdb_block_id section_id)130 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id)
131 {
132 const void *block;
133
134 block = find_raw_section(bdb, section_id);
135 if (!block)
136 return 0;
137
138 return block - bdb;
139 }
140
141 struct bdb_block_entry {
142 struct list_head node;
143 enum bdb_block_id section_id;
144 u8 data[];
145 };
146
147 static const void *
bdb_find_section(struct intel_display * display,enum bdb_block_id section_id)148 bdb_find_section(struct intel_display *display,
149 enum bdb_block_id section_id)
150 {
151 struct bdb_block_entry *entry;
152
153 list_for_each_entry(entry, &display->vbt.bdb_blocks, node) {
154 if (entry->section_id == section_id)
155 return entry->data + 3;
156 }
157
158 return NULL;
159 }
160
161 static const struct {
162 enum bdb_block_id section_id;
163 size_t min_size;
164 } bdb_blocks[] = {
165 { .section_id = BDB_GENERAL_FEATURES,
166 .min_size = sizeof(struct bdb_general_features), },
167 { .section_id = BDB_GENERAL_DEFINITIONS,
168 .min_size = sizeof(struct bdb_general_definitions), },
169 { .section_id = BDB_PSR,
170 .min_size = sizeof(struct bdb_psr), },
171 { .section_id = BDB_DRIVER_FEATURES,
172 .min_size = sizeof(struct bdb_driver_features), },
173 { .section_id = BDB_SDVO_LVDS_OPTIONS,
174 .min_size = sizeof(struct bdb_sdvo_lvds_options), },
175 { .section_id = BDB_SDVO_LVDS_DTD,
176 .min_size = sizeof(struct bdb_sdvo_lvds_dtd), },
177 { .section_id = BDB_EDP,
178 .min_size = sizeof(struct bdb_edp), },
179 { .section_id = BDB_LFP_OPTIONS,
180 .min_size = sizeof(struct bdb_lfp_options), },
181 /*
182 * BDB_LFP_DATA depends on BDB_LFP_DATA_PTRS,
183 * so keep the two ordered.
184 */
185 { .section_id = BDB_LFP_DATA_PTRS,
186 .min_size = sizeof(struct bdb_lfp_data_ptrs), },
187 { .section_id = BDB_LFP_DATA,
188 .min_size = 0, /* special case */ },
189 { .section_id = BDB_LFP_BACKLIGHT,
190 .min_size = sizeof(struct bdb_lfp_backlight), },
191 { .section_id = BDB_LFP_POWER,
192 .min_size = sizeof(struct bdb_lfp_power), },
193 { .section_id = BDB_MIPI_CONFIG,
194 .min_size = sizeof(struct bdb_mipi_config), },
195 { .section_id = BDB_MIPI_SEQUENCE,
196 .min_size = sizeof(struct bdb_mipi_sequence) },
197 { .section_id = BDB_COMPRESSION_PARAMETERS,
198 .min_size = sizeof(struct bdb_compression_parameters), },
199 { .section_id = BDB_GENERIC_DTD,
200 .min_size = sizeof(struct bdb_generic_dtd), },
201 };
202
lfp_data_min_size(struct intel_display * display)203 static size_t lfp_data_min_size(struct intel_display *display)
204 {
205 const struct bdb_lfp_data_ptrs *ptrs;
206 size_t size;
207
208 ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS);
209 if (!ptrs)
210 return 0;
211
212 size = sizeof(struct bdb_lfp_data);
213 if (ptrs->panel_name.table_size)
214 size = max(size, ptrs->panel_name.offset +
215 sizeof(struct bdb_lfp_data_tail));
216
217 return size;
218 }
219
validate_lfp_data_ptrs(const void * bdb,const struct bdb_lfp_data_ptrs * ptrs)220 static bool validate_lfp_data_ptrs(const void *bdb,
221 const struct bdb_lfp_data_ptrs *ptrs)
222 {
223 int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size;
224 int data_block_size, lfp_data_size;
225 const void *data_block;
226 int i;
227
228 data_block = find_raw_section(bdb, BDB_LFP_DATA);
229 if (!data_block)
230 return false;
231
232 data_block_size = get_blocksize(data_block);
233 if (data_block_size == 0)
234 return false;
235
236 /* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */
237 if (ptrs->num_entries != 3)
238 return false;
239
240 fp_timing_size = ptrs->ptr[0].fp_timing.table_size;
241 dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size;
242 panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size;
243 panel_name_size = ptrs->panel_name.table_size;
244
245 /* fp_timing has variable size */
246 if (fp_timing_size < 32 ||
247 dvo_timing_size != sizeof(struct bdb_edid_dtd) ||
248 panel_pnp_id_size != sizeof(struct bdb_edid_pnp_id))
249 return false;
250
251 /* panel_name is not present in old VBTs */
252 if (panel_name_size != 0 &&
253 panel_name_size != sizeof(struct bdb_edid_product_name))
254 return false;
255
256 lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset;
257 if (16 * lfp_data_size > data_block_size)
258 return false;
259
260 /* make sure the table entries have uniform size */
261 for (i = 1; i < 16; i++) {
262 if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size ||
263 ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size ||
264 ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size)
265 return false;
266
267 if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size ||
268 ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size ||
269 ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size)
270 return false;
271 }
272
273 /*
274 * Except for vlv/chv machines all real VBTs seem to have 6
275 * unaccounted bytes in the fp_timing table. And it doesn't
276 * appear to be a really intentional hole as the fp_timing
277 * 0xffff terminator is always within those 6 missing bytes.
278 */
279 if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size)
280 fp_timing_size += 6;
281
282 if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size)
283 return false;
284
285 if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset ||
286 ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset ||
287 ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size)
288 return false;
289
290 /* make sure the tables fit inside the data block */
291 for (i = 0; i < 16; i++) {
292 if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size ||
293 ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size ||
294 ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size)
295 return false;
296 }
297
298 if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size)
299 return false;
300
301 /* make sure fp_timing terminators are present at expected locations */
302 for (i = 0; i < 16; i++) {
303 const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset +
304 fp_timing_size - 2;
305
306 if (*t != 0xffff)
307 return false;
308 }
309
310 return true;
311 }
312
313 /* make the data table offsets relative to the data block */
fixup_lfp_data_ptrs(const void * bdb,void * ptrs_block)314 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block)
315 {
316 struct bdb_lfp_data_ptrs *ptrs = ptrs_block;
317 u32 offset;
318 int i;
319
320 offset = raw_block_offset(bdb, BDB_LFP_DATA);
321
322 for (i = 0; i < 16; i++) {
323 if (ptrs->ptr[i].fp_timing.offset < offset ||
324 ptrs->ptr[i].dvo_timing.offset < offset ||
325 ptrs->ptr[i].panel_pnp_id.offset < offset)
326 return false;
327
328 ptrs->ptr[i].fp_timing.offset -= offset;
329 ptrs->ptr[i].dvo_timing.offset -= offset;
330 ptrs->ptr[i].panel_pnp_id.offset -= offset;
331 }
332
333 if (ptrs->panel_name.table_size) {
334 if (ptrs->panel_name.offset < offset)
335 return false;
336
337 ptrs->panel_name.offset -= offset;
338 }
339
340 return validate_lfp_data_ptrs(bdb, ptrs);
341 }
342
make_lfp_data_ptr(struct lfp_data_ptr_table * table,int table_size,int total_size)343 static int make_lfp_data_ptr(struct lfp_data_ptr_table *table,
344 int table_size, int total_size)
345 {
346 if (total_size < table_size)
347 return total_size;
348
349 table->table_size = table_size;
350 table->offset = total_size - table_size;
351
352 return total_size - table_size;
353 }
354
next_lfp_data_ptr(struct lfp_data_ptr_table * next,const struct lfp_data_ptr_table * prev,int size)355 static void next_lfp_data_ptr(struct lfp_data_ptr_table *next,
356 const struct lfp_data_ptr_table *prev,
357 int size)
358 {
359 next->table_size = prev->table_size;
360 next->offset = prev->offset + size;
361 }
362
generate_lfp_data_ptrs(struct intel_display * display,const void * bdb)363 static void *generate_lfp_data_ptrs(struct intel_display *display,
364 const void *bdb)
365 {
366 int i, size, table_size, block_size, offset, fp_timing_size;
367 struct bdb_lfp_data_ptrs *ptrs;
368 const void *block;
369 void *ptrs_block;
370
371 /*
372 * The hardcoded fp_timing_size is only valid for
373 * modernish VBTs. All older VBTs definitely should
374 * include block 41 and thus we don't need to
375 * generate one.
376 */
377 if (display->vbt.version < 155)
378 return NULL;
379
380 fp_timing_size = 38;
381
382 block = find_raw_section(bdb, BDB_LFP_DATA);
383 if (!block)
384 return NULL;
385
386 drm_dbg_kms(display->drm, "Generating LFP data table pointers\n");
387
388 block_size = get_blocksize(block);
389
390 size = fp_timing_size + sizeof(struct bdb_edid_dtd) +
391 sizeof(struct bdb_edid_pnp_id);
392 if (size * 16 > block_size)
393 return NULL;
394
395 ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL);
396 if (!ptrs_block)
397 return NULL;
398
399 *(u8 *)(ptrs_block + 0) = BDB_LFP_DATA_PTRS;
400 *(u16 *)(ptrs_block + 1) = sizeof(*ptrs);
401 ptrs = ptrs_block + 3;
402
403 table_size = sizeof(struct bdb_edid_pnp_id);
404 size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size);
405
406 table_size = sizeof(struct bdb_edid_dtd);
407 size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size);
408
409 table_size = fp_timing_size;
410 size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size);
411
412 if (ptrs->ptr[0].fp_timing.table_size)
413 ptrs->num_entries++;
414 if (ptrs->ptr[0].dvo_timing.table_size)
415 ptrs->num_entries++;
416 if (ptrs->ptr[0].panel_pnp_id.table_size)
417 ptrs->num_entries++;
418
419 if (size != 0 || ptrs->num_entries != 3) {
420 kfree(ptrs_block);
421 return NULL;
422 }
423
424 size = fp_timing_size + sizeof(struct bdb_edid_dtd) +
425 sizeof(struct bdb_edid_pnp_id);
426 for (i = 1; i < 16; i++) {
427 next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size);
428 next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size);
429 next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size);
430 }
431
432 table_size = sizeof(struct bdb_edid_product_name);
433
434 if (16 * (size + table_size) <= block_size) {
435 ptrs->panel_name.table_size = table_size;
436 ptrs->panel_name.offset = size * 16;
437 }
438
439 offset = block - bdb;
440
441 for (i = 0; i < 16; i++) {
442 ptrs->ptr[i].fp_timing.offset += offset;
443 ptrs->ptr[i].dvo_timing.offset += offset;
444 ptrs->ptr[i].panel_pnp_id.offset += offset;
445 }
446
447 if (ptrs->panel_name.table_size)
448 ptrs->panel_name.offset += offset;
449
450 return ptrs_block;
451 }
452
453 static void
init_bdb_block(struct intel_display * display,const void * bdb,enum bdb_block_id section_id,size_t min_size)454 init_bdb_block(struct intel_display *display,
455 const void *bdb, enum bdb_block_id section_id,
456 size_t min_size)
457 {
458 struct bdb_block_entry *entry;
459 void *temp_block = NULL;
460 const void *block;
461 size_t block_size;
462
463 block = find_raw_section(bdb, section_id);
464
465 /* Modern VBTs lack the LFP data table pointers block, make one up */
466 if (!block && section_id == BDB_LFP_DATA_PTRS) {
467 temp_block = generate_lfp_data_ptrs(display, bdb);
468 if (temp_block)
469 block = temp_block + 3;
470 }
471 if (!block)
472 return;
473
474 drm_WARN(display->drm, min_size == 0,
475 "Block %d min_size is zero\n", section_id);
476
477 block_size = get_blocksize(block);
478
479 /*
480 * Version number and new block size are considered
481 * part of the header for MIPI sequenece block v3+.
482 */
483 if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3)
484 block_size += 5;
485
486 entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3),
487 GFP_KERNEL);
488 if (!entry) {
489 kfree(temp_block);
490 return;
491 }
492
493 entry->section_id = section_id;
494 memcpy(entry->data, block - 3, block_size + 3);
495
496 kfree(temp_block);
497
498 drm_dbg_kms(display->drm,
499 "Found BDB block %d (size %zu, min size %zu)\n",
500 section_id, block_size, min_size);
501
502 if (section_id == BDB_LFP_DATA_PTRS &&
503 !fixup_lfp_data_ptrs(bdb, entry->data + 3)) {
504 drm_err(display->drm,
505 "VBT has malformed LFP data table pointers\n");
506 kfree(entry);
507 return;
508 }
509
510 list_add_tail(&entry->node, &display->vbt.bdb_blocks);
511 }
512
init_bdb_blocks(struct intel_display * display,const void * bdb)513 static void init_bdb_blocks(struct intel_display *display,
514 const void *bdb)
515 {
516 int i;
517
518 for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) {
519 enum bdb_block_id section_id = bdb_blocks[i].section_id;
520 size_t min_size = bdb_blocks[i].min_size;
521
522 if (section_id == BDB_LFP_DATA)
523 min_size = lfp_data_min_size(display);
524
525 init_bdb_block(display, bdb, section_id, min_size);
526 }
527 }
528
529 static void
fill_detail_timing_data(struct intel_display * display,struct drm_display_mode * panel_fixed_mode,const struct bdb_edid_dtd * dvo_timing)530 fill_detail_timing_data(struct intel_display *display,
531 struct drm_display_mode *panel_fixed_mode,
532 const struct bdb_edid_dtd *dvo_timing)
533 {
534 panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
535 dvo_timing->hactive_lo;
536 panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
537 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
538 panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
539 ((dvo_timing->hsync_pulse_width_hi << 8) |
540 dvo_timing->hsync_pulse_width_lo);
541 panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
542 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
543
544 panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
545 dvo_timing->vactive_lo;
546 panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
547 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
548 panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
549 ((dvo_timing->vsync_pulse_width_hi << 4) |
550 dvo_timing->vsync_pulse_width_lo);
551 panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
552 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
553 panel_fixed_mode->clock = dvo_timing->clock * 10;
554 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
555
556 if (dvo_timing->hsync_positive)
557 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
558 else
559 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
560
561 if (dvo_timing->vsync_positive)
562 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
563 else
564 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
565
566 panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
567 dvo_timing->himage_lo;
568 panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
569 dvo_timing->vimage_lo;
570
571 /* Some VBTs have bogus h/vsync_end values */
572 if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) {
573 drm_dbg_kms(display->drm, "reducing hsync_end %d->%d\n",
574 panel_fixed_mode->hsync_end, panel_fixed_mode->htotal);
575 panel_fixed_mode->hsync_end = panel_fixed_mode->htotal;
576 }
577 if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) {
578 drm_dbg_kms(display->drm, "reducing vsync_end %d->%d\n",
579 panel_fixed_mode->vsync_end, panel_fixed_mode->vtotal);
580 panel_fixed_mode->vsync_end = panel_fixed_mode->vtotal;
581 }
582
583 drm_mode_set_name(panel_fixed_mode);
584 }
585
586 static const struct bdb_edid_dtd *
get_lfp_dvo_timing(const struct bdb_lfp_data * data,const struct bdb_lfp_data_ptrs * ptrs,int index)587 get_lfp_dvo_timing(const struct bdb_lfp_data *data,
588 const struct bdb_lfp_data_ptrs *ptrs,
589 int index)
590 {
591 return (const void *)data + ptrs->ptr[index].dvo_timing.offset;
592 }
593
594 static const struct fp_timing *
get_lfp_fp_timing(const struct bdb_lfp_data * data,const struct bdb_lfp_data_ptrs * ptrs,int index)595 get_lfp_fp_timing(const struct bdb_lfp_data *data,
596 const struct bdb_lfp_data_ptrs *ptrs,
597 int index)
598 {
599 return (const void *)data + ptrs->ptr[index].fp_timing.offset;
600 }
601
602 static const struct drm_edid_product_id *
get_lfp_pnp_id(const struct bdb_lfp_data * data,const struct bdb_lfp_data_ptrs * ptrs,int index)603 get_lfp_pnp_id(const struct bdb_lfp_data *data,
604 const struct bdb_lfp_data_ptrs *ptrs,
605 int index)
606 {
607 /* These two are supposed to have the same layout in memory. */
608 BUILD_BUG_ON(sizeof(struct bdb_edid_pnp_id) != sizeof(struct drm_edid_product_id));
609
610 return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset;
611 }
612
613 static const struct bdb_lfp_data_tail *
get_lfp_data_tail(const struct bdb_lfp_data * data,const struct bdb_lfp_data_ptrs * ptrs)614 get_lfp_data_tail(const struct bdb_lfp_data *data,
615 const struct bdb_lfp_data_ptrs *ptrs)
616 {
617 if (ptrs->panel_name.table_size)
618 return (const void *)data + ptrs->panel_name.offset;
619 else
620 return NULL;
621 }
622
opregion_get_panel_type(struct intel_display * display,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)623 static int opregion_get_panel_type(struct intel_display *display,
624 const struct intel_bios_encoder_data *devdata,
625 const struct drm_edid *drm_edid, bool use_fallback)
626 {
627 return intel_opregion_get_panel_type(display);
628 }
629
vbt_get_panel_type(struct intel_display * display,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)630 static int vbt_get_panel_type(struct intel_display *display,
631 const struct intel_bios_encoder_data *devdata,
632 const struct drm_edid *drm_edid, bool use_fallback)
633 {
634 const struct bdb_lfp_options *lfp_options;
635
636 lfp_options = bdb_find_section(display, BDB_LFP_OPTIONS);
637 if (!lfp_options)
638 return -1;
639
640 if (lfp_options->panel_type > 0xf &&
641 lfp_options->panel_type != 0xff) {
642 drm_dbg_kms(display->drm, "Invalid VBT panel type 0x%x\n",
643 lfp_options->panel_type);
644 return -1;
645 }
646
647 if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2)
648 return lfp_options->panel_type2;
649
650 drm_WARN_ON(display->drm,
651 devdata && devdata->child.handle != DEVICE_HANDLE_LFP1);
652
653 return lfp_options->panel_type;
654 }
655
pnpid_get_panel_type(struct intel_display * display,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)656 static int pnpid_get_panel_type(struct intel_display *display,
657 const struct intel_bios_encoder_data *devdata,
658 const struct drm_edid *drm_edid, bool use_fallback)
659 {
660 const struct bdb_lfp_data *data;
661 const struct bdb_lfp_data_ptrs *ptrs;
662 struct drm_edid_product_id product_id, product_id_nodate;
663 struct drm_printer p;
664 int i, best = -1;
665
666 if (!drm_edid)
667 return -1;
668
669 drm_edid_get_product_id(drm_edid, &product_id);
670
671 product_id_nodate = product_id;
672 product_id_nodate.week_of_manufacture = 0;
673 product_id_nodate.year_of_manufacture = 0;
674
675 p = drm_dbg_printer(display->drm, DRM_UT_KMS, "EDID");
676 drm_edid_print_product_id(&p, &product_id, true);
677
678 ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS);
679 if (!ptrs)
680 return -1;
681
682 data = bdb_find_section(display, BDB_LFP_DATA);
683 if (!data)
684 return -1;
685
686 for (i = 0; i < 16; i++) {
687 const struct drm_edid_product_id *vbt_id =
688 get_lfp_pnp_id(data, ptrs, i);
689
690 /* full match? */
691 if (!memcmp(vbt_id, &product_id, sizeof(*vbt_id)))
692 return i;
693
694 /*
695 * Accept a match w/o date if no full match is found,
696 * and the VBT entry does not specify a date.
697 */
698 if (best < 0 &&
699 !memcmp(vbt_id, &product_id_nodate, sizeof(*vbt_id)))
700 best = i;
701 }
702
703 return best;
704 }
705
fallback_get_panel_type(struct intel_display * display,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)706 static int fallback_get_panel_type(struct intel_display *display,
707 const struct intel_bios_encoder_data *devdata,
708 const struct drm_edid *drm_edid, bool use_fallback)
709 {
710 return use_fallback ? 0 : -1;
711 }
712
713 enum panel_type {
714 PANEL_TYPE_OPREGION,
715 PANEL_TYPE_VBT,
716 PANEL_TYPE_PNPID,
717 PANEL_TYPE_FALLBACK,
718 };
719
get_panel_type(struct intel_display * display,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)720 static int get_panel_type(struct intel_display *display,
721 const struct intel_bios_encoder_data *devdata,
722 const struct drm_edid *drm_edid, bool use_fallback)
723 {
724 struct {
725 const char *name;
726 int (*get_panel_type)(struct intel_display *display,
727 const struct intel_bios_encoder_data *devdata,
728 const struct drm_edid *drm_edid, bool use_fallback);
729 int panel_type;
730 } panel_types[] = {
731 [PANEL_TYPE_OPREGION] = {
732 .name = "OpRegion",
733 .get_panel_type = opregion_get_panel_type,
734 },
735 [PANEL_TYPE_VBT] = {
736 .name = "VBT",
737 .get_panel_type = vbt_get_panel_type,
738 },
739 [PANEL_TYPE_PNPID] = {
740 .name = "PNPID",
741 .get_panel_type = pnpid_get_panel_type,
742 },
743 [PANEL_TYPE_FALLBACK] = {
744 .name = "fallback",
745 .get_panel_type = fallback_get_panel_type,
746 },
747 };
748 int i;
749
750 for (i = 0; i < ARRAY_SIZE(panel_types); i++) {
751 panel_types[i].panel_type = panel_types[i].get_panel_type(display, devdata,
752 drm_edid, use_fallback);
753
754 drm_WARN_ON(display->drm, panel_types[i].panel_type > 0xf &&
755 panel_types[i].panel_type != 0xff);
756
757 if (panel_types[i].panel_type >= 0)
758 drm_dbg_kms(display->drm, "Panel type (%s): %d\n",
759 panel_types[i].name, panel_types[i].panel_type);
760 }
761
762 if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0)
763 i = PANEL_TYPE_OPREGION;
764 else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff &&
765 panel_types[PANEL_TYPE_PNPID].panel_type >= 0)
766 i = PANEL_TYPE_PNPID;
767 else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff &&
768 panel_types[PANEL_TYPE_VBT].panel_type >= 0)
769 i = PANEL_TYPE_VBT;
770 else
771 i = PANEL_TYPE_FALLBACK;
772
773 drm_dbg_kms(display->drm, "Selected panel type (%s): %d\n",
774 panel_types[i].name, panel_types[i].panel_type);
775
776 return panel_types[i].panel_type;
777 }
778
panel_bits(unsigned int value,int panel_type,int num_bits)779 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits)
780 {
781 return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1);
782 }
783
panel_bool(unsigned int value,int panel_type)784 static bool panel_bool(unsigned int value, int panel_type)
785 {
786 return panel_bits(value, panel_type, 1);
787 }
788
789 /* Parse general panel options */
790 static void
parse_panel_options(struct intel_display * display,struct intel_panel * panel)791 parse_panel_options(struct intel_display *display,
792 struct intel_panel *panel)
793 {
794 const struct bdb_lfp_options *lfp_options;
795 int panel_type = panel->vbt.panel_type;
796 int drrs_mode;
797
798 lfp_options = bdb_find_section(display, BDB_LFP_OPTIONS);
799 if (!lfp_options)
800 return;
801
802 panel->vbt.lvds_dither = lfp_options->pixel_dither;
803
804 /*
805 * Empirical evidence indicates the block size can be
806 * either 4,14,16,24+ bytes. For older VBTs no clear
807 * relationship between the block size vs. BDB version.
808 */
809 if (get_blocksize(lfp_options) < 16)
810 return;
811
812 drrs_mode = panel_bits(lfp_options->dps_panel_type_bits,
813 panel_type, 2);
814 /*
815 * VBT has static DRRS = 0 and seamless DRRS = 2.
816 * The below piece of code is required to adjust vbt.drrs_type
817 * to match the enum drrs_support_type.
818 */
819 switch (drrs_mode) {
820 case 0:
821 panel->vbt.drrs_type = DRRS_TYPE_STATIC;
822 drm_dbg_kms(display->drm, "DRRS supported mode is static\n");
823 break;
824 case 2:
825 panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS;
826 drm_dbg_kms(display->drm,
827 "DRRS supported mode is seamless\n");
828 break;
829 default:
830 panel->vbt.drrs_type = DRRS_TYPE_NONE;
831 drm_dbg_kms(display->drm,
832 "DRRS not supported (VBT input)\n");
833 break;
834 }
835 }
836
837 static void
parse_lfp_panel_dtd(struct intel_display * display,struct intel_panel * panel,const struct bdb_lfp_data * lfp_data,const struct bdb_lfp_data_ptrs * lfp_data_ptrs)838 parse_lfp_panel_dtd(struct intel_display *display,
839 struct intel_panel *panel,
840 const struct bdb_lfp_data *lfp_data,
841 const struct bdb_lfp_data_ptrs *lfp_data_ptrs)
842 {
843 const struct bdb_edid_dtd *panel_dvo_timing;
844 const struct fp_timing *fp_timing;
845 struct drm_display_mode *panel_fixed_mode;
846 int panel_type = panel->vbt.panel_type;
847
848 panel_dvo_timing = get_lfp_dvo_timing(lfp_data,
849 lfp_data_ptrs,
850 panel_type);
851
852 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
853 if (!panel_fixed_mode)
854 return;
855
856 fill_detail_timing_data(display, panel_fixed_mode, panel_dvo_timing);
857
858 panel->vbt.lfp_vbt_mode = panel_fixed_mode;
859
860 drm_dbg_kms(display->drm,
861 "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n",
862 DRM_MODE_ARG(panel_fixed_mode));
863
864 fp_timing = get_lfp_fp_timing(lfp_data,
865 lfp_data_ptrs,
866 panel_type);
867
868 /* check the resolution, just to be sure */
869 if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
870 fp_timing->y_res == panel_fixed_mode->vdisplay) {
871 panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
872 drm_dbg_kms(display->drm,
873 "VBT initial LVDS value %x\n",
874 panel->vbt.bios_lvds_val);
875 }
876 }
877
878 static void
parse_lfp_data(struct intel_display * display,struct intel_panel * panel)879 parse_lfp_data(struct intel_display *display,
880 struct intel_panel *panel)
881 {
882 const struct bdb_lfp_data *data;
883 const struct bdb_lfp_data_tail *tail;
884 const struct bdb_lfp_data_ptrs *ptrs;
885 const struct drm_edid_product_id *pnp_id;
886 struct drm_printer p;
887 int panel_type = panel->vbt.panel_type;
888
889 ptrs = bdb_find_section(display, BDB_LFP_DATA_PTRS);
890 if (!ptrs)
891 return;
892
893 data = bdb_find_section(display, BDB_LFP_DATA);
894 if (!data)
895 return;
896
897 if (!panel->vbt.lfp_vbt_mode)
898 parse_lfp_panel_dtd(display, panel, data, ptrs);
899
900 pnp_id = get_lfp_pnp_id(data, ptrs, panel_type);
901
902 p = drm_dbg_printer(display->drm, DRM_UT_KMS, "Panel");
903 drm_edid_print_product_id(&p, pnp_id, false);
904
905 tail = get_lfp_data_tail(data, ptrs);
906 if (!tail)
907 return;
908
909 drm_dbg_kms(display->drm, "Panel name: %.*s\n",
910 (int)sizeof(tail->panel_name[0].name),
911 tail->panel_name[panel_type].name);
912
913 if (display->vbt.version >= 188) {
914 panel->vbt.seamless_drrs_min_refresh_rate =
915 tail->seamless_drrs_min_refresh_rate[panel_type];
916 drm_dbg_kms(display->drm,
917 "Seamless DRRS min refresh rate: %d Hz\n",
918 panel->vbt.seamless_drrs_min_refresh_rate);
919 }
920 }
921
922 static void
parse_generic_dtd(struct intel_display * display,struct intel_panel * panel)923 parse_generic_dtd(struct intel_display *display,
924 struct intel_panel *panel)
925 {
926 const struct bdb_generic_dtd *generic_dtd;
927 const struct generic_dtd_entry *dtd;
928 struct drm_display_mode *panel_fixed_mode;
929 int num_dtd;
930
931 /*
932 * Older VBTs provided DTD information for internal displays through
933 * the "LFP panel tables" block (42). As of VBT revision 229 the
934 * DTD information should be provided via a newer "generic DTD"
935 * block (58). Just to be safe, we'll try the new generic DTD block
936 * first on VBT >= 229, but still fall back to trying the old LFP
937 * block if that fails.
938 */
939 if (display->vbt.version < 229)
940 return;
941
942 generic_dtd = bdb_find_section(display, BDB_GENERIC_DTD);
943 if (!generic_dtd)
944 return;
945
946 if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
947 drm_err(display->drm, "GDTD size %u is too small.\n",
948 generic_dtd->gdtd_size);
949 return;
950 } else if (generic_dtd->gdtd_size !=
951 sizeof(struct generic_dtd_entry)) {
952 drm_err(display->drm, "Unexpected GDTD size %u\n",
953 generic_dtd->gdtd_size);
954 /* DTD has unknown fields, but keep going */
955 }
956
957 num_dtd = (get_blocksize(generic_dtd) -
958 sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
959 if (panel->vbt.panel_type >= num_dtd) {
960 drm_err(display->drm,
961 "Panel type %d not found in table of %d DTD's\n",
962 panel->vbt.panel_type, num_dtd);
963 return;
964 }
965
966 dtd = &generic_dtd->dtd[panel->vbt.panel_type];
967
968 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
969 if (!panel_fixed_mode)
970 return;
971
972 panel_fixed_mode->hdisplay = dtd->hactive;
973 panel_fixed_mode->hsync_start =
974 panel_fixed_mode->hdisplay + dtd->hfront_porch;
975 panel_fixed_mode->hsync_end =
976 panel_fixed_mode->hsync_start + dtd->hsync;
977 panel_fixed_mode->htotal =
978 panel_fixed_mode->hdisplay + dtd->hblank;
979
980 panel_fixed_mode->vdisplay = dtd->vactive;
981 panel_fixed_mode->vsync_start =
982 panel_fixed_mode->vdisplay + dtd->vfront_porch;
983 panel_fixed_mode->vsync_end =
984 panel_fixed_mode->vsync_start + dtd->vsync;
985 panel_fixed_mode->vtotal =
986 panel_fixed_mode->vdisplay + dtd->vblank;
987
988 panel_fixed_mode->clock = dtd->pixel_clock;
989 panel_fixed_mode->width_mm = dtd->width_mm;
990 panel_fixed_mode->height_mm = dtd->height_mm;
991
992 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
993 drm_mode_set_name(panel_fixed_mode);
994
995 if (dtd->hsync_positive_polarity)
996 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
997 else
998 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
999
1000 if (dtd->vsync_positive_polarity)
1001 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
1002 else
1003 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
1004
1005 drm_dbg_kms(display->drm,
1006 "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n",
1007 DRM_MODE_ARG(panel_fixed_mode));
1008
1009 panel->vbt.lfp_vbt_mode = panel_fixed_mode;
1010 }
1011
1012 static void
parse_lfp_backlight(struct intel_display * display,struct intel_panel * panel)1013 parse_lfp_backlight(struct intel_display *display,
1014 struct intel_panel *panel)
1015 {
1016 const struct bdb_lfp_backlight *backlight_data;
1017 const struct lfp_backlight_data_entry *entry;
1018 int panel_type = panel->vbt.panel_type;
1019 u16 level;
1020
1021 backlight_data = bdb_find_section(display, BDB_LFP_BACKLIGHT);
1022 if (!backlight_data)
1023 return;
1024
1025 if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
1026 drm_dbg_kms(display->drm,
1027 "Unsupported backlight data entry size %u\n",
1028 backlight_data->entry_size);
1029 return;
1030 }
1031
1032 entry = &backlight_data->data[panel_type];
1033
1034 panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
1035 if (!panel->vbt.backlight.present) {
1036 drm_dbg_kms(display->drm,
1037 "PWM backlight not present in VBT (type %u)\n",
1038 entry->type);
1039 return;
1040 }
1041
1042 panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
1043 panel->vbt.backlight.controller = 0;
1044 if (display->vbt.version >= 191) {
1045 const struct lfp_backlight_control_method *method;
1046
1047 method = &backlight_data->backlight_control[panel_type];
1048 panel->vbt.backlight.type = method->type;
1049 panel->vbt.backlight.controller = method->controller;
1050 }
1051
1052 panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
1053 panel->vbt.backlight.active_low_pwm = entry->active_low_pwm;
1054
1055 if (display->vbt.version >= 234) {
1056 u16 min_level;
1057 bool scale;
1058
1059 level = backlight_data->brightness_level[panel_type].level;
1060 min_level = backlight_data->brightness_min_level[panel_type].level;
1061
1062 if (display->vbt.version >= 236)
1063 scale = backlight_data->brightness_precision_bits[panel_type] == 16;
1064 else
1065 scale = level > 255;
1066
1067 if (scale)
1068 min_level = min_level / 255;
1069
1070 if (min_level > 255) {
1071 drm_warn(display->drm, "Brightness min level > 255\n");
1072 level = 255;
1073 }
1074 panel->vbt.backlight.min_brightness = min_level;
1075
1076 panel->vbt.backlight.brightness_precision_bits =
1077 backlight_data->brightness_precision_bits[panel_type];
1078 } else {
1079 level = backlight_data->level[panel_type];
1080 panel->vbt.backlight.min_brightness = entry->min_brightness;
1081 }
1082
1083 if (display->vbt.version >= 239)
1084 panel->vbt.backlight.hdr_dpcd_refresh_timeout =
1085 DIV_ROUND_UP(backlight_data->hdr_dpcd_refresh_timeout[panel_type], 100);
1086 else
1087 panel->vbt.backlight.hdr_dpcd_refresh_timeout = 30;
1088
1089 drm_dbg_kms(display->drm,
1090 "VBT backlight PWM modulation frequency %u Hz, "
1091 "active %s, min brightness %u, level %u, controller %u\n",
1092 panel->vbt.backlight.pwm_freq_hz,
1093 panel->vbt.backlight.active_low_pwm ? "low" : "high",
1094 panel->vbt.backlight.min_brightness,
1095 level,
1096 panel->vbt.backlight.controller);
1097 }
1098
1099 static void
parse_sdvo_lvds_data(struct intel_display * display,struct intel_panel * panel)1100 parse_sdvo_lvds_data(struct intel_display *display,
1101 struct intel_panel *panel)
1102 {
1103 const struct bdb_sdvo_lvds_dtd *dtd;
1104 struct drm_display_mode *panel_fixed_mode;
1105 int index;
1106
1107 index = display->params.vbt_sdvo_panel_type;
1108 if (index == -2) {
1109 drm_dbg_kms(display->drm,
1110 "Ignore SDVO LVDS mode from BIOS VBT tables.\n");
1111 return;
1112 }
1113
1114 if (index == -1) {
1115 const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
1116
1117 sdvo_lvds_options = bdb_find_section(display, BDB_SDVO_LVDS_OPTIONS);
1118 if (!sdvo_lvds_options)
1119 return;
1120
1121 index = sdvo_lvds_options->panel_type;
1122 }
1123
1124 dtd = bdb_find_section(display, BDB_SDVO_LVDS_DTD);
1125 if (!dtd)
1126 return;
1127
1128 /*
1129 * This should not happen, as long as the panel_type
1130 * enumeration doesn't grow over 4 items. But if it does, it
1131 * could lead to hard-to-detect bugs, so better double-check
1132 * it here to be sure.
1133 */
1134 if (index >= ARRAY_SIZE(dtd->dtd)) {
1135 drm_err(display->drm,
1136 "index %d is larger than dtd->dtd[4] array\n",
1137 index);
1138 return;
1139 }
1140
1141 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
1142 if (!panel_fixed_mode)
1143 return;
1144
1145 fill_detail_timing_data(display, panel_fixed_mode, &dtd->dtd[index]);
1146
1147 panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
1148
1149 drm_dbg_kms(display->drm,
1150 "Found SDVO LVDS mode in BIOS VBT tables: " DRM_MODE_FMT "\n",
1151 DRM_MODE_ARG(panel_fixed_mode));
1152 }
1153
intel_bios_ssc_frequency(struct intel_display * display,bool alternate)1154 static int intel_bios_ssc_frequency(struct intel_display *display,
1155 bool alternate)
1156 {
1157 switch (DISPLAY_VER(display)) {
1158 case 2:
1159 return alternate ? 66667 : 48000;
1160 case 3:
1161 case 4:
1162 return alternate ? 100000 : 96000;
1163 default:
1164 return alternate ? 100000 : 120000;
1165 }
1166 }
1167
1168 static void
parse_general_features(struct intel_display * display)1169 parse_general_features(struct intel_display *display)
1170 {
1171 struct drm_i915_private *i915 = to_i915(display->drm);
1172 const struct bdb_general_features *general;
1173
1174 general = bdb_find_section(display, BDB_GENERAL_FEATURES);
1175 if (!general)
1176 return;
1177
1178 display->vbt.int_tv_support = general->int_tv_support;
1179 /* int_crt_support can't be trusted on earlier platforms */
1180 if (display->vbt.version >= 155 &&
1181 (HAS_DDI(display) || IS_VALLEYVIEW(i915)))
1182 display->vbt.int_crt_support = general->int_crt_support;
1183 display->vbt.lvds_use_ssc = general->enable_ssc;
1184 display->vbt.lvds_ssc_freq =
1185 intel_bios_ssc_frequency(display, general->ssc_freq);
1186 display->vbt.display_clock_mode = general->display_clock_mode;
1187 display->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
1188 if (display->vbt.version >= 181) {
1189 display->vbt.orientation = general->rotate_180 ?
1190 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
1191 DRM_MODE_PANEL_ORIENTATION_NORMAL;
1192 } else {
1193 display->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1194 }
1195
1196 if (display->vbt.version >= 249 && general->afc_startup_config) {
1197 display->vbt.override_afc_startup = true;
1198 display->vbt.override_afc_startup_val = general->afc_startup_config == 1 ? 0 : 7;
1199 }
1200
1201 drm_dbg_kms(display->drm,
1202 "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
1203 display->vbt.int_tv_support,
1204 display->vbt.int_crt_support,
1205 display->vbt.lvds_use_ssc,
1206 display->vbt.lvds_ssc_freq,
1207 display->vbt.display_clock_mode,
1208 display->vbt.fdi_rx_polarity_inverted);
1209 }
1210
1211 static const struct child_device_config *
child_device_ptr(const struct bdb_general_definitions * defs,int i)1212 child_device_ptr(const struct bdb_general_definitions *defs, int i)
1213 {
1214 return (const void *) &defs->devices[i * defs->child_dev_size];
1215 }
1216
1217 static void
parse_sdvo_device_mapping(struct intel_display * display)1218 parse_sdvo_device_mapping(struct intel_display *display)
1219 {
1220 const struct intel_bios_encoder_data *devdata;
1221 int count = 0;
1222
1223 /*
1224 * Only parse SDVO mappings on gens that could have SDVO. This isn't
1225 * accurate and doesn't have to be, as long as it's not too strict.
1226 */
1227 if (!IS_DISPLAY_VER(display, 3, 7)) {
1228 drm_dbg_kms(display->drm, "Skipping SDVO device mapping\n");
1229 return;
1230 }
1231
1232 list_for_each_entry(devdata, &display->vbt.display_devices, node) {
1233 const struct child_device_config *child = &devdata->child;
1234 struct sdvo_device_mapping *mapping;
1235
1236 if (child->target_addr != TARGET_ADDR1 &&
1237 child->target_addr != TARGET_ADDR2) {
1238 /*
1239 * If the target address is neither 0x70 nor 0x72,
1240 * it is not a SDVO device. Skip it.
1241 */
1242 continue;
1243 }
1244 if (child->dvo_port != DEVICE_PORT_DVOB &&
1245 child->dvo_port != DEVICE_PORT_DVOC) {
1246 /* skip the incorrect SDVO port */
1247 drm_dbg_kms(display->drm,
1248 "Incorrect SDVO port. Skip it\n");
1249 continue;
1250 }
1251 drm_dbg_kms(display->drm,
1252 "the SDVO device with target addr %2x is found on"
1253 " %s port\n",
1254 child->target_addr,
1255 (child->dvo_port == DEVICE_PORT_DVOB) ?
1256 "SDVOB" : "SDVOC");
1257 mapping = &display->vbt.sdvo_mappings[child->dvo_port - 1];
1258 if (!mapping->initialized) {
1259 mapping->dvo_port = child->dvo_port;
1260 mapping->target_addr = child->target_addr;
1261 mapping->dvo_wiring = child->dvo_wiring;
1262 mapping->ddc_pin = child->ddc_pin;
1263 mapping->i2c_pin = child->i2c_pin;
1264 mapping->initialized = 1;
1265 drm_dbg_kms(display->drm,
1266 "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
1267 mapping->dvo_port, mapping->target_addr,
1268 mapping->dvo_wiring, mapping->ddc_pin,
1269 mapping->i2c_pin);
1270 } else {
1271 drm_dbg_kms(display->drm,
1272 "Maybe one SDVO port is shared by "
1273 "two SDVO device.\n");
1274 }
1275 if (child->target2_addr) {
1276 /* Maybe this is a SDVO device with multiple inputs */
1277 /* And the mapping info is not added */
1278 drm_dbg_kms(display->drm,
1279 "there exists the target2_addr. Maybe this"
1280 " is a SDVO device with multiple inputs.\n");
1281 }
1282 count++;
1283 }
1284
1285 if (!count) {
1286 /* No SDVO device info is found */
1287 drm_dbg_kms(display->drm,
1288 "No SDVO device info is found in VBT\n");
1289 }
1290 }
1291
1292 static void
parse_driver_features(struct intel_display * display)1293 parse_driver_features(struct intel_display *display)
1294 {
1295 const struct bdb_driver_features *driver;
1296
1297 driver = bdb_find_section(display, BDB_DRIVER_FEATURES);
1298 if (!driver)
1299 return;
1300
1301 if (DISPLAY_VER(display) >= 5) {
1302 /*
1303 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
1304 * to mean "eDP". The VBT spec doesn't agree with that
1305 * interpretation, but real world VBTs seem to.
1306 */
1307 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
1308 display->vbt.int_lvds_support = 0;
1309 } else {
1310 /*
1311 * FIXME it's not clear which BDB version has the LVDS config
1312 * bits defined. Revision history in the VBT spec says:
1313 * "0.92 | Add two definitions for VBT value of LVDS Active
1314 * Config (00b and 11b values defined) | 06/13/2005"
1315 * but does not the specify the BDB version.
1316 *
1317 * So far version 134 (on i945gm) is the oldest VBT observed
1318 * in the wild with the bits correctly populated. Version
1319 * 108 (on i85x) does not have the bits correctly populated.
1320 */
1321 if (display->vbt.version >= 134 &&
1322 driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
1323 driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
1324 display->vbt.int_lvds_support = 0;
1325 }
1326 }
1327
1328 static void
parse_panel_driver_features(struct intel_display * display,struct intel_panel * panel)1329 parse_panel_driver_features(struct intel_display *display,
1330 struct intel_panel *panel)
1331 {
1332 const struct bdb_driver_features *driver;
1333
1334 driver = bdb_find_section(display, BDB_DRIVER_FEATURES);
1335 if (!driver)
1336 return;
1337
1338 if (display->vbt.version < 228) {
1339 drm_dbg_kms(display->drm, "DRRS State Enabled:%d\n",
1340 driver->drrs_enabled);
1341 /*
1342 * If DRRS is not supported, drrs_type has to be set to 0.
1343 * This is because, VBT is configured in such a way that
1344 * static DRRS is 0 and DRRS not supported is represented by
1345 * driver->drrs_enabled=false
1346 */
1347 if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1348 /*
1349 * FIXME Should DMRRS perhaps be treated as seamless
1350 * but without the automatic downclocking?
1351 */
1352 if (driver->dmrrs_enabled)
1353 panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1354 else
1355 panel->vbt.drrs_type = DRRS_TYPE_NONE;
1356 }
1357
1358 panel->vbt.psr.enable = driver->psr_enabled;
1359 }
1360 }
1361
1362 static void
parse_power_conservation_features(struct intel_display * display,struct intel_panel * panel)1363 parse_power_conservation_features(struct intel_display *display,
1364 struct intel_panel *panel)
1365 {
1366 const struct bdb_lfp_power *power;
1367 u8 panel_type = panel->vbt.panel_type;
1368
1369 panel->vbt.vrr = true; /* matches Windows behaviour */
1370
1371 if (display->vbt.version < 228)
1372 return;
1373
1374 power = bdb_find_section(display, BDB_LFP_POWER);
1375 if (!power)
1376 return;
1377
1378 panel->vbt.psr.enable = panel_bool(power->psr, panel_type);
1379
1380 /*
1381 * If DRRS is not supported, drrs_type has to be set to 0.
1382 * This is because, VBT is configured in such a way that
1383 * static DRRS is 0 and DRRS not supported is represented by
1384 * power->drrs & BIT(panel_type)=false
1385 */
1386 if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1387 /*
1388 * FIXME Should DMRRS perhaps be treated as seamless
1389 * but without the automatic downclocking?
1390 */
1391 if (panel_bool(power->dmrrs, panel_type))
1392 panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1393 else
1394 panel->vbt.drrs_type = DRRS_TYPE_NONE;
1395 }
1396
1397 if (display->vbt.version >= 232)
1398 panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type);
1399
1400 if (display->vbt.version >= 233)
1401 panel->vbt.vrr = panel_bool(power->vrr_feature_enabled,
1402 panel_type);
1403 }
1404
1405 static void
parse_edp(struct intel_display * display,struct intel_panel * panel)1406 parse_edp(struct intel_display *display,
1407 struct intel_panel *panel)
1408 {
1409 const struct bdb_edp *edp;
1410 const struct edp_power_seq *edp_pps;
1411 const struct edp_fast_link_params *edp_link_params;
1412 int panel_type = panel->vbt.panel_type;
1413
1414 edp = bdb_find_section(display, BDB_EDP);
1415 if (!edp)
1416 return;
1417
1418 switch (panel_bits(edp->color_depth, panel_type, 2)) {
1419 case EDP_18BPP:
1420 panel->vbt.edp.bpp = 18;
1421 break;
1422 case EDP_24BPP:
1423 panel->vbt.edp.bpp = 24;
1424 break;
1425 case EDP_30BPP:
1426 panel->vbt.edp.bpp = 30;
1427 break;
1428 }
1429
1430 /* Get the eDP sequencing and link info */
1431 edp_pps = &edp->power_seqs[panel_type];
1432 edp_link_params = &edp->fast_link_params[panel_type];
1433
1434 panel->vbt.edp.pps = *edp_pps;
1435
1436 if (display->vbt.version >= 224) {
1437 panel->vbt.edp.rate =
1438 edp->edp_fast_link_training_rate[panel_type] * 20;
1439 } else {
1440 switch (edp_link_params->rate) {
1441 case EDP_RATE_1_62:
1442 panel->vbt.edp.rate = 162000;
1443 break;
1444 case EDP_RATE_2_7:
1445 panel->vbt.edp.rate = 270000;
1446 break;
1447 case EDP_RATE_5_4:
1448 panel->vbt.edp.rate = 540000;
1449 break;
1450 default:
1451 drm_dbg_kms(display->drm,
1452 "VBT has unknown eDP link rate value %u\n",
1453 edp_link_params->rate);
1454 break;
1455 }
1456 }
1457
1458 switch (edp_link_params->lanes) {
1459 case EDP_LANE_1:
1460 panel->vbt.edp.lanes = 1;
1461 break;
1462 case EDP_LANE_2:
1463 panel->vbt.edp.lanes = 2;
1464 break;
1465 case EDP_LANE_4:
1466 panel->vbt.edp.lanes = 4;
1467 break;
1468 default:
1469 drm_dbg_kms(display->drm,
1470 "VBT has unknown eDP lane count value %u\n",
1471 edp_link_params->lanes);
1472 break;
1473 }
1474
1475 switch (edp_link_params->preemphasis) {
1476 case EDP_PREEMPHASIS_NONE:
1477 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
1478 break;
1479 case EDP_PREEMPHASIS_3_5dB:
1480 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
1481 break;
1482 case EDP_PREEMPHASIS_6dB:
1483 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
1484 break;
1485 case EDP_PREEMPHASIS_9_5dB:
1486 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
1487 break;
1488 default:
1489 drm_dbg_kms(display->drm,
1490 "VBT has unknown eDP pre-emphasis value %u\n",
1491 edp_link_params->preemphasis);
1492 break;
1493 }
1494
1495 switch (edp_link_params->vswing) {
1496 case EDP_VSWING_0_4V:
1497 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
1498 break;
1499 case EDP_VSWING_0_6V:
1500 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
1501 break;
1502 case EDP_VSWING_0_8V:
1503 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
1504 break;
1505 case EDP_VSWING_1_2V:
1506 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
1507 break;
1508 default:
1509 drm_dbg_kms(display->drm,
1510 "VBT has unknown eDP voltage swing value %u\n",
1511 edp_link_params->vswing);
1512 break;
1513 }
1514
1515 if (display->vbt.version >= 173) {
1516 u8 vswing;
1517
1518 /* Don't read from VBT if module parameter has valid value*/
1519 if (display->params.edp_vswing) {
1520 panel->vbt.edp.low_vswing =
1521 display->params.edp_vswing == 1;
1522 } else {
1523 vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
1524 panel->vbt.edp.low_vswing = vswing == 0;
1525 }
1526 }
1527
1528 panel->vbt.edp.drrs_msa_timing_delay =
1529 panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2);
1530
1531 if (display->vbt.version >= 244)
1532 panel->vbt.edp.max_link_rate =
1533 edp->edp_max_port_link_rate[panel_type] * 20;
1534
1535 if (display->vbt.version >= 251)
1536 panel->vbt.edp.dsc_disable =
1537 panel_bool(edp->edp_dsc_disable, panel_type);
1538 }
1539
1540 static void
parse_psr(struct intel_display * display,struct intel_panel * panel)1541 parse_psr(struct intel_display *display,
1542 struct intel_panel *panel)
1543 {
1544 struct drm_i915_private *i915 = to_i915(display->drm);
1545 const struct bdb_psr *psr;
1546 const struct psr_table *psr_table;
1547 int panel_type = panel->vbt.panel_type;
1548
1549 psr = bdb_find_section(display, BDB_PSR);
1550 if (!psr) {
1551 drm_dbg_kms(display->drm, "No PSR BDB found.\n");
1552 return;
1553 }
1554
1555 psr_table = &psr->psr_table[panel_type];
1556
1557 panel->vbt.psr.full_link = psr_table->full_link;
1558 panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
1559
1560 /* Allowed VBT values goes from 0 to 15 */
1561 panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
1562 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
1563
1564 /*
1565 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
1566 * Old decimal value is wake up time in multiples of 100 us.
1567 */
1568 if (display->vbt.version >= 205 &&
1569 (DISPLAY_VER(display) >= 9 && !IS_BROXTON(i915))) {
1570 switch (psr_table->tp1_wakeup_time) {
1571 case 0:
1572 panel->vbt.psr.tp1_wakeup_time_us = 500;
1573 break;
1574 case 1:
1575 panel->vbt.psr.tp1_wakeup_time_us = 100;
1576 break;
1577 case 3:
1578 panel->vbt.psr.tp1_wakeup_time_us = 0;
1579 break;
1580 default:
1581 drm_dbg_kms(display->drm,
1582 "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1583 psr_table->tp1_wakeup_time);
1584 fallthrough;
1585 case 2:
1586 panel->vbt.psr.tp1_wakeup_time_us = 2500;
1587 break;
1588 }
1589
1590 switch (psr_table->tp2_tp3_wakeup_time) {
1591 case 0:
1592 panel->vbt.psr.tp2_tp3_wakeup_time_us = 500;
1593 break;
1594 case 1:
1595 panel->vbt.psr.tp2_tp3_wakeup_time_us = 100;
1596 break;
1597 case 3:
1598 panel->vbt.psr.tp2_tp3_wakeup_time_us = 0;
1599 break;
1600 default:
1601 drm_dbg_kms(display->drm,
1602 "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1603 psr_table->tp2_tp3_wakeup_time);
1604 fallthrough;
1605 case 2:
1606 panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
1607 break;
1608 }
1609 } else {
1610 panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
1611 panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
1612 }
1613
1614 if (display->vbt.version >= 226) {
1615 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
1616
1617 wakeup_time = panel_bits(wakeup_time, panel_type, 2);
1618 switch (wakeup_time) {
1619 case 0:
1620 wakeup_time = 500;
1621 break;
1622 case 1:
1623 wakeup_time = 100;
1624 break;
1625 case 3:
1626 wakeup_time = 50;
1627 break;
1628 default:
1629 case 2:
1630 wakeup_time = 2500;
1631 break;
1632 }
1633 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
1634 } else {
1635 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */
1636 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us;
1637 }
1638 }
1639
parse_dsi_backlight_ports(struct intel_display * display,struct intel_panel * panel,enum port port)1640 static void parse_dsi_backlight_ports(struct intel_display *display,
1641 struct intel_panel *panel,
1642 enum port port)
1643 {
1644 enum port port_bc = DISPLAY_VER(display) >= 11 ? PORT_B : PORT_C;
1645
1646 if (!panel->vbt.dsi.config->dual_link || display->vbt.version < 197) {
1647 panel->vbt.dsi.bl_ports = BIT(port);
1648 if (panel->vbt.dsi.config->cabc_supported)
1649 panel->vbt.dsi.cabc_ports = BIT(port);
1650
1651 return;
1652 }
1653
1654 switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) {
1655 case DL_DCS_PORT_A:
1656 panel->vbt.dsi.bl_ports = BIT(PORT_A);
1657 break;
1658 case DL_DCS_PORT_C:
1659 panel->vbt.dsi.bl_ports = BIT(port_bc);
1660 break;
1661 default:
1662 case DL_DCS_PORT_A_AND_C:
1663 panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc);
1664 break;
1665 }
1666
1667 if (!panel->vbt.dsi.config->cabc_supported)
1668 return;
1669
1670 switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) {
1671 case DL_DCS_PORT_A:
1672 panel->vbt.dsi.cabc_ports = BIT(PORT_A);
1673 break;
1674 case DL_DCS_PORT_C:
1675 panel->vbt.dsi.cabc_ports = BIT(port_bc);
1676 break;
1677 default:
1678 case DL_DCS_PORT_A_AND_C:
1679 panel->vbt.dsi.cabc_ports =
1680 BIT(PORT_A) | BIT(port_bc);
1681 break;
1682 }
1683 }
1684
1685 static void
parse_mipi_config(struct intel_display * display,struct intel_panel * panel)1686 parse_mipi_config(struct intel_display *display,
1687 struct intel_panel *panel)
1688 {
1689 const struct bdb_mipi_config *start;
1690 const struct mipi_config *config;
1691 const struct mipi_pps_data *pps;
1692 int panel_type = panel->vbt.panel_type;
1693 enum port port;
1694
1695 /* parse MIPI blocks only if LFP type is MIPI */
1696 if (!intel_bios_is_dsi_present(display, &port))
1697 return;
1698
1699 /* Initialize this to undefined indicating no generic MIPI support */
1700 panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1701
1702 start = bdb_find_section(display, BDB_MIPI_CONFIG);
1703 if (!start) {
1704 drm_dbg_kms(display->drm, "No MIPI config BDB found");
1705 return;
1706 }
1707
1708 drm_dbg(display->drm, "Found MIPI Config block, panel index = %d\n",
1709 panel_type);
1710
1711 /*
1712 * get hold of the correct configuration block and pps data as per
1713 * the panel_type as index
1714 */
1715 config = &start->config[panel_type];
1716 pps = &start->pps[panel_type];
1717
1718 /* store as of now full data. Trim when we realise all is not needed */
1719 panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1720 if (!panel->vbt.dsi.config)
1721 return;
1722
1723 panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1724 if (!panel->vbt.dsi.pps) {
1725 kfree(panel->vbt.dsi.config);
1726 return;
1727 }
1728
1729 parse_dsi_backlight_ports(display, panel, port);
1730
1731 /* FIXME is the 90 vs. 270 correct? */
1732 switch (config->rotation) {
1733 case ENABLE_ROTATION_0:
1734 /*
1735 * Most (all?) VBTs claim 0 degrees despite having
1736 * an upside down panel, thus we do not trust this.
1737 */
1738 panel->vbt.dsi.orientation =
1739 DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1740 break;
1741 case ENABLE_ROTATION_90:
1742 panel->vbt.dsi.orientation =
1743 DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1744 break;
1745 case ENABLE_ROTATION_180:
1746 panel->vbt.dsi.orientation =
1747 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1748 break;
1749 case ENABLE_ROTATION_270:
1750 panel->vbt.dsi.orientation =
1751 DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1752 break;
1753 }
1754
1755 /* We have mandatory mipi config blocks. Initialize as generic panel */
1756 panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1757 }
1758
1759 /* Find the sequence block and size for the given panel. */
1760 static const u8 *
find_panel_sequence_block(struct intel_display * display,const struct bdb_mipi_sequence * sequence,u16 panel_id,u32 * seq_size)1761 find_panel_sequence_block(struct intel_display *display,
1762 const struct bdb_mipi_sequence *sequence,
1763 u16 panel_id, u32 *seq_size)
1764 {
1765 u32 total = get_blocksize(sequence);
1766 const u8 *data = &sequence->data[0];
1767 u8 current_id;
1768 u32 current_size;
1769 int header_size = sequence->version >= 3 ? 5 : 3;
1770 int index = 0;
1771 int i;
1772
1773 /* skip new block size */
1774 if (sequence->version >= 3)
1775 data += 4;
1776
1777 for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1778 if (index + header_size > total) {
1779 drm_err(display->drm,
1780 "Invalid sequence block (header)\n");
1781 return NULL;
1782 }
1783
1784 current_id = *(data + index);
1785 if (sequence->version >= 3)
1786 current_size = *((const u32 *)(data + index + 1));
1787 else
1788 current_size = *((const u16 *)(data + index + 1));
1789
1790 index += header_size;
1791
1792 if (index + current_size > total) {
1793 drm_err(display->drm, "Invalid sequence block\n");
1794 return NULL;
1795 }
1796
1797 if (current_id == panel_id) {
1798 *seq_size = current_size;
1799 return data + index;
1800 }
1801
1802 index += current_size;
1803 }
1804
1805 drm_err(display->drm,
1806 "Sequence block detected but no valid configuration\n");
1807
1808 return NULL;
1809 }
1810
goto_next_sequence(struct intel_display * display,const u8 * data,int index,int total)1811 static int goto_next_sequence(struct intel_display *display,
1812 const u8 *data, int index, int total)
1813 {
1814 u16 len;
1815
1816 /* Skip Sequence Byte. */
1817 for (index = index + 1; index < total; index += len) {
1818 u8 operation_byte = *(data + index);
1819 index++;
1820
1821 switch (operation_byte) {
1822 case MIPI_SEQ_ELEM_END:
1823 return index;
1824 case MIPI_SEQ_ELEM_SEND_PKT:
1825 if (index + 4 > total)
1826 return 0;
1827
1828 len = *((const u16 *)(data + index + 2)) + 4;
1829 break;
1830 case MIPI_SEQ_ELEM_DELAY:
1831 len = 4;
1832 break;
1833 case MIPI_SEQ_ELEM_GPIO:
1834 len = 2;
1835 break;
1836 case MIPI_SEQ_ELEM_I2C:
1837 if (index + 7 > total)
1838 return 0;
1839 len = *(data + index + 6) + 7;
1840 break;
1841 default:
1842 drm_err(display->drm, "Unknown operation byte\n");
1843 return 0;
1844 }
1845 }
1846
1847 return 0;
1848 }
1849
goto_next_sequence_v3(struct intel_display * display,const u8 * data,int index,int total)1850 static int goto_next_sequence_v3(struct intel_display *display,
1851 const u8 *data, int index, int total)
1852 {
1853 int seq_end;
1854 u16 len;
1855 u32 size_of_sequence;
1856
1857 /*
1858 * Could skip sequence based on Size of Sequence alone, but also do some
1859 * checking on the structure.
1860 */
1861 if (total < 5) {
1862 drm_err(display->drm, "Too small sequence size\n");
1863 return 0;
1864 }
1865
1866 /* Skip Sequence Byte. */
1867 index++;
1868
1869 /*
1870 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1871 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1872 * byte.
1873 */
1874 size_of_sequence = *((const u32 *)(data + index));
1875 index += 4;
1876
1877 seq_end = index + size_of_sequence;
1878 if (seq_end > total) {
1879 drm_err(display->drm, "Invalid sequence size\n");
1880 return 0;
1881 }
1882
1883 for (; index < total; index += len) {
1884 u8 operation_byte = *(data + index);
1885 index++;
1886
1887 if (operation_byte == MIPI_SEQ_ELEM_END) {
1888 if (index != seq_end) {
1889 drm_err(display->drm,
1890 "Invalid element structure\n");
1891 return 0;
1892 }
1893 return index;
1894 }
1895
1896 len = *(data + index);
1897 index++;
1898
1899 /*
1900 * FIXME: Would be nice to check elements like for v1/v2 in
1901 * goto_next_sequence() above.
1902 */
1903 switch (operation_byte) {
1904 case MIPI_SEQ_ELEM_SEND_PKT:
1905 case MIPI_SEQ_ELEM_DELAY:
1906 case MIPI_SEQ_ELEM_GPIO:
1907 case MIPI_SEQ_ELEM_I2C:
1908 case MIPI_SEQ_ELEM_SPI:
1909 case MIPI_SEQ_ELEM_PMIC:
1910 break;
1911 default:
1912 drm_err(display->drm, "Unknown operation byte %u\n",
1913 operation_byte);
1914 break;
1915 }
1916 }
1917
1918 return 0;
1919 }
1920
1921 /*
1922 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1923 * skip all delay + gpio operands and stop at the first DSI packet op.
1924 */
get_init_otp_deassert_fragment_len(struct intel_display * display,struct intel_panel * panel)1925 static int get_init_otp_deassert_fragment_len(struct intel_display *display,
1926 struct intel_panel *panel)
1927 {
1928 const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1929 int index, len;
1930
1931 if (drm_WARN_ON(display->drm,
1932 !data || panel->vbt.dsi.seq_version != 1))
1933 return 0;
1934
1935 /* index = 1 to skip sequence byte */
1936 for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1937 switch (data[index]) {
1938 case MIPI_SEQ_ELEM_SEND_PKT:
1939 return index == 1 ? 0 : index;
1940 case MIPI_SEQ_ELEM_DELAY:
1941 len = 5; /* 1 byte for operand + uint32 */
1942 break;
1943 case MIPI_SEQ_ELEM_GPIO:
1944 len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1945 break;
1946 default:
1947 return 0;
1948 }
1949 }
1950
1951 return 0;
1952 }
1953
1954 /*
1955 * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1956 * The deassert must be done before calling intel_dsi_device_ready, so for
1957 * these devices we split the init OTP sequence into a deassert sequence and
1958 * the actual init OTP part.
1959 */
vlv_fixup_mipi_sequences(struct intel_display * display,struct intel_panel * panel)1960 static void vlv_fixup_mipi_sequences(struct intel_display *display,
1961 struct intel_panel *panel)
1962 {
1963 u8 *init_otp;
1964 int len;
1965
1966 /* Limit this to v1 vid-mode sequences */
1967 if (panel->vbt.dsi.config->is_cmd_mode ||
1968 panel->vbt.dsi.seq_version != 1)
1969 return;
1970
1971 /* Only do this if there are otp and assert seqs and no deassert seq */
1972 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1973 !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1974 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1975 return;
1976
1977 /* The deassert-sequence ends at the first DSI packet */
1978 len = get_init_otp_deassert_fragment_len(display, panel);
1979 if (!len)
1980 return;
1981
1982 drm_dbg_kms(display->drm,
1983 "Using init OTP fragment to deassert reset\n");
1984
1985 /* Copy the fragment, update seq byte and terminate it */
1986 init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1987 panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1988 if (!panel->vbt.dsi.deassert_seq)
1989 return;
1990 panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1991 panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1992 /* Use the copy for deassert */
1993 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1994 panel->vbt.dsi.deassert_seq;
1995 /* Replace the last byte of the fragment with init OTP seq byte */
1996 init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1997 /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1998 panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1999 }
2000
2001 /*
2002 * Some machines (eg. Lenovo 82TQ) appear to have broken
2003 * VBT sequences:
2004 * - INIT_OTP is not present at all
2005 * - what should be in INIT_OTP is in DISPLAY_ON
2006 * - what should be in DISPLAY_ON is in BACKLIGHT_ON
2007 * (along with the actual backlight stuff)
2008 *
2009 * To make those work we simply swap DISPLAY_ON and INIT_OTP.
2010 *
2011 * TODO: Do we need to limit this to specific machines,
2012 * or examine the contents of the sequences to
2013 * avoid false positives?
2014 */
icl_fixup_mipi_sequences(struct intel_display * display,struct intel_panel * panel)2015 static void icl_fixup_mipi_sequences(struct intel_display *display,
2016 struct intel_panel *panel)
2017 {
2018 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] &&
2019 panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]) {
2020 drm_dbg_kms(display->drm,
2021 "Broken VBT: Swapping INIT_OTP and DISPLAY_ON sequences\n");
2022
2023 swap(panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP],
2024 panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]);
2025 }
2026 }
2027
fixup_mipi_sequences(struct intel_display * display,struct intel_panel * panel)2028 static void fixup_mipi_sequences(struct intel_display *display,
2029 struct intel_panel *panel)
2030 {
2031 struct drm_i915_private *i915 = to_i915(display->drm);
2032
2033 if (DISPLAY_VER(display) >= 11)
2034 icl_fixup_mipi_sequences(display, panel);
2035 else if (IS_VALLEYVIEW(i915))
2036 vlv_fixup_mipi_sequences(display, panel);
2037 }
2038
2039 static void
parse_mipi_sequence(struct intel_display * display,struct intel_panel * panel)2040 parse_mipi_sequence(struct intel_display *display,
2041 struct intel_panel *panel)
2042 {
2043 int panel_type = panel->vbt.panel_type;
2044 const struct bdb_mipi_sequence *sequence;
2045 const u8 *seq_data;
2046 u32 seq_size;
2047 u8 *data;
2048 int index = 0;
2049
2050 /* Only our generic panel driver uses the sequence block. */
2051 if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
2052 return;
2053
2054 sequence = bdb_find_section(display, BDB_MIPI_SEQUENCE);
2055 if (!sequence) {
2056 drm_dbg_kms(display->drm,
2057 "No MIPI Sequence found, parsing complete\n");
2058 return;
2059 }
2060
2061 /* Fail gracefully for forward incompatible sequence block. */
2062 if (sequence->version >= 4) {
2063 drm_err(display->drm,
2064 "Unable to parse MIPI Sequence Block v%u\n",
2065 sequence->version);
2066 return;
2067 }
2068
2069 drm_dbg(display->drm, "Found MIPI sequence block v%u\n",
2070 sequence->version);
2071
2072 seq_data = find_panel_sequence_block(display, sequence, panel_type, &seq_size);
2073 if (!seq_data)
2074 return;
2075
2076 data = kmemdup(seq_data, seq_size, GFP_KERNEL);
2077 if (!data)
2078 return;
2079
2080 /* Parse the sequences, store pointers to each sequence. */
2081 for (;;) {
2082 u8 seq_id = *(data + index);
2083 if (seq_id == MIPI_SEQ_END)
2084 break;
2085
2086 if (seq_id >= MIPI_SEQ_MAX) {
2087 drm_err(display->drm, "Unknown sequence %u\n",
2088 seq_id);
2089 goto err;
2090 }
2091
2092 /* Log about presence of sequences we won't run. */
2093 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
2094 drm_dbg_kms(display->drm,
2095 "Unsupported sequence %u\n", seq_id);
2096
2097 panel->vbt.dsi.sequence[seq_id] = data + index;
2098
2099 if (sequence->version >= 3)
2100 index = goto_next_sequence_v3(display, data, index, seq_size);
2101 else
2102 index = goto_next_sequence(display, data, index, seq_size);
2103 if (!index) {
2104 drm_err(display->drm, "Invalid sequence %u\n",
2105 seq_id);
2106 goto err;
2107 }
2108 }
2109
2110 panel->vbt.dsi.data = data;
2111 panel->vbt.dsi.size = seq_size;
2112 panel->vbt.dsi.seq_version = sequence->version;
2113
2114 fixup_mipi_sequences(display, panel);
2115
2116 drm_dbg(display->drm, "MIPI related VBT parsing complete\n");
2117 return;
2118
2119 err:
2120 kfree(data);
2121 memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence));
2122 }
2123
2124 static void
parse_compression_parameters(struct intel_display * display)2125 parse_compression_parameters(struct intel_display *display)
2126 {
2127 const struct bdb_compression_parameters *params;
2128 struct intel_bios_encoder_data *devdata;
2129 u16 block_size;
2130 int index;
2131
2132 if (display->vbt.version < 198)
2133 return;
2134
2135 params = bdb_find_section(display, BDB_COMPRESSION_PARAMETERS);
2136 if (params) {
2137 /* Sanity checks */
2138 if (params->entry_size != sizeof(params->data[0])) {
2139 drm_dbg_kms(display->drm,
2140 "VBT: unsupported compression param entry size\n");
2141 return;
2142 }
2143
2144 block_size = get_blocksize(params);
2145 if (block_size < sizeof(*params)) {
2146 drm_dbg_kms(display->drm,
2147 "VBT: expected 16 compression param entries\n");
2148 return;
2149 }
2150 }
2151
2152 list_for_each_entry(devdata, &display->vbt.display_devices, node) {
2153 const struct child_device_config *child = &devdata->child;
2154
2155 if (!child->compression_enable)
2156 continue;
2157
2158 if (!params) {
2159 drm_dbg_kms(display->drm,
2160 "VBT: compression params not available\n");
2161 continue;
2162 }
2163
2164 if (child->compression_method_cps) {
2165 drm_dbg_kms(display->drm,
2166 "VBT: CPS compression not supported\n");
2167 continue;
2168 }
2169
2170 index = child->compression_structure_index;
2171
2172 devdata->dsc = kmemdup(¶ms->data[index],
2173 sizeof(*devdata->dsc), GFP_KERNEL);
2174 }
2175 }
2176
translate_iboost(struct intel_display * display,u8 val)2177 static u8 translate_iboost(struct intel_display *display, u8 val)
2178 {
2179 static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
2180
2181 if (val >= ARRAY_SIZE(mapping)) {
2182 drm_dbg_kms(display->drm,
2183 "Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
2184 return 0;
2185 }
2186 return mapping[val];
2187 }
2188
2189 static const u8 cnp_ddc_pin_map[] = {
2190 [0] = 0, /* N/A */
2191 [GMBUS_PIN_1_BXT] = DDC_BUS_DDI_B,
2192 [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_C,
2193 [GMBUS_PIN_4_CNP] = DDC_BUS_DDI_D, /* sic */
2194 [GMBUS_PIN_3_BXT] = DDC_BUS_DDI_F, /* sic */
2195 };
2196
2197 static const u8 icp_ddc_pin_map[] = {
2198 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2199 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2200 [GMBUS_PIN_3_BXT] = TGL_DDC_BUS_DDI_C,
2201 [GMBUS_PIN_9_TC1_ICP] = ICL_DDC_BUS_PORT_1,
2202 [GMBUS_PIN_10_TC2_ICP] = ICL_DDC_BUS_PORT_2,
2203 [GMBUS_PIN_11_TC3_ICP] = ICL_DDC_BUS_PORT_3,
2204 [GMBUS_PIN_12_TC4_ICP] = ICL_DDC_BUS_PORT_4,
2205 [GMBUS_PIN_13_TC5_TGP] = TGL_DDC_BUS_PORT_5,
2206 [GMBUS_PIN_14_TC6_TGP] = TGL_DDC_BUS_PORT_6,
2207 };
2208
2209 static const u8 rkl_pch_tgp_ddc_pin_map[] = {
2210 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2211 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2212 [GMBUS_PIN_9_TC1_ICP] = RKL_DDC_BUS_DDI_D,
2213 [GMBUS_PIN_10_TC2_ICP] = RKL_DDC_BUS_DDI_E,
2214 };
2215
2216 static const u8 adls_ddc_pin_map[] = {
2217 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2218 [GMBUS_PIN_9_TC1_ICP] = ADLS_DDC_BUS_PORT_TC1,
2219 [GMBUS_PIN_10_TC2_ICP] = ADLS_DDC_BUS_PORT_TC2,
2220 [GMBUS_PIN_11_TC3_ICP] = ADLS_DDC_BUS_PORT_TC3,
2221 [GMBUS_PIN_12_TC4_ICP] = ADLS_DDC_BUS_PORT_TC4,
2222 };
2223
2224 static const u8 gen9bc_tgp_ddc_pin_map[] = {
2225 [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_B,
2226 [GMBUS_PIN_9_TC1_ICP] = DDC_BUS_DDI_C,
2227 [GMBUS_PIN_10_TC2_ICP] = DDC_BUS_DDI_D,
2228 };
2229
2230 static const u8 adlp_ddc_pin_map[] = {
2231 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2232 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2233 [GMBUS_PIN_9_TC1_ICP] = ADLP_DDC_BUS_PORT_TC1,
2234 [GMBUS_PIN_10_TC2_ICP] = ADLP_DDC_BUS_PORT_TC2,
2235 [GMBUS_PIN_11_TC3_ICP] = ADLP_DDC_BUS_PORT_TC3,
2236 [GMBUS_PIN_12_TC4_ICP] = ADLP_DDC_BUS_PORT_TC4,
2237 };
2238
map_ddc_pin(struct intel_display * display,u8 vbt_pin)2239 static u8 map_ddc_pin(struct intel_display *display, u8 vbt_pin)
2240 {
2241 struct drm_i915_private *i915 = to_i915(display->drm);
2242 const u8 *ddc_pin_map;
2243 int i, n_entries;
2244
2245 if (INTEL_PCH_TYPE(i915) >= PCH_MTL || IS_ALDERLAKE_P(i915)) {
2246 ddc_pin_map = adlp_ddc_pin_map;
2247 n_entries = ARRAY_SIZE(adlp_ddc_pin_map);
2248 } else if (IS_ALDERLAKE_S(i915)) {
2249 ddc_pin_map = adls_ddc_pin_map;
2250 n_entries = ARRAY_SIZE(adls_ddc_pin_map);
2251 } else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) {
2252 return vbt_pin;
2253 } else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) {
2254 ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
2255 n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
2256 } else if (HAS_PCH_TGP(i915) && DISPLAY_VER(display) == 9) {
2257 ddc_pin_map = gen9bc_tgp_ddc_pin_map;
2258 n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
2259 } else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
2260 ddc_pin_map = icp_ddc_pin_map;
2261 n_entries = ARRAY_SIZE(icp_ddc_pin_map);
2262 } else if (HAS_PCH_CNP(i915)) {
2263 ddc_pin_map = cnp_ddc_pin_map;
2264 n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
2265 } else {
2266 /* Assuming direct map */
2267 return vbt_pin;
2268 }
2269
2270 for (i = 0; i < n_entries; i++) {
2271 if (ddc_pin_map[i] == vbt_pin)
2272 return i;
2273 }
2274
2275 drm_dbg_kms(display->drm,
2276 "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
2277 vbt_pin);
2278 return 0;
2279 }
2280
dvo_port_type(u8 dvo_port)2281 static u8 dvo_port_type(u8 dvo_port)
2282 {
2283 switch (dvo_port) {
2284 case DVO_PORT_HDMIA:
2285 case DVO_PORT_HDMIB:
2286 case DVO_PORT_HDMIC:
2287 case DVO_PORT_HDMID:
2288 case DVO_PORT_HDMIE:
2289 case DVO_PORT_HDMIF:
2290 case DVO_PORT_HDMIG:
2291 case DVO_PORT_HDMIH:
2292 case DVO_PORT_HDMII:
2293 return DVO_PORT_HDMIA;
2294 case DVO_PORT_DPA:
2295 case DVO_PORT_DPB:
2296 case DVO_PORT_DPC:
2297 case DVO_PORT_DPD:
2298 case DVO_PORT_DPE:
2299 case DVO_PORT_DPF:
2300 case DVO_PORT_DPG:
2301 case DVO_PORT_DPH:
2302 case DVO_PORT_DPI:
2303 return DVO_PORT_DPA;
2304 case DVO_PORT_MIPIA:
2305 case DVO_PORT_MIPIB:
2306 case DVO_PORT_MIPIC:
2307 case DVO_PORT_MIPID:
2308 return DVO_PORT_MIPIA;
2309 default:
2310 return dvo_port;
2311 }
2312 }
2313
__dvo_port_to_port(int n_ports,int n_dvo,const int port_mapping[][3],u8 dvo_port)2314 static enum port __dvo_port_to_port(int n_ports, int n_dvo,
2315 const int port_mapping[][3], u8 dvo_port)
2316 {
2317 enum port port;
2318 int i;
2319
2320 for (port = PORT_A; port < n_ports; port++) {
2321 for (i = 0; i < n_dvo; i++) {
2322 if (port_mapping[port][i] == -1)
2323 break;
2324
2325 if (dvo_port == port_mapping[port][i])
2326 return port;
2327 }
2328 }
2329
2330 return PORT_NONE;
2331 }
2332
dvo_port_to_port(struct intel_display * display,u8 dvo_port)2333 static enum port dvo_port_to_port(struct intel_display *display,
2334 u8 dvo_port)
2335 {
2336 struct drm_i915_private *i915 = to_i915(display->drm);
2337 /*
2338 * Each DDI port can have more than one value on the "DVO Port" field,
2339 * so look for all the possible values for each port.
2340 */
2341 static const int port_mapping[][3] = {
2342 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2343 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2344 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2345 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2346 [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
2347 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2348 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2349 [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2350 [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2351 };
2352 /*
2353 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
2354 * map to DDI A,B,TC1,TC2 respectively.
2355 */
2356 static const int rkl_port_mapping[][3] = {
2357 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2358 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2359 [PORT_C] = { -1 },
2360 [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2361 [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2362 };
2363 /*
2364 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
2365 * PORT_F and PORT_G, we need to map that to correct VBT sections.
2366 */
2367 static const int adls_port_mapping[][3] = {
2368 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2369 [PORT_B] = { -1 },
2370 [PORT_C] = { -1 },
2371 [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2372 [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2373 [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2374 [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2375 };
2376 static const int xelpd_port_mapping[][3] = {
2377 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2378 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2379 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2380 [PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2381 [PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2382 [PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2383 [PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2384 [PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2385 [PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2386 };
2387
2388 if (DISPLAY_VER(display) >= 13)
2389 return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
2390 ARRAY_SIZE(xelpd_port_mapping[0]),
2391 xelpd_port_mapping,
2392 dvo_port);
2393 else if (IS_ALDERLAKE_S(i915))
2394 return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
2395 ARRAY_SIZE(adls_port_mapping[0]),
2396 adls_port_mapping,
2397 dvo_port);
2398 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2399 return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
2400 ARRAY_SIZE(rkl_port_mapping[0]),
2401 rkl_port_mapping,
2402 dvo_port);
2403 else
2404 return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
2405 ARRAY_SIZE(port_mapping[0]),
2406 port_mapping,
2407 dvo_port);
2408 }
2409
2410 static enum port
dsi_dvo_port_to_port(struct intel_display * display,u8 dvo_port)2411 dsi_dvo_port_to_port(struct intel_display *display, u8 dvo_port)
2412 {
2413 switch (dvo_port) {
2414 case DVO_PORT_MIPIA:
2415 return PORT_A;
2416 case DVO_PORT_MIPIC:
2417 if (DISPLAY_VER(display) >= 11)
2418 return PORT_B;
2419 else
2420 return PORT_C;
2421 default:
2422 return PORT_NONE;
2423 }
2424 }
2425
intel_bios_encoder_port(const struct intel_bios_encoder_data * devdata)2426 enum port intel_bios_encoder_port(const struct intel_bios_encoder_data *devdata)
2427 {
2428 struct intel_display *display = devdata->display;
2429 const struct child_device_config *child = &devdata->child;
2430 enum port port;
2431
2432 port = dvo_port_to_port(display, child->dvo_port);
2433 if (port == PORT_NONE && DISPLAY_VER(display) >= 11)
2434 port = dsi_dvo_port_to_port(display, child->dvo_port);
2435
2436 return port;
2437 }
2438
parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)2439 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
2440 {
2441 switch (vbt_max_link_rate) {
2442 default:
2443 case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
2444 return 0;
2445 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
2446 return 2000000;
2447 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
2448 return 1350000;
2449 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
2450 return 1000000;
2451 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
2452 return 810000;
2453 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
2454 return 540000;
2455 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
2456 return 270000;
2457 case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
2458 return 162000;
2459 }
2460 }
2461
parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)2462 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
2463 {
2464 switch (vbt_max_link_rate) {
2465 default:
2466 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
2467 return 810000;
2468 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
2469 return 540000;
2470 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
2471 return 270000;
2472 case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
2473 return 162000;
2474 }
2475 }
2476
intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data * devdata)2477 int intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
2478 {
2479 if (!devdata || devdata->display->vbt.version < 216)
2480 return 0;
2481
2482 if (devdata->display->vbt.version >= 230)
2483 return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
2484 else
2485 return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
2486 }
2487
intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data * devdata)2488 int intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata)
2489 {
2490 if (!devdata || devdata->display->vbt.version < 244)
2491 return 0;
2492
2493 return devdata->child.dp_max_lane_count + 1;
2494 }
2495
sanitize_device_type(struct intel_bios_encoder_data * devdata,enum port port)2496 static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
2497 enum port port)
2498 {
2499 struct intel_display *display = devdata->display;
2500 bool is_hdmi;
2501
2502 if (port != PORT_A || DISPLAY_VER(display) >= 12)
2503 return;
2504
2505 if (!intel_bios_encoder_supports_dvi(devdata))
2506 return;
2507
2508 is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2509
2510 drm_dbg_kms(display->drm, "VBT claims port A supports DVI%s, ignoring\n",
2511 is_hdmi ? "/HDMI" : "");
2512
2513 devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2514 devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2515 }
2516
sanitize_hdmi_level_shift(struct intel_bios_encoder_data * devdata,enum port port)2517 static void sanitize_hdmi_level_shift(struct intel_bios_encoder_data *devdata,
2518 enum port port)
2519 {
2520 struct intel_display *display = devdata->display;
2521 struct drm_i915_private *i915 = to_i915(display->drm);
2522
2523 if (!intel_bios_encoder_supports_dvi(devdata))
2524 return;
2525
2526 /*
2527 * Some BDW machines (eg. HP Pavilion 15-ab) shipped
2528 * with a HSW VBT where the level shifter value goes
2529 * up to 11, whereas the BDW max is 9.
2530 */
2531 if (IS_BROADWELL(i915) && devdata->child.hdmi_level_shifter_value > 9) {
2532 drm_dbg_kms(display->drm,
2533 "Bogus port %c VBT HDMI level shift %d, adjusting to %d\n",
2534 port_name(port), devdata->child.hdmi_level_shifter_value, 9);
2535
2536 devdata->child.hdmi_level_shifter_value = 9;
2537 }
2538 }
2539
2540 static bool
intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data * devdata)2541 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
2542 {
2543 return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
2544 }
2545
2546 bool
intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data * devdata)2547 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
2548 {
2549 return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
2550 }
2551
2552 bool
intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data * devdata)2553 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
2554 {
2555 return intel_bios_encoder_supports_dvi(devdata) &&
2556 (devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
2557 }
2558
2559 bool
intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data * devdata)2560 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
2561 {
2562 return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2563 }
2564
2565 bool
intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data * devdata)2566 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
2567 {
2568 return intel_bios_encoder_supports_dp(devdata) &&
2569 devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
2570 }
2571
2572 bool
intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data * devdata)2573 intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata)
2574 {
2575 return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT;
2576 }
2577
2578 bool
intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data * devdata)2579 intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data *devdata)
2580 {
2581 return devdata && HAS_LSPCON(devdata->display) && devdata->child.lspcon;
2582 }
2583
2584 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data * devdata)2585 int intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
2586 {
2587 if (!devdata || devdata->display->vbt.version < 158 ||
2588 DISPLAY_VER(devdata->display) >= 14)
2589 return -1;
2590
2591 return devdata->child.hdmi_level_shifter_value;
2592 }
2593
intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data * devdata)2594 int intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
2595 {
2596 if (!devdata || devdata->display->vbt.version < 204)
2597 return 0;
2598
2599 switch (devdata->child.hdmi_max_data_rate) {
2600 default:
2601 MISSING_CASE(devdata->child.hdmi_max_data_rate);
2602 fallthrough;
2603 case HDMI_MAX_DATA_RATE_PLATFORM:
2604 return 0;
2605 case HDMI_MAX_DATA_RATE_594:
2606 return 594000;
2607 case HDMI_MAX_DATA_RATE_340:
2608 return 340000;
2609 case HDMI_MAX_DATA_RATE_300:
2610 return 300000;
2611 case HDMI_MAX_DATA_RATE_297:
2612 return 297000;
2613 case HDMI_MAX_DATA_RATE_165:
2614 return 165000;
2615 }
2616 }
2617
is_port_valid(struct intel_display * display,enum port port)2618 static bool is_port_valid(struct intel_display *display, enum port port)
2619 {
2620 struct drm_i915_private *i915 = to_i915(display->drm);
2621 /*
2622 * On some ICL SKUs port F is not present, but broken VBTs mark
2623 * the port as present. Only try to initialize port F for the
2624 * SKUs that may actually have it.
2625 */
2626 if (port == PORT_F && IS_ICELAKE(i915))
2627 return IS_ICL_WITH_PORT_F(i915);
2628
2629 return true;
2630 }
2631
print_ddi_port(const struct intel_bios_encoder_data * devdata)2632 static void print_ddi_port(const struct intel_bios_encoder_data *devdata)
2633 {
2634 struct intel_display *display = devdata->display;
2635 const struct child_device_config *child = &devdata->child;
2636 bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt;
2637 int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
2638 enum port port;
2639
2640 port = intel_bios_encoder_port(devdata);
2641 if (port == PORT_NONE)
2642 return;
2643
2644 is_dvi = intel_bios_encoder_supports_dvi(devdata);
2645 is_dp = intel_bios_encoder_supports_dp(devdata);
2646 is_crt = intel_bios_encoder_supports_crt(devdata);
2647 is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2648 is_edp = intel_bios_encoder_supports_edp(devdata);
2649 is_dsi = intel_bios_encoder_supports_dsi(devdata);
2650
2651 supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
2652 supports_tbt = intel_bios_encoder_supports_tbt(devdata);
2653
2654 drm_dbg_kms(display->drm,
2655 "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d DP++:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
2656 port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi,
2657 intel_bios_encoder_supports_dp_dual_mode(devdata),
2658 intel_bios_encoder_is_lspcon(devdata),
2659 supports_typec_usb, supports_tbt,
2660 devdata->dsc != NULL);
2661
2662 hdmi_level_shift = intel_bios_hdmi_level_shift(devdata);
2663 if (hdmi_level_shift >= 0) {
2664 drm_dbg_kms(display->drm,
2665 "Port %c VBT HDMI level shift: %d\n",
2666 port_name(port), hdmi_level_shift);
2667 }
2668
2669 max_tmds_clock = intel_bios_hdmi_max_tmds_clock(devdata);
2670 if (max_tmds_clock)
2671 drm_dbg_kms(display->drm,
2672 "Port %c VBT HDMI max TMDS clock: %d kHz\n",
2673 port_name(port), max_tmds_clock);
2674
2675 /* I_boost config for SKL and above */
2676 dp_boost_level = intel_bios_dp_boost_level(devdata);
2677 if (dp_boost_level)
2678 drm_dbg_kms(display->drm,
2679 "Port %c VBT (e)DP boost level: %d\n",
2680 port_name(port), dp_boost_level);
2681
2682 hdmi_boost_level = intel_bios_hdmi_boost_level(devdata);
2683 if (hdmi_boost_level)
2684 drm_dbg_kms(display->drm,
2685 "Port %c VBT HDMI boost level: %d\n",
2686 port_name(port), hdmi_boost_level);
2687
2688 dp_max_link_rate = intel_bios_dp_max_link_rate(devdata);
2689 if (dp_max_link_rate)
2690 drm_dbg_kms(display->drm,
2691 "Port %c VBT DP max link rate: %d\n",
2692 port_name(port), dp_max_link_rate);
2693
2694 /*
2695 * FIXME need to implement support for VBT
2696 * vswing/preemph tables should this ever trigger.
2697 */
2698 drm_WARN(display->drm, child->use_vbt_vswing,
2699 "Port %c asks to use VBT vswing/preemph tables\n",
2700 port_name(port));
2701 }
2702
parse_ddi_port(struct intel_bios_encoder_data * devdata)2703 static void parse_ddi_port(struct intel_bios_encoder_data *devdata)
2704 {
2705 struct intel_display *display = devdata->display;
2706 enum port port;
2707
2708 port = intel_bios_encoder_port(devdata);
2709 if (port == PORT_NONE)
2710 return;
2711
2712 if (!is_port_valid(display, port)) {
2713 drm_dbg_kms(display->drm,
2714 "VBT reports port %c as supported, but that can't be true: skipping\n",
2715 port_name(port));
2716 return;
2717 }
2718
2719 sanitize_device_type(devdata, port);
2720 sanitize_hdmi_level_shift(devdata, port);
2721 }
2722
has_ddi_port_info(struct intel_display * display)2723 static bool has_ddi_port_info(struct intel_display *display)
2724 {
2725 struct drm_i915_private *i915 = to_i915(display->drm);
2726
2727 return DISPLAY_VER(display) >= 5 || IS_G4X(i915);
2728 }
2729
parse_ddi_ports(struct intel_display * display)2730 static void parse_ddi_ports(struct intel_display *display)
2731 {
2732 struct intel_bios_encoder_data *devdata;
2733
2734 if (!has_ddi_port_info(display))
2735 return;
2736
2737 list_for_each_entry(devdata, &display->vbt.display_devices, node)
2738 parse_ddi_port(devdata);
2739
2740 list_for_each_entry(devdata, &display->vbt.display_devices, node)
2741 print_ddi_port(devdata);
2742 }
2743
child_device_expected_size(u16 version)2744 static int child_device_expected_size(u16 version)
2745 {
2746 BUILD_BUG_ON(sizeof(struct child_device_config) < 40);
2747
2748 if (version > 256)
2749 return -ENOENT;
2750 else if (version >= 256)
2751 return 40;
2752 else if (version >= 216)
2753 return 39;
2754 else if (version >= 196)
2755 return 38;
2756 else if (version >= 195)
2757 return 37;
2758 else if (version >= 111)
2759 return LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2760 else if (version >= 106)
2761 return 27;
2762 else
2763 return 22;
2764 }
2765
child_device_size_valid(struct intel_display * display,int size)2766 static bool child_device_size_valid(struct intel_display *display, int size)
2767 {
2768 int expected_size;
2769
2770 expected_size = child_device_expected_size(display->vbt.version);
2771 if (expected_size < 0) {
2772 expected_size = sizeof(struct child_device_config);
2773 drm_dbg(display->drm,
2774 "Expected child device config size for VBT version %u not known; assuming %d\n",
2775 display->vbt.version, expected_size);
2776 }
2777
2778 /* Flag an error for unexpected size, but continue anyway. */
2779 if (size != expected_size)
2780 drm_err(display->drm,
2781 "Unexpected child device config size %d (expected %d for VBT version %u)\n",
2782 size, expected_size, display->vbt.version);
2783
2784 /* The legacy sized child device config is the minimum we need. */
2785 if (size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2786 drm_dbg_kms(display->drm,
2787 "Child device config size %d is too small.\n",
2788 size);
2789 return false;
2790 }
2791
2792 return true;
2793 }
2794
2795 static void
parse_general_definitions(struct intel_display * display)2796 parse_general_definitions(struct intel_display *display)
2797 {
2798 struct drm_i915_private *i915 = to_i915(display->drm);
2799 const struct bdb_general_definitions *defs;
2800 struct intel_bios_encoder_data *devdata;
2801 const struct child_device_config *child;
2802 int i, child_device_num;
2803 u16 block_size;
2804 int bus_pin;
2805
2806 defs = bdb_find_section(display, BDB_GENERAL_DEFINITIONS);
2807 if (!defs) {
2808 drm_dbg_kms(display->drm,
2809 "No general definition block is found, no devices defined.\n");
2810 return;
2811 }
2812
2813 block_size = get_blocksize(defs);
2814 if (block_size < sizeof(*defs)) {
2815 drm_dbg_kms(display->drm,
2816 "General definitions block too small (%u)\n",
2817 block_size);
2818 return;
2819 }
2820
2821 bus_pin = defs->crt_ddc_gmbus_pin;
2822 drm_dbg_kms(display->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2823 if (intel_gmbus_is_valid_pin(i915, bus_pin))
2824 display->vbt.crt_ddc_pin = bus_pin;
2825
2826 if (!child_device_size_valid(display, defs->child_dev_size))
2827 return;
2828
2829 /* get the number of child device */
2830 child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2831
2832 for (i = 0; i < child_device_num; i++) {
2833 child = child_device_ptr(defs, i);
2834 if (!child->device_type)
2835 continue;
2836
2837 drm_dbg_kms(display->drm,
2838 "Found VBT child device with type 0x%x\n",
2839 child->device_type);
2840
2841 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2842 if (!devdata)
2843 break;
2844
2845 devdata->display = display;
2846
2847 /*
2848 * Copy as much as we know (sizeof) and is available
2849 * (child_dev_size) of the child device config. Accessing the
2850 * data must depend on VBT version.
2851 */
2852 memcpy(&devdata->child, child,
2853 min_t(size_t, defs->child_dev_size, sizeof(*child)));
2854
2855 list_add_tail(&devdata->node, &display->vbt.display_devices);
2856 }
2857
2858 if (list_empty(&display->vbt.display_devices))
2859 drm_dbg_kms(display->drm,
2860 "no child dev is parsed from VBT\n");
2861 }
2862
2863 /* Common defaults which may be overridden by VBT. */
2864 static void
init_vbt_defaults(struct intel_display * display)2865 init_vbt_defaults(struct intel_display *display)
2866 {
2867 struct drm_i915_private *i915 = to_i915(display->drm);
2868
2869 display->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2870
2871 /* general features */
2872 display->vbt.int_tv_support = 1;
2873 display->vbt.int_crt_support = 1;
2874
2875 /* driver features */
2876 display->vbt.int_lvds_support = 1;
2877
2878 /* Default to using SSC */
2879 display->vbt.lvds_use_ssc = 1;
2880 /*
2881 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2882 * clock for LVDS.
2883 */
2884 display->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(display,
2885 !HAS_PCH_SPLIT(i915));
2886 drm_dbg_kms(display->drm, "Set default to SSC at %d kHz\n",
2887 display->vbt.lvds_ssc_freq);
2888 }
2889
2890 /* Common defaults which may be overridden by VBT. */
2891 static void
init_vbt_panel_defaults(struct intel_panel * panel)2892 init_vbt_panel_defaults(struct intel_panel *panel)
2893 {
2894 /* Default to having backlight */
2895 panel->vbt.backlight.present = true;
2896
2897 /* LFP panel data */
2898 panel->vbt.lvds_dither = true;
2899 }
2900
2901 /* Defaults to initialize only if there is no VBT. */
2902 static void
init_vbt_missing_defaults(struct intel_display * display)2903 init_vbt_missing_defaults(struct intel_display *display)
2904 {
2905 struct drm_i915_private *i915 = to_i915(display->drm);
2906 unsigned int ports = DISPLAY_RUNTIME_INFO(display)->port_mask;
2907 enum port port;
2908
2909 if (!HAS_DDI(display) && !IS_CHERRYVIEW(i915))
2910 return;
2911
2912 for_each_port_masked(port, ports) {
2913 struct intel_bios_encoder_data *devdata;
2914 struct child_device_config *child;
2915 enum phy phy = intel_port_to_phy(i915, port);
2916
2917 /*
2918 * VBT has the TypeC mode (native,TBT/USB) and we don't want
2919 * to detect it.
2920 */
2921 if (intel_phy_is_tc(i915, phy))
2922 continue;
2923
2924 /* Create fake child device config */
2925 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2926 if (!devdata)
2927 break;
2928
2929 devdata->display = display;
2930 child = &devdata->child;
2931
2932 if (port == PORT_F)
2933 child->dvo_port = DVO_PORT_HDMIF;
2934 else if (port == PORT_E)
2935 child->dvo_port = DVO_PORT_HDMIE;
2936 else
2937 child->dvo_port = DVO_PORT_HDMIA + port;
2938
2939 if (port != PORT_A && port != PORT_E)
2940 child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2941
2942 if (port != PORT_E)
2943 child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2944
2945 if (port == PORT_A)
2946 child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2947
2948 list_add_tail(&devdata->node, &display->vbt.display_devices);
2949
2950 drm_dbg_kms(display->drm,
2951 "Generating default VBT child device with type 0x%04x on port %c\n",
2952 child->device_type, port_name(port));
2953 }
2954
2955 /* Bypass some minimum baseline VBT version checks */
2956 display->vbt.version = 155;
2957 }
2958
get_bdb_header(const struct vbt_header * vbt)2959 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2960 {
2961 const void *_vbt = vbt;
2962
2963 return _vbt + vbt->bdb_offset;
2964 }
2965
2966 /**
2967 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2968 * @display: display device
2969 * @buf: pointer to a buffer to validate
2970 * @size: size of the buffer
2971 *
2972 * Returns true on valid VBT.
2973 */
intel_bios_is_valid_vbt(struct intel_display * display,const void * buf,size_t size)2974 bool intel_bios_is_valid_vbt(struct intel_display *display,
2975 const void *buf, size_t size)
2976 {
2977 const struct vbt_header *vbt = buf;
2978 const struct bdb_header *bdb;
2979
2980 if (!vbt)
2981 return false;
2982
2983 if (sizeof(struct vbt_header) > size) {
2984 drm_dbg_kms(display->drm, "VBT header incomplete\n");
2985 return false;
2986 }
2987
2988 if (memcmp(vbt->signature, "$VBT", 4)) {
2989 drm_dbg_kms(display->drm, "VBT invalid signature\n");
2990 return false;
2991 }
2992
2993 if (vbt->vbt_size > size) {
2994 drm_dbg_kms(display->drm,
2995 "VBT incomplete (vbt_size overflows)\n");
2996 return false;
2997 }
2998
2999 size = vbt->vbt_size;
3000
3001 if (range_overflows_t(size_t,
3002 vbt->bdb_offset,
3003 sizeof(struct bdb_header),
3004 size)) {
3005 drm_dbg_kms(display->drm, "BDB header incomplete\n");
3006 return false;
3007 }
3008
3009 bdb = get_bdb_header(vbt);
3010 if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
3011 drm_dbg_kms(display->drm, "BDB incomplete\n");
3012 return false;
3013 }
3014
3015 return vbt;
3016 }
3017
firmware_get_vbt(struct intel_display * display,size_t * size)3018 static struct vbt_header *firmware_get_vbt(struct intel_display *display,
3019 size_t *size)
3020 {
3021 struct vbt_header *vbt = NULL;
3022 const struct firmware *fw = NULL;
3023 const char *name = display->params.vbt_firmware;
3024 int ret;
3025
3026 if (!name || !*name)
3027 return NULL;
3028
3029 ret = request_firmware(&fw, name, display->drm->dev);
3030 if (ret) {
3031 drm_err(display->drm,
3032 "Requesting VBT firmware \"%s\" failed (%d)\n",
3033 name, ret);
3034 return NULL;
3035 }
3036
3037 if (intel_bios_is_valid_vbt(display, fw->data, fw->size)) {
3038 vbt = kmemdup(fw->data, fw->size, GFP_KERNEL);
3039 if (vbt) {
3040 drm_dbg_kms(display->drm,
3041 "Found valid VBT firmware \"%s\"\n", name);
3042 if (size)
3043 *size = fw->size;
3044 }
3045 } else {
3046 drm_dbg_kms(display->drm, "Invalid VBT firmware \"%s\"\n",
3047 name);
3048 }
3049
3050 release_firmware(fw);
3051
3052 return vbt;
3053 }
3054
intel_spi_read(struct intel_uncore * uncore,u32 offset)3055 static u32 intel_spi_read(struct intel_uncore *uncore, u32 offset)
3056 {
3057 intel_uncore_write(uncore, PRIMARY_SPI_ADDRESS, offset);
3058
3059 return intel_uncore_read(uncore, PRIMARY_SPI_TRIGGER);
3060 }
3061
spi_oprom_get_vbt(struct intel_display * display,size_t * size)3062 static struct vbt_header *spi_oprom_get_vbt(struct intel_display *display,
3063 size_t *size)
3064 {
3065 struct drm_i915_private *i915 = to_i915(display->drm);
3066 u32 count, data, found, store = 0;
3067 u32 static_region, oprom_offset;
3068 u32 oprom_size = 0x200000;
3069 u16 vbt_size;
3070 u32 *vbt;
3071
3072 static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS);
3073 static_region &= OPTIONROM_SPI_REGIONID_MASK;
3074 intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region);
3075
3076 oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET);
3077 oprom_offset &= OROM_OFFSET_MASK;
3078
3079 for (count = 0; count < oprom_size; count += 4) {
3080 data = intel_spi_read(&i915->uncore, oprom_offset + count);
3081 if (data == *((const u32 *)"$VBT")) {
3082 found = oprom_offset + count;
3083 break;
3084 }
3085 }
3086
3087 if (count >= oprom_size)
3088 goto err_not_found;
3089
3090 /* Get VBT size and allocate space for the VBT */
3091 vbt_size = intel_spi_read(&i915->uncore,
3092 found + offsetof(struct vbt_header, vbt_size));
3093 vbt_size &= 0xffff;
3094
3095 vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL);
3096 if (!vbt)
3097 goto err_not_found;
3098
3099 for (count = 0; count < vbt_size; count += 4)
3100 *(vbt + store++) = intel_spi_read(&i915->uncore, found + count);
3101
3102 if (!intel_bios_is_valid_vbt(display, vbt, vbt_size))
3103 goto err_free_vbt;
3104
3105 drm_dbg_kms(display->drm, "Found valid VBT in SPI flash\n");
3106
3107 if (size)
3108 *size = vbt_size;
3109
3110 return (struct vbt_header *)vbt;
3111
3112 err_free_vbt:
3113 kfree(vbt);
3114 err_not_found:
3115 return NULL;
3116 }
3117
oprom_get_vbt(struct intel_display * display,size_t * sizep)3118 static struct vbt_header *oprom_get_vbt(struct intel_display *display,
3119 size_t *sizep)
3120 {
3121 struct pci_dev *pdev = to_pci_dev(display->drm->dev);
3122 void __iomem *p = NULL, *oprom;
3123 struct vbt_header *vbt;
3124 u16 vbt_size;
3125 size_t i, size;
3126
3127 oprom = pci_map_rom(pdev, &size);
3128 if (!oprom)
3129 return NULL;
3130
3131 /* Scour memory looking for the VBT signature. */
3132 for (i = 0; i + 4 < size; i += 4) {
3133 if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
3134 continue;
3135
3136 p = oprom + i;
3137 size -= i;
3138 break;
3139 }
3140
3141 if (!p)
3142 goto err_unmap_oprom;
3143
3144 if (sizeof(struct vbt_header) > size) {
3145 drm_dbg(display->drm, "VBT header incomplete\n");
3146 goto err_unmap_oprom;
3147 }
3148
3149 vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
3150 if (vbt_size > size) {
3151 drm_dbg(display->drm,
3152 "VBT incomplete (vbt_size overflows)\n");
3153 goto err_unmap_oprom;
3154 }
3155
3156 /* The rest will be validated by intel_bios_is_valid_vbt() */
3157 vbt = kmalloc(vbt_size, GFP_KERNEL);
3158 if (!vbt)
3159 goto err_unmap_oprom;
3160
3161 memcpy_fromio(vbt, p, vbt_size);
3162
3163 if (!intel_bios_is_valid_vbt(display, vbt, vbt_size))
3164 goto err_free_vbt;
3165
3166 pci_unmap_rom(pdev, oprom);
3167
3168 if (sizep)
3169 *sizep = vbt_size;
3170
3171 drm_dbg_kms(display->drm, "Found valid VBT in PCI ROM\n");
3172
3173 return vbt;
3174
3175 err_free_vbt:
3176 kfree(vbt);
3177 err_unmap_oprom:
3178 pci_unmap_rom(pdev, oprom);
3179
3180 return NULL;
3181 }
3182
intel_bios_get_vbt(struct intel_display * display,size_t * sizep)3183 static const struct vbt_header *intel_bios_get_vbt(struct intel_display *display,
3184 size_t *sizep)
3185 {
3186 struct drm_i915_private *i915 = to_i915(display->drm);
3187 const struct vbt_header *vbt = NULL;
3188 intel_wakeref_t wakeref;
3189
3190 vbt = firmware_get_vbt(display, sizep);
3191
3192 if (!vbt)
3193 vbt = intel_opregion_get_vbt(display, sizep);
3194
3195 /*
3196 * If the OpRegion does not have VBT, look in SPI flash
3197 * through MMIO or PCI mapping
3198 */
3199 if (!vbt && IS_DGFX(i915))
3200 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
3201 vbt = spi_oprom_get_vbt(display, sizep);
3202
3203 if (!vbt)
3204 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
3205 vbt = oprom_get_vbt(display, sizep);
3206
3207 return vbt;
3208 }
3209
3210 /**
3211 * intel_bios_init - find VBT and initialize settings from the BIOS
3212 * @display: display device instance
3213 *
3214 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
3215 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
3216 * initialize some defaults if the VBT is not present at all.
3217 */
intel_bios_init(struct intel_display * display)3218 void intel_bios_init(struct intel_display *display)
3219 {
3220 const struct vbt_header *vbt;
3221 const struct bdb_header *bdb;
3222
3223 INIT_LIST_HEAD(&display->vbt.display_devices);
3224 INIT_LIST_HEAD(&display->vbt.bdb_blocks);
3225
3226 if (!HAS_DISPLAY(display)) {
3227 drm_dbg_kms(display->drm,
3228 "Skipping VBT init due to disabled display.\n");
3229 return;
3230 }
3231
3232 init_vbt_defaults(display);
3233
3234 vbt = intel_bios_get_vbt(display, NULL);
3235
3236 if (!vbt)
3237 goto out;
3238
3239 bdb = get_bdb_header(vbt);
3240 display->vbt.version = bdb->version;
3241
3242 drm_dbg_kms(display->drm,
3243 "VBT signature \"%.*s\", BDB version %d\n",
3244 (int)sizeof(vbt->signature), vbt->signature,
3245 display->vbt.version);
3246
3247 init_bdb_blocks(display, bdb);
3248
3249 /* Grab useful general definitions */
3250 parse_general_features(display);
3251 parse_general_definitions(display);
3252 parse_driver_features(display);
3253
3254 /* Depends on child device list */
3255 parse_compression_parameters(display);
3256
3257 out:
3258 if (!vbt) {
3259 drm_info(display->drm,
3260 "Failed to find VBIOS tables (VBT)\n");
3261 init_vbt_missing_defaults(display);
3262 }
3263
3264 /* Further processing on pre-parsed or generated child device data */
3265 parse_sdvo_device_mapping(display);
3266 parse_ddi_ports(display);
3267
3268 kfree(vbt);
3269 }
3270
intel_bios_init_panel(struct intel_display * display,struct intel_panel * panel,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)3271 static void intel_bios_init_panel(struct intel_display *display,
3272 struct intel_panel *panel,
3273 const struct intel_bios_encoder_data *devdata,
3274 const struct drm_edid *drm_edid,
3275 bool use_fallback)
3276 {
3277 /* already have it? */
3278 if (panel->vbt.panel_type >= 0) {
3279 drm_WARN_ON(display->drm, !use_fallback);
3280 return;
3281 }
3282
3283 panel->vbt.panel_type = get_panel_type(display, devdata,
3284 drm_edid, use_fallback);
3285 if (panel->vbt.panel_type < 0) {
3286 drm_WARN_ON(display->drm, use_fallback);
3287 return;
3288 }
3289
3290 init_vbt_panel_defaults(panel);
3291
3292 parse_panel_options(display, panel);
3293 parse_generic_dtd(display, panel);
3294 parse_lfp_data(display, panel);
3295 parse_lfp_backlight(display, panel);
3296 parse_sdvo_lvds_data(display, panel);
3297 parse_panel_driver_features(display, panel);
3298 parse_power_conservation_features(display, panel);
3299 parse_edp(display, panel);
3300 parse_psr(display, panel);
3301 parse_mipi_config(display, panel);
3302 parse_mipi_sequence(display, panel);
3303 }
3304
intel_bios_init_panel_early(struct intel_display * display,struct intel_panel * panel,const struct intel_bios_encoder_data * devdata)3305 void intel_bios_init_panel_early(struct intel_display *display,
3306 struct intel_panel *panel,
3307 const struct intel_bios_encoder_data *devdata)
3308 {
3309 intel_bios_init_panel(display, panel, devdata, NULL, false);
3310 }
3311
intel_bios_init_panel_late(struct intel_display * display,struct intel_panel * panel,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid)3312 void intel_bios_init_panel_late(struct intel_display *display,
3313 struct intel_panel *panel,
3314 const struct intel_bios_encoder_data *devdata,
3315 const struct drm_edid *drm_edid)
3316 {
3317 intel_bios_init_panel(display, panel, devdata, drm_edid, true);
3318 }
3319
3320 /**
3321 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
3322 * @display: display device instance
3323 */
intel_bios_driver_remove(struct intel_display * display)3324 void intel_bios_driver_remove(struct intel_display *display)
3325 {
3326 struct intel_bios_encoder_data *devdata, *nd;
3327 struct bdb_block_entry *entry, *ne;
3328
3329 list_for_each_entry_safe(devdata, nd, &display->vbt.display_devices,
3330 node) {
3331 list_del(&devdata->node);
3332 kfree(devdata->dsc);
3333 kfree(devdata);
3334 }
3335
3336 list_for_each_entry_safe(entry, ne, &display->vbt.bdb_blocks, node) {
3337 list_del(&entry->node);
3338 kfree(entry);
3339 }
3340 }
3341
intel_bios_fini_panel(struct intel_panel * panel)3342 void intel_bios_fini_panel(struct intel_panel *panel)
3343 {
3344 kfree(panel->vbt.sdvo_lvds_vbt_mode);
3345 panel->vbt.sdvo_lvds_vbt_mode = NULL;
3346 kfree(panel->vbt.lfp_vbt_mode);
3347 panel->vbt.lfp_vbt_mode = NULL;
3348 kfree(panel->vbt.dsi.data);
3349 panel->vbt.dsi.data = NULL;
3350 kfree(panel->vbt.dsi.pps);
3351 panel->vbt.dsi.pps = NULL;
3352 kfree(panel->vbt.dsi.config);
3353 panel->vbt.dsi.config = NULL;
3354 kfree(panel->vbt.dsi.deassert_seq);
3355 panel->vbt.dsi.deassert_seq = NULL;
3356 }
3357
3358 /**
3359 * intel_bios_is_tv_present - is integrated TV present in VBT
3360 * @display: display device instance
3361 *
3362 * Return true if TV is present. If no child devices were parsed from VBT,
3363 * assume TV is present.
3364 */
intel_bios_is_tv_present(struct intel_display * display)3365 bool intel_bios_is_tv_present(struct intel_display *display)
3366 {
3367 const struct intel_bios_encoder_data *devdata;
3368
3369 if (!display->vbt.int_tv_support)
3370 return false;
3371
3372 if (list_empty(&display->vbt.display_devices))
3373 return true;
3374
3375 list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3376 const struct child_device_config *child = &devdata->child;
3377
3378 /*
3379 * If the device type is not TV, continue.
3380 */
3381 switch (child->device_type) {
3382 case DEVICE_TYPE_INT_TV:
3383 case DEVICE_TYPE_TV:
3384 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
3385 break;
3386 default:
3387 continue;
3388 }
3389 /* Only when the addin_offset is non-zero, it is regarded
3390 * as present.
3391 */
3392 if (child->addin_offset)
3393 return true;
3394 }
3395
3396 return false;
3397 }
3398
3399 /**
3400 * intel_bios_is_lvds_present - is LVDS present in VBT
3401 * @display: display device instance
3402 * @i2c_pin: i2c pin for LVDS if present
3403 *
3404 * Return true if LVDS is present. If no child devices were parsed from VBT,
3405 * assume LVDS is present.
3406 */
intel_bios_is_lvds_present(struct intel_display * display,u8 * i2c_pin)3407 bool intel_bios_is_lvds_present(struct intel_display *display, u8 *i2c_pin)
3408 {
3409 struct drm_i915_private *i915 = to_i915(display->drm);
3410 const struct intel_bios_encoder_data *devdata;
3411
3412 if (list_empty(&display->vbt.display_devices))
3413 return true;
3414
3415 list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3416 const struct child_device_config *child = &devdata->child;
3417
3418 /* If the device type is not LFP, continue.
3419 * We have to check both the new identifiers as well as the
3420 * old for compatibility with some BIOSes.
3421 */
3422 if (child->device_type != DEVICE_TYPE_INT_LFP &&
3423 child->device_type != DEVICE_TYPE_LFP)
3424 continue;
3425
3426 if (intel_gmbus_is_valid_pin(i915, child->i2c_pin))
3427 *i2c_pin = child->i2c_pin;
3428
3429 /* However, we cannot trust the BIOS writers to populate
3430 * the VBT correctly. Since LVDS requires additional
3431 * information from AIM blocks, a non-zero addin offset is
3432 * a good indicator that the LVDS is actually present.
3433 */
3434 if (child->addin_offset)
3435 return true;
3436
3437 /* But even then some BIOS writers perform some black magic
3438 * and instantiate the device without reference to any
3439 * additional data. Trust that if the VBT was written into
3440 * the OpRegion then they have validated the LVDS's existence.
3441 */
3442 return intel_opregion_vbt_present(display);
3443 }
3444
3445 return false;
3446 }
3447
3448 /**
3449 * intel_bios_is_port_present - is the specified digital port present
3450 * @display: display device instance
3451 * @port: port to check
3452 *
3453 * Return true if the device in %port is present.
3454 */
intel_bios_is_port_present(struct intel_display * display,enum port port)3455 bool intel_bios_is_port_present(struct intel_display *display, enum port port)
3456 {
3457 const struct intel_bios_encoder_data *devdata;
3458
3459 if (WARN_ON(!has_ddi_port_info(display)))
3460 return true;
3461
3462 if (!is_port_valid(display, port))
3463 return false;
3464
3465 list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3466 const struct child_device_config *child = &devdata->child;
3467
3468 if (dvo_port_to_port(display, child->dvo_port) == port)
3469 return true;
3470 }
3471
3472 return false;
3473 }
3474
intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data * devdata)3475 bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata)
3476 {
3477 const struct child_device_config *child = &devdata->child;
3478
3479 if (!devdata)
3480 return false;
3481
3482 if (!intel_bios_encoder_supports_dp(devdata) ||
3483 !intel_bios_encoder_supports_hdmi(devdata))
3484 return false;
3485
3486 if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
3487 return true;
3488
3489 /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
3490 if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
3491 child->aux_channel != 0)
3492 return true;
3493
3494 return false;
3495 }
3496
3497 /**
3498 * intel_bios_is_dsi_present - is DSI present in VBT
3499 * @display: display device instance
3500 * @port: port for DSI if present
3501 *
3502 * Return true if DSI is present, and return the port in %port.
3503 */
intel_bios_is_dsi_present(struct intel_display * display,enum port * port)3504 bool intel_bios_is_dsi_present(struct intel_display *display,
3505 enum port *port)
3506 {
3507 const struct intel_bios_encoder_data *devdata;
3508
3509 list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3510 const struct child_device_config *child = &devdata->child;
3511 u8 dvo_port = child->dvo_port;
3512
3513 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3514 continue;
3515
3516 if (dsi_dvo_port_to_port(display, dvo_port) == PORT_NONE) {
3517 drm_dbg_kms(display->drm,
3518 "VBT has unsupported DSI port %c\n",
3519 port_name(dvo_port - DVO_PORT_MIPIA));
3520 continue;
3521 }
3522
3523 if (port)
3524 *port = dsi_dvo_port_to_port(display, dvo_port);
3525 return true;
3526 }
3527
3528 return false;
3529 }
3530
fill_dsc(struct intel_crtc_state * crtc_state,struct dsc_compression_parameters_entry * dsc,int dsc_max_bpc)3531 static void fill_dsc(struct intel_crtc_state *crtc_state,
3532 struct dsc_compression_parameters_entry *dsc,
3533 int dsc_max_bpc)
3534 {
3535 struct intel_display *display = to_intel_display(crtc_state);
3536 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
3537 int bpc = 8;
3538
3539 vdsc_cfg->dsc_version_major = dsc->version_major;
3540 vdsc_cfg->dsc_version_minor = dsc->version_minor;
3541
3542 if (dsc->support_12bpc && dsc_max_bpc >= 12)
3543 bpc = 12;
3544 else if (dsc->support_10bpc && dsc_max_bpc >= 10)
3545 bpc = 10;
3546 else if (dsc->support_8bpc && dsc_max_bpc >= 8)
3547 bpc = 8;
3548 else
3549 drm_dbg_kms(display->drm, "VBT: Unsupported BPC %d for DCS\n",
3550 dsc_max_bpc);
3551
3552 crtc_state->pipe_bpp = bpc * 3;
3553
3554 crtc_state->dsc.compressed_bpp_x16 = fxp_q4_from_int(min(crtc_state->pipe_bpp,
3555 VBT_DSC_MAX_BPP(dsc->max_bpp)));
3556
3557 /*
3558 * FIXME: This is ugly, and slice count should take DSC engine
3559 * throughput etc. into account.
3560 *
3561 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
3562 */
3563 if (dsc->slices_per_line & BIT(2)) {
3564 crtc_state->dsc.slice_count = 4;
3565 } else if (dsc->slices_per_line & BIT(1)) {
3566 crtc_state->dsc.slice_count = 2;
3567 } else {
3568 /* FIXME */
3569 if (!(dsc->slices_per_line & BIT(0)))
3570 drm_dbg_kms(display->drm,
3571 "VBT: Unsupported DSC slice count for DSI\n");
3572
3573 crtc_state->dsc.slice_count = 1;
3574 }
3575
3576 if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
3577 crtc_state->dsc.slice_count != 0)
3578 drm_dbg_kms(display->drm,
3579 "VBT: DSC hdisplay %d not divisible by slice count %d\n",
3580 crtc_state->hw.adjusted_mode.crtc_hdisplay,
3581 crtc_state->dsc.slice_count);
3582
3583 /*
3584 * The VBT rc_buffer_block_size and rc_buffer_size definitions
3585 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
3586 */
3587 vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
3588 dsc->rc_buffer_size);
3589
3590 /* FIXME: DSI spec says bpc + 1 for this one */
3591 vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
3592
3593 vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
3594
3595 vdsc_cfg->slice_height = dsc->slice_height;
3596 }
3597
3598 /* FIXME: initially DSI specific */
intel_bios_get_dsc_params(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,int dsc_max_bpc)3599 bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
3600 struct intel_crtc_state *crtc_state,
3601 int dsc_max_bpc)
3602 {
3603 struct intel_display *display = to_intel_display(encoder);
3604 const struct intel_bios_encoder_data *devdata;
3605
3606 list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3607 const struct child_device_config *child = &devdata->child;
3608
3609 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3610 continue;
3611
3612 if (dsi_dvo_port_to_port(display, child->dvo_port) == encoder->port) {
3613 if (!devdata->dsc)
3614 return false;
3615
3616 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
3617
3618 return true;
3619 }
3620 }
3621
3622 return false;
3623 }
3624
3625 static const u8 adlp_aux_ch_map[] = {
3626 [AUX_CH_A] = DP_AUX_A,
3627 [AUX_CH_B] = DP_AUX_B,
3628 [AUX_CH_C] = DP_AUX_C,
3629 [AUX_CH_D_XELPD] = DP_AUX_D,
3630 [AUX_CH_E_XELPD] = DP_AUX_E,
3631 [AUX_CH_USBC1] = DP_AUX_F,
3632 [AUX_CH_USBC2] = DP_AUX_G,
3633 [AUX_CH_USBC3] = DP_AUX_H,
3634 [AUX_CH_USBC4] = DP_AUX_I,
3635 };
3636
3637 /*
3638 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
3639 * map to DDI A,TC1,TC2,TC3,TC4 respectively.
3640 */
3641 static const u8 adls_aux_ch_map[] = {
3642 [AUX_CH_A] = DP_AUX_A,
3643 [AUX_CH_USBC1] = DP_AUX_B,
3644 [AUX_CH_USBC2] = DP_AUX_C,
3645 [AUX_CH_USBC3] = DP_AUX_D,
3646 [AUX_CH_USBC4] = DP_AUX_E,
3647 };
3648
3649 /*
3650 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
3651 * map to DDI A,B,TC1,TC2 respectively.
3652 */
3653 static const u8 rkl_aux_ch_map[] = {
3654 [AUX_CH_A] = DP_AUX_A,
3655 [AUX_CH_B] = DP_AUX_B,
3656 [AUX_CH_USBC1] = DP_AUX_C,
3657 [AUX_CH_USBC2] = DP_AUX_D,
3658 };
3659
3660 static const u8 direct_aux_ch_map[] = {
3661 [AUX_CH_A] = DP_AUX_A,
3662 [AUX_CH_B] = DP_AUX_B,
3663 [AUX_CH_C] = DP_AUX_C,
3664 [AUX_CH_D] = DP_AUX_D, /* aka AUX_CH_USBC1 */
3665 [AUX_CH_E] = DP_AUX_E, /* aka AUX_CH_USBC2 */
3666 [AUX_CH_F] = DP_AUX_F, /* aka AUX_CH_USBC3 */
3667 [AUX_CH_G] = DP_AUX_G, /* aka AUX_CH_USBC4 */
3668 [AUX_CH_H] = DP_AUX_H, /* aka AUX_CH_USBC5 */
3669 [AUX_CH_I] = DP_AUX_I, /* aka AUX_CH_USBC6 */
3670 };
3671
map_aux_ch(struct intel_display * display,u8 aux_channel)3672 static enum aux_ch map_aux_ch(struct intel_display *display, u8 aux_channel)
3673 {
3674 struct drm_i915_private *i915 = to_i915(display->drm);
3675 const u8 *aux_ch_map;
3676 int i, n_entries;
3677
3678 if (DISPLAY_VER(display) >= 13) {
3679 aux_ch_map = adlp_aux_ch_map;
3680 n_entries = ARRAY_SIZE(adlp_aux_ch_map);
3681 } else if (IS_ALDERLAKE_S(i915)) {
3682 aux_ch_map = adls_aux_ch_map;
3683 n_entries = ARRAY_SIZE(adls_aux_ch_map);
3684 } else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) {
3685 aux_ch_map = rkl_aux_ch_map;
3686 n_entries = ARRAY_SIZE(rkl_aux_ch_map);
3687 } else {
3688 aux_ch_map = direct_aux_ch_map;
3689 n_entries = ARRAY_SIZE(direct_aux_ch_map);
3690 }
3691
3692 for (i = 0; i < n_entries; i++) {
3693 if (aux_ch_map[i] == aux_channel)
3694 return i;
3695 }
3696
3697 drm_dbg_kms(display->drm,
3698 "Ignoring alternate AUX CH: VBT claims AUX 0x%x, which is not valid for this platform\n",
3699 aux_channel);
3700
3701 return AUX_CH_NONE;
3702 }
3703
intel_bios_dp_aux_ch(const struct intel_bios_encoder_data * devdata)3704 enum aux_ch intel_bios_dp_aux_ch(const struct intel_bios_encoder_data *devdata)
3705 {
3706 if (!devdata || !devdata->child.aux_channel)
3707 return AUX_CH_NONE;
3708
3709 return map_aux_ch(devdata->display, devdata->child.aux_channel);
3710 }
3711
intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data * devdata)3712 bool intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data *devdata)
3713 {
3714 struct intel_display *display;
3715 u8 aux_channel;
3716 int count = 0;
3717
3718 if (!devdata || !devdata->child.aux_channel)
3719 return false;
3720
3721 display = devdata->display;
3722 aux_channel = devdata->child.aux_channel;
3723
3724 list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3725 if (intel_bios_encoder_supports_dp(devdata) &&
3726 aux_channel == devdata->child.aux_channel)
3727 count++;
3728 }
3729
3730 return count > 1;
3731 }
3732
intel_bios_dp_boost_level(const struct intel_bios_encoder_data * devdata)3733 int intel_bios_dp_boost_level(const struct intel_bios_encoder_data *devdata)
3734 {
3735 if (!devdata || devdata->display->vbt.version < 196 || !devdata->child.iboost)
3736 return 0;
3737
3738 return translate_iboost(devdata->display, devdata->child.dp_iboost_level);
3739 }
3740
intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data * devdata)3741 int intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
3742 {
3743 if (!devdata || devdata->display->vbt.version < 196 || !devdata->child.iboost)
3744 return 0;
3745
3746 return translate_iboost(devdata->display, devdata->child.hdmi_iboost_level);
3747 }
3748
intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data * devdata)3749 int intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data *devdata)
3750 {
3751 if (!devdata || !devdata->child.ddc_pin)
3752 return 0;
3753
3754 return map_ddc_pin(devdata->display, devdata->child.ddc_pin);
3755 }
3756
intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data * devdata)3757 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
3758 {
3759 return devdata->display->vbt.version >= 195 && devdata->child.dp_usb_type_c;
3760 }
3761
intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data * devdata)3762 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
3763 {
3764 return devdata->display->vbt.version >= 209 && devdata->child.tbt;
3765 }
3766
intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data * devdata)3767 bool intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data *devdata)
3768 {
3769 return devdata && devdata->child.lane_reversal;
3770 }
3771
intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data * devdata)3772 bool intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data *devdata)
3773 {
3774 return devdata && devdata->child.hpd_invert;
3775 }
3776
3777 const struct intel_bios_encoder_data *
intel_bios_encoder_data_lookup(struct intel_display * display,enum port port)3778 intel_bios_encoder_data_lookup(struct intel_display *display, enum port port)
3779 {
3780 struct intel_bios_encoder_data *devdata;
3781
3782 list_for_each_entry(devdata, &display->vbt.display_devices, node) {
3783 if (intel_bios_encoder_port(devdata) == port)
3784 return devdata;
3785 }
3786
3787 return NULL;
3788 }
3789
intel_bios_for_each_encoder(struct intel_display * display,void (* func)(struct intel_display * display,const struct intel_bios_encoder_data * devdata))3790 void intel_bios_for_each_encoder(struct intel_display *display,
3791 void (*func)(struct intel_display *display,
3792 const struct intel_bios_encoder_data *devdata))
3793 {
3794 struct intel_bios_encoder_data *devdata;
3795
3796 list_for_each_entry(devdata, &display->vbt.display_devices, node)
3797 func(display, devdata);
3798 }
3799
intel_bios_vbt_show(struct seq_file * m,void * unused)3800 static int intel_bios_vbt_show(struct seq_file *m, void *unused)
3801 {
3802 struct intel_display *display = m->private;
3803 const void *vbt;
3804 size_t vbt_size;
3805
3806 vbt = intel_bios_get_vbt(display, &vbt_size);
3807
3808 if (vbt) {
3809 seq_write(m, vbt, vbt_size);
3810 kfree(vbt);
3811 }
3812
3813 return 0;
3814 }
3815
3816 DEFINE_SHOW_ATTRIBUTE(intel_bios_vbt);
3817
intel_bios_debugfs_register(struct intel_display * display)3818 void intel_bios_debugfs_register(struct intel_display *display)
3819 {
3820 struct drm_minor *minor = display->drm->primary;
3821
3822 debugfs_create_file("i915_vbt", 0444, minor->debugfs_root,
3823 display, &intel_bios_vbt_fops);
3824 }
3825