1 //===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file declares a class to represent arbitrary precision floating point
11 /// values and provide a variety of arithmetic operations on them.
12 ///
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_ADT_APFLOAT_H
16 #define LLVM_ADT_APFLOAT_H
17
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/FloatingPointMode.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/float128.h"
23 #include <memory>
24
25 #define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL) \
26 do { \
27 if (usesLayout<IEEEFloat>(getSemantics())) \
28 return U.IEEE.METHOD_CALL; \
29 if (usesLayout<DoubleAPFloat>(getSemantics())) \
30 return U.Double.METHOD_CALL; \
31 llvm_unreachable("Unexpected semantics"); \
32 } while (false)
33
34 namespace llvm {
35
36 struct fltSemantics;
37 class APSInt;
38 class StringRef;
39 class APFloat;
40 class raw_ostream;
41
42 template <typename T> class Expected;
43 template <typename T> class SmallVectorImpl;
44
45 /// Enum that represents what fraction of the LSB truncated bits of an fp number
46 /// represent.
47 ///
48 /// This essentially combines the roles of guard and sticky bits.
49 enum lostFraction { // Example of truncated bits:
50 lfExactlyZero, // 000000
51 lfLessThanHalf, // 0xxxxx x's not all zero
52 lfExactlyHalf, // 100000
53 lfMoreThanHalf // 1xxxxx x's not all zero
54 };
55
56 /// A self-contained host- and target-independent arbitrary-precision
57 /// floating-point software implementation.
58 ///
59 /// APFloat uses bignum integer arithmetic as provided by static functions in
60 /// the APInt class. The library will work with bignum integers whose parts are
61 /// any unsigned type at least 16 bits wide, but 64 bits is recommended.
62 ///
63 /// Written for clarity rather than speed, in particular with a view to use in
64 /// the front-end of a cross compiler so that target arithmetic can be correctly
65 /// performed on the host. Performance should nonetheless be reasonable,
66 /// particularly for its intended use. It may be useful as a base
67 /// implementation for a run-time library during development of a faster
68 /// target-specific one.
69 ///
70 /// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
71 /// implemented operations. Currently implemented operations are add, subtract,
72 /// multiply, divide, fused-multiply-add, conversion-to-float,
73 /// conversion-to-integer and conversion-from-integer. New rounding modes
74 /// (e.g. away from zero) can be added with three or four lines of code.
75 ///
76 /// Four formats are built-in: IEEE single precision, double precision,
77 /// quadruple precision, and x87 80-bit extended double (when operating with
78 /// full extended precision). Adding a new format that obeys IEEE semantics
79 /// only requires adding two lines of code: a declaration and definition of the
80 /// format.
81 ///
82 /// All operations return the status of that operation as an exception bit-mask,
83 /// so multiple operations can be done consecutively with their results or-ed
84 /// together. The returned status can be useful for compiler diagnostics; e.g.,
85 /// inexact, underflow and overflow can be easily diagnosed on constant folding,
86 /// and compiler optimizers can determine what exceptions would be raised by
87 /// folding operations and optimize, or perhaps not optimize, accordingly.
88 ///
89 /// At present, underflow tininess is detected after rounding; it should be
90 /// straight forward to add support for the before-rounding case too.
91 ///
92 /// The library reads hexadecimal floating point numbers as per C99, and
93 /// correctly rounds if necessary according to the specified rounding mode.
94 /// Syntax is required to have been validated by the caller. It also converts
95 /// floating point numbers to hexadecimal text as per the C99 %a and %A
96 /// conversions. The output precision (or alternatively the natural minimal
97 /// precision) can be specified; if the requested precision is less than the
98 /// natural precision the output is correctly rounded for the specified rounding
99 /// mode.
100 ///
101 /// It also reads decimal floating point numbers and correctly rounds according
102 /// to the specified rounding mode.
103 ///
104 /// Conversion to decimal text is not currently implemented.
105 ///
106 /// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
107 /// signed exponent, and the significand as an array of integer parts. After
108 /// normalization of a number of precision P the exponent is within the range of
109 /// the format, and if the number is not denormal the P-th bit of the
110 /// significand is set as an explicit integer bit. For denormals the most
111 /// significant bit is shifted right so that the exponent is maintained at the
112 /// format's minimum, so that the smallest denormal has just the least
113 /// significant bit of the significand set. The sign of zeroes and infinities
114 /// is significant; the exponent and significand of such numbers is not stored,
115 /// but has a known implicit (deterministic) value: 0 for the significands, 0
116 /// for zero exponent, all 1 bits for infinity exponent. For NaNs the sign and
117 /// significand are deterministic, although not really meaningful, and preserved
118 /// in non-conversion operations. The exponent is implicitly all 1 bits.
119 ///
120 /// APFloat does not provide any exception handling beyond default exception
121 /// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
122 /// by encoding Signaling NaNs with the first bit of its trailing significand as
123 /// 0.
124 ///
125 /// TODO
126 /// ====
127 ///
128 /// Some features that may or may not be worth adding:
129 ///
130 /// Binary to decimal conversion (hard).
131 ///
132 /// Optional ability to detect underflow tininess before rounding.
133 ///
134 /// New formats: x87 in single and double precision mode (IEEE apart from
135 /// extended exponent range) (hard).
136 ///
137 /// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
138 ///
139
140 // This is the common type definitions shared by APFloat and its internal
141 // implementation classes. This struct should not define any non-static data
142 // members.
143 struct APFloatBase {
144 typedef APInt::WordType integerPart;
145 static constexpr unsigned integerPartWidth = APInt::APINT_BITS_PER_WORD;
146
147 /// A signed type to represent a floating point numbers unbiased exponent.
148 typedef int32_t ExponentType;
149
150 /// \name Floating Point Semantics.
151 /// @{
152 enum Semantics {
153 S_IEEEhalf,
154 S_BFloat,
155 S_IEEEsingle,
156 S_IEEEdouble,
157 S_IEEEquad,
158 S_PPCDoubleDouble,
159 // 8-bit floating point number following IEEE-754 conventions with bit
160 // layout S1E5M2 as described in https://arxiv.org/abs/2209.05433.
161 S_Float8E5M2,
162 // 8-bit floating point number mostly following IEEE-754 conventions
163 // and bit layout S1E5M2 described in https://arxiv.org/abs/2206.02915,
164 // with expanded range and with no infinity or signed zero.
165 // NaN is represented as negative zero. (FN -> Finite, UZ -> unsigned zero).
166 // This format's exponent bias is 16, instead of the 15 (2 ** (5 - 1) - 1)
167 // that IEEE precedent would imply.
168 S_Float8E5M2FNUZ,
169 // 8-bit floating point number following IEEE-754 conventions with bit
170 // layout S1E4M3.
171 S_Float8E4M3,
172 // 8-bit floating point number mostly following IEEE-754 conventions with
173 // bit layout S1E4M3 as described in https://arxiv.org/abs/2209.05433.
174 // Unlike IEEE-754 types, there are no infinity values, and NaN is
175 // represented with the exponent and mantissa bits set to all 1s.
176 S_Float8E4M3FN,
177 // 8-bit floating point number mostly following IEEE-754 conventions
178 // and bit layout S1E4M3 described in https://arxiv.org/abs/2206.02915,
179 // with expanded range and with no infinity or signed zero.
180 // NaN is represented as negative zero. (FN -> Finite, UZ -> unsigned zero).
181 // This format's exponent bias is 8, instead of the 7 (2 ** (4 - 1) - 1)
182 // that IEEE precedent would imply.
183 S_Float8E4M3FNUZ,
184 // 8-bit floating point number mostly following IEEE-754 conventions
185 // and bit layout S1E4M3 with expanded range and with no infinity or signed
186 // zero.
187 // NaN is represented as negative zero. (FN -> Finite, UZ -> unsigned zero).
188 // This format's exponent bias is 11, instead of the 7 (2 ** (4 - 1) - 1)
189 // that IEEE precedent would imply.
190 S_Float8E4M3B11FNUZ,
191 // Floating point number that occupies 32 bits or less of storage, providing
192 // improved range compared to half (16-bit) formats, at (potentially)
193 // greater throughput than single precision (32-bit) formats.
194 S_FloatTF32,
195 // 6-bit floating point number with bit layout S1E3M2. Unlike IEEE-754
196 // types, there are no infinity or NaN values. The format is detailed in
197 // https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
198 S_Float6E3M2FN,
199 // 6-bit floating point number with bit layout S1E2M3. Unlike IEEE-754
200 // types, there are no infinity or NaN values. The format is detailed in
201 // https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
202 S_Float6E2M3FN,
203 // 4-bit floating point number with bit layout S1E2M1. Unlike IEEE-754
204 // types, there are no infinity or NaN values. The format is detailed in
205 // https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
206 S_Float4E2M1FN,
207
208 S_x87DoubleExtended,
209 S_MaxSemantics = S_x87DoubleExtended,
210 };
211
212 static const llvm::fltSemantics &EnumToSemantics(Semantics S);
213 static Semantics SemanticsToEnum(const llvm::fltSemantics &Sem);
214
215 static const fltSemantics &IEEEhalf() LLVM_READNONE;
216 static const fltSemantics &BFloat() LLVM_READNONE;
217 static const fltSemantics &IEEEsingle() LLVM_READNONE;
218 static const fltSemantics &IEEEdouble() LLVM_READNONE;
219 static const fltSemantics &IEEEquad() LLVM_READNONE;
220 static const fltSemantics &PPCDoubleDouble() LLVM_READNONE;
221 static const fltSemantics &Float8E5M2() LLVM_READNONE;
222 static const fltSemantics &Float8E5M2FNUZ() LLVM_READNONE;
223 static const fltSemantics &Float8E4M3() LLVM_READNONE;
224 static const fltSemantics &Float8E4M3FN() LLVM_READNONE;
225 static const fltSemantics &Float8E4M3FNUZ() LLVM_READNONE;
226 static const fltSemantics &Float8E4M3B11FNUZ() LLVM_READNONE;
227 static const fltSemantics &FloatTF32() LLVM_READNONE;
228 static const fltSemantics &Float6E3M2FN() LLVM_READNONE;
229 static const fltSemantics &Float6E2M3FN() LLVM_READNONE;
230 static const fltSemantics &Float4E2M1FN() LLVM_READNONE;
231 static const fltSemantics &x87DoubleExtended() LLVM_READNONE;
232
233 /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
234 /// anything real.
235 static const fltSemantics &Bogus() LLVM_READNONE;
236
237 /// @}
238
239 /// IEEE-754R 5.11: Floating Point Comparison Relations.
240 enum cmpResult {
241 cmpLessThan,
242 cmpEqual,
243 cmpGreaterThan,
244 cmpUnordered
245 };
246
247 /// IEEE-754R 4.3: Rounding-direction attributes.
248 using roundingMode = llvm::RoundingMode;
249
250 static constexpr roundingMode rmNearestTiesToEven =
251 RoundingMode::NearestTiesToEven;
252 static constexpr roundingMode rmTowardPositive = RoundingMode::TowardPositive;
253 static constexpr roundingMode rmTowardNegative = RoundingMode::TowardNegative;
254 static constexpr roundingMode rmTowardZero = RoundingMode::TowardZero;
255 static constexpr roundingMode rmNearestTiesToAway =
256 RoundingMode::NearestTiesToAway;
257
258 /// IEEE-754R 7: Default exception handling.
259 ///
260 /// opUnderflow or opOverflow are always returned or-ed with opInexact.
261 ///
262 /// APFloat models this behavior specified by IEEE-754:
263 /// "For operations producing results in floating-point format, the default
264 /// result of an operation that signals the invalid operation exception
265 /// shall be a quiet NaN."
266 enum opStatus {
267 opOK = 0x00,
268 opInvalidOp = 0x01,
269 opDivByZero = 0x02,
270 opOverflow = 0x04,
271 opUnderflow = 0x08,
272 opInexact = 0x10
273 };
274
275 /// Category of internally-represented number.
276 enum fltCategory {
277 fcInfinity,
278 fcNaN,
279 fcNormal,
280 fcZero
281 };
282
283 /// Convenience enum used to construct an uninitialized APFloat.
284 enum uninitializedTag {
285 uninitialized
286 };
287
288 /// Enumeration of \c ilogb error results.
289 enum IlogbErrorKinds {
290 IEK_Zero = INT_MIN + 1,
291 IEK_NaN = INT_MIN,
292 IEK_Inf = INT_MAX
293 };
294
295 static unsigned int semanticsPrecision(const fltSemantics &);
296 static ExponentType semanticsMinExponent(const fltSemantics &);
297 static ExponentType semanticsMaxExponent(const fltSemantics &);
298 static unsigned int semanticsSizeInBits(const fltSemantics &);
299 static unsigned int semanticsIntSizeInBits(const fltSemantics&, bool);
300
301 // Returns true if any number described by \p Src can be precisely represented
302 // by a normal (not subnormal) value in \p Dst.
303 static bool isRepresentableAsNormalIn(const fltSemantics &Src,
304 const fltSemantics &Dst);
305
306 /// Returns the size of the floating point number (in bits) in the given
307 /// semantics.
308 static unsigned getSizeInBits(const fltSemantics &Sem);
309 };
310
311 namespace detail {
312
313 class IEEEFloat final : public APFloatBase {
314 public:
315 /// \name Constructors
316 /// @{
317
318 IEEEFloat(const fltSemantics &); // Default construct to +0.0
319 IEEEFloat(const fltSemantics &, integerPart);
320 IEEEFloat(const fltSemantics &, uninitializedTag);
321 IEEEFloat(const fltSemantics &, const APInt &);
322 explicit IEEEFloat(double d);
323 explicit IEEEFloat(float f);
324 IEEEFloat(const IEEEFloat &);
325 IEEEFloat(IEEEFloat &&);
326 ~IEEEFloat();
327
328 /// @}
329
330 /// Returns whether this instance allocated memory.
needsCleanup()331 bool needsCleanup() const { return partCount() > 1; }
332
333 /// \name Convenience "constructors"
334 /// @{
335
336 /// @}
337
338 /// \name Arithmetic
339 /// @{
340
341 opStatus add(const IEEEFloat &, roundingMode);
342 opStatus subtract(const IEEEFloat &, roundingMode);
343 opStatus multiply(const IEEEFloat &, roundingMode);
344 opStatus divide(const IEEEFloat &, roundingMode);
345 /// IEEE remainder.
346 opStatus remainder(const IEEEFloat &);
347 /// C fmod, or llvm frem.
348 opStatus mod(const IEEEFloat &);
349 opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode);
350 opStatus roundToIntegral(roundingMode);
351 /// IEEE-754R 5.3.1: nextUp/nextDown.
352 opStatus next(bool nextDown);
353
354 /// @}
355
356 /// \name Sign operations.
357 /// @{
358
359 void changeSign();
360
361 /// @}
362
363 /// \name Conversions
364 /// @{
365
366 opStatus convert(const fltSemantics &, roundingMode, bool *);
367 opStatus convertToInteger(MutableArrayRef<integerPart>, unsigned int, bool,
368 roundingMode, bool *) const;
369 opStatus convertFromAPInt(const APInt &, bool, roundingMode);
370 opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
371 bool, roundingMode);
372 opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
373 bool, roundingMode);
374 Expected<opStatus> convertFromString(StringRef, roundingMode);
375 APInt bitcastToAPInt() const;
376 double convertToDouble() const;
377 #ifdef HAS_IEE754_FLOAT128
378 float128 convertToQuad() const;
379 #endif
380 float convertToFloat() const;
381
382 /// @}
383
384 /// The definition of equality is not straightforward for floating point, so
385 /// we won't use operator==. Use one of the following, or write whatever it
386 /// is you really mean.
387 bool operator==(const IEEEFloat &) const = delete;
388
389 /// IEEE comparison with another floating point number (NaNs compare
390 /// unordered, 0==-0).
391 cmpResult compare(const IEEEFloat &) const;
392
393 /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
394 bool bitwiseIsEqual(const IEEEFloat &) const;
395
396 /// Write out a hexadecimal representation of the floating point value to DST,
397 /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
398 /// Return the number of characters written, excluding the terminating NUL.
399 unsigned int convertToHexString(char *dst, unsigned int hexDigits,
400 bool upperCase, roundingMode) const;
401
402 /// \name IEEE-754R 5.7.2 General operations.
403 /// @{
404
405 /// IEEE-754R isSignMinus: Returns true if and only if the current value is
406 /// negative.
407 ///
408 /// This applies to zeros and NaNs as well.
isNegative()409 bool isNegative() const { return sign; }
410
411 /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
412 ///
413 /// This implies that the current value of the float is not zero, subnormal,
414 /// infinite, or NaN following the definition of normality from IEEE-754R.
isNormal()415 bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
416
417 /// Returns true if and only if the current value is zero, subnormal, or
418 /// normal.
419 ///
420 /// This means that the value is not infinite or NaN.
isFinite()421 bool isFinite() const { return !isNaN() && !isInfinity(); }
422
423 /// Returns true if and only if the float is plus or minus zero.
isZero()424 bool isZero() const { return category == fcZero; }
425
426 /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
427 /// denormal.
428 bool isDenormal() const;
429
430 /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
isInfinity()431 bool isInfinity() const { return category == fcInfinity; }
432
433 /// Returns true if and only if the float is a quiet or signaling NaN.
isNaN()434 bool isNaN() const { return category == fcNaN; }
435
436 /// Returns true if and only if the float is a signaling NaN.
437 bool isSignaling() const;
438
439 /// @}
440
441 /// \name Simple Queries
442 /// @{
443
getCategory()444 fltCategory getCategory() const { return category; }
getSemantics()445 const fltSemantics &getSemantics() const { return *semantics; }
isNonZero()446 bool isNonZero() const { return category != fcZero; }
isFiniteNonZero()447 bool isFiniteNonZero() const { return isFinite() && !isZero(); }
isPosZero()448 bool isPosZero() const { return isZero() && !isNegative(); }
isNegZero()449 bool isNegZero() const { return isZero() && isNegative(); }
450
451 /// Returns true if and only if the number has the smallest possible non-zero
452 /// magnitude in the current semantics.
453 bool isSmallest() const;
454
455 /// Returns true if this is the smallest (by magnitude) normalized finite
456 /// number in the given semantics.
457 bool isSmallestNormalized() const;
458
459 /// Returns true if and only if the number has the largest possible finite
460 /// magnitude in the current semantics.
461 bool isLargest() const;
462
463 /// Returns true if and only if the number is an exact integer.
464 bool isInteger() const;
465
466 /// @}
467
468 IEEEFloat &operator=(const IEEEFloat &);
469 IEEEFloat &operator=(IEEEFloat &&);
470
471 /// Overload to compute a hash code for an APFloat value.
472 ///
473 /// Note that the use of hash codes for floating point values is in general
474 /// frought with peril. Equality is hard to define for these values. For
475 /// example, should negative and positive zero hash to different codes? Are
476 /// they equal or not? This hash value implementation specifically
477 /// emphasizes producing different codes for different inputs in order to
478 /// be used in canonicalization and memoization. As such, equality is
479 /// bitwiseIsEqual, and 0 != -0.
480 friend hash_code hash_value(const IEEEFloat &Arg);
481
482 /// Converts this value into a decimal string.
483 ///
484 /// \param FormatPrecision The maximum number of digits of
485 /// precision to output. If there are fewer digits available,
486 /// zero padding will not be used unless the value is
487 /// integral and small enough to be expressed in
488 /// FormatPrecision digits. 0 means to use the natural
489 /// precision of the number.
490 /// \param FormatMaxPadding The maximum number of zeros to
491 /// consider inserting before falling back to scientific
492 /// notation. 0 means to always use scientific notation.
493 ///
494 /// \param TruncateZero Indicate whether to remove the trailing zero in
495 /// fraction part or not. Also setting this parameter to false forcing
496 /// producing of output more similar to default printf behavior.
497 /// Specifically the lower e is used as exponent delimiter and exponent
498 /// always contains no less than two digits.
499 ///
500 /// Number Precision MaxPadding Result
501 /// ------ --------- ---------- ------
502 /// 1.01E+4 5 2 10100
503 /// 1.01E+4 4 2 1.01E+4
504 /// 1.01E+4 5 1 1.01E+4
505 /// 1.01E-2 5 2 0.0101
506 /// 1.01E-2 4 2 0.0101
507 /// 1.01E-2 4 1 1.01E-2
508 void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
509 unsigned FormatMaxPadding = 3, bool TruncateZero = true) const;
510
511 /// If this value has an exact multiplicative inverse, store it in inv and
512 /// return true.
513 bool getExactInverse(APFloat *inv) const;
514
515 // If this is an exact power of two, return the exponent while ignoring the
516 // sign bit. If it's not an exact power of 2, return INT_MIN
517 LLVM_READONLY
518 int getExactLog2Abs() const;
519
520 // If this is an exact power of two, return the exponent. If it's not an exact
521 // power of 2, return INT_MIN
522 LLVM_READONLY
getExactLog2()523 int getExactLog2() const {
524 return isNegative() ? INT_MIN : getExactLog2Abs();
525 }
526
527 /// Returns the exponent of the internal representation of the APFloat.
528 ///
529 /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)).
530 /// For special APFloat values, this returns special error codes:
531 ///
532 /// NaN -> \c IEK_NaN
533 /// 0 -> \c IEK_Zero
534 /// Inf -> \c IEK_Inf
535 ///
536 friend int ilogb(const IEEEFloat &Arg);
537
538 /// Returns: X * 2^Exp for integral exponents.
539 friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode);
540
541 friend IEEEFloat frexp(const IEEEFloat &X, int &Exp, roundingMode);
542
543 /// \name Special value setters.
544 /// @{
545
546 void makeLargest(bool Neg = false);
547 void makeSmallest(bool Neg = false);
548 void makeNaN(bool SNaN = false, bool Neg = false,
549 const APInt *fill = nullptr);
550 void makeInf(bool Neg = false);
551 void makeZero(bool Neg = false);
552 void makeQuiet();
553
554 /// Returns the smallest (by magnitude) normalized finite number in the given
555 /// semantics.
556 ///
557 /// \param Negative - True iff the number should be negative
558 void makeSmallestNormalized(bool Negative = false);
559
560 /// @}
561
562 cmpResult compareAbsoluteValue(const IEEEFloat &) const;
563
564 private:
565 /// \name Simple Queries
566 /// @{
567
568 integerPart *significandParts();
569 const integerPart *significandParts() const;
570 unsigned int partCount() const;
571
572 /// @}
573
574 /// \name Significand operations.
575 /// @{
576
577 integerPart addSignificand(const IEEEFloat &);
578 integerPart subtractSignificand(const IEEEFloat &, integerPart);
579 lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract);
580 lostFraction multiplySignificand(const IEEEFloat &, IEEEFloat);
581 lostFraction multiplySignificand(const IEEEFloat&);
582 lostFraction divideSignificand(const IEEEFloat &);
583 void incrementSignificand();
584 void initialize(const fltSemantics *);
585 void shiftSignificandLeft(unsigned int);
586 lostFraction shiftSignificandRight(unsigned int);
587 unsigned int significandLSB() const;
588 unsigned int significandMSB() const;
589 void zeroSignificand();
590 /// Return true if the significand excluding the integral bit is all ones.
591 bool isSignificandAllOnes() const;
592 bool isSignificandAllOnesExceptLSB() const;
593 /// Return true if the significand excluding the integral bit is all zeros.
594 bool isSignificandAllZeros() const;
595 bool isSignificandAllZerosExceptMSB() const;
596
597 /// @}
598
599 /// \name Arithmetic on special values.
600 /// @{
601
602 opStatus addOrSubtractSpecials(const IEEEFloat &, bool subtract);
603 opStatus divideSpecials(const IEEEFloat &);
604 opStatus multiplySpecials(const IEEEFloat &);
605 opStatus modSpecials(const IEEEFloat &);
606 opStatus remainderSpecials(const IEEEFloat&);
607
608 /// @}
609
610 /// \name Miscellany
611 /// @{
612
613 bool convertFromStringSpecials(StringRef str);
614 opStatus normalize(roundingMode, lostFraction);
615 opStatus addOrSubtract(const IEEEFloat &, roundingMode, bool subtract);
616 opStatus handleOverflow(roundingMode);
617 bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
618 opStatus convertToSignExtendedInteger(MutableArrayRef<integerPart>,
619 unsigned int, bool, roundingMode,
620 bool *) const;
621 opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
622 roundingMode);
623 Expected<opStatus> convertFromHexadecimalString(StringRef, roundingMode);
624 Expected<opStatus> convertFromDecimalString(StringRef, roundingMode);
625 char *convertNormalToHexString(char *, unsigned int, bool,
626 roundingMode) const;
627 opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
628 roundingMode);
629 ExponentType exponentNaN() const;
630 ExponentType exponentInf() const;
631 ExponentType exponentZero() const;
632
633 /// @}
634
635 template <const fltSemantics &S> APInt convertIEEEFloatToAPInt() const;
636 APInt convertHalfAPFloatToAPInt() const;
637 APInt convertBFloatAPFloatToAPInt() const;
638 APInt convertFloatAPFloatToAPInt() const;
639 APInt convertDoubleAPFloatToAPInt() const;
640 APInt convertQuadrupleAPFloatToAPInt() const;
641 APInt convertF80LongDoubleAPFloatToAPInt() const;
642 APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
643 APInt convertFloat8E5M2APFloatToAPInt() const;
644 APInt convertFloat8E5M2FNUZAPFloatToAPInt() const;
645 APInt convertFloat8E4M3APFloatToAPInt() const;
646 APInt convertFloat8E4M3FNAPFloatToAPInt() const;
647 APInt convertFloat8E4M3FNUZAPFloatToAPInt() const;
648 APInt convertFloat8E4M3B11FNUZAPFloatToAPInt() const;
649 APInt convertFloatTF32APFloatToAPInt() const;
650 APInt convertFloat6E3M2FNAPFloatToAPInt() const;
651 APInt convertFloat6E2M3FNAPFloatToAPInt() const;
652 APInt convertFloat4E2M1FNAPFloatToAPInt() const;
653 void initFromAPInt(const fltSemantics *Sem, const APInt &api);
654 template <const fltSemantics &S> void initFromIEEEAPInt(const APInt &api);
655 void initFromHalfAPInt(const APInt &api);
656 void initFromBFloatAPInt(const APInt &api);
657 void initFromFloatAPInt(const APInt &api);
658 void initFromDoubleAPInt(const APInt &api);
659 void initFromQuadrupleAPInt(const APInt &api);
660 void initFromF80LongDoubleAPInt(const APInt &api);
661 void initFromPPCDoubleDoubleAPInt(const APInt &api);
662 void initFromFloat8E5M2APInt(const APInt &api);
663 void initFromFloat8E5M2FNUZAPInt(const APInt &api);
664 void initFromFloat8E4M3APInt(const APInt &api);
665 void initFromFloat8E4M3FNAPInt(const APInt &api);
666 void initFromFloat8E4M3FNUZAPInt(const APInt &api);
667 void initFromFloat8E4M3B11FNUZAPInt(const APInt &api);
668 void initFromFloatTF32APInt(const APInt &api);
669 void initFromFloat6E3M2FNAPInt(const APInt &api);
670 void initFromFloat6E2M3FNAPInt(const APInt &api);
671 void initFromFloat4E2M1FNAPInt(const APInt &api);
672
673 void assign(const IEEEFloat &);
674 void copySignificand(const IEEEFloat &);
675 void freeSignificand();
676
677 /// Note: this must be the first data member.
678 /// The semantics that this value obeys.
679 const fltSemantics *semantics;
680
681 /// A binary fraction with an explicit integer bit.
682 ///
683 /// The significand must be at least one bit wider than the target precision.
684 union Significand {
685 integerPart part;
686 integerPart *parts;
687 } significand;
688
689 /// The signed unbiased exponent of the value.
690 ExponentType exponent;
691
692 /// What kind of floating point number this is.
693 ///
694 /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
695 /// Using the extra bit keeps it from failing under VisualStudio.
696 fltCategory category : 3;
697
698 /// Sign bit of the number.
699 unsigned int sign : 1;
700 };
701
702 hash_code hash_value(const IEEEFloat &Arg);
703 int ilogb(const IEEEFloat &Arg);
704 IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode);
705 IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM);
706
707 // This mode implements more precise float in terms of two APFloats.
708 // The interface and layout is designed for arbitrary underlying semantics,
709 // though currently only PPCDoubleDouble semantics are supported, whose
710 // corresponding underlying semantics are IEEEdouble.
711 class DoubleAPFloat final : public APFloatBase {
712 // Note: this must be the first data member.
713 const fltSemantics *Semantics;
714 std::unique_ptr<APFloat[]> Floats;
715
716 opStatus addImpl(const APFloat &a, const APFloat &aa, const APFloat &c,
717 const APFloat &cc, roundingMode RM);
718
719 opStatus addWithSpecial(const DoubleAPFloat &LHS, const DoubleAPFloat &RHS,
720 DoubleAPFloat &Out, roundingMode RM);
721
722 public:
723 DoubleAPFloat(const fltSemantics &S);
724 DoubleAPFloat(const fltSemantics &S, uninitializedTag);
725 DoubleAPFloat(const fltSemantics &S, integerPart);
726 DoubleAPFloat(const fltSemantics &S, const APInt &I);
727 DoubleAPFloat(const fltSemantics &S, APFloat &&First, APFloat &&Second);
728 DoubleAPFloat(const DoubleAPFloat &RHS);
729 DoubleAPFloat(DoubleAPFloat &&RHS);
730
731 DoubleAPFloat &operator=(const DoubleAPFloat &RHS);
732 inline DoubleAPFloat &operator=(DoubleAPFloat &&RHS);
733
needsCleanup()734 bool needsCleanup() const { return Floats != nullptr; }
735
736 inline APFloat &getFirst();
737 inline const APFloat &getFirst() const;
738 inline APFloat &getSecond();
739 inline const APFloat &getSecond() const;
740
741 opStatus add(const DoubleAPFloat &RHS, roundingMode RM);
742 opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM);
743 opStatus multiply(const DoubleAPFloat &RHS, roundingMode RM);
744 opStatus divide(const DoubleAPFloat &RHS, roundingMode RM);
745 opStatus remainder(const DoubleAPFloat &RHS);
746 opStatus mod(const DoubleAPFloat &RHS);
747 opStatus fusedMultiplyAdd(const DoubleAPFloat &Multiplicand,
748 const DoubleAPFloat &Addend, roundingMode RM);
749 opStatus roundToIntegral(roundingMode RM);
750 void changeSign();
751 cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const;
752
753 fltCategory getCategory() const;
754 bool isNegative() const;
755
756 void makeInf(bool Neg);
757 void makeZero(bool Neg);
758 void makeLargest(bool Neg);
759 void makeSmallest(bool Neg);
760 void makeSmallestNormalized(bool Neg);
761 void makeNaN(bool SNaN, bool Neg, const APInt *fill);
762
763 cmpResult compare(const DoubleAPFloat &RHS) const;
764 bool bitwiseIsEqual(const DoubleAPFloat &RHS) const;
765 APInt bitcastToAPInt() const;
766 Expected<opStatus> convertFromString(StringRef, roundingMode);
767 opStatus next(bool nextDown);
768
769 opStatus convertToInteger(MutableArrayRef<integerPart> Input,
770 unsigned int Width, bool IsSigned, roundingMode RM,
771 bool *IsExact) const;
772 opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM);
773 opStatus convertFromSignExtendedInteger(const integerPart *Input,
774 unsigned int InputSize, bool IsSigned,
775 roundingMode RM);
776 opStatus convertFromZeroExtendedInteger(const integerPart *Input,
777 unsigned int InputSize, bool IsSigned,
778 roundingMode RM);
779 unsigned int convertToHexString(char *DST, unsigned int HexDigits,
780 bool UpperCase, roundingMode RM) const;
781
782 bool isDenormal() const;
783 bool isSmallest() const;
784 bool isSmallestNormalized() const;
785 bool isLargest() const;
786 bool isInteger() const;
787
788 void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision,
789 unsigned FormatMaxPadding, bool TruncateZero = true) const;
790
791 bool getExactInverse(APFloat *inv) const;
792
793 LLVM_READONLY
794 int getExactLog2() const;
795 LLVM_READONLY
796 int getExactLog2Abs() const;
797
798 friend DoubleAPFloat scalbn(const DoubleAPFloat &X, int Exp, roundingMode);
799 friend DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, roundingMode);
800 friend hash_code hash_value(const DoubleAPFloat &Arg);
801 };
802
803 hash_code hash_value(const DoubleAPFloat &Arg);
804 DoubleAPFloat scalbn(const DoubleAPFloat &Arg, int Exp, IEEEFloat::roundingMode RM);
805 DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, IEEEFloat::roundingMode);
806
807 } // End detail namespace
808
809 // This is a interface class that is currently forwarding functionalities from
810 // detail::IEEEFloat.
811 class APFloat : public APFloatBase {
812 typedef detail::IEEEFloat IEEEFloat;
813 typedef detail::DoubleAPFloat DoubleAPFloat;
814
815 static_assert(std::is_standard_layout<IEEEFloat>::value);
816
817 union Storage {
818 const fltSemantics *semantics;
819 IEEEFloat IEEE;
820 DoubleAPFloat Double;
821
822 explicit Storage(IEEEFloat F, const fltSemantics &S);
Storage(DoubleAPFloat F,const fltSemantics & S)823 explicit Storage(DoubleAPFloat F, const fltSemantics &S)
824 : Double(std::move(F)) {
825 assert(&S == &PPCDoubleDouble());
826 }
827
828 template <typename... ArgTypes>
Storage(const fltSemantics & Semantics,ArgTypes &&...Args)829 Storage(const fltSemantics &Semantics, ArgTypes &&... Args) {
830 if (usesLayout<IEEEFloat>(Semantics)) {
831 new (&IEEE) IEEEFloat(Semantics, std::forward<ArgTypes>(Args)...);
832 return;
833 }
834 if (usesLayout<DoubleAPFloat>(Semantics)) {
835 new (&Double) DoubleAPFloat(Semantics, std::forward<ArgTypes>(Args)...);
836 return;
837 }
838 llvm_unreachable("Unexpected semantics");
839 }
840
~Storage()841 ~Storage() {
842 if (usesLayout<IEEEFloat>(*semantics)) {
843 IEEE.~IEEEFloat();
844 return;
845 }
846 if (usesLayout<DoubleAPFloat>(*semantics)) {
847 Double.~DoubleAPFloat();
848 return;
849 }
850 llvm_unreachable("Unexpected semantics");
851 }
852
Storage(const Storage & RHS)853 Storage(const Storage &RHS) {
854 if (usesLayout<IEEEFloat>(*RHS.semantics)) {
855 new (this) IEEEFloat(RHS.IEEE);
856 return;
857 }
858 if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
859 new (this) DoubleAPFloat(RHS.Double);
860 return;
861 }
862 llvm_unreachable("Unexpected semantics");
863 }
864
Storage(Storage && RHS)865 Storage(Storage &&RHS) {
866 if (usesLayout<IEEEFloat>(*RHS.semantics)) {
867 new (this) IEEEFloat(std::move(RHS.IEEE));
868 return;
869 }
870 if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
871 new (this) DoubleAPFloat(std::move(RHS.Double));
872 return;
873 }
874 llvm_unreachable("Unexpected semantics");
875 }
876
877 Storage &operator=(const Storage &RHS) {
878 if (usesLayout<IEEEFloat>(*semantics) &&
879 usesLayout<IEEEFloat>(*RHS.semantics)) {
880 IEEE = RHS.IEEE;
881 } else if (usesLayout<DoubleAPFloat>(*semantics) &&
882 usesLayout<DoubleAPFloat>(*RHS.semantics)) {
883 Double = RHS.Double;
884 } else if (this != &RHS) {
885 this->~Storage();
886 new (this) Storage(RHS);
887 }
888 return *this;
889 }
890
891 Storage &operator=(Storage &&RHS) {
892 if (usesLayout<IEEEFloat>(*semantics) &&
893 usesLayout<IEEEFloat>(*RHS.semantics)) {
894 IEEE = std::move(RHS.IEEE);
895 } else if (usesLayout<DoubleAPFloat>(*semantics) &&
896 usesLayout<DoubleAPFloat>(*RHS.semantics)) {
897 Double = std::move(RHS.Double);
898 } else if (this != &RHS) {
899 this->~Storage();
900 new (this) Storage(std::move(RHS));
901 }
902 return *this;
903 }
904 } U;
905
usesLayout(const fltSemantics & Semantics)906 template <typename T> static bool usesLayout(const fltSemantics &Semantics) {
907 static_assert(std::is_same<T, IEEEFloat>::value ||
908 std::is_same<T, DoubleAPFloat>::value);
909 if (std::is_same<T, DoubleAPFloat>::value) {
910 return &Semantics == &PPCDoubleDouble();
911 }
912 return &Semantics != &PPCDoubleDouble();
913 }
914
getIEEE()915 IEEEFloat &getIEEE() {
916 if (usesLayout<IEEEFloat>(*U.semantics))
917 return U.IEEE;
918 if (usesLayout<DoubleAPFloat>(*U.semantics))
919 return U.Double.getFirst().U.IEEE;
920 llvm_unreachable("Unexpected semantics");
921 }
922
getIEEE()923 const IEEEFloat &getIEEE() const {
924 if (usesLayout<IEEEFloat>(*U.semantics))
925 return U.IEEE;
926 if (usesLayout<DoubleAPFloat>(*U.semantics))
927 return U.Double.getFirst().U.IEEE;
928 llvm_unreachable("Unexpected semantics");
929 }
930
makeZero(bool Neg)931 void makeZero(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeZero(Neg)); }
932
makeInf(bool Neg)933 void makeInf(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeInf(Neg)); }
934
makeNaN(bool SNaN,bool Neg,const APInt * fill)935 void makeNaN(bool SNaN, bool Neg, const APInt *fill) {
936 APFLOAT_DISPATCH_ON_SEMANTICS(makeNaN(SNaN, Neg, fill));
937 }
938
makeLargest(bool Neg)939 void makeLargest(bool Neg) {
940 APFLOAT_DISPATCH_ON_SEMANTICS(makeLargest(Neg));
941 }
942
makeSmallest(bool Neg)943 void makeSmallest(bool Neg) {
944 APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallest(Neg));
945 }
946
makeSmallestNormalized(bool Neg)947 void makeSmallestNormalized(bool Neg) {
948 APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallestNormalized(Neg));
949 }
950
APFloat(IEEEFloat F,const fltSemantics & S)951 explicit APFloat(IEEEFloat F, const fltSemantics &S) : U(std::move(F), S) {}
APFloat(DoubleAPFloat F,const fltSemantics & S)952 explicit APFloat(DoubleAPFloat F, const fltSemantics &S)
953 : U(std::move(F), S) {}
954
compareAbsoluteValue(const APFloat & RHS)955 cmpResult compareAbsoluteValue(const APFloat &RHS) const {
956 assert(&getSemantics() == &RHS.getSemantics() &&
957 "Should only compare APFloats with the same semantics");
958 if (usesLayout<IEEEFloat>(getSemantics()))
959 return U.IEEE.compareAbsoluteValue(RHS.U.IEEE);
960 if (usesLayout<DoubleAPFloat>(getSemantics()))
961 return U.Double.compareAbsoluteValue(RHS.U.Double);
962 llvm_unreachable("Unexpected semantics");
963 }
964
965 public:
APFloat(const fltSemantics & Semantics)966 APFloat(const fltSemantics &Semantics) : U(Semantics) {}
967 APFloat(const fltSemantics &Semantics, StringRef S);
APFloat(const fltSemantics & Semantics,integerPart I)968 APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {}
969 template <typename T,
970 typename = std::enable_if_t<std::is_floating_point<T>::value>>
971 APFloat(const fltSemantics &Semantics, T V) = delete;
972 // TODO: Remove this constructor. This isn't faster than the first one.
APFloat(const fltSemantics & Semantics,uninitializedTag)973 APFloat(const fltSemantics &Semantics, uninitializedTag)
974 : U(Semantics, uninitialized) {}
APFloat(const fltSemantics & Semantics,const APInt & I)975 APFloat(const fltSemantics &Semantics, const APInt &I) : U(Semantics, I) {}
APFloat(double d)976 explicit APFloat(double d) : U(IEEEFloat(d), IEEEdouble()) {}
APFloat(float f)977 explicit APFloat(float f) : U(IEEEFloat(f), IEEEsingle()) {}
978 APFloat(const APFloat &RHS) = default;
979 APFloat(APFloat &&RHS) = default;
980
981 ~APFloat() = default;
982
needsCleanup()983 bool needsCleanup() const { APFLOAT_DISPATCH_ON_SEMANTICS(needsCleanup()); }
984
985 /// Factory for Positive and Negative Zero.
986 ///
987 /// \param Negative True iff the number should be negative.
988 static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
989 APFloat Val(Sem, uninitialized);
990 Val.makeZero(Negative);
991 return Val;
992 }
993
994 /// Factory for Positive and Negative One.
995 ///
996 /// \param Negative True iff the number should be negative.
997 static APFloat getOne(const fltSemantics &Sem, bool Negative = false) {
998 return APFloat(Sem, Negative ? -1 : 1);
999 }
1000
1001 /// Factory for Positive and Negative Infinity.
1002 ///
1003 /// \param Negative True iff the number should be negative.
1004 static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
1005 APFloat Val(Sem, uninitialized);
1006 Val.makeInf(Negative);
1007 return Val;
1008 }
1009
1010 /// Factory for NaN values.
1011 ///
1012 /// \param Negative - True iff the NaN generated should be negative.
1013 /// \param payload - The unspecified fill bits for creating the NaN, 0 by
1014 /// default. The value is truncated as necessary.
1015 static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
1016 uint64_t payload = 0) {
1017 if (payload) {
1018 APInt intPayload(64, payload);
1019 return getQNaN(Sem, Negative, &intPayload);
1020 } else {
1021 return getQNaN(Sem, Negative, nullptr);
1022 }
1023 }
1024
1025 /// Factory for QNaN values.
1026 static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
1027 const APInt *payload = nullptr) {
1028 APFloat Val(Sem, uninitialized);
1029 Val.makeNaN(false, Negative, payload);
1030 return Val;
1031 }
1032
1033 /// Factory for SNaN values.
1034 static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
1035 const APInt *payload = nullptr) {
1036 APFloat Val(Sem, uninitialized);
1037 Val.makeNaN(true, Negative, payload);
1038 return Val;
1039 }
1040
1041 /// Returns the largest finite number in the given semantics.
1042 ///
1043 /// \param Negative - True iff the number should be negative
1044 static APFloat getLargest(const fltSemantics &Sem, bool Negative = false) {
1045 APFloat Val(Sem, uninitialized);
1046 Val.makeLargest(Negative);
1047 return Val;
1048 }
1049
1050 /// Returns the smallest (by magnitude) finite number in the given semantics.
1051 /// Might be denormalized, which implies a relative loss of precision.
1052 ///
1053 /// \param Negative - True iff the number should be negative
1054 static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false) {
1055 APFloat Val(Sem, uninitialized);
1056 Val.makeSmallest(Negative);
1057 return Val;
1058 }
1059
1060 /// Returns the smallest (by magnitude) normalized finite number in the given
1061 /// semantics.
1062 ///
1063 /// \param Negative - True iff the number should be negative
1064 static APFloat getSmallestNormalized(const fltSemantics &Sem,
1065 bool Negative = false) {
1066 APFloat Val(Sem, uninitialized);
1067 Val.makeSmallestNormalized(Negative);
1068 return Val;
1069 }
1070
1071 /// Returns a float which is bitcasted from an all one value int.
1072 ///
1073 /// \param Semantics - type float semantics
1074 static APFloat getAllOnesValue(const fltSemantics &Semantics);
1075
hasNanOrInf(const fltSemantics & Sem)1076 static bool hasNanOrInf(const fltSemantics &Sem) {
1077 switch (SemanticsToEnum(Sem)) {
1078 default:
1079 return true;
1080 // Below Semantics do not support {NaN or Inf}
1081 case APFloat::S_Float6E3M2FN:
1082 case APFloat::S_Float6E2M3FN:
1083 case APFloat::S_Float4E2M1FN:
1084 return false;
1085 }
1086 }
1087
1088 /// Used to insert APFloat objects, or objects that contain APFloat objects,
1089 /// into FoldingSets.
1090 void Profile(FoldingSetNodeID &NID) const;
1091
add(const APFloat & RHS,roundingMode RM)1092 opStatus add(const APFloat &RHS, roundingMode RM) {
1093 assert(&getSemantics() == &RHS.getSemantics() &&
1094 "Should only call on two APFloats with the same semantics");
1095 if (usesLayout<IEEEFloat>(getSemantics()))
1096 return U.IEEE.add(RHS.U.IEEE, RM);
1097 if (usesLayout<DoubleAPFloat>(getSemantics()))
1098 return U.Double.add(RHS.U.Double, RM);
1099 llvm_unreachable("Unexpected semantics");
1100 }
subtract(const APFloat & RHS,roundingMode RM)1101 opStatus subtract(const APFloat &RHS, roundingMode RM) {
1102 assert(&getSemantics() == &RHS.getSemantics() &&
1103 "Should only call on two APFloats with the same semantics");
1104 if (usesLayout<IEEEFloat>(getSemantics()))
1105 return U.IEEE.subtract(RHS.U.IEEE, RM);
1106 if (usesLayout<DoubleAPFloat>(getSemantics()))
1107 return U.Double.subtract(RHS.U.Double, RM);
1108 llvm_unreachable("Unexpected semantics");
1109 }
multiply(const APFloat & RHS,roundingMode RM)1110 opStatus multiply(const APFloat &RHS, roundingMode RM) {
1111 assert(&getSemantics() == &RHS.getSemantics() &&
1112 "Should only call on two APFloats with the same semantics");
1113 if (usesLayout<IEEEFloat>(getSemantics()))
1114 return U.IEEE.multiply(RHS.U.IEEE, RM);
1115 if (usesLayout<DoubleAPFloat>(getSemantics()))
1116 return U.Double.multiply(RHS.U.Double, RM);
1117 llvm_unreachable("Unexpected semantics");
1118 }
divide(const APFloat & RHS,roundingMode RM)1119 opStatus divide(const APFloat &RHS, roundingMode RM) {
1120 assert(&getSemantics() == &RHS.getSemantics() &&
1121 "Should only call on two APFloats with the same semantics");
1122 if (usesLayout<IEEEFloat>(getSemantics()))
1123 return U.IEEE.divide(RHS.U.IEEE, RM);
1124 if (usesLayout<DoubleAPFloat>(getSemantics()))
1125 return U.Double.divide(RHS.U.Double, RM);
1126 llvm_unreachable("Unexpected semantics");
1127 }
remainder(const APFloat & RHS)1128 opStatus remainder(const APFloat &RHS) {
1129 assert(&getSemantics() == &RHS.getSemantics() &&
1130 "Should only call on two APFloats with the same semantics");
1131 if (usesLayout<IEEEFloat>(getSemantics()))
1132 return U.IEEE.remainder(RHS.U.IEEE);
1133 if (usesLayout<DoubleAPFloat>(getSemantics()))
1134 return U.Double.remainder(RHS.U.Double);
1135 llvm_unreachable("Unexpected semantics");
1136 }
mod(const APFloat & RHS)1137 opStatus mod(const APFloat &RHS) {
1138 assert(&getSemantics() == &RHS.getSemantics() &&
1139 "Should only call on two APFloats with the same semantics");
1140 if (usesLayout<IEEEFloat>(getSemantics()))
1141 return U.IEEE.mod(RHS.U.IEEE);
1142 if (usesLayout<DoubleAPFloat>(getSemantics()))
1143 return U.Double.mod(RHS.U.Double);
1144 llvm_unreachable("Unexpected semantics");
1145 }
fusedMultiplyAdd(const APFloat & Multiplicand,const APFloat & Addend,roundingMode RM)1146 opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend,
1147 roundingMode RM) {
1148 assert(&getSemantics() == &Multiplicand.getSemantics() &&
1149 "Should only call on APFloats with the same semantics");
1150 assert(&getSemantics() == &Addend.getSemantics() &&
1151 "Should only call on APFloats with the same semantics");
1152 if (usesLayout<IEEEFloat>(getSemantics()))
1153 return U.IEEE.fusedMultiplyAdd(Multiplicand.U.IEEE, Addend.U.IEEE, RM);
1154 if (usesLayout<DoubleAPFloat>(getSemantics()))
1155 return U.Double.fusedMultiplyAdd(Multiplicand.U.Double, Addend.U.Double,
1156 RM);
1157 llvm_unreachable("Unexpected semantics");
1158 }
roundToIntegral(roundingMode RM)1159 opStatus roundToIntegral(roundingMode RM) {
1160 APFLOAT_DISPATCH_ON_SEMANTICS(roundToIntegral(RM));
1161 }
1162
1163 // TODO: bool parameters are not readable and a source of bugs.
1164 // Do something.
next(bool nextDown)1165 opStatus next(bool nextDown) {
1166 APFLOAT_DISPATCH_ON_SEMANTICS(next(nextDown));
1167 }
1168
1169 /// Negate an APFloat.
1170 APFloat operator-() const {
1171 APFloat Result(*this);
1172 Result.changeSign();
1173 return Result;
1174 }
1175
1176 /// Add two APFloats, rounding ties to the nearest even.
1177 /// No error checking.
1178 APFloat operator+(const APFloat &RHS) const {
1179 APFloat Result(*this);
1180 (void)Result.add(RHS, rmNearestTiesToEven);
1181 return Result;
1182 }
1183
1184 /// Subtract two APFloats, rounding ties to the nearest even.
1185 /// No error checking.
1186 APFloat operator-(const APFloat &RHS) const {
1187 APFloat Result(*this);
1188 (void)Result.subtract(RHS, rmNearestTiesToEven);
1189 return Result;
1190 }
1191
1192 /// Multiply two APFloats, rounding ties to the nearest even.
1193 /// No error checking.
1194 APFloat operator*(const APFloat &RHS) const {
1195 APFloat Result(*this);
1196 (void)Result.multiply(RHS, rmNearestTiesToEven);
1197 return Result;
1198 }
1199
1200 /// Divide the first APFloat by the second, rounding ties to the nearest even.
1201 /// No error checking.
1202 APFloat operator/(const APFloat &RHS) const {
1203 APFloat Result(*this);
1204 (void)Result.divide(RHS, rmNearestTiesToEven);
1205 return Result;
1206 }
1207
changeSign()1208 void changeSign() { APFLOAT_DISPATCH_ON_SEMANTICS(changeSign()); }
clearSign()1209 void clearSign() {
1210 if (isNegative())
1211 changeSign();
1212 }
copySign(const APFloat & RHS)1213 void copySign(const APFloat &RHS) {
1214 if (isNegative() != RHS.isNegative())
1215 changeSign();
1216 }
1217
1218 /// A static helper to produce a copy of an APFloat value with its sign
1219 /// copied from some other APFloat.
copySign(APFloat Value,const APFloat & Sign)1220 static APFloat copySign(APFloat Value, const APFloat &Sign) {
1221 Value.copySign(Sign);
1222 return Value;
1223 }
1224
1225 /// Assuming this is an IEEE-754 NaN value, quiet its signaling bit.
1226 /// This preserves the sign and payload bits.
makeQuiet()1227 APFloat makeQuiet() const {
1228 APFloat Result(*this);
1229 Result.getIEEE().makeQuiet();
1230 return Result;
1231 }
1232
1233 opStatus convert(const fltSemantics &ToSemantics, roundingMode RM,
1234 bool *losesInfo);
convertToInteger(MutableArrayRef<integerPart> Input,unsigned int Width,bool IsSigned,roundingMode RM,bool * IsExact)1235 opStatus convertToInteger(MutableArrayRef<integerPart> Input,
1236 unsigned int Width, bool IsSigned, roundingMode RM,
1237 bool *IsExact) const {
1238 APFLOAT_DISPATCH_ON_SEMANTICS(
1239 convertToInteger(Input, Width, IsSigned, RM, IsExact));
1240 }
1241 opStatus convertToInteger(APSInt &Result, roundingMode RM,
1242 bool *IsExact) const;
convertFromAPInt(const APInt & Input,bool IsSigned,roundingMode RM)1243 opStatus convertFromAPInt(const APInt &Input, bool IsSigned,
1244 roundingMode RM) {
1245 APFLOAT_DISPATCH_ON_SEMANTICS(convertFromAPInt(Input, IsSigned, RM));
1246 }
convertFromSignExtendedInteger(const integerPart * Input,unsigned int InputSize,bool IsSigned,roundingMode RM)1247 opStatus convertFromSignExtendedInteger(const integerPart *Input,
1248 unsigned int InputSize, bool IsSigned,
1249 roundingMode RM) {
1250 APFLOAT_DISPATCH_ON_SEMANTICS(
1251 convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM));
1252 }
convertFromZeroExtendedInteger(const integerPart * Input,unsigned int InputSize,bool IsSigned,roundingMode RM)1253 opStatus convertFromZeroExtendedInteger(const integerPart *Input,
1254 unsigned int InputSize, bool IsSigned,
1255 roundingMode RM) {
1256 APFLOAT_DISPATCH_ON_SEMANTICS(
1257 convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM));
1258 }
1259 Expected<opStatus> convertFromString(StringRef, roundingMode);
bitcastToAPInt()1260 APInt bitcastToAPInt() const {
1261 APFLOAT_DISPATCH_ON_SEMANTICS(bitcastToAPInt());
1262 }
1263
1264 /// Converts this APFloat to host double value.
1265 ///
1266 /// \pre The APFloat must be built using semantics, that can be represented by
1267 /// the host double type without loss of precision. It can be IEEEdouble and
1268 /// shorter semantics, like IEEEsingle and others.
1269 double convertToDouble() const;
1270
1271 /// Converts this APFloat to host float value.
1272 ///
1273 /// \pre The APFloat must be built using semantics, that can be represented by
1274 /// the host float type without loss of precision. It can be IEEEquad and
1275 /// shorter semantics, like IEEEdouble and others.
1276 #ifdef HAS_IEE754_FLOAT128
1277 float128 convertToQuad() const;
1278 #endif
1279
1280 /// Converts this APFloat to host float value.
1281 ///
1282 /// \pre The APFloat must be built using semantics, that can be represented by
1283 /// the host float type without loss of precision. It can be IEEEsingle and
1284 /// shorter semantics, like IEEEhalf.
1285 float convertToFloat() const;
1286
1287 bool operator==(const APFloat &RHS) const { return compare(RHS) == cmpEqual; }
1288
1289 bool operator!=(const APFloat &RHS) const { return compare(RHS) != cmpEqual; }
1290
1291 bool operator<(const APFloat &RHS) const {
1292 return compare(RHS) == cmpLessThan;
1293 }
1294
1295 bool operator>(const APFloat &RHS) const {
1296 return compare(RHS) == cmpGreaterThan;
1297 }
1298
1299 bool operator<=(const APFloat &RHS) const {
1300 cmpResult Res = compare(RHS);
1301 return Res == cmpLessThan || Res == cmpEqual;
1302 }
1303
1304 bool operator>=(const APFloat &RHS) const {
1305 cmpResult Res = compare(RHS);
1306 return Res == cmpGreaterThan || Res == cmpEqual;
1307 }
1308
compare(const APFloat & RHS)1309 cmpResult compare(const APFloat &RHS) const {
1310 assert(&getSemantics() == &RHS.getSemantics() &&
1311 "Should only compare APFloats with the same semantics");
1312 if (usesLayout<IEEEFloat>(getSemantics()))
1313 return U.IEEE.compare(RHS.U.IEEE);
1314 if (usesLayout<DoubleAPFloat>(getSemantics()))
1315 return U.Double.compare(RHS.U.Double);
1316 llvm_unreachable("Unexpected semantics");
1317 }
1318
bitwiseIsEqual(const APFloat & RHS)1319 bool bitwiseIsEqual(const APFloat &RHS) const {
1320 if (&getSemantics() != &RHS.getSemantics())
1321 return false;
1322 if (usesLayout<IEEEFloat>(getSemantics()))
1323 return U.IEEE.bitwiseIsEqual(RHS.U.IEEE);
1324 if (usesLayout<DoubleAPFloat>(getSemantics()))
1325 return U.Double.bitwiseIsEqual(RHS.U.Double);
1326 llvm_unreachable("Unexpected semantics");
1327 }
1328
1329 /// We don't rely on operator== working on double values, as
1330 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1331 /// As such, this method can be used to do an exact bit-for-bit comparison of
1332 /// two floating point values.
1333 ///
1334 /// We leave the version with the double argument here because it's just so
1335 /// convenient to write "2.0" and the like. Without this function we'd
1336 /// have to duplicate its logic everywhere it's called.
isExactlyValue(double V)1337 bool isExactlyValue(double V) const {
1338 bool ignored;
1339 APFloat Tmp(V);
1340 Tmp.convert(getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
1341 return bitwiseIsEqual(Tmp);
1342 }
1343
convertToHexString(char * DST,unsigned int HexDigits,bool UpperCase,roundingMode RM)1344 unsigned int convertToHexString(char *DST, unsigned int HexDigits,
1345 bool UpperCase, roundingMode RM) const {
1346 APFLOAT_DISPATCH_ON_SEMANTICS(
1347 convertToHexString(DST, HexDigits, UpperCase, RM));
1348 }
1349
isZero()1350 bool isZero() const { return getCategory() == fcZero; }
isInfinity()1351 bool isInfinity() const { return getCategory() == fcInfinity; }
isNaN()1352 bool isNaN() const { return getCategory() == fcNaN; }
1353
isNegative()1354 bool isNegative() const { return getIEEE().isNegative(); }
isDenormal()1355 bool isDenormal() const { APFLOAT_DISPATCH_ON_SEMANTICS(isDenormal()); }
isSignaling()1356 bool isSignaling() const { return getIEEE().isSignaling(); }
1357
isNormal()1358 bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
isFinite()1359 bool isFinite() const { return !isNaN() && !isInfinity(); }
1360
getCategory()1361 fltCategory getCategory() const { return getIEEE().getCategory(); }
getSemantics()1362 const fltSemantics &getSemantics() const { return *U.semantics; }
isNonZero()1363 bool isNonZero() const { return !isZero(); }
isFiniteNonZero()1364 bool isFiniteNonZero() const { return isFinite() && !isZero(); }
isPosZero()1365 bool isPosZero() const { return isZero() && !isNegative(); }
isNegZero()1366 bool isNegZero() const { return isZero() && isNegative(); }
isPosInfinity()1367 bool isPosInfinity() const { return isInfinity() && !isNegative(); }
isNegInfinity()1368 bool isNegInfinity() const { return isInfinity() && isNegative(); }
isSmallest()1369 bool isSmallest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isSmallest()); }
isLargest()1370 bool isLargest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isLargest()); }
isInteger()1371 bool isInteger() const { APFLOAT_DISPATCH_ON_SEMANTICS(isInteger()); }
isIEEE()1372 bool isIEEE() const { return usesLayout<IEEEFloat>(getSemantics()); }
1373
isSmallestNormalized()1374 bool isSmallestNormalized() const {
1375 APFLOAT_DISPATCH_ON_SEMANTICS(isSmallestNormalized());
1376 }
1377
1378 /// Return the FPClassTest which will return true for the value.
1379 FPClassTest classify() const;
1380
1381 APFloat &operator=(const APFloat &RHS) = default;
1382 APFloat &operator=(APFloat &&RHS) = default;
1383
1384 void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
1385 unsigned FormatMaxPadding = 3, bool TruncateZero = true) const {
1386 APFLOAT_DISPATCH_ON_SEMANTICS(
1387 toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero));
1388 }
1389
1390 void print(raw_ostream &) const;
1391 void dump() const;
1392
getExactInverse(APFloat * inv)1393 bool getExactInverse(APFloat *inv) const {
1394 APFLOAT_DISPATCH_ON_SEMANTICS(getExactInverse(inv));
1395 }
1396
1397 LLVM_READONLY
getExactLog2Abs()1398 int getExactLog2Abs() const {
1399 APFLOAT_DISPATCH_ON_SEMANTICS(getExactLog2Abs());
1400 }
1401
1402 LLVM_READONLY
getExactLog2()1403 int getExactLog2() const {
1404 APFLOAT_DISPATCH_ON_SEMANTICS(getExactLog2());
1405 }
1406
1407 friend hash_code hash_value(const APFloat &Arg);
ilogb(const APFloat & Arg)1408 friend int ilogb(const APFloat &Arg) { return ilogb(Arg.getIEEE()); }
1409 friend APFloat scalbn(APFloat X, int Exp, roundingMode RM);
1410 friend APFloat frexp(const APFloat &X, int &Exp, roundingMode RM);
1411 friend IEEEFloat;
1412 friend DoubleAPFloat;
1413 };
1414
1415 /// See friend declarations above.
1416 ///
1417 /// These additional declarations are required in order to compile LLVM with IBM
1418 /// xlC compiler.
1419 hash_code hash_value(const APFloat &Arg);
scalbn(APFloat X,int Exp,APFloat::roundingMode RM)1420 inline APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM) {
1421 if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
1422 return APFloat(scalbn(X.U.IEEE, Exp, RM), X.getSemantics());
1423 if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
1424 return APFloat(scalbn(X.U.Double, Exp, RM), X.getSemantics());
1425 llvm_unreachable("Unexpected semantics");
1426 }
1427
1428 /// Equivalent of C standard library function.
1429 ///
1430 /// While the C standard says Exp is an unspecified value for infinity and nan,
1431 /// this returns INT_MAX for infinities, and INT_MIN for NaNs.
frexp(const APFloat & X,int & Exp,APFloat::roundingMode RM)1432 inline APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM) {
1433 if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
1434 return APFloat(frexp(X.U.IEEE, Exp, RM), X.getSemantics());
1435 if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
1436 return APFloat(frexp(X.U.Double, Exp, RM), X.getSemantics());
1437 llvm_unreachable("Unexpected semantics");
1438 }
1439 /// Returns the absolute value of the argument.
abs(APFloat X)1440 inline APFloat abs(APFloat X) {
1441 X.clearSign();
1442 return X;
1443 }
1444
1445 /// Returns the negated value of the argument.
neg(APFloat X)1446 inline APFloat neg(APFloat X) {
1447 X.changeSign();
1448 return X;
1449 }
1450
1451 /// Implements IEEE-754 2019 minimumNumber semantics. Returns the smaller of the
1452 /// 2 arguments if both are not NaN. If either argument is a NaN, returns the
1453 /// other argument. -0 is treated as ordered less than +0.
1454 LLVM_READONLY
minnum(const APFloat & A,const APFloat & B)1455 inline APFloat minnum(const APFloat &A, const APFloat &B) {
1456 if (A.isNaN())
1457 return B;
1458 if (B.isNaN())
1459 return A;
1460 if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1461 return A.isNegative() ? A : B;
1462 return B < A ? B : A;
1463 }
1464
1465 /// Implements IEEE-754 2019 maximumNumber semantics. Returns the larger of the
1466 /// 2 arguments if both are not NaN. If either argument is a NaN, returns the
1467 /// other argument. +0 is treated as ordered greater than -0.
1468 LLVM_READONLY
maxnum(const APFloat & A,const APFloat & B)1469 inline APFloat maxnum(const APFloat &A, const APFloat &B) {
1470 if (A.isNaN())
1471 return B;
1472 if (B.isNaN())
1473 return A;
1474 if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1475 return A.isNegative() ? B : A;
1476 return A < B ? B : A;
1477 }
1478
1479 /// Implements IEEE 754-2019 minimum semantics. Returns the smaller of 2
1480 /// arguments, propagating NaNs and treating -0 as less than +0.
1481 LLVM_READONLY
minimum(const APFloat & A,const APFloat & B)1482 inline APFloat minimum(const APFloat &A, const APFloat &B) {
1483 if (A.isNaN())
1484 return A;
1485 if (B.isNaN())
1486 return B;
1487 if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1488 return A.isNegative() ? A : B;
1489 return B < A ? B : A;
1490 }
1491
1492 /// Implements IEEE 754-2019 minimumNumber semantics. Returns the smaller
1493 /// of 2 arguments, not propagating NaNs and treating -0 as less than +0.
1494 LLVM_READONLY
minimumnum(const APFloat & A,const APFloat & B)1495 inline APFloat minimumnum(const APFloat &A, const APFloat &B) {
1496 if (A.isNaN())
1497 return B.isNaN() ? B.makeQuiet() : B;
1498 if (B.isNaN())
1499 return A;
1500 if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1501 return A.isNegative() ? A : B;
1502 return B < A ? B : A;
1503 }
1504
1505 /// Implements IEEE 754-2019 maximum semantics. Returns the larger of 2
1506 /// arguments, propagating NaNs and treating -0 as less than +0.
1507 LLVM_READONLY
maximum(const APFloat & A,const APFloat & B)1508 inline APFloat maximum(const APFloat &A, const APFloat &B) {
1509 if (A.isNaN())
1510 return A;
1511 if (B.isNaN())
1512 return B;
1513 if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1514 return A.isNegative() ? B : A;
1515 return A < B ? B : A;
1516 }
1517
1518 /// Implements IEEE 754-2019 maximumNumber semantics. Returns the larger
1519 /// of 2 arguments, not propagating NaNs and treating -0 as less than +0.
1520 LLVM_READONLY
maximumnum(const APFloat & A,const APFloat & B)1521 inline APFloat maximumnum(const APFloat &A, const APFloat &B) {
1522 if (A.isNaN())
1523 return B.isNaN() ? B.makeQuiet() : B;
1524 if (B.isNaN())
1525 return A;
1526 if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1527 return A.isNegative() ? B : A;
1528 return A < B ? B : A;
1529 }
1530
1531 // We want the following functions to be available in the header for inlining.
1532 // We cannot define them inline in the class definition of `DoubleAPFloat`
1533 // because doing so would instantiate `std::unique_ptr<APFloat[]>` before
1534 // `APFloat` is defined, and that would be undefined behavior.
1535 namespace detail {
1536
1537 DoubleAPFloat &DoubleAPFloat::operator=(DoubleAPFloat &&RHS) {
1538 if (this != &RHS) {
1539 this->~DoubleAPFloat();
1540 new (this) DoubleAPFloat(std::move(RHS));
1541 }
1542 return *this;
1543 }
1544
getFirst()1545 APFloat &DoubleAPFloat::getFirst() { return Floats[0]; }
getFirst()1546 const APFloat &DoubleAPFloat::getFirst() const { return Floats[0]; }
getSecond()1547 APFloat &DoubleAPFloat::getSecond() { return Floats[1]; }
getSecond()1548 const APFloat &DoubleAPFloat::getSecond() const { return Floats[1]; }
1549
1550 } // namespace detail
1551
1552 } // namespace llvm
1553
1554 #undef APFLOAT_DISPATCH_ON_SEMANTICS
1555 #endif // LLVM_ADT_APFLOAT_H
1556