xref: /freebsd/contrib/llvm-project/llvm/include/llvm/ADT/APFloat.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file declares a class to represent arbitrary precision floating point
11 /// values and provide a variety of arithmetic operations on them.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_ADT_APFLOAT_H
16 #define LLVM_ADT_APFLOAT_H
17 
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/FloatingPointMode.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/float128.h"
23 #include <memory>
24 
25 #define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL)                             \
26   do {                                                                         \
27     if (usesLayout<IEEEFloat>(getSemantics()))                                 \
28       return U.IEEE.METHOD_CALL;                                               \
29     if (usesLayout<DoubleAPFloat>(getSemantics()))                             \
30       return U.Double.METHOD_CALL;                                             \
31     llvm_unreachable("Unexpected semantics");                                  \
32   } while (false)
33 
34 namespace llvm {
35 
36 struct fltSemantics;
37 class APSInt;
38 class StringRef;
39 class APFloat;
40 class raw_ostream;
41 
42 template <typename T> class Expected;
43 template <typename T> class SmallVectorImpl;
44 
45 /// Enum that represents what fraction of the LSB truncated bits of an fp number
46 /// represent.
47 ///
48 /// This essentially combines the roles of guard and sticky bits.
49 enum lostFraction { // Example of truncated bits:
50   lfExactlyZero,    // 000000
51   lfLessThanHalf,   // 0xxxxx  x's not all zero
52   lfExactlyHalf,    // 100000
53   lfMoreThanHalf    // 1xxxxx  x's not all zero
54 };
55 
56 /// A self-contained host- and target-independent arbitrary-precision
57 /// floating-point software implementation.
58 ///
59 /// APFloat uses bignum integer arithmetic as provided by static functions in
60 /// the APInt class.  The library will work with bignum integers whose parts are
61 /// any unsigned type at least 16 bits wide, but 64 bits is recommended.
62 ///
63 /// Written for clarity rather than speed, in particular with a view to use in
64 /// the front-end of a cross compiler so that target arithmetic can be correctly
65 /// performed on the host.  Performance should nonetheless be reasonable,
66 /// particularly for its intended use.  It may be useful as a base
67 /// implementation for a run-time library during development of a faster
68 /// target-specific one.
69 ///
70 /// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
71 /// implemented operations.  Currently implemented operations are add, subtract,
72 /// multiply, divide, fused-multiply-add, conversion-to-float,
73 /// conversion-to-integer and conversion-from-integer.  New rounding modes
74 /// (e.g. away from zero) can be added with three or four lines of code.
75 ///
76 /// Four formats are built-in: IEEE single precision, double precision,
77 /// quadruple precision, and x87 80-bit extended double (when operating with
78 /// full extended precision).  Adding a new format that obeys IEEE semantics
79 /// only requires adding two lines of code: a declaration and definition of the
80 /// format.
81 ///
82 /// All operations return the status of that operation as an exception bit-mask,
83 /// so multiple operations can be done consecutively with their results or-ed
84 /// together.  The returned status can be useful for compiler diagnostics; e.g.,
85 /// inexact, underflow and overflow can be easily diagnosed on constant folding,
86 /// and compiler optimizers can determine what exceptions would be raised by
87 /// folding operations and optimize, or perhaps not optimize, accordingly.
88 ///
89 /// At present, underflow tininess is detected after rounding; it should be
90 /// straight forward to add support for the before-rounding case too.
91 ///
92 /// The library reads hexadecimal floating point numbers as per C99, and
93 /// correctly rounds if necessary according to the specified rounding mode.
94 /// Syntax is required to have been validated by the caller.  It also converts
95 /// floating point numbers to hexadecimal text as per the C99 %a and %A
96 /// conversions.  The output precision (or alternatively the natural minimal
97 /// precision) can be specified; if the requested precision is less than the
98 /// natural precision the output is correctly rounded for the specified rounding
99 /// mode.
100 ///
101 /// It also reads decimal floating point numbers and correctly rounds according
102 /// to the specified rounding mode.
103 ///
104 /// Conversion to decimal text is not currently implemented.
105 ///
106 /// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
107 /// signed exponent, and the significand as an array of integer parts.  After
108 /// normalization of a number of precision P the exponent is within the range of
109 /// the format, and if the number is not denormal the P-th bit of the
110 /// significand is set as an explicit integer bit.  For denormals the most
111 /// significant bit is shifted right so that the exponent is maintained at the
112 /// format's minimum, so that the smallest denormal has just the least
113 /// significant bit of the significand set.  The sign of zeroes and infinities
114 /// is significant; the exponent and significand of such numbers is not stored,
115 /// but has a known implicit (deterministic) value: 0 for the significands, 0
116 /// for zero exponent, all 1 bits for infinity exponent.  For NaNs the sign and
117 /// significand are deterministic, although not really meaningful, and preserved
118 /// in non-conversion operations.  The exponent is implicitly all 1 bits.
119 ///
120 /// APFloat does not provide any exception handling beyond default exception
121 /// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
122 /// by encoding Signaling NaNs with the first bit of its trailing significand as
123 /// 0.
124 ///
125 /// TODO
126 /// ====
127 ///
128 /// Some features that may or may not be worth adding:
129 ///
130 /// Binary to decimal conversion (hard).
131 ///
132 /// Optional ability to detect underflow tininess before rounding.
133 ///
134 /// New formats: x87 in single and double precision mode (IEEE apart from
135 /// extended exponent range) (hard).
136 ///
137 /// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
138 ///
139 
140 // This is the common type definitions shared by APFloat and its internal
141 // implementation classes. This struct should not define any non-static data
142 // members.
143 struct APFloatBase {
144   typedef APInt::WordType integerPart;
145   static constexpr unsigned integerPartWidth = APInt::APINT_BITS_PER_WORD;
146 
147   /// A signed type to represent a floating point numbers unbiased exponent.
148   typedef int32_t ExponentType;
149 
150   /// \name Floating Point Semantics.
151   /// @{
152   enum Semantics {
153     S_IEEEhalf,
154     S_BFloat,
155     S_IEEEsingle,
156     S_IEEEdouble,
157     S_IEEEquad,
158     S_PPCDoubleDouble,
159     // 8-bit floating point number following IEEE-754 conventions with bit
160     // layout S1E5M2 as described in https://arxiv.org/abs/2209.05433.
161     S_Float8E5M2,
162     // 8-bit floating point number mostly following IEEE-754 conventions
163     // and bit layout S1E5M2 described in https://arxiv.org/abs/2206.02915,
164     // with expanded range and with no infinity or signed zero.
165     // NaN is represented as negative zero. (FN -> Finite, UZ -> unsigned zero).
166     // This format's exponent bias is 16, instead of the 15 (2 ** (5 - 1) - 1)
167     // that IEEE precedent would imply.
168     S_Float8E5M2FNUZ,
169     // 8-bit floating point number following IEEE-754 conventions with bit
170     // layout S1E4M3.
171     S_Float8E4M3,
172     // 8-bit floating point number mostly following IEEE-754 conventions with
173     // bit layout S1E4M3 as described in https://arxiv.org/abs/2209.05433.
174     // Unlike IEEE-754 types, there are no infinity values, and NaN is
175     // represented with the exponent and mantissa bits set to all 1s.
176     S_Float8E4M3FN,
177     // 8-bit floating point number mostly following IEEE-754 conventions
178     // and bit layout S1E4M3 described in https://arxiv.org/abs/2206.02915,
179     // with expanded range and with no infinity or signed zero.
180     // NaN is represented as negative zero. (FN -> Finite, UZ -> unsigned zero).
181     // This format's exponent bias is 8, instead of the 7 (2 ** (4 - 1) - 1)
182     // that IEEE precedent would imply.
183     S_Float8E4M3FNUZ,
184     // 8-bit floating point number mostly following IEEE-754 conventions
185     // and bit layout S1E4M3 with expanded range and with no infinity or signed
186     // zero.
187     // NaN is represented as negative zero. (FN -> Finite, UZ -> unsigned zero).
188     // This format's exponent bias is 11, instead of the 7 (2 ** (4 - 1) - 1)
189     // that IEEE precedent would imply.
190     S_Float8E4M3B11FNUZ,
191     // Floating point number that occupies 32 bits or less of storage, providing
192     // improved range compared to half (16-bit) formats, at (potentially)
193     // greater throughput than single precision (32-bit) formats.
194     S_FloatTF32,
195     // 6-bit floating point number with bit layout S1E3M2. Unlike IEEE-754
196     // types, there are no infinity or NaN values. The format is detailed in
197     // https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
198     S_Float6E3M2FN,
199     // 6-bit floating point number with bit layout S1E2M3. Unlike IEEE-754
200     // types, there are no infinity or NaN values. The format is detailed in
201     // https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
202     S_Float6E2M3FN,
203     // 4-bit floating point number with bit layout S1E2M1. Unlike IEEE-754
204     // types, there are no infinity or NaN values. The format is detailed in
205     // https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
206     S_Float4E2M1FN,
207 
208     S_x87DoubleExtended,
209     S_MaxSemantics = S_x87DoubleExtended,
210   };
211 
212   static const llvm::fltSemantics &EnumToSemantics(Semantics S);
213   static Semantics SemanticsToEnum(const llvm::fltSemantics &Sem);
214 
215   static const fltSemantics &IEEEhalf() LLVM_READNONE;
216   static const fltSemantics &BFloat() LLVM_READNONE;
217   static const fltSemantics &IEEEsingle() LLVM_READNONE;
218   static const fltSemantics &IEEEdouble() LLVM_READNONE;
219   static const fltSemantics &IEEEquad() LLVM_READNONE;
220   static const fltSemantics &PPCDoubleDouble() LLVM_READNONE;
221   static const fltSemantics &Float8E5M2() LLVM_READNONE;
222   static const fltSemantics &Float8E5M2FNUZ() LLVM_READNONE;
223   static const fltSemantics &Float8E4M3() LLVM_READNONE;
224   static const fltSemantics &Float8E4M3FN() LLVM_READNONE;
225   static const fltSemantics &Float8E4M3FNUZ() LLVM_READNONE;
226   static const fltSemantics &Float8E4M3B11FNUZ() LLVM_READNONE;
227   static const fltSemantics &FloatTF32() LLVM_READNONE;
228   static const fltSemantics &Float6E3M2FN() LLVM_READNONE;
229   static const fltSemantics &Float6E2M3FN() LLVM_READNONE;
230   static const fltSemantics &Float4E2M1FN() LLVM_READNONE;
231   static const fltSemantics &x87DoubleExtended() LLVM_READNONE;
232 
233   /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
234   /// anything real.
235   static const fltSemantics &Bogus() LLVM_READNONE;
236 
237   /// @}
238 
239   /// IEEE-754R 5.11: Floating Point Comparison Relations.
240   enum cmpResult {
241     cmpLessThan,
242     cmpEqual,
243     cmpGreaterThan,
244     cmpUnordered
245   };
246 
247   /// IEEE-754R 4.3: Rounding-direction attributes.
248   using roundingMode = llvm::RoundingMode;
249 
250   static constexpr roundingMode rmNearestTiesToEven =
251                                                 RoundingMode::NearestTiesToEven;
252   static constexpr roundingMode rmTowardPositive = RoundingMode::TowardPositive;
253   static constexpr roundingMode rmTowardNegative = RoundingMode::TowardNegative;
254   static constexpr roundingMode rmTowardZero     = RoundingMode::TowardZero;
255   static constexpr roundingMode rmNearestTiesToAway =
256                                                 RoundingMode::NearestTiesToAway;
257 
258   /// IEEE-754R 7: Default exception handling.
259   ///
260   /// opUnderflow or opOverflow are always returned or-ed with opInexact.
261   ///
262   /// APFloat models this behavior specified by IEEE-754:
263   ///   "For operations producing results in floating-point format, the default
264   ///    result of an operation that signals the invalid operation exception
265   ///    shall be a quiet NaN."
266   enum opStatus {
267     opOK = 0x00,
268     opInvalidOp = 0x01,
269     opDivByZero = 0x02,
270     opOverflow = 0x04,
271     opUnderflow = 0x08,
272     opInexact = 0x10
273   };
274 
275   /// Category of internally-represented number.
276   enum fltCategory {
277     fcInfinity,
278     fcNaN,
279     fcNormal,
280     fcZero
281   };
282 
283   /// Convenience enum used to construct an uninitialized APFloat.
284   enum uninitializedTag {
285     uninitialized
286   };
287 
288   /// Enumeration of \c ilogb error results.
289   enum IlogbErrorKinds {
290     IEK_Zero = INT_MIN + 1,
291     IEK_NaN = INT_MIN,
292     IEK_Inf = INT_MAX
293   };
294 
295   static unsigned int semanticsPrecision(const fltSemantics &);
296   static ExponentType semanticsMinExponent(const fltSemantics &);
297   static ExponentType semanticsMaxExponent(const fltSemantics &);
298   static unsigned int semanticsSizeInBits(const fltSemantics &);
299   static unsigned int semanticsIntSizeInBits(const fltSemantics&, bool);
300 
301   // Returns true if any number described by \p Src can be precisely represented
302   // by a normal (not subnormal) value in \p Dst.
303   static bool isRepresentableAsNormalIn(const fltSemantics &Src,
304                                         const fltSemantics &Dst);
305 
306   /// Returns the size of the floating point number (in bits) in the given
307   /// semantics.
308   static unsigned getSizeInBits(const fltSemantics &Sem);
309 };
310 
311 namespace detail {
312 
313 class IEEEFloat final : public APFloatBase {
314 public:
315   /// \name Constructors
316   /// @{
317 
318   IEEEFloat(const fltSemantics &); // Default construct to +0.0
319   IEEEFloat(const fltSemantics &, integerPart);
320   IEEEFloat(const fltSemantics &, uninitializedTag);
321   IEEEFloat(const fltSemantics &, const APInt &);
322   explicit IEEEFloat(double d);
323   explicit IEEEFloat(float f);
324   IEEEFloat(const IEEEFloat &);
325   IEEEFloat(IEEEFloat &&);
326   ~IEEEFloat();
327 
328   /// @}
329 
330   /// Returns whether this instance allocated memory.
needsCleanup()331   bool needsCleanup() const { return partCount() > 1; }
332 
333   /// \name Convenience "constructors"
334   /// @{
335 
336   /// @}
337 
338   /// \name Arithmetic
339   /// @{
340 
341   opStatus add(const IEEEFloat &, roundingMode);
342   opStatus subtract(const IEEEFloat &, roundingMode);
343   opStatus multiply(const IEEEFloat &, roundingMode);
344   opStatus divide(const IEEEFloat &, roundingMode);
345   /// IEEE remainder.
346   opStatus remainder(const IEEEFloat &);
347   /// C fmod, or llvm frem.
348   opStatus mod(const IEEEFloat &);
349   opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode);
350   opStatus roundToIntegral(roundingMode);
351   /// IEEE-754R 5.3.1: nextUp/nextDown.
352   opStatus next(bool nextDown);
353 
354   /// @}
355 
356   /// \name Sign operations.
357   /// @{
358 
359   void changeSign();
360 
361   /// @}
362 
363   /// \name Conversions
364   /// @{
365 
366   opStatus convert(const fltSemantics &, roundingMode, bool *);
367   opStatus convertToInteger(MutableArrayRef<integerPart>, unsigned int, bool,
368                             roundingMode, bool *) const;
369   opStatus convertFromAPInt(const APInt &, bool, roundingMode);
370   opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
371                                           bool, roundingMode);
372   opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
373                                           bool, roundingMode);
374   Expected<opStatus> convertFromString(StringRef, roundingMode);
375   APInt bitcastToAPInt() const;
376   double convertToDouble() const;
377 #ifdef HAS_IEE754_FLOAT128
378   float128 convertToQuad() const;
379 #endif
380   float convertToFloat() const;
381 
382   /// @}
383 
384   /// The definition of equality is not straightforward for floating point, so
385   /// we won't use operator==.  Use one of the following, or write whatever it
386   /// is you really mean.
387   bool operator==(const IEEEFloat &) const = delete;
388 
389   /// IEEE comparison with another floating point number (NaNs compare
390   /// unordered, 0==-0).
391   cmpResult compare(const IEEEFloat &) const;
392 
393   /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
394   bool bitwiseIsEqual(const IEEEFloat &) const;
395 
396   /// Write out a hexadecimal representation of the floating point value to DST,
397   /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
398   /// Return the number of characters written, excluding the terminating NUL.
399   unsigned int convertToHexString(char *dst, unsigned int hexDigits,
400                                   bool upperCase, roundingMode) const;
401 
402   /// \name IEEE-754R 5.7.2 General operations.
403   /// @{
404 
405   /// IEEE-754R isSignMinus: Returns true if and only if the current value is
406   /// negative.
407   ///
408   /// This applies to zeros and NaNs as well.
isNegative()409   bool isNegative() const { return sign; }
410 
411   /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
412   ///
413   /// This implies that the current value of the float is not zero, subnormal,
414   /// infinite, or NaN following the definition of normality from IEEE-754R.
isNormal()415   bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
416 
417   /// Returns true if and only if the current value is zero, subnormal, or
418   /// normal.
419   ///
420   /// This means that the value is not infinite or NaN.
isFinite()421   bool isFinite() const { return !isNaN() && !isInfinity(); }
422 
423   /// Returns true if and only if the float is plus or minus zero.
isZero()424   bool isZero() const { return category == fcZero; }
425 
426   /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
427   /// denormal.
428   bool isDenormal() const;
429 
430   /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
isInfinity()431   bool isInfinity() const { return category == fcInfinity; }
432 
433   /// Returns true if and only if the float is a quiet or signaling NaN.
isNaN()434   bool isNaN() const { return category == fcNaN; }
435 
436   /// Returns true if and only if the float is a signaling NaN.
437   bool isSignaling() const;
438 
439   /// @}
440 
441   /// \name Simple Queries
442   /// @{
443 
getCategory()444   fltCategory getCategory() const { return category; }
getSemantics()445   const fltSemantics &getSemantics() const { return *semantics; }
isNonZero()446   bool isNonZero() const { return category != fcZero; }
isFiniteNonZero()447   bool isFiniteNonZero() const { return isFinite() && !isZero(); }
isPosZero()448   bool isPosZero() const { return isZero() && !isNegative(); }
isNegZero()449   bool isNegZero() const { return isZero() && isNegative(); }
450 
451   /// Returns true if and only if the number has the smallest possible non-zero
452   /// magnitude in the current semantics.
453   bool isSmallest() const;
454 
455   /// Returns true if this is the smallest (by magnitude) normalized finite
456   /// number in the given semantics.
457   bool isSmallestNormalized() const;
458 
459   /// Returns true if and only if the number has the largest possible finite
460   /// magnitude in the current semantics.
461   bool isLargest() const;
462 
463   /// Returns true if and only if the number is an exact integer.
464   bool isInteger() const;
465 
466   /// @}
467 
468   IEEEFloat &operator=(const IEEEFloat &);
469   IEEEFloat &operator=(IEEEFloat &&);
470 
471   /// Overload to compute a hash code for an APFloat value.
472   ///
473   /// Note that the use of hash codes for floating point values is in general
474   /// frought with peril. Equality is hard to define for these values. For
475   /// example, should negative and positive zero hash to different codes? Are
476   /// they equal or not? This hash value implementation specifically
477   /// emphasizes producing different codes for different inputs in order to
478   /// be used in canonicalization and memoization. As such, equality is
479   /// bitwiseIsEqual, and 0 != -0.
480   friend hash_code hash_value(const IEEEFloat &Arg);
481 
482   /// Converts this value into a decimal string.
483   ///
484   /// \param FormatPrecision The maximum number of digits of
485   ///   precision to output.  If there are fewer digits available,
486   ///   zero padding will not be used unless the value is
487   ///   integral and small enough to be expressed in
488   ///   FormatPrecision digits.  0 means to use the natural
489   ///   precision of the number.
490   /// \param FormatMaxPadding The maximum number of zeros to
491   ///   consider inserting before falling back to scientific
492   ///   notation.  0 means to always use scientific notation.
493   ///
494   /// \param TruncateZero Indicate whether to remove the trailing zero in
495   ///   fraction part or not. Also setting this parameter to false forcing
496   ///   producing of output more similar to default printf behavior.
497   ///   Specifically the lower e is used as exponent delimiter and exponent
498   ///   always contains no less than two digits.
499   ///
500   /// Number       Precision    MaxPadding      Result
501   /// ------       ---------    ----------      ------
502   /// 1.01E+4              5             2       10100
503   /// 1.01E+4              4             2       1.01E+4
504   /// 1.01E+4              5             1       1.01E+4
505   /// 1.01E-2              5             2       0.0101
506   /// 1.01E-2              4             2       0.0101
507   /// 1.01E-2              4             1       1.01E-2
508   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
509                 unsigned FormatMaxPadding = 3, bool TruncateZero = true) const;
510 
511   /// If this value has an exact multiplicative inverse, store it in inv and
512   /// return true.
513   bool getExactInverse(APFloat *inv) const;
514 
515   // If this is an exact power of two, return the exponent while ignoring the
516   // sign bit. If it's not an exact power of 2, return INT_MIN
517   LLVM_READONLY
518   int getExactLog2Abs() const;
519 
520   // If this is an exact power of two, return the exponent. If it's not an exact
521   // power of 2, return INT_MIN
522   LLVM_READONLY
getExactLog2()523   int getExactLog2() const {
524     return isNegative() ? INT_MIN : getExactLog2Abs();
525   }
526 
527   /// Returns the exponent of the internal representation of the APFloat.
528   ///
529   /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)).
530   /// For special APFloat values, this returns special error codes:
531   ///
532   ///   NaN -> \c IEK_NaN
533   ///   0   -> \c IEK_Zero
534   ///   Inf -> \c IEK_Inf
535   ///
536   friend int ilogb(const IEEEFloat &Arg);
537 
538   /// Returns: X * 2^Exp for integral exponents.
539   friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode);
540 
541   friend IEEEFloat frexp(const IEEEFloat &X, int &Exp, roundingMode);
542 
543   /// \name Special value setters.
544   /// @{
545 
546   void makeLargest(bool Neg = false);
547   void makeSmallest(bool Neg = false);
548   void makeNaN(bool SNaN = false, bool Neg = false,
549                const APInt *fill = nullptr);
550   void makeInf(bool Neg = false);
551   void makeZero(bool Neg = false);
552   void makeQuiet();
553 
554   /// Returns the smallest (by magnitude) normalized finite number in the given
555   /// semantics.
556   ///
557   /// \param Negative - True iff the number should be negative
558   void makeSmallestNormalized(bool Negative = false);
559 
560   /// @}
561 
562   cmpResult compareAbsoluteValue(const IEEEFloat &) const;
563 
564 private:
565   /// \name Simple Queries
566   /// @{
567 
568   integerPart *significandParts();
569   const integerPart *significandParts() const;
570   unsigned int partCount() const;
571 
572   /// @}
573 
574   /// \name Significand operations.
575   /// @{
576 
577   integerPart addSignificand(const IEEEFloat &);
578   integerPart subtractSignificand(const IEEEFloat &, integerPart);
579   lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract);
580   lostFraction multiplySignificand(const IEEEFloat &, IEEEFloat);
581   lostFraction multiplySignificand(const IEEEFloat&);
582   lostFraction divideSignificand(const IEEEFloat &);
583   void incrementSignificand();
584   void initialize(const fltSemantics *);
585   void shiftSignificandLeft(unsigned int);
586   lostFraction shiftSignificandRight(unsigned int);
587   unsigned int significandLSB() const;
588   unsigned int significandMSB() const;
589   void zeroSignificand();
590   /// Return true if the significand excluding the integral bit is all ones.
591   bool isSignificandAllOnes() const;
592   bool isSignificandAllOnesExceptLSB() const;
593   /// Return true if the significand excluding the integral bit is all zeros.
594   bool isSignificandAllZeros() const;
595   bool isSignificandAllZerosExceptMSB() const;
596 
597   /// @}
598 
599   /// \name Arithmetic on special values.
600   /// @{
601 
602   opStatus addOrSubtractSpecials(const IEEEFloat &, bool subtract);
603   opStatus divideSpecials(const IEEEFloat &);
604   opStatus multiplySpecials(const IEEEFloat &);
605   opStatus modSpecials(const IEEEFloat &);
606   opStatus remainderSpecials(const IEEEFloat&);
607 
608   /// @}
609 
610   /// \name Miscellany
611   /// @{
612 
613   bool convertFromStringSpecials(StringRef str);
614   opStatus normalize(roundingMode, lostFraction);
615   opStatus addOrSubtract(const IEEEFloat &, roundingMode, bool subtract);
616   opStatus handleOverflow(roundingMode);
617   bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
618   opStatus convertToSignExtendedInteger(MutableArrayRef<integerPart>,
619                                         unsigned int, bool, roundingMode,
620                                         bool *) const;
621   opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
622                                     roundingMode);
623   Expected<opStatus> convertFromHexadecimalString(StringRef, roundingMode);
624   Expected<opStatus> convertFromDecimalString(StringRef, roundingMode);
625   char *convertNormalToHexString(char *, unsigned int, bool,
626                                  roundingMode) const;
627   opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
628                                         roundingMode);
629   ExponentType exponentNaN() const;
630   ExponentType exponentInf() const;
631   ExponentType exponentZero() const;
632 
633   /// @}
634 
635   template <const fltSemantics &S> APInt convertIEEEFloatToAPInt() const;
636   APInt convertHalfAPFloatToAPInt() const;
637   APInt convertBFloatAPFloatToAPInt() const;
638   APInt convertFloatAPFloatToAPInt() const;
639   APInt convertDoubleAPFloatToAPInt() const;
640   APInt convertQuadrupleAPFloatToAPInt() const;
641   APInt convertF80LongDoubleAPFloatToAPInt() const;
642   APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
643   APInt convertFloat8E5M2APFloatToAPInt() const;
644   APInt convertFloat8E5M2FNUZAPFloatToAPInt() const;
645   APInt convertFloat8E4M3APFloatToAPInt() const;
646   APInt convertFloat8E4M3FNAPFloatToAPInt() const;
647   APInt convertFloat8E4M3FNUZAPFloatToAPInt() const;
648   APInt convertFloat8E4M3B11FNUZAPFloatToAPInt() const;
649   APInt convertFloatTF32APFloatToAPInt() const;
650   APInt convertFloat6E3M2FNAPFloatToAPInt() const;
651   APInt convertFloat6E2M3FNAPFloatToAPInt() const;
652   APInt convertFloat4E2M1FNAPFloatToAPInt() const;
653   void initFromAPInt(const fltSemantics *Sem, const APInt &api);
654   template <const fltSemantics &S> void initFromIEEEAPInt(const APInt &api);
655   void initFromHalfAPInt(const APInt &api);
656   void initFromBFloatAPInt(const APInt &api);
657   void initFromFloatAPInt(const APInt &api);
658   void initFromDoubleAPInt(const APInt &api);
659   void initFromQuadrupleAPInt(const APInt &api);
660   void initFromF80LongDoubleAPInt(const APInt &api);
661   void initFromPPCDoubleDoubleAPInt(const APInt &api);
662   void initFromFloat8E5M2APInt(const APInt &api);
663   void initFromFloat8E5M2FNUZAPInt(const APInt &api);
664   void initFromFloat8E4M3APInt(const APInt &api);
665   void initFromFloat8E4M3FNAPInt(const APInt &api);
666   void initFromFloat8E4M3FNUZAPInt(const APInt &api);
667   void initFromFloat8E4M3B11FNUZAPInt(const APInt &api);
668   void initFromFloatTF32APInt(const APInt &api);
669   void initFromFloat6E3M2FNAPInt(const APInt &api);
670   void initFromFloat6E2M3FNAPInt(const APInt &api);
671   void initFromFloat4E2M1FNAPInt(const APInt &api);
672 
673   void assign(const IEEEFloat &);
674   void copySignificand(const IEEEFloat &);
675   void freeSignificand();
676 
677   /// Note: this must be the first data member.
678   /// The semantics that this value obeys.
679   const fltSemantics *semantics;
680 
681   /// A binary fraction with an explicit integer bit.
682   ///
683   /// The significand must be at least one bit wider than the target precision.
684   union Significand {
685     integerPart part;
686     integerPart *parts;
687   } significand;
688 
689   /// The signed unbiased exponent of the value.
690   ExponentType exponent;
691 
692   /// What kind of floating point number this is.
693   ///
694   /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
695   /// Using the extra bit keeps it from failing under VisualStudio.
696   fltCategory category : 3;
697 
698   /// Sign bit of the number.
699   unsigned int sign : 1;
700 };
701 
702 hash_code hash_value(const IEEEFloat &Arg);
703 int ilogb(const IEEEFloat &Arg);
704 IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode);
705 IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM);
706 
707 // This mode implements more precise float in terms of two APFloats.
708 // The interface and layout is designed for arbitrary underlying semantics,
709 // though currently only PPCDoubleDouble semantics are supported, whose
710 // corresponding underlying semantics are IEEEdouble.
711 class DoubleAPFloat final : public APFloatBase {
712   // Note: this must be the first data member.
713   const fltSemantics *Semantics;
714   std::unique_ptr<APFloat[]> Floats;
715 
716   opStatus addImpl(const APFloat &a, const APFloat &aa, const APFloat &c,
717                    const APFloat &cc, roundingMode RM);
718 
719   opStatus addWithSpecial(const DoubleAPFloat &LHS, const DoubleAPFloat &RHS,
720                           DoubleAPFloat &Out, roundingMode RM);
721 
722 public:
723   DoubleAPFloat(const fltSemantics &S);
724   DoubleAPFloat(const fltSemantics &S, uninitializedTag);
725   DoubleAPFloat(const fltSemantics &S, integerPart);
726   DoubleAPFloat(const fltSemantics &S, const APInt &I);
727   DoubleAPFloat(const fltSemantics &S, APFloat &&First, APFloat &&Second);
728   DoubleAPFloat(const DoubleAPFloat &RHS);
729   DoubleAPFloat(DoubleAPFloat &&RHS);
730 
731   DoubleAPFloat &operator=(const DoubleAPFloat &RHS);
732   inline DoubleAPFloat &operator=(DoubleAPFloat &&RHS);
733 
needsCleanup()734   bool needsCleanup() const { return Floats != nullptr; }
735 
736   inline APFloat &getFirst();
737   inline const APFloat &getFirst() const;
738   inline APFloat &getSecond();
739   inline const APFloat &getSecond() const;
740 
741   opStatus add(const DoubleAPFloat &RHS, roundingMode RM);
742   opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM);
743   opStatus multiply(const DoubleAPFloat &RHS, roundingMode RM);
744   opStatus divide(const DoubleAPFloat &RHS, roundingMode RM);
745   opStatus remainder(const DoubleAPFloat &RHS);
746   opStatus mod(const DoubleAPFloat &RHS);
747   opStatus fusedMultiplyAdd(const DoubleAPFloat &Multiplicand,
748                             const DoubleAPFloat &Addend, roundingMode RM);
749   opStatus roundToIntegral(roundingMode RM);
750   void changeSign();
751   cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const;
752 
753   fltCategory getCategory() const;
754   bool isNegative() const;
755 
756   void makeInf(bool Neg);
757   void makeZero(bool Neg);
758   void makeLargest(bool Neg);
759   void makeSmallest(bool Neg);
760   void makeSmallestNormalized(bool Neg);
761   void makeNaN(bool SNaN, bool Neg, const APInt *fill);
762 
763   cmpResult compare(const DoubleAPFloat &RHS) const;
764   bool bitwiseIsEqual(const DoubleAPFloat &RHS) const;
765   APInt bitcastToAPInt() const;
766   Expected<opStatus> convertFromString(StringRef, roundingMode);
767   opStatus next(bool nextDown);
768 
769   opStatus convertToInteger(MutableArrayRef<integerPart> Input,
770                             unsigned int Width, bool IsSigned, roundingMode RM,
771                             bool *IsExact) const;
772   opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM);
773   opStatus convertFromSignExtendedInteger(const integerPart *Input,
774                                           unsigned int InputSize, bool IsSigned,
775                                           roundingMode RM);
776   opStatus convertFromZeroExtendedInteger(const integerPart *Input,
777                                           unsigned int InputSize, bool IsSigned,
778                                           roundingMode RM);
779   unsigned int convertToHexString(char *DST, unsigned int HexDigits,
780                                   bool UpperCase, roundingMode RM) const;
781 
782   bool isDenormal() const;
783   bool isSmallest() const;
784   bool isSmallestNormalized() const;
785   bool isLargest() const;
786   bool isInteger() const;
787 
788   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision,
789                 unsigned FormatMaxPadding, bool TruncateZero = true) const;
790 
791   bool getExactInverse(APFloat *inv) const;
792 
793   LLVM_READONLY
794   int getExactLog2() const;
795   LLVM_READONLY
796   int getExactLog2Abs() const;
797 
798   friend DoubleAPFloat scalbn(const DoubleAPFloat &X, int Exp, roundingMode);
799   friend DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, roundingMode);
800   friend hash_code hash_value(const DoubleAPFloat &Arg);
801 };
802 
803 hash_code hash_value(const DoubleAPFloat &Arg);
804 DoubleAPFloat scalbn(const DoubleAPFloat &Arg, int Exp, IEEEFloat::roundingMode RM);
805 DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, IEEEFloat::roundingMode);
806 
807 } // End detail namespace
808 
809 // This is a interface class that is currently forwarding functionalities from
810 // detail::IEEEFloat.
811 class APFloat : public APFloatBase {
812   typedef detail::IEEEFloat IEEEFloat;
813   typedef detail::DoubleAPFloat DoubleAPFloat;
814 
815   static_assert(std::is_standard_layout<IEEEFloat>::value);
816 
817   union Storage {
818     const fltSemantics *semantics;
819     IEEEFloat IEEE;
820     DoubleAPFloat Double;
821 
822     explicit Storage(IEEEFloat F, const fltSemantics &S);
Storage(DoubleAPFloat F,const fltSemantics & S)823     explicit Storage(DoubleAPFloat F, const fltSemantics &S)
824         : Double(std::move(F)) {
825       assert(&S == &PPCDoubleDouble());
826     }
827 
828     template <typename... ArgTypes>
Storage(const fltSemantics & Semantics,ArgTypes &&...Args)829     Storage(const fltSemantics &Semantics, ArgTypes &&... Args) {
830       if (usesLayout<IEEEFloat>(Semantics)) {
831         new (&IEEE) IEEEFloat(Semantics, std::forward<ArgTypes>(Args)...);
832         return;
833       }
834       if (usesLayout<DoubleAPFloat>(Semantics)) {
835         new (&Double) DoubleAPFloat(Semantics, std::forward<ArgTypes>(Args)...);
836         return;
837       }
838       llvm_unreachable("Unexpected semantics");
839     }
840 
~Storage()841     ~Storage() {
842       if (usesLayout<IEEEFloat>(*semantics)) {
843         IEEE.~IEEEFloat();
844         return;
845       }
846       if (usesLayout<DoubleAPFloat>(*semantics)) {
847         Double.~DoubleAPFloat();
848         return;
849       }
850       llvm_unreachable("Unexpected semantics");
851     }
852 
Storage(const Storage & RHS)853     Storage(const Storage &RHS) {
854       if (usesLayout<IEEEFloat>(*RHS.semantics)) {
855         new (this) IEEEFloat(RHS.IEEE);
856         return;
857       }
858       if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
859         new (this) DoubleAPFloat(RHS.Double);
860         return;
861       }
862       llvm_unreachable("Unexpected semantics");
863     }
864 
Storage(Storage && RHS)865     Storage(Storage &&RHS) {
866       if (usesLayout<IEEEFloat>(*RHS.semantics)) {
867         new (this) IEEEFloat(std::move(RHS.IEEE));
868         return;
869       }
870       if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
871         new (this) DoubleAPFloat(std::move(RHS.Double));
872         return;
873       }
874       llvm_unreachable("Unexpected semantics");
875     }
876 
877     Storage &operator=(const Storage &RHS) {
878       if (usesLayout<IEEEFloat>(*semantics) &&
879           usesLayout<IEEEFloat>(*RHS.semantics)) {
880         IEEE = RHS.IEEE;
881       } else if (usesLayout<DoubleAPFloat>(*semantics) &&
882                  usesLayout<DoubleAPFloat>(*RHS.semantics)) {
883         Double = RHS.Double;
884       } else if (this != &RHS) {
885         this->~Storage();
886         new (this) Storage(RHS);
887       }
888       return *this;
889     }
890 
891     Storage &operator=(Storage &&RHS) {
892       if (usesLayout<IEEEFloat>(*semantics) &&
893           usesLayout<IEEEFloat>(*RHS.semantics)) {
894         IEEE = std::move(RHS.IEEE);
895       } else if (usesLayout<DoubleAPFloat>(*semantics) &&
896                  usesLayout<DoubleAPFloat>(*RHS.semantics)) {
897         Double = std::move(RHS.Double);
898       } else if (this != &RHS) {
899         this->~Storage();
900         new (this) Storage(std::move(RHS));
901       }
902       return *this;
903     }
904   } U;
905 
usesLayout(const fltSemantics & Semantics)906   template <typename T> static bool usesLayout(const fltSemantics &Semantics) {
907     static_assert(std::is_same<T, IEEEFloat>::value ||
908                   std::is_same<T, DoubleAPFloat>::value);
909     if (std::is_same<T, DoubleAPFloat>::value) {
910       return &Semantics == &PPCDoubleDouble();
911     }
912     return &Semantics != &PPCDoubleDouble();
913   }
914 
getIEEE()915   IEEEFloat &getIEEE() {
916     if (usesLayout<IEEEFloat>(*U.semantics))
917       return U.IEEE;
918     if (usesLayout<DoubleAPFloat>(*U.semantics))
919       return U.Double.getFirst().U.IEEE;
920     llvm_unreachable("Unexpected semantics");
921   }
922 
getIEEE()923   const IEEEFloat &getIEEE() const {
924     if (usesLayout<IEEEFloat>(*U.semantics))
925       return U.IEEE;
926     if (usesLayout<DoubleAPFloat>(*U.semantics))
927       return U.Double.getFirst().U.IEEE;
928     llvm_unreachable("Unexpected semantics");
929   }
930 
makeZero(bool Neg)931   void makeZero(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeZero(Neg)); }
932 
makeInf(bool Neg)933   void makeInf(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeInf(Neg)); }
934 
makeNaN(bool SNaN,bool Neg,const APInt * fill)935   void makeNaN(bool SNaN, bool Neg, const APInt *fill) {
936     APFLOAT_DISPATCH_ON_SEMANTICS(makeNaN(SNaN, Neg, fill));
937   }
938 
makeLargest(bool Neg)939   void makeLargest(bool Neg) {
940     APFLOAT_DISPATCH_ON_SEMANTICS(makeLargest(Neg));
941   }
942 
makeSmallest(bool Neg)943   void makeSmallest(bool Neg) {
944     APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallest(Neg));
945   }
946 
makeSmallestNormalized(bool Neg)947   void makeSmallestNormalized(bool Neg) {
948     APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallestNormalized(Neg));
949   }
950 
APFloat(IEEEFloat F,const fltSemantics & S)951   explicit APFloat(IEEEFloat F, const fltSemantics &S) : U(std::move(F), S) {}
APFloat(DoubleAPFloat F,const fltSemantics & S)952   explicit APFloat(DoubleAPFloat F, const fltSemantics &S)
953       : U(std::move(F), S) {}
954 
compareAbsoluteValue(const APFloat & RHS)955   cmpResult compareAbsoluteValue(const APFloat &RHS) const {
956     assert(&getSemantics() == &RHS.getSemantics() &&
957            "Should only compare APFloats with the same semantics");
958     if (usesLayout<IEEEFloat>(getSemantics()))
959       return U.IEEE.compareAbsoluteValue(RHS.U.IEEE);
960     if (usesLayout<DoubleAPFloat>(getSemantics()))
961       return U.Double.compareAbsoluteValue(RHS.U.Double);
962     llvm_unreachable("Unexpected semantics");
963   }
964 
965 public:
APFloat(const fltSemantics & Semantics)966   APFloat(const fltSemantics &Semantics) : U(Semantics) {}
967   APFloat(const fltSemantics &Semantics, StringRef S);
APFloat(const fltSemantics & Semantics,integerPart I)968   APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {}
969   template <typename T,
970             typename = std::enable_if_t<std::is_floating_point<T>::value>>
971   APFloat(const fltSemantics &Semantics, T V) = delete;
972   // TODO: Remove this constructor. This isn't faster than the first one.
APFloat(const fltSemantics & Semantics,uninitializedTag)973   APFloat(const fltSemantics &Semantics, uninitializedTag)
974       : U(Semantics, uninitialized) {}
APFloat(const fltSemantics & Semantics,const APInt & I)975   APFloat(const fltSemantics &Semantics, const APInt &I) : U(Semantics, I) {}
APFloat(double d)976   explicit APFloat(double d) : U(IEEEFloat(d), IEEEdouble()) {}
APFloat(float f)977   explicit APFloat(float f) : U(IEEEFloat(f), IEEEsingle()) {}
978   APFloat(const APFloat &RHS) = default;
979   APFloat(APFloat &&RHS) = default;
980 
981   ~APFloat() = default;
982 
needsCleanup()983   bool needsCleanup() const { APFLOAT_DISPATCH_ON_SEMANTICS(needsCleanup()); }
984 
985   /// Factory for Positive and Negative Zero.
986   ///
987   /// \param Negative True iff the number should be negative.
988   static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
989     APFloat Val(Sem, uninitialized);
990     Val.makeZero(Negative);
991     return Val;
992   }
993 
994   /// Factory for Positive and Negative One.
995   ///
996   /// \param Negative True iff the number should be negative.
997   static APFloat getOne(const fltSemantics &Sem, bool Negative = false) {
998     return APFloat(Sem, Negative ? -1 : 1);
999   }
1000 
1001   /// Factory for Positive and Negative Infinity.
1002   ///
1003   /// \param Negative True iff the number should be negative.
1004   static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
1005     APFloat Val(Sem, uninitialized);
1006     Val.makeInf(Negative);
1007     return Val;
1008   }
1009 
1010   /// Factory for NaN values.
1011   ///
1012   /// \param Negative - True iff the NaN generated should be negative.
1013   /// \param payload - The unspecified fill bits for creating the NaN, 0 by
1014   /// default.  The value is truncated as necessary.
1015   static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
1016                         uint64_t payload = 0) {
1017     if (payload) {
1018       APInt intPayload(64, payload);
1019       return getQNaN(Sem, Negative, &intPayload);
1020     } else {
1021       return getQNaN(Sem, Negative, nullptr);
1022     }
1023   }
1024 
1025   /// Factory for QNaN values.
1026   static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
1027                          const APInt *payload = nullptr) {
1028     APFloat Val(Sem, uninitialized);
1029     Val.makeNaN(false, Negative, payload);
1030     return Val;
1031   }
1032 
1033   /// Factory for SNaN values.
1034   static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
1035                          const APInt *payload = nullptr) {
1036     APFloat Val(Sem, uninitialized);
1037     Val.makeNaN(true, Negative, payload);
1038     return Val;
1039   }
1040 
1041   /// Returns the largest finite number in the given semantics.
1042   ///
1043   /// \param Negative - True iff the number should be negative
1044   static APFloat getLargest(const fltSemantics &Sem, bool Negative = false) {
1045     APFloat Val(Sem, uninitialized);
1046     Val.makeLargest(Negative);
1047     return Val;
1048   }
1049 
1050   /// Returns the smallest (by magnitude) finite number in the given semantics.
1051   /// Might be denormalized, which implies a relative loss of precision.
1052   ///
1053   /// \param Negative - True iff the number should be negative
1054   static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false) {
1055     APFloat Val(Sem, uninitialized);
1056     Val.makeSmallest(Negative);
1057     return Val;
1058   }
1059 
1060   /// Returns the smallest (by magnitude) normalized finite number in the given
1061   /// semantics.
1062   ///
1063   /// \param Negative - True iff the number should be negative
1064   static APFloat getSmallestNormalized(const fltSemantics &Sem,
1065                                        bool Negative = false) {
1066     APFloat Val(Sem, uninitialized);
1067     Val.makeSmallestNormalized(Negative);
1068     return Val;
1069   }
1070 
1071   /// Returns a float which is bitcasted from an all one value int.
1072   ///
1073   /// \param Semantics - type float semantics
1074   static APFloat getAllOnesValue(const fltSemantics &Semantics);
1075 
hasNanOrInf(const fltSemantics & Sem)1076   static bool hasNanOrInf(const fltSemantics &Sem) {
1077     switch (SemanticsToEnum(Sem)) {
1078     default:
1079       return true;
1080     // Below Semantics do not support {NaN or Inf}
1081     case APFloat::S_Float6E3M2FN:
1082     case APFloat::S_Float6E2M3FN:
1083     case APFloat::S_Float4E2M1FN:
1084       return false;
1085     }
1086   }
1087 
1088   /// Used to insert APFloat objects, or objects that contain APFloat objects,
1089   /// into FoldingSets.
1090   void Profile(FoldingSetNodeID &NID) const;
1091 
add(const APFloat & RHS,roundingMode RM)1092   opStatus add(const APFloat &RHS, roundingMode RM) {
1093     assert(&getSemantics() == &RHS.getSemantics() &&
1094            "Should only call on two APFloats with the same semantics");
1095     if (usesLayout<IEEEFloat>(getSemantics()))
1096       return U.IEEE.add(RHS.U.IEEE, RM);
1097     if (usesLayout<DoubleAPFloat>(getSemantics()))
1098       return U.Double.add(RHS.U.Double, RM);
1099     llvm_unreachable("Unexpected semantics");
1100   }
subtract(const APFloat & RHS,roundingMode RM)1101   opStatus subtract(const APFloat &RHS, roundingMode RM) {
1102     assert(&getSemantics() == &RHS.getSemantics() &&
1103            "Should only call on two APFloats with the same semantics");
1104     if (usesLayout<IEEEFloat>(getSemantics()))
1105       return U.IEEE.subtract(RHS.U.IEEE, RM);
1106     if (usesLayout<DoubleAPFloat>(getSemantics()))
1107       return U.Double.subtract(RHS.U.Double, RM);
1108     llvm_unreachable("Unexpected semantics");
1109   }
multiply(const APFloat & RHS,roundingMode RM)1110   opStatus multiply(const APFloat &RHS, roundingMode RM) {
1111     assert(&getSemantics() == &RHS.getSemantics() &&
1112            "Should only call on two APFloats with the same semantics");
1113     if (usesLayout<IEEEFloat>(getSemantics()))
1114       return U.IEEE.multiply(RHS.U.IEEE, RM);
1115     if (usesLayout<DoubleAPFloat>(getSemantics()))
1116       return U.Double.multiply(RHS.U.Double, RM);
1117     llvm_unreachable("Unexpected semantics");
1118   }
divide(const APFloat & RHS,roundingMode RM)1119   opStatus divide(const APFloat &RHS, roundingMode RM) {
1120     assert(&getSemantics() == &RHS.getSemantics() &&
1121            "Should only call on two APFloats with the same semantics");
1122     if (usesLayout<IEEEFloat>(getSemantics()))
1123       return U.IEEE.divide(RHS.U.IEEE, RM);
1124     if (usesLayout<DoubleAPFloat>(getSemantics()))
1125       return U.Double.divide(RHS.U.Double, RM);
1126     llvm_unreachable("Unexpected semantics");
1127   }
remainder(const APFloat & RHS)1128   opStatus remainder(const APFloat &RHS) {
1129     assert(&getSemantics() == &RHS.getSemantics() &&
1130            "Should only call on two APFloats with the same semantics");
1131     if (usesLayout<IEEEFloat>(getSemantics()))
1132       return U.IEEE.remainder(RHS.U.IEEE);
1133     if (usesLayout<DoubleAPFloat>(getSemantics()))
1134       return U.Double.remainder(RHS.U.Double);
1135     llvm_unreachable("Unexpected semantics");
1136   }
mod(const APFloat & RHS)1137   opStatus mod(const APFloat &RHS) {
1138     assert(&getSemantics() == &RHS.getSemantics() &&
1139            "Should only call on two APFloats with the same semantics");
1140     if (usesLayout<IEEEFloat>(getSemantics()))
1141       return U.IEEE.mod(RHS.U.IEEE);
1142     if (usesLayout<DoubleAPFloat>(getSemantics()))
1143       return U.Double.mod(RHS.U.Double);
1144     llvm_unreachable("Unexpected semantics");
1145   }
fusedMultiplyAdd(const APFloat & Multiplicand,const APFloat & Addend,roundingMode RM)1146   opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend,
1147                             roundingMode RM) {
1148     assert(&getSemantics() == &Multiplicand.getSemantics() &&
1149            "Should only call on APFloats with the same semantics");
1150     assert(&getSemantics() == &Addend.getSemantics() &&
1151            "Should only call on APFloats with the same semantics");
1152     if (usesLayout<IEEEFloat>(getSemantics()))
1153       return U.IEEE.fusedMultiplyAdd(Multiplicand.U.IEEE, Addend.U.IEEE, RM);
1154     if (usesLayout<DoubleAPFloat>(getSemantics()))
1155       return U.Double.fusedMultiplyAdd(Multiplicand.U.Double, Addend.U.Double,
1156                                        RM);
1157     llvm_unreachable("Unexpected semantics");
1158   }
roundToIntegral(roundingMode RM)1159   opStatus roundToIntegral(roundingMode RM) {
1160     APFLOAT_DISPATCH_ON_SEMANTICS(roundToIntegral(RM));
1161   }
1162 
1163   // TODO: bool parameters are not readable and a source of bugs.
1164   // Do something.
next(bool nextDown)1165   opStatus next(bool nextDown) {
1166     APFLOAT_DISPATCH_ON_SEMANTICS(next(nextDown));
1167   }
1168 
1169   /// Negate an APFloat.
1170   APFloat operator-() const {
1171     APFloat Result(*this);
1172     Result.changeSign();
1173     return Result;
1174   }
1175 
1176   /// Add two APFloats, rounding ties to the nearest even.
1177   /// No error checking.
1178   APFloat operator+(const APFloat &RHS) const {
1179     APFloat Result(*this);
1180     (void)Result.add(RHS, rmNearestTiesToEven);
1181     return Result;
1182   }
1183 
1184   /// Subtract two APFloats, rounding ties to the nearest even.
1185   /// No error checking.
1186   APFloat operator-(const APFloat &RHS) const {
1187     APFloat Result(*this);
1188     (void)Result.subtract(RHS, rmNearestTiesToEven);
1189     return Result;
1190   }
1191 
1192   /// Multiply two APFloats, rounding ties to the nearest even.
1193   /// No error checking.
1194   APFloat operator*(const APFloat &RHS) const {
1195     APFloat Result(*this);
1196     (void)Result.multiply(RHS, rmNearestTiesToEven);
1197     return Result;
1198   }
1199 
1200   /// Divide the first APFloat by the second, rounding ties to the nearest even.
1201   /// No error checking.
1202   APFloat operator/(const APFloat &RHS) const {
1203     APFloat Result(*this);
1204     (void)Result.divide(RHS, rmNearestTiesToEven);
1205     return Result;
1206   }
1207 
changeSign()1208   void changeSign() { APFLOAT_DISPATCH_ON_SEMANTICS(changeSign()); }
clearSign()1209   void clearSign() {
1210     if (isNegative())
1211       changeSign();
1212   }
copySign(const APFloat & RHS)1213   void copySign(const APFloat &RHS) {
1214     if (isNegative() != RHS.isNegative())
1215       changeSign();
1216   }
1217 
1218   /// A static helper to produce a copy of an APFloat value with its sign
1219   /// copied from some other APFloat.
copySign(APFloat Value,const APFloat & Sign)1220   static APFloat copySign(APFloat Value, const APFloat &Sign) {
1221     Value.copySign(Sign);
1222     return Value;
1223   }
1224 
1225   /// Assuming this is an IEEE-754 NaN value, quiet its signaling bit.
1226   /// This preserves the sign and payload bits.
makeQuiet()1227   APFloat makeQuiet() const {
1228     APFloat Result(*this);
1229     Result.getIEEE().makeQuiet();
1230     return Result;
1231   }
1232 
1233   opStatus convert(const fltSemantics &ToSemantics, roundingMode RM,
1234                    bool *losesInfo);
convertToInteger(MutableArrayRef<integerPart> Input,unsigned int Width,bool IsSigned,roundingMode RM,bool * IsExact)1235   opStatus convertToInteger(MutableArrayRef<integerPart> Input,
1236                             unsigned int Width, bool IsSigned, roundingMode RM,
1237                             bool *IsExact) const {
1238     APFLOAT_DISPATCH_ON_SEMANTICS(
1239         convertToInteger(Input, Width, IsSigned, RM, IsExact));
1240   }
1241   opStatus convertToInteger(APSInt &Result, roundingMode RM,
1242                             bool *IsExact) const;
convertFromAPInt(const APInt & Input,bool IsSigned,roundingMode RM)1243   opStatus convertFromAPInt(const APInt &Input, bool IsSigned,
1244                             roundingMode RM) {
1245     APFLOAT_DISPATCH_ON_SEMANTICS(convertFromAPInt(Input, IsSigned, RM));
1246   }
convertFromSignExtendedInteger(const integerPart * Input,unsigned int InputSize,bool IsSigned,roundingMode RM)1247   opStatus convertFromSignExtendedInteger(const integerPart *Input,
1248                                           unsigned int InputSize, bool IsSigned,
1249                                           roundingMode RM) {
1250     APFLOAT_DISPATCH_ON_SEMANTICS(
1251         convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM));
1252   }
convertFromZeroExtendedInteger(const integerPart * Input,unsigned int InputSize,bool IsSigned,roundingMode RM)1253   opStatus convertFromZeroExtendedInteger(const integerPart *Input,
1254                                           unsigned int InputSize, bool IsSigned,
1255                                           roundingMode RM) {
1256     APFLOAT_DISPATCH_ON_SEMANTICS(
1257         convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM));
1258   }
1259   Expected<opStatus> convertFromString(StringRef, roundingMode);
bitcastToAPInt()1260   APInt bitcastToAPInt() const {
1261     APFLOAT_DISPATCH_ON_SEMANTICS(bitcastToAPInt());
1262   }
1263 
1264   /// Converts this APFloat to host double value.
1265   ///
1266   /// \pre The APFloat must be built using semantics, that can be represented by
1267   /// the host double type without loss of precision. It can be IEEEdouble and
1268   /// shorter semantics, like IEEEsingle and others.
1269   double convertToDouble() const;
1270 
1271   /// Converts this APFloat to host float value.
1272   ///
1273   /// \pre The APFloat must be built using semantics, that can be represented by
1274   /// the host float type without loss of precision. It can be IEEEquad and
1275   /// shorter semantics, like IEEEdouble and others.
1276 #ifdef HAS_IEE754_FLOAT128
1277   float128 convertToQuad() const;
1278 #endif
1279 
1280   /// Converts this APFloat to host float value.
1281   ///
1282   /// \pre The APFloat must be built using semantics, that can be represented by
1283   /// the host float type without loss of precision. It can be IEEEsingle and
1284   /// shorter semantics, like IEEEhalf.
1285   float convertToFloat() const;
1286 
1287   bool operator==(const APFloat &RHS) const { return compare(RHS) == cmpEqual; }
1288 
1289   bool operator!=(const APFloat &RHS) const { return compare(RHS) != cmpEqual; }
1290 
1291   bool operator<(const APFloat &RHS) const {
1292     return compare(RHS) == cmpLessThan;
1293   }
1294 
1295   bool operator>(const APFloat &RHS) const {
1296     return compare(RHS) == cmpGreaterThan;
1297   }
1298 
1299   bool operator<=(const APFloat &RHS) const {
1300     cmpResult Res = compare(RHS);
1301     return Res == cmpLessThan || Res == cmpEqual;
1302   }
1303 
1304   bool operator>=(const APFloat &RHS) const {
1305     cmpResult Res = compare(RHS);
1306     return Res == cmpGreaterThan || Res == cmpEqual;
1307   }
1308 
compare(const APFloat & RHS)1309   cmpResult compare(const APFloat &RHS) const {
1310     assert(&getSemantics() == &RHS.getSemantics() &&
1311            "Should only compare APFloats with the same semantics");
1312     if (usesLayout<IEEEFloat>(getSemantics()))
1313       return U.IEEE.compare(RHS.U.IEEE);
1314     if (usesLayout<DoubleAPFloat>(getSemantics()))
1315       return U.Double.compare(RHS.U.Double);
1316     llvm_unreachable("Unexpected semantics");
1317   }
1318 
bitwiseIsEqual(const APFloat & RHS)1319   bool bitwiseIsEqual(const APFloat &RHS) const {
1320     if (&getSemantics() != &RHS.getSemantics())
1321       return false;
1322     if (usesLayout<IEEEFloat>(getSemantics()))
1323       return U.IEEE.bitwiseIsEqual(RHS.U.IEEE);
1324     if (usesLayout<DoubleAPFloat>(getSemantics()))
1325       return U.Double.bitwiseIsEqual(RHS.U.Double);
1326     llvm_unreachable("Unexpected semantics");
1327   }
1328 
1329   /// We don't rely on operator== working on double values, as
1330   /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1331   /// As such, this method can be used to do an exact bit-for-bit comparison of
1332   /// two floating point values.
1333   ///
1334   /// We leave the version with the double argument here because it's just so
1335   /// convenient to write "2.0" and the like.  Without this function we'd
1336   /// have to duplicate its logic everywhere it's called.
isExactlyValue(double V)1337   bool isExactlyValue(double V) const {
1338     bool ignored;
1339     APFloat Tmp(V);
1340     Tmp.convert(getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
1341     return bitwiseIsEqual(Tmp);
1342   }
1343 
convertToHexString(char * DST,unsigned int HexDigits,bool UpperCase,roundingMode RM)1344   unsigned int convertToHexString(char *DST, unsigned int HexDigits,
1345                                   bool UpperCase, roundingMode RM) const {
1346     APFLOAT_DISPATCH_ON_SEMANTICS(
1347         convertToHexString(DST, HexDigits, UpperCase, RM));
1348   }
1349 
isZero()1350   bool isZero() const { return getCategory() == fcZero; }
isInfinity()1351   bool isInfinity() const { return getCategory() == fcInfinity; }
isNaN()1352   bool isNaN() const { return getCategory() == fcNaN; }
1353 
isNegative()1354   bool isNegative() const { return getIEEE().isNegative(); }
isDenormal()1355   bool isDenormal() const { APFLOAT_DISPATCH_ON_SEMANTICS(isDenormal()); }
isSignaling()1356   bool isSignaling() const { return getIEEE().isSignaling(); }
1357 
isNormal()1358   bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
isFinite()1359   bool isFinite() const { return !isNaN() && !isInfinity(); }
1360 
getCategory()1361   fltCategory getCategory() const { return getIEEE().getCategory(); }
getSemantics()1362   const fltSemantics &getSemantics() const { return *U.semantics; }
isNonZero()1363   bool isNonZero() const { return !isZero(); }
isFiniteNonZero()1364   bool isFiniteNonZero() const { return isFinite() && !isZero(); }
isPosZero()1365   bool isPosZero() const { return isZero() && !isNegative(); }
isNegZero()1366   bool isNegZero() const { return isZero() && isNegative(); }
isPosInfinity()1367   bool isPosInfinity() const { return isInfinity() && !isNegative(); }
isNegInfinity()1368   bool isNegInfinity() const { return isInfinity() && isNegative(); }
isSmallest()1369   bool isSmallest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isSmallest()); }
isLargest()1370   bool isLargest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isLargest()); }
isInteger()1371   bool isInteger() const { APFLOAT_DISPATCH_ON_SEMANTICS(isInteger()); }
isIEEE()1372   bool isIEEE() const { return usesLayout<IEEEFloat>(getSemantics()); }
1373 
isSmallestNormalized()1374   bool isSmallestNormalized() const {
1375     APFLOAT_DISPATCH_ON_SEMANTICS(isSmallestNormalized());
1376   }
1377 
1378   /// Return the FPClassTest which will return true for the value.
1379   FPClassTest classify() const;
1380 
1381   APFloat &operator=(const APFloat &RHS) = default;
1382   APFloat &operator=(APFloat &&RHS) = default;
1383 
1384   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
1385                 unsigned FormatMaxPadding = 3, bool TruncateZero = true) const {
1386     APFLOAT_DISPATCH_ON_SEMANTICS(
1387         toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero));
1388   }
1389 
1390   void print(raw_ostream &) const;
1391   void dump() const;
1392 
getExactInverse(APFloat * inv)1393   bool getExactInverse(APFloat *inv) const {
1394     APFLOAT_DISPATCH_ON_SEMANTICS(getExactInverse(inv));
1395   }
1396 
1397   LLVM_READONLY
getExactLog2Abs()1398   int getExactLog2Abs() const {
1399     APFLOAT_DISPATCH_ON_SEMANTICS(getExactLog2Abs());
1400   }
1401 
1402   LLVM_READONLY
getExactLog2()1403   int getExactLog2() const {
1404     APFLOAT_DISPATCH_ON_SEMANTICS(getExactLog2());
1405   }
1406 
1407   friend hash_code hash_value(const APFloat &Arg);
ilogb(const APFloat & Arg)1408   friend int ilogb(const APFloat &Arg) { return ilogb(Arg.getIEEE()); }
1409   friend APFloat scalbn(APFloat X, int Exp, roundingMode RM);
1410   friend APFloat frexp(const APFloat &X, int &Exp, roundingMode RM);
1411   friend IEEEFloat;
1412   friend DoubleAPFloat;
1413 };
1414 
1415 /// See friend declarations above.
1416 ///
1417 /// These additional declarations are required in order to compile LLVM with IBM
1418 /// xlC compiler.
1419 hash_code hash_value(const APFloat &Arg);
scalbn(APFloat X,int Exp,APFloat::roundingMode RM)1420 inline APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM) {
1421   if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
1422     return APFloat(scalbn(X.U.IEEE, Exp, RM), X.getSemantics());
1423   if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
1424     return APFloat(scalbn(X.U.Double, Exp, RM), X.getSemantics());
1425   llvm_unreachable("Unexpected semantics");
1426 }
1427 
1428 /// Equivalent of C standard library function.
1429 ///
1430 /// While the C standard says Exp is an unspecified value for infinity and nan,
1431 /// this returns INT_MAX for infinities, and INT_MIN for NaNs.
frexp(const APFloat & X,int & Exp,APFloat::roundingMode RM)1432 inline APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM) {
1433   if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
1434     return APFloat(frexp(X.U.IEEE, Exp, RM), X.getSemantics());
1435   if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
1436     return APFloat(frexp(X.U.Double, Exp, RM), X.getSemantics());
1437   llvm_unreachable("Unexpected semantics");
1438 }
1439 /// Returns the absolute value of the argument.
abs(APFloat X)1440 inline APFloat abs(APFloat X) {
1441   X.clearSign();
1442   return X;
1443 }
1444 
1445 /// Returns the negated value of the argument.
neg(APFloat X)1446 inline APFloat neg(APFloat X) {
1447   X.changeSign();
1448   return X;
1449 }
1450 
1451 /// Implements IEEE-754 2019 minimumNumber semantics. Returns the smaller of the
1452 /// 2 arguments if both are not NaN. If either argument is a NaN, returns the
1453 /// other argument. -0 is treated as ordered less than +0.
1454 LLVM_READONLY
minnum(const APFloat & A,const APFloat & B)1455 inline APFloat minnum(const APFloat &A, const APFloat &B) {
1456   if (A.isNaN())
1457     return B;
1458   if (B.isNaN())
1459     return A;
1460   if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1461     return A.isNegative() ? A : B;
1462   return B < A ? B : A;
1463 }
1464 
1465 /// Implements IEEE-754 2019 maximumNumber semantics. Returns the larger of the
1466 /// 2 arguments if both are not NaN. If either argument is a NaN, returns the
1467 /// other argument. +0 is treated as ordered greater than -0.
1468 LLVM_READONLY
maxnum(const APFloat & A,const APFloat & B)1469 inline APFloat maxnum(const APFloat &A, const APFloat &B) {
1470   if (A.isNaN())
1471     return B;
1472   if (B.isNaN())
1473     return A;
1474   if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1475     return A.isNegative() ? B : A;
1476   return A < B ? B : A;
1477 }
1478 
1479 /// Implements IEEE 754-2019 minimum semantics. Returns the smaller of 2
1480 /// arguments, propagating NaNs and treating -0 as less than +0.
1481 LLVM_READONLY
minimum(const APFloat & A,const APFloat & B)1482 inline APFloat minimum(const APFloat &A, const APFloat &B) {
1483   if (A.isNaN())
1484     return A;
1485   if (B.isNaN())
1486     return B;
1487   if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1488     return A.isNegative() ? A : B;
1489   return B < A ? B : A;
1490 }
1491 
1492 /// Implements IEEE 754-2019 minimumNumber semantics. Returns the smaller
1493 /// of 2 arguments, not propagating NaNs and treating -0 as less than +0.
1494 LLVM_READONLY
minimumnum(const APFloat & A,const APFloat & B)1495 inline APFloat minimumnum(const APFloat &A, const APFloat &B) {
1496   if (A.isNaN())
1497     return B.isNaN() ? B.makeQuiet() : B;
1498   if (B.isNaN())
1499     return A;
1500   if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1501     return A.isNegative() ? A : B;
1502   return B < A ? B : A;
1503 }
1504 
1505 /// Implements IEEE 754-2019 maximum semantics. Returns the larger of 2
1506 /// arguments, propagating NaNs and treating -0 as less than +0.
1507 LLVM_READONLY
maximum(const APFloat & A,const APFloat & B)1508 inline APFloat maximum(const APFloat &A, const APFloat &B) {
1509   if (A.isNaN())
1510     return A;
1511   if (B.isNaN())
1512     return B;
1513   if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1514     return A.isNegative() ? B : A;
1515   return A < B ? B : A;
1516 }
1517 
1518 /// Implements IEEE 754-2019 maximumNumber semantics. Returns the larger
1519 /// of 2 arguments, not propagating NaNs and treating -0 as less than +0.
1520 LLVM_READONLY
maximumnum(const APFloat & A,const APFloat & B)1521 inline APFloat maximumnum(const APFloat &A, const APFloat &B) {
1522   if (A.isNaN())
1523     return B.isNaN() ? B.makeQuiet() : B;
1524   if (B.isNaN())
1525     return A;
1526   if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1527     return A.isNegative() ? B : A;
1528   return A < B ? B : A;
1529 }
1530 
1531 // We want the following functions to be available in the header for inlining.
1532 // We cannot define them inline in the class definition of `DoubleAPFloat`
1533 // because doing so would instantiate `std::unique_ptr<APFloat[]>` before
1534 // `APFloat` is defined, and that would be undefined behavior.
1535 namespace detail {
1536 
1537 DoubleAPFloat &DoubleAPFloat::operator=(DoubleAPFloat &&RHS) {
1538   if (this != &RHS) {
1539     this->~DoubleAPFloat();
1540     new (this) DoubleAPFloat(std::move(RHS));
1541   }
1542   return *this;
1543 }
1544 
getFirst()1545 APFloat &DoubleAPFloat::getFirst() { return Floats[0]; }
getFirst()1546 const APFloat &DoubleAPFloat::getFirst() const { return Floats[0]; }
getSecond()1547 APFloat &DoubleAPFloat::getSecond() { return Floats[1]; }
getSecond()1548 const APFloat &DoubleAPFloat::getSecond() const { return Floats[1]; }
1549 
1550 } // namespace detail
1551 
1552 } // namespace llvm
1553 
1554 #undef APFLOAT_DISPATCH_ON_SEMANTICS
1555 #endif // LLVM_ADT_APFLOAT_H
1556