1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 #include <sys/machsystm.h>
27 #include <sys/archsystm.h>
28 #include <sys/vm.h>
29 #include <sys/cpu.h>
30 #include <sys/atomic.h>
31 #include <sys/reboot.h>
32 #include <sys/kdi.h>
33 #include <sys/bootconf.h>
34 #include <sys/memlist_plat.h>
35 #include <sys/memlist_impl.h>
36 #include <sys/prom_plat.h>
37 #include <sys/prom_isa.h>
38 #include <sys/autoconf.h>
39 #include <sys/ivintr.h>
40 #include <sys/fpu/fpusystm.h>
41 #include <sys/iommutsb.h>
42 #include <vm/vm_dep.h>
43 #include <vm/seg_dev.h>
44 #include <vm/seg_kmem.h>
45 #include <vm/seg_kpm.h>
46 #include <vm/seg_map.h>
47 #include <vm/seg_kp.h>
48 #include <sys/sysconf.h>
49 #include <vm/hat_sfmmu.h>
50 #include <sys/kobj.h>
51 #include <sys/sun4asi.h>
52 #include <sys/clconf.h>
53 #include <sys/platform_module.h>
54 #include <sys/panic.h>
55 #include <sys/cpu_sgnblk_defs.h>
56 #include <sys/clock.h>
57 #include <sys/cmn_err.h>
58 #include <sys/dumphdr.h>
59 #include <sys/promif.h>
60 #include <sys/prom_debug.h>
61 #include <sys/traptrace.h>
62 #include <sys/memnode.h>
63 #include <sys/mem_cage.h>
64 #include <sys/mmu.h>
65 #include <sys/swap.h>
66
67 extern void setup_trap_table(void);
68 extern int cpu_intrq_setup(struct cpu *);
69 extern void cpu_intrq_register(struct cpu *);
70 extern void contig_mem_init(void);
71 extern caddr_t contig_mem_prealloc(caddr_t, pgcnt_t);
72 extern void mach_dump_buffer_init(void);
73 extern void mach_descrip_init(void);
74 extern void mach_descrip_startup_fini(void);
75 extern void mach_memscrub(void);
76 extern void mach_fpras(void);
77 extern void mach_cpu_halt_idle(void);
78 extern void mach_hw_copy_limit(void);
79 extern void load_mach_drivers(void);
80 extern void load_tod_module(void);
81 #pragma weak load_tod_module
82
83 extern int ndata_alloc_mmfsa(struct memlist *ndata);
84 #pragma weak ndata_alloc_mmfsa
85
86 extern void cif_init(void);
87 #pragma weak cif_init
88
89 extern void parse_idprom(void);
90 extern void add_vx_handler(char *, int, void (*)(cell_t *));
91 extern void mem_config_init(void);
92 extern void memseg_remap_init(void);
93
94 extern void mach_kpm_init(void);
95 extern void pcf_init();
96 extern int size_pse_array(pgcnt_t, int);
97 extern void pg_init();
98
99 /*
100 * External Data:
101 */
102 extern int vac_size; /* cache size in bytes */
103 extern uint_t vac_mask; /* VAC alignment consistency mask */
104 extern uint_t vac_colors;
105
106 /*
107 * Global Data Definitions:
108 */
109
110 /*
111 * XXX - Don't port this to new architectures
112 * A 3rd party volume manager driver (vxdm) depends on the symbol romp.
113 * 'romp' has no use with a prom with an IEEE 1275 client interface.
114 * The driver doesn't use the value, but it depends on the symbol.
115 */
116 void *romp; /* veritas driver won't load without romp 4154976 */
117 /*
118 * Declare these as initialized data so we can patch them.
119 */
120 pgcnt_t physmem = 0; /* memory size in pages, patch if you want less */
121 pgcnt_t segkpsize =
122 btop(SEGKPDEFSIZE); /* size of segkp segment in pages */
123 uint_t segmap_percent = 6; /* Size of segmap segment */
124
125 int use_cache = 1; /* cache not reliable (605 bugs) with MP */
126 int vac_copyback = 1;
127 char *cache_mode = NULL;
128 int use_mix = 1;
129 int prom_debug = 0;
130
131 caddr_t boot_tba; /* %tba at boot - used by kmdb */
132 uint_t tba_taken_over = 0;
133
134 caddr_t s_text; /* start of kernel text segment */
135 caddr_t e_text; /* end of kernel text segment */
136 caddr_t s_data; /* start of kernel data segment */
137 caddr_t e_data; /* end of kernel data segment */
138
139 caddr_t modtext; /* beginning of module text */
140 size_t modtext_sz; /* size of module text */
141 caddr_t moddata; /* beginning of module data reserve */
142 caddr_t e_moddata; /* end of module data reserve */
143
144 /*
145 * End of first block of contiguous kernel in 32-bit virtual address space
146 */
147 caddr_t econtig32; /* end of first blk of contiguous kernel */
148
149 caddr_t ncbase; /* beginning of non-cached segment */
150 caddr_t ncend; /* end of non-cached segment */
151
152 size_t ndata_remain_sz; /* bytes from end of data to 4MB boundary */
153 caddr_t nalloc_base; /* beginning of nucleus allocation */
154 caddr_t nalloc_end; /* end of nucleus allocatable memory */
155 caddr_t valloc_base; /* beginning of kvalloc segment */
156
157 caddr_t kmem64_base; /* base of kernel mem segment in 64-bit space */
158 caddr_t kmem64_end; /* end of kernel mem segment in 64-bit space */
159 size_t kmem64_sz; /* bytes in kernel mem segment, 64-bit space */
160 caddr_t kmem64_aligned_end; /* end of large page, overmaps 64-bit space */
161 int kmem64_szc; /* page size code */
162 uint64_t kmem64_pabase = (uint64_t)-1; /* physical address of kmem64_base */
163
164 uintptr_t shm_alignment; /* VAC address consistency modulus */
165 struct memlist *phys_install; /* Total installed physical memory */
166 struct memlist *phys_avail; /* Available (unreserved) physical memory */
167 struct memlist *virt_avail; /* Available (unmapped?) virtual memory */
168 struct memlist *nopp_list; /* pages with no backing page structs */
169 struct memlist ndata; /* memlist of nucleus allocatable memory */
170 int memexp_flag; /* memory expansion card flag */
171 uint64_t ecache_flushaddr; /* physical address used for flushing E$ */
172 pgcnt_t obp_pages; /* Physical pages used by OBP */
173
174 /*
175 * VM data structures
176 */
177 long page_hashsz; /* Size of page hash table (power of two) */
178 unsigned int page_hashsz_shift; /* log2(page_hashsz) */
179 struct page *pp_base; /* Base of system page struct array */
180 size_t pp_sz; /* Size in bytes of page struct array */
181 struct page **page_hash; /* Page hash table */
182 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */
183 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */
184 int pse_shift; /* log2(pse_table_size) */
185 struct seg ktextseg; /* Segment used for kernel executable image */
186 struct seg kvalloc; /* Segment used for "valloc" mapping */
187 struct seg kpseg; /* Segment used for pageable kernel virt mem */
188 struct seg ktexthole; /* Segment used for nucleus text hole */
189 struct seg kmapseg; /* Segment used for generic kernel mappings */
190 struct seg kpmseg; /* Segment used for physical mapping */
191 struct seg kdebugseg; /* Segment used for the kernel debugger */
192
193 void *kpm_pp_base; /* Base of system kpm_page array */
194 size_t kpm_pp_sz; /* Size of system kpm_page array */
195 pgcnt_t kpm_npages; /* How many kpm pages are managed */
196
197 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */
198 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */
199 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */
200
201 int segzio_fromheap = 0; /* zio allocations occur from heap */
202 caddr_t segzio_base; /* Base address of segzio */
203 pgcnt_t segziosize = 0; /* size of zio segment in pages */
204
205 /*
206 * A static DR page_t VA map is reserved that can map the page structures
207 * for a domain's entire RA space. The pages that backs this space are
208 * dynamically allocated and need not be physically contiguous. The DR
209 * map size is derived from KPM size.
210 */
211 int ppvm_enable = 0; /* Static virtual map for page structs */
212 page_t *ppvm_base; /* Base of page struct map */
213 pgcnt_t ppvm_size = 0; /* Size of page struct map */
214
215 /*
216 * debugger pages (if allocated)
217 */
218 struct vnode kdebugvp;
219
220 /*
221 * VA range available to the debugger
222 */
223 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
224 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
225
226 /*
227 * Segment for relocated kernel structures in 64-bit large RAM kernels
228 */
229 struct seg kmem64;
230
231 struct memseg *memseg_free;
232
233 struct vnode unused_pages_vp;
234
235 /*
236 * VM data structures allocated early during boot.
237 */
238 size_t pagehash_sz;
239 uint64_t memlist_sz;
240
241 char tbr_wr_addr_inited = 0;
242
243 caddr_t mpo_heap32_buf = NULL;
244 size_t mpo_heap32_bufsz = 0;
245
246 /*
247 * Static Routines:
248 */
249 static int ndata_alloc_memseg(struct memlist *, size_t);
250 static void memlist_new(uint64_t, uint64_t, struct memlist **);
251 static void memlist_add(uint64_t, uint64_t,
252 struct memlist **, struct memlist **);
253 static void kphysm_init(void);
254 static void kvm_init(void);
255 static void install_kmem64_tte(void);
256
257 static void startup_init(void);
258 static void startup_memlist(void);
259 static void startup_modules(void);
260 static void startup_bop_gone(void);
261 static void startup_vm(void);
262 static void startup_end(void);
263 static void setup_cage_params(void);
264 static void startup_create_io_node(void);
265
266 static pgcnt_t npages;
267 static struct memlist *memlist;
268 void *memlist_end;
269
270 static pgcnt_t bop_alloc_pages;
271 static caddr_t hblk_base;
272 uint_t hblk_alloc_dynamic = 0;
273 uint_t hblk1_min = H1MIN;
274
275
276 /*
277 * Hooks for unsupported platforms and down-rev firmware
278 */
279 int iam_positron(void);
280 #pragma weak iam_positron
281 static void do_prom_version_check(void);
282
283 /*
284 * After receiving a thermal interrupt, this is the number of seconds
285 * to delay before shutting off the system, assuming
286 * shutdown fails. Use /etc/system to change the delay if this isn't
287 * large enough.
288 */
289 int thermal_powerdown_delay = 1200;
290
291 /*
292 * Used to hold off page relocations into the cage until OBP has completed
293 * its boot-time handoff of its resources to the kernel.
294 */
295 int page_relocate_ready = 0;
296
297 /*
298 * Indicate if kmem64 allocation was done in small chunks
299 */
300 int kmem64_smchunks = 0;
301
302 /*
303 * Enable some debugging messages concerning memory usage...
304 */
305 #ifdef DEBUGGING_MEM
306 static int debugging_mem;
307 static void
printmemlist(char * title,struct memlist * list)308 printmemlist(char *title, struct memlist *list)
309 {
310 if (!debugging_mem)
311 return;
312
313 printf("%s\n", title);
314
315 while (list) {
316 prom_printf("\taddr = 0x%x %8x, size = 0x%x %8x\n",
317 (uint32_t)(list->ml_address >> 32),
318 (uint32_t)list->ml_address,
319 (uint32_t)(list->ml_size >> 32),
320 (uint32_t)(list->ml_size));
321 list = list->ml_next;
322 }
323 }
324
325 void
printmemseg(struct memseg * memseg)326 printmemseg(struct memseg *memseg)
327 {
328 if (!debugging_mem)
329 return;
330
331 printf("memseg\n");
332
333 while (memseg) {
334 prom_printf("\tpage = 0x%p, epage = 0x%p, "
335 "pfn = 0x%x, epfn = 0x%x\n",
336 memseg->pages, memseg->epages,
337 memseg->pages_base, memseg->pages_end);
338 memseg = memseg->next;
339 }
340 }
341
342 #define debug_pause(str) halt((str))
343 #define MPRINTF(str) if (debugging_mem) prom_printf((str))
344 #define MPRINTF1(str, a) if (debugging_mem) prom_printf((str), (a))
345 #define MPRINTF2(str, a, b) if (debugging_mem) prom_printf((str), (a), (b))
346 #define MPRINTF3(str, a, b, c) \
347 if (debugging_mem) prom_printf((str), (a), (b), (c))
348 #else /* DEBUGGING_MEM */
349 #define MPRINTF(str)
350 #define MPRINTF1(str, a)
351 #define MPRINTF2(str, a, b)
352 #define MPRINTF3(str, a, b, c)
353 #endif /* DEBUGGING_MEM */
354
355
356 /*
357 *
358 * Kernel's Virtual Memory Layout.
359 * /-----------------------\
360 * 0xFFFFFFFF.FFFFFFFF -| |-
361 * | OBP's virtual page |
362 * | tables |
363 * 0xFFFFFFFC.00000000 -|-----------------------|-
364 * : :
365 * : :
366 * -|-----------------------|-
367 * | segzio | (base and size vary)
368 * 0xFFFFFE00.00000000 -|-----------------------|-
369 * | | Ultrasparc I/II support
370 * | segkpm segment | up to 2TB of physical
371 * | (64-bit kernel ONLY) | memory, VAC has 2 colors
372 * | |
373 * 0xFFFFFA00.00000000 -|-----------------------|- 2TB segkpm alignment
374 * : :
375 * : :
376 * 0xFFFFF810.00000000 -|-----------------------|- hole_end
377 * | | ^
378 * | UltraSPARC I/II call | |
379 * | bug requires an extra | |
380 * | 4 GB of space between | |
381 * | hole and used RAM | |
382 * | | |
383 * 0xFFFFF800.00000000 -|-----------------------|- |
384 * | | |
385 * | Virtual Address Hole | UltraSPARC
386 * | on UltraSPARC I/II | I/II * ONLY *
387 * | | |
388 * 0x00000800.00000000 -|-----------------------|- |
389 * | | |
390 * | UltraSPARC I/II call | |
391 * | bug requires an extra | |
392 * | 4 GB of space between | |
393 * | hole and used RAM | |
394 * | | v
395 * 0x000007FF.00000000 -|-----------------------|- hole_start -----
396 * : : ^
397 * : : |
398 * |-----------------------| |
399 * | | |
400 * | ecache flush area | |
401 * | (twice largest e$) | |
402 * | | |
403 * 0x00000XXX.XXX00000 -|-----------------------|- kmem64_ |
404 * | overmapped area | alignend_end |
405 * | (kmem64_alignsize | |
406 * | boundary) | |
407 * 0x00000XXX.XXXXXXXX -|-----------------------|- kmem64_end |
408 * | | |
409 * | 64-bit kernel ONLY | |
410 * | | |
411 * | kmem64 segment | |
412 * | | |
413 * | (Relocated extra HME | Approximately
414 * | block allocations, | 1 TB of virtual
415 * | memnode freelists, | address space
416 * | HME hash buckets, | |
417 * | mml_table, kpmp_table,| |
418 * | page_t array and | |
419 * | hashblock pool to | |
420 * | avoid hard-coded | |
421 * | 32-bit vaddr | |
422 * | limitations) | |
423 * | | v
424 * 0x00000700.00000000 -|-----------------------|- SYSLIMIT (kmem64_base)
425 * | |
426 * | segkmem segment | (SYSLIMIT - SYSBASE = 4TB)
427 * | |
428 * 0x00000300.00000000 -|-----------------------|- SYSBASE
429 * : :
430 * : :
431 * -|-----------------------|-
432 * | |
433 * | segmap segment | SEGMAPSIZE (1/8th physmem,
434 * | | 256G MAX)
435 * 0x000002a7.50000000 -|-----------------------|- SEGMAPBASE
436 * : :
437 * : :
438 * -|-----------------------|-
439 * | |
440 * | segkp | SEGKPSIZE (2GB)
441 * | |
442 * | |
443 * 0x000002a1.00000000 -|-----------------------|- SEGKPBASE
444 * | |
445 * 0x000002a0.00000000 -|-----------------------|- MEMSCRUBBASE
446 * | | (SEGKPBASE - 0x400000)
447 * 0x0000029F.FFE00000 -|-----------------------|- ARGSBASE
448 * | | (MEMSCRUBBASE - NCARGS)
449 * 0x0000029F.FFD80000 -|-----------------------|- PPMAPBASE
450 * | | (ARGSBASE - PPMAPSIZE)
451 * 0x0000029F.FFD00000 -|-----------------------|- PPMAP_FAST_BASE
452 * | |
453 * 0x0000029F.FF980000 -|-----------------------|- PIOMAPBASE
454 * | |
455 * 0x0000029F.FF580000 -|-----------------------|- NARG_BASE
456 * : :
457 * : :
458 * 0x00000000.FFFFFFFF -|-----------------------|- OFW_END_ADDR
459 * | |
460 * | OBP |
461 * | |
462 * 0x00000000.F0000000 -|-----------------------|- OFW_START_ADDR
463 * | kmdb |
464 * 0x00000000.EDD00000 -|-----------------------|- SEGDEBUGBASE
465 * : :
466 * : :
467 * 0x00000000.7c000000 -|-----------------------|- SYSLIMIT32
468 * | |
469 * | segkmem32 segment | (SYSLIMIT32 - SYSBASE32 =
470 * | | ~64MB)
471 * -|-----------------------|
472 * | IVSIZE |
473 * 0x00000000.70004000 -|-----------------------|
474 * | panicbuf |
475 * 0x00000000.70002000 -|-----------------------|
476 * | PAGESIZE |
477 * 0x00000000.70000000 -|-----------------------|- SYSBASE32
478 * | boot-time |
479 * | temporary space |
480 * 0x00000000.4C000000 -|-----------------------|- BOOTTMPBASE
481 * : :
482 * : :
483 * | |
484 * |-----------------------|- econtig32
485 * | vm structures |
486 * 0x00000000.01C00000 |-----------------------|- nalloc_end
487 * | TSBs |
488 * |-----------------------|- end/nalloc_base
489 * | kernel data & bss |
490 * 0x00000000.01800000 -|-----------------------|
491 * : nucleus text hole :
492 * 0x00000000.01400000 -|-----------------------|
493 * : :
494 * |-----------------------|
495 * | module text |
496 * |-----------------------|- e_text/modtext
497 * | kernel text |
498 * |-----------------------|
499 * | trap table (48k) |
500 * 0x00000000.01000000 -|-----------------------|- KERNELBASE
501 * | reserved for trapstat |} TSTAT_TOTAL_SIZE
502 * |-----------------------|
503 * | |
504 * | invalid |
505 * | |
506 * 0x00000000.00000000 _|_______________________|
507 *
508 *
509 *
510 * 32-bit User Virtual Memory Layout.
511 * /-----------------------\
512 * | |
513 * | invalid |
514 * | |
515 * 0xFFC00000 -|-----------------------|- USERLIMIT
516 * | user stack |
517 * : :
518 * : :
519 * : :
520 * | user data |
521 * -|-----------------------|-
522 * | user text |
523 * 0x00002000 -|-----------------------|-
524 * | invalid |
525 * 0x00000000 _|_______________________|
526 *
527 *
528 *
529 * 64-bit User Virtual Memory Layout.
530 * /-----------------------\
531 * | |
532 * | invalid |
533 * | |
534 * 0xFFFFFFFF.80000000 -|-----------------------|- USERLIMIT
535 * | user stack |
536 * : :
537 * : :
538 * : :
539 * | user data |
540 * -|-----------------------|-
541 * | user text |
542 * 0x00000000.01000000 -|-----------------------|-
543 * | invalid |
544 * 0x00000000.00000000 _|_______________________|
545 */
546
547 extern caddr_t ecache_init_scrub_flush_area(caddr_t alloc_base);
548 extern uint64_t ecache_flush_address(void);
549
550 #pragma weak load_platform_modules
551 #pragma weak plat_startup_memlist
552 #pragma weak ecache_init_scrub_flush_area
553 #pragma weak ecache_flush_address
554
555
556 /*
557 * By default the DR Cage is enabled for maximum OS
558 * MPSS performance. Users needing to disable the cage mechanism
559 * can set this variable to zero via /etc/system.
560 * Disabling the cage on systems supporting Dynamic Reconfiguration (DR)
561 * will result in loss of DR functionality.
562 * Platforms wishing to disable kernel Cage by default
563 * should do so in their set_platform_defaults() routine.
564 */
565 int kernel_cage_enable = 1;
566
567 static void
setup_cage_params(void)568 setup_cage_params(void)
569 {
570 void (*func)(void);
571
572 func = (void (*)(void))kobj_getsymvalue("set_platform_cage_params", 0);
573 if (func != NULL) {
574 (*func)();
575 return;
576 }
577
578 if (kernel_cage_enable == 0) {
579 return;
580 }
581 kcage_range_init(phys_avail, KCAGE_DOWN, total_pages / 256);
582
583 if (kcage_on) {
584 cmn_err(CE_NOTE, "!Kernel Cage is ENABLED");
585 } else {
586 cmn_err(CE_NOTE, "!Kernel Cage is DISABLED");
587 }
588
589 }
590
591 /*
592 * Machine-dependent startup code
593 */
594 void
startup(void)595 startup(void)
596 {
597 startup_init();
598 if (&startup_platform)
599 startup_platform();
600 startup_memlist();
601 startup_modules();
602 setup_cage_params();
603 startup_bop_gone();
604 startup_vm();
605 startup_end();
606 }
607
608 struct regs sync_reg_buf;
609 uint64_t sync_tt;
610
611 void
sync_handler(void)612 sync_handler(void)
613 {
614 struct panic_trap_info ti;
615 int i;
616
617 /*
618 * Prevent trying to talk to the other CPUs since they are
619 * sitting in the prom and won't reply.
620 */
621 for (i = 0; i < NCPU; i++) {
622 if ((i != CPU->cpu_id) && CPU_XCALL_READY(i)) {
623 cpu[i]->cpu_flags &= ~CPU_READY;
624 cpu[i]->cpu_flags |= CPU_QUIESCED;
625 CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id);
626 }
627 }
628
629 /*
630 * Force a serial dump, since there are no CPUs to help.
631 */
632 dump_plat_mincpu = 0;
633
634 /*
635 * We've managed to get here without going through the
636 * normal panic code path. Try and save some useful
637 * information.
638 */
639 if (!panicstr && (curthread->t_panic_trap == NULL)) {
640 ti.trap_type = sync_tt;
641 ti.trap_regs = &sync_reg_buf;
642 ti.trap_addr = NULL;
643 ti.trap_mmu_fsr = 0x0;
644
645 curthread->t_panic_trap = &ti;
646 }
647
648 /*
649 * If we're re-entering the panic path, update the signature
650 * block so that the SC knows we're in the second part of panic.
651 */
652 if (panicstr)
653 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1);
654
655 nopanicdebug = 1; /* do not perform debug_enter() prior to dump */
656 panic("sync initiated");
657 }
658
659
660 static void
startup_init(void)661 startup_init(void)
662 {
663 /*
664 * We want to save the registers while we're still in OBP
665 * so that we know they haven't been fiddled with since.
666 * (In principle, OBP can't change them just because it
667 * makes a callback, but we'd rather not depend on that
668 * behavior.)
669 */
670 char sync_str[] =
671 "warning @ warning off : sync "
672 "%%tl-c %%tstate h# %p x! "
673 "%%g1 h# %p x! %%g2 h# %p x! %%g3 h# %p x! "
674 "%%g4 h# %p x! %%g5 h# %p x! %%g6 h# %p x! "
675 "%%g7 h# %p x! %%o0 h# %p x! %%o1 h# %p x! "
676 "%%o2 h# %p x! %%o3 h# %p x! %%o4 h# %p x! "
677 "%%o5 h# %p x! %%o6 h# %p x! %%o7 h# %p x! "
678 "%%tl-c %%tpc h# %p x! %%tl-c %%tnpc h# %p x! "
679 "%%y h# %p l! %%tl-c %%tt h# %p x! "
680 "sync ; warning !";
681
682 /*
683 * 20 == num of %p substrings
684 * 16 == max num of chars %p will expand to.
685 */
686 char bp[sizeof (sync_str) + 16 * 20];
687
688 /*
689 * Initialize ptl1 stack for the 1st CPU.
690 */
691 ptl1_init_cpu(&cpu0);
692
693 /*
694 * Initialize the address map for cache consistent mappings
695 * to random pages; must be done after vac_size is set.
696 */
697 ppmapinit();
698
699 /*
700 * Initialize the PROM callback handler.
701 */
702 init_vx_handler();
703
704 /*
705 * have prom call sync_callback() to handle the sync and
706 * save some useful information which will be stored in the
707 * core file later.
708 */
709 (void) sprintf((char *)bp, sync_str,
710 (void *)&sync_reg_buf.r_tstate, (void *)&sync_reg_buf.r_g1,
711 (void *)&sync_reg_buf.r_g2, (void *)&sync_reg_buf.r_g3,
712 (void *)&sync_reg_buf.r_g4, (void *)&sync_reg_buf.r_g5,
713 (void *)&sync_reg_buf.r_g6, (void *)&sync_reg_buf.r_g7,
714 (void *)&sync_reg_buf.r_o0, (void *)&sync_reg_buf.r_o1,
715 (void *)&sync_reg_buf.r_o2, (void *)&sync_reg_buf.r_o3,
716 (void *)&sync_reg_buf.r_o4, (void *)&sync_reg_buf.r_o5,
717 (void *)&sync_reg_buf.r_o6, (void *)&sync_reg_buf.r_o7,
718 (void *)&sync_reg_buf.r_pc, (void *)&sync_reg_buf.r_npc,
719 (void *)&sync_reg_buf.r_y, (void *)&sync_tt);
720 prom_interpret(bp, 0, 0, 0, 0, 0);
721 add_vx_handler("sync", 1, (void (*)(cell_t *))sync_handler);
722 }
723
724
725 size_t
calc_pp_sz(pgcnt_t npages)726 calc_pp_sz(pgcnt_t npages)
727 {
728
729 return (npages * sizeof (struct page));
730 }
731
732 size_t
calc_kpmpp_sz(pgcnt_t npages)733 calc_kpmpp_sz(pgcnt_t npages)
734 {
735
736 kpm_pgshft = (kpm_smallpages == 0) ? MMU_PAGESHIFT4M : MMU_PAGESHIFT;
737 kpm_pgsz = 1ull << kpm_pgshft;
738 kpm_pgoff = kpm_pgsz - 1;
739 kpmp2pshft = kpm_pgshft - PAGESHIFT;
740 kpmpnpgs = 1 << kpmp2pshft;
741
742 if (kpm_smallpages == 0) {
743 /*
744 * Avoid fragmentation problems in kphysm_init()
745 * by allocating for all of physical memory
746 */
747 kpm_npages = ptokpmpr(physinstalled);
748 return (kpm_npages * sizeof (kpm_page_t));
749 } else {
750 kpm_npages = npages;
751 return (kpm_npages * sizeof (kpm_spage_t));
752 }
753 }
754
755 size_t
calc_pagehash_sz(pgcnt_t npages)756 calc_pagehash_sz(pgcnt_t npages)
757 {
758 /* LINTED */
759 ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), (sizeof (struct page))));
760 /*
761 * The page structure hash table size is a power of 2
762 * such that the average hash chain length is PAGE_HASHAVELEN.
763 */
764 page_hashsz = npages / PAGE_HASHAVELEN;
765 page_hashsz_shift = MAX((AN_VPSHIFT + VNODE_ALIGN_LOG2 + 1),
766 highbit(page_hashsz));
767 page_hashsz = 1 << page_hashsz_shift;
768 return (page_hashsz * sizeof (struct page *));
769 }
770
771 int testkmem64_smchunks = 0;
772
773 int
alloc_kmem64(caddr_t base,caddr_t end)774 alloc_kmem64(caddr_t base, caddr_t end)
775 {
776 int i;
777 caddr_t aligned_end = NULL;
778
779 if (testkmem64_smchunks)
780 return (1);
781
782 /*
783 * Make one large memory alloc after figuring out the 64-bit size. This
784 * will enable use of the largest page size appropriate for the system
785 * architecture.
786 */
787 ASSERT(mmu_exported_pagesize_mask & (1 << TTE8K));
788 ASSERT(IS_P2ALIGNED(base, TTEBYTES(max_bootlp_tteszc)));
789 for (i = max_bootlp_tteszc; i >= TTE8K; i--) {
790 size_t alloc_size, alignsize;
791 #if !defined(C_OBP)
792 unsigned long long pa;
793 #endif /* !C_OBP */
794
795 if ((mmu_exported_pagesize_mask & (1 << i)) == 0)
796 continue;
797 alignsize = TTEBYTES(i);
798 kmem64_szc = i;
799
800 /* limit page size for small memory */
801 if (mmu_btop(alignsize) > (npages >> 2))
802 continue;
803
804 aligned_end = (caddr_t)roundup((uintptr_t)end, alignsize);
805 alloc_size = aligned_end - base;
806 #if !defined(C_OBP)
807 if (prom_allocate_phys(alloc_size, alignsize, &pa) == 0) {
808 if (prom_claim_virt(alloc_size, base) != (caddr_t)-1) {
809 kmem64_pabase = pa;
810 kmem64_aligned_end = aligned_end;
811 install_kmem64_tte();
812 break;
813 } else {
814 prom_free_phys(alloc_size, pa);
815 }
816 }
817 #else /* !C_OBP */
818 if (prom_alloc(base, alloc_size, alignsize) == base) {
819 kmem64_pabase = va_to_pa(kmem64_base);
820 kmem64_aligned_end = aligned_end;
821 break;
822 }
823 #endif /* !C_OBP */
824 if (i == TTE8K) {
825 #ifdef sun4v
826 /* return failure to try small allocations */
827 return (1);
828 #else
829 prom_panic("kmem64 allocation failure");
830 #endif
831 }
832 }
833 ASSERT(aligned_end != NULL);
834 return (0);
835 }
836
837 static prom_memlist_t *boot_physinstalled, *boot_physavail, *boot_virtavail;
838 static size_t boot_physinstalled_len, boot_physavail_len, boot_virtavail_len;
839
840 #if !defined(C_OBP)
841 /*
842 * Install a temporary tte handler in OBP for kmem64 area.
843 *
844 * We map kmem64 area with large pages before the trap table is taken
845 * over. Since OBP makes 8K mappings, it can create 8K tlb entries in
846 * the same area. Duplicate tlb entries with different page sizes
847 * cause unpredicatble behavior. To avoid this, we don't create
848 * kmem64 mappings via BOP_ALLOC (ends up as prom_alloc() call to
849 * OBP). Instead, we manage translations with a temporary va>tte-data
850 * handler (kmem64-tte). This handler is replaced by unix-tte when
851 * the trap table is taken over.
852 *
853 * The temporary handler knows the physical address of the kmem64
854 * area. It uses the prom's pgmap@ Forth word for other addresses.
855 *
856 * We have to use BOP_ALLOC() method for C-OBP platforms because
857 * pgmap@ is not defined in C-OBP. C-OBP is only used on serengeti
858 * sun4u platforms. On sun4u we flush tlb after trap table is taken
859 * over if we use large pages for kernel heap and kmem64. Since sun4u
860 * prom (unlike sun4v) calls va>tte-data first for client address
861 * translation prom's ttes for kmem64 can't get into TLB even if we
862 * later switch to prom's trap table again. C-OBP uses 4M pages for
863 * client mappings when possible so on all platforms we get the
864 * benefit from large mappings for kmem64 area immediately during
865 * boot.
866 *
867 * pseudo code:
868 * if (context != 0) {
869 * return false
870 * } else if (miss_va in range[kmem64_base, kmem64_end)) {
871 * tte = tte_template +
872 * (((miss_va & pagemask) - kmem64_base));
873 * return tte, true
874 * } else {
875 * return pgmap@ result
876 * }
877 */
878 char kmem64_obp_str[] =
879 "h# %lx constant kmem64-base "
880 "h# %lx constant kmem64-end "
881 "h# %lx constant kmem64-pagemask "
882 "h# %lx constant kmem64-template "
883
884 ": kmem64-tte ( addr cnum -- false | tte-data true ) "
885 " if ( addr ) "
886 " drop false exit then ( false ) "
887 " dup kmem64-base kmem64-end within if ( addr ) "
888 " kmem64-pagemask and ( addr' ) "
889 " kmem64-base - ( addr' ) "
890 " kmem64-template + ( tte ) "
891 " true ( tte true ) "
892 " else ( addr ) "
893 " pgmap@ ( tte ) "
894 " dup 0< if true else drop false then ( tte true | false ) "
895 " then ( tte true | false ) "
896 "; "
897
898 "' kmem64-tte is va>tte-data "
899 ;
900
901 static void
install_kmem64_tte()902 install_kmem64_tte()
903 {
904 char b[sizeof (kmem64_obp_str) + (4 * 16)];
905 tte_t tte;
906
907 PRM_DEBUG(kmem64_pabase);
908 PRM_DEBUG(kmem64_szc);
909 sfmmu_memtte(&tte, kmem64_pabase >> MMU_PAGESHIFT,
910 PROC_DATA | HAT_NOSYNC, kmem64_szc);
911 PRM_DEBUG(tte.ll);
912 (void) sprintf(b, kmem64_obp_str,
913 kmem64_base, kmem64_end, TTE_PAGEMASK(kmem64_szc), tte.ll);
914 ASSERT(strlen(b) < sizeof (b));
915 prom_interpret(b, 0, 0, 0, 0, 0);
916 }
917 #endif /* !C_OBP */
918
919 /*
920 * As OBP takes up some RAM when the system boots, pages will already be "lost"
921 * to the system and reflected in npages by the time we see it.
922 *
923 * We only want to allocate kernel structures in the 64-bit virtual address
924 * space on systems with enough RAM to make the overhead of keeping track of
925 * an extra kernel memory segment worthwhile.
926 *
927 * Since OBP has already performed its memory allocations by this point, if we
928 * have more than MINMOVE_RAM_MB MB of RAM left free, go ahead and map
929 * memory in the 64-bit virtual address space; otherwise keep allocations
930 * contiguous with we've mapped so far in the 32-bit virtual address space.
931 */
932 #define MINMOVE_RAM_MB ((size_t)1900)
933 #define MB_TO_BYTES(mb) ((mb) * 1048576ul)
934 #define BYTES_TO_MB(b) ((b) / 1048576ul)
935
936 pgcnt_t tune_npages = (pgcnt_t)
937 (MB_TO_BYTES(MINMOVE_RAM_MB)/ (size_t)MMU_PAGESIZE);
938
939 #pragma weak page_set_colorequiv_arr_cpu
940 extern void page_set_colorequiv_arr_cpu(void);
941 extern void page_set_colorequiv_arr(void);
942
943 static pgcnt_t ramdisk_npages;
944 static struct memlist *old_phys_avail;
945
946 kcage_dir_t kcage_startup_dir = KCAGE_DOWN;
947
948 static void
startup_memlist(void)949 startup_memlist(void)
950 {
951 size_t hmehash_sz, pagelist_sz, tt_sz;
952 size_t psetable_sz;
953 caddr_t alloc_base;
954 caddr_t memspace;
955 struct memlist *cur;
956 size_t syslimit = (size_t)SYSLIMIT;
957 size_t sysbase = (size_t)SYSBASE;
958
959 /*
960 * Initialize enough of the system to allow kmem_alloc to work by
961 * calling boot to allocate its memory until the time that
962 * kvm_init is completed. The page structs are allocated after
963 * rounding up end to the nearest page boundary; the memsegs are
964 * initialized and the space they use comes from the kernel heap.
965 * With appropriate initialization, they can be reallocated later
966 * to a size appropriate for the machine's configuration.
967 *
968 * At this point, memory is allocated for things that will never
969 * need to be freed, this used to be "valloced". This allows a
970 * savings as the pages don't need page structures to describe
971 * them because them will not be managed by the vm system.
972 */
973
974 /*
975 * We're loaded by boot with the following configuration (as
976 * specified in the sun4u/conf/Mapfile):
977 *
978 * text: 4 MB chunk aligned on a 4MB boundary
979 * data & bss: 4 MB chunk aligned on a 4MB boundary
980 *
981 * These two chunks will eventually be mapped by 2 locked 4MB
982 * ttes and will represent the nucleus of the kernel. This gives
983 * us some free space that is already allocated, some or all of
984 * which is made available to kernel module text.
985 *
986 * The free space in the data-bss chunk is used for nucleus
987 * allocatable data structures and we reserve it using the
988 * nalloc_base and nalloc_end variables. This space is currently
989 * being used for hat data structures required for tlb miss
990 * handling operations. We align nalloc_base to a l2 cache
991 * linesize because this is the line size the hardware uses to
992 * maintain cache coherency.
993 * 512K is carved out for module data.
994 */
995
996 moddata = (caddr_t)roundup((uintptr_t)e_data, MMU_PAGESIZE);
997 e_moddata = moddata + MODDATA;
998 nalloc_base = e_moddata;
999
1000 nalloc_end = (caddr_t)roundup((uintptr_t)nalloc_base, MMU_PAGESIZE4M);
1001 valloc_base = nalloc_base;
1002
1003 /*
1004 * Calculate the start of the data segment.
1005 */
1006 if (((uintptr_t)e_moddata & MMU_PAGEMASK4M) != (uintptr_t)s_data)
1007 prom_panic("nucleus data overflow");
1008
1009 PRM_DEBUG(moddata);
1010 PRM_DEBUG(nalloc_base);
1011 PRM_DEBUG(nalloc_end);
1012
1013 /*
1014 * Remember any slop after e_text so we can give it to the modules.
1015 */
1016 PRM_DEBUG(e_text);
1017 modtext = (caddr_t)roundup((uintptr_t)e_text, MMU_PAGESIZE);
1018 if (((uintptr_t)e_text & MMU_PAGEMASK4M) != (uintptr_t)s_text)
1019 prom_panic("nucleus text overflow");
1020 modtext_sz = (caddr_t)roundup((uintptr_t)modtext, MMU_PAGESIZE4M) -
1021 modtext;
1022 PRM_DEBUG(modtext);
1023 PRM_DEBUG(modtext_sz);
1024
1025 init_boot_memlists();
1026 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1027 &boot_physavail, &boot_physavail_len,
1028 &boot_virtavail, &boot_virtavail_len);
1029
1030 /*
1031 * Remember what the physically available highest page is
1032 * so that dumpsys works properly, and find out how much
1033 * memory is installed.
1034 */
1035 installed_top_size_memlist_array(boot_physinstalled,
1036 boot_physinstalled_len, &physmax, &physinstalled);
1037 PRM_DEBUG(physinstalled);
1038 PRM_DEBUG(physmax);
1039
1040 /* Fill out memory nodes config structure */
1041 startup_build_mem_nodes(boot_physinstalled, boot_physinstalled_len);
1042
1043 /*
1044 * npages is the maximum of available physical memory possible.
1045 * (ie. it will never be more than this)
1046 *
1047 * When we boot from a ramdisk, the ramdisk memory isn't free, so
1048 * using phys_avail will underestimate what will end up being freed.
1049 * A better initial guess is just total memory minus the kernel text
1050 */
1051 npages = physinstalled - btop(MMU_PAGESIZE4M);
1052
1053 /*
1054 * First allocate things that can go in the nucleus data page
1055 * (fault status, TSBs, dmv, CPUs)
1056 */
1057 ndata_alloc_init(&ndata, (uintptr_t)nalloc_base, (uintptr_t)nalloc_end);
1058
1059 if ((&ndata_alloc_mmfsa != NULL) && (ndata_alloc_mmfsa(&ndata) != 0))
1060 cmn_err(CE_PANIC, "no more nucleus memory after mfsa alloc");
1061
1062 if (ndata_alloc_tsbs(&ndata, npages) != 0)
1063 cmn_err(CE_PANIC, "no more nucleus memory after tsbs alloc");
1064
1065 if (ndata_alloc_dmv(&ndata) != 0)
1066 cmn_err(CE_PANIC, "no more nucleus memory after dmv alloc");
1067
1068 if (ndata_alloc_page_mutexs(&ndata) != 0)
1069 cmn_err(CE_PANIC,
1070 "no more nucleus memory after page free lists alloc");
1071
1072 if (ndata_alloc_hat(&ndata) != 0)
1073 cmn_err(CE_PANIC, "no more nucleus memory after hat alloc");
1074
1075 if (ndata_alloc_memseg(&ndata, boot_physavail_len) != 0)
1076 cmn_err(CE_PANIC, "no more nucleus memory after memseg alloc");
1077
1078 /*
1079 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
1080 *
1081 * There are comments all over the SFMMU code warning of dire
1082 * consequences if the TSBs are moved out of 32-bit space. This
1083 * is largely because the asm code uses "sethi %hi(addr)"-type
1084 * instructions which will not provide the expected result if the
1085 * address is a 64-bit one.
1086 *
1087 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
1088 */
1089 alloc_base = (caddr_t)roundup((uintptr_t)nalloc_end, MMU_PAGESIZE);
1090 PRM_DEBUG(alloc_base);
1091
1092 alloc_base = sfmmu_ktsb_alloc(alloc_base);
1093 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1094 PRM_DEBUG(alloc_base);
1095
1096 /*
1097 * Allocate IOMMU TSB array. We do this here so that the physical
1098 * memory gets deducted from the PROM's physical memory list.
1099 */
1100 alloc_base = iommu_tsb_init(alloc_base);
1101 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1102 PRM_DEBUG(alloc_base);
1103
1104 /*
1105 * Allow for an early allocation of physically contiguous memory.
1106 */
1107 alloc_base = contig_mem_prealloc(alloc_base, npages);
1108
1109 /*
1110 * Platforms like Starcat and OPL need special structures assigned in
1111 * 32-bit virtual address space because their probing routines execute
1112 * FCode, and FCode can't handle 64-bit virtual addresses...
1113 */
1114 if (&plat_startup_memlist) {
1115 alloc_base = plat_startup_memlist(alloc_base);
1116 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1117 ecache_alignsize);
1118 PRM_DEBUG(alloc_base);
1119 }
1120
1121 /*
1122 * Save off where the contiguous allocations to date have ended
1123 * in econtig32.
1124 */
1125 econtig32 = alloc_base;
1126 PRM_DEBUG(econtig32);
1127 if (econtig32 > (caddr_t)KERNEL_LIMIT32)
1128 cmn_err(CE_PANIC, "econtig32 too big");
1129
1130 pp_sz = calc_pp_sz(npages);
1131 PRM_DEBUG(pp_sz);
1132 if (kpm_enable) {
1133 kpm_pp_sz = calc_kpmpp_sz(npages);
1134 PRM_DEBUG(kpm_pp_sz);
1135 }
1136
1137 hmehash_sz = calc_hmehash_sz(npages);
1138 PRM_DEBUG(hmehash_sz);
1139
1140 pagehash_sz = calc_pagehash_sz(npages);
1141 PRM_DEBUG(pagehash_sz);
1142
1143 pagelist_sz = calc_free_pagelist_sz();
1144 PRM_DEBUG(pagelist_sz);
1145
1146 #ifdef TRAPTRACE
1147 tt_sz = calc_traptrace_sz();
1148 PRM_DEBUG(tt_sz);
1149 #else
1150 tt_sz = 0;
1151 #endif /* TRAPTRACE */
1152
1153 /*
1154 * Place the array that protects pp->p_selock in the kmem64 wad.
1155 */
1156 pse_shift = size_pse_array(npages, max_ncpus);
1157 PRM_DEBUG(pse_shift);
1158 pse_table_size = 1 << pse_shift;
1159 PRM_DEBUG(pse_table_size);
1160 psetable_sz = roundup(
1161 pse_table_size * sizeof (pad_mutex_t), ecache_alignsize);
1162 PRM_DEBUG(psetable_sz);
1163
1164 /*
1165 * Now allocate the whole wad
1166 */
1167 kmem64_sz = pp_sz + kpm_pp_sz + hmehash_sz + pagehash_sz +
1168 pagelist_sz + tt_sz + psetable_sz;
1169 kmem64_sz = roundup(kmem64_sz, PAGESIZE);
1170 kmem64_base = (caddr_t)syslimit;
1171 kmem64_end = kmem64_base + kmem64_sz;
1172 if (alloc_kmem64(kmem64_base, kmem64_end)) {
1173 /*
1174 * Attempt for kmem64 to allocate one big
1175 * contiguous chunk of memory failed.
1176 * We get here because we are sun4v.
1177 * We will proceed by breaking up
1178 * the allocation into two attempts.
1179 * First, we allocate kpm_pp_sz, hmehash_sz,
1180 * pagehash_sz, pagelist_sz, tt_sz & psetable_sz as
1181 * one contiguous chunk. This is a much smaller
1182 * chunk and we should get it, if not we panic.
1183 * Note that hmehash and tt need to be physically
1184 * (in the real address sense) contiguous.
1185 * Next, we use bop_alloc_chunk() to
1186 * to allocate the page_t structures.
1187 * This will allow the page_t to be allocated
1188 * in multiple smaller chunks.
1189 * In doing so, the assumption that page_t is
1190 * physically contiguous no longer hold, this is ok
1191 * for sun4v but not for sun4u.
1192 */
1193 size_t tmp_size;
1194 caddr_t tmp_base;
1195
1196 pp_sz = roundup(pp_sz, PAGESIZE);
1197
1198 /*
1199 * Allocate kpm_pp_sz, hmehash_sz,
1200 * pagehash_sz, pagelist_sz, tt_sz & psetable_sz
1201 */
1202 tmp_base = kmem64_base + pp_sz;
1203 tmp_size = roundup(kpm_pp_sz + hmehash_sz + pagehash_sz +
1204 pagelist_sz + tt_sz + psetable_sz, PAGESIZE);
1205 if (prom_alloc(tmp_base, tmp_size, PAGESIZE) == 0)
1206 prom_panic("kmem64 prom_alloc contig failed");
1207 PRM_DEBUG(tmp_base);
1208 PRM_DEBUG(tmp_size);
1209
1210 /*
1211 * Allocate the page_ts
1212 */
1213 if (bop_alloc_chunk(kmem64_base, pp_sz, PAGESIZE) == 0)
1214 prom_panic("kmem64 bop_alloc_chunk page_t failed");
1215 PRM_DEBUG(kmem64_base);
1216 PRM_DEBUG(pp_sz);
1217
1218 kmem64_aligned_end = kmem64_base + pp_sz + tmp_size;
1219 ASSERT(kmem64_aligned_end >= kmem64_end);
1220
1221 kmem64_smchunks = 1;
1222 } else {
1223
1224 /*
1225 * We need to adjust pp_sz for the normal
1226 * case where kmem64 can allocate one large chunk
1227 */
1228 if (kpm_smallpages == 0) {
1229 npages -= kmem64_sz / (PAGESIZE + sizeof (struct page));
1230 } else {
1231 npages -= kmem64_sz / (PAGESIZE + sizeof (struct page) +
1232 sizeof (kpm_spage_t));
1233 }
1234 pp_sz = npages * sizeof (struct page);
1235 }
1236
1237 if (kmem64_aligned_end > (hole_start ? hole_start : kpm_vbase))
1238 cmn_err(CE_PANIC, "not enough kmem64 space");
1239 PRM_DEBUG(kmem64_base);
1240 PRM_DEBUG(kmem64_end);
1241 PRM_DEBUG(kmem64_aligned_end);
1242
1243 /*
1244 * ... and divy it up
1245 */
1246 alloc_base = kmem64_base;
1247
1248 pp_base = (page_t *)alloc_base;
1249 alloc_base += pp_sz;
1250 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1251 PRM_DEBUG(pp_base);
1252 PRM_DEBUG(npages);
1253
1254 if (kpm_enable) {
1255 kpm_pp_base = alloc_base;
1256 if (kpm_smallpages == 0) {
1257 /* kpm_npages based on physinstalled, don't reset */
1258 kpm_pp_sz = kpm_npages * sizeof (kpm_page_t);
1259 } else {
1260 kpm_npages = ptokpmpr(npages);
1261 kpm_pp_sz = kpm_npages * sizeof (kpm_spage_t);
1262 }
1263 alloc_base += kpm_pp_sz;
1264 alloc_base =
1265 (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1266 PRM_DEBUG(kpm_pp_base);
1267 }
1268
1269 alloc_base = alloc_hmehash(alloc_base);
1270 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1271 PRM_DEBUG(alloc_base);
1272
1273 page_hash = (page_t **)alloc_base;
1274 alloc_base += pagehash_sz;
1275 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1276 PRM_DEBUG(page_hash);
1277
1278 alloc_base = alloc_page_freelists(alloc_base);
1279 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1280 PRM_DEBUG(alloc_base);
1281
1282 #ifdef TRAPTRACE
1283 ttrace_buf = alloc_base;
1284 alloc_base += tt_sz;
1285 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1286 PRM_DEBUG(alloc_base);
1287 #endif /* TRAPTRACE */
1288
1289 pse_mutex = (pad_mutex_t *)alloc_base;
1290 alloc_base += psetable_sz;
1291 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1292 PRM_DEBUG(alloc_base);
1293
1294 /*
1295 * Note that if we use small chunk allocations for
1296 * kmem64, we need to ensure kmem64_end is the same as
1297 * kmem64_aligned_end to prevent subsequent logic from
1298 * trying to reuse the overmapping.
1299 * Otherwise we adjust kmem64_end to what we really allocated.
1300 */
1301 if (kmem64_smchunks) {
1302 kmem64_end = kmem64_aligned_end;
1303 } else {
1304 kmem64_end = (caddr_t)roundup((uintptr_t)alloc_base, PAGESIZE);
1305 }
1306 kmem64_sz = kmem64_end - kmem64_base;
1307
1308 if (&ecache_init_scrub_flush_area) {
1309 alloc_base = ecache_init_scrub_flush_area(kmem64_aligned_end);
1310 ASSERT(alloc_base <= (hole_start ? hole_start : kpm_vbase));
1311 }
1312
1313 /*
1314 * If physmem is patched to be non-zero, use it instead of
1315 * the monitor value unless physmem is larger than the total
1316 * amount of memory on hand.
1317 */
1318 if (physmem == 0 || physmem > npages)
1319 physmem = npages;
1320
1321 /*
1322 * root_is_ramdisk is set via /etc/system when the ramdisk miniroot
1323 * is mounted as root. This memory is held down by OBP and unlike
1324 * the stub boot_archive is never released.
1325 *
1326 * In order to get things sized correctly on lower memory
1327 * machines (where the memory used by the ramdisk represents
1328 * a significant portion of memory), physmem is adjusted.
1329 *
1330 * This is done by subtracting the ramdisk_size which is set
1331 * to the size of the ramdisk (in Kb) in /etc/system at the
1332 * time the miniroot archive is constructed.
1333 */
1334 if (root_is_ramdisk == B_TRUE) {
1335 ramdisk_npages = (ramdisk_size * 1024) / PAGESIZE;
1336 physmem -= ramdisk_npages;
1337 }
1338
1339 if (kpm_enable && (ndata_alloc_kpm(&ndata, kpm_npages) != 0))
1340 cmn_err(CE_PANIC, "no more nucleus memory after kpm alloc");
1341
1342 /*
1343 * Allocate space for the interrupt vector table.
1344 */
1345 memspace = prom_alloc((caddr_t)intr_vec_table, IVSIZE, MMU_PAGESIZE);
1346 if (memspace != (caddr_t)intr_vec_table)
1347 prom_panic("interrupt vector table allocation failure");
1348
1349 /*
1350 * Between now and when we finish copying in the memory lists,
1351 * allocations happen so the space gets fragmented and the
1352 * lists longer. Leave enough space for lists twice as
1353 * long as we have now; then roundup to a pagesize.
1354 */
1355 memlist_sz = sizeof (struct memlist) * (prom_phys_installed_len() +
1356 prom_phys_avail_len() + prom_virt_avail_len());
1357 memlist_sz *= 2;
1358 memlist_sz = roundup(memlist_sz, PAGESIZE);
1359 memspace = ndata_alloc(&ndata, memlist_sz, ecache_alignsize);
1360 if (memspace == NULL)
1361 cmn_err(CE_PANIC, "no more nucleus memory after memlist alloc");
1362
1363 memlist = (struct memlist *)memspace;
1364 memlist_end = (char *)memspace + memlist_sz;
1365 PRM_DEBUG(memlist);
1366 PRM_DEBUG(memlist_end);
1367
1368 PRM_DEBUG(sysbase);
1369 PRM_DEBUG(syslimit);
1370 kernelheap_init((void *)sysbase, (void *)syslimit,
1371 (caddr_t)sysbase + PAGESIZE, NULL, NULL);
1372
1373 /*
1374 * Take the most current snapshot we can by calling mem-update.
1375 */
1376 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1377 &boot_physavail, &boot_physavail_len,
1378 &boot_virtavail, &boot_virtavail_len);
1379
1380 /*
1381 * Remove the space used by prom_alloc from the kernel heap
1382 * plus the area actually used by the OBP (if any)
1383 * ignoring virtual addresses in virt_avail, above syslimit.
1384 */
1385 virt_avail = memlist;
1386 copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1387
1388 for (cur = virt_avail; cur->ml_next; cur = cur->ml_next) {
1389 uint64_t range_base, range_size;
1390
1391 if ((range_base = cur->ml_address + cur->ml_size) <
1392 (uint64_t)sysbase)
1393 continue;
1394 if (range_base >= (uint64_t)syslimit)
1395 break;
1396 /*
1397 * Limit the range to end at syslimit.
1398 */
1399 range_size = MIN(cur->ml_next->ml_address,
1400 (uint64_t)syslimit) - range_base;
1401 (void) vmem_xalloc(heap_arena, (size_t)range_size, PAGESIZE,
1402 0, 0, (void *)range_base, (void *)(range_base + range_size),
1403 VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1404 }
1405
1406 phys_avail = memlist;
1407 copy_memlist(boot_physavail, boot_physavail_len, &memlist);
1408
1409 /*
1410 * Add any extra memory at the end of the ndata region if there's at
1411 * least a page to add. There might be a few more pages available in
1412 * the middle of the ndata region, but for now they are ignored.
1413 */
1414 nalloc_base = ndata_extra_base(&ndata, MMU_PAGESIZE, nalloc_end);
1415 if (nalloc_base == NULL)
1416 nalloc_base = nalloc_end;
1417 ndata_remain_sz = nalloc_end - nalloc_base;
1418
1419 /*
1420 * Copy physinstalled list into kernel space.
1421 */
1422 phys_install = memlist;
1423 copy_memlist(boot_physinstalled, boot_physinstalled_len, &memlist);
1424
1425 /*
1426 * Create list of physical addrs we don't need pp's for:
1427 * kernel text 4M page
1428 * kernel data 4M page - ndata_remain_sz
1429 * kmem64 pages
1430 *
1431 * NB if adding any pages here, make sure no kpm page
1432 * overlaps can occur (see ASSERTs in kphysm_memsegs)
1433 */
1434 nopp_list = memlist;
1435 memlist_new(va_to_pa(s_text), MMU_PAGESIZE4M, &memlist);
1436 memlist_add(va_to_pa(s_data), MMU_PAGESIZE4M - ndata_remain_sz,
1437 &memlist, &nopp_list);
1438
1439 /* Don't add to nopp_list if kmem64 was allocated in smchunks */
1440 if (!kmem64_smchunks)
1441 memlist_add(kmem64_pabase, kmem64_sz, &memlist, &nopp_list);
1442
1443 if ((caddr_t)memlist > (memspace + memlist_sz))
1444 prom_panic("memlist overflow");
1445
1446 /*
1447 * Size the pcf array based on the number of cpus in the box at
1448 * boot time.
1449 */
1450 pcf_init();
1451
1452 /*
1453 * Initialize the page structures from the memory lists.
1454 */
1455 kphysm_init();
1456
1457 availrmem_initial = availrmem = freemem;
1458 PRM_DEBUG(availrmem);
1459
1460 /*
1461 * Some of the locks depend on page_hashsz being set!
1462 * kmem_init() depends on this; so, keep it here.
1463 */
1464 page_lock_init();
1465
1466 /*
1467 * Initialize kernel memory allocator.
1468 */
1469 kmem_init();
1470
1471 /*
1472 * Factor in colorequiv to check additional 'equivalent' bins
1473 */
1474 if (&page_set_colorequiv_arr_cpu != NULL)
1475 page_set_colorequiv_arr_cpu();
1476 else
1477 page_set_colorequiv_arr();
1478
1479 /*
1480 * Initialize bp_mapin().
1481 */
1482 bp_init(shm_alignment, HAT_STRICTORDER);
1483
1484 /*
1485 * Reserve space for MPO mblock structs from the 32-bit heap.
1486 */
1487
1488 if (mpo_heap32_bufsz > (size_t)0) {
1489 (void) vmem_xalloc(heap32_arena, mpo_heap32_bufsz,
1490 PAGESIZE, 0, 0, mpo_heap32_buf,
1491 mpo_heap32_buf + mpo_heap32_bufsz,
1492 VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1493 }
1494 mem_config_init();
1495 }
1496
1497 static void
startup_modules(void)1498 startup_modules(void)
1499 {
1500 int nhblk1, nhblk8;
1501 size_t nhblksz;
1502 pgcnt_t pages_per_hblk;
1503 size_t hme8blk_sz, hme1blk_sz;
1504
1505 /*
1506 * The system file /etc/system was read already under startup_memlist.
1507 */
1508 if (&set_platform_defaults)
1509 set_platform_defaults();
1510
1511 /*
1512 * Calculate default settings of system parameters based upon
1513 * maxusers, yet allow to be overridden via the /etc/system file.
1514 */
1515 param_calc(0);
1516
1517 mod_setup();
1518
1519 /*
1520 * If this is a positron, complain and halt.
1521 */
1522 if (&iam_positron && iam_positron()) {
1523 cmn_err(CE_WARN, "This hardware platform is not supported"
1524 " by this release of Solaris.\n");
1525 #ifdef DEBUG
1526 prom_enter_mon(); /* Type 'go' to resume */
1527 cmn_err(CE_WARN, "Booting an unsupported platform.\n");
1528 cmn_err(CE_WARN, "Booting with down-rev firmware.\n");
1529
1530 #else /* DEBUG */
1531 halt(0);
1532 #endif /* DEBUG */
1533 }
1534
1535 /*
1536 * If we are running firmware that isn't 64-bit ready
1537 * then complain and halt.
1538 */
1539 do_prom_version_check();
1540
1541 /*
1542 * Initialize system parameters
1543 */
1544 param_init();
1545
1546 /*
1547 * maxmem is the amount of physical memory we're playing with.
1548 */
1549 maxmem = physmem;
1550
1551 /* Set segkp limits. */
1552 ncbase = kdi_segdebugbase;
1553 ncend = kdi_segdebugbase;
1554
1555 /*
1556 * Initialize the hat layer.
1557 */
1558 hat_init();
1559
1560 /*
1561 * Initialize segment management stuff.
1562 */
1563 seg_init();
1564
1565 /*
1566 * Create the va>tte handler, so the prom can understand
1567 * kernel translations. The handler is installed later, just
1568 * as we are about to take over the trap table from the prom.
1569 */
1570 create_va_to_tte();
1571
1572 /*
1573 * Load the forthdebugger (optional)
1574 */
1575 forthdebug_init();
1576
1577 /*
1578 * Create OBP node for console input callbacks
1579 * if it is needed.
1580 */
1581 startup_create_io_node();
1582
1583 if (modloadonly("fs", "specfs") == -1)
1584 halt("Can't load specfs");
1585
1586 if (modloadonly("fs", "devfs") == -1)
1587 halt("Can't load devfs");
1588
1589 if (modloadonly("fs", "procfs") == -1)
1590 halt("Can't load procfs");
1591
1592 if (modloadonly("misc", "swapgeneric") == -1)
1593 halt("Can't load swapgeneric");
1594
1595 (void) modloadonly("sys", "lbl_edition");
1596
1597 dispinit();
1598
1599 /*
1600 * Infer meanings to the members of the idprom buffer.
1601 */
1602 parse_idprom();
1603
1604 /* Read cluster configuration data. */
1605 clconf_init();
1606
1607 setup_ddi();
1608
1609 /*
1610 * Lets take this opportunity to load the root device.
1611 */
1612 if (loadrootmodules() != 0)
1613 debug_enter("Can't load the root filesystem");
1614
1615 /*
1616 * Load tod driver module for the tod part found on this system.
1617 * Recompute the cpu frequency/delays based on tod as tod part
1618 * tends to keep time more accurately.
1619 */
1620 if (&load_tod_module)
1621 load_tod_module();
1622
1623 /*
1624 * Allow platforms to load modules which might
1625 * be needed after bootops are gone.
1626 */
1627 if (&load_platform_modules)
1628 load_platform_modules();
1629
1630 setcpudelay();
1631
1632 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1633 &boot_physavail, &boot_physavail_len,
1634 &boot_virtavail, &boot_virtavail_len);
1635
1636 /*
1637 * Calculation and allocation of hmeblks needed to remap
1638 * the memory allocated by PROM till now.
1639 * Overestimate the number of hblk1 elements by assuming
1640 * worst case of TTE64K mappings.
1641 * sfmmu_hblk_alloc will panic if this calculation is wrong.
1642 */
1643 bop_alloc_pages = btopr(kmem64_end - kmem64_base);
1644 pages_per_hblk = btop(HMEBLK_SPAN(TTE64K));
1645 bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1646 nhblk1 = bop_alloc_pages / pages_per_hblk + hblk1_min;
1647
1648 bop_alloc_pages = size_virtalloc(boot_virtavail, boot_virtavail_len);
1649
1650 /* sfmmu_init_nucleus_hblks expects properly aligned data structures */
1651 hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
1652 hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
1653
1654 bop_alloc_pages += btopr(nhblk1 * hme1blk_sz);
1655
1656 pages_per_hblk = btop(HMEBLK_SPAN(TTE8K));
1657 nhblk8 = 0;
1658 while (bop_alloc_pages > 1) {
1659 bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1660 nhblk8 += bop_alloc_pages /= pages_per_hblk;
1661 bop_alloc_pages *= hme8blk_sz;
1662 bop_alloc_pages = btopr(bop_alloc_pages);
1663 }
1664 nhblk8 += 2;
1665
1666 /*
1667 * Since hblk8's can hold up to 64k of mappings aligned on a 64k
1668 * boundary, the number of hblk8's needed to map the entries in the
1669 * boot_virtavail list needs to be adjusted to take this into
1670 * consideration. Thus, we need to add additional hblk8's since it
1671 * is possible that an hblk8 will not have all 8 slots used due to
1672 * alignment constraints. Since there were boot_virtavail_len entries
1673 * in that list, we need to add that many hblk8's to the number
1674 * already calculated to make sure we don't underestimate.
1675 */
1676 nhblk8 += boot_virtavail_len;
1677 nhblksz = nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz;
1678
1679 /* Allocate in pagesize chunks */
1680 nhblksz = roundup(nhblksz, MMU_PAGESIZE);
1681 hblk_base = kmem_zalloc(nhblksz, KM_SLEEP);
1682 sfmmu_init_nucleus_hblks(hblk_base, nhblksz, nhblk8, nhblk1);
1683 }
1684
1685 static void
startup_bop_gone(void)1686 startup_bop_gone(void)
1687 {
1688
1689 /*
1690 * Destroy the MD initialized at startup
1691 * The startup initializes the MD framework
1692 * using prom and BOP alloc free it now.
1693 */
1694 mach_descrip_startup_fini();
1695
1696 /*
1697 * We're done with prom allocations.
1698 */
1699 bop_fini();
1700
1701 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1702 &boot_physavail, &boot_physavail_len,
1703 &boot_virtavail, &boot_virtavail_len);
1704
1705 /*
1706 * setup physically contiguous area twice as large as the ecache.
1707 * this is used while doing displacement flush of ecaches
1708 */
1709 if (&ecache_flush_address) {
1710 ecache_flushaddr = ecache_flush_address();
1711 if (ecache_flushaddr == (uint64_t)-1) {
1712 cmn_err(CE_PANIC,
1713 "startup: no memory to set ecache_flushaddr");
1714 }
1715 }
1716
1717 /*
1718 * Virtual available next.
1719 */
1720 ASSERT(virt_avail != NULL);
1721 memlist_free_list(virt_avail);
1722 virt_avail = memlist;
1723 copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1724
1725 }
1726
1727
1728 /*
1729 * startup_fixup_physavail - called from mach_sfmmu.c after the final
1730 * allocations have been performed. We can't call it in startup_bop_gone
1731 * since later operations can cause obp to allocate more memory.
1732 */
1733 void
startup_fixup_physavail(void)1734 startup_fixup_physavail(void)
1735 {
1736 struct memlist *cur;
1737 size_t kmem64_overmap_size = kmem64_aligned_end - kmem64_end;
1738
1739 PRM_DEBUG(kmem64_overmap_size);
1740
1741 /*
1742 * take the most current snapshot we can by calling mem-update
1743 */
1744 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1745 &boot_physavail, &boot_physavail_len,
1746 &boot_virtavail, &boot_virtavail_len);
1747
1748 /*
1749 * Copy phys_avail list, again.
1750 * Both the kernel/boot and the prom have been allocating
1751 * from the original list we copied earlier.
1752 */
1753 cur = memlist;
1754 copy_memlist(boot_physavail, boot_physavail_len, &memlist);
1755
1756 /*
1757 * Add any unused kmem64 memory from overmapped page
1758 * (Note: va_to_pa does not work for kmem64_end)
1759 */
1760 if (kmem64_overmap_size) {
1761 memlist_add(kmem64_pabase + (kmem64_end - kmem64_base),
1762 kmem64_overmap_size, &memlist, &cur);
1763 }
1764
1765 /*
1766 * Add any extra memory after e_data we added to the phys_avail list
1767 * back to the old list.
1768 */
1769 if (ndata_remain_sz >= MMU_PAGESIZE)
1770 memlist_add(va_to_pa(nalloc_base),
1771 (uint64_t)ndata_remain_sz, &memlist, &cur);
1772
1773 /*
1774 * There isn't any bounds checking on the memlist area
1775 * so ensure it hasn't overgrown.
1776 */
1777 if ((caddr_t)memlist > (caddr_t)memlist_end)
1778 cmn_err(CE_PANIC, "startup: memlist size exceeded");
1779
1780 /*
1781 * The kernel removes the pages that were allocated for it from
1782 * the freelist, but we now have to find any -extra- pages that
1783 * the prom has allocated for it's own book-keeping, and remove
1784 * them from the freelist too. sigh.
1785 */
1786 sync_memlists(phys_avail, cur);
1787
1788 ASSERT(phys_avail != NULL);
1789
1790 old_phys_avail = phys_avail;
1791 phys_avail = cur;
1792 }
1793
1794 void
update_kcage_ranges(uint64_t addr,uint64_t len)1795 update_kcage_ranges(uint64_t addr, uint64_t len)
1796 {
1797 pfn_t base = btop(addr);
1798 pgcnt_t num = btop(len);
1799 int rv;
1800
1801 rv = kcage_range_add(base, num, kcage_startup_dir);
1802
1803 if (rv == ENOMEM) {
1804 cmn_err(CE_WARN, "%ld megabytes not available to kernel cage",
1805 (len == 0 ? 0 : BYTES_TO_MB(len)));
1806 } else if (rv != 0) {
1807 /* catch this in debug kernels */
1808 ASSERT(0);
1809
1810 cmn_err(CE_WARN, "unexpected kcage_range_add"
1811 " return value %d", rv);
1812 }
1813 }
1814
1815 static void
startup_vm(void)1816 startup_vm(void)
1817 {
1818 size_t i;
1819 struct segmap_crargs a;
1820 struct segkpm_crargs b;
1821
1822 uint64_t avmem;
1823 caddr_t va;
1824 pgcnt_t max_phys_segkp;
1825 int mnode;
1826
1827 extern int use_brk_lpg, use_stk_lpg;
1828
1829 /*
1830 * get prom's mappings, create hments for them and switch
1831 * to the kernel context.
1832 */
1833 hat_kern_setup();
1834
1835 /*
1836 * Take over trap table
1837 */
1838 setup_trap_table();
1839
1840 /*
1841 * Install the va>tte handler, so that the prom can handle
1842 * misses and understand the kernel table layout in case
1843 * we need call into the prom.
1844 */
1845 install_va_to_tte();
1846
1847 /*
1848 * Set a flag to indicate that the tba has been taken over.
1849 */
1850 tba_taken_over = 1;
1851
1852 /* initialize MMU primary context register */
1853 mmu_init_kcontext();
1854
1855 /*
1856 * The boot cpu can now take interrupts, x-calls, x-traps
1857 */
1858 CPUSET_ADD(cpu_ready_set, CPU->cpu_id);
1859 CPU->cpu_flags |= (CPU_READY | CPU_ENABLE | CPU_EXISTS);
1860
1861 /*
1862 * Set a flag to tell write_scb_int() that it can access V_TBR_WR_ADDR.
1863 */
1864 tbr_wr_addr_inited = 1;
1865
1866 /*
1867 * Initialize VM system, and map kernel address space.
1868 */
1869 kvm_init();
1870
1871 ASSERT(old_phys_avail != NULL && phys_avail != NULL);
1872 if (kernel_cage_enable) {
1873 diff_memlists(phys_avail, old_phys_avail, update_kcage_ranges);
1874 }
1875 memlist_free_list(old_phys_avail);
1876
1877 /*
1878 * If the following is true, someone has patched
1879 * phsymem to be less than the number of pages that
1880 * the system actually has. Remove pages until system
1881 * memory is limited to the requested amount. Since we
1882 * have allocated page structures for all pages, we
1883 * correct the amount of memory we want to remove
1884 * by the size of the memory used to hold page structures
1885 * for the non-used pages.
1886 */
1887 if (physmem + ramdisk_npages < npages) {
1888 pgcnt_t diff, off;
1889 struct page *pp;
1890 struct seg kseg;
1891
1892 cmn_err(CE_WARN, "limiting physmem to %ld pages", physmem);
1893
1894 off = 0;
1895 diff = npages - (physmem + ramdisk_npages);
1896 diff -= mmu_btopr(diff * sizeof (struct page));
1897 kseg.s_as = &kas;
1898 while (diff--) {
1899 pp = page_create_va(&unused_pages_vp, (offset_t)off,
1900 MMU_PAGESIZE, PG_WAIT | PG_EXCL,
1901 &kseg, (caddr_t)off);
1902 if (pp == NULL)
1903 cmn_err(CE_PANIC, "limited physmem too much!");
1904 page_io_unlock(pp);
1905 page_downgrade(pp);
1906 availrmem--;
1907 off += MMU_PAGESIZE;
1908 }
1909 }
1910
1911 /*
1912 * When printing memory, show the total as physmem less
1913 * that stolen by a debugger.
1914 */
1915 cmn_err(CE_CONT, "?mem = %ldK (0x%lx000)\n",
1916 (ulong_t)(physinstalled) << (PAGESHIFT - 10),
1917 (ulong_t)(physinstalled) << (PAGESHIFT - 12));
1918
1919 avmem = (uint64_t)freemem << PAGESHIFT;
1920 cmn_err(CE_CONT, "?avail mem = %lld\n", (unsigned long long)avmem);
1921
1922 /*
1923 * For small memory systems disable automatic large pages.
1924 */
1925 if (physmem < privm_lpg_min_physmem) {
1926 use_brk_lpg = 0;
1927 use_stk_lpg = 0;
1928 }
1929
1930 /*
1931 * Perform platform specific freelist processing
1932 */
1933 if (&plat_freelist_process) {
1934 for (mnode = 0; mnode < max_mem_nodes; mnode++)
1935 if (mem_node_config[mnode].exists)
1936 plat_freelist_process(mnode);
1937 }
1938
1939 /*
1940 * Initialize the segkp segment type. We position it
1941 * after the configured tables and buffers (whose end
1942 * is given by econtig) and before V_WKBASE_ADDR.
1943 * Also in this area is segkmap (size SEGMAPSIZE).
1944 */
1945
1946 /* XXX - cache alignment? */
1947 va = (caddr_t)SEGKPBASE;
1948 ASSERT(((uintptr_t)va & PAGEOFFSET) == 0);
1949
1950 max_phys_segkp = (physmem * 2);
1951
1952 if (segkpsize < btop(SEGKPMINSIZE) || segkpsize > btop(SEGKPMAXSIZE)) {
1953 segkpsize = btop(SEGKPDEFSIZE);
1954 cmn_err(CE_WARN, "Illegal value for segkpsize. "
1955 "segkpsize has been reset to %ld pages", segkpsize);
1956 }
1957
1958 i = ptob(MIN(segkpsize, max_phys_segkp));
1959
1960 rw_enter(&kas.a_lock, RW_WRITER);
1961 if (seg_attach(&kas, va, i, segkp) < 0)
1962 cmn_err(CE_PANIC, "startup: cannot attach segkp");
1963 if (segkp_create(segkp) != 0)
1964 cmn_err(CE_PANIC, "startup: segkp_create failed");
1965 rw_exit(&kas.a_lock);
1966
1967 /*
1968 * kpm segment
1969 */
1970 segmap_kpm = kpm_enable &&
1971 segmap_kpm && PAGESIZE == MAXBSIZE;
1972
1973 if (kpm_enable) {
1974 rw_enter(&kas.a_lock, RW_WRITER);
1975
1976 /*
1977 * The segkpm virtual range range is larger than the
1978 * actual physical memory size and also covers gaps in
1979 * the physical address range for the following reasons:
1980 * . keep conversion between segkpm and physical addresses
1981 * simple, cheap and unambiguous.
1982 * . avoid extension/shrink of the the segkpm in case of DR.
1983 * . avoid complexity for handling of virtual addressed
1984 * caches, segkpm and the regular mapping scheme must be
1985 * kept in sync wrt. the virtual color of mapped pages.
1986 * Any accesses to virtual segkpm ranges not backed by
1987 * physical memory will fall through the memseg pfn hash
1988 * and will be handled in segkpm_fault.
1989 * Additional kpm_size spaces needed for vac alias prevention.
1990 */
1991 if (seg_attach(&kas, kpm_vbase, kpm_size * vac_colors,
1992 segkpm) < 0)
1993 cmn_err(CE_PANIC, "cannot attach segkpm");
1994
1995 b.prot = PROT_READ | PROT_WRITE;
1996 b.nvcolors = shm_alignment >> MMU_PAGESHIFT;
1997
1998 if (segkpm_create(segkpm, (caddr_t)&b) != 0)
1999 panic("segkpm_create segkpm");
2000
2001 rw_exit(&kas.a_lock);
2002
2003 mach_kpm_init();
2004 }
2005
2006 va = kpm_vbase + (kpm_size * vac_colors);
2007
2008 if (!segzio_fromheap) {
2009 size_t size;
2010 size_t physmem_b = mmu_ptob(physmem);
2011
2012 /* size is in bytes, segziosize is in pages */
2013 if (segziosize == 0) {
2014 size = physmem_b;
2015 } else {
2016 size = mmu_ptob(segziosize);
2017 }
2018
2019 if (size < SEGZIOMINSIZE) {
2020 size = SEGZIOMINSIZE;
2021 } else if (size > SEGZIOMAXSIZE) {
2022 size = SEGZIOMAXSIZE;
2023 /*
2024 * On 64-bit x86, we only have 2TB of KVA. This exists
2025 * for parity with x86.
2026 *
2027 * SEGZIOMAXSIZE is capped at 512gb so that segzio
2028 * doesn't consume all of KVA. However, if we have a
2029 * system that has more thant 512gb of physical memory,
2030 * we can actually consume about half of the difference
2031 * between 512gb and the rest of the available physical
2032 * memory.
2033 */
2034 if (physmem_b > SEGZIOMAXSIZE) {
2035 size += (physmem_b - SEGZIOMAXSIZE) / 2;
2036 }
2037 }
2038 segziosize = mmu_btop(roundup(size, MMU_PAGESIZE));
2039 /* put the base of the ZIO segment after the kpm segment */
2040 segzio_base = va;
2041 va += mmu_ptob(segziosize);
2042 PRM_DEBUG(segziosize);
2043 PRM_DEBUG(segzio_base);
2044
2045 /*
2046 * On some platforms, kvm_init is called after the kpm
2047 * sizes have been determined. On SPARC, kvm_init is called
2048 * before, so we have to attach the kzioseg after kvm is
2049 * initialized, otherwise we'll try to allocate from the boot
2050 * area since the kernel heap hasn't yet been configured.
2051 */
2052 rw_enter(&kas.a_lock, RW_WRITER);
2053
2054 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2055 &kzioseg);
2056 (void) segkmem_zio_create(&kzioseg);
2057
2058 /* create zio area covering new segment */
2059 segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2060
2061 rw_exit(&kas.a_lock);
2062 }
2063
2064 if (ppvm_enable) {
2065 caddr_t ppvm_max;
2066
2067 /*
2068 * ppvm refers to the static VA space used to map
2069 * the page_t's for dynamically added memory.
2070 *
2071 * ppvm_base should not cross a potential VA hole.
2072 *
2073 * ppvm_size should be large enough to map the
2074 * page_t's needed to manage all of KPM range.
2075 */
2076 ppvm_size =
2077 roundup(mmu_btop(kpm_size * vac_colors) * sizeof (page_t),
2078 MMU_PAGESIZE);
2079 ppvm_max = (caddr_t)(0ull - ppvm_size);
2080 ppvm_base = (page_t *)va;
2081
2082 if ((caddr_t)ppvm_base <= hole_end) {
2083 cmn_err(CE_WARN,
2084 "Memory DR disabled: invalid DR map base: 0x%p\n",
2085 (void *)ppvm_base);
2086 ppvm_enable = 0;
2087 } else if ((caddr_t)ppvm_base > ppvm_max) {
2088 uint64_t diff = (caddr_t)ppvm_base - ppvm_max;
2089
2090 cmn_err(CE_WARN,
2091 "Memory DR disabled: insufficient DR map size:"
2092 " 0x%lx (needed 0x%lx)\n",
2093 ppvm_size - diff, ppvm_size);
2094 ppvm_enable = 0;
2095 }
2096 PRM_DEBUG(ppvm_size);
2097 PRM_DEBUG(ppvm_base);
2098 }
2099
2100 /*
2101 * Now create generic mapping segment. This mapping
2102 * goes SEGMAPSIZE beyond SEGMAPBASE. But if the total
2103 * virtual address is greater than the amount of free
2104 * memory that is available, then we trim back the
2105 * segment size to that amount
2106 */
2107 va = (caddr_t)SEGMAPBASE;
2108
2109 /*
2110 * 1201049: segkmap base address must be MAXBSIZE aligned
2111 */
2112 ASSERT(((uintptr_t)va & MAXBOFFSET) == 0);
2113
2114 /*
2115 * Set size of segmap to percentage of freemem at boot,
2116 * but stay within the allowable range
2117 * Note we take percentage before converting from pages
2118 * to bytes to avoid an overflow on 32-bit kernels.
2119 */
2120 i = mmu_ptob((freemem * segmap_percent) / 100);
2121
2122 if (i < MINMAPSIZE)
2123 i = MINMAPSIZE;
2124
2125 if (i > MIN(SEGMAPSIZE, mmu_ptob(freemem)))
2126 i = MIN(SEGMAPSIZE, mmu_ptob(freemem));
2127
2128 i &= MAXBMASK; /* 1201049: segkmap size must be MAXBSIZE aligned */
2129
2130 rw_enter(&kas.a_lock, RW_WRITER);
2131 if (seg_attach(&kas, va, i, segkmap) < 0)
2132 cmn_err(CE_PANIC, "cannot attach segkmap");
2133
2134 a.prot = PROT_READ | PROT_WRITE;
2135 a.shmsize = shm_alignment;
2136 a.nfreelist = 0; /* use segmap driver defaults */
2137
2138 if (segmap_create(segkmap, (caddr_t)&a) != 0)
2139 panic("segmap_create segkmap");
2140 rw_exit(&kas.a_lock);
2141
2142 segdev_init();
2143 }
2144
2145 static void
startup_end(void)2146 startup_end(void)
2147 {
2148 if ((caddr_t)memlist > (caddr_t)memlist_end)
2149 panic("memlist overflow 2");
2150 memlist_free_block((caddr_t)memlist,
2151 ((caddr_t)memlist_end - (caddr_t)memlist));
2152 memlist = NULL;
2153
2154 /* enable page_relocation since OBP is now done */
2155 page_relocate_ready = 1;
2156
2157 /*
2158 * Perform tasks that get done after most of the VM
2159 * initialization has been done but before the clock
2160 * and other devices get started.
2161 */
2162 kern_setup1();
2163
2164 /*
2165 * Perform CPC initialization for this CPU.
2166 */
2167 kcpc_hw_init();
2168
2169 /*
2170 * Intialize the VM arenas for allocating physically
2171 * contiguus memory chunk for interrupt queues snd
2172 * allocate/register boot cpu's queues, if any and
2173 * allocate dump buffer for sun4v systems to store
2174 * extra crash information during crash dump
2175 */
2176 contig_mem_init();
2177 mach_descrip_init();
2178
2179 if (cpu_intrq_setup(CPU)) {
2180 cmn_err(CE_PANIC, "cpu%d: setup failed", CPU->cpu_id);
2181 }
2182 cpu_intrq_register(CPU);
2183 mach_htraptrace_setup(CPU->cpu_id);
2184 mach_htraptrace_configure(CPU->cpu_id);
2185 mach_dump_buffer_init();
2186
2187 /*
2188 * Initialize interrupt related stuff
2189 */
2190 cpu_intr_alloc(CPU, NINTR_THREADS);
2191
2192 (void) splzs(); /* allow hi clock ints but not zs */
2193
2194 /*
2195 * Initialize errors.
2196 */
2197 error_init();
2198
2199 /*
2200 * Note that we may have already used kernel bcopy before this
2201 * point - but if you really care about this, adb the use_hw_*
2202 * variables to 0 before rebooting.
2203 */
2204 mach_hw_copy_limit();
2205
2206 /*
2207 * Install the "real" preemption guards before DDI services
2208 * are available.
2209 */
2210 (void) prom_set_preprom(kern_preprom);
2211 (void) prom_set_postprom(kern_postprom);
2212 CPU->cpu_m.mutex_ready = 1;
2213
2214 /*
2215 * Initialize segnf (kernel support for non-faulting loads).
2216 */
2217 segnf_init();
2218
2219 /*
2220 * Configure the root devinfo node.
2221 */
2222 configure(); /* set up devices */
2223 mach_cpu_halt_idle();
2224 }
2225
2226
2227 void
post_startup(void)2228 post_startup(void)
2229 {
2230 #ifdef PTL1_PANIC_DEBUG
2231 extern void init_ptl1_thread(void);
2232 #endif /* PTL1_PANIC_DEBUG */
2233 extern void abort_sequence_init(void);
2234
2235 /*
2236 * Set the system wide, processor-specific flags to be passed
2237 * to userland via the aux vector for performance hints and
2238 * instruction set extensions.
2239 */
2240 bind_hwcap();
2241
2242 /*
2243 * Startup memory scrubber (if any)
2244 */
2245 mach_memscrub();
2246
2247 /*
2248 * Allocate soft interrupt to handle abort sequence.
2249 */
2250 abort_sequence_init();
2251
2252 /*
2253 * Configure the rest of the system.
2254 * Perform forceloading tasks for /etc/system.
2255 */
2256 (void) mod_sysctl(SYS_FORCELOAD, NULL);
2257 /*
2258 * ON4.0: Force /proc module in until clock interrupt handle fixed
2259 * ON4.0: This must be fixed or restated in /etc/systems.
2260 */
2261 (void) modload("fs", "procfs");
2262
2263 /* load machine class specific drivers */
2264 load_mach_drivers();
2265
2266 /* load platform specific drivers */
2267 if (&load_platform_drivers)
2268 load_platform_drivers();
2269
2270 /* load vis simulation module, if we are running w/fpu off */
2271 if (!fpu_exists) {
2272 if (modload("misc", "vis") == -1)
2273 halt("Can't load vis");
2274 }
2275
2276 mach_fpras();
2277
2278 maxmem = freemem;
2279
2280 pg_init();
2281
2282 #ifdef PTL1_PANIC_DEBUG
2283 init_ptl1_thread();
2284 #endif /* PTL1_PANIC_DEBUG */
2285 }
2286
2287 #ifdef PTL1_PANIC_DEBUG
2288 int ptl1_panic_test = 0;
2289 int ptl1_panic_xc_one_test = 0;
2290 int ptl1_panic_xc_all_test = 0;
2291 int ptl1_panic_xt_one_test = 0;
2292 int ptl1_panic_xt_all_test = 0;
2293 kthread_id_t ptl1_thread_p = NULL;
2294 kcondvar_t ptl1_cv;
2295 kmutex_t ptl1_mutex;
2296 int ptl1_recurse_count_threshold = 0x40;
2297 int ptl1_recurse_trap_threshold = 0x3d;
2298 extern void ptl1_recurse(int, int);
2299 extern void ptl1_panic_xt(int, int);
2300
2301 /*
2302 * Called once per second by timeout() to wake up
2303 * the ptl1_panic thread to see if it should cause
2304 * a trap to the ptl1_panic() code.
2305 */
2306 /* ARGSUSED */
2307 static void
ptl1_wakeup(void * arg)2308 ptl1_wakeup(void *arg)
2309 {
2310 mutex_enter(&ptl1_mutex);
2311 cv_signal(&ptl1_cv);
2312 mutex_exit(&ptl1_mutex);
2313 }
2314
2315 /*
2316 * ptl1_panic cross call function:
2317 * Needed because xc_one() and xc_some() can pass
2318 * 64 bit args but ptl1_recurse() expects ints.
2319 */
2320 static void
ptl1_panic_xc(void)2321 ptl1_panic_xc(void)
2322 {
2323 ptl1_recurse(ptl1_recurse_count_threshold,
2324 ptl1_recurse_trap_threshold);
2325 }
2326
2327 /*
2328 * The ptl1 thread waits for a global flag to be set
2329 * and uses the recurse thresholds to set the stack depth
2330 * to cause a ptl1_panic() directly via a call to ptl1_recurse
2331 * or indirectly via the cross call and cross trap functions.
2332 *
2333 * This is useful testing stack overflows and normal
2334 * ptl1_panic() states with a know stack frame.
2335 *
2336 * ptl1_recurse() is an asm function in ptl1_panic.s that
2337 * sets the {In, Local, Out, and Global} registers to a
2338 * know state on the stack and just prior to causing a
2339 * test ptl1_panic trap.
2340 */
2341 static void
ptl1_thread(void)2342 ptl1_thread(void)
2343 {
2344 mutex_enter(&ptl1_mutex);
2345 while (ptl1_thread_p) {
2346 cpuset_t other_cpus;
2347 int cpu_id;
2348 int my_cpu_id;
2349 int target_cpu_id;
2350 int target_found;
2351
2352 if (ptl1_panic_test) {
2353 ptl1_recurse(ptl1_recurse_count_threshold,
2354 ptl1_recurse_trap_threshold);
2355 }
2356
2357 /*
2358 * Find potential targets for x-call and x-trap,
2359 * if any exist while preempt is disabled we
2360 * start a ptl1_panic if requested via a
2361 * globals.
2362 */
2363 kpreempt_disable();
2364 my_cpu_id = CPU->cpu_id;
2365 other_cpus = cpu_ready_set;
2366 CPUSET_DEL(other_cpus, CPU->cpu_id);
2367 target_found = 0;
2368 if (!CPUSET_ISNULL(other_cpus)) {
2369 /*
2370 * Pick the first one
2371 */
2372 for (cpu_id = 0; cpu_id < NCPU; cpu_id++) {
2373 if (cpu_id == my_cpu_id)
2374 continue;
2375
2376 if (CPU_XCALL_READY(cpu_id)) {
2377 target_cpu_id = cpu_id;
2378 target_found = 1;
2379 break;
2380 }
2381 }
2382 ASSERT(target_found);
2383
2384 if (ptl1_panic_xc_one_test) {
2385 xc_one(target_cpu_id,
2386 (xcfunc_t *)ptl1_panic_xc, 0, 0);
2387 }
2388 if (ptl1_panic_xc_all_test) {
2389 xc_some(other_cpus,
2390 (xcfunc_t *)ptl1_panic_xc, 0, 0);
2391 }
2392 if (ptl1_panic_xt_one_test) {
2393 xt_one(target_cpu_id,
2394 (xcfunc_t *)ptl1_panic_xt, 0, 0);
2395 }
2396 if (ptl1_panic_xt_all_test) {
2397 xt_some(other_cpus,
2398 (xcfunc_t *)ptl1_panic_xt, 0, 0);
2399 }
2400 }
2401 kpreempt_enable();
2402 (void) timeout(ptl1_wakeup, NULL, hz);
2403 (void) cv_wait(&ptl1_cv, &ptl1_mutex);
2404 }
2405 mutex_exit(&ptl1_mutex);
2406 }
2407
2408 /*
2409 * Called during early startup to create the ptl1_thread
2410 */
2411 void
init_ptl1_thread(void)2412 init_ptl1_thread(void)
2413 {
2414 ptl1_thread_p = thread_create(NULL, 0, ptl1_thread, NULL, 0,
2415 &p0, TS_RUN, 0);
2416 }
2417 #endif /* PTL1_PANIC_DEBUG */
2418
2419
2420 static void
memlist_new(uint64_t start,uint64_t len,struct memlist ** memlistp)2421 memlist_new(uint64_t start, uint64_t len, struct memlist **memlistp)
2422 {
2423 struct memlist *new;
2424
2425 new = *memlistp;
2426 new->ml_address = start;
2427 new->ml_size = len;
2428 *memlistp = new + 1;
2429 }
2430
2431 /*
2432 * Add to a memory list.
2433 * start = start of new memory segment
2434 * len = length of new memory segment in bytes
2435 * memlistp = pointer to array of available memory segment structures
2436 * curmemlistp = memory list to which to add segment.
2437 */
2438 static void
memlist_add(uint64_t start,uint64_t len,struct memlist ** memlistp,struct memlist ** curmemlistp)2439 memlist_add(uint64_t start, uint64_t len, struct memlist **memlistp,
2440 struct memlist **curmemlistp)
2441 {
2442 struct memlist *new = *memlistp;
2443
2444 memlist_new(start, len, memlistp);
2445 memlist_insert(new, curmemlistp);
2446 }
2447
2448 static int
ndata_alloc_memseg(struct memlist * ndata,size_t avail)2449 ndata_alloc_memseg(struct memlist *ndata, size_t avail)
2450 {
2451 int nseg;
2452 size_t memseg_sz;
2453 struct memseg *msp;
2454
2455 /*
2456 * The memseg list is for the chunks of physical memory that
2457 * will be managed by the vm system. The number calculated is
2458 * a guess as boot may fragment it more when memory allocations
2459 * are made before kphysm_init().
2460 */
2461 memseg_sz = (avail + 10) * sizeof (struct memseg);
2462 memseg_sz = roundup(memseg_sz, PAGESIZE);
2463 nseg = memseg_sz / sizeof (struct memseg);
2464 msp = ndata_alloc(ndata, memseg_sz, ecache_alignsize);
2465 if (msp == NULL)
2466 return (1);
2467 PRM_DEBUG(memseg_free);
2468
2469 while (nseg--) {
2470 msp->next = memseg_free;
2471 memseg_free = msp;
2472 msp++;
2473 }
2474 return (0);
2475 }
2476
2477 /*
2478 * In the case of architectures that support dynamic addition of
2479 * memory at run-time there are two cases where memsegs need to
2480 * be initialized and added to the memseg list.
2481 * 1) memsegs that are constructed at startup.
2482 * 2) memsegs that are constructed at run-time on
2483 * hot-plug capable architectures.
2484 * This code was originally part of the function kphysm_init().
2485 */
2486
2487 static void
memseg_list_add(struct memseg * memsegp)2488 memseg_list_add(struct memseg *memsegp)
2489 {
2490 struct memseg **prev_memsegp;
2491 pgcnt_t num;
2492
2493 /* insert in memseg list, decreasing number of pages order */
2494
2495 num = MSEG_NPAGES(memsegp);
2496
2497 for (prev_memsegp = &memsegs; *prev_memsegp;
2498 prev_memsegp = &((*prev_memsegp)->next)) {
2499 if (num > MSEG_NPAGES(*prev_memsegp))
2500 break;
2501 }
2502
2503 memsegp->next = *prev_memsegp;
2504 *prev_memsegp = memsegp;
2505
2506 if (kpm_enable) {
2507 memsegp->nextpa = (memsegp->next) ?
2508 va_to_pa(memsegp->next) : MSEG_NULLPTR_PA;
2509
2510 if (prev_memsegp != &memsegs) {
2511 struct memseg *msp;
2512 msp = (struct memseg *)((caddr_t)prev_memsegp -
2513 offsetof(struct memseg, next));
2514 msp->nextpa = va_to_pa(memsegp);
2515 } else {
2516 memsegspa = va_to_pa(memsegs);
2517 }
2518 }
2519 }
2520
2521 /*
2522 * PSM add_physmem_cb(). US-II and newer processors have some
2523 * flavor of the prefetch capability implemented. We exploit
2524 * this capability for optimum performance.
2525 */
2526 #define PREFETCH_BYTES 64
2527
2528 void
add_physmem_cb(page_t * pp,pfn_t pnum)2529 add_physmem_cb(page_t *pp, pfn_t pnum)
2530 {
2531 extern void prefetch_page_w(void *);
2532
2533 pp->p_pagenum = pnum;
2534
2535 /*
2536 * Prefetch one more page_t into E$. To prevent future
2537 * mishaps with the sizeof(page_t) changing on us, we
2538 * catch this on debug kernels if we can't bring in the
2539 * entire hpage with 2 PREFETCH_BYTES reads. See
2540 * also, sun4u/cpu/cpu_module.c
2541 */
2542 /*LINTED*/
2543 ASSERT(sizeof (page_t) <= 2*PREFETCH_BYTES);
2544 prefetch_page_w((char *)pp);
2545 }
2546
2547 /*
2548 * Find memseg with given pfn
2549 */
2550 static struct memseg *
memseg_find(pfn_t base,pfn_t * next)2551 memseg_find(pfn_t base, pfn_t *next)
2552 {
2553 struct memseg *seg;
2554
2555 if (next != NULL)
2556 *next = LONG_MAX;
2557 for (seg = memsegs; seg != NULL; seg = seg->next) {
2558 if (base >= seg->pages_base && base < seg->pages_end)
2559 return (seg);
2560 if (next != NULL && seg->pages_base > base &&
2561 seg->pages_base < *next)
2562 *next = seg->pages_base;
2563 }
2564 return (NULL);
2565 }
2566
2567 /*
2568 * Put page allocated by OBP on prom_ppages
2569 */
2570 static void
kphysm_erase(uint64_t addr,uint64_t len)2571 kphysm_erase(uint64_t addr, uint64_t len)
2572 {
2573 struct page *pp;
2574 struct memseg *seg;
2575 pfn_t base = btop(addr), next;
2576 pgcnt_t num = btop(len);
2577
2578 while (num != 0) {
2579 pgcnt_t off, left;
2580
2581 seg = memseg_find(base, &next);
2582 if (seg == NULL) {
2583 if (next == LONG_MAX)
2584 break;
2585 left = MIN(next - base, num);
2586 base += left, num -= left;
2587 continue;
2588 }
2589 off = base - seg->pages_base;
2590 pp = seg->pages + off;
2591 left = num - MIN(num, (seg->pages_end - seg->pages_base) - off);
2592 while (num != left) {
2593 /*
2594 * init it, lock it, and hashin on prom_pages vp.
2595 *
2596 * Mark it as NONRELOC to let DR know the page
2597 * is locked long term, otherwise DR hangs when
2598 * trying to remove those pages.
2599 *
2600 * XXX vnode offsets on the prom_ppages vnode
2601 * are page numbers (gack) for >32 bit
2602 * physical memory machines.
2603 */
2604 PP_SETNORELOC(pp);
2605 add_physmem_cb(pp, base);
2606 if (page_trylock(pp, SE_EXCL) == 0)
2607 cmn_err(CE_PANIC, "prom page locked");
2608 (void) page_hashin(pp, &promvp,
2609 (offset_t)base, NULL);
2610 (void) page_pp_lock(pp, 0, 1);
2611 pp++, base++, num--;
2612 }
2613 }
2614 }
2615
2616 static page_t *ppnext;
2617 static pgcnt_t ppleft;
2618
2619 static void *kpm_ppnext;
2620 static pgcnt_t kpm_ppleft;
2621
2622 /*
2623 * Create a memseg
2624 */
2625 static void
kphysm_memseg(uint64_t addr,uint64_t len)2626 kphysm_memseg(uint64_t addr, uint64_t len)
2627 {
2628 pfn_t base = btop(addr);
2629 pgcnt_t num = btop(len);
2630 struct memseg *seg;
2631
2632 seg = memseg_free;
2633 memseg_free = seg->next;
2634 ASSERT(seg != NULL);
2635
2636 seg->pages = ppnext;
2637 seg->epages = ppnext + num;
2638 seg->pages_base = base;
2639 seg->pages_end = base + num;
2640 ppnext += num;
2641 ppleft -= num;
2642
2643 if (kpm_enable) {
2644 pgcnt_t kpnum = ptokpmpr(num);
2645
2646 if (kpnum > kpm_ppleft)
2647 panic("kphysm_memseg: kpm_pp overflow");
2648 seg->pagespa = va_to_pa(seg->pages);
2649 seg->epagespa = va_to_pa(seg->epages);
2650 seg->kpm_pbase = kpmptop(ptokpmp(base));
2651 seg->kpm_nkpmpgs = kpnum;
2652 /*
2653 * In the kpm_smallpage case, the kpm array
2654 * is 1-1 wrt the page array
2655 */
2656 if (kpm_smallpages) {
2657 kpm_spage_t *kpm_pp = kpm_ppnext;
2658
2659 kpm_ppnext = kpm_pp + kpnum;
2660 seg->kpm_spages = kpm_pp;
2661 seg->kpm_pagespa = va_to_pa(seg->kpm_spages);
2662 } else {
2663 kpm_page_t *kpm_pp = kpm_ppnext;
2664
2665 kpm_ppnext = kpm_pp + kpnum;
2666 seg->kpm_pages = kpm_pp;
2667 seg->kpm_pagespa = va_to_pa(seg->kpm_pages);
2668 /* ASSERT no kpm overlaps */
2669 ASSERT(
2670 memseg_find(base - pmodkpmp(base), NULL) == NULL);
2671 ASSERT(memseg_find(
2672 roundup(base + num, kpmpnpgs) - 1, NULL) == NULL);
2673 }
2674 kpm_ppleft -= kpnum;
2675 }
2676
2677 memseg_list_add(seg);
2678 }
2679
2680 /*
2681 * Add range to free list
2682 */
2683 void
kphysm_add(uint64_t addr,uint64_t len,int reclaim)2684 kphysm_add(uint64_t addr, uint64_t len, int reclaim)
2685 {
2686 struct page *pp;
2687 struct memseg *seg;
2688 pfn_t base = btop(addr);
2689 pgcnt_t num = btop(len);
2690
2691 seg = memseg_find(base, NULL);
2692 ASSERT(seg != NULL);
2693 pp = seg->pages + (base - seg->pages_base);
2694
2695 if (reclaim) {
2696 struct page *rpp = pp;
2697 struct page *lpp = pp + num;
2698
2699 /*
2700 * page should be locked on prom_ppages
2701 * unhash and unlock it
2702 */
2703 while (rpp < lpp) {
2704 ASSERT(PAGE_EXCL(rpp) && rpp->p_vnode == &promvp);
2705 ASSERT(PP_ISNORELOC(rpp));
2706 PP_CLRNORELOC(rpp);
2707 page_pp_unlock(rpp, 0, 1);
2708 page_hashout(rpp, NULL);
2709 page_unlock(rpp);
2710 rpp++;
2711 }
2712 }
2713
2714 /*
2715 * add_physmem() initializes the PSM part of the page
2716 * struct by calling the PSM back with add_physmem_cb().
2717 * In addition it coalesces pages into larger pages as
2718 * it initializes them.
2719 */
2720 add_physmem(pp, num, base);
2721 }
2722
2723 /*
2724 * kphysm_init() tackles the problem of initializing physical memory.
2725 */
2726 static void
kphysm_init(void)2727 kphysm_init(void)
2728 {
2729 struct memlist *pmem;
2730
2731 ASSERT(page_hash != NULL && page_hashsz != 0);
2732
2733 ppnext = pp_base;
2734 ppleft = npages;
2735 kpm_ppnext = kpm_pp_base;
2736 kpm_ppleft = kpm_npages;
2737
2738 /*
2739 * installed pages not on nopp_memlist go in memseg list
2740 */
2741 diff_memlists(phys_install, nopp_list, kphysm_memseg);
2742
2743 /*
2744 * Free the avail list
2745 */
2746 for (pmem = phys_avail; pmem != NULL; pmem = pmem->ml_next)
2747 kphysm_add(pmem->ml_address, pmem->ml_size, 0);
2748
2749 /*
2750 * Erase pages that aren't available
2751 */
2752 diff_memlists(phys_install, phys_avail, kphysm_erase);
2753
2754 build_pfn_hash();
2755 }
2756
2757 /*
2758 * Kernel VM initialization.
2759 * Assumptions about kernel address space ordering:
2760 * (1) gap (user space)
2761 * (2) kernel text
2762 * (3) kernel data/bss
2763 * (4) gap
2764 * (5) kernel data structures
2765 * (6) gap
2766 * (7) debugger (optional)
2767 * (8) monitor
2768 * (9) gap (possibly null)
2769 * (10) dvma
2770 * (11) devices
2771 */
2772 static void
kvm_init(void)2773 kvm_init(void)
2774 {
2775 /*
2776 * Put the kernel segments in kernel address space.
2777 */
2778 rw_enter(&kas.a_lock, RW_WRITER);
2779 as_avlinit(&kas);
2780
2781 (void) seg_attach(&kas, (caddr_t)KERNELBASE,
2782 (size_t)(e_moddata - KERNELBASE), &ktextseg);
2783 (void) segkmem_create(&ktextseg);
2784
2785 (void) seg_attach(&kas, (caddr_t)(KERNELBASE + MMU_PAGESIZE4M),
2786 (size_t)(MMU_PAGESIZE4M), &ktexthole);
2787 (void) segkmem_create(&ktexthole);
2788
2789 (void) seg_attach(&kas, (caddr_t)valloc_base,
2790 (size_t)(econtig32 - valloc_base), &kvalloc);
2791 (void) segkmem_create(&kvalloc);
2792
2793 if (kmem64_base) {
2794 (void) seg_attach(&kas, (caddr_t)kmem64_base,
2795 (size_t)(kmem64_end - kmem64_base), &kmem64);
2796 (void) segkmem_create(&kmem64);
2797 }
2798
2799 /*
2800 * We're about to map out /boot. This is the beginning of the
2801 * system resource management transition. We can no longer
2802 * call into /boot for I/O or memory allocations.
2803 */
2804 (void) seg_attach(&kas, kernelheap, ekernelheap - kernelheap, &kvseg);
2805 (void) segkmem_create(&kvseg);
2806 hblk_alloc_dynamic = 1;
2807
2808 /*
2809 * we need to preallocate pages for DR operations before enabling large
2810 * page kernel heap because of memseg_remap_init() hat_unload() hack.
2811 */
2812 memseg_remap_init();
2813
2814 /* at this point we are ready to use large page heap */
2815 segkmem_heap_lp_init();
2816
2817 (void) seg_attach(&kas, (caddr_t)SYSBASE32, SYSLIMIT32 - SYSBASE32,
2818 &kvseg32);
2819 (void) segkmem_create(&kvseg32);
2820
2821 /*
2822 * Create a segment for the debugger.
2823 */
2824 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2825 (void) segkmem_create(&kdebugseg);
2826
2827 rw_exit(&kas.a_lock);
2828 }
2829
2830 char obp_tte_str[] =
2831 "h# %x constant MMU_PAGESHIFT "
2832 "h# %x constant TTE8K "
2833 "h# %x constant SFHME_SIZE "
2834 "h# %x constant SFHME_TTE "
2835 "h# %x constant HMEBLK_TAG "
2836 "h# %x constant HMEBLK_NEXT "
2837 "h# %x constant HMEBLK_MISC "
2838 "h# %x constant HMEBLK_HME1 "
2839 "h# %x constant NHMENTS "
2840 "h# %x constant HBLK_SZMASK "
2841 "h# %x constant HBLK_RANGE_SHIFT "
2842 "h# %x constant HMEBP_HBLK "
2843 "h# %x constant HMEBLK_ENDPA "
2844 "h# %x constant HMEBUCKET_SIZE "
2845 "h# %x constant HTAG_SFMMUPSZ "
2846 "h# %x constant HTAG_BSPAGE_SHIFT "
2847 "h# %x constant HTAG_REHASH_SHIFT "
2848 "h# %x constant SFMMU_INVALID_SHMERID "
2849 "h# %x constant mmu_hashcnt "
2850 "h# %p constant uhme_hash "
2851 "h# %p constant khme_hash "
2852 "h# %x constant UHMEHASH_SZ "
2853 "h# %x constant KHMEHASH_SZ "
2854 "h# %p constant KCONTEXT "
2855 "h# %p constant KHATID "
2856 "h# %x constant ASI_MEM "
2857
2858 ": PHYS-X@ ( phys -- data ) "
2859 " ASI_MEM spacex@ "
2860 "; "
2861
2862 ": PHYS-W@ ( phys -- data ) "
2863 " ASI_MEM spacew@ "
2864 "; "
2865
2866 ": PHYS-L@ ( phys -- data ) "
2867 " ASI_MEM spaceL@ "
2868 "; "
2869
2870 ": TTE_PAGE_SHIFT ( ttesz -- hmeshift ) "
2871 " 3 * MMU_PAGESHIFT + "
2872 "; "
2873
2874 ": TTE_IS_VALID ( ttep -- flag ) "
2875 " PHYS-X@ 0< "
2876 "; "
2877
2878 ": HME_HASH_SHIFT ( ttesz -- hmeshift ) "
2879 " dup TTE8K = if "
2880 " drop HBLK_RANGE_SHIFT "
2881 " else "
2882 " TTE_PAGE_SHIFT "
2883 " then "
2884 "; "
2885
2886 ": HME_HASH_BSPAGE ( addr hmeshift -- bspage ) "
2887 " tuck >> swap MMU_PAGESHIFT - << "
2888 "; "
2889
2890 ": HME_HASH_FUNCTION ( sfmmup addr hmeshift -- hmebp ) "
2891 " >> over xor swap ( hash sfmmup ) "
2892 " KHATID <> if ( hash ) "
2893 " UHMEHASH_SZ and ( bucket ) "
2894 " HMEBUCKET_SIZE * uhme_hash + ( hmebp ) "
2895 " else ( hash ) "
2896 " KHMEHASH_SZ and ( bucket ) "
2897 " HMEBUCKET_SIZE * khme_hash + ( hmebp ) "
2898 " then ( hmebp ) "
2899 "; "
2900
2901 ": HME_HASH_TABLE_SEARCH "
2902 " ( sfmmup hmebp hblktag -- sfmmup null | sfmmup hmeblkp ) "
2903 " >r hmebp_hblk + phys-x@ begin ( sfmmup hmeblkp ) ( r: hblktag ) "
2904 " dup HMEBLK_ENDPA <> if ( sfmmup hmeblkp ) ( r: hblktag ) "
2905 " dup hmeblk_tag + phys-x@ r@ = if ( sfmmup hmeblkp ) "
2906 " dup hmeblk_tag + 8 + phys-x@ 2 pick = if "
2907 " true ( sfmmup hmeblkp true ) ( r: hblktag ) "
2908 " else "
2909 " hmeblk_next + phys-x@ false "
2910 " ( sfmmup hmeblkp false ) ( r: hblktag ) "
2911 " then "
2912 " else "
2913 " hmeblk_next + phys-x@ false "
2914 " ( sfmmup hmeblkp false ) ( r: hblktag ) "
2915 " then "
2916 " else "
2917 " drop 0 true "
2918 " then "
2919 " until r> drop "
2920 "; "
2921
2922 ": HME_HASH_TAG ( sfmmup rehash addr -- hblktag ) "
2923 " over HME_HASH_SHIFT HME_HASH_BSPAGE ( sfmmup rehash bspage ) "
2924 " HTAG_BSPAGE_SHIFT << ( sfmmup rehash htag-bspage )"
2925 " swap HTAG_REHASH_SHIFT << or ( sfmmup htag-bspage-rehash )"
2926 " SFMMU_INVALID_SHMERID or nip ( hblktag ) "
2927 "; "
2928
2929 ": HBLK_TO_TTEP ( hmeblkp addr -- ttep ) "
2930 " over HMEBLK_MISC + PHYS-L@ HBLK_SZMASK and ( hmeblkp addr ttesz ) "
2931 " TTE8K = if ( hmeblkp addr ) "
2932 " MMU_PAGESHIFT >> NHMENTS 1- and ( hmeblkp hme-index ) "
2933 " else ( hmeblkp addr ) "
2934 " drop 0 ( hmeblkp 0 ) "
2935 " then ( hmeblkp hme-index ) "
2936 " SFHME_SIZE * + HMEBLK_HME1 + ( hmep ) "
2937 " SFHME_TTE + ( ttep ) "
2938 "; "
2939
2940 ": unix-tte ( addr cnum -- false | tte-data true ) "
2941 " KCONTEXT = if ( addr ) "
2942 " KHATID ( addr khatid ) "
2943 " else ( addr ) "
2944 " drop false exit ( false ) "
2945 " then "
2946 " ( addr khatid ) "
2947 " mmu_hashcnt 1+ 1 do ( addr sfmmup ) "
2948 " 2dup swap i HME_HASH_SHIFT "
2949 "( addr sfmmup sfmmup addr hmeshift ) "
2950 " HME_HASH_FUNCTION ( addr sfmmup hmebp ) "
2951 " over i 4 pick "
2952 "( addr sfmmup hmebp sfmmup rehash addr ) "
2953 " HME_HASH_TAG ( addr sfmmup hmebp hblktag ) "
2954 " HME_HASH_TABLE_SEARCH "
2955 "( addr sfmmup { null | hmeblkp } ) "
2956 " ?dup if ( addr sfmmup hmeblkp ) "
2957 " nip swap HBLK_TO_TTEP ( ttep ) "
2958 " dup TTE_IS_VALID if ( valid-ttep ) "
2959 " PHYS-X@ true ( tte-data true ) "
2960 " else ( invalid-tte ) "
2961 " drop false ( false ) "
2962 " then ( false | tte-data true ) "
2963 " unloop exit ( false | tte-data true ) "
2964 " then ( addr sfmmup ) "
2965 " loop ( addr sfmmup ) "
2966 " 2drop false ( false ) "
2967 "; "
2968 ;
2969
2970 void
create_va_to_tte(void)2971 create_va_to_tte(void)
2972 {
2973 char *bp;
2974 extern int khmehash_num, uhmehash_num;
2975 extern struct hmehash_bucket *khme_hash, *uhme_hash;
2976
2977 #define OFFSET(type, field) ((uintptr_t)(&((type *)0)->field))
2978
2979 bp = (char *)kobj_zalloc(MMU_PAGESIZE, KM_SLEEP);
2980
2981 /*
2982 * Teach obp how to parse our sw ttes.
2983 */
2984 (void) sprintf(bp, obp_tte_str,
2985 MMU_PAGESHIFT,
2986 TTE8K,
2987 sizeof (struct sf_hment),
2988 OFFSET(struct sf_hment, hme_tte),
2989 OFFSET(struct hme_blk, hblk_tag),
2990 OFFSET(struct hme_blk, hblk_nextpa),
2991 OFFSET(struct hme_blk, hblk_misc),
2992 OFFSET(struct hme_blk, hblk_hme),
2993 NHMENTS,
2994 HBLK_SZMASK,
2995 HBLK_RANGE_SHIFT,
2996 OFFSET(struct hmehash_bucket, hmeh_nextpa),
2997 HMEBLK_ENDPA,
2998 sizeof (struct hmehash_bucket),
2999 HTAG_SFMMUPSZ,
3000 HTAG_BSPAGE_SHIFT,
3001 HTAG_REHASH_SHIFT,
3002 SFMMU_INVALID_SHMERID,
3003 mmu_hashcnt,
3004 (caddr_t)va_to_pa((caddr_t)uhme_hash),
3005 (caddr_t)va_to_pa((caddr_t)khme_hash),
3006 UHMEHASH_SZ,
3007 KHMEHASH_SZ,
3008 KCONTEXT,
3009 KHATID,
3010 ASI_MEM);
3011 prom_interpret(bp, 0, 0, 0, 0, 0);
3012
3013 kobj_free(bp, MMU_PAGESIZE);
3014 }
3015
3016 void
install_va_to_tte(void)3017 install_va_to_tte(void)
3018 {
3019 /*
3020 * advise prom that he can use unix-tte
3021 */
3022 prom_interpret("' unix-tte is va>tte-data", 0, 0, 0, 0, 0);
3023 }
3024
3025 /*
3026 * Here we add "device-type=console" for /os-io node, for currently
3027 * our kernel console output only supports displaying text and
3028 * performing cursor-positioning operations (through kernel framebuffer
3029 * driver) and it doesn't support other functionalities required for a
3030 * standard "display" device as specified in 1275 spec. The main missing
3031 * interface defined by the 1275 spec is "draw-logo".
3032 * also see the comments above prom_stdout_is_framebuffer().
3033 */
3034 static char *create_node =
3035 "\" /\" find-device "
3036 "new-device "
3037 "\" os-io\" device-name "
3038 "\" "OBP_DISPLAY_CONSOLE"\" device-type "
3039 ": cb-r/w ( adr,len method$ -- #read/#written ) "
3040 " 2>r swap 2 2r> ['] $callback catch if "
3041 " 2drop 3drop 0 "
3042 " then "
3043 "; "
3044 ": read ( adr,len -- #read ) "
3045 " \" read\" ['] cb-r/w catch if 2drop 2drop -2 exit then "
3046 " ( retN ... ret1 N ) "
3047 " ?dup if "
3048 " swap >r 1- 0 ?do drop loop r> "
3049 " else "
3050 " -2 "
3051 " then "
3052 "; "
3053 ": write ( adr,len -- #written ) "
3054 " \" write\" ['] cb-r/w catch if 2drop 2drop 0 exit then "
3055 " ( retN ... ret1 N ) "
3056 " ?dup if "
3057 " swap >r 1- 0 ?do drop loop r> "
3058 " else "
3059 " 0 "
3060 " then "
3061 "; "
3062 ": poll-tty ( -- ) ; "
3063 ": install-abort ( -- ) ['] poll-tty d# 10 alarm ; "
3064 ": remove-abort ( -- ) ['] poll-tty 0 alarm ; "
3065 ": cb-give/take ( $method -- ) "
3066 " 0 -rot ['] $callback catch ?dup if "
3067 " >r 2drop 2drop r> throw "
3068 " else "
3069 " 0 ?do drop loop "
3070 " then "
3071 "; "
3072 ": give ( -- ) \" exit-input\" cb-give/take ; "
3073 ": take ( -- ) \" enter-input\" cb-give/take ; "
3074 ": open ( -- ok? ) true ; "
3075 ": close ( -- ) ; "
3076 "finish-device "
3077 "device-end ";
3078
3079 /*
3080 * Create the OBP input/output node (FCode serial driver).
3081 * It is needed for both USB console keyboard and for
3082 * the kernel terminal emulator. It is too early to check for a
3083 * kernel console compatible framebuffer now, so we create this
3084 * so that we're ready if we need to enable kernel terminal emulation.
3085 *
3086 * When the USB software takes over the input device at the time
3087 * consconfig runs, OBP's stdin is redirected to this node.
3088 * Whenever the FORTH user interface is used after this switch,
3089 * the node will call back into the kernel for console input.
3090 * If a serial device such as ttya or a UART with a Type 5 keyboard
3091 * attached is used, OBP takes over the serial device when the system
3092 * goes to the debugger after the system is booted. This sharing
3093 * of the relatively simple serial device is difficult but possible.
3094 * Sharing the USB host controller is impossible due its complexity.
3095 *
3096 * Similarly to USB keyboard input redirection, after consconfig_dacf
3097 * configures a kernel console framebuffer as the standard output
3098 * device, OBP's stdout is switched to to vector through the
3099 * /os-io node into the kernel terminal emulator.
3100 */
3101 static void
startup_create_io_node(void)3102 startup_create_io_node(void)
3103 {
3104 prom_interpret(create_node, 0, 0, 0, 0, 0);
3105 }
3106
3107
3108 static void
do_prom_version_check(void)3109 do_prom_version_check(void)
3110 {
3111 int i;
3112 pnode_t node;
3113 char buf[64];
3114 static char drev[] = "Down-rev firmware detected%s\n"
3115 "\tPlease upgrade to the following minimum version:\n"
3116 "\t\t%s\n";
3117
3118 i = prom_version_check(buf, sizeof (buf), &node);
3119
3120 if (i == PROM_VER64_OK)
3121 return;
3122
3123 if (i == PROM_VER64_UPGRADE) {
3124 cmn_err(CE_WARN, drev, "", buf);
3125
3126 #ifdef DEBUG
3127 prom_enter_mon(); /* Type 'go' to continue */
3128 cmn_err(CE_WARN, "Booting with down-rev firmware\n");
3129 return;
3130 #else
3131 halt(0);
3132 #endif
3133 }
3134
3135 /*
3136 * The other possibility is that this is a server running
3137 * good firmware, but down-rev firmware was detected on at
3138 * least one other cpu board. We just complain if we see
3139 * that.
3140 */
3141 cmn_err(CE_WARN, drev, " on one or more CPU boards", buf);
3142 }
3143
3144
3145 /*
3146 * Must be defined in platform dependent code.
3147 */
3148 extern caddr_t modtext;
3149 extern size_t modtext_sz;
3150 extern caddr_t moddata;
3151
3152 #define HEAPTEXT_ARENA(addr) \
3153 ((uintptr_t)(addr) < KERNELBASE + 2 * MMU_PAGESIZE4M ? 0 : \
3154 (((uintptr_t)(addr) - HEAPTEXT_BASE) / \
3155 (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) + 1))
3156
3157 #define HEAPTEXT_OVERSIZED(addr) \
3158 ((uintptr_t)(addr) >= HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE)
3159
3160 #define HEAPTEXT_IN_NUCLEUSDATA(addr) \
3161 (((uintptr_t)(addr) >= KERNELBASE + 2 * MMU_PAGESIZE4M) && \
3162 ((uintptr_t)(addr) < KERNELBASE + 3 * MMU_PAGESIZE4M))
3163
3164 vmem_t *texthole_source[HEAPTEXT_NARENAS];
3165 vmem_t *texthole_arena[HEAPTEXT_NARENAS];
3166 kmutex_t texthole_lock;
3167
3168 char kern_bootargs[OBP_MAXPATHLEN];
3169 char kern_bootfile[OBP_MAXPATHLEN];
3170
3171 void
kobj_vmem_init(vmem_t ** text_arena,vmem_t ** data_arena)3172 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
3173 {
3174 uintptr_t addr, limit;
3175
3176 addr = HEAPTEXT_BASE;
3177 limit = addr + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE;
3178
3179 /*
3180 * Before we initialize the text_arena, we want to punch holes in the
3181 * underlying heaptext_arena. This guarantees that for any text
3182 * address we can find a text hole less than HEAPTEXT_MAPPED away.
3183 */
3184 for (; addr + HEAPTEXT_UNMAPPED <= limit;
3185 addr += HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) {
3186 (void) vmem_xalloc(heaptext_arena, HEAPTEXT_UNMAPPED, PAGESIZE,
3187 0, 0, (void *)addr, (void *)(addr + HEAPTEXT_UNMAPPED),
3188 VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3189 }
3190
3191 /*
3192 * Allocate one page at the oversize to break up the text region
3193 * from the oversized region.
3194 */
3195 (void) vmem_xalloc(heaptext_arena, PAGESIZE, PAGESIZE, 0, 0,
3196 (void *)limit, (void *)(limit + PAGESIZE),
3197 VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3198
3199 *text_arena = vmem_create("module_text", modtext_sz ? modtext : NULL,
3200 modtext_sz, sizeof (uintptr_t), segkmem_alloc, segkmem_free,
3201 heaptext_arena, 0, VM_SLEEP);
3202 *data_arena = vmem_create("module_data", moddata, MODDATA, 1,
3203 segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
3204 }
3205
3206 caddr_t
kobj_text_alloc(vmem_t * arena,size_t size)3207 kobj_text_alloc(vmem_t *arena, size_t size)
3208 {
3209 caddr_t rval, better;
3210
3211 /*
3212 * First, try a sleeping allocation.
3213 */
3214 rval = vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT);
3215
3216 if (size >= HEAPTEXT_MAPPED || !HEAPTEXT_OVERSIZED(rval))
3217 return (rval);
3218
3219 /*
3220 * We didn't get the area that we wanted. We're going to try to do an
3221 * allocation with explicit constraints.
3222 */
3223 better = vmem_xalloc(arena, size, sizeof (uintptr_t), 0, 0, NULL,
3224 (void *)(HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE),
3225 VM_NOSLEEP | VM_BESTFIT);
3226
3227 if (better != NULL) {
3228 /*
3229 * That worked. Free our first attempt and return.
3230 */
3231 vmem_free(arena, rval, size);
3232 return (better);
3233 }
3234
3235 /*
3236 * That didn't work; we'll have to return our first attempt.
3237 */
3238 return (rval);
3239 }
3240
3241 caddr_t
kobj_texthole_alloc(caddr_t addr,size_t size)3242 kobj_texthole_alloc(caddr_t addr, size_t size)
3243 {
3244 int arena = HEAPTEXT_ARENA(addr);
3245 char c[30];
3246 uintptr_t base;
3247
3248 if (HEAPTEXT_OVERSIZED(addr) || HEAPTEXT_IN_NUCLEUSDATA(addr)) {
3249 /*
3250 * If this is an oversized allocation or it is allocated in
3251 * the nucleus data page, there is no text hole available for
3252 * it; return NULL.
3253 */
3254 return (NULL);
3255 }
3256
3257 mutex_enter(&texthole_lock);
3258
3259 if (texthole_arena[arena] == NULL) {
3260 ASSERT(texthole_source[arena] == NULL);
3261
3262 if (arena == 0) {
3263 texthole_source[0] = vmem_create("module_text_holesrc",
3264 (void *)(KERNELBASE + MMU_PAGESIZE4M),
3265 MMU_PAGESIZE4M, PAGESIZE, NULL, NULL, NULL,
3266 0, VM_SLEEP);
3267 } else {
3268 base = HEAPTEXT_BASE +
3269 (arena - 1) * (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED);
3270
3271 (void) snprintf(c, sizeof (c),
3272 "heaptext_holesrc_%d", arena);
3273
3274 texthole_source[arena] = vmem_create(c, (void *)base,
3275 HEAPTEXT_UNMAPPED, PAGESIZE, NULL, NULL, NULL,
3276 0, VM_SLEEP);
3277 }
3278
3279 (void) snprintf(c, sizeof (c), "heaptext_hole_%d", arena);
3280
3281 texthole_arena[arena] = vmem_create(c, NULL, 0,
3282 sizeof (uint32_t), segkmem_alloc_permanent, segkmem_free,
3283 texthole_source[arena], 0, VM_SLEEP);
3284 }
3285
3286 mutex_exit(&texthole_lock);
3287
3288 ASSERT(texthole_arena[arena] != NULL);
3289 ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3290 return (vmem_alloc(texthole_arena[arena], size,
3291 VM_BESTFIT | VM_NOSLEEP));
3292 }
3293
3294 void
kobj_texthole_free(caddr_t addr,size_t size)3295 kobj_texthole_free(caddr_t addr, size_t size)
3296 {
3297 int arena = HEAPTEXT_ARENA(addr);
3298
3299 ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3300 ASSERT(texthole_arena[arena] != NULL);
3301 vmem_free(texthole_arena[arena], addr, size);
3302 }
3303
3304 void
release_bootstrap(void)3305 release_bootstrap(void)
3306 {
3307 if (&cif_init)
3308 cif_init();
3309 }
3310