1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/swap_state.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 *
8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
9 */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/mempolicy.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/init.h>
17 #include <linux/pagemap.h>
18 #include <linux/pagevec.h>
19 #include <linux/backing-dev.h>
20 #include <linux/blkdev.h>
21 #include <linux/migrate.h>
22 #include <linux/vmalloc.h>
23 #include <linux/huge_mm.h>
24 #include <linux/shmem_fs.h>
25 #include "internal.h"
26 #include "swap.h"
27
28 /*
29 * swapper_space is a fiction, retained to simplify the path through
30 * vmscan's shrink_folio_list.
31 */
32 static const struct address_space_operations swap_aops = {
33 .dirty_folio = noop_dirty_folio,
34 #ifdef CONFIG_MIGRATION
35 .migrate_folio = migrate_folio,
36 #endif
37 };
38
39 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
40 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 static bool enable_vma_readahead __read_mostly = true;
42
43 #define SWAP_RA_ORDER_CEILING 5
44
45 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
46 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
47 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
48 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
49
50 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
51 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
52 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
53
54 #define SWAP_RA_VAL(addr, win, hits) \
55 (((addr) & PAGE_MASK) | \
56 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
57 ((hits) & SWAP_RA_HITS_MASK))
58
59 /* Initial readahead hits is 4 to start up with a small window */
60 #define GET_SWAP_RA_VAL(vma) \
61 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
62
63 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
64
show_swap_cache_info(void)65 void show_swap_cache_info(void)
66 {
67 printk("%lu pages in swap cache\n", total_swapcache_pages());
68 printk("Free swap = %ldkB\n", K(get_nr_swap_pages()));
69 printk("Total swap = %lukB\n", K(total_swap_pages));
70 }
71
get_shadow_from_swap_cache(swp_entry_t entry)72 void *get_shadow_from_swap_cache(swp_entry_t entry)
73 {
74 struct address_space *address_space = swap_address_space(entry);
75 pgoff_t idx = swap_cache_index(entry);
76 void *shadow;
77
78 shadow = xa_load(&address_space->i_pages, idx);
79 if (xa_is_value(shadow))
80 return shadow;
81 return NULL;
82 }
83
84 /*
85 * add_to_swap_cache resembles filemap_add_folio on swapper_space,
86 * but sets SwapCache flag and 'swap' instead of mapping and index.
87 */
add_to_swap_cache(struct folio * folio,swp_entry_t entry,gfp_t gfp,void ** shadowp)88 int add_to_swap_cache(struct folio *folio, swp_entry_t entry,
89 gfp_t gfp, void **shadowp)
90 {
91 struct address_space *address_space = swap_address_space(entry);
92 pgoff_t idx = swap_cache_index(entry);
93 XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio));
94 unsigned long i, nr = folio_nr_pages(folio);
95 void *old;
96
97 xas_set_update(&xas, workingset_update_node);
98
99 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
100 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
101 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
102
103 folio_ref_add(folio, nr);
104 folio_set_swapcache(folio);
105 folio->swap = entry;
106
107 do {
108 xas_lock_irq(&xas);
109 xas_create_range(&xas);
110 if (xas_error(&xas))
111 goto unlock;
112 for (i = 0; i < nr; i++) {
113 VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio);
114 if (shadowp) {
115 old = xas_load(&xas);
116 if (xa_is_value(old))
117 *shadowp = old;
118 }
119 xas_store(&xas, folio);
120 xas_next(&xas);
121 }
122 address_space->nrpages += nr;
123 __node_stat_mod_folio(folio, NR_FILE_PAGES, nr);
124 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr);
125 unlock:
126 xas_unlock_irq(&xas);
127 } while (xas_nomem(&xas, gfp));
128
129 if (!xas_error(&xas))
130 return 0;
131
132 folio_clear_swapcache(folio);
133 folio_ref_sub(folio, nr);
134 return xas_error(&xas);
135 }
136
137 /*
138 * This must be called only on folios that have
139 * been verified to be in the swap cache.
140 */
__delete_from_swap_cache(struct folio * folio,swp_entry_t entry,void * shadow)141 void __delete_from_swap_cache(struct folio *folio,
142 swp_entry_t entry, void *shadow)
143 {
144 struct address_space *address_space = swap_address_space(entry);
145 int i;
146 long nr = folio_nr_pages(folio);
147 pgoff_t idx = swap_cache_index(entry);
148 XA_STATE(xas, &address_space->i_pages, idx);
149
150 xas_set_update(&xas, workingset_update_node);
151
152 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
153 VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
154 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
155
156 for (i = 0; i < nr; i++) {
157 void *entry = xas_store(&xas, shadow);
158 VM_BUG_ON_PAGE(entry != folio, entry);
159 xas_next(&xas);
160 }
161 folio->swap.val = 0;
162 folio_clear_swapcache(folio);
163 address_space->nrpages -= nr;
164 __node_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
165 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr);
166 }
167
168 /*
169 * This must be called only on folios that have
170 * been verified to be in the swap cache and locked.
171 * It will never put the folio into the free list,
172 * the caller has a reference on the folio.
173 */
delete_from_swap_cache(struct folio * folio)174 void delete_from_swap_cache(struct folio *folio)
175 {
176 swp_entry_t entry = folio->swap;
177 struct address_space *address_space = swap_address_space(entry);
178
179 xa_lock_irq(&address_space->i_pages);
180 __delete_from_swap_cache(folio, entry, NULL);
181 xa_unlock_irq(&address_space->i_pages);
182
183 put_swap_folio(folio, entry);
184 folio_ref_sub(folio, folio_nr_pages(folio));
185 }
186
clear_shadow_from_swap_cache(int type,unsigned long begin,unsigned long end)187 void clear_shadow_from_swap_cache(int type, unsigned long begin,
188 unsigned long end)
189 {
190 unsigned long curr = begin;
191 void *old;
192
193 for (;;) {
194 swp_entry_t entry = swp_entry(type, curr);
195 unsigned long index = curr & SWAP_ADDRESS_SPACE_MASK;
196 struct address_space *address_space = swap_address_space(entry);
197 XA_STATE(xas, &address_space->i_pages, index);
198
199 xas_set_update(&xas, workingset_update_node);
200
201 xa_lock_irq(&address_space->i_pages);
202 xas_for_each(&xas, old, min(index + (end - curr), SWAP_ADDRESS_SPACE_PAGES)) {
203 if (!xa_is_value(old))
204 continue;
205 xas_store(&xas, NULL);
206 }
207 xa_unlock_irq(&address_space->i_pages);
208
209 /* search the next swapcache until we meet end */
210 curr = ALIGN((curr + 1), SWAP_ADDRESS_SPACE_PAGES);
211 if (curr > end)
212 break;
213 }
214 }
215
216 /*
217 * If we are the only user, then try to free up the swap cache.
218 *
219 * Its ok to check the swapcache flag without the folio lock
220 * here because we are going to recheck again inside
221 * folio_free_swap() _with_ the lock.
222 * - Marcelo
223 */
free_swap_cache(struct folio * folio)224 void free_swap_cache(struct folio *folio)
225 {
226 if (folio_test_swapcache(folio) && !folio_mapped(folio) &&
227 folio_trylock(folio)) {
228 folio_free_swap(folio);
229 folio_unlock(folio);
230 }
231 }
232
233 /*
234 * Freeing a folio and also freeing any swap cache associated with
235 * this folio if it is the last user.
236 */
free_folio_and_swap_cache(struct folio * folio)237 void free_folio_and_swap_cache(struct folio *folio)
238 {
239 free_swap_cache(folio);
240 if (!is_huge_zero_folio(folio))
241 folio_put(folio);
242 }
243
244 /*
245 * Passed an array of pages, drop them all from swapcache and then release
246 * them. They are removed from the LRU and freed if this is their last use.
247 */
free_pages_and_swap_cache(struct encoded_page ** pages,int nr)248 void free_pages_and_swap_cache(struct encoded_page **pages, int nr)
249 {
250 struct folio_batch folios;
251 unsigned int refs[PAGEVEC_SIZE];
252
253 folio_batch_init(&folios);
254 for (int i = 0; i < nr; i++) {
255 struct folio *folio = page_folio(encoded_page_ptr(pages[i]));
256
257 free_swap_cache(folio);
258 refs[folios.nr] = 1;
259 if (unlikely(encoded_page_flags(pages[i]) &
260 ENCODED_PAGE_BIT_NR_PAGES_NEXT))
261 refs[folios.nr] = encoded_nr_pages(pages[++i]);
262
263 if (folio_batch_add(&folios, folio) == 0)
264 folios_put_refs(&folios, refs);
265 }
266 if (folios.nr)
267 folios_put_refs(&folios, refs);
268 }
269
swap_use_vma_readahead(void)270 static inline bool swap_use_vma_readahead(void)
271 {
272 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
273 }
274
275 /*
276 * Lookup a swap entry in the swap cache. A found folio will be returned
277 * unlocked and with its refcount incremented - we rely on the kernel
278 * lock getting page table operations atomic even if we drop the folio
279 * lock before returning.
280 *
281 * Caller must lock the swap device or hold a reference to keep it valid.
282 */
swap_cache_get_folio(swp_entry_t entry,struct vm_area_struct * vma,unsigned long addr)283 struct folio *swap_cache_get_folio(swp_entry_t entry,
284 struct vm_area_struct *vma, unsigned long addr)
285 {
286 struct folio *folio;
287
288 folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
289 if (!IS_ERR(folio)) {
290 bool vma_ra = swap_use_vma_readahead();
291 bool readahead;
292
293 /*
294 * At the moment, we don't support PG_readahead for anon THP
295 * so let's bail out rather than confusing the readahead stat.
296 */
297 if (unlikely(folio_test_large(folio)))
298 return folio;
299
300 readahead = folio_test_clear_readahead(folio);
301 if (vma && vma_ra) {
302 unsigned long ra_val;
303 int win, hits;
304
305 ra_val = GET_SWAP_RA_VAL(vma);
306 win = SWAP_RA_WIN(ra_val);
307 hits = SWAP_RA_HITS(ra_val);
308 if (readahead)
309 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
310 atomic_long_set(&vma->swap_readahead_info,
311 SWAP_RA_VAL(addr, win, hits));
312 }
313
314 if (readahead) {
315 count_vm_event(SWAP_RA_HIT);
316 if (!vma || !vma_ra)
317 atomic_inc(&swapin_readahead_hits);
318 }
319 } else {
320 folio = NULL;
321 }
322
323 return folio;
324 }
325
326 /**
327 * filemap_get_incore_folio - Find and get a folio from the page or swap caches.
328 * @mapping: The address_space to search.
329 * @index: The page cache index.
330 *
331 * This differs from filemap_get_folio() in that it will also look for the
332 * folio in the swap cache.
333 *
334 * Return: The found folio or %NULL.
335 */
filemap_get_incore_folio(struct address_space * mapping,pgoff_t index)336 struct folio *filemap_get_incore_folio(struct address_space *mapping,
337 pgoff_t index)
338 {
339 swp_entry_t swp;
340 struct swap_info_struct *si;
341 struct folio *folio = filemap_get_entry(mapping, index);
342
343 if (!folio)
344 return ERR_PTR(-ENOENT);
345 if (!xa_is_value(folio))
346 return folio;
347 if (!shmem_mapping(mapping))
348 return ERR_PTR(-ENOENT);
349
350 swp = radix_to_swp_entry(folio);
351 /* There might be swapin error entries in shmem mapping. */
352 if (non_swap_entry(swp))
353 return ERR_PTR(-ENOENT);
354 /* Prevent swapoff from happening to us */
355 si = get_swap_device(swp);
356 if (!si)
357 return ERR_PTR(-ENOENT);
358 index = swap_cache_index(swp);
359 folio = filemap_get_folio(swap_address_space(swp), index);
360 put_swap_device(si);
361 return folio;
362 }
363
__read_swap_cache_async(swp_entry_t entry,gfp_t gfp_mask,struct mempolicy * mpol,pgoff_t ilx,bool * new_page_allocated,bool skip_if_exists)364 struct folio *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
365 struct mempolicy *mpol, pgoff_t ilx, bool *new_page_allocated,
366 bool skip_if_exists)
367 {
368 struct swap_info_struct *si = swp_swap_info(entry);
369 struct folio *folio;
370 struct folio *new_folio = NULL;
371 struct folio *result = NULL;
372 void *shadow = NULL;
373
374 *new_page_allocated = false;
375 for (;;) {
376 int err;
377 /*
378 * First check the swap cache. Since this is normally
379 * called after swap_cache_get_folio() failed, re-calling
380 * that would confuse statistics.
381 */
382 folio = filemap_get_folio(swap_address_space(entry),
383 swap_cache_index(entry));
384 if (!IS_ERR(folio))
385 goto got_folio;
386
387 /*
388 * Just skip read ahead for unused swap slot.
389 */
390 if (!swap_entry_swapped(si, entry))
391 goto put_and_return;
392
393 /*
394 * Get a new folio to read into from swap. Allocate it now if
395 * new_folio not exist, before marking swap_map SWAP_HAS_CACHE,
396 * when -EEXIST will cause any racers to loop around until we
397 * add it to cache.
398 */
399 if (!new_folio) {
400 new_folio = folio_alloc_mpol(gfp_mask, 0, mpol, ilx, numa_node_id());
401 if (!new_folio)
402 goto put_and_return;
403 }
404
405 /*
406 * Swap entry may have been freed since our caller observed it.
407 */
408 err = swapcache_prepare(entry, 1);
409 if (!err)
410 break;
411 else if (err != -EEXIST)
412 goto put_and_return;
413
414 /*
415 * Protect against a recursive call to __read_swap_cache_async()
416 * on the same entry waiting forever here because SWAP_HAS_CACHE
417 * is set but the folio is not the swap cache yet. This can
418 * happen today if mem_cgroup_swapin_charge_folio() below
419 * triggers reclaim through zswap, which may call
420 * __read_swap_cache_async() in the writeback path.
421 */
422 if (skip_if_exists)
423 goto put_and_return;
424
425 /*
426 * We might race against __delete_from_swap_cache(), and
427 * stumble across a swap_map entry whose SWAP_HAS_CACHE
428 * has not yet been cleared. Or race against another
429 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
430 * in swap_map, but not yet added its folio to swap cache.
431 */
432 schedule_timeout_uninterruptible(1);
433 }
434
435 /*
436 * The swap entry is ours to swap in. Prepare the new folio.
437 */
438 __folio_set_locked(new_folio);
439 __folio_set_swapbacked(new_folio);
440
441 if (mem_cgroup_swapin_charge_folio(new_folio, NULL, gfp_mask, entry))
442 goto fail_unlock;
443
444 /* May fail (-ENOMEM) if XArray node allocation failed. */
445 if (add_to_swap_cache(new_folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
446 goto fail_unlock;
447
448 memcg1_swapin(entry, 1);
449
450 if (shadow)
451 workingset_refault(new_folio, shadow);
452
453 /* Caller will initiate read into locked new_folio */
454 folio_add_lru(new_folio);
455 *new_page_allocated = true;
456 folio = new_folio;
457 got_folio:
458 result = folio;
459 goto put_and_return;
460
461 fail_unlock:
462 put_swap_folio(new_folio, entry);
463 folio_unlock(new_folio);
464 put_and_return:
465 if (!(*new_page_allocated) && new_folio)
466 folio_put(new_folio);
467 return result;
468 }
469
470 /*
471 * Locate a page of swap in physical memory, reserving swap cache space
472 * and reading the disk if it is not already cached.
473 * A failure return means that either the page allocation failed or that
474 * the swap entry is no longer in use.
475 *
476 * get/put_swap_device() aren't needed to call this function, because
477 * __read_swap_cache_async() call them and swap_read_folio() holds the
478 * swap cache folio lock.
479 */
read_swap_cache_async(swp_entry_t entry,gfp_t gfp_mask,struct vm_area_struct * vma,unsigned long addr,struct swap_iocb ** plug)480 struct folio *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
481 struct vm_area_struct *vma, unsigned long addr,
482 struct swap_iocb **plug)
483 {
484 struct swap_info_struct *si;
485 bool page_allocated;
486 struct mempolicy *mpol;
487 pgoff_t ilx;
488 struct folio *folio;
489
490 si = get_swap_device(entry);
491 if (!si)
492 return NULL;
493
494 mpol = get_vma_policy(vma, addr, 0, &ilx);
495 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
496 &page_allocated, false);
497 mpol_cond_put(mpol);
498
499 if (page_allocated)
500 swap_read_folio(folio, plug);
501
502 put_swap_device(si);
503 return folio;
504 }
505
__swapin_nr_pages(unsigned long prev_offset,unsigned long offset,int hits,int max_pages,int prev_win)506 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
507 unsigned long offset,
508 int hits,
509 int max_pages,
510 int prev_win)
511 {
512 unsigned int pages, last_ra;
513
514 /*
515 * This heuristic has been found to work well on both sequential and
516 * random loads, swapping to hard disk or to SSD: please don't ask
517 * what the "+ 2" means, it just happens to work well, that's all.
518 */
519 pages = hits + 2;
520 if (pages == 2) {
521 /*
522 * We can have no readahead hits to judge by: but must not get
523 * stuck here forever, so check for an adjacent offset instead
524 * (and don't even bother to check whether swap type is same).
525 */
526 if (offset != prev_offset + 1 && offset != prev_offset - 1)
527 pages = 1;
528 } else {
529 unsigned int roundup = 4;
530 while (roundup < pages)
531 roundup <<= 1;
532 pages = roundup;
533 }
534
535 if (pages > max_pages)
536 pages = max_pages;
537
538 /* Don't shrink readahead too fast */
539 last_ra = prev_win / 2;
540 if (pages < last_ra)
541 pages = last_ra;
542
543 return pages;
544 }
545
swapin_nr_pages(unsigned long offset)546 static unsigned long swapin_nr_pages(unsigned long offset)
547 {
548 static unsigned long prev_offset;
549 unsigned int hits, pages, max_pages;
550 static atomic_t last_readahead_pages;
551
552 max_pages = 1 << READ_ONCE(page_cluster);
553 if (max_pages <= 1)
554 return 1;
555
556 hits = atomic_xchg(&swapin_readahead_hits, 0);
557 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
558 max_pages,
559 atomic_read(&last_readahead_pages));
560 if (!hits)
561 WRITE_ONCE(prev_offset, offset);
562 atomic_set(&last_readahead_pages, pages);
563
564 return pages;
565 }
566
567 /**
568 * swap_cluster_readahead - swap in pages in hope we need them soon
569 * @entry: swap entry of this memory
570 * @gfp_mask: memory allocation flags
571 * @mpol: NUMA memory allocation policy to be applied
572 * @ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
573 *
574 * Returns the struct folio for entry and addr, after queueing swapin.
575 *
576 * Primitive swap readahead code. We simply read an aligned block of
577 * (1 << page_cluster) entries in the swap area. This method is chosen
578 * because it doesn't cost us any seek time. We also make sure to queue
579 * the 'original' request together with the readahead ones...
580 *
581 * Note: it is intentional that the same NUMA policy and interleave index
582 * are used for every page of the readahead: neighbouring pages on swap
583 * are fairly likely to have been swapped out from the same node.
584 */
swap_cluster_readahead(swp_entry_t entry,gfp_t gfp_mask,struct mempolicy * mpol,pgoff_t ilx)585 struct folio *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
586 struct mempolicy *mpol, pgoff_t ilx)
587 {
588 struct folio *folio;
589 unsigned long entry_offset = swp_offset(entry);
590 unsigned long offset = entry_offset;
591 unsigned long start_offset, end_offset;
592 unsigned long mask;
593 struct swap_info_struct *si = swp_swap_info(entry);
594 struct blk_plug plug;
595 struct swap_iocb *splug = NULL;
596 bool page_allocated;
597
598 mask = swapin_nr_pages(offset) - 1;
599 if (!mask)
600 goto skip;
601
602 /* Read a page_cluster sized and aligned cluster around offset. */
603 start_offset = offset & ~mask;
604 end_offset = offset | mask;
605 if (!start_offset) /* First page is swap header. */
606 start_offset++;
607 if (end_offset >= si->max)
608 end_offset = si->max - 1;
609
610 blk_start_plug(&plug);
611 for (offset = start_offset; offset <= end_offset ; offset++) {
612 /* Ok, do the async read-ahead now */
613 folio = __read_swap_cache_async(
614 swp_entry(swp_type(entry), offset),
615 gfp_mask, mpol, ilx, &page_allocated, false);
616 if (!folio)
617 continue;
618 if (page_allocated) {
619 swap_read_folio(folio, &splug);
620 if (offset != entry_offset) {
621 folio_set_readahead(folio);
622 count_vm_event(SWAP_RA);
623 }
624 }
625 folio_put(folio);
626 }
627 blk_finish_plug(&plug);
628 swap_read_unplug(splug);
629 lru_add_drain(); /* Push any new pages onto the LRU now */
630 skip:
631 /* The page was likely read above, so no need for plugging here */
632 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
633 &page_allocated, false);
634 if (unlikely(page_allocated))
635 swap_read_folio(folio, NULL);
636 return folio;
637 }
638
init_swap_address_space(unsigned int type,unsigned long nr_pages)639 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
640 {
641 struct address_space *spaces, *space;
642 unsigned int i, nr;
643
644 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
645 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
646 if (!spaces)
647 return -ENOMEM;
648 for (i = 0; i < nr; i++) {
649 space = spaces + i;
650 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
651 atomic_set(&space->i_mmap_writable, 0);
652 space->a_ops = &swap_aops;
653 /* swap cache doesn't use writeback related tags */
654 mapping_set_no_writeback_tags(space);
655 }
656 nr_swapper_spaces[type] = nr;
657 swapper_spaces[type] = spaces;
658
659 return 0;
660 }
661
exit_swap_address_space(unsigned int type)662 void exit_swap_address_space(unsigned int type)
663 {
664 int i;
665 struct address_space *spaces = swapper_spaces[type];
666
667 for (i = 0; i < nr_swapper_spaces[type]; i++)
668 VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
669 kvfree(spaces);
670 nr_swapper_spaces[type] = 0;
671 swapper_spaces[type] = NULL;
672 }
673
swap_vma_ra_win(struct vm_fault * vmf,unsigned long * start,unsigned long * end)674 static int swap_vma_ra_win(struct vm_fault *vmf, unsigned long *start,
675 unsigned long *end)
676 {
677 struct vm_area_struct *vma = vmf->vma;
678 unsigned long ra_val;
679 unsigned long faddr, prev_faddr, left, right;
680 unsigned int max_win, hits, prev_win, win;
681
682 max_win = 1 << min(READ_ONCE(page_cluster), SWAP_RA_ORDER_CEILING);
683 if (max_win == 1)
684 return 1;
685
686 faddr = vmf->address;
687 ra_val = GET_SWAP_RA_VAL(vma);
688 prev_faddr = SWAP_RA_ADDR(ra_val);
689 prev_win = SWAP_RA_WIN(ra_val);
690 hits = SWAP_RA_HITS(ra_val);
691 win = __swapin_nr_pages(PFN_DOWN(prev_faddr), PFN_DOWN(faddr), hits,
692 max_win, prev_win);
693 atomic_long_set(&vma->swap_readahead_info, SWAP_RA_VAL(faddr, win, 0));
694 if (win == 1)
695 return 1;
696
697 if (faddr == prev_faddr + PAGE_SIZE)
698 left = faddr;
699 else if (prev_faddr == faddr + PAGE_SIZE)
700 left = faddr - (win << PAGE_SHIFT) + PAGE_SIZE;
701 else
702 left = faddr - (((win - 1) / 2) << PAGE_SHIFT);
703 right = left + (win << PAGE_SHIFT);
704 if ((long)left < 0)
705 left = 0;
706 *start = max3(left, vma->vm_start, faddr & PMD_MASK);
707 *end = min3(right, vma->vm_end, (faddr & PMD_MASK) + PMD_SIZE);
708
709 return win;
710 }
711
712 /**
713 * swap_vma_readahead - swap in pages in hope we need them soon
714 * @targ_entry: swap entry of the targeted memory
715 * @gfp_mask: memory allocation flags
716 * @mpol: NUMA memory allocation policy to be applied
717 * @targ_ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
718 * @vmf: fault information
719 *
720 * Returns the struct folio for entry and addr, after queueing swapin.
721 *
722 * Primitive swap readahead code. We simply read in a few pages whose
723 * virtual addresses are around the fault address in the same vma.
724 *
725 * Caller must hold read mmap_lock if vmf->vma is not NULL.
726 *
727 */
swap_vma_readahead(swp_entry_t targ_entry,gfp_t gfp_mask,struct mempolicy * mpol,pgoff_t targ_ilx,struct vm_fault * vmf)728 static struct folio *swap_vma_readahead(swp_entry_t targ_entry, gfp_t gfp_mask,
729 struct mempolicy *mpol, pgoff_t targ_ilx, struct vm_fault *vmf)
730 {
731 struct blk_plug plug;
732 struct swap_iocb *splug = NULL;
733 struct folio *folio;
734 pte_t *pte = NULL, pentry;
735 int win;
736 unsigned long start, end, addr;
737 swp_entry_t entry;
738 pgoff_t ilx;
739 bool page_allocated;
740
741 win = swap_vma_ra_win(vmf, &start, &end);
742 if (win == 1)
743 goto skip;
744
745 ilx = targ_ilx - PFN_DOWN(vmf->address - start);
746
747 blk_start_plug(&plug);
748 for (addr = start; addr < end; ilx++, addr += PAGE_SIZE) {
749 if (!pte++) {
750 pte = pte_offset_map(vmf->pmd, addr);
751 if (!pte)
752 break;
753 }
754 pentry = ptep_get_lockless(pte);
755 if (!is_swap_pte(pentry))
756 continue;
757 entry = pte_to_swp_entry(pentry);
758 if (unlikely(non_swap_entry(entry)))
759 continue;
760 pte_unmap(pte);
761 pte = NULL;
762 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
763 &page_allocated, false);
764 if (!folio)
765 continue;
766 if (page_allocated) {
767 swap_read_folio(folio, &splug);
768 if (addr != vmf->address) {
769 folio_set_readahead(folio);
770 count_vm_event(SWAP_RA);
771 }
772 }
773 folio_put(folio);
774 }
775 if (pte)
776 pte_unmap(pte);
777 blk_finish_plug(&plug);
778 swap_read_unplug(splug);
779 lru_add_drain();
780 skip:
781 /* The folio was likely read above, so no need for plugging here */
782 folio = __read_swap_cache_async(targ_entry, gfp_mask, mpol, targ_ilx,
783 &page_allocated, false);
784 if (unlikely(page_allocated))
785 swap_read_folio(folio, NULL);
786 return folio;
787 }
788
789 /**
790 * swapin_readahead - swap in pages in hope we need them soon
791 * @entry: swap entry of this memory
792 * @gfp_mask: memory allocation flags
793 * @vmf: fault information
794 *
795 * Returns the struct folio for entry and addr, after queueing swapin.
796 *
797 * It's a main entry function for swap readahead. By the configuration,
798 * it will read ahead blocks by cluster-based(ie, physical disk based)
799 * or vma-based(ie, virtual address based on faulty address) readahead.
800 */
swapin_readahead(swp_entry_t entry,gfp_t gfp_mask,struct vm_fault * vmf)801 struct folio *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
802 struct vm_fault *vmf)
803 {
804 struct mempolicy *mpol;
805 pgoff_t ilx;
806 struct folio *folio;
807
808 mpol = get_vma_policy(vmf->vma, vmf->address, 0, &ilx);
809 folio = swap_use_vma_readahead() ?
810 swap_vma_readahead(entry, gfp_mask, mpol, ilx, vmf) :
811 swap_cluster_readahead(entry, gfp_mask, mpol, ilx);
812 mpol_cond_put(mpol);
813
814 return folio;
815 }
816
817 #ifdef CONFIG_SYSFS
vma_ra_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)818 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
819 struct kobj_attribute *attr, char *buf)
820 {
821 return sysfs_emit(buf, "%s\n", str_true_false(enable_vma_readahead));
822 }
vma_ra_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)823 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
824 struct kobj_attribute *attr,
825 const char *buf, size_t count)
826 {
827 ssize_t ret;
828
829 ret = kstrtobool(buf, &enable_vma_readahead);
830 if (ret)
831 return ret;
832
833 return count;
834 }
835 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
836
837 static struct attribute *swap_attrs[] = {
838 &vma_ra_enabled_attr.attr,
839 NULL,
840 };
841
842 static const struct attribute_group swap_attr_group = {
843 .attrs = swap_attrs,
844 };
845
swap_init_sysfs(void)846 static int __init swap_init_sysfs(void)
847 {
848 int err;
849 struct kobject *swap_kobj;
850
851 swap_kobj = kobject_create_and_add("swap", mm_kobj);
852 if (!swap_kobj) {
853 pr_err("failed to create swap kobject\n");
854 return -ENOMEM;
855 }
856 err = sysfs_create_group(swap_kobj, &swap_attr_group);
857 if (err) {
858 pr_err("failed to register swap group\n");
859 goto delete_obj;
860 }
861 return 0;
862
863 delete_obj:
864 kobject_put(swap_kobj);
865 return err;
866 }
867 subsys_initcall(swap_init_sysfs);
868 #endif
869