1 //===--- X86DomainReassignment.cpp - Selectively switch register classes---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass attempts to find instruction chains (closures) in one domain,
10 // and convert them to equivalent instructions in a different domain,
11 // if profitable.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "X86.h"
16 #include "X86InstrInfo.h"
17 #include "X86Subtarget.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/TargetRegisterInfo.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/Printable.h"
29 #include <bitset>
30
31 using namespace llvm;
32
33 #define DEBUG_TYPE "x86-domain-reassignment"
34
35 STATISTIC(NumClosuresConverted, "Number of closures converted by the pass");
36
37 static cl::opt<bool> DisableX86DomainReassignment(
38 "disable-x86-domain-reassignment", cl::Hidden,
39 cl::desc("X86: Disable Virtual Register Reassignment."), cl::init(false));
40
41 namespace {
42 enum RegDomain { NoDomain = -1, GPRDomain, MaskDomain, OtherDomain, NumDomains };
43
isGPR(const TargetRegisterClass * RC)44 static bool isGPR(const TargetRegisterClass *RC) {
45 return X86::GR64RegClass.hasSubClassEq(RC) ||
46 X86::GR32RegClass.hasSubClassEq(RC) ||
47 X86::GR16RegClass.hasSubClassEq(RC) ||
48 X86::GR8RegClass.hasSubClassEq(RC);
49 }
50
isMask(const TargetRegisterClass * RC,const TargetRegisterInfo * TRI)51 static bool isMask(const TargetRegisterClass *RC,
52 const TargetRegisterInfo *TRI) {
53 return X86::VK16RegClass.hasSubClassEq(RC);
54 }
55
getDomain(const TargetRegisterClass * RC,const TargetRegisterInfo * TRI)56 static RegDomain getDomain(const TargetRegisterClass *RC,
57 const TargetRegisterInfo *TRI) {
58 if (isGPR(RC))
59 return GPRDomain;
60 if (isMask(RC, TRI))
61 return MaskDomain;
62 return OtherDomain;
63 }
64
65 /// Return a register class equivalent to \p SrcRC, in \p Domain.
getDstRC(const TargetRegisterClass * SrcRC,RegDomain Domain)66 static const TargetRegisterClass *getDstRC(const TargetRegisterClass *SrcRC,
67 RegDomain Domain) {
68 assert(Domain == MaskDomain && "add domain");
69 if (X86::GR8RegClass.hasSubClassEq(SrcRC))
70 return &X86::VK8RegClass;
71 if (X86::GR16RegClass.hasSubClassEq(SrcRC))
72 return &X86::VK16RegClass;
73 if (X86::GR32RegClass.hasSubClassEq(SrcRC))
74 return &X86::VK32RegClass;
75 if (X86::GR64RegClass.hasSubClassEq(SrcRC))
76 return &X86::VK64RegClass;
77 llvm_unreachable("add register class");
78 return nullptr;
79 }
80
81 /// Abstract Instruction Converter class.
82 class InstrConverterBase {
83 protected:
84 unsigned SrcOpcode;
85
86 public:
InstrConverterBase(unsigned SrcOpcode)87 InstrConverterBase(unsigned SrcOpcode) : SrcOpcode(SrcOpcode) {}
88
89 virtual ~InstrConverterBase() = default;
90
91 /// \returns true if \p MI is legal to convert.
isLegal(const MachineInstr * MI,const TargetInstrInfo * TII) const92 virtual bool isLegal(const MachineInstr *MI,
93 const TargetInstrInfo *TII) const {
94 assert(MI->getOpcode() == SrcOpcode &&
95 "Wrong instruction passed to converter");
96 return true;
97 }
98
99 /// Applies conversion to \p MI.
100 ///
101 /// \returns true if \p MI is no longer need, and can be deleted.
102 virtual bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII,
103 MachineRegisterInfo *MRI) const = 0;
104
105 /// \returns the cost increment incurred by converting \p MI.
106 virtual double getExtraCost(const MachineInstr *MI,
107 MachineRegisterInfo *MRI) const = 0;
108 };
109
110 /// An Instruction Converter which ignores the given instruction.
111 /// For example, PHI instructions can be safely ignored since only the registers
112 /// need to change.
113 class InstrIgnore : public InstrConverterBase {
114 public:
InstrIgnore(unsigned SrcOpcode)115 InstrIgnore(unsigned SrcOpcode) : InstrConverterBase(SrcOpcode) {}
116
convertInstr(MachineInstr * MI,const TargetInstrInfo * TII,MachineRegisterInfo * MRI) const117 bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII,
118 MachineRegisterInfo *MRI) const override {
119 assert(isLegal(MI, TII) && "Cannot convert instruction");
120 return false;
121 }
122
getExtraCost(const MachineInstr * MI,MachineRegisterInfo * MRI) const123 double getExtraCost(const MachineInstr *MI,
124 MachineRegisterInfo *MRI) const override {
125 return 0;
126 }
127 };
128
129 /// An Instruction Converter which replaces an instruction with another.
130 class InstrReplacer : public InstrConverterBase {
131 public:
132 /// Opcode of the destination instruction.
133 unsigned DstOpcode;
134
InstrReplacer(unsigned SrcOpcode,unsigned DstOpcode)135 InstrReplacer(unsigned SrcOpcode, unsigned DstOpcode)
136 : InstrConverterBase(SrcOpcode), DstOpcode(DstOpcode) {}
137
isLegal(const MachineInstr * MI,const TargetInstrInfo * TII) const138 bool isLegal(const MachineInstr *MI,
139 const TargetInstrInfo *TII) const override {
140 if (!InstrConverterBase::isLegal(MI, TII))
141 return false;
142 // It's illegal to replace an instruction that implicitly defines a register
143 // with an instruction that doesn't, unless that register dead.
144 for (const auto &MO : MI->implicit_operands())
145 if (MO.isReg() && MO.isDef() && !MO.isDead() &&
146 !TII->get(DstOpcode).hasImplicitDefOfPhysReg(MO.getReg()))
147 return false;
148 return true;
149 }
150
convertInstr(MachineInstr * MI,const TargetInstrInfo * TII,MachineRegisterInfo * MRI) const151 bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII,
152 MachineRegisterInfo *MRI) const override {
153 assert(isLegal(MI, TII) && "Cannot convert instruction");
154 MachineInstrBuilder Bld =
155 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(DstOpcode));
156 // Transfer explicit operands from original instruction. Implicit operands
157 // are handled by BuildMI.
158 for (auto &Op : MI->explicit_operands())
159 Bld.add(Op);
160 return true;
161 }
162
getExtraCost(const MachineInstr * MI,MachineRegisterInfo * MRI) const163 double getExtraCost(const MachineInstr *MI,
164 MachineRegisterInfo *MRI) const override {
165 // Assuming instructions have the same cost.
166 return 0;
167 }
168 };
169
170 /// An Instruction Converter which replaces an instruction with another, and
171 /// adds a COPY from the new instruction's destination to the old one's.
172 class InstrReplacerDstCOPY : public InstrConverterBase {
173 public:
174 unsigned DstOpcode;
175
InstrReplacerDstCOPY(unsigned SrcOpcode,unsigned DstOpcode)176 InstrReplacerDstCOPY(unsigned SrcOpcode, unsigned DstOpcode)
177 : InstrConverterBase(SrcOpcode), DstOpcode(DstOpcode) {}
178
convertInstr(MachineInstr * MI,const TargetInstrInfo * TII,MachineRegisterInfo * MRI) const179 bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII,
180 MachineRegisterInfo *MRI) const override {
181 assert(isLegal(MI, TII) && "Cannot convert instruction");
182 MachineBasicBlock *MBB = MI->getParent();
183 const DebugLoc &DL = MI->getDebugLoc();
184
185 Register Reg = MRI->createVirtualRegister(
186 TII->getRegClass(TII->get(DstOpcode), 0, MRI->getTargetRegisterInfo(),
187 *MBB->getParent()));
188 MachineInstrBuilder Bld = BuildMI(*MBB, MI, DL, TII->get(DstOpcode), Reg);
189 for (const MachineOperand &MO : llvm::drop_begin(MI->operands()))
190 Bld.add(MO);
191
192 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::COPY))
193 .add(MI->getOperand(0))
194 .addReg(Reg);
195
196 return true;
197 }
198
getExtraCost(const MachineInstr * MI,MachineRegisterInfo * MRI) const199 double getExtraCost(const MachineInstr *MI,
200 MachineRegisterInfo *MRI) const override {
201 // Assuming instructions have the same cost, and that COPY is in the same
202 // domain so it will be eliminated.
203 return 0;
204 }
205 };
206
207 /// An Instruction Converter for replacing COPY instructions.
208 class InstrCOPYReplacer : public InstrReplacer {
209 public:
210 RegDomain DstDomain;
211
InstrCOPYReplacer(unsigned SrcOpcode,RegDomain DstDomain,unsigned DstOpcode)212 InstrCOPYReplacer(unsigned SrcOpcode, RegDomain DstDomain, unsigned DstOpcode)
213 : InstrReplacer(SrcOpcode, DstOpcode), DstDomain(DstDomain) {}
214
isLegal(const MachineInstr * MI,const TargetInstrInfo * TII) const215 bool isLegal(const MachineInstr *MI,
216 const TargetInstrInfo *TII) const override {
217 if (!InstrConverterBase::isLegal(MI, TII))
218 return false;
219
220 // Don't allow copies to/flow GR8/GR16 physical registers.
221 // FIXME: Is there some better way to support this?
222 Register DstReg = MI->getOperand(0).getReg();
223 if (DstReg.isPhysical() && (X86::GR8RegClass.contains(DstReg) ||
224 X86::GR16RegClass.contains(DstReg)))
225 return false;
226 Register SrcReg = MI->getOperand(1).getReg();
227 if (SrcReg.isPhysical() && (X86::GR8RegClass.contains(SrcReg) ||
228 X86::GR16RegClass.contains(SrcReg)))
229 return false;
230
231 return true;
232 }
233
getExtraCost(const MachineInstr * MI,MachineRegisterInfo * MRI) const234 double getExtraCost(const MachineInstr *MI,
235 MachineRegisterInfo *MRI) const override {
236 assert(MI->getOpcode() == TargetOpcode::COPY && "Expected a COPY");
237
238 for (const auto &MO : MI->operands()) {
239 // Physical registers will not be converted. Assume that converting the
240 // COPY to the destination domain will eventually result in a actual
241 // instruction.
242 if (MO.getReg().isPhysical())
243 return 1;
244
245 RegDomain OpDomain = getDomain(MRI->getRegClass(MO.getReg()),
246 MRI->getTargetRegisterInfo());
247 // Converting a cross domain COPY to a same domain COPY should eliminate
248 // an insturction
249 if (OpDomain == DstDomain)
250 return -1;
251 }
252 return 0;
253 }
254 };
255
256 /// An Instruction Converter which replaces an instruction with a COPY.
257 class InstrReplaceWithCopy : public InstrConverterBase {
258 public:
259 // Source instruction operand Index, to be used as the COPY source.
260 unsigned SrcOpIdx;
261
InstrReplaceWithCopy(unsigned SrcOpcode,unsigned SrcOpIdx)262 InstrReplaceWithCopy(unsigned SrcOpcode, unsigned SrcOpIdx)
263 : InstrConverterBase(SrcOpcode), SrcOpIdx(SrcOpIdx) {}
264
convertInstr(MachineInstr * MI,const TargetInstrInfo * TII,MachineRegisterInfo * MRI) const265 bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII,
266 MachineRegisterInfo *MRI) const override {
267 assert(isLegal(MI, TII) && "Cannot convert instruction");
268 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
269 TII->get(TargetOpcode::COPY))
270 .add({MI->getOperand(0), MI->getOperand(SrcOpIdx)});
271 return true;
272 }
273
getExtraCost(const MachineInstr * MI,MachineRegisterInfo * MRI) const274 double getExtraCost(const MachineInstr *MI,
275 MachineRegisterInfo *MRI) const override {
276 return 0;
277 }
278 };
279
280 // Key type to be used by the Instruction Converters map.
281 // A converter is identified by <destination domain, source opcode>
282 typedef std::pair<int, unsigned> InstrConverterBaseKeyTy;
283
284 typedef DenseMap<InstrConverterBaseKeyTy, std::unique_ptr<InstrConverterBase>>
285 InstrConverterBaseMap;
286
287 /// A closure is a set of virtual register representing all of the edges in
288 /// the closure, as well as all of the instructions connected by those edges.
289 ///
290 /// A closure may encompass virtual registers in the same register bank that
291 /// have different widths. For example, it may contain 32-bit GPRs as well as
292 /// 64-bit GPRs.
293 ///
294 /// A closure that computes an address (i.e. defines a virtual register that is
295 /// used in a memory operand) excludes the instructions that contain memory
296 /// operands using the address. Such an instruction will be included in a
297 /// different closure that manipulates the loaded or stored value.
298 class Closure {
299 private:
300 /// Virtual registers in the closure.
301 DenseSet<Register> Edges;
302
303 /// Instructions in the closure.
304 SmallVector<MachineInstr *, 8> Instrs;
305
306 /// Domains which this closure can legally be reassigned to.
307 std::bitset<NumDomains> LegalDstDomains;
308
309 /// An ID to uniquely identify this closure, even when it gets
310 /// moved around
311 unsigned ID;
312
313 public:
Closure(unsigned ID,std::initializer_list<RegDomain> LegalDstDomainList)314 Closure(unsigned ID, std::initializer_list<RegDomain> LegalDstDomainList) : ID(ID) {
315 for (RegDomain D : LegalDstDomainList)
316 LegalDstDomains.set(D);
317 }
318
319 /// Mark this closure as illegal for reassignment to all domains.
setAllIllegal()320 void setAllIllegal() { LegalDstDomains.reset(); }
321
322 /// \returns true if this closure has domains which are legal to reassign to.
hasLegalDstDomain() const323 bool hasLegalDstDomain() const { return LegalDstDomains.any(); }
324
325 /// \returns true if is legal to reassign this closure to domain \p RD.
isLegal(RegDomain RD) const326 bool isLegal(RegDomain RD) const { return LegalDstDomains[RD]; }
327
328 /// Mark this closure as illegal for reassignment to domain \p RD.
setIllegal(RegDomain RD)329 void setIllegal(RegDomain RD) { LegalDstDomains[RD] = false; }
330
empty() const331 bool empty() const { return Edges.empty(); }
332
insertEdge(Register Reg)333 bool insertEdge(Register Reg) { return Edges.insert(Reg).second; }
334
335 using const_edge_iterator = DenseSet<Register>::const_iterator;
edges() const336 iterator_range<const_edge_iterator> edges() const {
337 return iterator_range<const_edge_iterator>(Edges.begin(), Edges.end());
338 }
339
addInstruction(MachineInstr * I)340 void addInstruction(MachineInstr *I) {
341 Instrs.push_back(I);
342 }
343
instructions() const344 ArrayRef<MachineInstr *> instructions() const {
345 return Instrs;
346 }
347
dump(const MachineRegisterInfo * MRI) const348 LLVM_DUMP_METHOD void dump(const MachineRegisterInfo *MRI) const {
349 dbgs() << "Registers: ";
350 bool First = true;
351 for (Register Reg : Edges) {
352 if (!First)
353 dbgs() << ", ";
354 First = false;
355 dbgs() << printReg(Reg, MRI->getTargetRegisterInfo(), 0, MRI);
356 }
357 dbgs() << "\n" << "Instructions:";
358 for (MachineInstr *MI : Instrs) {
359 dbgs() << "\n ";
360 MI->print(dbgs());
361 }
362 dbgs() << "\n";
363 }
364
getID() const365 unsigned getID() const {
366 return ID;
367 }
368
369 };
370
371 class X86DomainReassignment : public MachineFunctionPass {
372 const X86Subtarget *STI = nullptr;
373 MachineRegisterInfo *MRI = nullptr;
374 const X86InstrInfo *TII = nullptr;
375
376 /// All edges that are included in some closure
377 BitVector EnclosedEdges{8, false};
378
379 /// All instructions that are included in some closure.
380 DenseMap<MachineInstr *, unsigned> EnclosedInstrs;
381
382 public:
383 static char ID;
384
X86DomainReassignment()385 X86DomainReassignment() : MachineFunctionPass(ID) { }
386
387 bool runOnMachineFunction(MachineFunction &MF) override;
388
getAnalysisUsage(AnalysisUsage & AU) const389 void getAnalysisUsage(AnalysisUsage &AU) const override {
390 AU.setPreservesCFG();
391 MachineFunctionPass::getAnalysisUsage(AU);
392 }
393
getPassName() const394 StringRef getPassName() const override {
395 return "X86 Domain Reassignment Pass";
396 }
397
398 private:
399 /// A map of available Instruction Converters.
400 InstrConverterBaseMap Converters;
401
402 /// Initialize Converters map.
403 void initConverters();
404
405 /// Starting from \Reg, expand the closure as much as possible.
406 void buildClosure(Closure &, Register Reg);
407
408 /// Enqueue \p Reg to be considered for addition to the closure.
409 void visitRegister(Closure &, Register Reg, RegDomain &Domain,
410 SmallVectorImpl<unsigned> &Worklist);
411
412 /// Reassign the closure to \p Domain.
413 void reassign(const Closure &C, RegDomain Domain) const;
414
415 /// Add \p MI to the closure.
416 void encloseInstr(Closure &C, MachineInstr *MI);
417
418 /// /returns true if it is profitable to reassign the closure to \p Domain.
419 bool isReassignmentProfitable(const Closure &C, RegDomain Domain) const;
420
421 /// Calculate the total cost of reassigning the closure to \p Domain.
422 double calculateCost(const Closure &C, RegDomain Domain) const;
423 };
424
425 char X86DomainReassignment::ID = 0;
426
427 } // End anonymous namespace.
428
visitRegister(Closure & C,Register Reg,RegDomain & Domain,SmallVectorImpl<unsigned> & Worklist)429 void X86DomainReassignment::visitRegister(Closure &C, Register Reg,
430 RegDomain &Domain,
431 SmallVectorImpl<unsigned> &Worklist) {
432 if (!Reg.isVirtual())
433 return;
434
435 if (EnclosedEdges.test(Register::virtReg2Index(Reg)))
436 return;
437
438 if (!MRI->hasOneDef(Reg))
439 return;
440
441 RegDomain RD = getDomain(MRI->getRegClass(Reg), MRI->getTargetRegisterInfo());
442 // First edge in closure sets the domain.
443 if (Domain == NoDomain)
444 Domain = RD;
445
446 if (Domain != RD)
447 return;
448
449 Worklist.push_back(Reg);
450 }
451
encloseInstr(Closure & C,MachineInstr * MI)452 void X86DomainReassignment::encloseInstr(Closure &C, MachineInstr *MI) {
453 auto I = EnclosedInstrs.find(MI);
454 if (I != EnclosedInstrs.end()) {
455 if (I->second != C.getID())
456 // Instruction already belongs to another closure, avoid conflicts between
457 // closure and mark this closure as illegal.
458 C.setAllIllegal();
459 return;
460 }
461
462 EnclosedInstrs[MI] = C.getID();
463 C.addInstruction(MI);
464
465 // Mark closure as illegal for reassignment to domains, if there is no
466 // converter for the instruction or if the converter cannot convert the
467 // instruction.
468 for (int i = 0; i != NumDomains; ++i) {
469 if (C.isLegal((RegDomain)i)) {
470 auto I = Converters.find({i, MI->getOpcode()});
471 if (I == Converters.end() || !I->second->isLegal(MI, TII))
472 C.setIllegal((RegDomain)i);
473 }
474 }
475 }
476
calculateCost(const Closure & C,RegDomain DstDomain) const477 double X86DomainReassignment::calculateCost(const Closure &C,
478 RegDomain DstDomain) const {
479 assert(C.isLegal(DstDomain) && "Cannot calculate cost for illegal closure");
480
481 double Cost = 0.0;
482 for (auto *MI : C.instructions())
483 Cost += Converters.find({DstDomain, MI->getOpcode()})
484 ->second->getExtraCost(MI, MRI);
485 return Cost;
486 }
487
isReassignmentProfitable(const Closure & C,RegDomain Domain) const488 bool X86DomainReassignment::isReassignmentProfitable(const Closure &C,
489 RegDomain Domain) const {
490 return calculateCost(C, Domain) < 0.0;
491 }
492
reassign(const Closure & C,RegDomain Domain) const493 void X86DomainReassignment::reassign(const Closure &C, RegDomain Domain) const {
494 assert(C.isLegal(Domain) && "Cannot convert illegal closure");
495
496 // Iterate all instructions in the closure, convert each one using the
497 // appropriate converter.
498 SmallVector<MachineInstr *, 8> ToErase;
499 for (auto *MI : C.instructions())
500 if (Converters.find({Domain, MI->getOpcode()})
501 ->second->convertInstr(MI, TII, MRI))
502 ToErase.push_back(MI);
503
504 // Iterate all registers in the closure, replace them with registers in the
505 // destination domain.
506 for (Register Reg : C.edges()) {
507 MRI->setRegClass(Reg, getDstRC(MRI->getRegClass(Reg), Domain));
508 for (auto &MO : MRI->use_operands(Reg)) {
509 if (MO.isReg())
510 // Remove all subregister references as they are not valid in the
511 // destination domain.
512 MO.setSubReg(0);
513 }
514 }
515
516 for (auto *MI : ToErase)
517 MI->eraseFromParent();
518 }
519
520 /// \returns true when \p Reg is used as part of an address calculation in \p
521 /// MI.
usedAsAddr(const MachineInstr & MI,Register Reg,const TargetInstrInfo * TII)522 static bool usedAsAddr(const MachineInstr &MI, Register Reg,
523 const TargetInstrInfo *TII) {
524 if (!MI.mayLoadOrStore())
525 return false;
526
527 const MCInstrDesc &Desc = TII->get(MI.getOpcode());
528 int MemOpStart = X86II::getMemoryOperandNo(Desc.TSFlags);
529 if (MemOpStart == -1)
530 return false;
531
532 MemOpStart += X86II::getOperandBias(Desc);
533 for (unsigned MemOpIdx = MemOpStart,
534 MemOpEnd = MemOpStart + X86::AddrNumOperands;
535 MemOpIdx < MemOpEnd; ++MemOpIdx) {
536 const MachineOperand &Op = MI.getOperand(MemOpIdx);
537 if (Op.isReg() && Op.getReg() == Reg)
538 return true;
539 }
540 return false;
541 }
542
buildClosure(Closure & C,Register Reg)543 void X86DomainReassignment::buildClosure(Closure &C, Register Reg) {
544 SmallVector<unsigned, 4> Worklist;
545 RegDomain Domain = NoDomain;
546 visitRegister(C, Reg, Domain, Worklist);
547 while (!Worklist.empty()) {
548 unsigned CurReg = Worklist.pop_back_val();
549
550 // Register already in this closure.
551 if (!C.insertEdge(CurReg))
552 continue;
553 EnclosedEdges.set(Register::virtReg2Index(Reg));
554
555 MachineInstr *DefMI = MRI->getVRegDef(CurReg);
556 encloseInstr(C, DefMI);
557
558 // Add register used by the defining MI to the worklist.
559 // Do not add registers which are used in address calculation, they will be
560 // added to a different closure.
561 int OpEnd = DefMI->getNumOperands();
562 const MCInstrDesc &Desc = DefMI->getDesc();
563 int MemOp = X86II::getMemoryOperandNo(Desc.TSFlags);
564 if (MemOp != -1)
565 MemOp += X86II::getOperandBias(Desc);
566 for (int OpIdx = 0; OpIdx < OpEnd; ++OpIdx) {
567 if (OpIdx == MemOp) {
568 // skip address calculation.
569 OpIdx += (X86::AddrNumOperands - 1);
570 continue;
571 }
572 auto &Op = DefMI->getOperand(OpIdx);
573 if (!Op.isReg() || !Op.isUse())
574 continue;
575 visitRegister(C, Op.getReg(), Domain, Worklist);
576 }
577
578 // Expand closure through register uses.
579 for (auto &UseMI : MRI->use_nodbg_instructions(CurReg)) {
580 // We would like to avoid converting closures which calculare addresses,
581 // as this should remain in GPRs.
582 if (usedAsAddr(UseMI, CurReg, TII)) {
583 C.setAllIllegal();
584 continue;
585 }
586 encloseInstr(C, &UseMI);
587
588 for (auto &DefOp : UseMI.defs()) {
589 if (!DefOp.isReg())
590 continue;
591
592 Register DefReg = DefOp.getReg();
593 if (!DefReg.isVirtual()) {
594 C.setAllIllegal();
595 continue;
596 }
597 visitRegister(C, DefReg, Domain, Worklist);
598 }
599 }
600 }
601 }
602
initConverters()603 void X86DomainReassignment::initConverters() {
604 Converters[{MaskDomain, TargetOpcode::PHI}] =
605 std::make_unique<InstrIgnore>(TargetOpcode::PHI);
606
607 Converters[{MaskDomain, TargetOpcode::IMPLICIT_DEF}] =
608 std::make_unique<InstrIgnore>(TargetOpcode::IMPLICIT_DEF);
609
610 Converters[{MaskDomain, TargetOpcode::INSERT_SUBREG}] =
611 std::make_unique<InstrReplaceWithCopy>(TargetOpcode::INSERT_SUBREG, 2);
612
613 Converters[{MaskDomain, TargetOpcode::COPY}] =
614 std::make_unique<InstrCOPYReplacer>(TargetOpcode::COPY, MaskDomain,
615 TargetOpcode::COPY);
616
617 auto createReplacerDstCOPY = [&](unsigned From, unsigned To) {
618 Converters[{MaskDomain, From}] =
619 std::make_unique<InstrReplacerDstCOPY>(From, To);
620 };
621
622 #define GET_EGPR_IF_ENABLED(OPC) STI->hasEGPR() ? OPC##_EVEX : OPC
623 createReplacerDstCOPY(X86::MOVZX32rm16, GET_EGPR_IF_ENABLED(X86::KMOVWkm));
624 createReplacerDstCOPY(X86::MOVZX64rm16, GET_EGPR_IF_ENABLED(X86::KMOVWkm));
625
626 createReplacerDstCOPY(X86::MOVZX32rr16, GET_EGPR_IF_ENABLED(X86::KMOVWkk));
627 createReplacerDstCOPY(X86::MOVZX64rr16, GET_EGPR_IF_ENABLED(X86::KMOVWkk));
628
629 if (STI->hasDQI()) {
630 createReplacerDstCOPY(X86::MOVZX16rm8, GET_EGPR_IF_ENABLED(X86::KMOVBkm));
631 createReplacerDstCOPY(X86::MOVZX32rm8, GET_EGPR_IF_ENABLED(X86::KMOVBkm));
632 createReplacerDstCOPY(X86::MOVZX64rm8, GET_EGPR_IF_ENABLED(X86::KMOVBkm));
633
634 createReplacerDstCOPY(X86::MOVZX16rr8, GET_EGPR_IF_ENABLED(X86::KMOVBkk));
635 createReplacerDstCOPY(X86::MOVZX32rr8, GET_EGPR_IF_ENABLED(X86::KMOVBkk));
636 createReplacerDstCOPY(X86::MOVZX64rr8, GET_EGPR_IF_ENABLED(X86::KMOVBkk));
637 }
638
639 auto createReplacer = [&](unsigned From, unsigned To) {
640 Converters[{MaskDomain, From}] = std::make_unique<InstrReplacer>(From, To);
641 };
642
643 createReplacer(X86::MOV16rm, GET_EGPR_IF_ENABLED(X86::KMOVWkm));
644 createReplacer(X86::MOV16mr, GET_EGPR_IF_ENABLED(X86::KMOVWmk));
645 createReplacer(X86::MOV16rr, GET_EGPR_IF_ENABLED(X86::KMOVWkk));
646 createReplacer(X86::SHR16ri, X86::KSHIFTRWri);
647 createReplacer(X86::SHL16ri, X86::KSHIFTLWri);
648 createReplacer(X86::NOT16r, X86::KNOTWrr);
649 createReplacer(X86::OR16rr, X86::KORWrr);
650 createReplacer(X86::AND16rr, X86::KANDWrr);
651 createReplacer(X86::XOR16rr, X86::KXORWrr);
652
653 bool HasNDD = STI->hasNDD();
654 if (HasNDD) {
655 createReplacer(X86::SHR16ri_ND, X86::KSHIFTRWri);
656 createReplacer(X86::SHL16ri_ND, X86::KSHIFTLWri);
657 createReplacer(X86::NOT16r_ND, X86::KNOTWrr);
658 createReplacer(X86::OR16rr_ND, X86::KORWrr);
659 createReplacer(X86::AND16rr_ND, X86::KANDWrr);
660 createReplacer(X86::XOR16rr_ND, X86::KXORWrr);
661 }
662
663 if (STI->hasBWI()) {
664 createReplacer(X86::MOV32rm, GET_EGPR_IF_ENABLED(X86::KMOVDkm));
665 createReplacer(X86::MOV64rm, GET_EGPR_IF_ENABLED(X86::KMOVQkm));
666
667 createReplacer(X86::MOV32mr, GET_EGPR_IF_ENABLED(X86::KMOVDmk));
668 createReplacer(X86::MOV64mr, GET_EGPR_IF_ENABLED(X86::KMOVQmk));
669
670 createReplacer(X86::MOV32rr, GET_EGPR_IF_ENABLED(X86::KMOVDkk));
671 createReplacer(X86::MOV64rr, GET_EGPR_IF_ENABLED(X86::KMOVQkk));
672
673 createReplacer(X86::SHR32ri, X86::KSHIFTRDri);
674 createReplacer(X86::SHR64ri, X86::KSHIFTRQri);
675
676 createReplacer(X86::SHL32ri, X86::KSHIFTLDri);
677 createReplacer(X86::SHL64ri, X86::KSHIFTLQri);
678
679 createReplacer(X86::ADD32rr, X86::KADDDrr);
680 createReplacer(X86::ADD64rr, X86::KADDQrr);
681
682 createReplacer(X86::NOT32r, X86::KNOTDrr);
683 createReplacer(X86::NOT64r, X86::KNOTQrr);
684
685 createReplacer(X86::OR32rr, X86::KORDrr);
686 createReplacer(X86::OR64rr, X86::KORQrr);
687
688 createReplacer(X86::AND32rr, X86::KANDDrr);
689 createReplacer(X86::AND64rr, X86::KANDQrr);
690
691 createReplacer(X86::ANDN32rr, X86::KANDNDrr);
692 createReplacer(X86::ANDN64rr, X86::KANDNQrr);
693
694 createReplacer(X86::XOR32rr, X86::KXORDrr);
695 createReplacer(X86::XOR64rr, X86::KXORQrr);
696
697 if (HasNDD) {
698 createReplacer(X86::SHR32ri_ND, X86::KSHIFTRDri);
699 createReplacer(X86::SHL32ri_ND, X86::KSHIFTLDri);
700 createReplacer(X86::ADD32rr_ND, X86::KADDDrr);
701 createReplacer(X86::NOT32r_ND, X86::KNOTDrr);
702 createReplacer(X86::OR32rr_ND, X86::KORDrr);
703 createReplacer(X86::AND32rr_ND, X86::KANDDrr);
704 createReplacer(X86::XOR32rr_ND, X86::KXORDrr);
705 createReplacer(X86::SHR64ri_ND, X86::KSHIFTRQri);
706 createReplacer(X86::SHL64ri_ND, X86::KSHIFTLQri);
707 createReplacer(X86::ADD64rr_ND, X86::KADDQrr);
708 createReplacer(X86::NOT64r_ND, X86::KNOTQrr);
709 createReplacer(X86::OR64rr_ND, X86::KORQrr);
710 createReplacer(X86::AND64rr_ND, X86::KANDQrr);
711 createReplacer(X86::XOR64rr_ND, X86::KXORQrr);
712 }
713
714 // TODO: KTEST is not a replacement for TEST due to flag differences. Need
715 // to prove only Z flag is used.
716 // createReplacer(X86::TEST32rr, X86::KTESTDrr);
717 // createReplacer(X86::TEST64rr, X86::KTESTQrr);
718 }
719
720 if (STI->hasDQI()) {
721 createReplacer(X86::ADD8rr, X86::KADDBrr);
722 createReplacer(X86::ADD16rr, X86::KADDWrr);
723
724 createReplacer(X86::AND8rr, X86::KANDBrr);
725
726 createReplacer(X86::MOV8rm, GET_EGPR_IF_ENABLED(X86::KMOVBkm));
727 createReplacer(X86::MOV8mr, GET_EGPR_IF_ENABLED(X86::KMOVBmk));
728 createReplacer(X86::MOV8rr, GET_EGPR_IF_ENABLED(X86::KMOVBkk));
729
730 createReplacer(X86::NOT8r, X86::KNOTBrr);
731
732 createReplacer(X86::OR8rr, X86::KORBrr);
733
734 createReplacer(X86::SHR8ri, X86::KSHIFTRBri);
735 createReplacer(X86::SHL8ri, X86::KSHIFTLBri);
736
737 // TODO: KTEST is not a replacement for TEST due to flag differences. Need
738 // to prove only Z flag is used.
739 // createReplacer(X86::TEST8rr, X86::KTESTBrr);
740 // createReplacer(X86::TEST16rr, X86::KTESTWrr);
741
742 createReplacer(X86::XOR8rr, X86::KXORBrr);
743
744 if (HasNDD) {
745 createReplacer(X86::ADD8rr_ND, X86::KADDBrr);
746 createReplacer(X86::ADD16rr_ND, X86::KADDWrr);
747 createReplacer(X86::AND8rr_ND, X86::KANDBrr);
748 createReplacer(X86::NOT8r_ND, X86::KNOTBrr);
749 createReplacer(X86::OR8rr_ND, X86::KORBrr);
750 createReplacer(X86::SHR8ri_ND, X86::KSHIFTRBri);
751 createReplacer(X86::SHL8ri_ND, X86::KSHIFTLBri);
752 createReplacer(X86::XOR8rr_ND, X86::KXORBrr);
753 }
754 }
755 #undef GET_EGPR_IF_ENABLED
756 }
757
runOnMachineFunction(MachineFunction & MF)758 bool X86DomainReassignment::runOnMachineFunction(MachineFunction &MF) {
759 if (skipFunction(MF.getFunction()))
760 return false;
761 if (DisableX86DomainReassignment)
762 return false;
763
764 LLVM_DEBUG(
765 dbgs() << "***** Machine Function before Domain Reassignment *****\n");
766 LLVM_DEBUG(MF.print(dbgs()));
767
768 STI = &MF.getSubtarget<X86Subtarget>();
769 // GPR->K is the only transformation currently supported, bail out early if no
770 // AVX512.
771 // TODO: We're also bailing of AVX512BW isn't supported since we use VK32 and
772 // VK64 for GR32/GR64, but those aren't legal classes on KNL. If the register
773 // coalescer doesn't clean it up and we generate a spill we will crash.
774 if (!STI->hasAVX512() || !STI->hasBWI())
775 return false;
776
777 MRI = &MF.getRegInfo();
778 assert(MRI->isSSA() && "Expected MIR to be in SSA form");
779
780 TII = STI->getInstrInfo();
781 initConverters();
782 bool Changed = false;
783
784 EnclosedEdges.clear();
785 EnclosedEdges.resize(MRI->getNumVirtRegs());
786 EnclosedInstrs.clear();
787
788 std::vector<Closure> Closures;
789
790 // Go over all virtual registers and calculate a closure.
791 unsigned ClosureID = 0;
792 for (unsigned Idx = 0; Idx < MRI->getNumVirtRegs(); ++Idx) {
793 Register Reg = Register::index2VirtReg(Idx);
794
795 // Skip unused VRegs.
796 if (MRI->reg_nodbg_empty(Reg))
797 continue;
798
799 // GPR only current source domain supported.
800 if (!isGPR(MRI->getRegClass(Reg)))
801 continue;
802
803 // Register already in closure.
804 if (EnclosedEdges.test(Idx))
805 continue;
806
807 // Calculate closure starting with Reg.
808 Closure C(ClosureID++, {MaskDomain});
809 buildClosure(C, Reg);
810
811 // Collect all closures that can potentially be converted.
812 if (!C.empty() && C.isLegal(MaskDomain))
813 Closures.push_back(std::move(C));
814 }
815
816 for (Closure &C : Closures) {
817 LLVM_DEBUG(C.dump(MRI));
818 if (isReassignmentProfitable(C, MaskDomain)) {
819 reassign(C, MaskDomain);
820 ++NumClosuresConverted;
821 Changed = true;
822 }
823 }
824
825 LLVM_DEBUG(
826 dbgs() << "***** Machine Function after Domain Reassignment *****\n");
827 LLVM_DEBUG(MF.print(dbgs()));
828
829 return Changed;
830 }
831
832 INITIALIZE_PASS(X86DomainReassignment, "x86-domain-reassignment",
833 "X86 Domain Reassignment Pass", false, false)
834
835 /// Returns an instance of the Domain Reassignment pass.
createX86DomainReassignmentPass()836 FunctionPass *llvm::createX86DomainReassignmentPass() {
837 return new X86DomainReassignment();
838 }
839