1 /* Broadcom NetXtreme-C/E network driver.
2 *
3 * Copyright (c) 2014-2016 Broadcom Corporation
4 * Copyright (c) 2016-2018 Broadcom Limited
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation.
9 */
10
11 #include <linux/ethtool.h>
12 #include <linux/module.h>
13 #include <linux/pci.h>
14 #include <linux/netdevice.h>
15 #include <linux/if_vlan.h>
16 #include <linux/interrupt.h>
17 #include <linux/etherdevice.h>
18 #include <net/dcbnl.h>
19 #include "bnxt_hsi.h"
20 #include "bnxt.h"
21 #include "bnxt_hwrm.h"
22 #include "bnxt_ulp.h"
23 #include "bnxt_sriov.h"
24 #include "bnxt_vfr.h"
25 #include "bnxt_ethtool.h"
26
27 #ifdef CONFIG_BNXT_SRIOV
bnxt_hwrm_fwd_async_event_cmpl(struct bnxt * bp,struct bnxt_vf_info * vf,u16 event_id)28 static int bnxt_hwrm_fwd_async_event_cmpl(struct bnxt *bp,
29 struct bnxt_vf_info *vf, u16 event_id)
30 {
31 struct hwrm_fwd_async_event_cmpl_input *req;
32 struct hwrm_async_event_cmpl *async_cmpl;
33 int rc = 0;
34
35 rc = hwrm_req_init(bp, req, HWRM_FWD_ASYNC_EVENT_CMPL);
36 if (rc)
37 goto exit;
38
39 if (vf)
40 req->encap_async_event_target_id = cpu_to_le16(vf->fw_fid);
41 else
42 /* broadcast this async event to all VFs */
43 req->encap_async_event_target_id = cpu_to_le16(0xffff);
44 async_cmpl =
45 (struct hwrm_async_event_cmpl *)req->encap_async_event_cmpl;
46 async_cmpl->type = cpu_to_le16(ASYNC_EVENT_CMPL_TYPE_HWRM_ASYNC_EVENT);
47 async_cmpl->event_id = cpu_to_le16(event_id);
48
49 rc = hwrm_req_send(bp, req);
50 exit:
51 if (rc)
52 netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl failed. rc:%d\n",
53 rc);
54 return rc;
55 }
56
bnxt_vf_ndo_prep(struct bnxt * bp,int vf_id)57 static int bnxt_vf_ndo_prep(struct bnxt *bp, int vf_id)
58 {
59 if (!bp->pf.active_vfs) {
60 netdev_err(bp->dev, "vf ndo called though sriov is disabled\n");
61 return -EINVAL;
62 }
63 if (vf_id >= bp->pf.active_vfs) {
64 netdev_err(bp->dev, "Invalid VF id %d\n", vf_id);
65 return -EINVAL;
66 }
67 return 0;
68 }
69
bnxt_set_vf_spoofchk(struct net_device * dev,int vf_id,bool setting)70 int bnxt_set_vf_spoofchk(struct net_device *dev, int vf_id, bool setting)
71 {
72 struct bnxt *bp = netdev_priv(dev);
73 struct hwrm_func_cfg_input *req;
74 bool old_setting = false;
75 struct bnxt_vf_info *vf;
76 u32 func_flags;
77 int rc;
78
79 if (bp->hwrm_spec_code < 0x10701)
80 return -ENOTSUPP;
81
82 rc = bnxt_vf_ndo_prep(bp, vf_id);
83 if (rc)
84 return rc;
85
86 vf = &bp->pf.vf[vf_id];
87 if (vf->flags & BNXT_VF_SPOOFCHK)
88 old_setting = true;
89 if (old_setting == setting)
90 return 0;
91
92 if (setting)
93 func_flags = FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_ENABLE;
94 else
95 func_flags = FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_DISABLE;
96 /*TODO: if the driver supports VLAN filter on guest VLAN,
97 * the spoof check should also include vlan anti-spoofing
98 */
99 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
100 if (!rc) {
101 req->fid = cpu_to_le16(vf->fw_fid);
102 req->flags = cpu_to_le32(func_flags);
103 rc = hwrm_req_send(bp, req);
104 if (!rc) {
105 if (setting)
106 vf->flags |= BNXT_VF_SPOOFCHK;
107 else
108 vf->flags &= ~BNXT_VF_SPOOFCHK;
109 }
110 }
111 return rc;
112 }
113
bnxt_hwrm_func_qcfg_flags(struct bnxt * bp,struct bnxt_vf_info * vf)114 static int bnxt_hwrm_func_qcfg_flags(struct bnxt *bp, struct bnxt_vf_info *vf)
115 {
116 struct hwrm_func_qcfg_output *resp;
117 struct hwrm_func_qcfg_input *req;
118 int rc;
119
120 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
121 if (rc)
122 return rc;
123
124 req->fid = cpu_to_le16(BNXT_PF(bp) ? vf->fw_fid : 0xffff);
125 resp = hwrm_req_hold(bp, req);
126 rc = hwrm_req_send(bp, req);
127 if (!rc)
128 vf->func_qcfg_flags = le16_to_cpu(resp->flags);
129 hwrm_req_drop(bp, req);
130 return rc;
131 }
132
bnxt_is_trusted_vf(struct bnxt * bp,struct bnxt_vf_info * vf)133 bool bnxt_is_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf)
134 {
135 if (BNXT_PF(bp) && !(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF))
136 return !!(vf->flags & BNXT_VF_TRUST);
137
138 bnxt_hwrm_func_qcfg_flags(bp, vf);
139 return !!(vf->func_qcfg_flags & FUNC_QCFG_RESP_FLAGS_TRUSTED_VF);
140 }
141
bnxt_hwrm_set_trusted_vf(struct bnxt * bp,struct bnxt_vf_info * vf)142 static int bnxt_hwrm_set_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf)
143 {
144 struct hwrm_func_cfg_input *req;
145 int rc;
146
147 if (!(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF))
148 return 0;
149
150 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
151 if (rc)
152 return rc;
153
154 req->fid = cpu_to_le16(vf->fw_fid);
155 if (vf->flags & BNXT_VF_TRUST)
156 req->flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE);
157 else
158 req->flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_DISABLE);
159 return hwrm_req_send(bp, req);
160 }
161
bnxt_set_vf_trust(struct net_device * dev,int vf_id,bool trusted)162 int bnxt_set_vf_trust(struct net_device *dev, int vf_id, bool trusted)
163 {
164 struct bnxt *bp = netdev_priv(dev);
165 struct bnxt_vf_info *vf;
166
167 if (bnxt_vf_ndo_prep(bp, vf_id))
168 return -EINVAL;
169
170 vf = &bp->pf.vf[vf_id];
171 if (trusted)
172 vf->flags |= BNXT_VF_TRUST;
173 else
174 vf->flags &= ~BNXT_VF_TRUST;
175
176 bnxt_hwrm_set_trusted_vf(bp, vf);
177 return 0;
178 }
179
bnxt_get_vf_config(struct net_device * dev,int vf_id,struct ifla_vf_info * ivi)180 int bnxt_get_vf_config(struct net_device *dev, int vf_id,
181 struct ifla_vf_info *ivi)
182 {
183 struct bnxt *bp = netdev_priv(dev);
184 struct bnxt_vf_info *vf;
185 int rc;
186
187 rc = bnxt_vf_ndo_prep(bp, vf_id);
188 if (rc)
189 return rc;
190
191 ivi->vf = vf_id;
192 vf = &bp->pf.vf[vf_id];
193
194 if (is_valid_ether_addr(vf->mac_addr))
195 memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN);
196 else
197 memcpy(&ivi->mac, vf->vf_mac_addr, ETH_ALEN);
198 ivi->max_tx_rate = vf->max_tx_rate;
199 ivi->min_tx_rate = vf->min_tx_rate;
200 ivi->vlan = vf->vlan & VLAN_VID_MASK;
201 ivi->qos = vf->vlan >> VLAN_PRIO_SHIFT;
202 ivi->spoofchk = !!(vf->flags & BNXT_VF_SPOOFCHK);
203 ivi->trusted = bnxt_is_trusted_vf(bp, vf);
204 if (!(vf->flags & BNXT_VF_LINK_FORCED))
205 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
206 else if (vf->flags & BNXT_VF_LINK_UP)
207 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
208 else
209 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
210
211 return 0;
212 }
213
bnxt_set_vf_mac(struct net_device * dev,int vf_id,u8 * mac)214 int bnxt_set_vf_mac(struct net_device *dev, int vf_id, u8 *mac)
215 {
216 struct bnxt *bp = netdev_priv(dev);
217 struct hwrm_func_cfg_input *req;
218 struct bnxt_vf_info *vf;
219 int rc;
220
221 rc = bnxt_vf_ndo_prep(bp, vf_id);
222 if (rc)
223 return rc;
224 /* reject bc or mc mac addr, zero mac addr means allow
225 * VF to use its own mac addr
226 */
227 if (is_multicast_ether_addr(mac)) {
228 netdev_err(dev, "Invalid VF ethernet address\n");
229 return -EINVAL;
230 }
231 vf = &bp->pf.vf[vf_id];
232
233 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
234 if (rc)
235 return rc;
236
237 memcpy(vf->mac_addr, mac, ETH_ALEN);
238
239 req->fid = cpu_to_le16(vf->fw_fid);
240 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
241 memcpy(req->dflt_mac_addr, mac, ETH_ALEN);
242 return hwrm_req_send(bp, req);
243 }
244
bnxt_set_vf_vlan(struct net_device * dev,int vf_id,u16 vlan_id,u8 qos,__be16 vlan_proto)245 int bnxt_set_vf_vlan(struct net_device *dev, int vf_id, u16 vlan_id, u8 qos,
246 __be16 vlan_proto)
247 {
248 struct bnxt *bp = netdev_priv(dev);
249 struct hwrm_func_cfg_input *req;
250 struct bnxt_vf_info *vf;
251 u16 vlan_tag;
252 int rc;
253
254 if (bp->hwrm_spec_code < 0x10201)
255 return -ENOTSUPP;
256
257 if (vlan_proto != htons(ETH_P_8021Q) &&
258 (vlan_proto != htons(ETH_P_8021AD) ||
259 !(bp->fw_cap & BNXT_FW_CAP_DFLT_VLAN_TPID_PCP)))
260 return -EPROTONOSUPPORT;
261
262 rc = bnxt_vf_ndo_prep(bp, vf_id);
263 if (rc)
264 return rc;
265
266 if (vlan_id >= VLAN_N_VID || qos >= IEEE_8021Q_MAX_PRIORITIES ||
267 (!vlan_id && qos))
268 return -EINVAL;
269
270 vf = &bp->pf.vf[vf_id];
271 vlan_tag = vlan_id | (u16)qos << VLAN_PRIO_SHIFT;
272 if (vlan_tag == vf->vlan)
273 return 0;
274
275 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
276 if (!rc) {
277 req->fid = cpu_to_le16(vf->fw_fid);
278 req->dflt_vlan = cpu_to_le16(vlan_tag);
279 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN);
280 if (bp->fw_cap & BNXT_FW_CAP_DFLT_VLAN_TPID_PCP) {
281 req->enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_TPID);
282 req->tpid = vlan_proto;
283 }
284 rc = hwrm_req_send(bp, req);
285 if (!rc)
286 vf->vlan = vlan_tag;
287 }
288 return rc;
289 }
290
bnxt_set_vf_bw(struct net_device * dev,int vf_id,int min_tx_rate,int max_tx_rate)291 int bnxt_set_vf_bw(struct net_device *dev, int vf_id, int min_tx_rate,
292 int max_tx_rate)
293 {
294 struct bnxt *bp = netdev_priv(dev);
295 struct hwrm_func_cfg_input *req;
296 struct bnxt_vf_info *vf;
297 u32 pf_link_speed;
298 int rc;
299
300 rc = bnxt_vf_ndo_prep(bp, vf_id);
301 if (rc)
302 return rc;
303
304 vf = &bp->pf.vf[vf_id];
305 pf_link_speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
306 if (max_tx_rate > pf_link_speed) {
307 netdev_info(bp->dev, "max tx rate %d exceed PF link speed for VF %d\n",
308 max_tx_rate, vf_id);
309 return -EINVAL;
310 }
311
312 if (min_tx_rate > pf_link_speed) {
313 netdev_info(bp->dev, "min tx rate %d is invalid for VF %d\n",
314 min_tx_rate, vf_id);
315 return -EINVAL;
316 }
317 if (min_tx_rate == vf->min_tx_rate && max_tx_rate == vf->max_tx_rate)
318 return 0;
319 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
320 if (!rc) {
321 req->fid = cpu_to_le16(vf->fw_fid);
322 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW |
323 FUNC_CFG_REQ_ENABLES_MIN_BW);
324 req->max_bw = cpu_to_le32(max_tx_rate);
325 req->min_bw = cpu_to_le32(min_tx_rate);
326 rc = hwrm_req_send(bp, req);
327 if (!rc) {
328 vf->min_tx_rate = min_tx_rate;
329 vf->max_tx_rate = max_tx_rate;
330 }
331 }
332 return rc;
333 }
334
bnxt_set_vf_link_state(struct net_device * dev,int vf_id,int link)335 int bnxt_set_vf_link_state(struct net_device *dev, int vf_id, int link)
336 {
337 struct bnxt *bp = netdev_priv(dev);
338 struct bnxt_vf_info *vf;
339 int rc;
340
341 rc = bnxt_vf_ndo_prep(bp, vf_id);
342 if (rc)
343 return rc;
344
345 vf = &bp->pf.vf[vf_id];
346
347 vf->flags &= ~(BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED);
348 switch (link) {
349 case IFLA_VF_LINK_STATE_AUTO:
350 vf->flags |= BNXT_VF_LINK_UP;
351 break;
352 case IFLA_VF_LINK_STATE_DISABLE:
353 vf->flags |= BNXT_VF_LINK_FORCED;
354 break;
355 case IFLA_VF_LINK_STATE_ENABLE:
356 vf->flags |= BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED;
357 break;
358 default:
359 netdev_err(bp->dev, "Invalid link option\n");
360 rc = -EINVAL;
361 break;
362 }
363 if (vf->flags & (BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED))
364 rc = bnxt_hwrm_fwd_async_event_cmpl(bp, vf,
365 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE);
366 return rc;
367 }
368
bnxt_set_vf_attr(struct bnxt * bp,int num_vfs)369 static int bnxt_set_vf_attr(struct bnxt *bp, int num_vfs)
370 {
371 int i;
372 struct bnxt_vf_info *vf;
373
374 for (i = 0; i < num_vfs; i++) {
375 vf = &bp->pf.vf[i];
376 memset(vf, 0, sizeof(*vf));
377 }
378 return 0;
379 }
380
bnxt_hwrm_func_vf_resource_free(struct bnxt * bp,int num_vfs)381 static int bnxt_hwrm_func_vf_resource_free(struct bnxt *bp, int num_vfs)
382 {
383 struct hwrm_func_vf_resc_free_input *req;
384 struct bnxt_pf_info *pf = &bp->pf;
385 int i, rc;
386
387 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_RESC_FREE);
388 if (rc)
389 return rc;
390
391 hwrm_req_hold(bp, req);
392 for (i = pf->first_vf_id; i < pf->first_vf_id + num_vfs; i++) {
393 req->vf_id = cpu_to_le16(i);
394 rc = hwrm_req_send(bp, req);
395 if (rc)
396 break;
397 }
398 hwrm_req_drop(bp, req);
399 return rc;
400 }
401
bnxt_free_vf_resources(struct bnxt * bp)402 static void bnxt_free_vf_resources(struct bnxt *bp)
403 {
404 struct pci_dev *pdev = bp->pdev;
405 int i;
406
407 kfree(bp->pf.vf_event_bmap);
408 bp->pf.vf_event_bmap = NULL;
409
410 for (i = 0; i < 4; i++) {
411 if (bp->pf.hwrm_cmd_req_addr[i]) {
412 dma_free_coherent(&pdev->dev, BNXT_PAGE_SIZE,
413 bp->pf.hwrm_cmd_req_addr[i],
414 bp->pf.hwrm_cmd_req_dma_addr[i]);
415 bp->pf.hwrm_cmd_req_addr[i] = NULL;
416 }
417 }
418
419 bp->pf.active_vfs = 0;
420 kfree(bp->pf.vf);
421 bp->pf.vf = NULL;
422 }
423
bnxt_alloc_vf_resources(struct bnxt * bp,int num_vfs)424 static int bnxt_alloc_vf_resources(struct bnxt *bp, int num_vfs)
425 {
426 struct pci_dev *pdev = bp->pdev;
427 u32 nr_pages, size, i, j, k = 0;
428
429 bp->pf.vf = kcalloc(num_vfs, sizeof(struct bnxt_vf_info), GFP_KERNEL);
430 if (!bp->pf.vf)
431 return -ENOMEM;
432
433 bnxt_set_vf_attr(bp, num_vfs);
434
435 size = num_vfs * BNXT_HWRM_REQ_MAX_SIZE;
436 nr_pages = size / BNXT_PAGE_SIZE;
437 if (size & (BNXT_PAGE_SIZE - 1))
438 nr_pages++;
439
440 for (i = 0; i < nr_pages; i++) {
441 bp->pf.hwrm_cmd_req_addr[i] =
442 dma_alloc_coherent(&pdev->dev, BNXT_PAGE_SIZE,
443 &bp->pf.hwrm_cmd_req_dma_addr[i],
444 GFP_KERNEL);
445
446 if (!bp->pf.hwrm_cmd_req_addr[i])
447 return -ENOMEM;
448
449 for (j = 0; j < BNXT_HWRM_REQS_PER_PAGE && k < num_vfs; j++) {
450 struct bnxt_vf_info *vf = &bp->pf.vf[k];
451
452 vf->hwrm_cmd_req_addr = bp->pf.hwrm_cmd_req_addr[i] +
453 j * BNXT_HWRM_REQ_MAX_SIZE;
454 vf->hwrm_cmd_req_dma_addr =
455 bp->pf.hwrm_cmd_req_dma_addr[i] + j *
456 BNXT_HWRM_REQ_MAX_SIZE;
457 k++;
458 }
459 }
460
461 /* Max 128 VF's */
462 bp->pf.vf_event_bmap = kzalloc(16, GFP_KERNEL);
463 if (!bp->pf.vf_event_bmap)
464 return -ENOMEM;
465
466 bp->pf.hwrm_cmd_req_pages = nr_pages;
467 return 0;
468 }
469
bnxt_hwrm_func_buf_rgtr(struct bnxt * bp)470 static int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp)
471 {
472 struct hwrm_func_buf_rgtr_input *req;
473 int rc;
474
475 rc = hwrm_req_init(bp, req, HWRM_FUNC_BUF_RGTR);
476 if (rc)
477 return rc;
478
479 req->req_buf_num_pages = cpu_to_le16(bp->pf.hwrm_cmd_req_pages);
480 req->req_buf_page_size = cpu_to_le16(BNXT_PAGE_SHIFT);
481 req->req_buf_len = cpu_to_le16(BNXT_HWRM_REQ_MAX_SIZE);
482 req->req_buf_page_addr0 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[0]);
483 req->req_buf_page_addr1 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[1]);
484 req->req_buf_page_addr2 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[2]);
485 req->req_buf_page_addr3 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[3]);
486
487 return hwrm_req_send(bp, req);
488 }
489
__bnxt_set_vf_params(struct bnxt * bp,int vf_id)490 static int __bnxt_set_vf_params(struct bnxt *bp, int vf_id)
491 {
492 struct hwrm_func_cfg_input *req;
493 struct bnxt_vf_info *vf;
494 int rc;
495
496 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
497 if (rc)
498 return rc;
499
500 vf = &bp->pf.vf[vf_id];
501 req->fid = cpu_to_le16(vf->fw_fid);
502
503 if (is_valid_ether_addr(vf->mac_addr)) {
504 req->enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
505 memcpy(req->dflt_mac_addr, vf->mac_addr, ETH_ALEN);
506 }
507 if (vf->vlan) {
508 req->enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN);
509 req->dflt_vlan = cpu_to_le16(vf->vlan);
510 }
511 if (vf->max_tx_rate) {
512 req->enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW |
513 FUNC_CFG_REQ_ENABLES_MIN_BW);
514 req->max_bw = cpu_to_le32(vf->max_tx_rate);
515 req->min_bw = cpu_to_le32(vf->min_tx_rate);
516 }
517 if (vf->flags & BNXT_VF_TRUST)
518 req->flags |= cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE);
519
520 return hwrm_req_send(bp, req);
521 }
522
523 /* Only called by PF to reserve resources for VFs, returns actual number of
524 * VFs configured, or < 0 on error.
525 */
bnxt_hwrm_func_vf_resc_cfg(struct bnxt * bp,int num_vfs,bool reset)526 static int bnxt_hwrm_func_vf_resc_cfg(struct bnxt *bp, int num_vfs, bool reset)
527 {
528 struct hwrm_func_vf_resource_cfg_input *req;
529 struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
530 u16 vf_tx_rings, vf_rx_rings, vf_cp_rings;
531 u16 vf_stat_ctx, vf_vnics, vf_ring_grps;
532 struct bnxt_pf_info *pf = &bp->pf;
533 int i, rc = 0, min = 1;
534 u16 vf_msix = 0;
535 u16 vf_rss;
536
537 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_RESOURCE_CFG);
538 if (rc)
539 return rc;
540
541 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
542 vf_msix = hw_resc->max_nqs - bnxt_nq_rings_in_use(bp);
543 vf_ring_grps = 0;
544 } else {
545 vf_ring_grps = hw_resc->max_hw_ring_grps - bp->rx_nr_rings;
546 }
547 vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp);
548 vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp);
549 if (bp->flags & BNXT_FLAG_AGG_RINGS)
550 vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings * 2;
551 else
552 vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings;
553 vf_tx_rings = hw_resc->max_tx_rings - bp->tx_nr_rings;
554 vf_vnics = hw_resc->max_vnics - bp->nr_vnics;
555 vf_rss = hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs;
556
557 req->min_rsscos_ctx = cpu_to_le16(BNXT_VF_MIN_RSS_CTX);
558 if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) {
559 min = 0;
560 req->min_rsscos_ctx = cpu_to_le16(min);
561 }
562 if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL ||
563 pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) {
564 req->min_cmpl_rings = cpu_to_le16(min);
565 req->min_tx_rings = cpu_to_le16(min);
566 req->min_rx_rings = cpu_to_le16(min);
567 req->min_l2_ctxs = cpu_to_le16(min);
568 req->min_vnics = cpu_to_le16(min);
569 req->min_stat_ctx = cpu_to_le16(min);
570 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
571 req->min_hw_ring_grps = cpu_to_le16(min);
572 } else {
573 vf_cp_rings /= num_vfs;
574 vf_tx_rings /= num_vfs;
575 vf_rx_rings /= num_vfs;
576 if ((bp->fw_cap & BNXT_FW_CAP_PRE_RESV_VNICS) &&
577 vf_vnics >= pf->max_vfs) {
578 /* Take into account that FW has pre-reserved 1 VNIC for
579 * each pf->max_vfs.
580 */
581 vf_vnics = (vf_vnics - pf->max_vfs + num_vfs) / num_vfs;
582 } else {
583 vf_vnics /= num_vfs;
584 }
585 vf_stat_ctx /= num_vfs;
586 vf_ring_grps /= num_vfs;
587 vf_rss /= num_vfs;
588
589 vf_vnics = min_t(u16, vf_vnics, vf_rx_rings);
590 req->min_cmpl_rings = cpu_to_le16(vf_cp_rings);
591 req->min_tx_rings = cpu_to_le16(vf_tx_rings);
592 req->min_rx_rings = cpu_to_le16(vf_rx_rings);
593 req->min_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
594 req->min_vnics = cpu_to_le16(vf_vnics);
595 req->min_stat_ctx = cpu_to_le16(vf_stat_ctx);
596 req->min_hw_ring_grps = cpu_to_le16(vf_ring_grps);
597 req->min_rsscos_ctx = cpu_to_le16(vf_rss);
598 }
599 req->max_cmpl_rings = cpu_to_le16(vf_cp_rings);
600 req->max_tx_rings = cpu_to_le16(vf_tx_rings);
601 req->max_rx_rings = cpu_to_le16(vf_rx_rings);
602 req->max_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
603 req->max_vnics = cpu_to_le16(vf_vnics);
604 req->max_stat_ctx = cpu_to_le16(vf_stat_ctx);
605 req->max_hw_ring_grps = cpu_to_le16(vf_ring_grps);
606 req->max_rsscos_ctx = cpu_to_le16(vf_rss);
607 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
608 req->max_msix = cpu_to_le16(vf_msix / num_vfs);
609
610 hwrm_req_hold(bp, req);
611 for (i = 0; i < num_vfs; i++) {
612 if (reset)
613 __bnxt_set_vf_params(bp, i);
614
615 req->vf_id = cpu_to_le16(pf->first_vf_id + i);
616 rc = hwrm_req_send(bp, req);
617 if (rc)
618 break;
619 pf->active_vfs = i + 1;
620 pf->vf[i].fw_fid = pf->first_vf_id + i;
621 }
622
623 if (pf->active_vfs) {
624 u16 n = pf->active_vfs;
625
626 hw_resc->max_tx_rings -= le16_to_cpu(req->min_tx_rings) * n;
627 hw_resc->max_rx_rings -= le16_to_cpu(req->min_rx_rings) * n;
628 hw_resc->max_hw_ring_grps -=
629 le16_to_cpu(req->min_hw_ring_grps) * n;
630 hw_resc->max_cp_rings -= le16_to_cpu(req->min_cmpl_rings) * n;
631 hw_resc->max_rsscos_ctxs -=
632 le16_to_cpu(req->min_rsscos_ctx) * n;
633 hw_resc->max_stat_ctxs -= le16_to_cpu(req->min_stat_ctx) * n;
634 hw_resc->max_vnics -= le16_to_cpu(req->min_vnics) * n;
635 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
636 hw_resc->max_nqs -= vf_msix;
637
638 rc = pf->active_vfs;
639 }
640 hwrm_req_drop(bp, req);
641 return rc;
642 }
643
644 /* Only called by PF to reserve resources for VFs, returns actual number of
645 * VFs configured, or < 0 on error.
646 */
bnxt_hwrm_func_cfg(struct bnxt * bp,int num_vfs)647 static int bnxt_hwrm_func_cfg(struct bnxt *bp, int num_vfs)
648 {
649 u16 vf_tx_rings, vf_rx_rings, vf_cp_rings, vf_stat_ctx, vf_vnics;
650 struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
651 struct bnxt_pf_info *pf = &bp->pf;
652 struct hwrm_func_cfg_input *req;
653 int total_vf_tx_rings = 0;
654 u16 vf_ring_grps;
655 u32 mtu, i;
656 int rc;
657
658 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
659 if (rc)
660 return rc;
661
662 /* Remaining rings are distributed equally amongs VF's for now */
663 vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp) / num_vfs;
664 vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp) / num_vfs;
665 if (bp->flags & BNXT_FLAG_AGG_RINGS)
666 vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings * 2) /
667 num_vfs;
668 else
669 vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings) /
670 num_vfs;
671 vf_ring_grps = (hw_resc->max_hw_ring_grps - bp->rx_nr_rings) / num_vfs;
672 vf_tx_rings = (hw_resc->max_tx_rings - bp->tx_nr_rings) / num_vfs;
673 vf_vnics = (hw_resc->max_vnics - bp->nr_vnics) / num_vfs;
674 vf_vnics = min_t(u16, vf_vnics, vf_rx_rings);
675
676 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ADMIN_MTU |
677 FUNC_CFG_REQ_ENABLES_MRU |
678 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS |
679 FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS |
680 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
681 FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS |
682 FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS |
683 FUNC_CFG_REQ_ENABLES_NUM_L2_CTXS |
684 FUNC_CFG_REQ_ENABLES_NUM_VNICS |
685 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS);
686
687 mtu = bp->dev->mtu + ETH_HLEN + VLAN_HLEN;
688 req->mru = cpu_to_le16(mtu);
689 req->admin_mtu = cpu_to_le16(mtu);
690
691 req->num_rsscos_ctxs = cpu_to_le16(1);
692 req->num_cmpl_rings = cpu_to_le16(vf_cp_rings);
693 req->num_tx_rings = cpu_to_le16(vf_tx_rings);
694 req->num_rx_rings = cpu_to_le16(vf_rx_rings);
695 req->num_hw_ring_grps = cpu_to_le16(vf_ring_grps);
696 req->num_l2_ctxs = cpu_to_le16(4);
697
698 req->num_vnics = cpu_to_le16(vf_vnics);
699 /* FIXME spec currently uses 1 bit for stats ctx */
700 req->num_stat_ctxs = cpu_to_le16(vf_stat_ctx);
701
702 hwrm_req_hold(bp, req);
703 for (i = 0; i < num_vfs; i++) {
704 int vf_tx_rsvd = vf_tx_rings;
705
706 req->fid = cpu_to_le16(pf->first_vf_id + i);
707 rc = hwrm_req_send(bp, req);
708 if (rc)
709 break;
710 pf->active_vfs = i + 1;
711 pf->vf[i].fw_fid = le16_to_cpu(req->fid);
712 rc = __bnxt_hwrm_get_tx_rings(bp, pf->vf[i].fw_fid,
713 &vf_tx_rsvd);
714 if (rc)
715 break;
716 total_vf_tx_rings += vf_tx_rsvd;
717 }
718 hwrm_req_drop(bp, req);
719 if (pf->active_vfs) {
720 hw_resc->max_tx_rings -= total_vf_tx_rings;
721 hw_resc->max_rx_rings -= vf_rx_rings * num_vfs;
722 hw_resc->max_hw_ring_grps -= vf_ring_grps * num_vfs;
723 hw_resc->max_cp_rings -= vf_cp_rings * num_vfs;
724 hw_resc->max_rsscos_ctxs -= num_vfs;
725 hw_resc->max_stat_ctxs -= vf_stat_ctx * num_vfs;
726 hw_resc->max_vnics -= vf_vnics * num_vfs;
727 rc = pf->active_vfs;
728 }
729 return rc;
730 }
731
bnxt_func_cfg(struct bnxt * bp,int num_vfs,bool reset)732 static int bnxt_func_cfg(struct bnxt *bp, int num_vfs, bool reset)
733 {
734 if (BNXT_NEW_RM(bp))
735 return bnxt_hwrm_func_vf_resc_cfg(bp, num_vfs, reset);
736 else
737 return bnxt_hwrm_func_cfg(bp, num_vfs);
738 }
739
bnxt_cfg_hw_sriov(struct bnxt * bp,int * num_vfs,bool reset)740 int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset)
741 {
742 int rc;
743
744 /* Register buffers for VFs */
745 rc = bnxt_hwrm_func_buf_rgtr(bp);
746 if (rc)
747 return rc;
748
749 /* Reserve resources for VFs */
750 rc = bnxt_func_cfg(bp, *num_vfs, reset);
751 if (rc != *num_vfs) {
752 if (rc <= 0) {
753 netdev_warn(bp->dev, "Unable to reserve resources for SRIOV.\n");
754 *num_vfs = 0;
755 return rc;
756 }
757 netdev_warn(bp->dev, "Only able to reserve resources for %d VFs.\n",
758 rc);
759 *num_vfs = rc;
760 }
761
762 return 0;
763 }
764
bnxt_sriov_enable(struct bnxt * bp,int * num_vfs)765 static int bnxt_sriov_enable(struct bnxt *bp, int *num_vfs)
766 {
767 int rc = 0, vfs_supported;
768 int min_rx_rings, min_tx_rings, min_rss_ctxs;
769 struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
770 int tx_ok = 0, rx_ok = 0, rss_ok = 0;
771 int avail_cp, avail_stat;
772
773 /* Check if we can enable requested num of vf's. At a mininum
774 * we require 1 RX 1 TX rings for each VF. In this minimum conf
775 * features like TPA will not be available.
776 */
777 vfs_supported = *num_vfs;
778
779 avail_cp = bnxt_get_avail_cp_rings_for_en(bp);
780 avail_stat = bnxt_get_avail_stat_ctxs_for_en(bp);
781 avail_cp = min_t(int, avail_cp, avail_stat);
782
783 while (vfs_supported) {
784 min_rx_rings = vfs_supported;
785 min_tx_rings = vfs_supported;
786 min_rss_ctxs = vfs_supported;
787
788 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
789 if (hw_resc->max_rx_rings - bp->rx_nr_rings * 2 >=
790 min_rx_rings)
791 rx_ok = 1;
792 } else {
793 if (hw_resc->max_rx_rings - bp->rx_nr_rings >=
794 min_rx_rings)
795 rx_ok = 1;
796 }
797 if (hw_resc->max_vnics - bp->nr_vnics < min_rx_rings ||
798 avail_cp < min_rx_rings)
799 rx_ok = 0;
800
801 if (hw_resc->max_tx_rings - bp->tx_nr_rings >= min_tx_rings &&
802 avail_cp >= min_tx_rings)
803 tx_ok = 1;
804
805 if (hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs >=
806 min_rss_ctxs)
807 rss_ok = 1;
808
809 if (tx_ok && rx_ok && rss_ok)
810 break;
811
812 vfs_supported--;
813 }
814
815 if (!vfs_supported) {
816 netdev_err(bp->dev, "Cannot enable VF's as all resources are used by PF\n");
817 return -EINVAL;
818 }
819
820 if (vfs_supported != *num_vfs) {
821 netdev_info(bp->dev, "Requested VFs %d, can enable %d\n",
822 *num_vfs, vfs_supported);
823 *num_vfs = vfs_supported;
824 }
825
826 rc = bnxt_alloc_vf_resources(bp, *num_vfs);
827 if (rc)
828 goto err_out1;
829
830 rc = bnxt_cfg_hw_sriov(bp, num_vfs, false);
831 if (rc)
832 goto err_out2;
833
834 rc = pci_enable_sriov(bp->pdev, *num_vfs);
835 if (rc)
836 goto err_out2;
837
838 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
839 return 0;
840
841 /* Create representors for VFs in switchdev mode */
842 devl_lock(bp->dl);
843 rc = bnxt_vf_reps_create(bp);
844 devl_unlock(bp->dl);
845 if (rc) {
846 netdev_info(bp->dev, "Cannot enable VFS as representors cannot be created\n");
847 goto err_out3;
848 }
849
850 return 0;
851
852 err_out3:
853 /* Disable SR-IOV */
854 pci_disable_sriov(bp->pdev);
855
856 err_out2:
857 /* Free the resources reserved for various VF's */
858 bnxt_hwrm_func_vf_resource_free(bp, *num_vfs);
859
860 /* Restore the max resources */
861 bnxt_hwrm_func_qcaps(bp);
862
863 err_out1:
864 bnxt_free_vf_resources(bp);
865
866 return rc;
867 }
868
bnxt_sriov_disable(struct bnxt * bp)869 void bnxt_sriov_disable(struct bnxt *bp)
870 {
871 u16 num_vfs = pci_num_vf(bp->pdev);
872
873 if (!num_vfs)
874 return;
875
876 /* synchronize VF and VF-rep create and destroy */
877 devl_lock(bp->dl);
878 bnxt_vf_reps_destroy(bp);
879
880 if (pci_vfs_assigned(bp->pdev)) {
881 bnxt_hwrm_fwd_async_event_cmpl(
882 bp, NULL, ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD);
883 netdev_warn(bp->dev, "Unable to free %d VFs because some are assigned to VMs.\n",
884 num_vfs);
885 } else {
886 pci_disable_sriov(bp->pdev);
887 /* Free the HW resources reserved for various VF's */
888 bnxt_hwrm_func_vf_resource_free(bp, num_vfs);
889 }
890 devl_unlock(bp->dl);
891
892 bnxt_free_vf_resources(bp);
893
894 /* Reclaim all resources for the PF. */
895 rtnl_lock();
896 bnxt_restore_pf_fw_resources(bp);
897 rtnl_unlock();
898 }
899
bnxt_sriov_configure(struct pci_dev * pdev,int num_vfs)900 int bnxt_sriov_configure(struct pci_dev *pdev, int num_vfs)
901 {
902 struct net_device *dev = pci_get_drvdata(pdev);
903 struct bnxt *bp = netdev_priv(dev);
904
905 rtnl_lock();
906 if (!netif_running(dev)) {
907 netdev_warn(dev, "Reject SRIOV config request since if is down!\n");
908 rtnl_unlock();
909 return 0;
910 }
911 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
912 netdev_warn(dev, "Reject SRIOV config request when FW reset is in progress\n");
913 rtnl_unlock();
914 return 0;
915 }
916 bp->sriov_cfg = true;
917 rtnl_unlock();
918
919 if (pci_vfs_assigned(bp->pdev)) {
920 netdev_warn(dev, "Unable to configure SRIOV since some VFs are assigned to VMs.\n");
921 num_vfs = 0;
922 goto sriov_cfg_exit;
923 }
924
925 /* Check if enabled VFs is same as requested */
926 if (num_vfs && num_vfs == bp->pf.active_vfs)
927 goto sriov_cfg_exit;
928
929 /* if there are previous existing VFs, clean them up */
930 bnxt_sriov_disable(bp);
931 if (!num_vfs)
932 goto sriov_cfg_exit;
933
934 bnxt_sriov_enable(bp, &num_vfs);
935
936 sriov_cfg_exit:
937 bp->sriov_cfg = false;
938 wake_up(&bp->sriov_cfg_wait);
939
940 return num_vfs;
941 }
942
bnxt_hwrm_fwd_resp(struct bnxt * bp,struct bnxt_vf_info * vf,void * encap_resp,__le64 encap_resp_addr,__le16 encap_resp_cpr,u32 msg_size)943 static int bnxt_hwrm_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
944 void *encap_resp, __le64 encap_resp_addr,
945 __le16 encap_resp_cpr, u32 msg_size)
946 {
947 struct hwrm_fwd_resp_input *req;
948 int rc;
949
950 if (BNXT_FWD_RESP_SIZE_ERR(msg_size)) {
951 netdev_warn_once(bp->dev, "HWRM fwd response too big (%d bytes)\n",
952 msg_size);
953 return -EINVAL;
954 }
955
956 rc = hwrm_req_init(bp, req, HWRM_FWD_RESP);
957 if (!rc) {
958 /* Set the new target id */
959 req->target_id = cpu_to_le16(vf->fw_fid);
960 req->encap_resp_target_id = cpu_to_le16(vf->fw_fid);
961 req->encap_resp_len = cpu_to_le16(msg_size);
962 req->encap_resp_addr = encap_resp_addr;
963 req->encap_resp_cmpl_ring = encap_resp_cpr;
964 memcpy(req->encap_resp, encap_resp, msg_size);
965
966 rc = hwrm_req_send(bp, req);
967 }
968 if (rc)
969 netdev_err(bp->dev, "hwrm_fwd_resp failed. rc:%d\n", rc);
970 return rc;
971 }
972
bnxt_hwrm_fwd_err_resp(struct bnxt * bp,struct bnxt_vf_info * vf,u32 msg_size)973 static int bnxt_hwrm_fwd_err_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
974 u32 msg_size)
975 {
976 struct hwrm_reject_fwd_resp_input *req;
977 int rc;
978
979 if (BNXT_REJ_FWD_RESP_SIZE_ERR(msg_size))
980 return -EINVAL;
981
982 rc = hwrm_req_init(bp, req, HWRM_REJECT_FWD_RESP);
983 if (!rc) {
984 /* Set the new target id */
985 req->target_id = cpu_to_le16(vf->fw_fid);
986 req->encap_resp_target_id = cpu_to_le16(vf->fw_fid);
987 memcpy(req->encap_request, vf->hwrm_cmd_req_addr, msg_size);
988
989 rc = hwrm_req_send(bp, req);
990 }
991 if (rc)
992 netdev_err(bp->dev, "hwrm_fwd_err_resp failed. rc:%d\n", rc);
993 return rc;
994 }
995
bnxt_hwrm_exec_fwd_resp(struct bnxt * bp,struct bnxt_vf_info * vf,u32 msg_size)996 static int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
997 u32 msg_size)
998 {
999 struct hwrm_exec_fwd_resp_input *req;
1000 int rc;
1001
1002 if (BNXT_EXEC_FWD_RESP_SIZE_ERR(msg_size))
1003 return -EINVAL;
1004
1005 rc = hwrm_req_init(bp, req, HWRM_EXEC_FWD_RESP);
1006 if (!rc) {
1007 /* Set the new target id */
1008 req->target_id = cpu_to_le16(vf->fw_fid);
1009 req->encap_resp_target_id = cpu_to_le16(vf->fw_fid);
1010 memcpy(req->encap_request, vf->hwrm_cmd_req_addr, msg_size);
1011
1012 rc = hwrm_req_send(bp, req);
1013 }
1014 if (rc)
1015 netdev_err(bp->dev, "hwrm_exec_fw_resp failed. rc:%d\n", rc);
1016 return rc;
1017 }
1018
bnxt_vf_configure_mac(struct bnxt * bp,struct bnxt_vf_info * vf)1019 static int bnxt_vf_configure_mac(struct bnxt *bp, struct bnxt_vf_info *vf)
1020 {
1021 u32 msg_size = sizeof(struct hwrm_func_vf_cfg_input);
1022 struct hwrm_func_vf_cfg_input *req =
1023 (struct hwrm_func_vf_cfg_input *)vf->hwrm_cmd_req_addr;
1024
1025 /* Allow VF to set a valid MAC address, if trust is set to on or
1026 * if the PF assigned MAC address is zero
1027 */
1028 if (req->enables & cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR)) {
1029 bool trust = bnxt_is_trusted_vf(bp, vf);
1030
1031 if (is_valid_ether_addr(req->dflt_mac_addr) &&
1032 (trust || !is_valid_ether_addr(vf->mac_addr) ||
1033 ether_addr_equal(req->dflt_mac_addr, vf->mac_addr))) {
1034 ether_addr_copy(vf->vf_mac_addr, req->dflt_mac_addr);
1035 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
1036 }
1037 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
1038 }
1039 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
1040 }
1041
bnxt_vf_validate_set_mac(struct bnxt * bp,struct bnxt_vf_info * vf)1042 static int bnxt_vf_validate_set_mac(struct bnxt *bp, struct bnxt_vf_info *vf)
1043 {
1044 u32 msg_size = sizeof(struct hwrm_cfa_l2_filter_alloc_input);
1045 struct hwrm_cfa_l2_filter_alloc_input *req =
1046 (struct hwrm_cfa_l2_filter_alloc_input *)vf->hwrm_cmd_req_addr;
1047 bool mac_ok = false;
1048
1049 if (!is_valid_ether_addr((const u8 *)req->l2_addr))
1050 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
1051
1052 /* Allow VF to set a valid MAC address, if trust is set to on.
1053 * Or VF MAC address must first match MAC address in PF's context.
1054 * Otherwise, it must match the VF MAC address if firmware spec >=
1055 * 1.2.2
1056 */
1057 if (bnxt_is_trusted_vf(bp, vf)) {
1058 mac_ok = true;
1059 } else if (is_valid_ether_addr(vf->mac_addr)) {
1060 if (ether_addr_equal((const u8 *)req->l2_addr, vf->mac_addr))
1061 mac_ok = true;
1062 } else if (is_valid_ether_addr(vf->vf_mac_addr)) {
1063 if (ether_addr_equal((const u8 *)req->l2_addr, vf->vf_mac_addr))
1064 mac_ok = true;
1065 } else {
1066 /* There are two cases:
1067 * 1.If firmware spec < 0x10202,VF MAC address is not forwarded
1068 * to the PF and so it doesn't have to match
1069 * 2.Allow VF to modify it's own MAC when PF has not assigned a
1070 * valid MAC address and firmware spec >= 0x10202
1071 */
1072 mac_ok = true;
1073 }
1074 if (mac_ok)
1075 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
1076 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
1077 }
1078
bnxt_vf_set_link(struct bnxt * bp,struct bnxt_vf_info * vf)1079 static int bnxt_vf_set_link(struct bnxt *bp, struct bnxt_vf_info *vf)
1080 {
1081 int rc = 0;
1082
1083 if (!(vf->flags & BNXT_VF_LINK_FORCED)) {
1084 /* real link */
1085 rc = bnxt_hwrm_exec_fwd_resp(
1086 bp, vf, sizeof(struct hwrm_port_phy_qcfg_input));
1087 } else {
1088 struct hwrm_port_phy_qcfg_output_compat phy_qcfg_resp = {};
1089 struct hwrm_port_phy_qcfg_input *phy_qcfg_req;
1090
1091 phy_qcfg_req =
1092 (struct hwrm_port_phy_qcfg_input *)vf->hwrm_cmd_req_addr;
1093 mutex_lock(&bp->link_lock);
1094 memcpy(&phy_qcfg_resp, &bp->link_info.phy_qcfg_resp,
1095 sizeof(phy_qcfg_resp));
1096 mutex_unlock(&bp->link_lock);
1097 phy_qcfg_resp.resp_len = cpu_to_le16(sizeof(phy_qcfg_resp));
1098 phy_qcfg_resp.seq_id = phy_qcfg_req->seq_id;
1099 /* New SPEEDS2 fields are beyond the legacy structure, so
1100 * clear the SPEEDS2_SUPPORTED flag.
1101 */
1102 phy_qcfg_resp.option_flags &=
1103 ~PORT_PHY_QCAPS_RESP_FLAGS2_SPEEDS2_SUPPORTED;
1104 phy_qcfg_resp.valid = 1;
1105
1106 if (vf->flags & BNXT_VF_LINK_UP) {
1107 /* if physical link is down, force link up on VF */
1108 if (phy_qcfg_resp.link !=
1109 PORT_PHY_QCFG_RESP_LINK_LINK) {
1110 phy_qcfg_resp.link =
1111 PORT_PHY_QCFG_RESP_LINK_LINK;
1112 phy_qcfg_resp.link_speed = cpu_to_le16(
1113 PORT_PHY_QCFG_RESP_LINK_SPEED_10GB);
1114 phy_qcfg_resp.duplex_cfg =
1115 PORT_PHY_QCFG_RESP_DUPLEX_CFG_FULL;
1116 phy_qcfg_resp.duplex_state =
1117 PORT_PHY_QCFG_RESP_DUPLEX_STATE_FULL;
1118 phy_qcfg_resp.pause =
1119 (PORT_PHY_QCFG_RESP_PAUSE_TX |
1120 PORT_PHY_QCFG_RESP_PAUSE_RX);
1121 }
1122 } else {
1123 /* force link down */
1124 phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_NO_LINK;
1125 phy_qcfg_resp.link_speed = 0;
1126 phy_qcfg_resp.duplex_state =
1127 PORT_PHY_QCFG_RESP_DUPLEX_STATE_HALF;
1128 phy_qcfg_resp.pause = 0;
1129 }
1130 rc = bnxt_hwrm_fwd_resp(bp, vf, &phy_qcfg_resp,
1131 phy_qcfg_req->resp_addr,
1132 phy_qcfg_req->cmpl_ring,
1133 sizeof(phy_qcfg_resp));
1134 }
1135 return rc;
1136 }
1137
bnxt_vf_req_validate_snd(struct bnxt * bp,struct bnxt_vf_info * vf)1138 static int bnxt_vf_req_validate_snd(struct bnxt *bp, struct bnxt_vf_info *vf)
1139 {
1140 int rc = 0;
1141 struct input *encap_req = vf->hwrm_cmd_req_addr;
1142 u32 req_type = le16_to_cpu(encap_req->req_type);
1143
1144 switch (req_type) {
1145 case HWRM_FUNC_VF_CFG:
1146 rc = bnxt_vf_configure_mac(bp, vf);
1147 break;
1148 case HWRM_CFA_L2_FILTER_ALLOC:
1149 rc = bnxt_vf_validate_set_mac(bp, vf);
1150 break;
1151 case HWRM_FUNC_CFG:
1152 /* TODO Validate if VF is allowed to change mac address,
1153 * mtu, num of rings etc
1154 */
1155 rc = bnxt_hwrm_exec_fwd_resp(
1156 bp, vf, sizeof(struct hwrm_func_cfg_input));
1157 break;
1158 case HWRM_PORT_PHY_QCFG:
1159 rc = bnxt_vf_set_link(bp, vf);
1160 break;
1161 default:
1162 break;
1163 }
1164 return rc;
1165 }
1166
bnxt_hwrm_exec_fwd_req(struct bnxt * bp)1167 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
1168 {
1169 u32 i = 0, active_vfs = bp->pf.active_vfs, vf_id;
1170
1171 /* Scan through VF's and process commands */
1172 while (1) {
1173 vf_id = find_next_bit(bp->pf.vf_event_bmap, active_vfs, i);
1174 if (vf_id >= active_vfs)
1175 break;
1176
1177 clear_bit(vf_id, bp->pf.vf_event_bmap);
1178 bnxt_vf_req_validate_snd(bp, &bp->pf.vf[vf_id]);
1179 i = vf_id + 1;
1180 }
1181 }
1182
bnxt_approve_mac(struct bnxt * bp,const u8 * mac,bool strict)1183 int bnxt_approve_mac(struct bnxt *bp, const u8 *mac, bool strict)
1184 {
1185 struct hwrm_func_vf_cfg_input *req;
1186 int rc = 0;
1187
1188 if (!BNXT_VF(bp))
1189 return 0;
1190
1191 if (bp->hwrm_spec_code < 0x10202) {
1192 if (is_valid_ether_addr(bp->vf.mac_addr))
1193 rc = -EADDRNOTAVAIL;
1194 goto mac_done;
1195 }
1196
1197 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
1198 if (rc)
1199 goto mac_done;
1200
1201 req->enables = cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
1202 memcpy(req->dflt_mac_addr, mac, ETH_ALEN);
1203 if (!strict)
1204 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT);
1205 rc = hwrm_req_send(bp, req);
1206 mac_done:
1207 if (rc && strict) {
1208 rc = -EADDRNOTAVAIL;
1209 netdev_warn(bp->dev, "VF MAC address %pM not approved by the PF\n",
1210 mac);
1211 return rc;
1212 }
1213 return 0;
1214 }
1215
bnxt_update_vf_mac(struct bnxt * bp)1216 void bnxt_update_vf_mac(struct bnxt *bp)
1217 {
1218 struct hwrm_func_qcaps_output *resp;
1219 struct hwrm_func_qcaps_input *req;
1220 bool inform_pf = false;
1221
1222 if (hwrm_req_init(bp, req, HWRM_FUNC_QCAPS))
1223 return;
1224
1225 req->fid = cpu_to_le16(0xffff);
1226
1227 resp = hwrm_req_hold(bp, req);
1228 if (hwrm_req_send(bp, req))
1229 goto update_vf_mac_exit;
1230
1231 /* Store MAC address from the firmware. There are 2 cases:
1232 * 1. MAC address is valid. It is assigned from the PF and we
1233 * need to override the current VF MAC address with it.
1234 * 2. MAC address is zero. The VF will use a random MAC address by
1235 * default but the stored zero MAC will allow the VF user to change
1236 * the random MAC address using ndo_set_mac_address() if he wants.
1237 */
1238 if (!ether_addr_equal(resp->mac_address, bp->vf.mac_addr)) {
1239 memcpy(bp->vf.mac_addr, resp->mac_address, ETH_ALEN);
1240 /* This means we are now using our own MAC address, let
1241 * the PF know about this MAC address.
1242 */
1243 if (!is_valid_ether_addr(bp->vf.mac_addr))
1244 inform_pf = true;
1245 }
1246
1247 /* overwrite netdev dev_addr with admin VF MAC */
1248 if (is_valid_ether_addr(bp->vf.mac_addr))
1249 eth_hw_addr_set(bp->dev, bp->vf.mac_addr);
1250 update_vf_mac_exit:
1251 hwrm_req_drop(bp, req);
1252 if (inform_pf)
1253 bnxt_approve_mac(bp, bp->dev->dev_addr, false);
1254 }
1255
1256 #else
1257
bnxt_cfg_hw_sriov(struct bnxt * bp,int * num_vfs,bool reset)1258 int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset)
1259 {
1260 if (*num_vfs)
1261 return -EOPNOTSUPP;
1262 return 0;
1263 }
1264
bnxt_sriov_disable(struct bnxt * bp)1265 void bnxt_sriov_disable(struct bnxt *bp)
1266 {
1267 }
1268
bnxt_hwrm_exec_fwd_req(struct bnxt * bp)1269 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
1270 {
1271 netdev_err(bp->dev, "Invalid VF message received when SRIOV is not enable\n");
1272 }
1273
bnxt_update_vf_mac(struct bnxt * bp)1274 void bnxt_update_vf_mac(struct bnxt *bp)
1275 {
1276 }
1277
bnxt_approve_mac(struct bnxt * bp,const u8 * mac,bool strict)1278 int bnxt_approve_mac(struct bnxt *bp, const u8 *mac, bool strict)
1279 {
1280 return 0;
1281 }
1282 #endif
1283