xref: /linux/net/ipv4/inet_connection_sock.c (revision be54f8c558027a218423134dd9b8c7c46d92204a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Support for INET connection oriented protocols.
8  *
9  * Authors:	See the TCP sources
10  */
11 
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14 
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25 
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses
28  *				if IPv6 only, and any IPv4 addresses
29  *				if not IPv6 only
30  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31  *				IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32  *				and 0.0.0.0 equals to 0.0.0.0 only
33  */
ipv6_rcv_saddr_equal(const struct in6_addr * sk1_rcv_saddr6,const struct in6_addr * sk2_rcv_saddr6,__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk1_ipv6only,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35 				 const struct in6_addr *sk2_rcv_saddr6,
36 				 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37 				 bool sk1_ipv6only, bool sk2_ipv6only,
38 				 bool match_sk1_wildcard,
39 				 bool match_sk2_wildcard)
40 {
41 	int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42 	int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43 
44 	/* if both are mapped, treat as IPv4 */
45 	if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46 		if (!sk2_ipv6only) {
47 			if (sk1_rcv_saddr == sk2_rcv_saddr)
48 				return true;
49 			return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50 				(match_sk2_wildcard && !sk2_rcv_saddr);
51 		}
52 		return false;
53 	}
54 
55 	if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56 		return true;
57 
58 	if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59 	    !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60 		return true;
61 
62 	if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63 	    !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64 		return true;
65 
66 	if (sk2_rcv_saddr6 &&
67 	    ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68 		return true;
69 
70 	return false;
71 }
72 #endif
73 
74 /* match_sk*_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
75  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76  *				0.0.0.0 only equals to 0.0.0.0
77  */
ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79 				 bool sk2_ipv6only, bool match_sk1_wildcard,
80 				 bool match_sk2_wildcard)
81 {
82 	if (!sk2_ipv6only) {
83 		if (sk1_rcv_saddr == sk2_rcv_saddr)
84 			return true;
85 		return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86 			(match_sk2_wildcard && !sk2_rcv_saddr);
87 	}
88 	return false;
89 }
90 
inet_rcv_saddr_equal(const struct sock * sk,const struct sock * sk2,bool match_wildcard)91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92 			  bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95 	if (sk->sk_family == AF_INET6)
96 		return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97 					    inet6_rcv_saddr(sk2),
98 					    sk->sk_rcv_saddr,
99 					    sk2->sk_rcv_saddr,
100 					    ipv6_only_sock(sk),
101 					    ipv6_only_sock(sk2),
102 					    match_wildcard,
103 					    match_wildcard);
104 #endif
105 	return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 				    ipv6_only_sock(sk2), match_wildcard,
107 				    match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110 
inet_rcv_saddr_any(const struct sock * sk)111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114 	if (sk->sk_family == AF_INET6)
115 		return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117 	return !sk->sk_rcv_saddr;
118 }
119 
120 /**
121  *	inet_sk_get_local_port_range - fetch ephemeral ports range
122  *	@sk: socket
123  *	@low: pointer to low port
124  *	@high: pointer to high port
125  *
126  *	Fetch netns port range (/proc/sys/net/ipv4/ip_local_port_range)
127  *	Range can be overridden if socket got IP_LOCAL_PORT_RANGE option.
128  *	Returns true if IP_LOCAL_PORT_RANGE was set on this socket.
129  */
inet_sk_get_local_port_range(const struct sock * sk,int * low,int * high)130 bool inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high)
131 {
132 	int lo, hi, sk_lo, sk_hi;
133 	bool local_range = false;
134 	u32 sk_range;
135 
136 	inet_get_local_port_range(sock_net(sk), &lo, &hi);
137 
138 	sk_range = READ_ONCE(inet_sk(sk)->local_port_range);
139 	if (unlikely(sk_range)) {
140 		sk_lo = sk_range & 0xffff;
141 		sk_hi = sk_range >> 16;
142 
143 		if (lo <= sk_lo && sk_lo <= hi)
144 			lo = sk_lo;
145 		if (lo <= sk_hi && sk_hi <= hi)
146 			hi = sk_hi;
147 		local_range = true;
148 	}
149 
150 	*low = lo;
151 	*high = hi;
152 	return local_range;
153 }
154 EXPORT_SYMBOL(inet_sk_get_local_port_range);
155 
inet_use_bhash2_on_bind(const struct sock * sk)156 static bool inet_use_bhash2_on_bind(const struct sock *sk)
157 {
158 #if IS_ENABLED(CONFIG_IPV6)
159 	if (sk->sk_family == AF_INET6) {
160 		if (ipv6_addr_any(&sk->sk_v6_rcv_saddr))
161 			return false;
162 
163 		if (!ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
164 			return true;
165 	}
166 #endif
167 	return sk->sk_rcv_saddr != htonl(INADDR_ANY);
168 }
169 
inet_bind_conflict(const struct sock * sk,struct sock * sk2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)170 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
171 			       kuid_t sk_uid, bool relax,
172 			       bool reuseport_cb_ok, bool reuseport_ok)
173 {
174 	int bound_dev_if2;
175 
176 	if (sk == sk2)
177 		return false;
178 
179 	bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
180 
181 	if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
182 	    sk->sk_bound_dev_if == bound_dev_if2) {
183 		if (sk->sk_reuse && sk2->sk_reuse &&
184 		    sk2->sk_state != TCP_LISTEN) {
185 			if (!relax || (!reuseport_ok && sk->sk_reuseport &&
186 				       sk2->sk_reuseport && reuseport_cb_ok &&
187 				       (sk2->sk_state == TCP_TIME_WAIT ||
188 					uid_eq(sk_uid, sock_i_uid(sk2)))))
189 				return true;
190 		} else if (!reuseport_ok || !sk->sk_reuseport ||
191 			   !sk2->sk_reuseport || !reuseport_cb_ok ||
192 			   (sk2->sk_state != TCP_TIME_WAIT &&
193 			    !uid_eq(sk_uid, sock_i_uid(sk2)))) {
194 			return true;
195 		}
196 	}
197 	return false;
198 }
199 
__inet_bhash2_conflict(const struct sock * sk,struct sock * sk2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)200 static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
201 				   kuid_t sk_uid, bool relax,
202 				   bool reuseport_cb_ok, bool reuseport_ok)
203 {
204 	if (ipv6_only_sock(sk2)) {
205 		if (sk->sk_family == AF_INET)
206 			return false;
207 
208 #if IS_ENABLED(CONFIG_IPV6)
209 		if (ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
210 			return false;
211 #endif
212 	}
213 
214 	return inet_bind_conflict(sk, sk2, sk_uid, relax,
215 				  reuseport_cb_ok, reuseport_ok);
216 }
217 
inet_bhash2_conflict(const struct sock * sk,const struct inet_bind2_bucket * tb2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)218 static bool inet_bhash2_conflict(const struct sock *sk,
219 				 const struct inet_bind2_bucket *tb2,
220 				 kuid_t sk_uid,
221 				 bool relax, bool reuseport_cb_ok,
222 				 bool reuseport_ok)
223 {
224 	struct sock *sk2;
225 
226 	sk_for_each_bound(sk2, &tb2->owners) {
227 		if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
228 					   reuseport_cb_ok, reuseport_ok))
229 			return true;
230 	}
231 
232 	return false;
233 }
234 
235 #define sk_for_each_bound_bhash(__sk, __tb2, __tb)			\
236 	hlist_for_each_entry(__tb2, &(__tb)->bhash2, bhash_node)	\
237 		sk_for_each_bound((__sk), &(__tb2)->owners)
238 
239 /* This should be called only when the tb and tb2 hashbuckets' locks are held */
inet_csk_bind_conflict(const struct sock * sk,const struct inet_bind_bucket * tb,const struct inet_bind2_bucket * tb2,bool relax,bool reuseport_ok)240 static int inet_csk_bind_conflict(const struct sock *sk,
241 				  const struct inet_bind_bucket *tb,
242 				  const struct inet_bind2_bucket *tb2, /* may be null */
243 				  bool relax, bool reuseport_ok)
244 {
245 	kuid_t uid = sock_i_uid((struct sock *)sk);
246 	struct sock_reuseport *reuseport_cb;
247 	bool reuseport_cb_ok;
248 	struct sock *sk2;
249 
250 	rcu_read_lock();
251 	reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
252 	/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
253 	reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
254 	rcu_read_unlock();
255 
256 	/* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
257 	 * ipv4) should have been checked already. We need to do these two
258 	 * checks separately because their spinlocks have to be acquired/released
259 	 * independently of each other, to prevent possible deadlocks
260 	 */
261 	if (inet_use_bhash2_on_bind(sk))
262 		return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax,
263 						   reuseport_cb_ok, reuseport_ok);
264 
265 	/* Unlike other sk lookup places we do not check
266 	 * for sk_net here, since _all_ the socks listed
267 	 * in tb->owners and tb2->owners list belong
268 	 * to the same net - the one this bucket belongs to.
269 	 */
270 	sk_for_each_bound_bhash(sk2, tb2, tb) {
271 		if (!inet_bind_conflict(sk, sk2, uid, relax, reuseport_cb_ok, reuseport_ok))
272 			continue;
273 
274 		if (inet_rcv_saddr_equal(sk, sk2, true))
275 			return true;
276 	}
277 
278 	return false;
279 }
280 
281 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
282  * INADDR_ANY (if ipv4) socket.
283  *
284  * Caller must hold bhash hashbucket lock with local bh disabled, to protect
285  * against concurrent binds on the port for addr any
286  */
inet_bhash2_addr_any_conflict(const struct sock * sk,int port,int l3mdev,bool relax,bool reuseport_ok)287 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
288 					  bool relax, bool reuseport_ok)
289 {
290 	kuid_t uid = sock_i_uid((struct sock *)sk);
291 	const struct net *net = sock_net(sk);
292 	struct sock_reuseport *reuseport_cb;
293 	struct inet_bind_hashbucket *head2;
294 	struct inet_bind2_bucket *tb2;
295 	bool conflict = false;
296 	bool reuseport_cb_ok;
297 
298 	rcu_read_lock();
299 	reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
300 	/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
301 	reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
302 	rcu_read_unlock();
303 
304 	head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
305 
306 	spin_lock(&head2->lock);
307 
308 	inet_bind_bucket_for_each(tb2, &head2->chain) {
309 		if (!inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
310 			continue;
311 
312 		if (!inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,	reuseport_ok))
313 			continue;
314 
315 		conflict = true;
316 		break;
317 	}
318 
319 	spin_unlock(&head2->lock);
320 
321 	return conflict;
322 }
323 
324 /*
325  * Find an open port number for the socket.  Returns with the
326  * inet_bind_hashbucket locks held if successful.
327  */
328 static struct inet_bind_hashbucket *
inet_csk_find_open_port(const struct sock * sk,struct inet_bind_bucket ** tb_ret,struct inet_bind2_bucket ** tb2_ret,struct inet_bind_hashbucket ** head2_ret,int * port_ret)329 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
330 			struct inet_bind2_bucket **tb2_ret,
331 			struct inet_bind_hashbucket **head2_ret, int *port_ret)
332 {
333 	struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk);
334 	int i, low, high, attempt_half, port, l3mdev;
335 	struct inet_bind_hashbucket *head, *head2;
336 	struct net *net = sock_net(sk);
337 	struct inet_bind2_bucket *tb2;
338 	struct inet_bind_bucket *tb;
339 	u32 remaining, offset;
340 	bool relax = false;
341 
342 	l3mdev = inet_sk_bound_l3mdev(sk);
343 ports_exhausted:
344 	attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
345 other_half_scan:
346 	inet_sk_get_local_port_range(sk, &low, &high);
347 	high++; /* [32768, 60999] -> [32768, 61000[ */
348 	if (high - low < 4)
349 		attempt_half = 0;
350 	if (attempt_half) {
351 		int half = low + (((high - low) >> 2) << 1);
352 
353 		if (attempt_half == 1)
354 			high = half;
355 		else
356 			low = half;
357 	}
358 	remaining = high - low;
359 	if (likely(remaining > 1))
360 		remaining &= ~1U;
361 
362 	offset = get_random_u32_below(remaining);
363 	/* __inet_hash_connect() favors ports having @low parity
364 	 * We do the opposite to not pollute connect() users.
365 	 */
366 	offset |= 1U;
367 
368 other_parity_scan:
369 	port = low + offset;
370 	for (i = 0; i < remaining; i += 2, port += 2) {
371 		if (unlikely(port >= high))
372 			port -= remaining;
373 		if (inet_is_local_reserved_port(net, port))
374 			continue;
375 		head = &hinfo->bhash[inet_bhashfn(net, port,
376 						  hinfo->bhash_size)];
377 		spin_lock_bh(&head->lock);
378 		if (inet_use_bhash2_on_bind(sk)) {
379 			if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
380 				goto next_port;
381 		}
382 
383 		head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
384 		spin_lock(&head2->lock);
385 		tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
386 		inet_bind_bucket_for_each(tb, &head->chain)
387 			if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
388 				if (!inet_csk_bind_conflict(sk, tb, tb2,
389 							    relax, false))
390 					goto success;
391 				spin_unlock(&head2->lock);
392 				goto next_port;
393 			}
394 		tb = NULL;
395 		goto success;
396 next_port:
397 		spin_unlock_bh(&head->lock);
398 		cond_resched();
399 	}
400 
401 	offset--;
402 	if (!(offset & 1))
403 		goto other_parity_scan;
404 
405 	if (attempt_half == 1) {
406 		/* OK we now try the upper half of the range */
407 		attempt_half = 2;
408 		goto other_half_scan;
409 	}
410 
411 	if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
412 		/* We still have a chance to connect to different destinations */
413 		relax = true;
414 		goto ports_exhausted;
415 	}
416 	return NULL;
417 success:
418 	*port_ret = port;
419 	*tb_ret = tb;
420 	*tb2_ret = tb2;
421 	*head2_ret = head2;
422 	return head;
423 }
424 
sk_reuseport_match(struct inet_bind_bucket * tb,struct sock * sk)425 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
426 				     struct sock *sk)
427 {
428 	kuid_t uid = sock_i_uid(sk);
429 
430 	if (tb->fastreuseport <= 0)
431 		return 0;
432 	if (!sk->sk_reuseport)
433 		return 0;
434 	if (rcu_access_pointer(sk->sk_reuseport_cb))
435 		return 0;
436 	if (!uid_eq(tb->fastuid, uid))
437 		return 0;
438 	/* We only need to check the rcv_saddr if this tb was once marked
439 	 * without fastreuseport and then was reset, as we can only know that
440 	 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
441 	 * owners list.
442 	 */
443 	if (tb->fastreuseport == FASTREUSEPORT_ANY)
444 		return 1;
445 #if IS_ENABLED(CONFIG_IPV6)
446 	if (tb->fast_sk_family == AF_INET6)
447 		return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
448 					    inet6_rcv_saddr(sk),
449 					    tb->fast_rcv_saddr,
450 					    sk->sk_rcv_saddr,
451 					    tb->fast_ipv6_only,
452 					    ipv6_only_sock(sk), true, false);
453 #endif
454 	return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
455 				    ipv6_only_sock(sk), true, false);
456 }
457 
inet_csk_update_fastreuse(struct inet_bind_bucket * tb,struct sock * sk)458 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
459 			       struct sock *sk)
460 {
461 	kuid_t uid = sock_i_uid(sk);
462 	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
463 
464 	if (hlist_empty(&tb->bhash2)) {
465 		tb->fastreuse = reuse;
466 		if (sk->sk_reuseport) {
467 			tb->fastreuseport = FASTREUSEPORT_ANY;
468 			tb->fastuid = uid;
469 			tb->fast_rcv_saddr = sk->sk_rcv_saddr;
470 			tb->fast_ipv6_only = ipv6_only_sock(sk);
471 			tb->fast_sk_family = sk->sk_family;
472 #if IS_ENABLED(CONFIG_IPV6)
473 			tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
474 #endif
475 		} else {
476 			tb->fastreuseport = 0;
477 		}
478 	} else {
479 		if (!reuse)
480 			tb->fastreuse = 0;
481 		if (sk->sk_reuseport) {
482 			/* We didn't match or we don't have fastreuseport set on
483 			 * the tb, but we have sk_reuseport set on this socket
484 			 * and we know that there are no bind conflicts with
485 			 * this socket in this tb, so reset our tb's reuseport
486 			 * settings so that any subsequent sockets that match
487 			 * our current socket will be put on the fast path.
488 			 *
489 			 * If we reset we need to set FASTREUSEPORT_STRICT so we
490 			 * do extra checking for all subsequent sk_reuseport
491 			 * socks.
492 			 */
493 			if (!sk_reuseport_match(tb, sk)) {
494 				tb->fastreuseport = FASTREUSEPORT_STRICT;
495 				tb->fastuid = uid;
496 				tb->fast_rcv_saddr = sk->sk_rcv_saddr;
497 				tb->fast_ipv6_only = ipv6_only_sock(sk);
498 				tb->fast_sk_family = sk->sk_family;
499 #if IS_ENABLED(CONFIG_IPV6)
500 				tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
501 #endif
502 			}
503 		} else {
504 			tb->fastreuseport = 0;
505 		}
506 	}
507 }
508 
509 /* Obtain a reference to a local port for the given sock,
510  * if snum is zero it means select any available local port.
511  * We try to allocate an odd port (and leave even ports for connect())
512  */
inet_csk_get_port(struct sock * sk,unsigned short snum)513 int inet_csk_get_port(struct sock *sk, unsigned short snum)
514 {
515 	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
516 	bool found_port = false, check_bind_conflict = true;
517 	bool bhash_created = false, bhash2_created = false;
518 	struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk);
519 	int ret = -EADDRINUSE, port = snum, l3mdev;
520 	struct inet_bind_hashbucket *head, *head2;
521 	struct inet_bind2_bucket *tb2 = NULL;
522 	struct inet_bind_bucket *tb = NULL;
523 	bool head2_lock_acquired = false;
524 	struct net *net = sock_net(sk);
525 
526 	l3mdev = inet_sk_bound_l3mdev(sk);
527 
528 	if (!port) {
529 		head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
530 		if (!head)
531 			return ret;
532 
533 		head2_lock_acquired = true;
534 
535 		if (tb && tb2)
536 			goto success;
537 		found_port = true;
538 	} else {
539 		head = &hinfo->bhash[inet_bhashfn(net, port,
540 						  hinfo->bhash_size)];
541 		spin_lock_bh(&head->lock);
542 		inet_bind_bucket_for_each(tb, &head->chain)
543 			if (inet_bind_bucket_match(tb, net, port, l3mdev))
544 				break;
545 	}
546 
547 	if (!tb) {
548 		tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
549 					     head, port, l3mdev);
550 		if (!tb)
551 			goto fail_unlock;
552 		bhash_created = true;
553 	}
554 
555 	if (!found_port) {
556 		if (!hlist_empty(&tb->bhash2)) {
557 			if (sk->sk_reuse == SK_FORCE_REUSE ||
558 			    (tb->fastreuse > 0 && reuse) ||
559 			    sk_reuseport_match(tb, sk))
560 				check_bind_conflict = false;
561 		}
562 
563 		if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
564 			if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
565 				goto fail_unlock;
566 		}
567 
568 		head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
569 		spin_lock(&head2->lock);
570 		head2_lock_acquired = true;
571 		tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
572 	}
573 
574 	if (!tb2) {
575 		tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
576 					       net, head2, tb, sk);
577 		if (!tb2)
578 			goto fail_unlock;
579 		bhash2_created = true;
580 	}
581 
582 	if (!found_port && check_bind_conflict) {
583 		if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
584 			goto fail_unlock;
585 	}
586 
587 success:
588 	inet_csk_update_fastreuse(tb, sk);
589 
590 	if (!inet_csk(sk)->icsk_bind_hash)
591 		inet_bind_hash(sk, tb, tb2, port);
592 	WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
593 	WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
594 	ret = 0;
595 
596 fail_unlock:
597 	if (ret) {
598 		if (bhash2_created)
599 			inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, tb2);
600 		if (bhash_created)
601 			inet_bind_bucket_destroy(tb);
602 	}
603 	if (head2_lock_acquired)
604 		spin_unlock(&head2->lock);
605 	spin_unlock_bh(&head->lock);
606 	return ret;
607 }
608 EXPORT_SYMBOL_GPL(inet_csk_get_port);
609 
610 /*
611  * Wait for an incoming connection, avoid race conditions. This must be called
612  * with the socket locked.
613  */
inet_csk_wait_for_connect(struct sock * sk,long timeo)614 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
615 {
616 	struct inet_connection_sock *icsk = inet_csk(sk);
617 	DEFINE_WAIT(wait);
618 	int err;
619 
620 	/*
621 	 * True wake-one mechanism for incoming connections: only
622 	 * one process gets woken up, not the 'whole herd'.
623 	 * Since we do not 'race & poll' for established sockets
624 	 * anymore, the common case will execute the loop only once.
625 	 *
626 	 * Subtle issue: "add_wait_queue_exclusive()" will be added
627 	 * after any current non-exclusive waiters, and we know that
628 	 * it will always _stay_ after any new non-exclusive waiters
629 	 * because all non-exclusive waiters are added at the
630 	 * beginning of the wait-queue. As such, it's ok to "drop"
631 	 * our exclusiveness temporarily when we get woken up without
632 	 * having to remove and re-insert us on the wait queue.
633 	 */
634 	for (;;) {
635 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
636 					  TASK_INTERRUPTIBLE);
637 		release_sock(sk);
638 		if (reqsk_queue_empty(&icsk->icsk_accept_queue))
639 			timeo = schedule_timeout(timeo);
640 		sched_annotate_sleep();
641 		lock_sock(sk);
642 		err = 0;
643 		if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
644 			break;
645 		err = -EINVAL;
646 		if (sk->sk_state != TCP_LISTEN)
647 			break;
648 		err = sock_intr_errno(timeo);
649 		if (signal_pending(current))
650 			break;
651 		err = -EAGAIN;
652 		if (!timeo)
653 			break;
654 	}
655 	finish_wait(sk_sleep(sk), &wait);
656 	return err;
657 }
658 
659 /*
660  * This will accept the next outstanding connection.
661  */
inet_csk_accept(struct sock * sk,struct proto_accept_arg * arg)662 struct sock *inet_csk_accept(struct sock *sk, struct proto_accept_arg *arg)
663 {
664 	struct inet_connection_sock *icsk = inet_csk(sk);
665 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
666 	struct request_sock *req;
667 	struct sock *newsk;
668 	int error;
669 
670 	lock_sock(sk);
671 
672 	/* We need to make sure that this socket is listening,
673 	 * and that it has something pending.
674 	 */
675 	error = -EINVAL;
676 	if (sk->sk_state != TCP_LISTEN)
677 		goto out_err;
678 
679 	/* Find already established connection */
680 	if (reqsk_queue_empty(queue)) {
681 		long timeo = sock_rcvtimeo(sk, arg->flags & O_NONBLOCK);
682 
683 		/* If this is a non blocking socket don't sleep */
684 		error = -EAGAIN;
685 		if (!timeo)
686 			goto out_err;
687 
688 		error = inet_csk_wait_for_connect(sk, timeo);
689 		if (error)
690 			goto out_err;
691 	}
692 	req = reqsk_queue_remove(queue, sk);
693 	arg->is_empty = reqsk_queue_empty(queue);
694 	newsk = req->sk;
695 
696 	if (sk->sk_protocol == IPPROTO_TCP &&
697 	    tcp_rsk(req)->tfo_listener) {
698 		spin_lock_bh(&queue->fastopenq.lock);
699 		if (tcp_rsk(req)->tfo_listener) {
700 			/* We are still waiting for the final ACK from 3WHS
701 			 * so can't free req now. Instead, we set req->sk to
702 			 * NULL to signify that the child socket is taken
703 			 * so reqsk_fastopen_remove() will free the req
704 			 * when 3WHS finishes (or is aborted).
705 			 */
706 			req->sk = NULL;
707 			req = NULL;
708 		}
709 		spin_unlock_bh(&queue->fastopenq.lock);
710 	}
711 
712 out:
713 	release_sock(sk);
714 	if (newsk && mem_cgroup_sockets_enabled) {
715 		gfp_t gfp = GFP_KERNEL | __GFP_NOFAIL;
716 		int amt = 0;
717 
718 		/* atomically get the memory usage, set and charge the
719 		 * newsk->sk_memcg.
720 		 */
721 		lock_sock(newsk);
722 
723 		mem_cgroup_sk_alloc(newsk);
724 		if (newsk->sk_memcg) {
725 			/* The socket has not been accepted yet, no need
726 			 * to look at newsk->sk_wmem_queued.
727 			 */
728 			amt = sk_mem_pages(newsk->sk_forward_alloc +
729 					   atomic_read(&newsk->sk_rmem_alloc));
730 		}
731 
732 		if (amt)
733 			mem_cgroup_charge_skmem(newsk->sk_memcg, amt, gfp);
734 		kmem_cache_charge(newsk, gfp);
735 
736 		release_sock(newsk);
737 	}
738 	if (req)
739 		reqsk_put(req);
740 
741 	if (newsk)
742 		inet_init_csk_locks(newsk);
743 
744 	return newsk;
745 out_err:
746 	newsk = NULL;
747 	req = NULL;
748 	arg->err = error;
749 	goto out;
750 }
751 EXPORT_SYMBOL(inet_csk_accept);
752 
753 /*
754  * Using different timers for retransmit, delayed acks and probes
755  * We may wish use just one timer maintaining a list of expire jiffies
756  * to optimize.
757  */
inet_csk_init_xmit_timers(struct sock * sk,void (* retransmit_handler)(struct timer_list * t),void (* delack_handler)(struct timer_list * t),void (* keepalive_handler)(struct timer_list * t))758 void inet_csk_init_xmit_timers(struct sock *sk,
759 			       void (*retransmit_handler)(struct timer_list *t),
760 			       void (*delack_handler)(struct timer_list *t),
761 			       void (*keepalive_handler)(struct timer_list *t))
762 {
763 	struct inet_connection_sock *icsk = inet_csk(sk);
764 
765 	timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
766 	timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
767 	timer_setup(&sk->sk_timer, keepalive_handler, 0);
768 	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
769 }
770 
inet_csk_clear_xmit_timers(struct sock * sk)771 void inet_csk_clear_xmit_timers(struct sock *sk)
772 {
773 	struct inet_connection_sock *icsk = inet_csk(sk);
774 
775 	smp_store_release(&icsk->icsk_pending, 0);
776 	smp_store_release(&icsk->icsk_ack.pending, 0);
777 
778 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
779 	sk_stop_timer(sk, &icsk->icsk_delack_timer);
780 	sk_stop_timer(sk, &sk->sk_timer);
781 }
782 
inet_csk_clear_xmit_timers_sync(struct sock * sk)783 void inet_csk_clear_xmit_timers_sync(struct sock *sk)
784 {
785 	struct inet_connection_sock *icsk = inet_csk(sk);
786 
787 	/* ongoing timer handlers need to acquire socket lock. */
788 	sock_not_owned_by_me(sk);
789 
790 	smp_store_release(&icsk->icsk_pending, 0);
791 	smp_store_release(&icsk->icsk_ack.pending, 0);
792 
793 	sk_stop_timer_sync(sk, &icsk->icsk_retransmit_timer);
794 	sk_stop_timer_sync(sk, &icsk->icsk_delack_timer);
795 	sk_stop_timer_sync(sk, &sk->sk_timer);
796 }
797 
inet_csk_route_req(const struct sock * sk,struct flowi4 * fl4,const struct request_sock * req)798 struct dst_entry *inet_csk_route_req(const struct sock *sk,
799 				     struct flowi4 *fl4,
800 				     const struct request_sock *req)
801 {
802 	const struct inet_request_sock *ireq = inet_rsk(req);
803 	struct net *net = read_pnet(&ireq->ireq_net);
804 	struct ip_options_rcu *opt;
805 	struct rtable *rt;
806 
807 	rcu_read_lock();
808 	opt = rcu_dereference(ireq->ireq_opt);
809 
810 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
811 			   ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
812 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
813 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
814 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
815 			   htons(ireq->ir_num), sk->sk_uid);
816 	security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
817 	rt = ip_route_output_flow(net, fl4, sk);
818 	if (IS_ERR(rt))
819 		goto no_route;
820 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
821 		goto route_err;
822 	rcu_read_unlock();
823 	return &rt->dst;
824 
825 route_err:
826 	ip_rt_put(rt);
827 no_route:
828 	rcu_read_unlock();
829 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
830 	return NULL;
831 }
832 
inet_csk_route_child_sock(const struct sock * sk,struct sock * newsk,const struct request_sock * req)833 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
834 					    struct sock *newsk,
835 					    const struct request_sock *req)
836 {
837 	const struct inet_request_sock *ireq = inet_rsk(req);
838 	struct net *net = read_pnet(&ireq->ireq_net);
839 	struct inet_sock *newinet = inet_sk(newsk);
840 	struct ip_options_rcu *opt;
841 	struct flowi4 *fl4;
842 	struct rtable *rt;
843 
844 	opt = rcu_dereference(ireq->ireq_opt);
845 	fl4 = &newinet->cork.fl.u.ip4;
846 
847 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
848 			   ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
849 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
850 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
851 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
852 			   htons(ireq->ir_num), sk->sk_uid);
853 	security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
854 	rt = ip_route_output_flow(net, fl4, sk);
855 	if (IS_ERR(rt))
856 		goto no_route;
857 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
858 		goto route_err;
859 	return &rt->dst;
860 
861 route_err:
862 	ip_rt_put(rt);
863 no_route:
864 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
865 	return NULL;
866 }
867 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
868 
869 /* Decide when to expire the request and when to resend SYN-ACK */
syn_ack_recalc(struct request_sock * req,const int max_syn_ack_retries,const u8 rskq_defer_accept,int * expire,int * resend)870 static void syn_ack_recalc(struct request_sock *req,
871 			   const int max_syn_ack_retries,
872 			   const u8 rskq_defer_accept,
873 			   int *expire, int *resend)
874 {
875 	if (!rskq_defer_accept) {
876 		*expire = req->num_timeout >= max_syn_ack_retries;
877 		*resend = 1;
878 		return;
879 	}
880 	*expire = req->num_timeout >= max_syn_ack_retries &&
881 		  (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
882 	/* Do not resend while waiting for data after ACK,
883 	 * start to resend on end of deferring period to give
884 	 * last chance for data or ACK to create established socket.
885 	 */
886 	*resend = !inet_rsk(req)->acked ||
887 		  req->num_timeout >= rskq_defer_accept - 1;
888 }
889 
inet_rtx_syn_ack(const struct sock * parent,struct request_sock * req)890 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
891 {
892 	int err = req->rsk_ops->rtx_syn_ack(parent, req);
893 
894 	if (!err)
895 		req->num_retrans++;
896 	return err;
897 }
898 
899 static struct request_sock *
reqsk_alloc_noprof(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)900 reqsk_alloc_noprof(const struct request_sock_ops *ops, struct sock *sk_listener,
901 		   bool attach_listener)
902 {
903 	struct request_sock *req;
904 
905 	req = kmem_cache_alloc_noprof(ops->slab, GFP_ATOMIC | __GFP_NOWARN);
906 	if (!req)
907 		return NULL;
908 	req->rsk_listener = NULL;
909 	if (attach_listener) {
910 		if (unlikely(!refcount_inc_not_zero(&sk_listener->sk_refcnt))) {
911 			kmem_cache_free(ops->slab, req);
912 			return NULL;
913 		}
914 		req->rsk_listener = sk_listener;
915 	}
916 	req->rsk_ops = ops;
917 	req_to_sk(req)->sk_prot = sk_listener->sk_prot;
918 	sk_node_init(&req_to_sk(req)->sk_node);
919 	sk_tx_queue_clear(req_to_sk(req));
920 	req->saved_syn = NULL;
921 	req->syncookie = 0;
922 	req->timeout = 0;
923 	req->num_timeout = 0;
924 	req->num_retrans = 0;
925 	req->sk = NULL;
926 	refcount_set(&req->rsk_refcnt, 0);
927 
928 	return req;
929 }
930 #define reqsk_alloc(...)	alloc_hooks(reqsk_alloc_noprof(__VA_ARGS__))
931 
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)932 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
933 				      struct sock *sk_listener,
934 				      bool attach_listener)
935 {
936 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
937 					       attach_listener);
938 
939 	if (req) {
940 		struct inet_request_sock *ireq = inet_rsk(req);
941 
942 		ireq->ireq_opt = NULL;
943 #if IS_ENABLED(CONFIG_IPV6)
944 		ireq->pktopts = NULL;
945 #endif
946 		atomic64_set(&ireq->ir_cookie, 0);
947 		ireq->ireq_state = TCP_NEW_SYN_RECV;
948 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
949 		ireq->ireq_family = sk_listener->sk_family;
950 		req->timeout = TCP_TIMEOUT_INIT;
951 	}
952 
953 	return req;
954 }
955 EXPORT_SYMBOL(inet_reqsk_alloc);
956 
inet_reqsk_clone(struct request_sock * req,struct sock * sk)957 static struct request_sock *inet_reqsk_clone(struct request_sock *req,
958 					     struct sock *sk)
959 {
960 	struct sock *req_sk, *nreq_sk;
961 	struct request_sock *nreq;
962 
963 	nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
964 	if (!nreq) {
965 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
966 
967 		/* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
968 		sock_put(sk);
969 		return NULL;
970 	}
971 
972 	req_sk = req_to_sk(req);
973 	nreq_sk = req_to_sk(nreq);
974 
975 	memcpy(nreq_sk, req_sk,
976 	       offsetof(struct sock, sk_dontcopy_begin));
977 	unsafe_memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
978 		      req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end),
979 		      /* alloc is larger than struct, see above */);
980 
981 	sk_node_init(&nreq_sk->sk_node);
982 	nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
983 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
984 	nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
985 #endif
986 	nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
987 
988 	nreq->rsk_listener = sk;
989 
990 	/* We need not acquire fastopenq->lock
991 	 * because the child socket is locked in inet_csk_listen_stop().
992 	 */
993 	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
994 		rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
995 
996 	return nreq;
997 }
998 
reqsk_queue_migrated(struct request_sock_queue * queue,const struct request_sock * req)999 static void reqsk_queue_migrated(struct request_sock_queue *queue,
1000 				 const struct request_sock *req)
1001 {
1002 	if (req->num_timeout == 0)
1003 		atomic_inc(&queue->young);
1004 	atomic_inc(&queue->qlen);
1005 }
1006 
reqsk_migrate_reset(struct request_sock * req)1007 static void reqsk_migrate_reset(struct request_sock *req)
1008 {
1009 	req->saved_syn = NULL;
1010 #if IS_ENABLED(CONFIG_IPV6)
1011 	inet_rsk(req)->ipv6_opt = NULL;
1012 	inet_rsk(req)->pktopts = NULL;
1013 #else
1014 	inet_rsk(req)->ireq_opt = NULL;
1015 #endif
1016 }
1017 
1018 /* return true if req was found in the ehash table */
reqsk_queue_unlink(struct request_sock * req)1019 static bool reqsk_queue_unlink(struct request_sock *req)
1020 {
1021 	struct sock *sk = req_to_sk(req);
1022 	bool found = false;
1023 
1024 	if (sk_hashed(sk)) {
1025 		struct inet_hashinfo *hashinfo = tcp_get_hashinfo(sk);
1026 		spinlock_t *lock;
1027 
1028 		lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
1029 		spin_lock(lock);
1030 		found = __sk_nulls_del_node_init_rcu(sk);
1031 		spin_unlock(lock);
1032 	}
1033 
1034 	return found;
1035 }
1036 
__inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req,bool from_timer)1037 static bool __inet_csk_reqsk_queue_drop(struct sock *sk,
1038 					struct request_sock *req,
1039 					bool from_timer)
1040 {
1041 	bool unlinked = reqsk_queue_unlink(req);
1042 
1043 	if (!from_timer && timer_delete_sync(&req->rsk_timer))
1044 		reqsk_put(req);
1045 
1046 	if (unlinked) {
1047 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
1048 		reqsk_put(req);
1049 	}
1050 
1051 	return unlinked;
1052 }
1053 
inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req)1054 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
1055 {
1056 	return __inet_csk_reqsk_queue_drop(sk, req, false);
1057 }
1058 
inet_csk_reqsk_queue_drop_and_put(struct sock * sk,struct request_sock * req)1059 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
1060 {
1061 	inet_csk_reqsk_queue_drop(sk, req);
1062 	reqsk_put(req);
1063 }
1064 EXPORT_IPV6_MOD(inet_csk_reqsk_queue_drop_and_put);
1065 
reqsk_timer_handler(struct timer_list * t)1066 static void reqsk_timer_handler(struct timer_list *t)
1067 {
1068 	struct request_sock *req = timer_container_of(req, t, rsk_timer);
1069 	struct request_sock *nreq = NULL, *oreq = req;
1070 	struct sock *sk_listener = req->rsk_listener;
1071 	struct inet_connection_sock *icsk;
1072 	struct request_sock_queue *queue;
1073 	struct net *net;
1074 	int max_syn_ack_retries, qlen, expire = 0, resend = 0;
1075 
1076 	if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
1077 		struct sock *nsk;
1078 
1079 		nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
1080 		if (!nsk)
1081 			goto drop;
1082 
1083 		nreq = inet_reqsk_clone(req, nsk);
1084 		if (!nreq)
1085 			goto drop;
1086 
1087 		/* The new timer for the cloned req can decrease the 2
1088 		 * by calling inet_csk_reqsk_queue_drop_and_put(), so
1089 		 * hold another count to prevent use-after-free and
1090 		 * call reqsk_put() just before return.
1091 		 */
1092 		refcount_set(&nreq->rsk_refcnt, 2 + 1);
1093 		timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1094 		reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
1095 
1096 		req = nreq;
1097 		sk_listener = nsk;
1098 	}
1099 
1100 	icsk = inet_csk(sk_listener);
1101 	net = sock_net(sk_listener);
1102 	max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
1103 		READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1104 	/* Normally all the openreqs are young and become mature
1105 	 * (i.e. converted to established socket) for first timeout.
1106 	 * If synack was not acknowledged for 1 second, it means
1107 	 * one of the following things: synack was lost, ack was lost,
1108 	 * rtt is high or nobody planned to ack (i.e. synflood).
1109 	 * When server is a bit loaded, queue is populated with old
1110 	 * open requests, reducing effective size of queue.
1111 	 * When server is well loaded, queue size reduces to zero
1112 	 * after several minutes of work. It is not synflood,
1113 	 * it is normal operation. The solution is pruning
1114 	 * too old entries overriding normal timeout, when
1115 	 * situation becomes dangerous.
1116 	 *
1117 	 * Essentially, we reserve half of room for young
1118 	 * embrions; and abort old ones without pity, if old
1119 	 * ones are about to clog our table.
1120 	 */
1121 	queue = &icsk->icsk_accept_queue;
1122 	qlen = reqsk_queue_len(queue);
1123 	if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1124 		int young = reqsk_queue_len_young(queue) << 1;
1125 
1126 		while (max_syn_ack_retries > 2) {
1127 			if (qlen < young)
1128 				break;
1129 			max_syn_ack_retries--;
1130 			young <<= 1;
1131 		}
1132 	}
1133 	syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1134 		       &expire, &resend);
1135 	req->rsk_ops->syn_ack_timeout(req);
1136 	if (!expire &&
1137 	    (!resend ||
1138 	     !inet_rtx_syn_ack(sk_listener, req) ||
1139 	     inet_rsk(req)->acked)) {
1140 		if (req->num_timeout++ == 0)
1141 			atomic_dec(&queue->young);
1142 		mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1143 
1144 		if (!nreq)
1145 			return;
1146 
1147 		if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1148 			/* delete timer */
1149 			__inet_csk_reqsk_queue_drop(sk_listener, nreq, true);
1150 			goto no_ownership;
1151 		}
1152 
1153 		__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1154 		reqsk_migrate_reset(oreq);
1155 		reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1156 		reqsk_put(oreq);
1157 
1158 		reqsk_put(nreq);
1159 		return;
1160 	}
1161 
1162 	/* Even if we can clone the req, we may need not retransmit any more
1163 	 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1164 	 * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1165 	 */
1166 	if (nreq) {
1167 		__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1168 no_ownership:
1169 		reqsk_migrate_reset(nreq);
1170 		reqsk_queue_removed(queue, nreq);
1171 		__reqsk_free(nreq);
1172 	}
1173 
1174 drop:
1175 	__inet_csk_reqsk_queue_drop(sk_listener, oreq, true);
1176 	reqsk_put(oreq);
1177 }
1178 
reqsk_queue_hash_req(struct request_sock * req,unsigned long timeout)1179 static bool reqsk_queue_hash_req(struct request_sock *req,
1180 				 unsigned long timeout)
1181 {
1182 	bool found_dup_sk = false;
1183 
1184 	if (!inet_ehash_insert(req_to_sk(req), NULL, &found_dup_sk))
1185 		return false;
1186 
1187 	/* The timer needs to be setup after a successful insertion. */
1188 	timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1189 	mod_timer(&req->rsk_timer, jiffies + timeout);
1190 
1191 	/* before letting lookups find us, make sure all req fields
1192 	 * are committed to memory and refcnt initialized.
1193 	 */
1194 	smp_wmb();
1195 	refcount_set(&req->rsk_refcnt, 2 + 1);
1196 	return true;
1197 }
1198 
inet_csk_reqsk_queue_hash_add(struct sock * sk,struct request_sock * req,unsigned long timeout)1199 bool inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1200 				   unsigned long timeout)
1201 {
1202 	if (!reqsk_queue_hash_req(req, timeout))
1203 		return false;
1204 
1205 	inet_csk_reqsk_queue_added(sk);
1206 	return true;
1207 }
1208 
inet_clone_ulp(const struct request_sock * req,struct sock * newsk,const gfp_t priority)1209 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1210 			   const gfp_t priority)
1211 {
1212 	struct inet_connection_sock *icsk = inet_csk(newsk);
1213 
1214 	if (!icsk->icsk_ulp_ops)
1215 		return;
1216 
1217 	icsk->icsk_ulp_ops->clone(req, newsk, priority);
1218 }
1219 
1220 /**
1221  *	inet_csk_clone_lock - clone an inet socket, and lock its clone
1222  *	@sk: the socket to clone
1223  *	@req: request_sock
1224  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1225  *
1226  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1227  */
inet_csk_clone_lock(const struct sock * sk,const struct request_sock * req,const gfp_t priority)1228 struct sock *inet_csk_clone_lock(const struct sock *sk,
1229 				 const struct request_sock *req,
1230 				 const gfp_t priority)
1231 {
1232 	struct sock *newsk = sk_clone_lock(sk, priority);
1233 	struct inet_connection_sock *newicsk;
1234 	struct inet_request_sock *ireq;
1235 	struct inet_sock *newinet;
1236 
1237 	if (!newsk)
1238 		return NULL;
1239 
1240 	newicsk = inet_csk(newsk);
1241 	newinet = inet_sk(newsk);
1242 	ireq = inet_rsk(req);
1243 
1244 	newicsk->icsk_bind_hash = NULL;
1245 	newicsk->icsk_bind2_hash = NULL;
1246 
1247 	newinet->inet_dport = ireq->ir_rmt_port;
1248 	newinet->inet_num = ireq->ir_num;
1249 	newinet->inet_sport = htons(ireq->ir_num);
1250 
1251 	newsk->sk_bound_dev_if = ireq->ir_iif;
1252 
1253 	newsk->sk_daddr = ireq->ir_rmt_addr;
1254 	newsk->sk_rcv_saddr = ireq->ir_loc_addr;
1255 	newinet->inet_saddr = ireq->ir_loc_addr;
1256 
1257 #if IS_ENABLED(CONFIG_IPV6)
1258 	newsk->sk_v6_daddr = ireq->ir_v6_rmt_addr;
1259 	newsk->sk_v6_rcv_saddr = ireq->ir_v6_loc_addr;
1260 #endif
1261 
1262 	/* listeners have SOCK_RCU_FREE, not the children */
1263 	sock_reset_flag(newsk, SOCK_RCU_FREE);
1264 
1265 	inet_sk(newsk)->mc_list = NULL;
1266 
1267 	newsk->sk_mark = inet_rsk(req)->ir_mark;
1268 	atomic64_set(&newsk->sk_cookie,
1269 		     atomic64_read(&inet_rsk(req)->ir_cookie));
1270 
1271 	newicsk->icsk_retransmits = 0;
1272 	newicsk->icsk_backoff	  = 0;
1273 	newicsk->icsk_probes_out  = 0;
1274 	newicsk->icsk_probes_tstamp = 0;
1275 
1276 	/* Deinitialize accept_queue to trap illegal accesses. */
1277 	memset(&newicsk->icsk_accept_queue, 0,
1278 	       sizeof(newicsk->icsk_accept_queue));
1279 
1280 	inet_sk_set_state(newsk, TCP_SYN_RECV);
1281 
1282 	inet_clone_ulp(req, newsk, priority);
1283 
1284 	security_inet_csk_clone(newsk, req);
1285 
1286 	return newsk;
1287 }
1288 
1289 /*
1290  * At this point, there should be no process reference to this
1291  * socket, and thus no user references at all.  Therefore we
1292  * can assume the socket waitqueue is inactive and nobody will
1293  * try to jump onto it.
1294  */
inet_csk_destroy_sock(struct sock * sk)1295 void inet_csk_destroy_sock(struct sock *sk)
1296 {
1297 	WARN_ON(sk->sk_state != TCP_CLOSE);
1298 	WARN_ON(!sock_flag(sk, SOCK_DEAD));
1299 
1300 	/* It cannot be in hash table! */
1301 	WARN_ON(!sk_unhashed(sk));
1302 
1303 	/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1304 	WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1305 
1306 	sk->sk_prot->destroy(sk);
1307 
1308 	sk_stream_kill_queues(sk);
1309 
1310 	xfrm_sk_free_policy(sk);
1311 
1312 	this_cpu_dec(*sk->sk_prot->orphan_count);
1313 
1314 	sock_put(sk);
1315 }
1316 EXPORT_SYMBOL(inet_csk_destroy_sock);
1317 
1318 /* This function allows to force a closure of a socket after the call to
1319  * tcp_create_openreq_child().
1320  */
inet_csk_prepare_forced_close(struct sock * sk)1321 void inet_csk_prepare_forced_close(struct sock *sk)
1322 	__releases(&sk->sk_lock.slock)
1323 {
1324 	/* sk_clone_lock locked the socket and set refcnt to 2 */
1325 	bh_unlock_sock(sk);
1326 	sock_put(sk);
1327 	inet_csk_prepare_for_destroy_sock(sk);
1328 	inet_sk(sk)->inet_num = 0;
1329 }
1330 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1331 
inet_ulp_can_listen(const struct sock * sk)1332 static int inet_ulp_can_listen(const struct sock *sk)
1333 {
1334 	const struct inet_connection_sock *icsk = inet_csk(sk);
1335 
1336 	if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1337 		return -EINVAL;
1338 
1339 	return 0;
1340 }
1341 
inet_csk_listen_start(struct sock * sk)1342 int inet_csk_listen_start(struct sock *sk)
1343 {
1344 	struct inet_connection_sock *icsk = inet_csk(sk);
1345 	struct inet_sock *inet = inet_sk(sk);
1346 	int err;
1347 
1348 	err = inet_ulp_can_listen(sk);
1349 	if (unlikely(err))
1350 		return err;
1351 
1352 	reqsk_queue_alloc(&icsk->icsk_accept_queue);
1353 
1354 	sk->sk_ack_backlog = 0;
1355 	inet_csk_delack_init(sk);
1356 
1357 	/* There is race window here: we announce ourselves listening,
1358 	 * but this transition is still not validated by get_port().
1359 	 * It is OK, because this socket enters to hash table only
1360 	 * after validation is complete.
1361 	 */
1362 	inet_sk_state_store(sk, TCP_LISTEN);
1363 	err = sk->sk_prot->get_port(sk, inet->inet_num);
1364 	if (!err) {
1365 		inet->inet_sport = htons(inet->inet_num);
1366 
1367 		sk_dst_reset(sk);
1368 		err = sk->sk_prot->hash(sk);
1369 
1370 		if (likely(!err))
1371 			return 0;
1372 	}
1373 
1374 	inet_sk_set_state(sk, TCP_CLOSE);
1375 	return err;
1376 }
1377 
inet_child_forget(struct sock * sk,struct request_sock * req,struct sock * child)1378 static void inet_child_forget(struct sock *sk, struct request_sock *req,
1379 			      struct sock *child)
1380 {
1381 	sk->sk_prot->disconnect(child, O_NONBLOCK);
1382 
1383 	sock_orphan(child);
1384 
1385 	this_cpu_inc(*sk->sk_prot->orphan_count);
1386 
1387 	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1388 		BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1389 		BUG_ON(sk != req->rsk_listener);
1390 
1391 		/* Paranoid, to prevent race condition if
1392 		 * an inbound pkt destined for child is
1393 		 * blocked by sock lock in tcp_v4_rcv().
1394 		 * Also to satisfy an assertion in
1395 		 * tcp_v4_destroy_sock().
1396 		 */
1397 		RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1398 	}
1399 	inet_csk_destroy_sock(child);
1400 }
1401 
inet_csk_reqsk_queue_add(struct sock * sk,struct request_sock * req,struct sock * child)1402 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1403 				      struct request_sock *req,
1404 				      struct sock *child)
1405 {
1406 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1407 
1408 	spin_lock(&queue->rskq_lock);
1409 	if (unlikely(sk->sk_state != TCP_LISTEN)) {
1410 		inet_child_forget(sk, req, child);
1411 		child = NULL;
1412 	} else {
1413 		req->sk = child;
1414 		req->dl_next = NULL;
1415 		if (queue->rskq_accept_head == NULL)
1416 			WRITE_ONCE(queue->rskq_accept_head, req);
1417 		else
1418 			queue->rskq_accept_tail->dl_next = req;
1419 		queue->rskq_accept_tail = req;
1420 		sk_acceptq_added(sk);
1421 	}
1422 	spin_unlock(&queue->rskq_lock);
1423 	return child;
1424 }
1425 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1426 
inet_csk_complete_hashdance(struct sock * sk,struct sock * child,struct request_sock * req,bool own_req)1427 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1428 					 struct request_sock *req, bool own_req)
1429 {
1430 	if (own_req) {
1431 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1432 		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1433 
1434 		if (sk != req->rsk_listener) {
1435 			/* another listening sk has been selected,
1436 			 * migrate the req to it.
1437 			 */
1438 			struct request_sock *nreq;
1439 
1440 			/* hold a refcnt for the nreq->rsk_listener
1441 			 * which is assigned in inet_reqsk_clone()
1442 			 */
1443 			sock_hold(sk);
1444 			nreq = inet_reqsk_clone(req, sk);
1445 			if (!nreq) {
1446 				inet_child_forget(sk, req, child);
1447 				goto child_put;
1448 			}
1449 
1450 			refcount_set(&nreq->rsk_refcnt, 1);
1451 			if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1452 				__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1453 				reqsk_migrate_reset(req);
1454 				reqsk_put(req);
1455 				return child;
1456 			}
1457 
1458 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1459 			reqsk_migrate_reset(nreq);
1460 			__reqsk_free(nreq);
1461 		} else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1462 			return child;
1463 		}
1464 	}
1465 	/* Too bad, another child took ownership of the request, undo. */
1466 child_put:
1467 	bh_unlock_sock(child);
1468 	sock_put(child);
1469 	return NULL;
1470 }
1471 
1472 /*
1473  *	This routine closes sockets which have been at least partially
1474  *	opened, but not yet accepted.
1475  */
inet_csk_listen_stop(struct sock * sk)1476 void inet_csk_listen_stop(struct sock *sk)
1477 {
1478 	struct inet_connection_sock *icsk = inet_csk(sk);
1479 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1480 	struct request_sock *next, *req;
1481 
1482 	/* Following specs, it would be better either to send FIN
1483 	 * (and enter FIN-WAIT-1, it is normal close)
1484 	 * or to send active reset (abort).
1485 	 * Certainly, it is pretty dangerous while synflood, but it is
1486 	 * bad justification for our negligence 8)
1487 	 * To be honest, we are not able to make either
1488 	 * of the variants now.			--ANK
1489 	 */
1490 	while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1491 		struct sock *child = req->sk, *nsk;
1492 		struct request_sock *nreq;
1493 
1494 		local_bh_disable();
1495 		bh_lock_sock(child);
1496 		WARN_ON(sock_owned_by_user(child));
1497 		sock_hold(child);
1498 
1499 		nsk = reuseport_migrate_sock(sk, child, NULL);
1500 		if (nsk) {
1501 			nreq = inet_reqsk_clone(req, nsk);
1502 			if (nreq) {
1503 				refcount_set(&nreq->rsk_refcnt, 1);
1504 
1505 				if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1506 					__NET_INC_STATS(sock_net(nsk),
1507 							LINUX_MIB_TCPMIGRATEREQSUCCESS);
1508 					reqsk_migrate_reset(req);
1509 				} else {
1510 					__NET_INC_STATS(sock_net(nsk),
1511 							LINUX_MIB_TCPMIGRATEREQFAILURE);
1512 					reqsk_migrate_reset(nreq);
1513 					__reqsk_free(nreq);
1514 				}
1515 
1516 				/* inet_csk_reqsk_queue_add() has already
1517 				 * called inet_child_forget() on failure case.
1518 				 */
1519 				goto skip_child_forget;
1520 			}
1521 		}
1522 
1523 		inet_child_forget(sk, req, child);
1524 skip_child_forget:
1525 		reqsk_put(req);
1526 		bh_unlock_sock(child);
1527 		local_bh_enable();
1528 		sock_put(child);
1529 
1530 		cond_resched();
1531 	}
1532 	if (queue->fastopenq.rskq_rst_head) {
1533 		/* Free all the reqs queued in rskq_rst_head. */
1534 		spin_lock_bh(&queue->fastopenq.lock);
1535 		req = queue->fastopenq.rskq_rst_head;
1536 		queue->fastopenq.rskq_rst_head = NULL;
1537 		spin_unlock_bh(&queue->fastopenq.lock);
1538 		while (req != NULL) {
1539 			next = req->dl_next;
1540 			reqsk_put(req);
1541 			req = next;
1542 		}
1543 	}
1544 	WARN_ON_ONCE(sk->sk_ack_backlog);
1545 }
1546 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1547 
inet_csk_rebuild_route(struct sock * sk,struct flowi * fl)1548 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1549 {
1550 	const struct inet_sock *inet = inet_sk(sk);
1551 	struct flowi4 *fl4;
1552 	struct rtable *rt;
1553 
1554 	rcu_read_lock();
1555 	fl4 = &fl->u.ip4;
1556 	inet_sk_init_flowi4(inet, fl4);
1557 	rt = ip_route_output_flow(sock_net(sk), fl4, sk);
1558 	if (IS_ERR(rt))
1559 		rt = NULL;
1560 	if (rt)
1561 		sk_setup_caps(sk, &rt->dst);
1562 	rcu_read_unlock();
1563 
1564 	return &rt->dst;
1565 }
1566 
inet_csk_update_pmtu(struct sock * sk,u32 mtu)1567 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1568 {
1569 	struct dst_entry *dst = __sk_dst_check(sk, 0);
1570 	struct inet_sock *inet = inet_sk(sk);
1571 
1572 	if (!dst) {
1573 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1574 		if (!dst)
1575 			goto out;
1576 	}
1577 	dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1578 
1579 	dst = __sk_dst_check(sk, 0);
1580 	if (!dst)
1581 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1582 out:
1583 	return dst;
1584 }
1585